

Measurement of the masses and widths of the bottom baryons Σ_b^\pm and $\Sigma_b^{*\pm}$

T. Aaltonen,²¹ B. Álvarez González,⁹ S. Amerio,⁴⁰ D. Amidei,³² A. Anastassov^x,¹⁵ A. Annovi,¹⁷ J. Antos,¹²
 G. Apollinari,¹⁵ J.A. Appel,¹⁵ T. Arisawa,⁵⁴ A. Artikov,¹³ J. Asaadi,⁴⁹ W. Ashmanskas,¹⁵ B. Auerbach,⁵⁷
 A. Aurisano,⁴⁹ F. Azfar,³⁹ W. Badgett,¹⁵ T. Bae,²⁵ A. Barbaro-Galtieri,²⁶ V.E. Barnes,⁴⁴ B.A. Barnett,²³
 P. Barria^{hh},⁴² P. Bartos,¹² M. Bauce^{ff},⁴⁰ F. Bedeschi,⁴² S. Behari,²³ G. Bellettini^{gg},⁴² J. Bellinger,⁵⁶
 D. Benjamin,¹⁴ A. Beretvas,¹⁵ A. Bhatti,⁴⁶ D. Bisello^{ff},⁴⁰ I. Bizjak,²⁸ K.R. Bland,⁵ B. Blumenfeld,²³ A. Bocci,¹⁴
 A. Bodek,⁴⁵ D. Bortoletto,⁴⁴ J. Boudreau,⁴³ A. Boveia,¹¹ L. Brigliadori^{ee},⁶ C. Bromberg,³³ E. Brucken,²¹
 J. Budagov,¹³ H.S. Budd,⁴⁵ K. Burkett,¹⁵ G. Busetto^{ff},⁴⁰ P. Bussey,¹⁹ A. Buzatu,³¹ A. Calamba,¹⁰ C. Calancha,²⁹
 S. Camarda,⁴ M. Campanelli,²⁸ M. Campbell,³² F. Canelli¹¹,¹⁵ B. Carls,²² D. Carlsmith,⁵⁶ R. Carosi,⁴²
 S. Carrillo^m,¹⁶ S. Carron,¹⁵ B. Casal^k,⁹ M. Casarsa,⁵⁰ A. Castro^{ee},⁶ P. Catastini,²⁰ D. Cauz,⁵⁰ V. Cavaliere,²²
 M. Cavalli-Sforza,⁴ A. Cerri^f,²⁶ L. Cerrito^s,²⁸ Y.C. Chen,¹ M. Chertok,⁷ G. Chiarelli,⁴² G. Chlachidze,¹⁵
 F. Chlebana,¹⁵ K. Cho,²⁵ D. Chokheli,¹³ W.H. Chung,⁵⁶ Y.S. Chung,⁴⁵ M.A. Ciocci^{hh},⁴² A. Clark,¹⁸ C. Clarke,⁵⁵
 G. Compostella^{ff},⁴⁰ M.E. Convery,¹⁵ J. Conway,⁷ M. Corbo,¹⁵ M. Cordelli,¹⁷ C.A. Cox,⁷ D.J. Cox,⁷ F. Crescioli^{gg},⁴²
 J. Cuevas^z,⁹ R. Culbertson,¹⁵ D. Dagenhart,¹⁵ N. d'Ascenzo^w,¹⁵ M. Datta,¹⁵ P. de Barbaro,⁴⁵ M. Dell'Orso^{gg},⁴²
 L. Demortier,⁴⁶ M. Deninno,⁶ F. Devoto,²¹ M. d'Errico^{ff},⁴⁰ A. Di Canto^{gg},⁴² B. Di Ruzza,¹⁵ J.R. Dittmann,⁵
 M. D'Onofrio,²⁷ S. Donati^{gg},⁴² P. Dong,¹⁵ M. Dorigo,⁵⁰ T. Dorigo,⁴⁰ K. Ebina,⁵⁴ A. Elagin,⁴⁹ A. Eppig,³²
 R. Erbacher,⁷ S. Errede,²² N. Ershaidat^{dd},¹⁵ R. Eusebi,⁴⁹ S. Farrington,³⁹ M. Feindt,²⁴ J.P. Fernandez,²⁹
 R. Field,¹⁶ G. Flanagan^u,¹⁵ R. Forrest,⁷ M.J. Frank,⁵ M. Franklin,²⁰ J.C. Freeman,¹⁵ Y. Funakoshi,⁵⁴ I. Furic,¹⁶
 M. Gallinaro,⁴⁶ J.E. Garcia,¹⁸ A.F. Garfinkel,⁴⁴ P. Garosi^{hh},⁴² H. Gerberich,²² E. Gerchtein,¹⁵ S. Giagu,⁴⁷
 V. Giakoumopoulou,³ P. Giannetti,⁴² K. Gibson,⁴³ C.M. Ginsburg,¹⁵ N. Giokaris,³ P. Giromini,¹⁷ G. Giurgiu,²³
 V. Glagolev,¹³ D. Glenzinski,¹⁵ M. Gold,³⁵ D. Goldin,⁴⁹ N. Goldschmidt,¹⁶ A. Golosanov,¹⁵ G. Gomez,⁹
 G. Gomez-Ceballos,³⁰ M. Goncharov,³⁰ O. González,²⁹ I. Gorelov,³⁵ A.T. Goshaw,¹⁴ K. Goulianos,⁴⁶ S. Grinstein,⁴
 C. Grossi-Pilcher,¹¹ R.C. Group⁵³,¹⁵ J. Guimaraes da Costa,²⁰ S.R. Hahn,¹⁵ E. Halkiadakis,⁴⁸ A. Hamaguchi,³⁸
 J.Y. Han,⁴⁵ F. Happacher,¹⁷ K. Hara,⁵¹ D. Hare,⁴⁸ M. Hare,⁵² R.F. Harr,⁵⁵ K. Hatakeyama,⁵ C. Hays,³⁹ M. Heck,²⁴
 J. Heinrich,⁴¹ M. Herndon,⁵⁶ S. Hewamanage,⁵ A. Hocker,¹⁵ W. Hopkins^g,¹⁵ D. Horn,²⁴ S. Hou,¹ R.E. Hughes,³⁶
 M. Hurwitz,¹¹ U. Husemann,⁵⁷ N. Hussain,³¹ M. Hussein,³³ J. Huston,³³ G. Introzzi,⁴² M. Iori^{jj},⁴⁷ A. Ivanov^p,⁷
 E. James,¹⁵ D. Jang,¹⁰ B. Jayatilaka,¹⁴ E.J. Jeon,²⁵ S. Jindariani,¹⁵ M. Jones,⁴⁴ K.K. Joo,²⁵ S.Y. Jun,¹⁰
 T.R. Junk,¹⁵ T. Kamon,²⁵,⁴⁹ P.E. Karchin,⁵⁵ A. Kasmi,⁵ Y. Kato^o,³⁸ W. Ketchum,¹¹ J. Keung,⁴¹ V. Khotilovich,⁴⁹
 B. Kilminster,¹⁵ D.H. Kim,²⁵ H.S. Kim,²⁵ J.E. Kim,²⁵ M.J. Kim,¹⁷ S.B. Kim,²⁵ S.H. Kim,⁵¹ Y.K. Kim,¹¹
 Y.J. Kim,²⁵ N. Kimura,⁵⁴ M. Kirby,¹⁵ S. Klimenko,¹⁶ K. Knoepfel,¹⁵ K. Kondo*,⁵⁴ D.J. Kong,²⁵ J. Konigsberg,¹⁶
 A.V. Kotwal,¹⁴ M. Kreps,²⁴ J. Kroll,⁴¹ D. Krop,¹¹ M. Kruse,¹⁴ V. Krutelyov^c,⁴⁹ T. Kuhr,²⁴ M. Kurata,⁵¹
 S. Kwang,¹¹ A.T. Laasanen,⁴⁴ S. Lami,⁴² S. Lammel,¹⁵ M. Lancaster,²⁸ R.L. Lander,⁷ K. Lannon^y,³⁶ A. Lath,⁴⁸
 G. Latino^{hh},⁴² T. LeCompte,² E. Lee,⁴⁹ H.S. Lee^q,¹¹ J.S. Lee,²⁵ S.W. Lee^{bb},⁴⁹ S. Leo^{gg},⁴² S. Leone,⁴² J.D. Lewis,¹⁵
 A. Limosani^t,¹⁴ C.-J. Lin,²⁶ M. Lindgren,¹⁵ E. Lipeles,⁴¹ A. Lister,¹⁸ D.O. Litvintsev,¹⁵ C. Liu,⁴³ H. Liu,⁵³ Q. Liu,⁴⁴
 T. Liu,¹⁵ S. Lockwitz,⁵⁷ A. Loginov,⁵⁷ D. Lucchesi^{ff},⁴⁰ J. Lueck,²⁴ P. Lujan,²⁶ P. Lukens,¹⁵ G. Lungu,⁴⁶ J. Lys,²⁶
 R. Lysak^e,¹² R. Madrak,¹⁵ K. Maeshima,¹⁵ P. Maestro^{hh},⁴² S. Malik,⁴⁶ G. Manca^a,²⁷ A. Manousakis-Katsikakis,³
 F. Margaroli,⁴⁷ C. Marino,²⁴ M. Martínez,⁴ P. Mastrandrea,⁴⁷ K. Matera,²² M.E. Mattson,⁵⁵ A. Mazzacane,¹⁵
 P. Mazzanti,⁶ K.S. McFarland,⁴⁵ P. McIntyre,⁴⁹ R. McNulty^j,²⁷ A. Mehta,²⁷ P. Mehtala,²¹ C. Mesropian,⁴⁶
 T. Miao,¹⁵ D. Mietlicki,³² A. Mitra,¹ H. Miyake,⁵¹ S. Moed,¹⁵ N. Moggi,⁶ M.N. Mondragon^m,¹⁵ C.S. Moon,²⁵
 R. Moore,¹⁵ M.J. Morelloⁱⁱ,⁴² J. Morlock,²⁴ P. Movilla Fernandez,¹⁵ A. Mukherjee,¹⁵ Th. Muller,²⁴ P. Murat,¹⁵
 M. Mussini^{ee},⁶ J. Nachtmanⁿ,¹⁵ Y. Nagai,⁵¹ J. Naganoma,⁵⁴ I. Nakano,³⁷ A. Napier,⁵² J. Nett,⁴⁹ C. Neu,⁵³
 M.S. Neubauer,²² J. Nielsen^d,²⁶ L. Nodulman,² S.Y. Noh,²⁵ O. Norniella,²² L. Oakes,³⁹ S.H. Oh,¹⁴ Y.D. Oh,²⁵
 I. Oksuzian,⁵³ T. Okusawa,³⁸ R. Orava,²¹ L. Ortolan,⁴ S. Pagan Griso^{ff},⁴⁰ C. Pagliarone,⁵⁰ E. Palencia^f,⁹
 V. Papadimitriou,¹⁵ A.A. Paramonov,² J. Patrick,¹⁵ G. Pauletta^{kk},⁵⁰ M. Paulini,¹⁰ C. Paus,³⁰ D.E. Pellett,⁷
 A. Penzo,⁵⁰ T.J. Phillips,¹⁴ G. Piacentino,⁴² E. Pianori,⁴¹ J. Pilot,³⁶ K. Pitts,²² C. Plager,⁸ L. Pondrom,⁵⁶
 S. Poprocki^g,¹⁵ K. Potamianos,⁴⁴ F. Prokoshin^{cc},¹³ A. Pranko,²⁶ F. Ptohos^h,¹⁷ G. Punzi^{gg},⁴² A. Rahaman,⁴³
 V. Ramakrishnan,⁵⁶ N. Ranjan,⁴⁴ I. Redondo,²⁹ P. Renton,³⁹ M. Rescigno,⁴⁷ T. Riddick,²⁸ F. Rimondi^{ee},⁶
 L. Ristori⁴²,¹⁵ A. Robson,¹⁹ T. Rodrigo,⁹ T. Rodriguez,⁴¹ E. Rogers,²² S. Rolliⁱ,⁵² R. Roser,¹⁵ F. Ruffini^{hh},⁴²
 A. Ruiz,⁹ J. Russ,¹⁰ V. Rusu,¹⁵ A. Safonov,⁴⁹ W.K. Sakumoto,⁴⁵ Y. Sakurai,⁵⁴ L. Santi^{kk},⁵⁰ K. Sato,⁵¹
 V. Saveliev^w,¹⁵ A. Savoy-Navarro^{aa},¹⁵ P. Schlabach,¹⁵ A. Schmidt,²⁴ E.E. Schmidt,¹⁵ T. Schwarz,¹⁵ L. Scodellaro,⁹
 A. Scribano^{hh},⁴² F. Scuri,⁴² S. Seidel,³⁵ Y. Seiya,³⁸ A. Semenov,¹³ F. Sforza^{hh},⁴² S.Z. Shalhout,⁷ T. Shears,²⁷
 P.F. Shepard,⁴³ M. Shimojima^v,⁵¹ M. Shochet,¹¹ I. Shreyber-Tecker,³⁴ A. Simonenko,¹³ P. Sinervo,³¹ K. Sliwa,⁵²

