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Introduction
Cosmic rays were discovered over a century ago, and since then, they inspired

the pursuit of knowledge regarding their origin and production mechanisms. They
provided physicists with a natural laboratory in which particles are accelerated to
the highest energies ever recorded. Indeed, these extraterrestrial particles, most of
which are charged nuclei, arrive at Earth with energies up to 1020 eV, several or-
ders of magnitude larger than the one produced at particle colliders, like the Large
Hadron Collider at CERN, raising the question of which type of astrophysical ob-
jects can accelerate them at such high energies. Many questions remain open even if
they have been studied for over a century. In particular, for cosmic rays at the high-
est energies (E > 1018 eV), most of the mysteries are still unsolved, such as the type
of nuclei arriving at Earth. These particles are called ultra-high energy cosmic rays
(UHECRs), and one of the difficulties in answering the questions resides in their
small number on Earth: Their flux steeply decreases as a function of their energy,
reaching even a level of 1 particle per century per km2 for energies above 1019.5 eV.
Due to the low flux, the detection with experiments in orbit around the Earth is not
feasible (as done for low-energy cosmic rays), and a vast area is needed to collect a
statistically significant amount of data.

For this reason, more than 20 years ago, the idea of a vast cosmic ray obser-
vatory was conceived and brought to life. The Pierre Auger Observatory started
to be built in 2002 and was completed after six years of deployment of its ground
detectors, covering a total area of 3000 km2. The Observatory exploits the character-
istic feature of high energy cosmic rays that, upon their arrival at Earth, they inter-
act with the atmosphere, producing a cascade of secondary particles that reach the
ground, called extensive air shower. The Observatory was built in order to perform
two independent measurements of the shower: The first consists of sampling the
signals of shower particles at the ground with an array of water-Cherenkov parti-
cle detectors (exploiting the Cherenkov light produced in water by ultra-relativistic
particles) called Surface Detector (SD), and the second technique measures the fluo-
rescence light produce by the de-excitation of nitrogen molecules after the passage
of the particles, using fluorescence telescopes (FD). The SD, with its 1660 water-
Cherenkov tanks (WCD), possesses a 100% duty cycle, while the FD only a 15% one
since it can be operated only during clear and dark nights. The latter is a strong con-
straint since the best estimator for the mass of the primary particle Xmax is obtained
with FD measurements. The other observable linked to the nature of the primary,
the number of muons at the ground Nµ, is not directly accessible in the SD, which
measures the convolution of all the secondary particles at the ground. The FD and
SD measurements allow for calibration, crosschecks and combined studies, thanks
to those events being simultaneously observed by both detectors. Employing these
techniques, the Observatory has performed several studies on the origin of UHECRs
(finding, for example, strong indications for an extragalactic origin), their possible
sources (identifying Starburst Galaxies and Active Galactic Nuclei as possible candi-
dates), the mass composition of these particles (with indications of heavier nuclei at
the highest energies) and, at the same time, fundamental hadronic interactions, with
the discovery of a discrepancy between data and simulations in which less muons
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are observed in the simulated shower, thus called the muon deficit. Indeed, simula-
tions of showers (based on hadronic interaction models) and the detector itself are
employed as a comparison with data.

After almost 20 years of operations, signs of aging started to appear in the WCDs,
showing a decreasing signal over time. This adds another discrepancy between data
and simulations, since the array simulation does not contain the temporal depen-
dency. In this work, the long-term performances of the SD have been studied, and
the effect of aging in the number of triggered WCDs and the shape of the signals
(through an observable called risetime) have been assessed. The next step consisted
of understanding what is causing the aging in the WCDs and modelling the ob-
served behaviour over time using dedicated detector simulations. The reflectivity
of the internal walls of the tanks has been found to be the main contributor to the
aging, and a model has been built to describe each WCD independently over almost
20 years of operations.

Having been able to describe the signal evolution over time for each WCD, a
new and more realistic simulations library of reconstructed air showers has been
produced and then validated with data, verifying that the decrease in time of the
previously mentioned observables in data is reproduced in simulations and assess-
ing the change in other high-level observables. The use of this new library also
allowed for a deeper study of the aging effects in the reconstruction of air showers,
in particular, the reconstructed energy and its resolution. Based on these simula-
tions, the energy resolution was assessed. Measuring the air showers at one stage
of their development on the ground leads to significant shower-to-shower fluctua-
tions. They are described in Chapter 5. The total and the detector resolution have
also been compared with data.

A more realistic, time-dependent description of the detector is also helpful in the
studies of the properties of the shower, such as the muon number, since new tech-
niques employing Deep Learning models have been used to extract mass-sensitive
observables from the SD signals, such as Nµ from the raw traces of the WCDs. How-
ever, these models heavily rely on simulations for their training. The new simula-
tions library has been used to train a Deep Neural Network designed to extract the
muon time trace in the WCDs. This enabled the removal of time dependencies of
the detector response in the network, which then was applied to data. With this
information about the muons on the ground, preliminary studies have been carried
out to understand the discrepancy between data and simulations due to incorrect
hadronic interaction models.
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Chapter 1

Ultra-high energy cosmic rays

Ultra-high energy cosmic rays (UHECRs) are charged particles coming from space
and arriving at Earth with energies above 1018 eV, with the most energetic ones
exceeding 1020 eV [1], more than three orders of magnitude larger than the energy
reached at the Large Hadron Collider at CERN [2]. Besides being the most energetic
particles known today, UHECRs are messengers of extreme and violent processes in
the Universe, in which they are assumed to be created and accelerated.

UHECRs, however, are very rare: at energies above 1019.5 eV the flux of these
particles on Earth is equal to 1 particle per century per km2. A very large detection
surface is thus needed to study them with sufficient statistics.

The Pierre Auger Observatory, located in Argentina, is the largest Observatory
for cosmic rays and has been design to collect a significant amount of data to study
the origin and the characteristics of UHECRs. The Observatory exploits the frag-
mentation process happening in the atmosphere when a very energetic cosmic ray
arrives at Earth and, thanks to two different techniques employed, can infer the
properties of the original particle that collided high in the atmosphere.

In this chapter, UHECRs and their features will be described and then the oper-
ation and some of the main findings of the Auger Observatory will be presented.

1.1 Cosmic rays

Cosmic rays (CR) are high-energy particles originating from sources beyond our so-
lar system, such as supernovae and active galactic nuclei. They are ionized nuclei,
mostly protons, with relativistic energies. The discovery of cosmic rays dates back
over a century ago. Henri Becquerel’s discovery of natural radioactivity in 1896 [3]
opened the door for the study of this phenomenon, with the hypothesis that the ori-
gin of this radiation was to be attributed to elements at Earth. Pacini’s underwater
tests challenged the notion of Earth as the sole radiation source [4], but it was with
Victor Hess’s balloon flights in 1912 [5] that the extraterrestrial origin of cosmic rays
was solidified and accepted, earning him a Nobel Prize. Pierre Auger’s 1939 ob-
servations of coincident triggers in distant Geiger counters led to the discovery of
extensive air showers [6], with Heitler’s cascade model describing the electromag-
netic shower component [7], proposed a few years later. The first ultra-high energy
cosmic ray shower, exceeding 1020 eV, was identified by the M.I.T (Massachusetts
Institute of Technology) group at Volcano Ranch in 1963 [8], marking the start of
the UHECR study. Cosmic rays’ exploration formed the basis of modern Particle
Physics, thanks to critical findings such as antimatter, muons, and pions. For a more
complete and historical overview of cosmic rays, see [9, 10].
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FIGURE 1.1: Cosmic rays differential flux for different experiments, spanning more than
ten decades in energy [11]. The data are multiplied by E2 to enhance the features of the
spectrum. Comparisons with the center-of-mass energy of man-made accelerators are
shown.

1.1.1 Spectrum

The energy spectrum of UHECRs stands as a fundamental window into the nature
of these enigmatic particles. It represents the flux of UHECRs as a function of their
energy, J = dN/dE, a parameter essential for understanding the mysteries of their
origin, acceleration, and propagation. It covers more than ten decades, Fig. 1.1, in
energy and decreases following a power-law E−γ, in which E is the energy of the
CR and γ is the spectral index, being ≈ 2.7. It can also be noticed that the number
of CRs decreases rapidly with the energy, with only a few particles per km2 per day
above 1014 eV, becoming 1 particle per century per km2 at energies above 1019.5 eV. A
very large detection surface is thus needed to study them with sufficient statistics.

This spectrum is far from a simple power-law distribution; it contains features
that enclose a complex mix of various physical processes.

The spectrum takes a significant turn at an energy around 1015 eV, with γ chang-
ing from 2.7 to 3.1. This transition point is known as "the knee" and holds clues about
the acceleration and propagation mechanisms of cosmic rays within our galaxy. In-
deed, at energies below the knee, it is assumed that the dominant contribution is of
galactic origin, with supernovae remnants and binary systems as possible sources.
The knee is thought to correspond to the energy beyond which the efficiency of the
accelerators of the bulk of galactic CRs is steadily exhausted, providing insights into
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FIGURE 1.2: Measured spectrum from different experiments. Zoom on the high energies to
emphasize the spectral features. From [12].

the limits of cosmic particle acceleration within our Milky Way. Around 1017 eV, a
"second knee" emerges in the UHECR energy spectrum, characterized by a slight
steepening of the flux, as visible in Fig. 1.2, where the flux has been multiplied by
E3 to heighten the different features of the spectrum. This feature is connected to
changes in the composition of cosmic rays [13], with a transition from lighter cos-
mic ray nuclei to heavier ones; Thus, the "second knee" is also referred to as "iron
knee", suggesting that havier nuclei are accelerated to higher energies. This can be
explained as a consequence of a Peters cycle, in which the steepening happens at the
same rigidity (E/Z, where Z indicates the atomic charge and E the energy of the
particle), and thus at different energies for different particles [14].

At 5× 1018 eV, the spectrum presents another feature called "the ankle." At this
energy, the spectrum exhibits a flattening, with the spectral index assuming a value
of ≈ 2.6. Cosmic rays at these energies are supposed to have an extragalactic ori-
gin, with a possible transition from galactic to extragalactic cosmic rays taking place
between the second knee and the ankle. The extragalactic origin is supported by
the presence of a dipole measurement with an amplitude of 6.0+1.0

−0.9% [15], which
is inconsistent with isotropy and points in the opposite direction of the Galactic
center [15, 16]. Potential extragalactic candidates include active galactic nuclei and
gamma-ray bursts, which possess the capacity to accelerate particles to the energies
associated with the ankle feature. Recently, a new feature called "instep" has been
observed at ≈ 1019 eV [1] that can be described by an energy-dependent mass com-
position model [17].

At energies above approximately 5× 1019 eV, a drastic reduction in the observed
cosmic ray flux is observed, a phenomenon referred to as "suppression" or "cut-
off" [18, 19]. This region holds critical information about the nature of cosmic ray
sources and the fundamental interactions that govern their propagation. The origin
of this suppression is still unknown, with two possible scenarios. The main one is
related to the propagation of these highly energetic particles through the Universe to
the Earth. The suppression arises from the interaction between UHECRs and cosmic
microwave background radiation (CMB) or the infrared background (IRB) [20], pro-
ducing resonances. In the case of protons with energy larger than 5× 1019 eV [21],
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the Greisen-Zatsepin-Kuzmin (GZK) effect [21, 22] takes place, in which pion pro-
duction occurs through one of the following processes:

γCMB + p→ ∆+ → p + π0,
γCMB + p→ ∆+ → n + π+ (1.1)

This initiates energy losses (around 20% for protons) that reduce their propagation
distances up to 200 Mpc (assuming a uniform distribution of sources [23]), the so-
called GZK-horizon. Heavier nuclei are affected in a similar way, through photodisso-
ciation processes [24]. In this case, the photon absorption cross section is mainly due
to the giant dipole resonance, causing the excited nucleus to disintegrate in lighter
nuclei and typically one or two nucleons. Other processes, such as photopion pro-
duction and pair production, contribute to the total cross section.

The second possibility behind the presence of the cut-off in CRs flux could be
attributed to the maximum energy attainable within cosmic sources’ acceleration
mechanisms. This upper limit varies among different nuclei, correlating with their
atomic charge, Z. Consequently, the observed suppression emerges as an outcome
of the intricate interplay of distinct energy cut-offs corresponding to various nuclei.

The suppresion is likely due to the concurrence of these two scenarios: max-
imum energy reached at the sources and energy losses during propagation. This
is suggested by a combined fit of an astrophysical model where identical sources
are uniformly distributed, and nuclei are accelerated through a rigidity-dependent
mechanism to both the energy spectrum and mass composition data measured by
the Pierre Auger Observatory [25].

1.1.2 Sources and anisotropies in the arrival direction

The origin and acceleration mechanisms of UHECRs remain enigmatic. While cos-
mic rays up to the GeV range are predominantly of solar origin, higher-energy cos-
mic rays must arise from different types of sources, given that solar processes lack
the capacity to produce such energies. The maximum energy attainable by a charged
particle depends on the characteristics of the source, more specifically on its radius
R and magnetic field B, since particles are accelerated and confined in the source
environment until rL ≤ R, where rL = E/ZeB is the Larmor radius of the parti-
cle. Charged particles are accelerated through a diffusive shock acceleration mecha-
nism [26, 27], in which they gradually gain energy at each passing through a shock
front, moving with a velocity β = v/c, due to the strong turbolent magnetic fields
present in these regions. After being scattered multiple times, the energy E of a parti-
cle with charge Z is E ≈ βZBR. This relation, also known as the Hillas criterion, helps
restrict the potential classes of sources that have the capability to accelerate particles
to these extreme energies [28] . This classification can be seen in the so-called "Hillas
plot" shown in Fig. 1.3, where the sources capable of accelerating protons (red) and
irons (blue) up to 1020 eV are displayed.

Another difficulty in identifying the sources arises from the nature of these par-
ticles: Being charged particles, in their journey from these sources to Earth, they
are deflected by galactic and extragalactic magnetic fields. Due to the deflections,
tracing them back to the production site is not trivial, leaving the question of their
origin open. Indeed, the deflection during propagation in the galactic magnetic field
for a proton with energy 6× 1019 eV is expected to be ≈ 5◦ [31, 32]. Nonetheless,
recent results have shown a large-scale anisotropy in the arrival directions of these
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FIGURE 1.3: A Hillas-like plot for the potential sources for UHECRs according to their size
and magnetic field strength. The lines correspond to proton (solid) and iron (broken) pri-
maries accelerated up to 1020 eV, with β = 1. From [29].

FIGURE 1.4: Sky composition map of cosmic rays in galactic coordinates for E ≥ 1018.7 eV.
From [30].

particles for energies above 8×1018 eV with a 5.2σ level of significance, which is con-
sistent with an extra-galactic origin [16]. Since the flux of UHECRs is suppressed due
to the energy losses experienced during the propagation to the Earth, just the local
Universe (at the GZK horizon) contributes to the observed flux and the anisotropies
in the sky could offer essential clues towards the identification of nearby sources.
Indeed, an excess from nearby sources has been found, suggesting that two classes
of extragalactic sources, Starburst galaxies and Active Galactic Nuclei could be some
of the plausible production sites of cosmic rays with energy above 39 EeV [33].

In addition, the deflection angle depends on the rigidity of the particle. Thank to
their charge, heavier nuclei are thus deviated more than lighter ones with the same
energy. Hints of mass-dependent anisotropies have been observed [34], for energies
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FIGURE 1.5: Simulated extensive air shower development for a vertical proton with energy
1014 eV. The different components are shown: hadrons (blue), muons (grey), electromag-
netic components (red) and neutrons (green). From [35].

above 1018.7 eV, indicating that the mean mass of primary particles arriving from the
galactic plane region (galactic latitude |b| < 30◦) is larger than that of those coming
from the off-plane region. This result provides an indication of the influence of the
galactic magnetic field on the observed UHECRs sky. The latest results [30] show
a presence of heavier elements along the plane again, displayed in Fig. 1.4 but a
decrease in the correlation between them and the galactic plane. In order to confirm
or not this anisotropy, more studies are planned, increasing the events in the sample
by employing mass-sensitive observables estimated by the Surface Detector of the
Pierre Auger Observatory, described later in the chapter.

1.1.3 Mass composition from Extensive Air Showers properties

A separation between cosmic rays with different masses can be achieved by exploit-
ing the different features observed when these UHECRs reach Earth. A cosmic ray
arriving on Earth (called a primary) interacts high in the atmosphere with an air
nucleus, producing a cascade of secondary particles (≈ 1010 at the sea level for a
vertical proton with E = 1019 eV), with the atmosphere acting like a calorimeter
medium. This cascade is called an extensive air shower (EAS) and is made of three
components: the electromagnetic one (γ, e±) that accounts for the 99% of the sec-
ondary particles and the 85% of the total energy, the muonic (µ±) that represents
the 10% of the energy, travelling through the atmosphere almost unaffected, and the
hadronic one that is dominant at the start of the shower and feeds the other two
components, reaching the ground with only ≈ 4% of the total energy. An example
of a simulated EAS can be seen in Fig. 1.5, where the different components are dis-
played with a colour code. The shower footprint extends for a few km2, becoming
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FIGURE 1.6: Schematic view of the development of the different types of cascades: Left,
electromagnetic shower, right, hadronic shower. The black dots represent molecules of air.
From [38].

larger as the energy increases. Air showers are simulated using detailed hadronic
interaction models [36, 37]. However, a simple model for air showers, the Heitler
model [7], can be employed to understand the basic features.

The Heitler model

The Heitler model describes the development of an electromagnetic cascade as a
simple binary tree, left in Fig. 1.6, in which, at each step lem of length d = λr ln 2
(where λr ≈ 37 g cm−2 is the radiation length in air), a particle interacts with air
nuclei, splitting into two particles, each with half of the initial energy. Specifically,
electrons (or positrons) emit a γ via Bremsstrahlung, while for γ the relevant process
is the electron-positron pair production. After n steps, Nn particles are produced
and each one has an energy of E0/Nn. This chain of interactions continues until the
particles’ energy reaches a critical energy, Ee

c ≈ 80 MeV, after which the losses due to
ionization become dominant and particles start to be attenuated by the atmosphere.
Thus, the maximum number of particles, Nmax is reached at this stage and can be
obtained as E0/Ee

c. The atmospheric depth at which the EAS reaches the maximum
number of particles is called Xmax and is determined by the number of occurred
steps, translated in a logarithmic dependency on the energy of the primary particle:

Xmax = X0 + λr ln(E0/Ee
c) (1.2)

where X0 is the height in the atmosphere where the first interaction takes place.

Hadronic showers

The model developed for electromagnetic cascades can be generalized to hadronic
showers by assuming that, in this case, when a hadron of energy E interacts with
an air nucleus, Ntot pions are produced after each interaction, each one with energy
E/Ntot. Two-thirds of these particles, Nch, are charged pions (π±) and one-third
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are neutral pions (π0). The latter decay almost immediately into 2γs, creating pure
electromagnetic sub-showers, thus feeding the electromagnetic component.

Charged pions will continue to experience interactions, with the same distance
between each step governed by the hadronic interaction length, λπ, as d = λπ ln 2,
until a critical energy (Eπ

c ≈ 20 GeV in air) is met, at which the decay length is com-
parable to the interaction length. Thus, pions are more likely to decay into muons
and neutrinos than keep interacting. To reach this critical energy, nd interactions are
needed:

Eπ
c =

E0

(Ntot)nd
⇒ nd =

ln(E0/Eπ
c )

ln Ntot
(1.3)

The number of muons, Nµ, is then equal to the number of charged pions at the critical
energy:

Nµ = (Nch)
nd ⇒ ln Nµ = nd ln Nch = ln(E0/Eπ

c )
ln Nch

ln Ntot
(1.4)

Nµ =

(
E0

Eπ
c

)β

, with β =
ln Nch

ln Ntot
(1.5)

These results show that the number of muons grows as a function of the primary
energy following a power-law, with an index, β, that depends on the pions multiplic-
ity. In detailed simulations of the showers, this parameter has been found to range
between 0.9 and 0.95 [39]. This parameter can also be studied by measuring the
number of muons at the ground for different energies, Chapter 6. Air-shower simu-
lations are performed with softwares, such as the CORSIKA software [40], in which the
interactions are modelled using extrapolations at the highest energies of hadronic
interactions measured at the LHC. Some of the most known post-LHC hadronic in-
teraction models are EPOS-LHC [41], Sibyll [42] and QGSJET [43]. After particles are
generated, their path in the atmosphere is followed until they interact again, decay
or reach the ground.

The above-described model is for a shower initiated by a proton primary. How-
ever, the model can be easily extended to heavier primaries by considering a nucleus
of mass A and energy E0 as A independent nucleons with Eh = E0/A. This approxi-
mation, called the superposition model, proves to be highly effective since the binding
energy per nucleon (in the order of 5 MeV) is much smaller than the energies at
which interactions occur. Due to this, Eq. (1.2) and Eq. (1.5) can be expressed for
heavier elements as

XA
max(E0) = Xmax(E0/A) (1.6)

NA
µ (E0) = A1−β

(
E0

Eπ
c

)β

. (1.7)

From Eq. (1.6), it can be noticed that showers induced by lighter elements develop
deeper in the atmosphere compared to heavier ones, which instead reach their max-
imum at higher altitudes, allowing discrimination between primaries. Measuring
the secondary particles that reach the ground, instead, can also provide information
about the primary mass: the number of muons (Nµ) that reach the ground is larger
as the mass of the primary particle increases, as obtained in Eq. (1.7). These two
observables are highly correlated and can be used to discriminate between different
primaries.
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FIGURE 1.7: Top: Evolution as a function fo the energy of 〈Xmax〉 and σ(Xmax) obtained
from Xmax distributions. The dashed green line represents the elongation rate fitting. Bot-
tom: 〈ln A〉 versus energy, obtained from converting 〈Xmax〉. From [44].

Xmax measurements

In order to unveil the mass composition of UHECRs, measurements of the longitu-
dinal profile of showers have been performed by observing the fluorescence light
emitted by the de-excitation of nitrogen molecules when charged particles of the
shower pass through the atmosphere. Indeed, the amount of fluorescence light is
proportional to the energy deposit [45, 46] and the depth where the energy deposit
is maximum, Xmax, is obtained from a fit to the longitudinal profile. Unfortunately,
due to fluctuations in the early stage of the shower development, an event-by-event
mass determination cannot be obtained but the composition trend with energy must
be inferred from the mean and standard deviation of Xmax distributions.

The most recent results from the Pierre Auger Observatory [44], that include
60% more events compared to the previous work [47] (due to the addition of four
more years of data and improved cuts) and improved aerosol attenuation measure-
ments [48] as well as a new reconstruction of the longitudinal profiles [49], are shown
in Fig. 1.7, top: The elongation rate, that refers to the change of Xmax with ln E that
can be observed on the left plot, has a fitted value of ≈ 81 g/cm2/decade up to the
break at ≈ 1018.4 eV and after that is ≈ 28 g/cm2/decade. Since the elongation rate
is expected to be the same for any primary [36], this behaviour points towards a
composition becoming lighter from 1017.8 eV to 1018.3 eV and getting heavier after
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FIGURE 1.8: Fit of the mean Xmax with a piece-wise linear function. From [54].

the break; the evolution of σ(Xmax) suggests a mixed composition before the break
and a purer one as the energy increases, as found in previous studies [50].