J.R. Smith,⁷ F.D. Snider,¹⁵ A. Soha,¹⁵ V. Sorin,⁴ H. Song,⁴³ P. Squillacioti^{hh},⁴² M. Stancari,¹⁵ R. St. Denis,¹⁹
 2 B. Stelzer,³¹ O. Stelzer-Chilton,³¹ D. Stentz^x,¹⁵ J. Strologas,³⁵ G.L. Strycker,³² Y. Sudo,⁵¹ A. Sukhanov,¹⁵
 3 I. Suslov,¹³ K. Takemasa,⁵¹ Y. Takeuchi,⁵¹ J. Tang,¹¹ M. Tecchio,³² P.K. Teng,¹ J. Thom^g,¹⁵ J. Thome,¹⁰
 4 G.A. Thompson,²² E. Thomson,⁴¹ D. Toback,⁴⁹ S. Tokar,¹² K. Tollefson,³³ T. Tomura,⁵¹ D. Tonelli,¹⁵ S. Torre,¹⁷
 5 D. Torretta,¹⁵ P. Totaro,⁴⁰ M. Trovatoⁱⁱ,⁴² F. Ukegawa,⁵¹ S. Uozumi,²⁵ A. Varganov,³² F. Vázquez^m,¹⁶ G. Velev,¹⁵
 6 C. Vellidis,¹⁵ M. Vidal,⁴⁴ I. Vila,⁹ R. Vilar,⁹ J. Vizán,⁹ M. Vogel,³⁵ G. Volpi,¹⁷ P. Wagner,⁴¹ R.L. Wagner,¹⁵
 7 T. Wakisaka,³⁸ R. Wallny,⁸ S.M. Wang,¹ A. Warburton,³¹ D. Waters,²⁸ W.C. Wester III,¹⁵ D. Whiteson^b,⁴¹
 8 A.B. Wicklund,² E. Wicklund,¹⁵ S. Wilbur,¹¹ F. Wick,²⁴ H.H. Williams,⁴¹ J.S. Wilson,³⁶ P. Wilson,¹⁵
 9 B.L. Winer,³⁶ P. Wittich^g,¹⁵ S. Wolbers,¹⁵ H. Wolfe,³⁶ T. Wright,³² X. Wu,¹⁸ Z. Wu,⁵ K. Yamamoto,³⁸
 10 D. Yamato,³⁸ T. Yang,¹⁵ U.K. Yang^r,¹¹ Y.C. Yang,²⁵ W.-M. Yao,²⁶ G.P. Yeh,¹⁵ K. Yiⁿ,¹⁵ J. Yoh,¹⁵ K. Yorita,⁵⁴
 11 T. Yoshida^l,³⁸ G.B. Yu,¹⁴ I. Yu,²⁵ S.S. Yu,¹⁵ J.C. Yun,¹⁵ A. Zanetti,⁵⁰ Y. Zeng,¹⁴ C. Zhou,¹⁴ and S. Zucchelli^{ee6}
 12 (CDF Collaboration[†])

¹³*Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China*

¹⁴*Argonne National Laboratory, Argonne, Illinois 60439, USA*

¹⁵*University of Athens, 157 71 Athens, Greece*

¹⁶*Institut de Fisica d'Altes Energies, ICREA, Universitat Autònoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain*

¹⁷*Baylor University, Waco, Texas 76798, USA*

¹⁸*Istituto Nazionale di Fisica Nucleare Bologna, ^{ee}University of Bologna, I-40127 Bologna, Italy*

¹⁹*University of California, Davis, Davis, California 95616, USA*

²⁰*University of California, Los Angeles, Los Angeles, California 90024, USA*

²¹*Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain*

²²*Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA*

²³*Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA*

²⁴*Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia*

²⁵*Joint Institute for Nuclear Research, RU-141980 Dubna, Russia*

²⁶*Duke University, Durham, North Carolina 27708, USA*

²⁷*Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA*

²⁸*University of Florida, Gainesville, Florida 32611, USA*

²⁹*Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy*

³⁰*University of Geneva, CH-1211 Geneva 4, Switzerland*

³¹*Glasgow University, Glasgow G12 8QQ, United Kingdom*

³²*Harvard University, Cambridge, Massachusetts 02138, USA*

³³*Division of High Energy Physics, Department of Physics,*

University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

³⁴*University of Illinois, Urbana, Illinois 61801, USA*

³⁵*The Johns Hopkins University, Baltimore, Maryland 21218, USA*

³⁶*Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany*

³⁷*Center for High Energy Physics: Kyungpook National University,*

Daegu 702-701, Korea; Seoul National University, Seoul 151-742,

Korea; Sungkyunkwan University, Suwon 440-746,

Korea; Korea Institute of Science and Technology Information,

Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757,

Korea; Chonbuk National University, Jeonju 561-756, Korea

³⁸*Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA*

³⁹*University of Liverpool, Liverpool L69 7ZE, United Kingdom*

⁴⁰*University College London, London WC1E 6BT, United Kingdom*

⁴¹*Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain*

⁴²*Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA*

⁴³*Institute of Particle Physics: McGill University, Montréal, Québec,*

Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia,

Canada V5A 1S6; University of Toronto, Toronto, Ontario,

Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

⁴⁵*University of Michigan, Ann Arbor, Michigan 48109, USA*

⁴⁶*Michigan State University, East Lansing, Michigan 48824, USA*

⁴⁷*Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia*

⁴⁸*University of New Mexico, Albuquerque, New Mexico 87131, USA*

⁴⁹*The Ohio State University, Columbus, Ohio 43210, USA*

⁵⁰*Okayama University, Okayama 700-8530, Japan*

⁵¹*Osaka City University, Osaka 588, Japan*

⁵²*University of Oxford, Oxford OX1 3RH, United Kingdom*

⁵³*Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ^{ff}University of Padova, I-35131 Padova, Italy*

⁴¹*University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA*
⁴²*Istituto Nazionale di Fisica Nucleare Pisa, ⁹⁹University of Pisa,*
^{hh}*University of Siena and ⁱⁱScuola Normale Superiore, I-56127 Pisa, Italy*
⁴³*University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA*
⁴⁴*Purdue University, West Lafayette, Indiana 47907, USA*
⁴⁵*University of Rochester, Rochester, New York 14627, USA*
⁴⁶*The Rockefeller University, New York, New York 10065, USA*
⁴⁷*Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,*
^{jj}*Sapienza Università di Roma, I-00185 Roma, Italy*
⁴⁸*Rutgers University, Piscataway, New Jersey 08855, USA*
⁴⁹*Texas A&M University, College Station, Texas 77843, USA*
⁵⁰*Istituto Nazionale di Fisica Nucleare Trieste/Udine,
I-34100 Trieste, ^{kk}University of Udine, I-33100 Udine, Italy*
⁵¹*University of Tsukuba, Tsukuba, Ibaraki 305, Japan*
⁵²*Tufts University, Medford, Massachusetts 02155, USA*
⁵³*University of Virginia, Charlottesville, Virginia 22906, USA*
⁵⁴*Waseda University, Tokyo 169, Japan*
⁵⁵*Wayne State University, Detroit, Michigan 48201, USA*
⁵⁶*University of Wisconsin, Madison, Wisconsin 53706, USA*
⁵⁷*Yale University, New Haven, Connecticut 06520, USA*

Using data from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II detector at the Fermilab Tevatron, we present improved measurements of the masses and first measurements of natural widths of the four bottom baryon resonance states Σ_b^+ , Σ_b^{*+} and Σ_b^- , Σ_b^{*-} . These states are fully reconstructed in their decay modes to $\Lambda_b^0\pi^\pm$ where $\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-$ with $\Lambda_c^+ \rightarrow pK^-\pi^+$. The analysis is based on a data sample corresponding to an integrated luminosity 6.0 fb^{-1} collected by a trigger on tracks displaced from the $p\bar{p}$ interaction point.

PACS numbers: 14.20.Mr, 13.30Eg, 14.65.Fy

I. INTRODUCTION

Baryons with a heavy quark Q as the “nucleus” and a light diquark q_1q_2 as the two orbiting “electrons” can be viewed as the “helium atoms” of quantum chromodynamics (QCD). The heavy quark in the baryon may be used as a probe of confinement which allows the study of non-perturbative QCD in a different regime from that of the light baryons.

Remarkable achievements in the theory of heavy quark hadrons were made when it was realized that a single heavy quark Q with mass $m_Q \gg \Lambda_{\text{QCD}}$ in the heavy hadron H_Q can be considered as a static color source in the hadron’s rest frame [1]. Based on this conjecture the light diquark properties of the charm baryon Λ_c^+ (Σ_c) and its bottom partner Λ_b^0 (Σ_b) can be related by an approximate $SU(2)$ symmetry due to $c \leftrightarrow b$ quark exchange. Another symmetry emerges because the spin S_Q degree of freedom decouples from the gluon field. Models exploiting these heavy quark symmetries are grouped as heavy quark effective theories (HQET) [2, 3].

As the spin S_{qq} of a diquark (plus a gluon field) and the spin S_Q of a heavy quark are decoupled in HQET and serve as approximate good quantum numbers, heavy baryons can be described by the quantum numbers S_Q , m_Q , S_{qq} , m_{qq} . Therefore the total spins of the S -wave ($l_{qq} = 0$, no orbital excitation) baryon multiplets can be expressed as the simple sum $J = S_Q + S_{qq}$. Then the singlet Λ_b^0 baryon, with quark content $b[ud]$ according to HQET, has spin of the heavy quark $S_b = \frac{1}{2}$.

Its flavor antisymmetric $[ud]$ diquark has spin $S_{[ud]} = 0$. Under these conditions the b quark and $[ud]$ make the lowest-lying singlet ground state $J^P = \frac{1}{2}^+$. The partner of the Λ_b^0 baryon in the strange quark sector is Λ^0 . The other two states Σ_b and Σ_b^* with quark content $b\{qq\}$, heavy quark spin $S_b = \frac{1}{2}^+$, and spin of the flavor symmetric $\{qq\}$ diquark $S_{\{qq\}} = 1^+$, constitute two isospin $I = 1$ triplets with total spin $J^P = \frac{1}{2}^+$ and $J^P = \frac{3}{2}^+$. These states are the lowest-lying S -wave states that can decay to the singlet Λ_b^0 via strong processes involving soft pion emissions – provided sufficient phase space is available. Σ_b and Σ_b^* are classified as bottom baryon resonant states. The partners of the $\Sigma_b^{(*)}$ states [4] in the strange quark sector are $\Sigma^{(*)}$ baryon resonances, though the $J^P = \frac{1}{2}^+$ Σ states are light enough to decay only weakly or radiatively, and only the $J^P = \frac{3}{2}^+$ states $\Sigma(1385)$ decay strongly via the $\Lambda^0\pi$ mode [5].

Some recent HQET calculations for bottom baryons are available in Ref. [6]. The mass spectra of single heavy quark baryons calculated with HQET in combined expansions in $1/m_Q$ and $1/N_c$ are presented in Ref. [7]. In the potential quark model, the mass differences $m(\Sigma_Q) - m(\Lambda_Q)$ and $m(\Sigma_Q^*) - m(\Sigma_Q)$ are largely due to hyperfine splittings, hence the mass differences scale as $1/m_Q$. Some recent predictions based on potential quark models are found in Ref. [8, 9]. There are striking patterns in the masses and mass differences of known hadrons. Some of these regularities can be understood from known general properties of the interactions of quarks, without spec-

^{*}Deceased

[†]With visitors from ^aIstituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ^bUniversity of CA Irvine, Irvine, CA 92697, USA, ^cUniversity of CA Santa Barbara, Santa Barbara, CA 93106, USA, ^dUniversity of CA Santa Cruz,

ifying the explicit form of the Hamiltonian. Following this minimalist approach, the authors of Ref. [10] use semi-empirical mass formulae to predict the spectra of c - and b - baryons. The non-perturbative formalism of QCD sum rules has been applied within HQET to calculate the mass spectra of the heavy baryons Λ_Q and Σ_Q [11]. Lattice non-relativistic QCD calculations for bottom baryons [12] have been quite successful, though the statistical and systematic uncertainties are typically large and exceed the uncertainties of the experimental measurements.

The mass splittings between members of the $I = 1$ isospin triplets $\Sigma_b^{(*)}$ are predicted to be dominated by the electromagnetic interactions between quarks and by their intrinsic mass differences [13]. Because of electromagnetic effects and the fact that the d quark is heavier than the u quark, the $\Sigma_b^{(*)-}$ states (with composition $b\{dd\}$ *i.e.* all quarks negative) are expected to be heavier than the $\Sigma_b^{(*)+}$ states whose composition is $b\{uu\}$ [14]. No previous experimental measurements of isospin mass splitting of bottom baryons are available.

The description of strong decays of baryon resonances is a difficult theoretical task [15]. A few theoretical calculations [16–18] predict the natural widths of the $\Sigma_b^{(*)}$ states. The widths are expected to be within the range $(4.5 - 13.5) \text{ MeV}/c^2$ for $\Gamma(\Sigma_b, \frac{1}{2}^+)$, and the range $(8.5 - 18.0) \text{ MeV}/c^2$ for $\Gamma(\Sigma_b^*, \frac{3}{2}^+)$.

Until recently, direct observation of b -baryons has been limited to the Λ_b^0 reconstructed in its weak decays to $J/\psi \Lambda^0$ and $\Lambda_c^+ \pi^-$ [5]. The substantially enlarged experimental data sets delivered by the Tevatron allow significant advances in the spectroscopy of heavy quark baryon states. The resonance $\Sigma_b^{(*)}$ states were discovered by CDF [19]. The charged bottom strange baryon Ξ_b^- particle was observed and measured [20–22] by both the CDF and DO Collaborations. Later, both experimental groups reported first observation [23] and then measurement [22] of the bottom doubly strange particle Ω_b^- . Lastly, the neutral partner of Ξ_b^- , the bottom strange baryon Ξ_b^0 , was reported for the first time by CDF [24]. Precise measurements of the masses and natural widths of baryon resonances in the charm sector, specifically the $\Sigma_c^{(*)0}$, $\Sigma_c^{(*)++}$, and Λ_c^{*+} , were recently made public by the CDF Collaboration [25].

This study follows the first observation of the $\Sigma_b^{(*)}$ states [19]. We confirm the observation of those states using a larger data sample, address some criticism [26] regarding the earlier analysis, and add new measurements of properties of the $\Sigma_b^{(*)}$ resonances. In the present analysis, the mass difference spectra for all isospin partner states, $\Sigma_b^{(*)+}$ and $\Sigma_b^{(*)-}$, are determined independently without any mass-difference constraint, unlike in the previous CDF analysis [19]. The background shapes of the experimental spectra are left floating in the fits to avoid systematic uncertainties associated with Monte Carlo models. Using an enlarged data sample, we extract the

direct mass difference measurements with smaller statistical and systematic uncertainties than previously. First measurements of the natural widths of the $J^P = \frac{3}{2}^+$ and $J^P = \frac{1}{2}^+$ states are presented. Based on the new mass measurements, we determine the isospin mass splitting for the Σ_b and Σ_b^* isospin $I = 1$ triplets.

Section II provides a brief description of the CDF II detector, the online event selection (trigger) important for this analysis, and the detector simulation. In Sec. III the data selection, analysis requirements, and reconstruction of the signal candidates are described. Section IV discusses the fit model of the final spectra and summarizes the fit results. In Sec. V we estimate the significance of signals extracted from the fits. The systematic uncertainties are discussed in Sec. VI. We present a summary of the measurements and conclusions in Sec. VII.

II. THE CDF II DETECTOR AND SIMULATION

The component of the CDF II detector [27] most relevant to this analysis is the charged particle tracking system. The tracking system operates in a uniform axial magnetic field of 1.4 T generated by a superconducting solenoidal magnet.

The CDF II detector uses a cylindrical coordinate system with z -axis along the nominal proton beam-line, radius r measured from the beam-line and ϕ defined as an azimuthal angle. The transverse plane (r, ϕ) is perpendicular to the z -axis. The polar angle, θ , is measured from the z -axis. The impact-parameter of a charged particle track d_0 is defined as the distance of closest approach of the particle track to the primary vertex in the transverse plane. Transverse momentum, p_T , is the component of the particle's momentum projected onto the transverse plane. Pseudorapidity is defined as $\eta \equiv -\ln(\tan(\theta/2))$.

The inner tracking system comprises two silicon detectors: the silicon vertex detector (SVX II) and the intermediate silicon layers (ISL) [28–31]. The SVX II detector consists of microstrip sensors arranged in six cylindrical layers. The innermost part, also referred to as the L00 detector, is a layer of single-sided silicon sensors mounted directly on the beam pipe, 1.5 cm from the proton beam-line. It enhances the transverse impact parameter resolution. Outside this, the five double-sided layers of SVX II provide up to 10 track position measurements. Each of the layers provides an r - ϕ measurement, while three return a measurement along z , and the other two return a measurement along a direction oriented at $\pm 1.2^\circ$ to the z -axis. The SVX II spans the radii between 1.5 cm and 10.6 cm and covers the pseudorapidity range $|\eta| < 2.0$. The SVX II detector provides a vertex resolution of approximately $15 \mu\text{m}$ in the transverse plane and $70 \mu\text{m}$ along the z -axis. A fine track impact parameter resolution $\sigma_{d_0} \simeq 35 \mu\text{m}$ is achieved, where the σ_{d_0} includes an approximately $28 \mu\text{m}$ contribution from the actual transverse size of the beam spot. The outermost silicon subdetector, ISL, consists of double-sided layers

1 at radii 20 cm to 28 cm, providing two or four hits per 59
 2 track depending on the track pseudorapidity within the 60
 3 range $|\eta| < 2.0$ instrumented by the ISL. 61

4 A large open cell cylindrical drift chamber, the central 62
 5 outer tracker (COT) [32], completes the CDF detector 63
 6 tracking system. The COT consists of 96 sense wire lay- 64
 7 ers arranged in 8 superlayers of 12 wires each. Four of 65
 8 these superlayers provide axial measurements, and four 66
 9 provide stereo views at $\pm 2^\circ$. The active volume of the 67
 10 COT spans the radial region from 43.4 cm to 132.3 cm. 68
 11 The pseudorapidity range $|\eta| < 1.0$ is covered for tracks 69
 12 passing through all layers of the COT, while for the range 70
 13 out to $1.0 < |\eta| < 2.0$, tracks pass through fewer than 71
 14 the full 96 layers. The trajectory of COT tracks is ex- 72
 15 trapolated into the SVX II detector, and the tracks are 73
 16 refitted with additional silicon hits consistent with the 74
 17 track extrapolation. The two additional layers of the ISL 75
 18 help to link tracks in the COT to hits in the SVX II. 76
 19 The combined track transverse momentum resolution is 77
 20 $\sigma(p_T)/p_T \simeq 0.07\% \cdot p_T [\text{GeV}/c]^{-1}$. 78