The same evolution of the composition is observed when converting the Xmax
values into the logarithm of the mass number A using simulations, shown in Fig. 1.7
for different post-LHC hadronic models. The equation to obtain 〈ln A〉 [51], based
on [52] assuming the validity of the superposition model and a linear relation between
Xmax and the logarithm of the primary energy, is

〈ln A〉 = ln 56 ·
〈Xmax〉p − 〈Xmax〉data

〈Xmax〉p − 〈Xmax〉Fe
. (1.8)

Recent studies employed Deep Learning algorithms to infer the Xmax from the
signal of secondary particles reaching the ground [53], increasing statistics signifi-
cantly by a factor of 10 and extending the current measurement of Xmax to the highest
energies. A characteristic and more complex structure in the evolution of Xmax over
the energy has been identified [54], suggesting three breaks in the elongation rate, as
shown in Fig. 1.8, where a piece-wise linear function is fitted to data. These breaks
occur in positions where the ankle, the instep and the suppression are observed in
the spectrum. More studies are being carried out to investigate these features. A
description of the DNN studies can be found in Chapter 6.

Nµ and the muon deficit

The other mass-sensitive observable, as it was shown in Eq. (1.7), is the number of
muons at the ground, Nµ. The two experiments at the highest energies that are able
to collect the secondary particles at the ground, Auger and Telescope Array (TA),
do not have, with their standard surface detectors, the capability to measure the
muonic content in a direct way (while for the Auger upgrade, instead, an Under-
ground Muon Detector was deployed to directly measure the muons [56, 57]). In



1.1. Cosmic rays 13

FIGURE 1.9: Average muon content 〈ln Rµ〉 as a function of the average shower depth Xmax

at 1019 eV. Simulated showers have a zenith angle of 68◦. From [55].

Auger’s case, for example, the recorded signal in each of the stations (used to sam-
ple the shower) of the ground array is the convolution of all the particles entering
the station, thus it is not possible to directly obtain Nµ. A way to measure the muons
in Auger can be achieved due to its design that allows to measure the signal de-
posited at the ground by showers with a large inclination, θ > 62◦ and up to 80◦.
Indeed, these showers travel a longer path in the atmosphere, which causes the at-
tenuation of the electromagnetic component of the shower, leaving them as the main
contribution of the recorded signal in the stations.

Measurements of these inclined showers have been performed by the Collabora-
tion [55], and they revealed an interesting scenario: the number of muons in simu-
lations appears to be lower than the one measured in data that is reconstructed by
fitting a model of the lateral profile of the muon density at the ground to the ob-
served signals. This discrepancy between data and simulations (called muon deficit),
is in the order of 30% to 80+17

−20%(sys.) at 1019 eV depending on the model. The dis-
agreement can be seen in Fig. 1.9, where the lack of overlap between the data point
measured by Auger and the prediction lines is clear. The observable Rµ shown in the
plot is obtained as the ratio between the integrated number of muons at the ground
and a reference given by the average number of muons in simulated proton showers
at 1019 eV and given zenith angle, and, thus, it is proportional to Nµ. A deficit in
the number of muons has been observed in other experiments and with other tech-
niques [58, 59], as well. The origin of the lack of muons in simulations could to be
related to a small deficit at every stage of the shower development that accumulates
along the path rather than a discrepancy in the first interaction, as suggested by the
agreement of the fluctuations in the number of muons in data and simulations [60].
These fluctuations are, indeed, dominated by the processes in the first interaction.
Thus, models that, in order to increase the number of muons in simulations, modify
the first interaction would directly change the fluctuations. Henceforth, no adjust-
ments to the first interaction and, instead, a small deficit in every hadronic interac-
tion during the shower development will increase the number of muons and keep
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FIGURE 1.10: Values of the energy and hadronic rescaling obtained from the fit (see text)
for QGSJet-II-04 and EPOS-LHC, for pure proton (solid circle/square) and mixed composi-
tion (open circle/square). From [61].

the fluctuations in agreement with data.
An overall energy rescaling, RE as a cause of the deficit has also been studied

and ruled out [61], while at the same time a rescaling of the hadronic shower sig-
nal, Rhad, has been found to be quite large ≈ 1.3− 1.6, depending on the hadronic
model, Fig. 1.10. This analysis was performed using showers that were measured
both in the atmosphere and on the ground. For each shower, the measured longi-
tudinal profile was matched to simulations and having characterized the shower in
this way, the ground signal was simulated and compared with the measured one.

Since Nµ is sensitive to hadronic interactions, the observed discrepancy shows
that the hadronic models in simulations are inaccurate, not being able to properly
reproduce the data. What exactly is causing the mismatch is not yet clear, if incor-
rectly modelled features of hadron collisions or the the appearance of new phenom-
ena in hadronic interactions at very high-energy, but the simultaneous comparison
of independent air shower observables, such as Xmax and Nµ can constrain the phase
space of hadronic models. These studies are, however, limited in statistics due to the
use of inclined events and fluorescence measurements (≈ 15% duty cycle). The use
of Deep Learning models can increase the statistics and provide a way to study the
presence of the muon deficit also for vertical events, as it will be shown in Chap-
ter 6. These models, in turn, are trained using simulations that require a detailed
description of the detector over the years, Chapter 4.

1.2 The Pierre Auger Observatory

The Pierre Auger Observatory is located in Argentina, covering an area of 3000 km2

in Pampa Amarilla [62], near the town of Malargüe in the Province of Mendoza.
The area presents optimal characteristics for the measurement of EAS, with flat land
and an average altitude of 1400 m, corresponding to an atmospheric overburden of
≈ 875 g/cm−2 and, thus, close to the shower maximum in the atmosphere. Auger
is the largest experiment ever built to detect air showers and to infer the properties
of primary cosmic rays with energies above 1017 eV. The Observatory operates in
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FIGURE 1.11: The Pierre Auger Observatory. Each black dot represents a water-Cherenkov
station of the surface detector array, which is overlooked by the fluorescence telescopes
with their view fields indicated in blue. Three extra high elevation (HEAT) telescopes are
shown in red.

the so-called hybrid mode, combining a fluorescence detector (FD) composed of 27
fluorescence telescopes placed in four sites measuring the longitudinal profile of the
air shower in the atmosphere and a surface array (SD) composed of 1660 water-
Cherenkov detectors (WCD), spaced 1.5 km apart to sample secondary particles at
the ground. The simultaneous use of these two complementary techniques provides
cross-checks and measurement redundancy.

The map of the Observatory with its components can be seen in Fig. 1.11. The
FD detects the fluorescent light produced by the excited nitrogen molecules during
the shower development. Observing the air shower’s longitudinal profile makes
it possible to directly measure the Xmax and energy of the primary due to a near-
calorimetric measurement. This can be done only during clear and moonless nights,
limiting the FD duty cycle to 15% of the time. The SD measures the lateral distri-
bution of the air shower at the ground using the signals recorded by WCDs. Since
the SD operates regardless of the weather conditions, it has a duty cycle of ≈ 100%.
Thus, the amount of statistics gathered with the SD is much larger than that in hy-
brid mode.

The Observatory has also undergone a recent and almost complete upgrade [63],
called AugerPrime, to enhance the sensitivity to the different components of exten-
sive air showers (deploying new detectors such as radio antennas, buried muon
detectors and scintillators) as well as increasing the data quality (using improved
electronics and extending its dynamic range).
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FIGURE 1.12: Picture of a Water Cherenkov Detector in the field with the description of its
component. From [64].

1.2.1 Surface Detector

The deployment of the SD started in 2002 and was completed in 2008, while the data
acquisition started in 2004 with an engineering array of 100 stations. The long-term
perfomances of the detector during the years will be discussed in Chapter 2. The
spacing of 1.5 km between the stations makes the array fully efficient for cosmic rays
with energies above 1018.5 eV. Each WCD station, with an example shown in Fig. 1.12,
is composed of tank with a height of 1.2 m and a diameter of 3.6 m, containing 12 t
of ultra-pure water. This water is contained in a liner bag that has the internal walls
covered with a reflective material called TyvekTM. Three 9-inch diameter photomul-
tipliers (PMTs), symmetrically distributed at 1.2 m from the tank centre, are optically
coupled using optical silicone to UV-transparent polyethylene dome windows fitted
in the liner and facing the water. The PMTs look downwards into the station to col-
lect the Cherenkov light, which is produced by relativistic charged particles when
traversing the water and is multiply reflected by the internal walls.

Stations are equipped with a solar power system that provides 10 W for the
PMTs, the electronics (contained in an aluminium dome on top of the tank) and the
communication system, used to send the data to the Central Data Acquisition Sys-
tem (CDAS). Due to this power supply and batteries, stations are autonomous and
independent, and for this reason, they require a reliable and robust self-calibration
performed in situ. The calibration procedure is based on rescaling recorded raw
signals to units of VEM, which is the signal released by a vertical muon in a tank.
The station’s calibration is explained in more detail in Section 2.1. A GPS receiver, in-
stalled in each station, serves as a synchronization between the stations and retrieves
the events’ timestamps.

During the years of operation, stations’ signals have also shown a decrease over
time, Chapter 2, which is necessary to understand and model (Chapter 3) to prop-
erly describe the detector (Chapter 4) and assess the induced effects on high-level
variables.
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FIGURE 1.13: Two examples of dynode signals recorded in a station from a single PMT.
Left: Saturated trace. Right: Non-saturated trace.

SD electronics

The high voltage (HG) necessary for the functioning of the PMTs is provided locally
by a module integrated into the PMT base, with a nominal operating gain of 2× 105,
extendable to 106. For each PMT, two signals are read out: the signal at the anode
and the signal at the last dynode, with the latter being inverted and amplified by a
nominal factor of 32. This allows a dynamic range capable of measuring close to the
shower core (down to a distance of about 500 m for a CR with 100 EeV [62]) and a
large distance (due to the amplification performed to the last dynode signal). The
signals in the tanks are filtered and digitized by a 40 MHz 10-bit Flash Analog Dig-
ital Converter (FADC). Signals are, thus, described in terms of FADC counts every
25 ns, and are read by a programmable logic device (PLD), that is in charge of trig-
ger decisions, described later in the text, on the signal. The signal of the six FADCs
traces (2 per PMT) is sampled in 768 points for a total time length of 19.2 µs.

Closer to the shower core, the high gain channel (dynode) can saturate, as shown
in Fig. 1.13, and not be reliable for reconstructing the shower properties. In these
cases, the low-gain channel (anode) is used. If both channels are saturated, methods
have been studied and implemented to recover the signals [65, 66].

SD triggers

The triggers used to identify air showers are implemented in a hierarchical struc-
ture [67], with triggers at the station level (T1 and T2), at the array level (T3), physics
triggers (T4) and, finally, quality triggers (T5). The last two triggers are off-line trig-
gers and are associated more with the event-level selection than detector triggers,
but they will be briefly discussed here.

The T1 trigger is the first one to be applied and it can be realized in four dif-
ferent modes: 1) Threshold trigger (Th), in which a 3-fold coincidence of the PMTs
in a station having signals larger than 1.75 VEM is required, 2) time-over-threshold
trigger (ToT), requiring a signal above 0.2 VEM for 13 FADC bins in a time win-
dow of 3 µs for at least 2 PMTs, 3) ToT-deconvoluted trigger (ToTd) [68], that im-
proves the regular ToT by deconvoling the traces before applying the ToT condition,
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FIGURE 1.14: Schema of the 6T5 configuration, with the hottest station shown in blue and
surrounded by 6 working stations. From [66].

4) multiplicity-of-positive-steps trigger (MoPs) [69] counts the number of positive-
going signal steps above a certain threshold in two of three PMTs within a 3 µs slid-
ing window. The last two triggers were implemented later (2013) than the first two
and were designed to be less influenced by muons, increasing the trigger efficiency
for photon and neutrino showers.

The second level trigger (T2) applies stricter conditions to reduce the trigger rate
to about 23 Hz, to avoid saturating the bandwidth of the communication system. Th
triggers can be promoted to T2 only if, in a 3-fold coincidence between the PMTs, the
signals are above a threshold of 3.2 VEM, while all the other T1 triggers are directly
promoted to T2. The data acquisition system of the station transmits the timestamps
of the T2 events collected each second to CDAS.

At the CDAS level, then, the T2 signals are analyzed by looking at time coin-
cidences to determine the stations that belong to a potential air shower. This trig-
ger, called T3, has two different modes in order to improve the detection of vertical
(θ < 60◦) and inclined showers (θ < 60◦).

The physics trigger, T4, is needed to discriminate between real showers from the
set of stored T3 data and random coincidences of single atmospheric muons. To de-
termine incompatibilities between adjacent stations and identify signals produced
by random muon signals, a requirement for the stations has to be satisfied in order
to be part of an event. This condition requires the difference between their times-
tamps to be lower than the distance between stations divided by the speed of light,
allowing for a marginal limit of 200 ns. This condition comes from the assumption
of the shower front as a planar front moving with the speed of light.

The last trigger, the quality trigger T5, is a fiducial cut designed to exclude events
that are not fully contained in the array, which could lead to a possible missing signal
and lack of accuracy in the reconstruction of the air shower. In practice, for a set of
stations that are flagged as part of an event, the station with the highest signal (the
hottest station), is required to have six nearest working neighbours (not necessarily
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FIGURE 1.15: Picture of an FD site, where four of the six telescopes’ apertures are visible.
From [64].

triggered) at the time of the event. This criterion, a schema of which can be observed
in Fig. 1.14 is also called 6T5 and assures an unbiased reconstruction of the shower.
A less stringent version, called 5T5, requires only five active neighbours and can be
used for arrival directions studies [15] in order to increase the statistics.

1.2.2 Fluorescence Detector

The standard FD conducts surveys in the SD area from four different sites: Los
Leones, Los Morados, Loma Amarilla, and Coihueco [70]. Each site, as the one
shown in Fig. 1.15, is equipped with six fluorescence telescopes that cover a field of
view of 180◦ in azimuth and 30◦ in elevation together. These telescopes are inwardly
pointed to observe the atmosphere above the SD and have a 30◦× 30◦ field of view in
azimuth and elevation. An extension to measure lower energies has been obtained
with the deployment of three other telescopes, HEAT (High Elevation Auger Tele-
scope), at the Coihueco site that, additionally to the standard horizontal mode, can
be tilted upward by 29◦ to observe showers that interact higher in the atmosphere.

The telescope’s setup includes several components to enhance its performance,
and it is shown in Fig. 1.16, left. The design is based on Schmidt optics to minimize
coma aberration in large optical systems. The fluorescence light, produced by the
air shower in the atmosphere, passes through a circular diaphragm having a 1.1 m
radius aperture covered with a UV-transmitting filter glass that reduces the back-
ground light, thus improving the signal-to-noise ratio while at the same time, keep-
ing the environment clean and climate-controlled. An annular lens is placed around
the diaphragm, in the outer part, to correct for spherical aberration. The light is then
collected by a spherical hexagonally segmented mirror, with an area of ≈ 13m2 and
a curvature radius of 3.4 m, and focused on the camera. The camera is composed by
440 PMTs, arranged in a 22× 20 matrix, each one representing a 1.5◦ field of view
pixel of the spherical focal surface that has a radius of 1.7 m. For each PMT, the light
is collected to the active cathode by simplified Winston cones, avoiding dead spaces
between the PMT cathodes and separating them. A head electronic unit is connected
to each PMT, sending the signals to an analog board for filtering and amplification.
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FIGURE 1.16: Left: Schematic view of the telescope setup. Right: A picture showing the
camera and the diaphragm. From [64].

The board can handle 22 channels, controlling the gains of the PMTs, and is linked
with the digital front-end board, which houses the trigger boards.

To protect the telescope, shutters are present to block daylight and automatically
close in high wind or rain conditions. Furthermore, a fail-safe curtain is installed
behind the diaphragm to prevent daylight exposure in case of shutter malfunctions
or issues with the Slow Control System, which is responsible for remote operations
of the FD system. Regular cleaning and maintenance are performed to ensure op-
timal detector operation. The external UV filter is cleaned multiple times a year to
remove dust deposits, while equipment inside the building requires less frequent
cleaning due to its protected environment. Different cleaning methods have been
employed for the mirrors to improve their reflectivity, which is measured periodi-
cally and shows minimal changes over time, with less than a 1% variation per year.

1.3 Event reconstruction

From sampling the secondary particles at the ground with the SD, several properties
of the shower, such as the arrival direction and the shower size (an estimator of the
primary’s energy), can be inferred. The shower reconstruction in Auger [71] is im-
plemented and performed using in-house software developed by the Collaboration,
Offline [72].

The event building, resulting in sets of stations (called "candidate stations") that
are associated with events, has been described previously, together with the physics
and quality cuts that these candidate showers have to pass in order to be recon-
structed. Additionally, since the array is sensitive to lightning happening during
thunderstorms, events that show oscillations (a sign of lightning has struck nearby)
in at least a PMT trace of one of the candidate stations are discarded.

The total signal recorded in a station is obtained by identifying the relevant infor-
mation in the FADC traces of all the PMTs in each station. The traces are scanned to
find candidate signal fragments, consisting of consecutive bins with an amplitude of
at least 3 ADC count above the baseline. Other conditions, such as distance in time
and size of the integrated signals between consecutive fragments, are required for
the candidate fragments before being merged in the final signal segment, which is
then averaged between PMT to obtain the station-level segment. The final segment
with the largest signal is used to obtain the start and stop times at the station level,
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FIGURE 1.17: Left: Schematic view of the development of the shower front. Right: Time
residuals of the stations with respect to the shower front as a function of the distance to the
shower core.

defining the time window of interest where the traces are integrated to obtain the
signal.

The start times are used to reconstruct the geometry of the shower, thus, the
shower axis and the curvature of the shower front. These parameters are obtained
from the minimization of the sum of the squares of the differences between the pre-
dicted and the measured start times:

χ2 = ∑
i

[ti − tsh(~xi)]
2

σ2
ti

(1.9)

where ti and σti are the start time and its uncertainty of station i and tsh(~xi) is the
predicted start time at the distance ~xi of station i, evaluated from the model of the
evolution of the shower front, that in Auger is approximated with a speed-of-light
concentrically inflating sphere with t0 and ~x0 being the virtual start time and origin
of the shower development, as follow:

ctsh(~xi) = ct0 − |~x− ~xi| (1.10)

The schematic view of the model and the dependency of the time residuals (with
respect to the shower front) of the stations as a function of the distance to the shower
core is shown in Fig. 1.17.

1.3.1 Lateral Distribution Function and energy reconstruction

The signal measured by the SD is only part of the total one of the shower at the
ground, due to the sampling of the footprint, with an example of footprint shown
in Fig. 1.18, left image. In order to obtain the shower size, a fit of the recorded signals
in the stations as a function of their distance to the shower axis is performed. The
lateral distribution function (LDF) used for this purpose is a modified Nishimura-
Kamata-Greisen (NKG) function [73, 74]:

Sr = Sropt

(
r

ropt

)β ( r + rscale

rscale + ropt

)β+γ

(1.11)
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FIGURE 1.18: Left: Footprint at the ground for a shower with reconstructed energy equals
to 1019 eV and zenith angle of ≈ 52◦. Right: Lateral distribution of the same shower shown
on the left, with a fitted LDF; the shower size estimator is shown as a red dot. (Auger ID:
160041588500)

where ropt is the optimal distance at which the signal is a good estimator of the
shower energy, and in the case of Auger corresponds to 1000 m [66, 75], and thus the
shower size is S(1000), as can be seen in Fig. 1.18; the scale parameter, rscale, is fixed
at 700 m, while β and γ determine the slope of the function and are parametrized
as a function of the zenith angle and S(1000). The fit of the lateral distribution func-
tion (LDF) uses a maximum likelihood method, which also takes into account the
probabilities for the stations that did not trigger and the stations close to the shower
axis with saturated signal traces. The convergence of the fit is improved by using
an iterative procedure. The statistical uncertainties of the reconstructed shower size,
σ(S(1000)), are directly related to the number of triggered stations and the uncer-
tainties in their signals, that are parametrized [76] as:

σS = 0.865(1 + 0.593(sec θ − 1.22))
√

S (1.12)

The estimation of the shower size is a first important step in the determination
of the energy of the primary particle. Other corrections and calibration with the
almost-calorimetric energy estimation obtained by the FD are needed. In particular,
the shower size has a dependence on the zenith angle, decreasing as θ increases. This
effect is due to the fact that the more inclined the shower is, the more attenuated in
the atmosphere is the electromagnetic component of the shower, reducing the signal
at the ground. The attenuation curve is obtained using the constant intensity cut
(CIC) method [77] and is parametrized with a 3rd degree polynomial in the form
fCIC(θ) = 1 + ax + bx2 + cx3, where x = cosθ − cos38◦. In this way, it is possible to
convert S(1000) to an angle-independent shower size, called S38 and obtained as:

S38 =
S(1000)
fCIC(θ)

(1.13)

S38 can be thought of as the signal that would have been measured if the shower
would have arrived with a zenith angle of 38◦. Since an energy dependence is ob-
served in the attenuation curve, the polynomial coefficients (a, b and c) are parametrized
with a 2nd degree polynomial in log10(S38/40VEM) [1], and are shown in Appendix A.

The shower size can be converted into an energy estimation of the primary parti-
cle thanks to the hybrid design of the Observatory [1]. Indeed, the cross-calibration
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FIGURE 1.19: Example of a longitudinal profile fit for a shower with reconstructed energy
≈9.3× 1018, θ = 49◦ and Xmax ≈ 700 g/cm2/decade. Telescope: Coihueco. Auger ID =
190906049400.

FIGURE 1.20: Correlation between the SD shower-size estimator, and the reconstructed FD
energy for the selected 3 338 hybrid events used in the fit [1]. The line is the best fit of the
power-law dependence on the data.

between the FD energy, EFD, and S38 is obtained by leveraging the combined infor-
mation contained in events that were simultaneously observed and reconstructed
by the two detectors; those events are called golden hybrids. The FD energy is ob-
tained by fitting a Gaisser-Hillas function [77] to the full longitudinal profile of the
light detected in the PMTs of the FD camera, as shown in Fig. 1.19, then integrating
the results and correcting for the "invisible energy" carried away by neutral par-
ticles, such as neutrinos, and muons. The most recent published results [1] used
3 338 golden hybrids events to obtain the calibration curve, displayed in Fig. 1.20. The
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correlation between S38 and EFD is obtained using a maximum likelihood method
allowing various effects of experimental origin to be taken into account [78], and S38
is well described by a single power-law function, being:

EFD = A(S38/VEM)B. (1.14)

The best fit parameters are A = (1.86± 0.03)× 1017 eV and B = 1.031± 0.004 and
the correlation coefficient between the parameters is ρ = −0.98 [1].

Having a closer look at Eq. (1.14), it can be noticed the similarity with Eq. (1.5)
and Eq. (1.7), in which the number of muons is related to the energy of the pri-
mary and its mass. In Eq. (1.14), EFD is the estimator of the energy of the primary,
while S38 is the sum of the electromagnetic and muonic components of primaries,
with 1/B ≈ 0.97 the slope of the signal as a function of the energy. The two signal
components have different slopes as a function of the energy, with a larger one for
the electromagnetic component, and thus B is a combination of the two and higher
than the values listed for β in Section 1.1.3. For this reason, the parameter B can
not be directly compared to β, but the extraction of the muonic component using
Deep Learning Models can enable a study of β, as shown in Chapter 6, and can give
insights about the mass composition.

The energy bias and resolution are obtained by looking at the mean and spread
of the distributions of ESD/EFD as a function of EFD. The bias is close to zero in the
regime of full efficiency. The resolution has been parametrized from measurements
as a function of the energy and ranges from 20% at 2× 1018 eV and tends smoothly
to 7% at 2 × 1019 eV. This results on the resolution will be checked in simulations
in Chapter 5, and compared to data.
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Chapter 2

Long-term performance of the
Surface Detector

The Pierre Auger Observatory has been in operation for nearly 20 years, collecting
data during this period with the Surface Detector in mostly stable conditions. Con-
sidering the large area covered by the SD and the high numbers of water Cherenkov
tanks deployed, such an achievement has been obtained thanks to a robust, reliable,
and automatic self-calibration procedure performed on each tank every minute. This
calibration, exploiting the uniform flux of secondary particles produced by low en-
ergy showers, ensured good quality data taking over the years, along with continu-
ous monitoring of the stations’ conditions.

The constant evaluation and the measurement of several parameters at the sta-
tion level, obtained during calibration, reveals changes in the detector’s response.
This phenomenon is related to the aging of the detector and long-term effects have
an impact on high-level variables, such as risetime, curvature, and the mean num-
ber of triggered stations. Having data that now extends for more than 16 years, a
quantification of these changes can be performed extensively.

In this chapter, the calibration of the tanks will be presented, and the relevant
quantities will be explained. Based on the tank information obtained from single
station calibration, the aging of the detector is defined as the measured change in
these station-level observables. These changes over time will be studied and quanti-
fied, together with the effect on high-level variables such as the number of triggered
stations over time and its implications on the reconstructed energy of the showers.

2.1 SD calibration

The calibration of the tanks is performed locally by the onboard electronics of each
station since stations are very remote and the communication with the CDAS is lim-
ited to 1200 bits per second [79]. These conditions constrained the calibration de-
sign to be very simple and flexible to accommodate for possible and unpredictable
failures of PMTs in the tanks. Since differences are present from tank to tank and
even from PMT to PMT (i.e., different gains), the calibration needs to be performed
against a common reference. This is also very important in order to be able to
compare data and simulations. In this way, a uniform triggering condition is also
maintained for the full array. The calibration exploits the flux of secondary particles
reaching the ground as a calibration source, particularly atmospheric muons passing
through the tanks at a rate of 2500 Hz.
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FIGURE 2.1: Charge and peak distributions of one event in 2008 (station Denisa Maria).

2.1.1 Calibration histograms

Since atmospheric muons produce a typical response in the detector [80], the sig-
nal released by vertical muons (VEM) passing through a station is used to calibrate
each station independently. The goal of the calibration is to measure this quantity
station by station to be able to convert from electronic units to units of VEM. More
specifically, since stations cannot select particles from a specific direction, a station
collects the amplitude and the charge of signals generated by atmospheric particles
produced by low-energy showers, building the so-called calibration histograms for
each PMT. An example of charge and peak histograms for all the PMTs of station
Denisa Maria (ID = 1698) is shown in Fig. 2.1, where the two types of histograms
are built with the total integrated signals of going-through particles (charge, left),
measured as integrated FADC channels (also indicated as FADC bins), and the max-
imum value of their signal (peak, right, sometimes also referred to as the current I
measured by the PMTs), with the number of FADC channels/25 ns as units.

Each station continuously collects information from signals with time windows
of 60 s (recording ≈150.000 entries per histogram) and builds these histograms that
are sent to CDAS whenever a shower event satisfies the trigger conditions. This
means that when the event is sent to CDAS, the calibration information obtained 60
seconds before the event is sent together with the data. A charge histogram with the
sum of all three PMTs is also produced and sent to CDAS with the other histograms.
In this case, a condition is required to obtain the summed histogram: a 3-fold coin-
cidence between the PMTs when the peak of the signal in the PMTs is larger than a
threshold of five channels above the baseline. The choice of this threshold level is
later explained in the text.

It can be seen that two different peaks are present in both charge and peak his-
tograms: the first, on the left, is mainly produced by the electromagnetic particles
(e±, γ), while the second one comes from the muonic contribution (µ±). The charge
produced by VEM (QVEM) is obtained for each station by scaling the peak in the
charge histogram Qpeak

VEM produced by omnidirectional muons with a conversion fac-
tor obtained from a dedicated muon telescope on a reference WCD at the begin-
ning of the operation of the Observatory [81], and more recently using an RPC ho-
doscope [82].

This conversion factor is defined as fQ = Qpeak
VEM/QVEM and for single PMT is

equal to 1.03± 0.02 [81], while for a 3-fold coincidence is equal to 1.08± 0.01 [82].
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The difference between the two values can be understood by considering that a sin-
gle PMT can record only the part of the signal closest to itself, while the sum of the
PMTs measures the total signal.

FIGURE 2.2: Example of a summed charge
histogram for omnidirectional muon (black
line) in a 3-fold condition and for vertically
centered muons (red line). Taken from [83].

The need for the conversion factor fQ
arises from the fact that the distribution
of signals for omnidirectional muons is
shifted and broader compared to the
one for vertical muons, as it can be seen
from Fig. 2.2: in the first case, muons
with different incident directions are
entering the tank, and thus they will
have a larger track length distribution,
leading to a different total number of
Cherenkov photons produced along the
path. The measured values of fQ over
time in the two acquisition campaigns
agree with each other, showing the reli-
ability of the calibration method.

Another proof of the stability of this
factor has been obtained from simula-
tions that try to reproduce the aging
of the detector, meaning a loss of the

recorded signals, by changing the internal reflectivity of the water Cherenkov tanks,
see Chapter 3 for more details. The evolution of fQ as a function of the internal re-
flectivity s, shown in the bottom plot of Fig. 2.3, agrees with the measurements and
is contained within its uncertainties. Simulated calibration histograms of omnidi-
rectional and vertical centered muons (VCM) injected in the tank for different liner
reflectivities are visible in Fig. 2.3, top plots: a Gaussian fit is performed around the
muon peak of these histograms to obtain Qpeak

VEM and QVEM.
The peak histograms, and in particular the position of the muon peak Ipeak

VEM ob-
tained from them, are used to maintain stable and uniform triggers all over the array.
When the electronics of a station are switched on the first time, the gains of the PMTs
are adjusted to match a rate of 100 Hz at a point of 150 channels above the baseline:
in this way PMTs have ≈ 50 channels/Ipeak

VEM, creating a relative common reference
between them. This point in the spectrum was chosen based on the measurement
of the rate performed on a reference tank [81]. This procedure called end-to-end gain
setup, balances the PMTs between them and, as a consequence, sets different high-
voltage gains for each PMT, even in the same station, as it can be seen in Fig. 2.1: if a
PMT has a worse optical coupling or a different quantum efficiency, thus recording
fewer photons than the other PMTs, this setup will correct the gains to match the re-
quired conditions and ensure that the PMT signals will be similar in amplitude. The
method also allows compensating between tanks that produce a different number of
Cherenkov photons than the reference tank by adjusting their PMT gains.

During normal operations in the field, the value of Ipeak
VEM changes due to a pos-

sible drift in the high-gain of PMTs, thus a continual on-line calibration is needed
to re-evaluate Ipeak

VEM and keep the triggers uniform. Extracting the value of Ipeak
VEM is

time-consuming for the local electronics, and for this reason, an estimate Iest
VEM is

used. This variable is defined at the PMT level as the value obtained when request-
ing that the rate of events satisfying a "calibration trigger" is equal to 70 Hz. The
"calibration trigger" conditions require that the signal of the event is above 2.5Iest

VEM



28 Chapter 2. Long-term performance of the Surface Detector

 s
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Q
, 3

-f
ol

d
 f

0.95

1

1.05

1.1

1.15

1.2

 Charge [FADC bins]
0 50 100 150 200 250 300 350 400 450 500

 C
ou

nt
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s = 0.9

Omni-directional; entries: 14102

VCM; entries: 10000

 Charge [FADC bins]
0 50 100 150 200 250 300 350 400 450 500

 C
ou

nt
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 s = 0.94

Omni-directional; entries: 14453

VCM; entries: 10000

FIGURE 2.3: Top: Evolution of scaling factor fQ for different internal reflectivities of the
tank. Lines represent the value with its uncertainties obtained on the field using an RPC
hodoscope [82]. Bottom: Simulated average charge histograms with a 3-fold condition for
VCM (red) and omnidirectional muons (black) for two different tank conditions.

for the selected PMT and above 1.75Iest
VEM for all the three PMTs. Following these

requirements, Iest
VEM is obtained in an iterative way, in which a test value of Iest

VEM
is modified by a certain adjustment, called δ, if the measured rate is outside of a
defined bound, called σ. This procedure is called σ− δ convergence algorithm. Its
accuracy is approximately 6%, a precision that is better than the 10% required con-
sidering the quantization of the channels and the ToT trigger, the lower target trigger
threshold at the station level used to identify candidates described in the previous
chapter, which is implemented as a threshold of 0.2Iest

VEM (≈10 channels).
After the algorithm has been performed and the value of Iest

VEM has been obtained,
a different trigger with a threshold of 0.1Iest

VEM (5 channels) is used to collect the sig-
nals of low energy particles passing through the tank at a higher rate and conse-
quently build the calibration histograms.

Since the trigger thresholds are based on the estimation of the maximum ampli-
tude of omnidirectional muons measured by each tank in the field, this information
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FIGURE 2.4: Simulated peak histograms for vertical centered muons, VCM, (red) and om-
nidirectional muons (black) for different liner reflectivities (0.92, 0.94, 0.96).

is not available in simulations that rely, instead, on values of IVEM and QVEM ob-
tained from the simulated injection of vertically centered muons in a tank. Another
conversion factor f I from IVEM to Ipeak

VEM for a single PMT is then needed in simulation
to set the correct trigger threshold. Acquisition campaigns using muon telescopes
have been performed in the past, providing Ipeak

VEM/IVEM = 0.87, used as a fixed
value in simulations to set the trigger threshold. This variable, however, when re-
constructed in calibration simulations performed in this study, shows a dependency
on the internal properties of the tank (i.e., internal reflectivity). Thus it is affected by
the aging of the detector, determining a difference between data and simulations. It
can be seen in Fig. 2.4 that f I changes for different tank conditions, with the muon
peak for omnidirectional particles closer to the muon peak of vertical muons for
higher reflectivities ( f I = 0.87 for s = 0.96) and an increased difference for tanks
with a smaller reflected light in the water volume ( f I = 0.77 for s = 0.92).

2.1.2 Shape histograms

The on-line calibration of the station also provides an estimation of the average VEM
charge, named Qest

VEM, obtained by integrating the pulses with a peak equal to Iest
VEM.

The comparison between this value and the one extracted directly from a fit per-
formed from charge calibration histograms shows an accuracy of 4%, being their
conversion Qest

VEM = (0.96± 0.03)Qpeak
VEM.

The calibration method exploits the estimated average charge to select pulses
with an integrated charge in the range (1.0± 0.1)Qest

VEM: this choice allows to select
signals from vertical muons among the secondary particles from low energy show-
ers that enter the tank and are recorded in each PMT. These FADC traces are then
summed to build the so-called pulse shape histograms or simply shape histograms since
they represent the average shape of the light deposition in the PMT. An example of
shape histograms recorded by the PMTs of station Denisa Maria in 2008 can be seen
in Fig. 2.5, where a sharp rise is followed by an exponential decrease caused by the
multiple reflections of photons inside the tank.

These histograms show the average time response of a tank to a vertical muon.
They are beneficial for monitoring the tank conditions and studying the evolution
over time of the tank response to secondary particles. This is achieved by analyzing
the behavior of the time decay constant of the VEM signals over the years, as shown
in the next section.
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FIGURE 2.5: Shape histograms for one event in 2008 for station Denisa Maria, ID = 1698.

2.2 Aging

The surface detector experienced changes over the years, and signs of aging ap-
peared in the recorded data. The aging is defined as a decrease in the response of
the tanks to secondary particles with time, caused mainly by a loss of collected light
in the tanks. This effect is visible in the change of shape of vertical muon pulses
recorded during the calibration process, quantified by the slope change in the sig-
nal. This decrease, in turn, modifies the Area and Peak obtained from calibration
histograms since the Area represents the total charge produced by a single vertical
muon, and the Peak is the maximum value in FADC counts of its signal. The "Area
over Peak" ratio, denoted here as A/P, is one of the observables at the station level
that is well known to change over time in individual detectors. A general decrease
over time of the time-decay constants and the Area over Peak is observed for all the
stations in the field, with two different populations that share the same trend over
the years, nonetheless having different absolute values.

2.2.1 Time-decay constant of VEM signals

Shape histograms are directly affected by decreased efficiency of the light collection.
Since fewer photons will reach the PMTs, smaller signals are produced. In Fig. 2.5,
an example of a shape histogram for station Denisa Maria (Id = 1698), chosen as
a reference, is shown: Single PMTs, represented by open symbols, slightly differ
between them due to effects induced by the electronics, most probably the filter
applied during the digitalization of the signal. We combined these histograms by
taking for each bin the mean value between the maximum and minimum values
of the PMTs. In this way, the combined one can give us an overall picture of the
tank conditions. As error bars, we used the distance between the maximum and
the minimum from the middle point. The difference in the shape over time can be
observed in Fig. 2.6, left plot, for events obtained from two different years. These
histograms are normalized to their peak. An exponential fit is performed to extract
the time decay constant of the signals (τ), as follows:

f (x) = A · e− x
τ (2.1)
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FIGURE 2.6: Left: Two events for station Denisa Maria, one in 2008 and one in 2019. Right:
Distributions of τ for station Denisa Maria for two different years, 2008 and 2019.

FIGURE 2.7: τ evolution over time for station Denisa Maria (left) and the full array (right).
See text.

The fit range is fixed at [185, 315] ns, which corresponds to analyzing six time
bins. The lower edge has been chosen to avoid the first reflections or the direct light
that reaches the PMTs; thus, only the central part of the signal is considered, where
we expect to have a cloud of randomized photons that went through multiple re-
flections inside the tank. In this way, the effect of the overall reflectivity is enhanced.
The upper edge is chosen to avoid possible biases from low photoelectron statistics.
It can be noticed in the same Fig. 2.6, how the shape of the signals has changed in 11
years, with a decrease of τ of 11 ns.

In order to study in more detail the evolution over time of τ, we selected good-
quality shape histograms by requiring that for each event, the histogram of each
PMT must have in its maximum more than 105 bin entries (a minimum number of
entries at the peak for a standard non-normalized shape histogram), a converged fit
and the difference between PMTs decay constant (∆τ) must be less than 10%. This
last choice is related to the assumption that each PMT in a station should record a
signal that has experienced the same tank conditions; thus, those parameters should
be similar. For station Denisa Maria, these quality cuts reduced the number of events
from 1821 to 1807, a decrease of 0.8%. This low number of excluded events reflects
the good behavior of this station during its lifetime in the field. The distributions of
τ for events in 2008 and 2019 are displayed in Fig. 2.6, right plot. The two distribu-
tions are clearly separated, showing that the decrease cannot be attributed to some
statistical fluctuation.

The τ evolution over time is shown in Fig. 2.7, left: over 11 years, the mean time
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decay constant decreased by 11 ns, faster during the first four years, reaching a level
of decrease of 0.5 ns per year during the last years. As error bars, we considered the
error of the mean, while the grey shadow in the plot represents each year’s distribu-
tion.

We performed the same analysis described previously on 1640 stations. For just
five stations, it was not possible to recover any information. Other few stations
showed erratic behavior; thus, we applied an additional cut on the decay constant,
requiring that τ < 100 ns. The Ids of these stations are 1132, 1198, 151, 1520, 417,
497, 665, 666, 748, 847, 873, 902, and 967. The τ evolution over time and examples
of shape histograms for station 1132 are visible in Appendix B. The evolution of τ
as a function of time after deployment (denoted here as "age" of the tank) for all the
selected stations is shown in Fig. 2.7, right plot: it can be noticed that the distribution
is bimodal. The mean time decay constants for the two populations in each year are
obtained by fitting a sum of two Gaussians for each year’s distribution, as shown
in Appendix C.1, Fig. C.1.

Even if the two populations show different values of τ, their decrease over time
is the same. The population with the highest values (red points) exhibits a decrease
of τ from 68 ns to 57 ns in 15 years, while for the other population τ starts at 60 ns
and drops to 50 ns in the same time interval. The uncertainties represent the stan-
dard deviation of the fitted Gaussians, and the gray shadows show the distribution
of the mean τ of the stations in a specific year. The map of the stations as a func-
tion of τ values and as a function of the year of deployment can be seen in Ap-
pendix C.2, Fig. C.4.

We also checked seasonal effects on τ by studying the evolution of the time de-
cay constant during all months for station Denisa Maria. The overall trend can be
seen in Fig. 2.8, where it is not possible to see a clear modulation, despite some
hints starting from 2016. Despite an initial larger difference between months, proba-
bly due to the sharp decrease in the initial years, the fluctuation of τ is only ≈ 0.1 ns,
suggesting that seasonal fluctuations do not strongly impact shape histograms. Con-
sidering two different months such as January and July, with January being usually
the warmest month and July the coldest one according to the weather in Malargüe,
the mean difference between these two months in a stable period (in this case after
2012) is ≈ 0.12 ns.
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FIGURE 2.9: Charge distributions with fits to each PMT for an event in 2008 (station Denisa
Maria).

FIGURE 2.10: A/P for station Denisa Maria over time.

2.2.2 Area over Peak

The change in the signals recorded by WCDs of the SD has been studied during the
years of operation of the Observatory by several analyses using the "Area over Peak
ratio" [84, 85, 86, 87].

A recent study [88] shows that A/P is decreasing with time with almost 20% of
PMTs that had a loss of A/P of more than 15% over 14 years. This decrease is present
even when seasonal variations or abrupt changes due to earthquakes (in 2010 [88]
and 2015 [89]) and freezing of the water in the tanks [90] are taken into account.

Since A/P from data shows a dependence with temperature [88], in order to
avoid seasonal effects we selected events in CDAS for all stations in a fixed time win-
dow for each year (2004-2019), more specifically in the last week (23-30) of Novem-
ber. From all events, we extracted the calibration histograms to study the behavior
of the tanks over the years.

An example of charge and peak histograms for the 3 PMTs is shown in Fig. 2.1 for
an event in 2008 for station Denisa Maria. The difference in the PMT distributions is
due to different PMT gains in the field that have been set up by the end-to-end gain
procedure. As previously described, calibration histograms are composed of an elec-
tromagnetic contribution that is dominant for low signals (first peak) and a muonic
contribution (second peak). The total distribution can be modeled as the sum of an
exponential (used to describe the em contribution) and a lognormal (describing the
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FIGURE 2.11: A/P evolution over time for the full array.

muonic contribution), as following:

f (x) = e(A− x
τem ) +

1
x
· e−

B(ln x−ln µ)2

2σ2 , (2.2)

where µ is the mean charge deposited by a vertical muon, σ is the spread of the
lognormal and τem is the decay constant of the electromagnetic component.

Area and Peak are defined based on the second derivative of the fit function.
Each calibration histogram is fitted with Eq. (2.2), as shown in Fig. 2.9 for charge
histograms of an event in 2008 for station Denisa Maria: the charge histograms show
muon peaks at APMT1 = 200 FADC bins, APMT2 = 210 FADC bins and APMT3 =
178 FADC bins.

We applied quality cuts also on calibration histograms for each event: all six
calibration histograms (charge and peak histograms for each PMT) must have non-
zero entries, and for each histogram, we asked for a reduced χ2 < 10 to avoid bad
fits of the histograms or bad-behaved PMTs. These cuts reject bad periods due to
noisy PMTs or other effects in the tank that can interfere with the normal calibration
procedure. Another cut is based on the fact that, for each event, PMTs are expected
to show a similar A/P, removing any additional and unwanted effect caused by, for
example, electronics or software. This is the same principle as used for τ.

Taking this into consideration, we also required |∆A/P| < 0.5 [25 ns] between
PMTs in the same event. In the case of station Denisa Maria, all events passed the
cuts, another proof that this station had good behavior during its lifetime in the field.

The evolution over time of A/P for the selected events (around 165 events per
year) is shown in Fig. 2.10. A clear decreasing trend from 3.9± 0.02 [25 ns] to 3.6±
0.02 [25 ns] between 2008 and 2014 is visible before stabilizing around 3.6± 0.03 [25 ns].
Uncertainties are defined as the standard deviation of the distribution. The jump ob-
served in 2015 is caused by the freezing events [88]. One can note that this jump is
not present in the τ distribution, Fig. 2.7.

At the same time, A/P has been obtained from calibration histograms for all
the other stations, and an additional cut was applied to remove outlier values: we
required that A/P < 5 [25 ns]. The result is shown in Fig. 2.11 (right): a decrease
of A/P over the years is visible and, as already seen for τ, A/P values seem to
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FIGURE 2.12: Mean number of stations as a function of zenith angle θ for different Ethr
(left) and as a function of Ethr for different years (right).

cluster in 2 different populations, compatible with what was seen for all PMTs in the
field [87, 88]. Both of them have a ∆A/P ≈ 0.35 [25 ns] over 15 years, starting from
A/P ≈ 3.9 [25 ns] and A/P ≈ 3.65 [25 ns] respectively, with a steeper decrease in
the first five years. As for τ, error bars are defined as the standard deviation of the
fitted Gaussians and gray shadows represent the distribution of the average A/P of
the stations in a certain year.

2.3 Number of triggered stations over time

The Area over Peak and τ are related to the T2 trigger rate, and its decrease should
result in a decrease in the number of triggered stations. The average number of
triggered stations depends on the primary particle’s energy. The mean number of
stations per event above a certain energy is illustrated in Fig. 2.12 for 6T5 events
with a zenith angle smaller than 60◦. The number of stations depends on the zenith
angle; for example, above 10 EeV an air shower will trigger on average eight stations
if it were vertical and 12 if it were inclined. The number of stations increases almost
linearly with the logarithm of the threshold energy, having, on average, four stations
per event above 1 EeV and about eight stations per event above 10 EeV. A decrease
with time can already be observed in the same figure.

Two effects can cause the decrease: a decrease with time of the reconstructed en-
ergy (or in S(1000)) or, assuming that S(1000) is constant, stations far from the shower
axis are not triggered anymore. Preliminary studies [91] show that the average sig-
nal evolves with time, even for large signals. Thus the decrease in the number of
stations is likely related to a combination of the two effects. In Chapter 3, we cannot
disentangle the two effects. However, we come back to this in Chapter 5. Here, we
investigated the required energy shifts to obtain the same distribution of the number
of stations over time.

2.3.1 Data and test statistics

The underlying hypothesis is that the distribution of the number of candidate sta-
tions over the years (for fixed energy) should be similar, so comparable to a distri-
bution of a year chosen as a reference.

We used the data set from 2004 until the end of 2018, Observer ICRC 2019 pro-
duction [92]. Bad periods were rejected, and we selected events with zenith angles
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FIGURE 2.13: Mean number of candidate stations over time.

smaller than 60◦ and a 5T5/6T5 trigger. In Fig. 2.13, the mean number of candidate
stations above different threshold energies, Ethr is shown, evolving during the years.
Data from 2004, 2005, and 2006 are grouped together to increase statistics, consider-
ing the deployment of the array. A decrease in the mean number over the years is
observed for all threshold energies until log10(Ethr/eV) = 19.1; for higher energies,
there is not enough data to assert such implication directly.

The average number of stations also depends on the number of working stations
at the time of the event. In the deployment years, the array was evolving and had
many more borders than after completion. Therefore, the fraction of the number of
air-shower footprints falling at the borders of the array, and thus not fully contained
in the array, was larger than after completion. This can also be observed in Fig. 2.13.
Therefore, the following study has only been performed for data after 2007.