21 The analysis presented here is based on events recorded 79
 22 with a three-tiered trigger system configured to collect 80
 23 large data samples of heavy hadrons decaying through 81
 24 multi-body hadronic channels. We refer to this as the 82
 25 displaced two-track trigger. We use two configurations 83
 26 of this trigger, the “low- p_T ” and the “medium- p_T ” selec- 84
 27 tions. At level 1, the trigger uses information from the 85
 28 hardware extremely fast tracker [33]. The “low- p_T ” con- 86
 29 figuration of the displaced two-track trigger requires two 87
 30 tracks in the COT with $p_T > 2.0 \text{ GeV}/c$ for each track, 88
 31 and with an opening angle of $|\Delta\phi| < 90^\circ$ between the 89
 32 tracks in the transverse plane. Additionally the track 90
 33 pair scalar sum must satisfy $p_{T1} + p_{T2} > 4.0 \text{ GeV}/c$. The 91
 34 corresponding criteria imposed in the “medium- p_T ” con- 92
 35 figuration are $p_T > 2.0 \text{ GeV}/c$ for each track, opening 93
 36 angle $|\Delta\phi| < 135^\circ$, and $p_{T1} + p_{T2} > 5.5 \text{ GeV}/c$. The 94
 37 level 2 silicon vertex trigger (SVT) [34, 35] associates the 95
 38 track pair from the extremely fast tracker with hits in 96
 39 the SVX II detector and recognizes both tracks using a 97
 40 large look-up table of hit patterns. The SVT repeats 98
 41 the level 1 p_T criteria and limits the opening angle to 99
 42 $2^\circ < |\Delta\phi| < 90^\circ$. Only in the case of the medium- p_T 100
 43 configuration are the charges of the tracks required to be 101
 44 of opposite sign. Crucially, the SVT imposes a require- 102
 45 ment on the transverse impact parameter of each track 103
 46 to be $120 \mu\text{m} < d_0 < 1 \text{ mm}$ given the excellent resolution 104
 47 provided by SVX II. Finally, the distance in the trans- 105
 48 verse plane between the beam axis and the intersection 106
 49 point of the two tracks projected onto their total trans- 107
 50 verse momentum is required to be $L_{xy} > 200 \mu\text{m}$. The 108
 51 level 3 software trigger uses a full reconstruction of the 109
 52 event with all detector information and confirms the 110
 53 criteria applied at level 2. The trigger criteria applied to 111
 54 the d_0 of each track in the pair and to L_{xy} preferentially 112
 55 select decays of long-lived heavy hadrons over prompt 113
 56 background, ensuring that the data sample is enriched 114
 57 with b -hadrons. 115

58 The mass resolution on the $\Sigma_b^{(*)}$ resonances is pre- 98

dicted with a Monte Carlo simulation that generates b quarks according to a next-to-leading order calculation [36] and produces events containing final state hadrons by simulating b -quark fragmentation [37]. Mass values of $5807.8 \text{ MeV}/c^2$ for Σ_b and $5829.0 \text{ MeV}/c^2$ for Σ_b^* [19] are used in the Monte Carlo generator. Final state decay processes are simulated with the EVTGEN [38] program, and all simulated b -hadrons are produced without polarization. The generated events are input to the detector and trigger simulation based on GEANT3 [39] and processed through the same reconstruction and analysis algorithms as are used on the data.

III. DATA SAMPLE AND EVENT SELECTION

This analysis is based on data equivalent to 6.0 fb^{-1} of $p\bar{p}$ collisions collected with the displaced two-track trigger between March 2002 and February 2010. We study $\Sigma_b^{(*)}$ resonances in the exclusive fully reconstructed strong decay mode $\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi_s^\pm$, where the low momentum pion π_s^\pm is produced near kinematical threshold [40]. The Λ_b^0 decays to $\Lambda_c^+ \pi_b^-$ with a prompt pion π_b^- produced in the weak decay. This is followed by the weak decay $\Lambda_c^+ \rightarrow p K^- \pi^+$.

To reconstruct the parent baryons, the tracks of charged particles are combined in a kinematic fit to form candidates. The following two complementary quantities defined in the plane transverse to the beam line and relating the decay path of baryons to their points of origin are used: the proper decay time of the baryon candidate h expressed in length units $ct(h)$, and the impact parameter $d_0(h)$. Specifically,

$$ct(h) = L_{xy}(h) \cdot \frac{M(h) \cdot c}{p_T(h)}, \quad (1)$$

where $L_{xy}(h)$ is expressed in length units and defined as the projection onto $\vec{p}_T(h)$ of the vector connecting the primary vertex to the heavy baryon decay vertex in the transverse plane. The impact parameter $d_0(h)$ of the candidate is defined as the distance of closest approach of the candidate to the primary vertex in the transverse plane. An event-specific primary interaction vertex is used in the calculation of the $ct(h)$ and $d_0(h)$ quantities. The measurement uncertainties σ_{ct} and σ_{d_0} originate from the track parameter uncertainties and the uncertainty on the primary vertex.

A. Reconstruction of the Λ_b^0 candidates

The analysis begins with reconstruction of the $\Lambda_c^+ \rightarrow p K^- \pi^+$ decay by fitting three tracks to a common vertex. The invariant mass of the Λ_c^+ candidate is required to be within $\pm 18 \text{ MeV}/c^2$ of the world-average Λ_c^+ mass [5]. The momentum vector of the Λ_c^+ candidate is then extrapolated to intersect with a fourth pion track, the

π_b^- -candidate, to form the $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ candidate vertex. The Λ_b^0 vertex is subjected to a three-dimensional kinematic fit with the Λ_c^+ candidate mass constrained to its world average value [5]. The probability of the constrained Λ_b^0 vertex fit must exceed 0.01%. Standard quality requirements are applied to each track, and only tracks with $p_T > 400 \text{ MeV}/c$ are used. No particle identification is used in this analysis. At this stage of the reconstruction, at least two tracks among the p , K^- , π^+ , and π_b^- are required to fulfill the level 2 (SVT) trigger requirements in order to confirm the displaced two-track trigger decision.

To suppress prompt backgrounds from the primary interaction, the decay vertex of the Λ_b^0 is required to be distinct from the primary vertex. To achieve this, cuts on $ct(\Lambda_b^0)$ and its significance $ct(\Lambda_b^0)/\sigma_{ct}$ are applied. We require the Λ_c^+ vertex to be close to the Λ_b^0 vertex by applying cuts on $ct(\Lambda_c^+)$ where the corresponding $L_{xy}(\Lambda_c^+)$ is calculated with respect to the Λ_b^0 vertex. To reduce combinatorial background and contributions from partially reconstructed decays, we require Λ_b^0 candidates to point to the primary vertex and the impact parameter $d_0(\Lambda_b^0)$ to be small. The choice of analysis requirements to identify $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ candidates is made using an optimization based on the experimental data only. The figure of merit $S/\sqrt{S + B}$ is used during the optimization, where S and B are the signal and the background under the signal respectively. Both quantities are obtained from fits of the $M(\Lambda_c^+ \pi_b^-)$ invariant mass spectrum. Table I summarizes the Λ_b^0 analysis requirements chosen with this optimization procedure. The specified cut on the total p_T of the Λ_b^0 candidate confirms the trigger.

Figure 1 shows a prominent Λ_b^0 signal in the $M(\Lambda_c^+ \pi_b^-)$ invariant mass distribution, reconstructed using the optimized criteria. A binned maximum likelihood fit finds a signal of approximately 16 300 candidates at the expected Λ_b^0 mass, with a signal to background ratio around 1.8. The fit model describing the invariant mass distribution comprises the Gaussian $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ signal on top of a background shaped by several contributions. Random four-track combinations dominating the right sideband are modeled with an exponentially decreasing function. Coherent sources populate the left sideband and leak under the signal. These include reconstructed B mesons which pass the $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ selection criteria, partially reconstructed Λ_b^0 decays, and fully reconstructed Λ_b^0 decays other than $\Lambda_c^+ \pi_b^-$ (e.g. $\Lambda_b^0 \rightarrow \Lambda_c^+ K^-$). Shapes and functions representing the physical background sources in the fit model are derived and fixed with Monte Carlo simulations. Their normalizations are constrained to branching ratios that are either measured (for B meson decays, reconstructed within the same $\Lambda_c^+ \pi_b^-$ sample) or theoretically predicted (for Λ_b^0 decays) [19, 41].

TABLE I: Analysis requirements for $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ reconstruction. The quantity $ct(\Lambda_c^+ \leftarrow \Lambda_b^0)$ is defined analogously to Eq. (1) as the Λ_c^+ proper time where $L_{xy}(\Lambda_c^+)$ is calculated with respect to the Λ_b^0 vertex.

Quantity	Value
$ct(\Lambda_b^0)$	$> 200 \mu\text{m}$
$ct(\Lambda_b^0)/\sigma_{ct}$	> 12.0
$d_0(\Lambda_b^0)$	$< 80 \mu\text{m}$
$ct(\Lambda_c^+ \leftarrow \Lambda_b^0)$	$> -150 \mu\text{m}$
$ct(\Lambda_c^+ \leftarrow \Lambda_b^0)$	$< 250 \mu\text{m}$
$p_T(\pi_b^-)$	$> 1.5 \text{ GeV}/c$
$p_T(\Lambda_b^0)$	$> 4.0 \text{ GeV}/c$
$\text{Prob}(\chi^2_{3D})$ of Λ_b^0 vertex fit	$> 0.01\%$

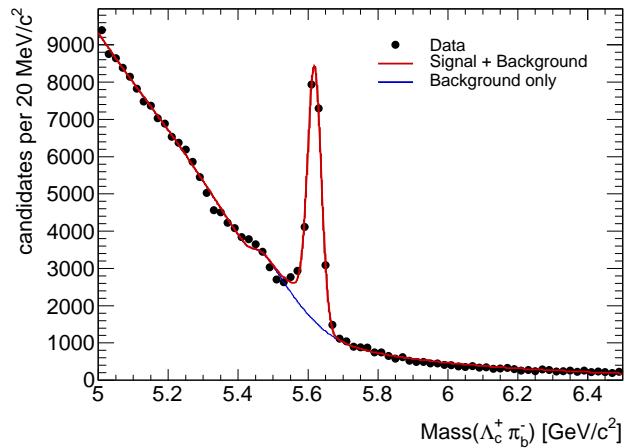


FIG. 1: The invariant mass distribution of $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi_b^-$ candidates with the projection of a mass fit overlaid.

B. Reconstruction of $\Sigma_b^{(*)\pm}$ candidates

To reconstruct the $\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi_s^\pm$ candidates, each $\Lambda_c^+ \pi_b^-$ candidate with invariant mass within the Λ_b^0 signal region, $(5.561, 5.677) \text{ GeV}/c^2$, is combined with one of the tracks remaining in the event with transverse momentum down to $200 \text{ MeV}/c^2$ and pion mass hypothesis assigned. The Λ_b^0 candidate mass range is based on fit results and covers ± 3 fit uncertainties σ_m around the Λ_b^0 mass peak from fit shown at Fig. 1. To increase the efficiency for reconstructing $\Sigma_b^{(*)\pm}$ decays near the kinematic threshold, minimum acceptable COT and SVX II hit requirements are imposed on π_s^\pm tracks, and only tracks with a valid track fit and error matrix are accepted.