In this study, we employed not only the first moment of the station distributions,
but the entire distribution using a Kolmogorov-Smirnov test (KS test). The KS test
is a statistical test that can be used to compare a sample with a reference probability
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FIGURE 2.14: Components of the Kolmogorov-Smirnov test for lg(E/eV) = 18.6 (upper
panels) and lg(E/eV) = 19 (lower panels). For more details, see the text.

distribution; it can also be used to compare two samples based on their shape and
decide if they both come from a population with a specific distribution (this is re-
ferred to as the null hypothesis H0). In the latter case, in which we are interested in,
the test statistics use the absolute difference between the empirical cumulative distri-
bution functions (CDF) of two samples to prove H0 to a chosen level of significance.
This difference is referred to as "KS distance" and is defined as:

DKS = max|F(x)− G(x)| (2.3)

where F(x) and G(x) are the empirical CDF of the first and the second sample, re-
spectively. max is the maximum value of the set of differences computed for each
data point of the samples. This value represents the "maximum distance" between
the CDFs of the distributions under comparison and is sensitive to differences in
both location and shape of CDFs. The probability obtained with this method repre-
sents the confidence level for the null hypothesis.

Using this method, we checked the compatibility between the distribution of
candidate stations for 2018 (used as reference year) and distributions of candidate
stations for all other years. Data were selected using the same Ethr. For example,
comparing the data sets from 2008 and 2018 above log10(Ethr/eV) = 18.6, we obtain
a KS probability of 8.56 · 10−10, corresponding to a KS distance of 5.67 · 10−2. The
two data sets are incompatible. This is illustrated in Fig. 2.14 where the black dots
represent 2018 and the blue line, 2008, at log10(Ethr/eV) = 18.6. The disagreement
is more visible in the upper middle plot of Fig. 2.14 where the CDFs of the samples
are shown (black dots for 2018 and blue line for 2008).
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FIGURE 2.15: Left: ∆ as a function of time for different threshold energies. Right: ∆ as a
function of threshold energy for different years.

We assume that there exists a threshold energy in 2008 above which the com-
patibility between the two histograms is very good. We scan over a relative shift
in energy (∆ = (E/Ethr − 1)) with a step of 0.2% to find the best matching value of
delta, called "equivalent energy shift". At each step, we evaluate the KS distance and
KS probability for distributions obtained at those energies with respect to the refer-
ence distribution of 2008 candidate stations at that Ethr. We decided to use CL = 50%
as the limit for error bars, meaning values of ∆ over that level are accepting the H0
(hypothesis of compatibility) correctly at least 50% of the time.1

Values for the KS distance and compatibility probability are shown for 2008
in Fig. 2.14 (right). The error bars (shown in the figure with two vertical dotted
lines) are computed at 50% probability around the best matching value, defined as
the value of ∆ for which the KS distance has a minimum. For instance, the best match
for 2008 is found at ∆ = (−8.4+1.60

−2.24)%, with DKS = 7.17 · 10−3, which corresponds to
ProbKS = 99.15%. The better agreement at the best matching value can be seen in the
plots of the CDFs in Fig. 2.14 (upper middle one, red line for the best match). This
agreement is also visible in the upper left plot, where the normalized distributions
are drawn. In the lower panel, the same procedure is used for log10(Ethr/eV) = 19.
In this case, the uncertainties on ∆ are larger due to the decrease of the statistics by
a factor of 5. This is reflected in the size of the confidence interval around the best
match: ∆ = (−12.4+2.98

−2.46)%. This method is employed to quantify the needed shift
in energy for the threshold energy of the year under study to obtain a compatible
distribution of candidate stations with the one of the reference year. This value is
computed for each year and for each Ethr and presented in the next section.

2.3.2 Equivalent energies

Using 2018 as a reference year, we have computed ∆ for each year and for various
energy thresholds from log10(Ethr/eV) = 18.1 up to log10(Ethr/eV) = 19.3 in steps
of 0.1. The results for different energy thresholds are illustrated in Fig. 2.15 (left)
as a function of time. As can be seen, to obtain the same distribution of stations as
in 2018, the energy threshold would need to be changed by about 10-15% in 2007.
Similar behavior with time is observed for all energies shown.

The dependence of ∆ on energy is illustrated in the same figure in the right panel
for three different years. Data points are correlated as we used the same data set with

1 A χ2 test has been performed and led to similar results.
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FIGURE 2.16: The evolution of the energy shift with threshold energy for 5T5 and 6T5
events and for three years:2009, 2012 and 2015. A linear fit above log10(Ethr/eV) = 18.3
is performed to assess the systematic uncertainty.
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FIGURE 2.17: ∆ as a function of time for different angles.

different threshold energies. Due to the steeply falling spectrum, the distributions
are dominated by events with energies close to the threshold energy. Below the
energy for full trigger efficiency (i.e. log10(Ethr/eV) = 18.5) ∆ is constant. Above
this energy, a decrease of ∆ with energy is observed. The cause of a larger delta
needed for larger energies has yet to be understood. In other words, the air-shower
footprint on the array is smaller as time passes, and the change is larger for higher
energies.
Systematic uncertainties The number of stations depends on the array’s status:
any event on the border will have fewer stations triggered. Therefore, if there is a
time evolution in the array status, this would be reflected in a change in the average
number of triggered stations and, thus, would directly affect ∆. The same analysis
was performed on 5T5 events to investigate a possible systematic effect. The dif-
ference as a function of energy is illustrated in Fig. 2.16 for three different years.
We performed a linear fit of the difference for each year. The result is illustrated
in Fig. 2.18 with filled circles. As can be seen, the systematic uncertainty is lower
than 2% for the time period 2007-2010, and afterward, it is compatible with zero.

The data have also been divided into two subsets: vertical events, with zenith
angle smaller than 40◦, and inclined events, with zenith angles between 40◦ and 60◦

(details in Fig. 2.17). The results of the linear fit above log10(Ethr/eV) = 18.3 are
shown in Fig. 2.18 as a function of time. There is no hint that the required energy
shifts depend on the zenith angle. This leads to the interpretation that the calculated
delta is not only a loss of stations per event, but it might have an energy contribution.

As a crosscheck of the method, the reference year was changed to 2008 and com-
puted the equivalent energy shift for 2018. The absolute values of ∆ are depicted
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in Fig. 2.17(right) as a function of threshold energies. As can be observed, the differ-
ence is less than 1%.

The ∆ as a function of time for different threshold energies is shown in Fig. 2.19.
Above a threshold energy of log10(Ethr/eV) = 19.1, the number of events to perform
this study is not very large, and the statistical uncertainty of ∆ is about 5%. To estab-
lish the growth rate of ∆ per year for each threshold energy, a linear fit is performed
for the evolution of ∆ over time. We assume that ∆ is 0 at the reference year2, and
thus, we have just one free parameter, p1, describing the slope of the function.

The values obtained from the fit are shown in Fig. 2.20. The ∆ variation per year
at different threshold energies has an energy dependency ranging from∼ 0.8%/year
at low energies to∼ 1.4%/year at the highest energies. As discussed earlier, we have
observed a difference between 5T5 and 6T5 events, especially in the first years, and
thus, one would expect this systematic effect to influence the p1 value. Indeed, the
influence is observed and is at the level of 0.1%/year. The same trend with energy
is observed independently of the trigger conditions.

2.3.3 Interpretation

The decrease of the Area over Peak with time is related to the number of candidate
stations as the station T2 triggers depend on this variable. In [87], it has been shown
that the event rate and the Area over Peak are directly correlated, and it seems that
the event rate has stabilized. We have shown, via a simple variable, the number of
triggered stations per air-shower that the data are continuously affected by this loss.
Even if the event rate is thought to have stabilized, the distributions of the number
of stations continue to change, with a continuous loss in the number of stations per
event for all energies.

By assuming a constant SD energy over time (that will be verified in Chapter 5),
the loss of stations per event can be interpreted as a loss in resolution, since the res-
olution is directly dependent on the number of stations participating in the recon-
struction. Using the parametrisation from [93], a maximum ∆ of about 15% corre-
sponds to maximum 5% loss in the resolution within 10 years. This prediction of the
loss in resolution will be compared with the results obtained from a more detailed
description of the time dependency of the detector in Chapter 5.

Moreover, a continuous decrease, with a larger decrease at the highest energies,
has been observed, thus it needs to be monitored in the future years of operation.

2this hypothesis was also checked as a test of the method.
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FIGURE 2.19: ∆ as a function of time for different energies.
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2.4 Risetime

The recorded trace in each triggered station contains information related to the mass
of the primary particle that initiated the air-shower measured by the surface de-
tector [94, 95]. Indeed, for the same energy, showers that penetrate deeper in the
atmosphere (henceforth produced by lighter nuclei, as explained in Chapter 1) will
produce signals with a larger time spread due to the different ratio between the
electromagnetic and muonic contribution and the path length traversed by the sec-
ondary particles.

In order to exploit this feature of the EAS to perform composition studies with
the surface array, a variable called risetime t1/2 has been defined [95]: it represents the
time needed by the total integrated signal to rise from 10% to 50% of its total value.
In Fig. 2.21, an example of the method to obtain the risetime is shown. This variable
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FIGURE 2.21: Top panel: example of a PMT-averaged station time trace. Bottom panel:
Cum. Distr. Function of the signal. The dashed lines represent the time when the signal
reaches 10% (tstart) and 50% (tstop) of the total integrated charge.
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FIGURE 2.22: Risetime obtained from simulations. Left: Risetime as a function of
the distance to the shower core for different primaries. The energy range is 18.9 <
log10(E/eV) < 19.1 and θ < 40◦. Right: Evolution of risetime as a function of the zenith
angle of the incident primary particle (proton in this case) for different energy ranges. The
distance to the shower core considered is between 800 m and 1200 m.

also maximizes the muon-to-electron ratio since muons are expected to arrive in
the first time-bins being highly penetrating particles, traveling almost straight and
unaffected by the atmosphere, while e± and γ experience attenuation and scattering
in their path through the atmosphere. The risetime in a triggered station is computed
individually for each PMT and then averaged between them.

In Fig. 2.22, left, it can be seen that the risetime is dependent on the distance in the
shower axis, starting at ≈ 100 ns very close to the shower core and reaching values
of almost 700 ns at 2000 m far from the core. The measured signals are very small for
stations placed further than 2000 m, and the risetime measurement becomes more
difficult, leading to a decrease in the risetime. It can also be noticed in the figure the
separation between different primaries, confirming the risetime sensitivity to the
mass of the primary particle. The risetime also shows a dependency on the zenith
angle, as displayed in Fig. 2.22, right plot, in which the risetime of proton primaries
for three different energy ranges decreases as θ increases. This dependency can be
understood considering that particles arriving at the stations experience different
atmosphere thicknesses proportional to secθ. Moreover, as the zenith increases, so
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does the amount the atmosphere traversed, reducing the electromagnetic compo-
nent that is the main contributor to the spread of the signal.

2.4.1 Data selection and corrections

Data are selected to avoid a possible bias due to the reconstruction; thus, the maxi-
mum zenith angles used to study the risetime have been chosen to be less than 60◦,
while the minimum reconstructed energy needs to be larger than 3× 1018 eV. We
also selected stations that did not show signs of saturation in the low-gain channel
since the computation of the risetime in these cases is unreliable. For traces with a
saturated high-gain channel, the trace is obtained from the low-gain channel. The
risetime of selected stations shows a dependency on the azimuth angle of the sta-
tion with respect to the shower axis’s projection onto the shower plane [96]. This
behaviour is shown in Fig. 2.23 for different distances to the shower core and fixed
energy and zenith angle ranges: this dependency arises from a combination of the
effect of the atmosphere on the electromagnetic component (more affected for large
azimuth angles) [97, 98] and of geometrical effects [99]. Indeed, it can be noticed that
the asymmetry becomes stronger, moving further from the shower core.

A correction of this effect must be performed before comparing the risetimes of
different stations. In this case, the applied correction is based on the work in [100],
where the corrected risetime is obtained as:

tcorr
1/2 = t1/2 − g(r)cos(ζ) (2.4)

where g(r) is defined as a two-degree polynomial function of the distance to the core
and is characterized by two parameters that depend on the zenith angle:

g(r) = A(secθ)− B(secθ)r2 (2.5)

A and B are parametrized as a third-degree polynomial function of the zenith angle:

A(secθ) = p0 + p1 × sec(θ) + p2 × (sec(θ))2 + p3 × (sec(θ))3 (2.6)

B(secθ) = p′0 + p′1 × sec(θ) + p′2 × (sec(θ))2 + p′3 × (sec(θ))3 (2.7)
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FIGURE 2.24: Mean value of the risetime as a function of time.

After applying this correction, the azimuth angle dependency is removed, as shown
in the right plot of Fig. 2.23, where the corrected risetimes (black symbols) display a
flat behavior as a function of ζ compared to the bell-shaped trend of the uncorrected
ones (open symbols).

Traces are also corrected for the effect of the direct light on PMTs, which causes
narrow spikes with a large signal on the recorded signal of a single PMT but not in
the other two. The effect, however, does not strongly modify the mean values of
risetime, with the correction being less than 1% [101].

2.4.2 Evolution over time

The evolution over time of the risetime can be studied after applying quality cuts
and corrections on the data. In Figure Fig. 2.24, the mean value of the risetime as a
function of the time is displayed. It can be clearly seen that the value of the risetime
steadily decreases over time, being ≈ 287 ns just after the end of the deployment
of the array in 2008 and dropping to ≈ 272 ns in the last years, with a decrease
of ≈ 15 ns in 15 years. The error bars of each data point represents the error on
the mean. The first years show larger uncertainties due to the completion of the
deployment. A general decrease in the risetime is expected, considering that it is
defined based on the shape of the traces, which, in turn, are affected by aging.
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Chapter 3

Modeling the aging

The aging of the surface detector manifests itself as a decrease of A/P and τ of the
VEM signal and reflects a decrease in the light collection efficiency; thus, it is induced
by a change of the intrinsic properties of the tank. In particular liner reflectivity (s),
water absorption length (w) and water level are a few of the properties previously
investigated [102, 103, 104, 105]. A deterioration in the water quality or the Tyvek
reflectivity will affect the calibration constants and long-term effects due to aging
have an impact on high-level variables, as presented in the previous chapter.

A very comprehensive description of how aging effects on electronics and PMTs
could be disentangled from the water absorption and liner reflectivity can be found
in [106, 107]. The Area over Peak ratio and the time decay constants of VEM signals
should be independent of the PMT individual characteristics or the electronics in
the station, allowing the possibility of creating a general aging model based solely
on the internal characteristics of the tank, regardless of the differences from station to
station. However, Offline simulations of WCD assume that the internal properties of
tanks are not changing over time. Thus a study of the influence of these parameters
on the recorded signal is needed before implementing such a change in the software.

In this chapter, we present a model of the stations’ evolution over time that takes
into account only the intrinsic properties of the WCD, with the assumption that a
change in the liner reflectivity and water absorption can reproduce the A/P behav-
ior. We also assumed that the water level is not changing in time (unless a leak in the
tank is present) because checks on the tanks were performed during the years, show-
ing that the water level is constant. The time response of the tank is studied using
the shape histograms [106, 107]. We simulated different station’s internal conditions
to study how the detector response evolves as a function of s and w. By matching
the time decay of the signal for vertical muons (τ) between data and simulations, we
obtained an estimation of the values for s and w that best describe shape histograms
for different years. Finally, we simulated calibration histograms for the values of
s and w obtained from our model to verify that we are able to reproduce the A/P
evolution over time.

3.1 Simulations of shape and calibration histograms

This work aims to simulate shape and calibration histograms and study their evo-
lution when liner reflectivity and water absorption change in the tank. Particles
are injected using Offline r33544. SD simulations are performed using FastMode in
the G4StationSim Module and following the prescriptions of the Tutorial for the Sd-
SimulationCalibration. A custom version of the SdCalibrator was used to store the
particle information and the corresponding signals produced in the tank.
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FIGURE 3.1: A/P for VCM. Left: Dependence on liner reflectivity, w = 100 m. Right: De-
pendence on water absorption, s = 0.94.

The first studies were performed using vertically centered muons (VCM) injected
in the center of the tank to investigate the influence of the tank properties on A/P.
As can be seen in Fig. 3.1, A/P is more sensitive to the liner reflectivity. In particular,
a change of reflectivity of ±0.01 at s = 0.94 and fixed w = 100 m corresponds to a
change of ±0.2 [25 ns] for A/P; to obtain the same variation of the A/P at fixed
s = 0.94, w has to be changed by +72 m and −34 m, respectively. A decrease in s
reduces the time decay constant of the photo-electrons trace (denoted here as τPE),
as shown in Fig. 3.2 (right plot): a change for s of ±0.01 corresponds to a change of
±6 ns for τPE. This change has a stronger influence on the Area since this variable is
the integral of the signal over time and, as it can be observed in the left plot of Fig. 3.2,
the signal becomes sharper as s decreases due to fewer photons being reflected. The
Peak is less affected because it is the maximum value of the trace and is mainly
determined by the first reflections, leading to a decrease of A/P. The first reflections
at the liner can be seen in the middle plot of Fig. 3.2 that shows a zoom of the trace in
the first 50 ns. Doing a rough estimation, the difference between the peaks is around
∆t = 5 ns, which corresponds to the time needed by photons to traverse the height
of the tank from the bottom to the top. Indeed we can obtain d = (c · ∆t)/n ≈ 1.2 m,
where n is the refractive index of water and c is the speed of light.

Taking into account the mild dependence of A/P on w, we explored the follow-
ing phase space for s and w: s between 0.9 and 0.99, with steps of 0.01; w between
150 m and 50 m, with steps of 10 m. As a reference, standard values used in Offline
for SD simulations are: s = 0.94 and w = 100 m.

In order to reproduce the calibration histograms, we used simulations of low en-
ergy air showers. These are showers initiated by primaries with the rigidity (E/Z)
distribution displayed in Fig. 3.3(a): the majority of primaries are light nuclei, ac-
counting for 98% of all simulated primaries (88% protons and 10% 4He). The rest
are heavier nuclei: O, Si, Fe, and other nuclei (2%). All primary distributions were
produced with a power law spectrum with a differential spectral index of 2.7. The
distribution of secondary particles that reach the ground as a function of the total
momentum of the particle can be seen in Fig. 3.3(b). These are the ones injected into
the tank. The majority of highly energetic particles are muons around 1 GeV, while
γ and e± contributions dominate the low energy range, around 100 MeV. We do not
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FIGURE 3.3: (a) Energy distribution per nucleon for different primaries. (b) Total momen-
tum distribution for secondary particles reaching the ground.

model the possible variation of the secondary particle flux along the year, due to
the changes in the atmosphere; however, previous studies have shown that seasonal
variations of A/P and τ are most probably related to the changes in electronics with
temperature [108].

These secondary particles are randomly injected over a hemisphere with a 2.2 m
radius that fully contains the tank. We injected 200 000 particles in the tank for
each combination of s and w in the ranges mentioned above, for a total amount of
≈ 200 000 000 injected particles.

PMTs are simulated with identical properties (such as PMT gains, quantum ef-
ficiency and optical couplings) and their signals are combined to obtain an overall
description of the tank response. In order to build shape histograms for each simu-
lation, we selected and summed pulses with 0.9 · QVEM ≤ Q ≤ 1.1 ·QVEM, where Q
is the integral of the trace and QVEM is obtained from the muon peak of simulated
charge histograms multiplied by 0.96. The last condition is used to reproduce the
same method used in the field [83] that is based on Qest

VEM, an observable not simu-
lated in the SdSimulationCalibration in Offline, since the Module does not reproduce
the continuous on-line calibration of the stations in the field. An example of simu-
lated shape histograms for standard values of s and w is shown in Fig. 3.4. These
histograms are normalized to their peak. An exponential fit, using the same Eq. (2.1)
employed for data, is performed to extract the time decay constant of the signals
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τ in terms of s for w = 100 m (right).

(τ). The fit range has been fixed at the same values as the one used for data in Sec-
tion 2.2.1, [185, 315] ns, following the same reasoning applied in the case for data.
To avoid any biases induced by arbitrary choices when comparing data and simula-
tions, we applied the same selection criteria used for data and listed in Section 2.2.1.
In this case, the criteria of a measured τ that differs by more than 10% between
PMTs translates in ∆s = 0.01 that is incompatible with the assumption of uniformity
of tank parameters seen by each PMT.

The evolution of τ as a function of s and w is shown in Fig. 3.5, left. It can be
noticed that the dependency on s is stronger than on w. On the right plot, the profile
for w = 100 m: τ ranges between 40 ns and 140 ns and it can be seen that a change in
s of ±0.01 from 0.94 can lead to a change of ±8 ns in τ.

To see the effect on calibration histograms also in the case of omnidirectional par-
ticles, we studied the dependency of A/P by varying s and w. The chosen threshold
to produce these histograms is 3 [FADC bins/25 ns], lower than the standard value
used in the SdCalibrator Module (15 [FADC bins/25 ns]), to avoid the trigger effects
on the calibration histograms.

The simulated calibration histograms have been fitted with Eq. (2.2) to primarily
extract the Area and Peak, which are defined based on the second derivative of the
fit function, in the same way, used in data in Section 2.2.2. The fit to the combined
PMTs distribution for standard values of s and w is shown in Fig. 3.6. The position
of the muon hump can be seen at 181 [FADC bins] in the charge histogram and at
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FIGURE 3.7: A/P as a function of s and w for omnidirectional particles.

49 [FADC bins/25 ns] in the peak histogram, giving A/P ≈ 3.7 [25ns]. A valley
between the first and second peak is also visible in both histograms. The evolution
of A/P for values of s and w over the selected ranges show a strong dependency
on s also in the case for omnidirectional particles, as shown in Fig. 3.7: at fixed
w = 100 m, moving from s = 0.94 to s = 0.93 leads to a decrease for A/P of ≈ 5%,
while a decrease of 10% in w (from 100 m to 90 m) at fixed s = 0.94 reduces A/P by
only ≈ 0.7%.

The extracted values from the fit are used to normalize and rescale calibration
charge histograms, as shown in Fig. 3.8 for different values of s and w: on the left
varying s between 0.91 and 0.97 at fixed w = 100 m and on the right varying w be-
tween 50 m and 150 m at fixed s = 0.94. A decrease in liner reflectivity in simulations
leads to a pronounced widening of the muon peak and an increase of the right tail of
the first peak since the muon peak moves to lower values resulting also in a smaller
hump-to-valley ratio. The fact that the increase in the right tail of the first peak is due
to the muon peak is also suggested by the decrease of the exponential decay constant
of the em part when s decrease. Simulations with different w show smaller differ-
ences between histograms, mostly seen for low-quality water, with similar behavior
for s: an increase in the spread of the muon hump and the exponential tail of the first
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FIGURE 3.8: Comparing simulated charge histograms. Left: Varying liner reflectivity.
Right: Varying water absorption.

FIGURE 3.9: Exponential decay of the electromagnetic peak (τem) and width of the muon
hump (σ) obtained from the fit as a function of s and w for charge (left), peak (right) his-
tograms.

peak when w decreases. The dependency of the exponential decay of the em part
(τem) and the width of the muon hump (σ) on s and w is shown in Fig. 3.9 for both
charge and peak histograms.
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3.2 Matching data and simulations

To quantify the differences between data and simulated shape histograms, we de-
fined a quadratic distance based on τ as follows:

d2
τ =

(τdata − τsims)
2

δτ2
data + δτ2

sims
(3.1)

We scanned the parameter space of s and w, comparing each event from data
with simulations and evaluating the distance between these histograms. The result
of this method for one event of Denisa Maria in 2019 is shown in Fig. 3.10(c). A well-
defined valley is visible in yellow, while white and reddish regions can be excluded;
values of w < 80 m are unlikely since tanks in the field do not show a growth of
bacteria inside the water [109], while for w > 100 m changes are not anymore visible
when increasing w, as can be noticed from the plateau in the valley. There is also a
degeneracy between s and w, and no well-defined minimum is observed. For this
reason, we decided to fix the water absorption to the standard value of w = 100 m.
The profile of the previous 2D scan for w = 100 m is shown in Fig. 3.10(a). The
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FIGURE 3.11: Liner reflectivity, s, over time for station Denisa Maria.
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FIGURE 3.12: Comparison between simulations at best matching s and one event in 2008
for station Denisa Maria. Left: Shape histogram. Right: Calibration histograms.

minimum distance is found by fitting a 2nd-degree polynomial function around the
minimum. In this particular case, it is located at s = 0.937.

Events are selected using the same criteria chosen in Section 2.2.1 and are the
same ones used to produce Fig. 2.7. Each event is analyzed using this method, giv-
ing the evolution of the best matching liner reflectivity (called here sbest) over time.
The result of the mean s for station Denisa Maria is shown in Fig. 3.11 (error bars rep-
resent the error on the mean). For station Denisa Maria we can describe the shape
histograms evolution if the liner reflectivity has a decrease of ≈ 1.3% over 11 years,
from 0.95 to 0.937, as shown in Fig. 3.11, where s is represented as a function of the
age of the tank.

While this method is able to reproduce the time decay constant of shape his-
tograms, as shown in the left picture of Fig. 3.12, simulated calibration histograms
at sbest obtained with the same method are not able to reproduce the calibration his-
tograms extracted from data, Fig. 3.12 right plot. This difference is not well under-
stood, but it could be related with a discrepancy in the flux of secondary particles
experienced by the tanks in the Auger site compared to the one used to produce the
simulations, since the real flux at the Auger site has never been measured, thus the
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secondary particle distribution used in this study may not properly reproduce the
one observed in the field. A variation of this flux should not affect shape histograms
but could change the shape of charge and peak histograms. Another source for this
discrepancy could be associated with a different PMT efficiency between data and
simulations: in previous studies [107, 110] the efficiency of the PMT (including a pos-
sible variation of the transparency of the window) was simulated by using a constant
factor on all photoelectrons. Thus, shape histograms are not affected by this effect,
while calibration histograms show a dependency on this factor, especially for the
hump-to-valley ratio.

3.3 Evolution over time

We extended the same analysis performed for station Denisa Maria to all the other
stations of the array. As mentioned in Section 2.2.1, the events selection process
concerned 1640 stations, for just 5 of which it was not possible to recover any infor-
mation and an additional cut on the decay constant, requiring that τ < 100 ns, was
used to remove outlier values due to bad-behaved stations.

The mean s, obtained as in the case of station Denisa Maria, as a function of
age for all selected stations is illustrated in Fig. 3.13, left, in which it is possible
to see a bimodal distribution during the years, as also previously observed for τ
and A/P in Fig. 2.7 and Fig. 2.11. The mean s values for the two populations at
each age are obtained by fitting a sum of two Gaussians for each age distribution,
displayed in Appendix C.1, Fig. C.3. A general decrease over time with a difference
in s between the two populations of ≈ 1% is observed. On average, s decreased
by 1.7% in 15 years. In this case, the error on the mean is used as uncertainty. The
distribution of s over the array for different ages is shown in Appendix C.1, Fig. C.5.

To obtain some more information, we classified the stations into three categories
based on their s value: population 1, population 2, and mixed population. In order
to do that, firstly, for each age, we separated them by choosing a 90% purity in each
population from the total distribution. The double-gaussian fit was used to obtain
the values where the contamination of the populations between them reaches the
level of 10%. As an example, at age 6, in Fig. 3.13, right plot, the two dotted lines in-
dicate the values obtained to separate the populations, with the color lines represent-
ing the corresponding population in which the purity cut was applied. The stations
with an s value falling in the overlapping region were tagged as "mixed". For each
year, then, each station was classified into one of the three categories and the general
belonging of the station to one of the three categories was obtained by choosing the
category which had the most tags during the years for that specific station. Then
we looked at the positions of the tanks for these three subsamples. In Fig. 3.14, the
spatial distributions of the liner populations can be seen: stations with lower values
of s (population 1, blue dots) seem to be more located in the southern area of the
array, while the second population (orange dots) appears more in the northern part,
and the mixed population (smaller in absolute numbers compared to the others) is
spread all over the array. The evolution of these three populations over the years
can be seen in Appendix C.1, Fig. C.6.

Population 1 was deployed at the beginning, followed by population 2, that was
completed during the years until 2008, when the array was finished. After that year,
almost no changes appeared in the maps, as expected.
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3.4 From τ to A/P

Values of liner reflectivity over time that were found by matching shape histograms
between data and simulations can be translated into A/P values. In order to do this,
we used the simulations to parametrize A/P as a function of s and fixed w = 100 m
with a 4th degree polynomial function:

f (x) =(3.724± 0.008) + (22.5± 0.4) · (s− 0.94)

+ (253.3± 22.6) · (s− 0.94)2 + (3554.7± 379.1) · (s− 0.94)3

+ (58902.8± 13102.9) · (s− 0.94)4

(3.2)

A/P ranges between 3.1 [25 ns] for s = 0.9 and 6.2 [25 ns] for s = 0.99, as can be
seen in Fig. 3.16, left plot, and the value for s = 0.94 is around 3.7 [25 ns].

The contribution of the electromagnetic background in calibration histograms
has an effect on the determination of Area and Peak. Since we are not able to fully
reproduce the exact electromagnetic background due to trigger effects and a lack
of knowledge about the real flux in the Auger site, we simulated calibration his-
tograms (charge and peak) with different electromagnetic components in order to
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take into account this possible systematic in the parametrization of A/P as a func-
tion of s. The magnitude of the electromagnetic background obtained from injecting
secondary particles inside the tank, as explained in the description of the method
used to produce the calibration histograms, was modified by ±25%, and the effect
on calibration histograms can be seen in Fig. 3.15, for both charge and peak his-
tograms: it is more evident for lower values of s, due to the merging of the muonic
component with the electromagnetic component. The effect of this change is trans-
lated in the form of the error band showed in Fig. 3.16, left plot.

This model can reproduce the general decreasing trend of A/P for station Denisa
Maria by only changing the liner reflectivity in the tank, as shown in Fig. 3.16. Sys-
tematic uncertainties are obtained from the error in the conversion from s values to
A/P values. However, a small difference of 0.1 [25 ns] is observed between data and
simulations. The same difference is observed for all stations over time, as shown
in Fig. 3.17, left, where the dotted line represents the mean of the distribution of the
average difference, obtained from the right plot, and the open symbols represents
the difference over time when using the value of A/P when fixing s at the default
value of 0.94. The mean average difference for all stations is 0.107± 0.001 [25 ns],
with a spread of 0.056± 0.001 [25 ns] as shown in Fig. 3.17, right.

3.5 Discussion
τ is decreasing over time due to the aging of the SD, probably due to the deteriora-
tion of the characteristics of the tanks, such as liner reflectivity and water absorption.
Simulations of different tanks conditions were performed, and a model to describe
the A/P trend over time was implemented by matching data and simulations using
shape histograms. We found that the shape histograms are mainly affected by the
liner reflectivity, and we showed that by changing this parameter, we can describe
the evolution of A/P. A decrease of 1.7% for s in 15 years is necessary to reproduce
the aging of the tanks. A small A/P difference of 0.1 [25 ns] between data and sim-
ulations is present and cannot be reduced in this analysis. We also found that the
stations distributions for τ, A/P and s show a bimodal behavior. In particular, when
analyzing s over time and the array, the two observed populations are related to the
deployment time. The effect of aging on air-shower measurements will be addressed
in the next chapter.
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Chapter 4

Aging effects on air-shower
reconstruction

The loss over the years of the collected light in the WCDs has been shown to af-
fect the shape histograms, the calibration histograms and the risetime. This effect
is, therefore, also present in the recorded signal of air-showers in the tanks, possi-
bly leading to an impact on the reconstruction of these air showers. Since standard
Offline simulations do not take into account the time evolution of the SD, the ef-
fect of the aging in the showers reconstruction can not be quantified with the usual
simulations chain.

In this chapter, the implementation in Offline of the aging model based on the de-
crease over time of the liner reflectivity of the tanks will be shown, and its effects on
high-level and station-level variables will be studied. In order to precisely assess the
changes due to aging in the EAS reconstruction, the first step consisted in modifying
the liner reflectivity of all stations with the same value: first, with a high reflectiv-
ity (simulating young tanks just after their deployment) and then with a lower one
(describing 15 years old tanks in the field). Each individual CORSIKA shower is then
thrown in the array (fixing all the other properties) and reconstructed in these two
different configurations, obtaining twin reconstructed showers, differing only by the
internal reflectivity of the WCDs.

However, the surface array exhibits a complex behavior over time with two dif-
ferent stations populations, having different τ values that evolve in a similar way
during the years, as shown in the previous chapters. A more realistic SD simulation
is then performed, changing the properties of each tank according to its evolution
over time as previously obtained by studying the shape histograms of the individ-
ual stations during the years. In this way, it is possible to realistically compare the
results obtained from simulations with data.

4.1 Twin showers

The method used to study in detail what are the effects caused by aging on several
observables consists of reconstructing the same shower twice using two different
liner reflectivities in the definition of the properties of the tank in GEANT4 [111] de-
tector simulations. All of the other parameters and event configurations are kept
the same. This procedure allows us to selectively study the effect of aging in the
reconstructed air showers, avoiding any other source of discrepancies.
The two reconstructed events are called twin showers, since they are obtained from
the same primary CORSIKA shower and are used to asses how this single change can
modify the air-shower reconstructed observables. To assess the maximum effect,
two extreme values of liner reflectivity are used: 0.922 and 0.962, called respectively
smin and smax.
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FIGURE 4.1: Example of a reconstructed shower with E = 2 × 1019eV and θ = 13.54◦ for
a young station. Left: Footprint on the ground, with the projections of the dense rings in
grey. Right: Stations signals as a function of the distance to the true core location.

4.1.1 Simulations configurations

A sample of 1000 proton showers produced with CORSIKA 7.6400 and EPOS-LHC
as hadronic model, was used to obtain the twin showers. The energy distribution of
this sample is uniform in the energy range 19.0 < log10(E/eV) < 19.5, as well the
angular distribution in cos2θ, for zenith angles between 0◦ and 65◦.

Each shower has been fed to Offline v33544, and it is simulated and recon-
structed two times, once using smin and the other one using smax. The reflectivity
of all the stations in the array has been changed in the configuration file used for the
reconstruction; an example of this bootstrap file can be seen in Appendix H. The cal-
ibration constants (Area and Peak of the calibration histograms) of the three PMTs
were modified accordingly using the parametrization of Area and Peak as a func-
tion of the liner reflectivity obtained for vertically centered muons, as can be seen
in Fig. 3.1, left. In setting the simulation parameters, the core location and the seeds
for the detector and the shower simulations were fixed in order to have the same par-
ticles entering the tanks in the two different simulation configurations, using smin
and smax, and thus avoiding any randomness in the reconstruction process. Each
primary shower is thrown just once in the array for each of the two realizations.

To better understand how aging affects the shower reconstruction, a series of
5 artificial dense rings of stations were added around the shower core at different
distances on the shower plane: 446, 545, 665, 812 and 1000 m. Each ring is composed
of 12 stations. An example of the footprint of a shower can be seen in Fig. 4.1, left,
where in gray the projections on the ground of the additional rings are visible.

The primary showers go through the full SD simulation chain, presented in the
Module Sequence in Appendix H, where all the processes involved during the data ac-
quisition on the field are reproduced, such as the detector response and the triggers.
As for the data, the recorded signals are used to reconstruct the information about
the primary particle initiating the shower. An example of the resulting lateral dis-
tribution function (LDF) for one shower, obtained by fitting the station signals over
the distance to the shower axis on the shower plane, is shown in Fig. 4.1, right: the
total signals of candidate stations are shown as blue dots, while the dense stations
are represented with red open symbols.
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FIGURE 4.2: Signal traces of twin showers for several dense stations, in red young stations
and, in blue, old stations. Left: Ring at 545 m. Right: Ring at 1000 m

4.1.2 Signal traces and risetime

The electronics samples the signals of the particles entering the tanks and the recorded
traces are then calibrated using the values of the Area obtained from calibration his-
tograms (or from the calibration constants defined in the configuration file, in the
case of simulated events) and are expressed in units of VEM. For every event we
average the traces from the three PMTs in a station to smooth their intrinsic fluctua-
tions, thus better observing the trace shape. In Fig. 4.2, examples of simulated traces
are shown: on the left, three stations (upward, lateral, and downward, defined as
stations with azimuth angle on the shower plane of 0, 90 ◦ and 180 ◦, respectively)
for the ring at a distance of 545 m and on the right for the ring at 1000 m. It can be
noticed that the traces differ between the two different rings, being larger and nar-
rower for the ring close to the shower core, with a peak up to 180 VEM. While the
further from the core, the smaller and more spread the signals, as expected, with a
peak of ∼10 VEM. The twin showers are displayed in two different colors: in red
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FIGURE 4.3: Same trace for the upward station showed in Fig. 4.2, split for the different
signal components.

for the younger station (high reflectivity) and in blue for the older station (low re-
flectivity). The absolute difference between them can be seen in the lower part of
each plot, in grey: the traces obtained with smax are larger compared to the old ones,
up to 50% in certain time bins. In both cases, 90% of the signals is contained in just
70 time bins, corresponding to 1.75 ms. Some traces in older stations, especially up-
ward and lateral, appear to start earlier than their twin version, leading to a negative
difference in the first time bins; this seems to be related to the trigger definition and
the resulting time window in which the interesting part of the signal is defined. The
start and stop times of this window is shown as grey dashed lines in Fig. 4.2, with a
total time lenght that spans between 5 and 10 ms for different rings and stations.

The individual components of the total traces were extracted from simulated
events. The electromagnetic and muonic contributions account for more than 99.5%
of the total signal, thus they were the ones considered in this study. The electromag-
netic component (orange line in Fig. 4.3) is more spread in time, around 100 time
bins, while muons (blue line) cluster in≈ 40 time bins. The older traces, shown with
dashed lines in Fig. 4.3, top plot, are smaller than those produced in younger sta-
tions for both components. In particular, the time trace produced by γ and e± shows
a larger difference than the muonic trace. Thus the light loss due to a decrease in the
internal reflectivity of the tanks affects more the electromagnetic component. This is
due to the fact that the VEM Peak is used to calibrate the traces and the geometry of
the electromagnetic signal, that is produced at the top of the tank.

Such a decrease in the recorded light can affect the risetime of the signals, named
as t1/2 and defined as the time needed for the cumulative sum of the signal of a
station to go from 10% to 50%, as defined in Chapter 2. Risetimes of PMTs-averaged
signal traces and their components are computed for all stations. They are indicated
as t1/2,max for showers reconstructed with smax and t1/2,min when reconstructed with
smin. These risetimes are averaged for each ring, and then this average is compared
for each twin version event-by-event: The distributions of the differences between
them are shown in Fig. 4.4, left plot, for the ring at 812 m with a gaussian fit for all the
different components. The mean electromagnetic ∆t1/2 is around 14 ns with a spread
of almost 6 ns, while the mean ∆t1/2 of the total and muonic components is larger,
around 18 ns, but narrower, with a standard deviation of 4-5 ns. In this case, the total
risetime follows the muon risetime due to the fact that the ring is in a position away
from the core, where the electromagnetic contribution has decreased. Hence the
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FIGURE 4.4: Difference between the averaged risetimes of twin showers. Left: ∆t1/2 distri-
butions of the different components for the dense ring at 812 m. Right: mean of ∆t1/2 over
distance to the shower axis.

total signal is dominated by the muonic signals. This is also visible in Fig. 4.4, right
plot, where the mean ∆t1/2 as a function of the distance to the shower core is shown.
Errors are defined as the error on the mean. It can be seen that ∆t1/2 of the total
signal is closer to the electromagnetic one at short distances, while it approaches the
muon one as the distance increase. The figure also shows that the mean ∆t1/2 for
muons is constant at 18 ns over the distance, while the ∆t1/2 of γ and e± starts at
17 ns and drops at 14 ns at larger distances.

This difference of 18 ns in risetime between the twin showers is of the same order
as what has been found in the risetime from data in Section 2.4.2, of ≈ 15 ns.

4.1.3 Station signals and energy estimation

The change in the shapes of time traces due to the less collected light affects the total
signal recorded in each station. The individual PMT charge signals are obtained
by integrating the traces in the time window identified as the part of interest, as
explained in Chapter 1, and the resultant value is rescaled based on the calibration
constants obtained from calibration. Finally, the total signal of a station is defined as
the average of the signals from the working PMTs of the station.

To track the impact on the different components along the lateral profile of the
shower, the average signal of individual components of each ring has been com-
pared with its twin counterpart. The distribution of the relative difference between
average signals for the ring at a distance of 445 m is displayed in Fig. 4.5, left. In
this case, the mean difference of the total signal is ∼ −0.7%, in between the value
obtained for the electromagnetic signal (−1.1%) and the muonic one (∼ −0.2%). The
mean values of ∆S as a function of the distance, right plot in Fig. 4.5, don’t exceed
the 1% difference. Moreover, it shows the same trend seen for the risetime in the
previous paragraph: close to the shower, the contribution of the two components is
similar, and the total signal is composed of a combination of the two; Moving away
from the core, the electromagnetic component decreases, and the main contribution
to the total signal comes from the muons.

The lateral distribution function for each shower is then obtained by fitting the
total station signals as a function of the perpendicular distance to the shower axis.
An example of twin showers’ LDF can be seen in Fig. 4.6, left plot, where the loga-
rithm of the signals as a function of the distance to the core is shown for an almost
vertical proton: The dots represent the station signals, while the continuous line is
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twin showers. Right: Relative difference of the shower size estimator as a function of the
zenith angle.

the fitted LDF, with a shadow area displaying its uncertainties. The signals for the
twin showers, in blue for the young event and red for the older event, slightly differ,
and their reconstructed LDFs are in good agreement, overlapping almost perfectly.

The estimator of the shower size (S1000) can be obtained from the LDF and com-
pared between the twin showers. The evolution of the relative difference of S1000 as
a function of the true zenith angle, Fig. 4.6, right plot, is less than 10% for the ma-
jority of the twin showers, with a slightly larger spread for the very inclined ones
(θ > 60◦). The mean relative difference of the energy estimator between the sim-
ulations with different liner reflectivity is −0.6± 0.11%, with a spread of ∼ 3.4%,
obtained from the distribution of the relative ∆S1000 in Fig. 4.7.

This result confirms the robustness of the Auger calibration using atmospheric
muons, that can compensate even in the case of strong aging of the WCDs, with the
energy estimator affected on average at the sub-percent level and an overcompensa-
tion for the electromagnetic component smaller than 1.5%.

This holds true if the calibration procedure on the field works properly and it is
able to distinguish the muonic peak in the calibration histograms. For a few stations,
this has proven to be difficult. Remediation of this problem has been found with a
new calibration technique that requires a coincidence between the WCD and the SSD
mounted on top [112, 113].
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4.2 Realistic time-dependent simulations: SdEvolution

As described in the previous chapter, the evolution of the signals recorded in the
tanks over time shows the same behaviour, with each WCD aging in a similar way
when we consider the time after its own deployment as a common reference (that
we indicated as age of the tank). However, the time evolution of the array is more
complex than the single station evolution, since the deployment lasted around 2
years, between 2004 and 2006. The time occured between the first and the last de-
ployed station shifted the relative age between them, creating a multi-aged array at
different snapshot in time. This age difference between the stations is not negligible,
especially since in the first 4 years after the deployment the light collection in the
tanks decreases faster than in the later years. Furthermore, the presence of two liner
populations has been shown to be present in the array and to be related with the
time of deployment, adding an extra layer of complexity.

Due to this, a time-dependent simulation of the full array was developed by cre-
ating and integrating a new StandardApplications in the Offline framework. The
new application and the relative Module are called SdEvolution. The information
on the status of each tank over time is taken into consideration by using the corre-
sponding value of liner reflectivity obtained by the model of the aging built in the
previous chapters thanks to the study of the time-decay of the light produced by
vertical muons in the tanks.

In the next sections, the concept, design and use of the Application and the Mod-
ule will be described, showing the full chain used to produce an event in a SD time-
dependent simulation and focusing on the new changes implemented to achieve the
desired result. In the section Simulation library, the details of the complete simulation
library produced using this new feature will be presented and the effects of aging on
simulations will be discussed.
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4.2.1 SdEvolution Application

The new application follows the usual Auger structure: the first modules provide
the simulation of the air-shower and the response of the array, while the second part
handles the reconstruction as performed for data. The full bootstrap file and the
ModuleSequence used can be found in Appendix I, together with other configuration
files.

As a first step, a CORSIKA shower file is read and events are generated, accord-
ingly with the user choices expressed in the bootstrap file of the EventGeneratorOG
Module. After that, the new SdEvolutionBLX Module checks the presence and status
of a file containing the information about the liner reflectivity of the stations. This
file, called sdEvolution.root, contains the ID of the tank, the average liner reflectivity
in several time intervals and the corresponding GPS times for all tanks analyzed.
The file is shipped together with the Offline software and was produced in order to
have a more accurate description of the time evolution of the SD, by analysing the
time period between January 2005 and January 2020, with a more dense sampling
compared to the analysis shown in the previous chapters: for each month, we re-
quired the same quality cuts used in the shape analysis, collecting at least 200 good
events per month per station. From these events, the average liner reflectivity of
the station for the corresponding month is obtained. An example for station Denisa
Maria can be seen in Fig. 2.8. The GPS time of the first, GPSStart, and last analized
event, GPSEnd, in each month is recorded and it is used by the Module to evaluate
the reflectivity of the tank at every moment in time.

The Module allows in its bootstrap file (SdEvolutionBXL.xml.in) to indicate a dif-
ferent liner file, with an eye to future improvements or changes. After the first sanity
checks, the Module retrieves the timestamp of the simulated event and the list of
stations that are involved in the event. Using these information, the correct value of
liner reflectivity for each station corresponding to the time of the event is obtained
by linearly interpolating the braketing values contained in the sdEvolution.root file.

Since every simulated station is always initialized using the standard reflectivity
of 0.94, the new Module takes care of changing this property in each station that is
used for the reconstruction. Stations that show a value of liner reflectivity different
than the default one are re-built using the proper value of liner reflectivity. Checks
on the validity of the event date and on the presence of good reflectivity values in
the file are also perfomed during the process.

By changing the response of the tank, a necessary step to correctly reproduce
the behaviour of the stations consisted in updating, at the same time, the associated
values of the calibration constants to convert the digital channels to units of VEM. As
explained in the first chapters, these conversion factors, namely Area and Peak, are
constantly evaluated on the field by the self-calibration of the stations, henceforth
every change of the tank response it is reflected in these values. In simulations,
instead, Area and Peak are tabulated and evaluated with vertical muons injected in
ideal simulated tanks. When simulating the response of the array, tabulated values
are retrieved by the SdSimulationCalibrationFillerOG module.