Random combinations of Λ_b^0 signal candidates with π_s^\pm tracks constitute the dominant background to the $\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi_s^\pm$ signal. The remaining backgrounds are random combinations of soft tracks with B mesons reconstructed as Λ_b^0 baryons, and combinatorial background events [19]. To reduce the background level, a kinematic

TABLE II: $\Sigma_b^{(*)\pm}$ candidate selection requirements.

Quantity	Value
$m(\Lambda_c^+ \pi_b^-)$	$\in (5.561, 5.677) \text{ GeV}/c^2$
$d_0(\pi_s^\pm)$	$< 0.1 \text{ cm}$
$p_T(\pi_s^\pm)$	$> 200 \text{ MeV}/c$
$d_0(\pi_s^\pm)/\sigma_{d_0}$	< 3.0
$p_T(\pi_s^\pm)$	$< p_T(\pi_b^-)$
$p_T(\Sigma_b^{(*)\pm})$	$> 4.0 \text{ GeV}/c$

fit is applied to the resulting combinations of Λ_b^0 candidates and soft pion tracks π_s^\pm to constrain them to originate from a common point. Furthermore, since the bottom baryon resonance originates and decays at the primary vertex the soft pion track is required to point back to the primary vertex, specifically, the impact parameter significance $d_0(\pi_s^\pm)/\sigma_{d_0}$ must not exceed 3. The transverse momentum of the soft pion is required to be smaller than the p_T of the π_b^- from the Λ_b^0 weak decay. As the transverse momentum of the π_b^- is already above $1.5 \text{ GeV}/c$ (Table I) the condition imposed on the soft pion p_T has 100% efficiency. The $\Sigma_b^{(*)\pm}$ candidate selection requirements are summarized in Table II. The cut on the total p_T of the $\Sigma_b^{(*)\pm}$ candidate confirms the trigger.

IV. DETERMINATION OF RESONANCE PROPERTIES

The analysis of the $\Sigma_b^{(*)\pm}$ mass distributions is performed using the mass difference

$$Q = m(\Lambda_b^0 \pi_s^\pm) - m(\Lambda_b^0) - m_\pi, \quad (2)$$

where m_π is the known charged pion mass [5] and $m(\Lambda_b^0)$ is the reconstructed $\Lambda_c^+ \pi_b^-$ invariant mass. The mass resolution of the Λ_b^0 signal and most of the systematic uncertainties cancel in the mass difference spectrum. The $\Sigma_b^{(*)\pm}$ signals are reconstructed as two narrow structures in the Q -value spectrum. The properties, yields, and significance of the resonance candidates are obtained by performing unbinned maximum likelihood fits on the mass difference spectra.

The shapes of the $\Sigma_b^{(*)\pm}$ resonances are each modeled with a non-relativistic Breit-Wigner function. Since the soft pion in $\Sigma_b^{(*)\pm}$ strong decay modes is emitted in a P -wave, the width of the Breit-Wigner function is modified following an approach proposed in Ref. [42] which has been used in analyses of Σ_c baryons [43, 44]. The width is factorized as

$$\Gamma(Q; Q_0, \Gamma_0) = \Gamma_0 \cdot \left(\frac{p_{\pi_s}^*}{p_{\pi_s}^{*0}} \right)^3, \quad (3)$$

where Q_0 is the mass difference at the resonance pole; $p_{\pi_s}^*$ and $p_{\pi_s}^{*0}$ are the momenta of the soft pion in the $\Sigma_b^{(*)\pm}$ rest frame, off and on the resonance pole respectively; and Γ_0 is the corrected width. The soft pion momenta are calculated based on two-body decay kinematics [5]. Both Q_0 and Γ_0 are floating fit parameters.

The Breit-Wigner function is convoluted with the detector resolution which is described by a narrow core Gaussian plus a broad Gaussian. Their widths σ_n and σ_w and relative weights g_n and $(1 - g_n)$ are calculated from the CDF full Monte Carlo simulation. Numerical convolution is necessary because the modified width depends on the mass. The effects of imperfect modeling in the simulation are discussed in Sec. VI.

We use a kinematically motivated model for the background described by a second order polynomial modulated with a threshold square root-like term,

$$\mathcal{BG}(Q; m_T, C, b_1, b_2) = \sqrt{(Q + m_\pi)^2 - m_T^2} \times \mathcal{P}^2(Q; C, b_1, b_2), \quad (4)$$

where C , b_1 , and b_2 are the second order \mathcal{P}^2 polynomial coefficients and m_T is a threshold fixed to $0.140 \text{ GeV}/c^2$, the mass of the pion. The threshold term is used to describe combinatorial background to two-body resonance decays near the threshold when the signals are reconstructed in mass difference spectra.

The full model for the Q -value spectra of all isospin partner states $\Sigma_b^{(*)+}$ and $\Sigma_b^{(*)-}$ describes two narrow structures on top of a smooth background with a threshold. The negative logarithm of the extended likelihood function (NLL) is minimized over the unbinned set of Q -values observed for N candidates in data:

$$-\log(\mathcal{L}) = -\sum_{k=1}^N \log(N_1 \cdot \mathcal{S}_1 + N_2 \cdot \mathcal{S}_2 + N_b \cdot \mathcal{BG}) + (N_1 + N_2 + N_b) - N \cdot \log(N_1 + N_2 + N_b). \quad (5)$$

Separate and independent likelihood functions are used for $\Sigma_b^{(*)+}$ and $\Sigma_b^{(*)-}$ candidates. The Q -value spectrum

is fit over the range $(0.003, 0.210) \text{ GeV}/c^2$. The effect of this choice is discussed in Sec. VI. The probability

density functions (PDF) in Eq. (5) are defined as follows:

(i) $\mathcal{S}_i = \mathcal{S}(Q; Q_0^i, \Gamma_0^i, \sigma_n^i, g_n^i, \sigma_w^i)$ is the normalized convolution of a Breit-Wigner and a double Gaussian responsible for the $\Sigma_b^+(\Sigma_b^-)$ ($i = 1$) or $\Sigma_b^{*+}(\Sigma_b^{*-})$ ($i = 2$) signals. Here Q_0^i is the floating parameter of the pole mass and Γ_0^i is the floating parameter of the natural width. The detector's Gaussian resolution parameters σ_n^i, σ_w^i and g_n^i are set from the Monte Carlo data. Specifically the resolution parameters are set for the $\Sigma_b^+(\Sigma_b^-)$ as $\sigma_n^1 = 1.17 \text{ MeV}/c^2$, $\sigma_w^1 = 2.92 \text{ MeV}/c^2$ with relative weight $g_n^1 = 0.70$ and for the $\Sigma_b^{*+}(\Sigma_b^{*-})$ as $\sigma_n^2 = 1.40 \text{ MeV}/c^2$, $\sigma_w^2 = 3.80 \text{ MeV}/c^2$ with $g_n^2 = 0.73$.

(ii) N_i is the floating yield of the $\Sigma_b^+(\Sigma_b^-)$ ($i = 1$) or $\Sigma_b^{*+}(\Sigma_b^{*-})$ ($i = 2$)

(iii) $\mathcal{BG} = \mathcal{BG}(Q; m_T, C, b_1, b_2)$ is the PDF corresponding to the background form in Eq. (4).

(iv) N_b is the floating yield of the background contribution. The sum of fitted yields, $N_1 + N_2 + N_b$, is the Poisson mean value of the total number of candidates N for the particular species Σ_b^+ , Σ_b^{*+} or Σ_b^- , Σ_b^{*-} corresponding to isospin triplets Σ_b and Σ_b^* .

The total number of floating parameters in the fit per each pair of isospin partners is nine.

Extensive tests on many statistical trials show that the likelihood fit yields unbiased estimates with proper uncertainties.

The experimental $\Sigma_b^{(*)-}$ and $\Sigma_b^{(*)+}$ Q -value distributions, each fitted with the unbinned likelihoods described above, are shown in Fig. 2 and Fig. 3. The projection of the corresponding likelihood fit is superimposed on each graph. Figures 2 and 3 show clear signals of Σ_b^- , Σ_b^{*-} and Σ_b^+ , Σ_b^{*+} , respectively. The pull distributions are shown as bottom plots and are calculated as the residuals of the histogram with respect to the corresponding likelihood fit projection normalized by the data uncertainty. Both pull distributions are evenly distributed around zero with fluctuations of about $\pm 2\sigma$ range. The fit results are given in Table III.

TABLE III: Summary of the results of the fits to the $Q = M(\Lambda_b^0 \pi^\pm) - M(\Lambda_b^0) - m_\pi$ spectra. The statistical uncertainties are returned by the unbinned maximum likelihood fits.

State	Q_0 -value, MeV/ c^2	Natural Width, MeV/ c^2	Yield
Σ_b^-	$56.2^{+0.6}_{-0.5}$	$4.9^{+3.1}_{-2.1}$	340^{+90}_{-70}
Σ_b^{*-}	75.8 ± 0.6	$7.5^{+2.2}_{-1.8}$	540^{+90}_{-80}
Σ_b^+	$52.1^{+0.9}_{-0.8}$	$9.7^{+3.8}_{-2.8}$	470^{+110}_{-90}
Σ_b^{*+}	72.8 ± 0.7	$11.5^{+2.7}_{-2.2}$	800^{+110}_{-100}

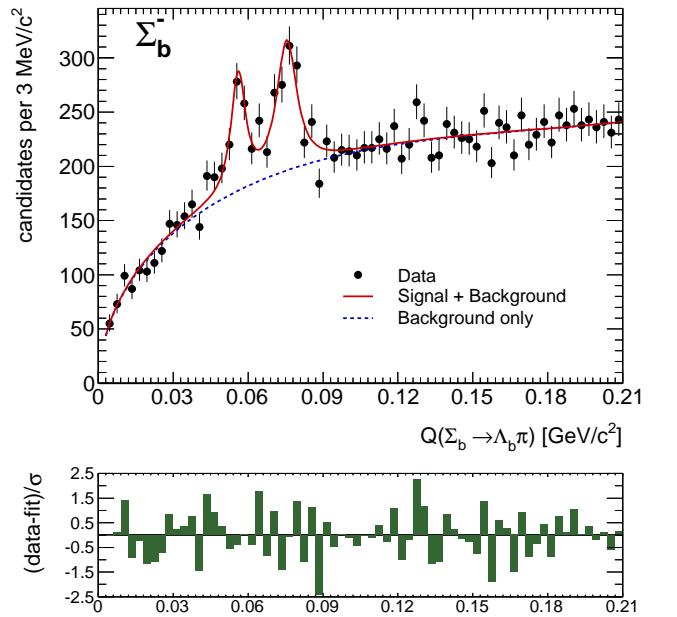


FIG. 2: The Q -value spectrum for Σ_b^{*-} candidates, where $Q = M(\Lambda_b^0 \pi^-) - M(\Lambda_b^0) - m_\pi$, is shown with the projection of the corresponding unbinned likelihood fit superimposed. The pull distribution of the fit is shown in the bottom plot.