To select the proper values, accordingly with the status of the tank, the chosen
approach consisted in parametrizing for each PMT the evolution of Area and Peak
as a function of the liner reflectivity from the simulated charge and peak histograms
for vertical muons, as described in Chapter 3. A 4th degree polynomial function was
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FIGURE 4.8: Area (top) and Peak (bottom) for vertical centered muons at different liner
reflectivities. Polynomial functions are used to parametrize them (see text for more details).

chosen to describe the Area and a 2nd degree polynomial for the Peak, as follow:

A(s) =a0 + a1 · (s− 0.94) + a2 · (s− 0.94)2

+ a3 · (s− 0.94)3 + a4 · (s− 0.94)4 (4.1)

P(s) =p0 + p1 · (s− 0.94) + p2 · (s− 0.94)2 (4.2)

The coefficients a and p obtained from the fits for the three different PMTs can be
found in Appendix I.7, while the results can be seen in Fig. 4.8.

Having obtained these values, we modified the structure of the module responsi-
ble to fill the calibration information for simulations: We added the option to obtain
the values of Area and Peak from the two parametrization, Eqs. (4.1) and (4.2), with
the possibility to also specify, in addition, the coefficients for each PMT. This last
choice avoids any hard-coded value and open to further improvements or changes
of the parametrization in the future.

The above mentioned modifications were the major ones introduced to imple-
ment the SD time evolution simulations. The next modules in the sequence follow
the usual simulation chain by simulating the PMTs response, the FADC filters, the
baseline and the triggers. The second part of the ModuleSequence takes care of the
reconstruction of the event by applying the selection cuts and obtaining the shower
information such as the shower plane, the curvature radius, the LDF and the energy.
The reconstructed event information is then saved in the ADST format, the Auger
standard for high level analysis, together with the simulated traces for the different
components of the shower recorded by the stations involved in the event.

The surface array experiences other form of time instabilities during its opera-
tion, due to the status of the single stations: they could not be active in a specific



66 Chapter 4. Aging effects on air-shower reconstruction

FIGURE 4.9: Array status at different times over the years. These maps are produced based
on the T2Life information.

moment due to an energy power supply problem, they could be active but not send-
ing signals because of a problem in the communication system or other unforeseen
problems could be affecting the station. The criteria to establish if a tank is alive or
not is defined based on the presence of T2 triggers sent by every station to the CDAS.
The time information about the status of each tank is collected and saved in root files
called T2Life that keep track of the activity of all the stations.

The current status of a station (in acquistion or not) during the event of a sim-
ulated air-shower is included in the detector simulations by using these files. A
specific module and the relative Manager (T2LifeROOTFileManager) are used for this
purpose and the latter is included in the higher-level manager, SManagerRegister-
Config, that collects and runs all the other detector description managers, such as the
stations list, the model of the simulated station and the calibration manager. Thanks
to the T2Life information, the roll-out of the deployment of the array is also included
in simulations, as can be seen in the snapshot of the SD at different times in Fig. 4.9.
To avoid others effects and isolate the time-dependent changes, the altitude of all the
stations was fixed to 1400 m by creating a dedicated stations list.
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FIGURE 4.10: Distributions of the CORSIKA showers used as an input to produce the simu-
lation library. Left: Energy distribution. Right: Zenith angle distribution.

CORSIKA showers

log101010(E/eV) Primary Realizations per shower

Proton Helium Oxygen Iron Standard Aging SD

18.5-19 5000 5000 5000 5000 5 10
19-19.5 5000 5000 5000 5000 5 10
19.5-20 5000 5000 5000 5000 4 8
20-20.2 998* 2000 2000 2000 3(*5) 6(*10)

TABLE 4.1: Number of CORSIKA showers for each energy bin and for each primary. The
last two columns show the number of times each showers has been thrown in the array for
the two modes. The ’*’ indicates that proton showers in the last energy bin had a different
number of realizations (5 and 10, in the two modes, last two columns) compared to other
primaries. See text for more details.

4.2.2 Simulation library

The application for the simulations of the aging array was then applied to pro-
duce a full library of reconstructed showers. In order to do that, a specific tag for
Offline was created: prod-20221010-test-sd-evolution. As input files for the produc-
tion, CORSIKA air-showers produced with CORSIKA 7.7420 and EPOS-LHC as hadronic
model for four different primaries (p, He, O, Fe) were used. The energy range con-
sidered was 18.5 < log10(E/eV) < 20.2, with a uniform angular distribution in
cos2θ for θ < 65◦ and four different atmosphere. The total number of CORSIKA show-
ers amounted to almost 67.000, coming from approximately 1000 showers every 0.1
steps in log10(E/eV), and were provided by the Monte Carlo Simulations task of
the Collaboration [114]. Only the proton showers in 20 < log10(E/eV) < 20.2 were
slightly fewer (998, as shown in the last row of Table 4.1), due to a choice to reduce
the production time. The energy and angular distributions of these showers can be
seen in Fig. 4.10.

With this setup, each shower was then used as input for the application in two
different modes: standard and agingSD. The first mode excluded the use of the Mod-
ule SdEvolutionBLX, fixing in this way the liner reflectivity of all the stations to the
standard value of 0.94 and it did not take into consideration the T2Life information
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FIGURE 4.11: Distributions of the reconstructed showers. Only 6T5 events are selected.
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Reconstructed showers

Aging SD Standard SD

Quality cuts Events ε (%) Events ε (%)

Thrown showers 605 980 100.00 302 990 100.00
Successful jobs 604 932 99.83 302 507 99.84
6T5 trigger 601 275 99.22 301 045 99.36
log10(ESD/eV) ≥ 18.5 576 865 95.20 288 770 95.31
θSD < 60◦ 527 669 87.08 264 106 87.17

TABLE 4.2: Number of reconstructed showers after each selection cut, together with the cut
efficiency.

of the tanks, removing the temporal evolution of the array. For each run/shower,
5 events were generated at different random times between the 1st of January 2005
and the 1st of January 2020, to match the time frame contained in the liner reflectivity
file and placing the core in random locations accross the array.

The agingSD mode, instead, included the liner information of all the stations and
generated 10 events in a time period between 2005 and 2020, choosing random times
uniformly distributed. The core of the shower was chosen randomly accross the ar-
ray also in this case. The choice of doubling the number of events for this mode is
motivated by the need of a bigger sample for events that included the liner variabil-
ity to reduce statistical fluctuations and be able to observe small effects.
To reduce the computation time for more energetic events with log10(E/eV) > 19.5,
the number of generated events from a single shower for the standard and agingSD
modes was reduced to 4-8 and to 3-6 in the energy ranges 19.5 < log10(E/eV) < 20
and 20 < log10(E/eV) < 20.2, respectively. Table 4.1 summarizes these choices
and the number of simulations used. All the runs used the FastMode option in the
G4StationSimulatorOG module to further reduce the run-time of simulations; Fast-
Mode is, at the time of writing, the standard simulation procedure in Auger.

The two modes share the same detector seed used to initialize the detector sim-
ulations for each CORSIKA shower; In this way, another source of uncertainty was
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FIGURE 4.12: Time distribution of the reconstructed events. In red the agingSD mode and
in black the standard one.

removed to compare more directly the two sets of simulation on a single shower ba-
sis, while from shower to shower the seeds has been changed, to reproduce a more
realistic scenario. The physics seed, governing the choice of the secondary particles
entering the tank, has been kept the same for all showers, instead. The massive pro-
duction of this library was performed in the computing farm of the Praha group,
that also took care of monitoring the jobs and verify their correct execution.

The final number of simulated events is above 600 000 for the agingSD mode and
more than 300 000 for the standard mode. The Table 4.2 shows the number of gener-
ated events, the impact of failed jobs occured during the production of the library,
and the effect of quality cuts. The energy and angular distribution of the recon-
structed showers can be seen Fig. 4.11 for the two different modes, while Fig. 4.12
displays the events over time of the events: The distribution is flat over the years,
confirming that the time range between 2005 and 2020 is sampled uniformly. In
the case of the aging array, only 3657 events did not have a 6T5 trigger, account-
ing for the 0.6% of the total number of events, while events without a 6T5 trigger
in standard mode are 1462, accounting for the 0.48%. The spatial distribution of the
reconstructed core over the array is shown in Fig. 4.13: it can be noticed that the
standard mode, Fig. 4.13(a), has reconstructed events distributed uniformly over the
array while the agingSD set, Fig. 4.13(b), instead, shows a clear difference between
the southern part and the northern part, with less events in the latter. This is due to
the deployment of the array that is encoded in the T2Life file used to reproduce the
evolution of the presence of the tanks in array over the years. The events that are not
6T5 can be placed on the core location maps discussed above, displayed in Fig. 4.13
as blue crosses, and show that these events occured mostly in the borders of the array
or edges of empty areas, where no tanks are deployed, leading to missing triggered
tanks needed to properly reconstruct the shower properties. It can be noticed that
in the case of the aging detector that also contains T2Life information, these events
appear more often, especially in the middle of the array, due to fact that the array
had different borders while the deployment was in progress. This also explains the
small difference in the ratio of not-6T5 events in the two different simulations sets.
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FIGURE 4.13: Distribution over the array of reconstructed showers for the two different
modes. Blue crosses show the location of events that are not 6T5. More details in the text.
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SD data

Quality cuts Events ε (%)

Total events 7 233 314 100.0
No lightning 7 232 796 99.99
LDF fit 7 232 796 99.99
θSD < 60◦ 6 923 503 95.72
SD-triggered 6 921 886 95.69
6T5 5 642 072 78.00
log10(ESD/eV) ≥ 18.5 160 483 2.22
Bad periods 156 554 2.16

TABLE 4.3: Number of reconstructed showers after each selection cut, together with the
efficiency of the cut.
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FIGURE 4.14: Distribution of selected data. Left: Energy distribution. Right: Zenith angle
distribution.

4.3 Comparison with data

To assess the validity of the aging model and the SdEvolution simulations production,
the change seen in data of several observables that are related to the light collection
in the tank, as shown in Chapter 2, should be present and reproduced in simulations
that contains the time evolution of the SD.

4.3.1 Data selection

In order to compare data and simulations, a selection of the recorded data by the
surface detector is needed. The data set used is the ICRC2019, produced with Offline
v3r99p2, that contains events from 2004 up to 2020 for a total number of events
larger than 7 millions. From this dataset, events that survived the quality cuts shown
in Table 4.3 were used. These cuts ensured the quality of the reconstruction to reject
events due to lightning, or recorded in data taking periods where the performance
of the array was not optimal. The largest effect on the number of events is the cut
on the minimum reconstructed energy required for the events, that drives the total
number of events down to ≈ 160 000, excluding events with an energy smaller than
the energy for which the SD-1500 is fully efficient. This effect is expected due to the
steep spectrum of cosmic rays. The other cut with a significant rejection (around
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Left: Evolution in the number of triggered stations as a function of the energy of the pri-
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18%) is the 6T5 cut, the requirement that all the six stations around the detector
with the highest signal are operational, in order to select only events that are fully
contained in the array.

The energy distribution of the selected events is shown in Fig. 4.14, left, while
on the right the angular distribution of the events is displayed. The latter shows a
flat distribution as a function of the cos2 of the reconstructed zenith angle, similar
to the angular distribution of simulations, seen in Fig. 4.11. The energy spectrum
shows a step-wise power-law with different indexes, related with different physics
explanations as described in Chapter 1, with few events at the highest energies.

4.3.2 Simulations reshaping

The energy distribution of simulations does not resemble the one observed in data,
being uniform in the logarithm of energy. In order to compare the observables
between data and simulations, such as the number of stations, the distribution of
events needs to be re-weighted to follow the same distribution measured on data.
This modification is of great importance; For example, events with a greater energy
have a larger footprint at the ground, triggering more stations, as shown in Fig. 4.15,
left figure, where the mean number of candidate stations as a function of the primary
particle’s energy is shown for different nuclei from simulations. It can be seen in this
plot that candidates are between 5 and 6 for cosmic rays with energy of 3× 1018 eV
and they grow up to 17 and 22 for proton and iron, respectively, for energies above
150 EeV.

The energy distribution of SD events, shown in Fig. 4.14, is used to weight sim-
ulations, with each weight (in energy bins of size 0.1 decades) obtained as w(Ei) =
Ni/Ntot, with Ni the number of events in the i-th energy bin and Ntot the total num-
ber of events. In order to maintain the total number of simulations after the weight-
ing procedure, weights are renormalized as:

ŵi = w(Ei)
Nsims

∑Nsims
n=1 w(En)

(4.3)
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such as the total number of simulated events is preserved:

Nsims

∑
n=1

ŵi = Nsims (4.4)

The resulting reshaped simulations energy distribution can be seen in Fig. 4.16 for
the agingSD set of showers: Events with a larger energy are less occuring and the
shape with different slopes, observed in data, is reproduced, while maintaining the
total number of simulated events. The relative fractions of the different primaries in
the total energy distribution has not been affected by the energy distribution rescal-
ing.

The species of nuclei are not equally present in data as they are in simulations.
This effect can alter the analysis of high-level observables when combining simula-
tions for different primaries. Discrepancies can arise from the different contributions
of the primary particles, as can be seen for example in the two distributions of can-
didates stations in Fig. 4.15, right plot. For E > 1019 eV, protons (red) display a dis-
tribution of the number of candidates with a smaller mode, while iron nuclei have a
distribution shifted towards larger numbers of candidate stations. The iron-initiated
showers have a larger footprint and involve more stations than a proton-initiated
shower. This can be understood considering that heavier nuclei develop higher in
the atmosphere. The impact of different primaries on observables such as the num-
ber of triggered stations can be seen in Fig. 4.15, right plot. Due to this reasons,
another rescaling is needed to properly reproduce the data, considering that the dif-
ferent species of primaries are present in different proportions at different energies.

The primaries fractions as a function of the primary particle energy have been es-
timated in Auger by fitting the Xmax distributions, that are obtained through the air-
shower measurement using the Fluorescence Telescopes [115], as explained in Chap-
ter 1. The composition fractions are extrapolated by comparing the distributions
with simulations. The energy range of FD starts from≈ 1017.2 eV thanks to the HEAT
telescope that observe the sky with an inclined field of view, towards the upper sky.
In the case of the regular SD, the energy range of interest starts above ≈ 1018.5 eV,
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FIGURE 4.17: Composition fractions obtained when comparing simulations produced us-
ing EPOS-LHC with FD data [115].

where the regular array is fully efficient. The maximum energy measured by the
FD, instead, goes up to ≈ 1019.6 eV due the design of the FD, while the SD can mea-
sure above 1020 eV. For this reason, when using the primaries fractions for the SD
to re-scale simulations, we assumed that the ratios measured above ≈ 1019.5 eV are
constant and equal to the value present in the last FD energy bin.

The evolution of the fractions is shown in Fig. 4.17: The fitted fractions for dif-
ferent kind of elements (light, medium and heavy) show that protons are the most
abundant source of primaries (≈ 60− 70%) around 1018 eV and they fall below 10%
above 1018.7 eV. Helium, instead, starts to increase at 1018.3 eV reaching its maximum
value of 80% at 1018.5 eV and starts to decrease from that energy on and disappear-
ing for energies higher than1019.5 eV. Medium-weight elements, indicated here as
Nitrogen-like, range between 50% and 10% and they become the dominant specie
above ≈ 1019.2 eV, while iron is negligible above ≈ 1018 eV.

Using the composition information obtained from the Xmax profile fitting, we as-
signed a weight equals to the relative fitted fraction to every reconstructed shower
based on the specie and energy of the simulated primary. The choice to use the EMC
was dictated by the fact that the simulations library contains only the SD reconstruc-
tion, thus there is no information about the FD reconstruction. The two energies
(FD and MC), however, are very close, with a small bias of less than ≈ 3% and a
resolution better than 8% [66], allowing for the use of the Monte Carlo energy for
the evaluation of the primary fraction of each shower. Since the composition frac-
tions were obtained using Nitrogen simulations and the SdEvolution library contains
Oxygen simulations, we assumed that the ratios are the same for the two elements.

The final energy distribution of the simulated events for the agingSD mode is
shown in Fig. 4.18, left: The black full line represents the obtained distribution while
the dotted line the original distribution. In the same figure the contributions of the
fitted primaries are plotted with different colors: For the lower energy part of the
distribution, the spectrum is given as a combination of light elements; at higher
energies it becomes evident that the main contribution comes from Oxygen.

Having this final weighted distribution, it is possible to obtain again the fractions
that were used as an input. The result, displayed in the right plot of Fig. 4.18, is
slightly different from the FD values, since in this case the energy displayed is the
SD one, thus different energy biases for each primary are involved, causing a shift
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FIGURE 4.18: Left: Energy distribution of simulations after weighting the number of events
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structed energy obtained from the comparison between the rescaled distributions of each
primary to the total non-weighted reconstructed energy distribution.
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FIGURE 4.19: Mean number of candidate stations as a function of the primary energy for
standard (open symbols) and agingSD (filled dots) mode. Protons are shown in red, iron
nuclei in blue.

and a mix of different events in the same energy bin. Retrieving the distributions as
a function of the Monte Carlo energy, instead, brings to a result compatible with the
initial values of the primary fractions, confirming the correctness of the procedure.

4.3.3 Number of stations

One effect of the time evolution experienced by the SD, that has been shown in Chap-
ter 2, is the decreasing number of triggered stations over time. The decrease of A/P,
due to a loss of recorded light in the tank, can affect the station signal, reducing it
to the point that it falls below the trigger threshold (especially for small signals) and
the station would not be triggered during an event. Consequently, the trigger rate is
affected and the mean number of candidate stations decreases over time.

The inclusion of the aging in simulations results in a decrease of the mean can-
didate stations along the entire energy range and for all the primaries, as displayed
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FIGURE 4.20: Evolution over time of the mean number of candidate stations of simulated
air-showers with energy larger than 3× 1018 eV.

in Fig. 4.19 for proton and iron for the two different modes. In order to verify that
the new SdEvolution library is also able to reproduce the temporal trend observed in
data, the average number of triggered stations as a function of time has been com-
puted from the simulated events. It can be seen that the trend over time of the num-
ber of stations for the two modes for showers with log10(ESD/eV) > 18.5, Fig. 4.20,
is different, with the standard simulations showing a constant behaviour over time,
with≈ 10.6 candidates every year, while the aging simulations show a decrease over
time of ≈ 0.3 candidate stations, starting at ≈ 10.6 in 2009 and reaching ≈ 10.3 in
2019. The latter can also reproduce the effect of the deployment on the mean number
of stations, as can be seen in the first years, with a smaller value due to the fraction
of the number of air-shower falling at the borders of the array, and thus not fully
contained.

To adhere more to real conditions, each event has been weighted using the energy
and primary fractions distributions, shown in Fig. 4.18. In Fig. 4.21, the mean num-
ber of stations over the years for aging simulations is shown for an energy threshold
larger than 3× 1018 eV: A decrease over time is present and, in particular, the abso-
lute values are smaller, between≈ 6.55 and≈ 6.35, since events with a larger energy
(and, thus, a larger footprint) are less occuring.

Simulations are then compared with data, looking at the time evolution of the
number of triggered stations at different energy thresholds. It can be seen, in Fig. 4.22
for two energy thresholds (log10(ESD/eV) > 18.5, left, and log10(ESD/eV) > 19),
right, that the decreasing trend observed in data is reproduced in simulations, es-
pecially until 2017. After that year, simulations show a plateau while data keep
decreasing; this behaviour has still to be fully understood and it could be a sign of
other aging effects not included in simulations. For both energy thresholds, the de-
crease of candidate stations in simulations between 2008 and 2017 amounts to≈ 0.2.

However, simulations show smaller values of mean candidate stations compared
to the events measured by the SD. A possible explanation could be related with the
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simulations (open red symbols) and data (black dots). Two different energy thresholds are
shown.

different trigger threshold implemented in simulations, based on a fixed value, as
shown in Chapter 2, while in data it is adjusted through the on-line calibration. In
this work, we did not change the value used for the trigger threshold definition
in simulations, even if the aging showed to play a role in the conversion factor f I

between Ipeak
VEM and IVEM. Another explanation could be related to the fact that sim-

ulations predict less muons, thus the LDF extends further, triggering more stations.
A further improvement of this work could take into account this change and verify
if the discrepancy in the multiplicity is related to the software implementation of the
trigger in simulations or the difference lies in the modeling of the air showers.
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FIGURE 4.24: Schematic diagram to illustrate the ∆ method. Taken from [51]

4.3.4 The risetime and ∆ method

The measured risetime of the trace is related to the muon content of the recorded
signal in the detector [51]. The total muon content of the stations involved in an
event, in turn, contains information about the primary particle that generated the
shower and, thus, it can be used to infer its mass. This property of the risetime (being
sensitive to the mass composition of air-showers) has been used to infer the primary
mass event-by-event with the "∆ method" [51, 101, 116]. This method combines
the risetime information of all the stations triggered during an event into a single
parameter called ∆ and defined as follow:

〈∆S〉 =
1
N

N

∑
i=1

∆i =
1
N

N

∑
i=1

t1/2 − tbench
1/2

σ1/2
, (4.5)

where 〈∆S〉 is the average of ∆i, that are defined as the deviation of the individual
risetimes (t1/2) of an event from a specific benchmark, weighted by their uncertainty
σ1/2, and N is the number of surface detectors triggered in the event. In Fig. 4.24,
a schema illustrates in a clear way the definition of 〈∆S〉. By definition, 〈∆S〉 is a
unitless observable. More details about the method, the benchmark definition and
previous results can be found in [51, 101, 116].

As shown in Chapter 2, the risetime is affected by the decrease of recorded light
in the tanks and this effect is propagated into the analysis that are built and designed
based on this observable, such as the ∆ method. Indeed, the time evolution of 〈∆S〉
for the events recorded by the SD and selected using the quality cuts described in the
previous paragraphs, shows a decrease over the years that resembles the same trend
observed for the risetime, as can be seen in Fig. 4.25, in which the error bars represent
the error on the mean of the value for each year. 〈∆S〉 starts with a value of −0.18
in 2008 (end of deployment) and falls to −0.34 in 2020. The risetimes of each station
have been selected and corrected using the same approach shown in Chapter 2.

This decrease over time has been also observed when data are split in different
energy ranges. Since 〈∆S〉 has an energy dependence (derived from the risetimes),
to have a direct comparison between the chosen energy ranges, a normalization to
the mean in each sub-sample is necessary, defined as 〈∆norm〉 = 〈∆S〉 − 〈∆mean〉. The
result is shown in Fig. 4.26, where it can be seen that the effect over time on 〈∆S〉 is
present for all the samples, with a relative decrease of ≈ 18%, showing that that the
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FIGURE 4.26: Evolution of 〈∆S〉 as a function of time for different energy bins.

evolution over time is not energy dependent. Only for events with log10(ESD/eV) >
19.5 the behaviour is less clear because of larger uncertainties due to less statistics;
But the decrease is still visible and compatible with the average trend.

Simulated events are selected with the same criteria and the same method is
performed usign the SdEvolution library. The evolution over time of 〈∆S〉 for the
two modes is shown in Fig. 4.27, left plot, where, in red, 〈∆S〉 decreases over time
of ≈ 0.1 when the aging of the array is taken into account, while, in open symbols,
the standard simulations display a flat behaviour over time. In this case, simulated
events are not reweighted following the energy distribution and all the primaries are
represented equally.

In order to compare data and simulations, the latter needs to be rescaled follow-
ing the energy distribution and the mass composition observed in data. In addition,
due to the muon deficit in simulations with respect to data [55], a normalization to
the mean is performed to obtain a direct comparison between the two. The result,
illustrated in Fig. 4.27, right plot, shows that simulations that include the surface
detector’s evolution can reproduce the 〈∆S〉 evolution over time observed in data.
This decrease of 〈∆S〉 over time is ≈ 0.1.
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shown as black dots. Right: Absolute difference between 〈∆S〉 for standard and agingSD.

A decrease of the observed risetime, and consequently of 〈∆S〉, would shift the
event towards a heavier composition interpretation of the primary mass respect to
the true atomic number, when compared to simulations. The effect of the aging on
〈∆S〉 is assessed with the use of the SdEvolution library and it is visible in Fig. 4.28,
left, in which open symbols display the mean value of 〈∆S〉 as a function of the en-
ergy for different primaries using the standard simulations configuration, while the
fill symbols show the same observable obtained using the simulations that include
the time evolution of the surface detector. The black points represent, instead, the
values of 〈∆S〉 obtained for data. Events with ESD > 1020 eV are grouped together in
the last energy bin, due to the small number of events in data at such energies. Error
bars represent the error on the mean. The two simulations modes show an increas-
ing trend for higher energies, as exepcted since the deposited signal increases (and
the electromagnetic component with it), for larger energies. The difference between
the two modes is small and constant over the energy. The general trend is similar for
all the primaries, with an increase of 〈∆S〉 of ≈ 1− 1.5 over the considered energy
range.
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In simulations, the slope of the evolution over the energy decreases as the pri-
mary mass increases. This is more evident when looking at 〈∆S〉 after being renor-
malized to proton, as shown in Fig. 4.29, left plot, where only simulations in agingSD
mode are displayed: Starting from a constant evolution for proton, the larger the pri-
mary mass the larger is the slope of the difference. The normalization to proton is
obtained by subtracting a parabolic function fitted on proton.

The results for data show a different behaviour: 〈∆S〉 starts at −0.55, between
Oxygen and Iron and follow their trend as the energy increases, until E ≈ 1019 eV,
where the slope changes and the data points get closer to Iron; from E ≈ 1019.6 eV the
data follow the same trend of Iron. The trend of data has been studied in Fig. 4.29,
by employing a broken linear fit, defined in Eq. (4.6) where x is the logarithm of the
energy, and assuming two breaks, named x0 and x1, in which the data changes slope.

f =


A + s0 · x for x < x0

B + s1 · x for x0 ≤ x < x1

C + s2 · x for x ≥ x1

(4.6)

The results for the two break points are x0 = 19.02± 0.02 and x1 = 19.6± 0.19,
with the slope of the function changing from s0 = −0.25± 0.01 to s1 = −0.65± 0.03
after x0, and becoming s2 = −0.40± 0.27 after x1. This change in slope can be inter-
pred as a change of mass composition in the data between x0 and x1, towards heavier
nuclei or a change in the behaviour of hadronic interactions. Indeed, the evolution
of 〈∆S〉 with energy can be described by the combination of a polynomial and expo-
nential function, two continuous and differentiable functions. A function obtained
as the composition of these two functions is another continuous, differentiable func-
tion, while a piecewise function is continuous but not differentiable [117]. Effects
due to detector or resolution effects were studied and seem to not be the cause of
such breaks, as well as the aging presented in this work. Similar results have also
been obtained in other studies [54].

Since the aging has a direct effect on the 〈∆S〉 values, it is useful to verify the
presence of the same features in different periods of time. In order to do that, the
data set has been split in four different groups over time with a different time length,
in order to have the same number of events in each group. The proton-renormalized
〈∆S〉 as a function of the energy is shown in Fig. 4.29, right plot; in each subset the
same behaviour is observed, with the most recent dataset (time group 4) not showing
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tions.

the second break due to a lack of statistics at higher energies. Another test to verify
if these features are zenith dependent can be found in Appendix E, Fig. E.1, where a
small bias for large zenith angles is visible.

The variation on 〈∆S〉 due to the aging effect of the array is small but not neg-
ligible, especially when trying to infer the average primary mass composition and
the observed trend of data using the 〈∆S〉 method. The 〈∆S〉 has a direct correlation
with the primary specie, as shown previously. The relation between the two can be
observed more clearly in Fig. 4.30, where the average value of 〈∆S〉 from simulations
is displayed as a function of the logarithm of the atomic number of the primary. The
figure shows a linear relation between the two variables with 〈∆S〉 decreasing as the
mass of the primary increases, starting from ≈ 0.3 for proton to ≈ −0.4 for iron in
the energy range 18.5 ≤ log10(E/eV) < 19, represented with blue squares. The lin-
earity is preserved for all energy ranges considered, as shown for the three different
bins examined in Fig. 4.30, displayed with different shapes and colors: the abso-
lute values of 〈∆S〉 increase as the energy increases but the slope of the evolution as
a function of the mass remains almost constant, with a similar decrease in 〈∆S〉 of
≈ 0.7 from the lightest to the heaviest nuclei.

Having assessed the linear relation between 〈∆S〉 and 〈ln A〉, it is possible to
study the evolution of the mass composition of the events recorded by the surface
detector array as a function of the reconstructed energy. The value of 〈ln A〉 from
〈∆S〉 for simulations and data is obtained by the following relation

〈ln A〉 = ln 56 ·
〈∆S〉p − 〈∆S〉x
〈∆S〉p − 〈∆S〉Fe

, (4.7)

where 〈∆S〉 indicates the average value of 〈∆S〉 in the considered energy bin and
〈∆S〉x has been kept generic, since it is the average value of 〈∆S〉 of the specific nu-
cleus or of data for which the computation is performed.

Simulations of the aging detector of the different primaries in Fig. 4.31 show a
constant behaviour as a function of the energy, as expected, besides some fluctu-
ations at the highest energies. Data, instead, shown with black dots, display the
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FIGURE 4.31: Computed mean value of the logarithm of the primary mass as a function of
the reconstructed energy of the shower.

same trend observed when compared 〈∆S〉 to simulations: the average mass com-
position of data is between oxygen and iron, with a value of 〈ln A〉 of ≈ 3.2 at
E = 1018.5 eV, that grows as the energy increases towards iron to then flatten at
around E = 1019.5 eV, where 〈ln A〉 ≈ 4.2. The open symbols represent the val-
ues that would have been obtained if 〈ln A〉 would have been computed using the
standard simulations. It can be seen that without the aging corrections, the method
would have predicted an heavier composition compared to the one that considers
the decrease of the risetime over the years, especially at lower energies.

It is not possible, however, to use these results to assess the correct mass com-
position of the data in absolute values. This is due to the well-known discrepancy
between the hadronic models and the observed data regarding the muonic compo-
nent of air-showers, the so-called muon deficit described in the first chapters. Since
the simulations predict a fewer number of muons for air-showers, the results shown
here are biased towards heavier elements, as it can also be noticed for the mass esti-
mation of data that exceeds the iron mass. Indeed, the mass composition of UHECRs
obtained with other methods used in the Pierre Auger Collaboration that are more
sensitive to the electromagnetic component of the showers, such as the measure-
ment of Xmax, is predicted to be lighter than the one showed here. Nonetheless, the
observed trend is similar.

In this study, the evaluation of the general trend has been studied to verify the
effect of the aging in the 〈∆S〉 method. It has been shown that the method is robust
also in the case of a general loss of the collected light in the tanks, that in turn affects
the risetime of the stations (the main observable used by the method). The aim of
of this work was to reproduce the risetime behaviour, verify that the aging does not
affect the main results of the study and assess the effect in the interpretation of the
mass composition.
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4.4 Summary

In this chapter, the aging model based on the evolution over time of the time-decay
constant of pulses of vertical muons was applied to simulations by changing the
liner reflectivity of the tanks in accordance with their behaviour over the years. The
T2 trigger information sent by the stations during the operations in the field was also
included in the simulations chain, to provide a better description of the whole array
during the years. A complete library of reconstructed air showers for four different
primaries at different energies and times has been produced, enabling a detailed
study of the effect of the aging in several observables.

It has been shown that the decrease of the mean number of triggered stations
over the years, observed in data, has been reproduced in simulations that take into
account the aging. In that case, the energy distribution of the measured data and the
inferred fractions of the primaries obtained by the Fluorescence Detector has been
used to be able to compare data and simulations. As a further test, the time be-
haviour of 〈∆S〉, an observable related to the risetime, has been has been reproduced
in simulations and the impact of this change has been quantified.

The mentioned comparisons with data assess the goodness of the model and the
capability of the method to describe in an accurate way the perfomances over time
of the SD. This enables a deeper study of the impact of this long-term evolution on
other high-level observables that are amongst the most important when reconstruct-
ing air-showers: the energy of the primary particle and its resolution as measured
by the surface detector.
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Chapter 5

Energy and energy resolution

In this chapter, real-time SD simulations will be used to assess the influence of the
aging of the array in the energy reconstruction of the air-showers over the years and
how this information can help to verify the hypothesis built in Chapter 2 when the
decrease of the number of stations was studied. This will lead to an investigation
in simulations of the change of the energy resolution of the surface detector over
the years and a comparison with the predictions made by observing the trend of the
mean number of stations in data.

Thanks to the design of the new simulation library, it is possible to disentangle
between the intrinsic resolution of the array and the resolution loss due to the aging
and access, in this way, the information regarding the shower-to-shower fluctua-
tions.

5.1 Aging effects on the energy reconstruction

In the next paragraphs, the evolution over time of the reconstructed energy of air-
showers and its resolution will be studied and the effect of the aging on these observ-
ables will be addressed. An estimation of this effect with the use of more realistic
simulations of the SD response will improve the current and future systematic un-
certainties in the interpretation of measurements.

5.1.1 Energy bias

Using simulated air-showers, it is possible to assess the bias present in the energy
estimation by the surface detector reconstruction. The reconstructed energy of a
shower, denoted here as Erec, is compared with its true energy, EMC. In Fig. 5.1, left,
the relative biases for different primaries (displayed in different colors) are shown as
a function of time: it can be seen that standard simulations, represented with open
symbols, are in complete agreement with agingSD simulations (filled symbols), a
sign that the aging does not affect the mean of the reconstructed energy. SD aging
simulations show also a constant behaviour over time of the energy.

Simulated events were weighted following the measured energy distribution,
shown in Chapter 4, since the energy bias in the reconstruction depends on the pri-
mary particle’s energy, as visible in Fig. 5.1, right plot: the bias for iron, for exam-
ple, is ≈ −1% at E = 1018.5 eV and becomes ≈ −10% above E = 1020 eV; the
same trend is observed for the other primaries, with an increase of ∆E of ≈ 9%
in the energy range between 1018.5 eV and 1020.2 eV. Since the SD energy is ob-
tained in a data-driven way, as shown in Section 1.3 with the use of the relation
EFD = A(S38/VEM)B, the dependence of the energy bias on the true energy of the
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FIGURE 5.1: Left: Relative energy bias for all shower as a function of the time for differ-
ent primaries. Open symbols: standard simulations. Filled symbols: agingSD simulations.
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FIGURE 5.2: Energy bias between reconstructed energy and true Monte Carlo energy as
a function of the years for different primaries, weighted by the energy spectrum. Open
symbols: standard simulations. Filled symbols: agingSD simulations.

shower indicates that the value of the parameter B is different from data and simula-
tions, as well as the A parameter. This is another indication of discrepancies between
data and simulations, probably due to the lack of muons in simulations.

The energy bias between the two modes as a function of time, when the en-
ergy correction is included, is shown Fig. 5.2: it can be noticed that the behaviour
over time remains constant for all primaries, while the absolute values of the bias
changed, since now events with lower energies represent a larger contribution in
the mean reconstructed energy. The difference in the energy bias between the two
modes as a function of time is shown in Fig. 5.3: even in the case of a reduction of
the signal due to the aging, it can be noticed that the reconstructed energy remains
stable over the years, with variations at the sub-percent level. These results prove
the robustness of the continuous calibration using atmospheric muons employed in
Auger.

A similar result is obtained when looking at the energy estimator (S1000), see Ap-
pendix F.1, as a function of time for the two different sets of simulations. This result
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FIGURE 5.3: Change of the energy bias over time for the two different simulation configu-
rations of the array: an ideal SD and a SD with a time-dependent behavior.

is compatible with the one obtained using twin showers. Even adding the complexity
of multi-aged stations sparse all over the array and T2Life information, the energy
estimator remains unaffected by detector changes during the years.

The constant SD energy over time observed in aging simulations confirms the
assumption employed to obtain the effect produced on the energy resolution by the
decrease of triggered stations, Section 2.3: The loss of stations per event with a
constant SD energy with time will affect the resolution, since the latter is directly
dependent on the number of stations participating in the reconstruction. The loss
in resolution obtained in that case corresponded to a maximum 5% loss within 10
years. As a further crosscheck of the new SdEvolution model and simulation chain,
this effect should be present with a similar magnitude when aging simulations are
considered.

5.1.2 Detector resolution

The energy resolution, σtot
E , contains contributions from different sources, such as

the detector resolution (in which we include in this case also the resolution due to
the core location uncertainty) and the resolution due to physics effects (in this case
mainly the shower-to-shower fluctuations), a way to isolate the detector contribu-
tion has been exploited, thanks to the setup used to produce the SdEvolution library.
Showers stemming from the same CORSIKA parent, but generated at different times
and at different locations over the array, are called brother showers. The detector en-
ergy resolution, σdet

E , is obtained by computing the spread of the distribution of the
reconstructed energy of each group of brother showers. In this way, the only effects
considered when looking at the energy resolution are due to the detector and the
core location, while the shower-to-shower fluctuations are avoided.

The σdet
E dependence on the primary energy (EMC) can be seen in the upper part

of Fig. 5.4 for both standard and agingSD simulations, in open black and filled red
symbols, respectively. In this case the figure shows the behaviour for proton only,
with the uncertainties defined as the error on the mean of the distribution in each
energy bin. The resolution is worse, in both cases, for lower energies (around 8.5−
9.5% for 1018.5 eV) since showers with a lower energy will trigger less stations and
this will affect the quality of the energy reconstruction, due to less data points used
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for the fit of the LDF. The resolution as a function of the energy, going with 1/
√

E, is
≈ 4% at the highest energies.

It can be seen that there is a difference between the two simulations modes, with
a worse resolution in the case of simulations including the aging. In order to quantify
this difference, the contribution due to the aging (σaging

E ) is obtained as the quadratic
difference between the resolutions, as following:

σ
aging
E =

√
(σevolution

E )2 − (σstandard
E )2 (5.1)

In Fig. 5.4, bottom panel, the evolution of σ
aging
E is shown, with the errors ob-

tained from error propagation of the considered variables. Similarly to the case of
the detector resolution, the lower the energy, the higher the effect, starting at ≈ 4%
and reaching the level of 2% for the highest energies. These findings are in agree-
ment with what was predicted in Section 2.3 by studying the loss of candidate sta-
tions over the years. In that case the maximum loss in resolution in 10 years was
estimated to be 5%.

The energy dependency of the contribution from the aging can be explained with
similar considerations done for the detector resolution. The loss of recorded signal
could move some stations under the trigger threshold, leading to a smaller number
of stations involved in the reconstructions; this effect, in turn, will affect the energy
reconstruction, as explained above, and events with a low number of stations would
be more sensitive to such a change compared to high-energy events with a large
number of stations. Another extra-effect, in this case, comes from the variety of
stations as not all the stations have the same age.

When analysing the detector resolution for other primaries, Fig. 5.5 for agingSD
simulations, it can be seen that they share the same behaviour and similar values. A
slightly worse resolution at lower energies (iron being at ≈ 11.2% at 1018.5 eV) and
a sharper slope over the energy range for heavier nuclei is observed. The resolution
due to the aging, instead, is compatible for all primaries and remains between 2
and 4%. A similar result has been obtained for the resolution of S1000 and can be
observed in Appendix F.2.
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FIGURE 5.5: Energy resolution as a function of the Monte Carlo energy. Top: Contribution
from the aging effect to the resolution. Bottom: Energy resolution due to detector effects.

5.1.3 Comparison with data

The results obtained for the detector resolution in simulations can be compared with
data by looking at the energy error assigned to each reconstructed shower. This un-
certainty derives from the statistical uncertainty of the reconstructed shower size
S(1000), σstat(S(1000)). The relation between ESD and S(1000) is based on the con-
version of S(1000) into S38 using the constant intensity cut (CIC) method and then
calibrated with the energy measurement of the FD using hybrid events, as described
in Chapter 1. For its part, σstat(S(1000)), estimated during the fitting procedure of
the LDF [71], is directly related to the number of triggered stations and the uncer-
tainties in their signals, thus describing the detector effects of the reconstruction on
data.

The comparison between data and simulations is shown in Fig. 5.6, in which sim-
ulations for the two modes contain all the primaries weighted for the composition
fractions, called AugerMix, to obtain a more realistic description. In grey, instead,
σdet

E for proton and iron in aging simulations are shown. Data agree better with ag-
ingSD simulations than with ideal simulations, varying from ≈ 10% at 1018.5 eV,
down to ≈ 4% at ≈ 1019.4 eV where start to deviate. At that energy, simulations be-
gin to show a flattening in the behaviour, while σdet

E for data keeps decreasing. This
discrepancy can be explained by the fact that the signal variance and LDF model
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might not be properly determined. This is shown in Fig. 5.7, left, where the χ2 prob-
ability decreases with increasing energy. This effect is not present in σdet

E obtained in
simulations, since it is derived from the brother showers.

The aging simulations reflect more the real values of the energy resolution ob-
served in data, compared to the standard simulations. The use of this new library
can improve the modeling of the uncertainties related to the energy, from which
other studies could benefit.
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FIGURE 5.8: Distributions of ∆E renormalized to the mean for each primary in several en-
ergy bins. Aging simulations are shown.

5.1.4 Total resolution

From the reconstruction of the simulated air-showers, the total resolution, σtot
E , is ob-

tained by measuring the spread of the distributions of the difference between the re-
constructed energy of the events and their true energy, defined as ∆E = Erec − EMC,
without separating them based on the original shower. Events are just split in en-
ergy bins, to study the evolution of the total resolution as a function of the primary
energy. These distributions are shown in Fig. 5.8 for several energy bins; All the
primaries are displayed in each plot. To better appreciate the differences between
primaries and compare them, the distributions are renormalized to the mean, visu-
ally enhancing their change of shape as the energy increases. It can be seen that,
for greater energies, the distributions become narrower, producing a better σtot

E , as
expected.

The total resolution for different primaries as a function of the true shower en-
ergy is displayed in Fig. 5.9. The spread of the energy distributions is between 12%
and 14% at 1018.5 eV and it decreases to 10% for proton and between 5.5% and 7.5%
at 1020.2 eV for the other primaries. The result is in agreement with the SD resolu-
tion obtained employing a data-driven method based on the FD measurement of the
energy [1] and parametrized as:

σSD

E
= σ0 + σ1 exp

(
− E

Eσ

)
(5.2)

where the values of the parameters are obtained from a fit to the data: σ0 = 0.078,
σ1 = 0.16, and Eσ = 6.6× 1018 eV. This method assesses the energy resolution by
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FIGURE 5.9: Total energy resolution as a function of the true energy of the showers for dif-
ferent primaries for agingSD simulations.

looking at the spread of the distributions of ESD/EFD of hybrid events, removing the
need for any mass assumptions [1]. The resolution is≈ 20% at 2× 1018 eV and tends
smoothly to ≈ 8% above 2× 1019 eV.

5.2 Shower-to-shower fluctuations

Primary particles with identical characteristics (energy, mass and arrival direction)
and propagating through the atmosphere, can produce different footprints on the
ground. This is due to the fluctuations that occur in every particle interaction, in
particular in the depth of the first interaction of the primary, producing secondary
particles that have parameters that vary from shower to shower [11, 118]. The inter-
actions of the secondaries have, as well, intrinsic fluctuations. The fluctuations due
to physical processes in the shower are called shower-to-shower fluctuations, indicated
as σsh-sh

E , and are difficult to estimate.
The capability to obtain and study the detector resolution, opens the possibility

to tackle and describe the shower-to-shower fluctuations by subtracting the contri-
bution of the detector resolution from the total resolution. The shower-to-shower
contribution can be obtained as the quadratic difference between the total resolution
and the detector one:

σsh-sh
E =

√
(σtot

E )2 − (σdet
E )2 (5.3)

The results for oxygen agingSD simulations, for example, is shown in Fig. 5.10(c).
In the top panel, the total resolution for oxygen as a function of the primary energy,
represented with black dots, ranges between ≈ 12% and ≈ 6% while the red points
show the detector resolution, shown previously in Fig. 5.5, top plot. In the bottom
panel, the extracted shower-to-shower fluctuations are displayed. Their trend shows
a decrease from ≈ 7.2% for lower energies, to ≈ 4.2% at the highest energies. The
same procedure is applied to the other primaries and the fluctuations obtained are
shown in Fig. 5.11. They are energy-dependent, with a decrease for different pri-
maries between 1% and 3% over 1.5 decades in energy. It can also be observed that
the absolute values are different based on the atomic number of the primary, with
lighter elements having larger fluctuations compared to heavier ones.
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FIGURE 5.10: Energy resolution and shower-to-shower fluctuations for different primaries.
Top panel for each plot: Total energy resolution and detector resolution as a function of
the Monte Carlo energy. Bottom panel for each plot: Contribution from shower-to-shower
fluctuations to the energy resolution.
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96 Chapter 5. Energy and energy resolution

)MCθ(2 sin
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

/E
 [

%
]

Esh
-s

h
σ 

2

4

6

8

10

12

14

16

18 Aging SD
p
He
O
Fe
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mode as a function of the arrival direction for different primaries.

The behaviour of these fluctuations can also be studied as a function of the zenith
angle of the incident primary particle, to understand the effect due to the arrival di-
rection of the cosmic-ray in the observed fluctuations. The spread in energy due to
shower-to-shower fluctuations in the case of agingSD simulations as a function of
θMC has a parabolic behaviour for all primaries, shown in Fig. 5.12, at the level of
≈ 10% for very vertical and inclined proton showers and ≈ 6% for iron showers.
It decreases down to ≈ 8(6)% for proton (iron) showers arriving with a zenith an-
gle around 36◦ (sin2(θMC) = 0.35), where it shows a minimum. This behaviour can
be explained considering that fluctuations are mostly driven by the electromagnetic
component, a more stochastic process, compared to the muon content of a shower
that has a direct correlation with the primary mass. More vertical showers encounter
less atmosphere and, thus, e±, γ are less absorbed, enhancing the fluctuations of
shower to shower. The more inclined is the shower, the less the electromagnetic
component, being attenuated, plays a role in the recorded signal at the ground. This
effect starts to invert when showers are very inclined and the probability of muons
decaying increase, producing the so-called muon halo, an additional electromagnetic
contribution that, in turn, increases the shower-to-shower fluctuations. Another ef-
fect could be related to the spectrum of the muons reaching the ground, which might
be different at different zenith angles. The detector resolution, shown with red point
in the top panels of each plot in Fig. 5.13, appears to be constant over the zenith
range. Only showers with energies greater than 1019 eV have been considered, to
avoid that the worse energy resolution at small energies could distort the results by
dominating the evolution over θ.