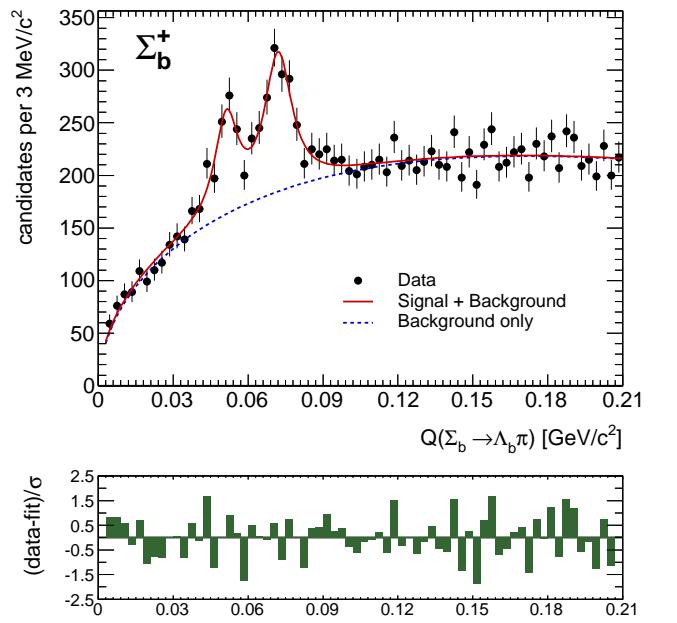


FIG. 3: The Q -value spectrum for Σ_b^{*+} candidates, where $Q = M(\Lambda_b^0 \pi^+) - M(\Lambda_b^0) - m_\pi$, is shown with the projection of the corresponding unbinned likelihood fit superimposed. The pull distribution of the fit is shown in the bottom plot.

V. SIGNAL SIGNIFICANCE

The significance of the signals is analyzed using a log-likelihood ratio statistic [45, 46],

$$D = -2 \cdot \log \frac{\mathcal{L}_0}{\mathcal{L}_1} = -2 \cdot \Delta(\log \mathcal{L}). \quad (6)$$

We define a hypothesis \mathcal{H}_1 corresponding to the observation of Σ_b^- , Σ_b^{*-} or Σ_b^+ , Σ_b^{*+} signals on top of the background. The \mathcal{H}_1 hypothesis is described by the likelihood \mathcal{L}_1 ; see Eq. 5. The various null hypotheses, each identified with \mathcal{H}_0 and nested to \mathcal{H}_1 correspond to a few different less complex scenarios described by the likelihood \mathcal{L}_0 . Eq. (6) is used to predict the χ^2 to derive p -values for observing a deviation as large as is in our data or larger, assuming \mathcal{H}_0 is true. The number of degrees of freedom of the χ^2 equals the difference ΔN_{dof} in the number degrees of freedom between the \mathcal{H}_1 and \mathcal{H}_0 hypotheses in each case. We consider the following types of \mathcal{H}_0 to estimate the significance of the two-peak signal structure and of individual peaks of the observed $\Sigma_b^{(*)-}$ and $\Sigma_b^{(*)+}$ states:

- (i) A single enhancement is observed anywhere in the fit range. The corresponding likelihood \mathcal{L}_0 includes only a single peak PDF on top of the background form in Eq. (4), the same as for the \mathcal{L}_1 . The difference in the number of degrees of freedom is $\Delta N_{\text{dof}} = 3$. The width Γ_0 floats in the fit over the wide range $(1, 70) \text{ MeV}/c^2$. The position of the enhancement Q_0 is allowed to be anywhere within the default fit range. We test the case in which the observed two narrow structures could be an artifact of a wide bump where a few bins fluctuated down to the background level. This particular null hypothesis is found to be the least unlikely to produce the observed data as a fluctuation.
- (ii) The signal Σ_b^* is observed but the Σ_b is missed. The number of free parameters is changed by 4. We impose a loose requirement on the existence of the second peak, Σ_b^* fixing only the width of Σ_b^* to the expected theoretical value of $12 \text{ MeV}/c^2$ [17]. We let the fitter find the Σ_b^* position within the default fit range.
- (iii) The signal Σ_b is observed but the Σ_b^* is missed. This null hypothesis is similar to the previous one. The width of the Σ_b is fixed to $7 \text{ MeV}/c^2$ [17].
- (iv) Neither the Σ_b nor the Σ_b^* is observed, and the \mathcal{H}_0 hypothesis is the default background model used in \mathcal{L}_1 . We consider the case in which the smooth background fluctuates to two narrow structures corresponding to the \mathcal{H}_1 hypothesis. The difference in the number of degrees of freedom is 6.

In addition to all the cases considered above, we introduce a further in which the \mathcal{H}_1 hypothesis corresponds

TABLE IV: The results of comparison of the $\Sigma_b^{(*)-}$ and $\Sigma_b^{(*)+}$ signal \mathcal{H}_1 hypothesis with several null \mathcal{H}_0 hypotheses. N_σ is the calculated number of Gaussian standard deviations based on $\text{Prob}(\chi^2)$.

\mathcal{H}_0	States	$\text{Prob}(\chi^2)$	N_σ	\mathcal{H}_1
Any single wide enhancement	$\Sigma_b^{(*)-}$	$\approx 3.0 \cdot 10^{-11}$	6.7	two narrow structures
	$\Sigma_b^{(*)+}$	$\approx 1.5 \cdot 10^{-9}$	6.1	
No structures	$\Sigma_b^{(*)-}$	$\approx 1.1 \cdot 10^{-26}$	10.7	any single wide
	$\Sigma_b^{(*)+}$	$\approx 1.2 \cdot 10^{-39}$	13.2	enhancement
Σ_b , with Σ_b^* , $\Gamma_{02} = 12 \text{ MeV}/c^2$	$\Sigma_b^{(*)-}$	$\approx 2.3 \cdot 10^{-14}$	7.6	two narrow structures
	$\Sigma_b^{(*)+}$	$\approx 3.2 \cdot 10^{-15}$	7.9	
No Σ_b^* , with Σ_b , $\Gamma_{01} = 7 \text{ MeV}/c^2$	$\Sigma_b^{(*)-}$	$\approx 1.0 \cdot 10^{-23}$	10.0	two narrow structures
	$\Sigma_b^{(*)+}$	$\approx 1.0 \cdot 10^{-35}$	12.5	
No structures	$\Sigma_b^{(*)-}$	$\approx 2.4 \cdot 10^{-35}$	12.4	two narrow structures
	$\Sigma_b^{(*)+}$	$\approx 2.0 \cdot 10^{-46}$	14.3	

to any single wide enhancement considered in (i) while the \mathcal{H}_0 hypothesis is the default background considered in (iv). This special test determines the significance of the single enhancement with respect to pure background.

Table IV summarizes the results of these tests. The null hypothesis most likely to resemble our signal is a broad single enhancement fluctuating to the two narrow structures. The result of this study is that both of the observed $\Sigma_b^{(*)-}$ and $\Sigma_b^{(*)+}$ two-peak signal structures are individually preferred by the signal hypothesis \mathcal{H}_1 at greater than 6σ significance relative to null hypothesis (i) which in turn is greater than 10σ away from the pure background model. For other null hypotheses tested, the significance is well above 7σ in Gaussian terms.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties considered in our analysis are the following:

- (i) The uncertainty due to the CDF tracker momentum scale.
- (ii) The uncertainty due to the resolution model (see Sec. IV) described by the sum of two Gaussians. This source is expected to dominate the systematic uncertainties on width measurements.
- (iii) The choice of background model.
- (iv) An uncertainty due to the choice of Q -value fit range.

The uncertainties on the measured $\Sigma_b^{(*)}$ mass differences Q_0 due to the CDF tracker momentum scale are es-

1 timated from the deviation of CDF mass difference mea- 58
 2 surements of similar resonance states from their world 59
 3 average values. The reference modes are $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi_s^+$, 60
 4 $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi_s^-$, $\Lambda_c^{*+} \rightarrow \Lambda_c^+ \pi_s^+ \pi_s^-$, and $D^{*+} \rightarrow D^0 \pi_s^+$. We 61
 5 reconstruct them from CDF data and analyze the devia- 62
 6 tions of the measured Q_0 -values from the world-averaged 63
 7 values [5]. The linear extrapolation of the measured off- 64
 8 sets versus Q_0 towards our $\Sigma_b^{(*)}$ points gives the expected 65
 9 mass scale uncertainty at our mass difference range. 66

10 Following the method used in Ref. [47], the $D^{*+} \rightarrow$ 67
 11 $D^0 (\rightarrow K^- \pi^+) \pi_s^+$ signal peak in the mass difference dis- 68
 12 tribution $m(D^{*+}) - m(D^0)$ has been reconstructed in 69
 13 several bins of soft pion transverse momentum $p_T(\pi_s)$ 70
 14 starting with 200 MeV/ c^2 as in the data. Each distri- 71
 15 bution is subjected to an unbinned maximum likelihood 72
 16 fit with the sum of a Breit-Wigner function convoluted 73
 17 with a double Gaussian function to describe the detec- 74
 18 tor resolution. The background under the D^{*+} signals is 75
 19 described by an empirical function [48, 49]. For each of 76
 20 the $p_T(\pi_s)$ bins, the fit determines the D^{*+} widths not 77
 21 exceeding 0.2 MeV/ c^2 . Because the D^{*+} natural width 78
 22 is much smaller than the tracking resolution, the value 79
 23 of 0.2 MeV/ c^2 is assigned as a systematic uncertainty on 80
 24 the measured $\Sigma_b^{(*)}$ natural width due to the momentum 81
 25 scale of the CDF tracker. 82

26 Unless otherwise specified the systematic uncertainties 27
 28 discussed below are evaluated for the measurable quanti- 29
 30 ties Q_0 and Γ_0 by generation of statistical trials. In each 31
 32 trial, the sample is generated according to the PDF (see 33
 34 Table III) with the nuisance parameters modified by the 35
 36 uncertainty with respect to the default set of parameters. 37
 38 Then the sample is subjected to the unbinned maximum 39
 40 likelihood fit twice, with the default PDF and with the 41
 42 PDF of the modified nuisance parameter set. The re- 43
 44 sponds of both fitters are compared on a trial by trial 45
 46 basis, and their difference is computed. The systematic 47
 48 uncertainty is found from the mean of a Gaussian fit of 49
 50 the distribution of the computed differences. 51

52 The statistical uncertainties on the resolution model 93
 53 parameters due to the finite size of the Monte Carlo 94
 54 datasets introduce a systematic uncertainty. Variations 95
 55 of the double Gaussian widths σ_n and σ_w and the weight 96
 56 g_n within their statistical uncertainties returned from the 97
 57 fits of Monte Carlo spectra are propagated into the mea- 98
 58 surable quantities using the statistical trials. 99

60 The CDF tracking simulation does not reproduce with 100
 61 perfect accuracy the tracking resolutions, especially for 101
 62 soft tracks at the kinematic threshold of $\Sigma_b^{(*)}$ decays. To 102
 63 estimate this contribution, we use the $D^{*\pm}$ hadron decay 103
 64 as the reference mode reconstructed down to $p_T(\pi_s^\pm) =$ 104
 65 200 MeV/ c^2 in the observed and simulated samples. We 105
 66 compare the mass resolution of the reference signal found 106
 67 in data with the one predicted by Monte Carlo simula- 107
 68 tion. The comparison is made independently for positive 108
 69 $D^{*+} \rightarrow D^0 \pi_s^+$ and negative $D^{*-} \rightarrow \bar{D}^0 \pi_s^-$ states, as a 109
 70 function of soft pion p_T using early data taking runs of 110
 71 “Period 1” and late runs of “Period 2.” Figure 4 shows 111

the comparisons of the narrow core resolution between the data and Monte Carlo both for D^{*+} (left plot) and D^{*-} (right plot). Note that the resolution is stable for data taken in “Period 1” and “Period 2.”

72 The plots show that the CDF Monte Carlo simulation 73
 74 typically underestimates the $D^{*\pm}$ resolutions in the ex- 75
 76 perimental data, *i.e.* $\sigma_n(\text{data}) \lesssim 1.25 \cdot \sigma_n(\text{Monte Carlo})$. 77
 78 Similar relations are found for the broad component of 79
 80 the resolution, $\sigma_w(\text{data}) \lesssim 1.40 \cdot \sigma_w(\text{Monte Carlo})$. The 81
 82 resolution extracted for the D^{*+} is systematically higher 83
 84 than for the D^{*-} by at most 20% for σ_n and by at most 85
 86 40% for σ_w . By generating many statistical trials, we 87
 88 calculate this contribution to the systematic uncertainties 89
 90 of the measurable quantities.

91 To find the systematic uncertainty associated with the 92
 93 choice of background shape, we change our background 94
 95 PDF to the one used for the $D^{*\pm}$ mass difference spec- 96
 97 tra [48, 49] and compare with the default background 98
 99 PDF.

100 The uncertainty associated with the fit range is esti- 101
 102 mated by modifying the low edge from 0.0015 GeV/ c^2 to 103
 104 0.006 GeV/ c^2 . The fitter reveals small biases in this sen- 105
 106 sitive area and these are assigned as another systematic 107
 108 uncertainty.

109 The final systematic uncertainties are listed in Table V.

VII. RESULTS AND CONCLUSIONS

110 The analysis results are arranged in Table VI. From 111
 112 the measured $\Sigma_b^{(*)\pm}$ Q -values we extract the absolute 113
 114 masses using the world average value of the π^\pm mass [5] 115
 116 and the CDF mass measurement for the Λ_b^0 obtained in 117
 118 an independent sample [50], which is $m(\Lambda_b^0) = (5619.7 \pm$ 119
 120 $1.2 \text{ (stat)} \pm 1.2 \text{ (syst)}) \text{ MeV}/c^2$. The Λ_b^0 statistical and 121
 122 systematic uncertainties contribute to the systematic uncer- 123
 124 tainty on the $\Sigma_b^{(*)\pm}$ absolute masses.

125 Using the measured Q -values we extract the isospin 126
 127 mass splittings for the isotriplets of the $J^P = \frac{1}{2}^+$ and 128
 129 $J^P = \frac{3}{2}^+$ states. The statistical uncertainties on the 130
 131 Q -measurements of the corresponding charge states are 132
 133 added in quadrature. The correlated systematic uncer- 134
 135 tainties due to mass scale, fit bias due to choice of fit 136
 137 range and imperfect Monte Carlo description of the 138
 139 resolution are largely cancelled in the isospin mass splittings. 140
 141 The uncertainties due to background choice are added in 142
 143 quadrature.

144 In conclusion, we have measured the masses and widths 145
 146 of the $\Sigma_b^{(*)\pm}$ baryons using a sample of approximately 147
 148 16 300 Λ_b^0 candidates reconstructed in their $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ 149
 150 mode using a sample corresponding to 6 fb^{-1} of CDF 151
 152 data.

153 The first observation [19] of the $\Sigma_b^{(*)\pm}$ bottom baryons 154
 155 has been confirmed with every individual signal recon- 156
 157 structed with a significance well in excess of 6 Gaussian 158
 159 standard deviations.

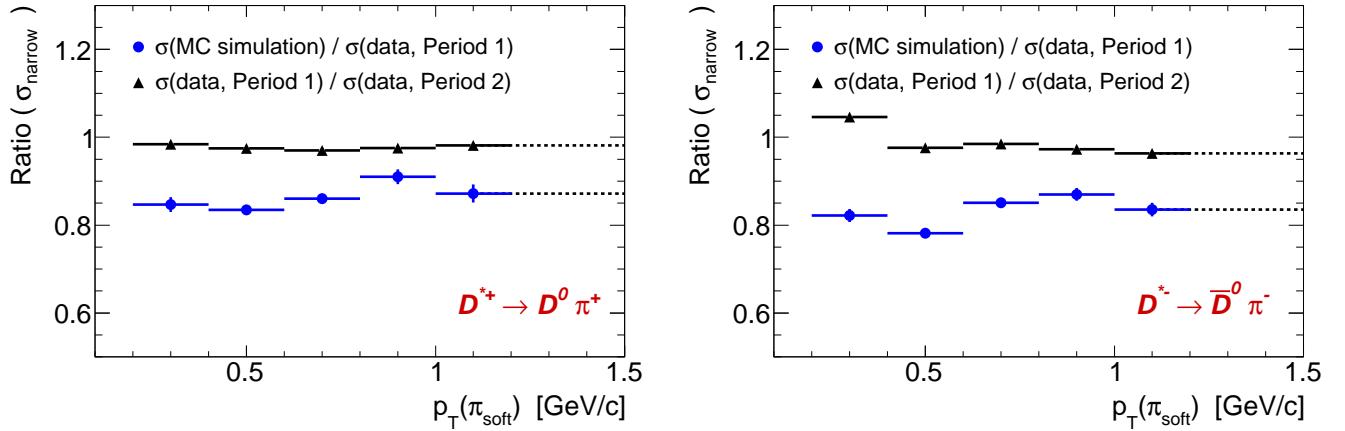


FIG. 4: The left (right) plot shows the ratio of the widths of the narrow component of the D^{*+} (D^{*-}) mass resolution for data and simulation (circles) and for different subsamples of data (triangles) as a function of the transverse momentum of the soft pion.

TABLE V: Summary of the systematic uncertainties. For every measurable quantity, the systematic uncertainties associated with the corresponding sources are listed in the following order: mass scale, fit procedure, resolution, and choice of background model. The total systematic uncertainty is obtained by adding all the associated uncertainties in quadrature. The last column shows, for each measurable quantity, the percentage of the total systematic uncertainty relative to its central value.

Measurable quantity	Scale	Fit	Resolution	Background	Total	Percentage
$Q(\Sigma_b^-)$ [MeV/ c^2]	+0.02 -0.38	+0.06 -0.03	+0.04 -0.07	+0.07 -0.04	+0.07 -0.39	+0.1 -0.7
$\Gamma(\Sigma_b^-)$ [MeV/ c^2]	+0.20 -0.20	+0.50 -0.51	+0.85 -0.87	+0.50 -0.50	+1.13 -1.14	+23 -23
$Q(\Sigma_b^{*-})$ [MeV/ c^2]	+0.02 -0.56	+0.06 -0.09	+0.06 -0.08	+0.09 -0.06	+0.09 -0.58	+0.1 -0.8
$\Gamma(\Sigma_b^{*-})$ [MeV/ c^2]	+0.20 -0.20	+0.50 -0.90	+0.65 -0.96	+0.30 -0.30	+0.89 -1.36	+12 -18
$Q(\Sigma_b^+)$ [MeV/ c^2]	+0.02 -0.35	+0.07 -0.03	+0.05 -0.12	+0.09 -0.05	+0.09 -0.38	+0.2 -0.7
$\Gamma(\Sigma_b^+)$ [MeV/ c^2]	+0.20 -0.20	+0.50 -0.51	+0.94 -0.90	+0.40 -0.40	+1.16 -1.12	+12 -12
$Q(\Sigma_b^{*+})$ [MeV/ c^2]	+0.02 -0.52	+0.06 -0.09	+0.10 -0.13	+0.12 -0.10	+0.12 -0.55	+0.2 -0.8
$\Gamma(\Sigma_b^{*+})$ [MeV/ c^2]	+0.20 -0.20	+0.50 -0.90	+0.64 -1.01	+0.50 -0.50	+0.97 -1.46	+8.5 -13

1 The direct mass difference measurements have a stat-
2 tistical precision that is reduced by a factor of two from
3 previous measurement [19]. The measurements are in
4 good agreement with the previous results and supersede
5 them.

6 The isospin mass splittings within the $I = 1$ triplets
7 of the Σ_b and Σ_b^* states have been extracted for the first
8 time. The $\Sigma_b^{(*)-}$ states have higher masses than their
9 $\Sigma_b^{(*)+}$ partners, following a pattern common to most of
10 the known isospin multiplets [13]. This measurement fa-
11 vors the phenomenological explanation of this ordering
12 as due to the higher masses of the d quark with respect
13 to the u quark and the larger electromagnetic contribu-
14

15 tion due to electrostatic Coulomb forces between quarks
16 in $\Sigma_b^{(*)-}$ states than in $\Sigma_b^{(*)+}$ ones. The difference in the
17 measured isospin mass splittings between the Σ_b^* and Σ_b
18 isotriplets supports the theoretical estimate of Ref. [9].

19 The natural widths of the Σ_b^\pm and $\Sigma_b^{*\pm}$ states have
20 been measured for the first time. The measurements are
21 in agreement with theoretical expectations.

Acknowledgments

22 We thank the Fermilab staff and the technical staffs
23 of the participating institutions for their vital contribu-

TABLE VI: Summary of the final results. The first uncertainty is the statistical one and the second is systematic.

State	Q -value, MeV/ c^2	Absolute mass m , MeV/ c^2	Natural width Γ , MeV/ c^2
Σ_b^-	$56.2^{+0.6+0.1}_{-0.5-0.4}$	$5815.5^{+0.6}_{-0.5} \pm 1.7$	$4.9^{+3.1}_{-2.1} \pm 1.1$
Σ_b^{*-}	$75.8 \pm 0.6^{+0.1}_{-0.6}$	$5835.1 \pm 0.6^{+1.7}_{-1.8}$	$7.5^{+2.2+0.9}_{-1.8-1.4}$
Σ_b^+	$52.1^{+0.9+0.1}_{-0.8-0.4}$	$5811.3^{+0.9}_{-0.8} \pm 1.7$	$9.7^{+3.8+1.2}_{-2.8-1.1}$
Σ_b^{*+}	$72.8 \pm 0.7^{+0.1}_{-0.6}$	$5832.1 \pm 0.7^{+1.7}_{-1.8}$	$11.5^{+2.7+1.0}_{-2.2-1.5}$
Isospin Mass Splitting, MeV/ c^2			
$m(\Sigma_b^+) - m(\Sigma_b^-)$		$-4.2^{+1.1}_{-1.0} \pm 0.1$	
$m(\Sigma_b^{*+}) - m(\Sigma_b^{*-})$		$-3.0^{+1.0}_{-0.9} \pm 0.1$	

1 tions. This work was supported by the U.S. Department 9
 2 of Energy and National Science Foundation; the Italian 10
 3 Istituto Nazionale di Fisica Nucleare; the Ministry of 11
 4 Education, Culture, Sports, Science and Technology of 12
 5 Japan; the Natural Sciences and Engineering Research 13
 6 Council of Canada; the National Science Council of the 14
 7 Republic of China; the Swiss National Science Founda- 15
 8 tion; the A.P. Sloan Foundation; the Bundesministerium 16

9 für Bildung und Forschung, Germany; the Korean World
 10 Class University Program, the National Research Foun-
 11 dation of Korea; the Science and Technology Facilities
 12 Council and the Royal Society, UK; the Russian Founda-
 13 tion for Basic Research; the Ministerio de Ciencia e In-
 14 novación, and Programa Consolider-Ingenio 2010, Spain;
 15 the Slovak R&D Agency; the Academy of Finland; and
 16 the Australian Research Council (ARC).

17 [1] N. Isgur, M. B. Wise, Phys. Lett. B **232**, 113 (1989); 48
Ibid. B **237**, 527 (1990); *Ibid.*, Phys. Rev. D **42**, 2388 49
 18 (1990). 50

19 [2] M. Neubert, Phys. Rept. **245**, 259 (1994); 51

20 [3] A. V. Manohar, M. B. Wise, Camb. Monogr. Part. Phys. 52
 Nucl. Phys. Cosmol. **10**, 1 (2000). 53

21 [4] Throughout the text the notations $\Sigma_b^{(*)}$ or $\Sigma_b^{(*)\pm}$ 54
 22 represent the four states Σ_b^- , Σ_b^{*-} , Σ_b^+ and Σ_b^{*+} while the 55
 23 notations $\Sigma_b^{(*)-}$ or $\Sigma_b^{(*)+}$ include Σ_b^- , Σ_b^{*-} or Σ_b^+ , Σ_b^{*+} 56
 24 pairs of states correspondingly. 57

25 [5] K. Nakamura *et al.* (Particle Data Group), J. Phys. G 58
37, 075021 (2010). 59

26 [6] D. Ebert, R. N. Faustov, V. O. Galkin, Phys. Rev. D 60
72, 034026 (2005); *Ibid.*, Phys. Lett. B **659**, 612 (2008); 61
Ibid., Phys. Atom. Nucl. **72**, 178 (2009). 62

27 [7] E. E. Jenkins, Phys. Rev. D **54**, 4515 (1996); *Ibid.* D **55**, 63
 28 10 (1997); *Ibid.* D **77**, 034012 (2008). 64

29 [8] J. L. Rosner, J. Phys. G **34**, S127 (2007); M. Karliner, 65
 H. J. Lipkin, Phys. Lett. B **660**, 539 (2008); M. Karliner, 66
 B. Keren-Zur, H. J. Lipkin, J. L. Rosner, arXiv:0708.4027 67
 [hep-ph]; *Ibid.*, Annals Phys. **324**, 2 (2009); M. Karliner, 68
 Nucl. Phys. Proc. Suppl. **187**, 21 (2009); H. Garcilazo, 69
 J. Vijande, A. Valcarce, J. Phys. G **34**, 961 (2007). 70

30 [9] J. L. Rosner, Phys. Rev. D **75**, 013009 (2007). 71

31 [10] R. Roncaglia, A. Dzierba, D. B. Lichtenberg, E. Predazzi, 72
 Phys. Rev. D **51**, 1248 (1995); R. Roncaglia, D. B. Lichten- 73
 enberg, E. Predazzi, Phys. Rev. D **52**, 1722 (1995); *Ibid.* 74
 D **53**, 6678 (1996). 75

32 [11] X. Liu *et al.*, Phys. Rev. D **77**, 014031 (2008); 76
 J. R. Zhang, M. Q. Huang, Phys. Rev. D **77**, 094002 77
 (2008). 78

33 [12] N. Mathur, R. Lewis, R. M. Woloshyn, Phys. Rev. D **66**, 014502 (2002); R. Lewis, R. M. Woloshyn, Phys. Rev. D **79**, 014502 (2009). 79

34 [13] F. K. Guo, C. Hanhart, U. G. Meissner, J. High Energy 80
 Phys. 09 (2008) 136. 81

35 [14] L. H. Chan, Phys. Rev. D **31**, 204 (1985); 82
 W. Y. P. Hwang, D. B. Lichtenberg, Phys. Rev. D **35**, 3526 (1987); S. Capstick, Phys. Rev. D **36**, 2800 (1987); K. Varga, M. Genovese, J. M. Richard, 83
 B. Silvestre-Brac, Phys. Rev. D **59**, 014012 (1999); 84
 C. W. Hwang, C. H. Chung, Phys. Rev. D **78**, 073013 (2008). 85

36 [15] S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. **45**, 86
 S241 (2000). 87

37 [16] J. G. Korner, M. Kramer, D. Pirjol, Prog. Part. Nucl. 88
 Phys. **33**, 787 (1994). 89

38 [17] X. H. Guo, K. W. Wei, X. H. Wu, Phys. Rev. D **77**, 90
 036003 (2008). 91

39 [18] C. W. Hwang, Eur. Phys. J. C **50**, 793 (2007). 92

40 [19] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. 93
99, 202001 (2007). 94

41 [20] V. M. Abazov *et al.* (DO Collaboration), Phys. Rev. Lett. 95
99, 052001 (2007). 96

42 [21] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. 97
99, 052002 (2007). 98

43 [22] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. D **80**, 99
 072003 (2009). 100

44 [23] V. M. Abazov *et al.* (DO Collaboration), Phys. Rev. Lett. 101
101, 232002 (2008). 102

45 [24] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. 103
107, 102001 (2011). 104

1 [25] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. **D84**, 27
2 012003 (2011). 28

3 [26] E. Klemp, J. M. Richard, Rev. Mod. Phys. **82**, 1095 29
4 (2010). 30

5 [27] D. Acosta *et al.* (CDF Collaboration), Phys. Rev. D **71**, 31
6 032001 (2005). 32

7 [28] A. Sill *et al.*, Nucl. Instrum. Meth. A **447**, 1 (2000). 33

8 [29] A. A. Affolder *et al.* (CDF Collaboration), Nucl. Instrum. 34
9 Meth. **A453**, 84-88 (2000). 35

10 [30] S. Nahn (CDF Collaboration), Nucl. Instrum. Methods 36
11 A **511**, 20 (2003). 36

12 [31] C. S. Hill (On behalf of the CDF Collaboration), Nucl. 37
13 Instrum. Methods A **530**, 1 (2004). 38

14 [32] A. A. Affolder *et al.* (CDF Collaboration), Nucl. Instrum. 39
15 Methods A **526**, 249 (2004). 40

16 [33] E. J. Thomson *et al.*, IEEE Trans. Nucl. Sci. **49**, 1063 41
17 (2002). 42

18 [34] B. Ashmanskas *et al.* (CDF Collaboration), Nucl. In- 43
19 strum. Meth. **A518**, 532-536 (2004). 44

20 [35] L. Ristori, G. Punzi, Ann. Rev. Nucl. Part. Sci. **60**, 595- 45
21 614 (2010). 46

22 [36] P. Nason, S. Dawson, R. K. Ellis, Nucl. Phys. **B303**, 607 47
23 (1988); *Ibid.*, Nucl. Phys. **B327**, 49-92 (1989). 48

24 [37] C. Peterson, D. Schlatter, I. Schmitt, P. M. Zerwas, Phys. 49
25 Rev. **D27**, 105 (1983). 50

26 [38] D. J. Lange, Nucl. Instrum. Methods A **462**, 152 (2001). 50

[39] R. Brun, R. Hagelberg, M. Hansroul, J.C. Lassalle, CERN Reports No. CERN-DD-78-2-REV and No. CERN-DD-78-2.

[40] Unless otherwise stated all references to a specific charge combination imply the charge conjugate combination as well. Specifically, $\bar{\Sigma}_b^{(*)-} \rightarrow \bar{\Lambda}_b^0 \pi_s^-$, $\bar{\Sigma}_b^{(*)+} \rightarrow \bar{\Lambda}_b^0 \pi_s^+$, $\bar{\Lambda}_b^0 \rightarrow \bar{\Lambda}_c^- \pi_b^+$, $\bar{\Lambda}_c^- \rightarrow \bar{p} K^+ \pi^-$, $D^{*-} \rightarrow \bar{D}^0 (\rightarrow K^+ \pi^-) \pi_s^-$.

[41] A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. Lett. **98**, 122002 (2007).

[42] J. D. Jackson, Nuovo Cim. **34**, 1644 (1964).

[43] M. Artuso *et al.* (CLEO Collaboration), Phys. Rev. D **65**, 071101 (2002).

[44] G. Brandenburg *et al.* (CLEO Collaboration), Phys. Rev. Lett. **78**, 2304 (1997).

[45] S.S. Wilks, Ann. Math. Statist. **9** (1938) 60-2.

[46] R. Royall, J. Amer. Statist. Assoc. **95**, 760 (2000).

[47] A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. D **73**, 051104 (2006).

[48] R. Brun, F. Rademakers, Nucl. Instrum. Methods A **389**, 81 (1997); see also <http://root.cern.ch/>.

[49] I. Antcheva *et al.*, Comput. Phys. Commun. **180**, 2499 (2009).

[50] D. E. Acosta *et al.* (CDF Collaboration), Phys. Rev. Lett. **96**, 202001 (2006).