The same trend can be noticed in standard simulations, Fig. 5.13, right column,
and when compared with the results obtained for simulations in agingSD mode, it
can be seen that the shower-to-shower fluctuations are compatible, with a difference
in resolution less than 0.5%, as displayed in Fig. 5.14 for single primaries. In Fig. 5.15,
these differences are displayed for all the primaries. Fluctuations agree at the sub-
percent level between the two different simulation configurations, for all the nuclei.
This confirms that the inclusion of the aging in simulations is not introducing any
bias in the physical properties of the showers and the observed effects on high-level
variables are ascribable to the loss of signal in the tanks.
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FIGURE 5.13: Shower-to-shower fluctuations as a function of the arrival direction of the
showers for different nuclei. Left: agingSD simulations. Right: standard simulations.
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FIGURE 5.14: Comparison of shower-to-shower fluctuations between agingSD and standard
mode as a function of the arrival direction for all primaries. Top panel for each plot: σsh-sh

E
for the two modes. Bottom panel for each plot: Difference of the fluctuations between the
two modes.
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FIGURE 5.15: Change of the shower-to-shower fluctuations over the arrival direction for
the two different simulation configurations of the array: an ideal SD and a SD with a time-
dependent behavior.
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Chapter 6

Muon signal using Deep Learning

In the previous chapters, the production and validation of a new simulations library
to address and describe the aging effect has been described. The trend of several
high-level observables has been reproduced and the effect on the reconstruction of
air showers have been studied. Since these simulations are closer to what is seen in
data, they could be very useful in studies that exploits the information contained in
station-level observables, such as the time traces of the recorded signals.

In particular, the Pierre Auger Observatory has published innovative analysis in
which Deep Learning algorithms have been used to infer and extract mass-sensitive
observables from the SD recorded events. Since these algorithms are trained with
simulations, an accurate description of the detector (and the shower physics as well)
has become of great importance.

In this chapter, the field of Machine Learning will be briefly described, with a
general explanation of one of its most used models: Neural Networks. These are
the building blocks for the Deep Learnig models that will be discussed later in the
chapter, with some of the architecture used in this work.

The second part of the chapter will describe the architecture used in order to
extract the temporal signal of muons from the total signal measured in the WCDs.
The method and its functioning will be shown, together with the results obtained
when this Deep Neural Network is confronted with aging simulations.

6.1 Machine Learning

Machine learning (ML), a subset of artificial intelligence (AI), has transformed in re-
cent years the landscape of technology, research, and industry. The definition of ML
is teaching computers to autonomously learn from data without explicit program-
ming. This process involves feeding the algorithm with a training dataset, enabling
it to iteratively adjust its internal parameters and improve its performance based
on examples provided in the form of training data. By enabling computers to learn
patterns and relationships in data to make predictions, classifications, and informed
decisions, machine learning has created new possibilities to solve complex problems.

Machine learning can be categorized into supervised, unsupervised, and rein-
forcement learning. In supervised learning, algorithms learn from labeled data, find-
ing the relation between input and output variables. This type of learning enables
the algorithm to generalize its understanding to new, unseen data. Unsupervised
learning involves uncovering the underlying structure within data that lacks pre-
defined labels. In this context, algorithms autonomously analyze patterns, clusters,
and relationships, revealing insights without the need for explicit guidance. Rein-
forcement learning involves an agent learning to interact with an environment to
maximize rewards. The agent navigates through a trial-and-error process, adapting
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its actions based on feedback received from the environment. In the context of this
work, we will primarly focus on supervised learning.
When designing and building an ML model, the following component are of pri-
mary importance:

• Data: High-quality, relevant data is the foundation. Clean, diverse, and repre-
sentative data ensures accurate model training.

• Features: Observables extracted from the data that the algorithm uses for learn-
ing. The correct choice of such variables influences a model’s performance.

• Model: The model embodies the algorithm’s comprehension of the fundamen-
tal patterns within the data. This could be a decision tree, a neural network, or
alternative structures, depending on the analysis.

• Training: During training, the model is fed with labeled data, adjusting its
internal parameters iteratively to minimize the difference between predicted
and actual outcomes.

• Testing and Validation: Once trained, the model is tested on new, unseen data
to evaluate its performance and generalization capabilities. Validation ensures
that the model is not overfitting the training data.

• Hyperparameters: These are parameters that are set before training begins and
influence the learning process, such as the learning rate in neural networks.

In the field of physics, ML has emerged as a powerful tool for analyzing complex
data, optimizing experiments and make accurate predictions [119, 120, 121, 122].

6.2 Neural Network

A neural network (NN) is a computational model inspired by the structure and func-
tion of the human brain’s interconnected neurons. It is a fundamental component of
machine learning, capable of learning complex patterns and relationships from data.
Neural networks excel in tasks like image and speech recognition, natural language
processing, and more [123].
A neural network consists of layers of interconnected nodes, known as neurons.
These layers are categorized into three main types:

• Input Layer: This layer receives the raw data or features from the input dataset.
Each neuron in the input layer corresponds to a specific observable of the data,
xi.

• Hidden Layers: These intermediate layers process and transform the input
data through a series of mathematical operations, in which each neuron is as-
sociated with a weight, wi, that is adjusted during the training. The number of
hidden layers and the number of neurons in each layer can vary, depending on
the complexity of the problem and the network’s architecture. In the simplest
architecture, only one hidden layer is present.

• Output Layer: The final layer produces the network’s predictions or classifica-
tions. The number of neurons in the output layer is determined by the nature
of the task. For instance, in a binary classification problem, there might be two
output neurons representing two possible classes.

A visual representation of a NN is shown in Fig. 6.1.
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FIGURE 6.1: Simple neural network example. Input has 2 features, hidden layer has 4 neu-
rons and the output is a single value. For clarity, the bias vector has not been included in
the image. σ is the activation function. Image produced with [124].

6.2.1 Basic description of operation

The functioning of a neural network involves several key steps. Once the network’s
initial parameters are set, including weights and biases (an additional weight for
the hidden layers), the data is fed into the input layer. The trasformation of inputs
to outputs can be described through a mathematical representation, following the
schema in Fig. 6.1. Given an input vector ~x, containing the values of n observables
for one realization, namely (x1, x2, · · · , xn), and a weight matrix W with dimension
(n, j), being j the number of neurons in the hidden layer, and column vector cor-
responding to the weights assigned to each neuron ~wi..j, with each vector having n
components, W = (~w1, ~w2, · · · , ~wj), the output ŷ of a layer can be computed using
the following equation:

ŷ = σ(W ·~x +~b) (6.1)

where ~b is the bias vector. The activation function σ introduces non-linearity, en-
abling the neural network to capture complex relationships in data. A common
choice for σ is the sigmoid function or the rectified linear unit (ReLU) [125], defined
as f (x) = max(0, x). When using m training examples, the input becomes a ma-
trix X of dimension (m, n). Due to this representation, this computational step, also
known as "forward propagation", can exploit matrix algebra to perform calcutions
between the layers and speed up the processes.

The next step is to assess the accuracy of the prediction. The difference between
the predicted output and the actual target output from the training data, is quanti-
fied using a loss or cost function, J. The choice of a specific loss function depends
on the nature of the problem and the characteristics of the data, with the Mean
Squared Error (MSE) being the most widely used for regression problems. The aim
is to minimize this loss, indicating how far off the predictions are from the actual
values. Ultimately, through continuous adjustments over an interative procedure,
called training and described in the next paragraph, a trained neural network can
make accurate predictions or classifications when presented with new data. The
network’s ability to generalize from its training experiences is the result of finding
the optimal set of parameters that minimize J. This process transforms the neural
network into a powerful tool for complex pattern recognition.
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6.2.2 Training

The core of neural network proficiency lies in their capacity to learn from data. This
learning process entails the calibration of weights associated with connections be-
tween neurons, and this calibration is accomplished through a process known as
training. An optimization algorithm, often gradient descent, is a core technique used
to update the weights and biases in the direction that reduces the loss. Gradient de-
scent involves iteratively adjusting network weights to minimize the error between
predicted and actual outputs. The underlying principle revolves around finding the
optimal configuration of weights that corresponds to the model’s highest accuracy.
The "gradient" signifies the rate of change of the error concerning each weight, pro-
viding directional guidance for weight updates. Mathematically, the weight and bias
update step in gradient descent can be expressed as follows, in the case of the weight
matrix:

Wnew = Wold − α · ∂L
∂Wold

(6.2)

where Wnew represents the updated weights, Wold denotes the previous weights, α is
the learning rate, controlling the step size and ∂L/∂Wold is the gradient of the loss
function with respect to the weight. A similar formulation is used for the biases. The
learning rate governs the size of each update, and plays an important role for the
minimization process, since a value too large could cause the network to not reach
the minimum, while a value too small can increase the training time significantly.
The "backpropagation" algorithm [126, 127] is integral to the implementation of gra-
dient descent in neural networks. It calculates the gradients of the loss function with
respect to network weights through the chain rule of calculus. These gradients are
then used to update the weights in a direction that reduces the loss, progressively
steering the model toward optimal performance. Incorporating gradient descent
and backpropagation, neural networks iteratively fine-tune their weights, gradually
improving their ability to generalize patterns in the data.

These steps are repeated for a specific number of times known as "epochs." An
epoch represents a complete pass through the entire training dataset. During each
epoch, the network refines its predictions and minimizes the loss further. To manage
large datasets efficiently, training data is often divided into smaller subsets known
as "batches." Instead of updating the network’s parameters after every individual
data point, updates are made after processing each batch. This approach enhances
training efficiency and allows the network to learn from patterns in smaller subsets,
gradually improving its overall performance. This iterative process is repeated over
numerous epochs until convergence, whereby the model achieves a satisfactory level
of accuracy on the training data. The trained network can then be evaluated on
unseen data to assess its ability to generalize.

The training of a neural network model requires a split of the dataset into three
subsets: Training, validation, and test sets. The training set is the largest part and
is used to teach the model. It learns patterns and adjusts parameters to minimize
loss on this data. The validation set helps fine-tune hyperparameters and monitor
performance during training, preventing overfitting. The test set is kept separate
from training and validation. It serves to assess the model’s performance after train-
ing and hyperparameter tuning. The separation of data points into the subsets must
mantain the original distributions of the observables, in order to avoid any biases
during the training and assessment of perfomance.
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FIGURE 6.2: Deep neural network example of a fully connected layers model. The differ-
ent colors represent positive (red) and negative (blue) weights, while the color intensity is
proportional to the weight magnitude. Image produced with [124].

6.3 Deep Learning

Deep learning uses neural networks, but the main distinction to traditional networks
comes from the presence of multiple hidden layers. The term "deep" refers to the
multiple layers through which data is processed, allowing for the hierarchical ex-
traction of features and representations as data moves deeper into the network. For
this reason, a network of this type is also referred to as "Deep Neural Network"
(DNN); An example of such a network is shown in Fig. 6.2.

The forward propagation, in the case of a DNN with n hidden layers, can be
described as follow:

~h1 = σ(W1 · X +~b1)

~h2 = σ(W2 ·~h1 +~b2)

. . .

ŷ = σ(Wout ·~hn +~bout)

(6.3)

where~h1, ~h2, .., ~hn are the hidden layers’ outputs, each obtained from the previous
layer’s output. Wout and bout correspond to the weight matrix and bias vector of the
output layer.

Deep learning models require less feature engineering because they automat-
ically extract features from raw input data [126]. For example, when presented
with images for classification purposes, deep-learning systems can use convolu-
tional neural networks (CNNs), specialized layers designed for image recognition,
instead of manually extracting features from each image individually like one would
have done using traditional methods such as Support Vector Machines or Random
Forests [128].
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FIGURE 6.3: Schema of a recurrent neural network and the visual explanation of how the
different elements of a sequence are connected to each other [130].

6.3.1 Fully Connected Layers

Fully connected layers, also known as dense layers, are a type of architecture used in
deep learning models. Fully connected layers are used to connect all neurons from
one layer to the next and allow for information flow between them. They have been
found to be essential components of many deep neural networks (DNNs).

A fully connected layer is characterized by the presence of connections linking
every neuron in the layer to every neuron in the subsequent layer, allowing the
output from the previous step to be passed forward after being weighted in each
connection according to an adjustable parameter associated with it; thus forming
connections among all neurons across a DNN model architecture [129]. This allows
for efficient data propagation throughout the entire network by allowing signals re-
ceived at any given node on one layer being able to influence subsequent nodes
down below without necessarily being explicitly connected together [126]. Further-
more, these types of architectures enable feature extraction capabilities by perform-
ing nonlinear transformations over the input data in each node, before applying
additional convolutional or pooling operations to extract more complex features, if
needed [128].

This type of networks offer several advantages when compared with other tradi-
tional architectures, including better scalability options, improved feature extraction
abilities along with increased robustness against noise (due their ability to propagate
information through multiple paths rather than having just a single path running
through, which could potentially lead towards misclassification events).

6.3.2 Long Short-Term Memory

Recurrent Neural Networks (RNNs) are a class of neural network architectures that
can process sequential and temporal data. In contrast to conventional feedforward
neural networks, RNNs have a recurrent connection that allows them to maintain
a memory of previous steps in the sequence. This intrinsic property makes RNNs
very useful in tasks such as natural language processing, speech recognition, and
temporal signal processing.

The distinguishing feature of RNNs is the feedback loop that connects the output
of a neuron back to itself or other neurons in the same layer. This loop enables the
network to consider previous steps in the sequence when making predictions at the
current step. The core components of an RNN are recurrent neurons, which process
input data and maintain an internal hidden state, called~h. This hidden state serves
as memory and is updated at each time step as the network progresses through the
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FIGURE 6.4: An LSTM module is composed of a repeating module (central block) that con-
tains four interacting pieces associated with the cell state, input gate, forget gate and the
output gate [130]. More details can be found in [130, 131].

sequence. The generated output at each time step is a result of both the current in-
put and the hidden state. A visual representation of an RNN architecture is shown
in Fig. 6.3, in which it can be seen that every element in the input ~xt are processed
individually and their outputs are connected, influencing each other.
One particular type of RNN is the Long Short-Term Memory (LSTM) network [132].

In Fig. 6.4 an LSTM layer and the schematic representation of its functioning is
shown. The LSTM architecture was designed to overcome the vanishing gradient
problem faced by traditional recurrent networks [133]. Traditional recurrent net-
works use backpropagation through time to learn from input sequences, meaning
that the backpropagation is applied through all the time steps of the sequence (each
one processed by a different layer) and the weights associated with all the layers are
adjusted to minimize the cost function. This often leads to the gradients becoming
very small or even zero when training over long sequences due to exponential decay
caused by repeated multiplication performed using the chain rule during backprop-
agation in n sequential time steps, described by n layers.

LSTM are based on the concept of a cell state, Ct, that keeps some information
and runs through the entire input sequence, facilitating the flow of information from
one time step to the next. It enables the network to maintain and carry forward infor-
mation over long stretches of time, allowing for the capture of patterns and context
in the data. The distinguishing feature of LSTMs is the incorporation of gates, which
are mechanisms that regulate the information flow within the cell state. These gates
are designed to control what information is remembered, what new information is
added, and what output is produced at each time step. The three types of gates in an
LSTM: The forget gate, ft, the input gate, it, and the output gate, ot. The forget gate
determines what not to retain from the previous cell state based on certain criteria,
the input gate decides what new information should be added into memory cells,
and the output gate generates the final output based on the updated cell state and
hidden state. More details can be found in [130, 131]. This design allows LSTMs to
better remember past events for longer periods than regular RNNs without suffering
from vanishing gradients problems.
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FIGURE 6.5: Schema of the network employed to extract the muonic signal. The different
blocks, Dense and LSTM, can be observed, as well as the inputs and the output. In the
Dense block, p represents the number of features used. See text for more details about the
functioning of the model. Adapted from [131].

6.4 Temporal shape prediction of the muonic signal

ML methods, described in the previous paragraphs, have been employed in Auger
to gain more knowledge and extract relevant information from the SD. The Col-
laboration published results [53, 134] on the capabilities of Deep Learning models
to estimate Xmax and Nµ from air shower events collected by the SD, allowing in
this way the possibility to perform composition studies using the surface detector of
Auger. The use of the SD could dramatically increase the statistics to perform mass
composition analysis. In particular, the model presented in [131, 134] was designed
to learn how to extract the time-trace of muons from the total signal recorded in each
SD station, since the latter is the convolution of all the particles entering the station
and, thus, it is not possible to directly obtain the number of muons at the ground
using only WCDs.

These models are trained on simulations of air showers as well as of the detector.
However, as seen in the previous chapters, the simulation framework does not take
into account aging effects, that are directly affecting the signals time-trace in data.
The datasets used to train the networks have a great importance, since these algo-
rithms require a very good matching between data and simulations. In this work we
used a similar approach of [131, 134], applying changes to the previous architecture,
and we used the new SD time-dependent simulations to have a better description
of the SD, assessing the impact and possible improvements to the models when the
long term perfomances of the array are included.
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6.4.1 Architecture

The architecture of the DNN designed for the extraction of the muon signal from
the total one measured in each station, is based on two main components: An LSTM
block and a Dense block. The first contains three LSTM networks connected to each
other and used to learn the temporal pattern of the trace, while the latter is used to
compute the parameters to initialize the LSTM with, based on the chosen observ-
ables related to the shower and the station. More specifically, the distance of the sta-
tion to the reconstructed shower core, r, and the secant of the reconstructed arrival
angle of the shower, secθ, are used to inform the network; These observables have
been seen to improve the perfomance of the network [131], since they contain in-
formation about the attenuation in the atmosphere and this can help the network to
predict better the muonic component. The architecture has been modified by adding
the azimuth angle of the station on the shower plane, ζ, to the input observables of
the Dense block. This choice of adding a new variable arises from the fact that signal
shapes are influenced by the station’s position on the shower plane, as seen for the
risetime Chapter 2 and for the twin showers Chapter 4. Indeed, at different azimuth
angles, the traversed atmosphere of the secondary particles is different, producing
asymmetries in the traces.

The output of the Dense Block is used as one of the inputs of the LSTM block.
The second, and main, input is the first 200 bins (S1, ..., S200) of the trace of the PMT-
averaged signal recorded in the station. The lenght of the sequence has been chosen
to reduce the input parameters and it contains the most relevant information of the
signal. The vast majority of events contains 99% of their muonic signal in that times-
pan [131]. The LSTM block produces 70, 32 and 32 sequences of 200 elements each in
the first, second and last layer, respectively. The last sequence is then passed through
a final Dense layer, giving the final output that represents the 200 bins of the muonic
time trace. The schema of the network is displayed in Fig. 6.5. The architecture’s
design was obtained through an optimization process based on the use of genetic
algorithms by the work in [135].

An almost identical architecture has been used to train the model using aging
simulations. In that case, in order to inform the network about this additional fea-
ture, we included the age of the station in the inputs fed to the Dense block, since
this observable correlates with the loss of light in the tanks. For the two models,
the number of trainable parameters amount to 87 276 and 87 340, for the standard
network and the network including the station’s age, respectively.

6.4.2 Data selection

The training of the network requires high-quality simulated traces, thus cuts were
applied to simulations. The simulations library is the one described in Chapter 4,
consisting of four different primaries with θ < 65◦ and energies between 1018.5 eV
and 1020.2 eV, reconstructed in two different simulations configurations (with and
without the aging) for a total amount of ≈ 900000 reconstructed showers. Part of
the selection is done at the event-level, by requiring a 6T5 trigger and a converged
fit for the LDF. At the station-level, the signal obtained through the evaluation of
the fitted LDF at the station distance must be greater than 5 VEM: LDF(rstation) >
5 VEM. Compared to the previous analysis [131], this cut excludes stations with up-
ward fluctuations on their measured signal. In this work, stations with signs of High
Gain (HG) channel saturation were also included in the selection, since in these cases
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FIGURE 6.6: Stations distributions as a function of the distance to the shower core. Stations
with different saturations are shown with different colors: No saturation (blue), HG sat.
(red) and LG sat. (gray).

Aging SD Standard SD

Quality cuts Signals ε (%) Signals ε (%)

Total traces 6 471 059 100.00 3 312 985 100.00
LDF fit 6 468 509 99.96 3 312 069 99.97
LDF(rstation) > 5 VEM 5 686 455 87.88 2 883 164 87.02
No LG saturation 5 472 296 84.57 2 772 814 83.70
6T5 trigger 5 444 252 84.13 2 761 088 83.34

TABLE 6.1: Number of simulated traces after each selection cut, together with the cut effi-
ciency.

the total trace is recovered from the Low Gain channel. The inclusion of HG satu-
rated traces enables the analysis to explore a region closer to the shower core and
increase significantly the statistics for r < 1000 m, as it can be seen in the distri-
bution of the station as a function of the distance to the shower core, Fig. 6.6, for
different types of saturation: Non-saturated traces’ distribution (blue) peaks with
120 000 entries around 1700 m and the number decrease to ≈40 000 at 1000 m; traces
with saturated high channel (red) show a bell-shaped distribution with mean around
600 m and represent the 20% of the total number of signals. Stations showing signals
saturated in the Low-Gain channel (gray), being around ≈ 3% of the total number,
are excluded from the selection.

The cuts affect differently the stations’ distributions: For example, removing sta-
tions with LDF(rstation) < 5 VEM impacts more stations that are far from the shower
core, as expected, since their signals are smaller. This effect is shown in Fig. 6.7,
where it can be seen that the LDF cut (displayed as a continuous line) reduces the se-
lection efficiency after 1300 m, being in the range 90− 70% for 1500 m < r < 2500 m
and dropping steeply to 0 after that. It can also be noticed that this cut has a stronger
effect on more inclined showers. In the same figure, the effect of the removal of LG
saturated stations (displayed with filled symbols) is present uniquely below 500 m
and affects in a similar way the showers with different zenith angles. The selection
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efficiency of the mentioned cuts and the absolute numbers of the traces are shown
in Table 6.2, where it is shown that the available traces amount at ≈5.5 millions and
2.8 millions for agingSD and standard simulations.

When looking at the efficiency of all the cuts combined as a function of the fea-
tures of the primary particle, Fig. 6.8, it can be noticed how the selection affects more
showers with lower energies and larger zenith angles, with the number of survived
traces being below ≈ 70% for θMC > 50◦ and EMC < 10 EeV. In this work we ex-
tended the zenith angle range up to θMC = 65◦.

6.4.3 Training

The selected simulated traces are split randomly in three datasets, in order to train
the network and monitor the quality of the training process. The first split creates
two subsamples, training-validation and test, with ratios 80%− 20% in order to have
the majority of samples for the training. The first subsample is further divide, again
with the 80%− 20% rule, in train and validation sets. When randomly separating
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Simulations subsamples

Dataset Aging SD Standard SD

Train 3 483 054 1 766 406
Validation 870 787 441 612
Test 1 090 411 553 070

TABLE 6.2: Number of simulated traces in each subsamples for the two simulation modes.
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FIGURE 6.9: Loss as a function of the number of epochs.

the stations in the samples, the split was performed at the event-level, avoiding that
stations belonging to the same event were separated in the samples. In this way, in
the test set after the training, events mantained their integrity, station-wise. While
performing the split, specific attention has been given to avoid any distortion in the
distribution of the traces between the samples. Each simulations dataset, standard
and agingSD, have been separed in these way, as shown in Table 6.2: The training
sets have, in total ≈ 3.5 millions aging traces and ≈ 1.8 millions standard traces,
while the test sets range around 1 million and 550 000 traces in the two cases.

Before feeding the samples to the network, some preprocessing of the samples
is necessary. To be more specific, all the observables used as inputs to the Dense
block have been normalized in order to have, for each feature, a distribution with
mean equals to 0 and standard deviation equals to 1. The traces have been rescaled
too, with each trace divided by its maximum bin value and obtaining, in this way,
traces comprised between 0 and 1. The scaling factor used for every single trace is
then re-used to scale back their relative output, giving the predicted trace. This step
helps the gradient descent algorithm to reach the minimum faster and can also help,
when the network is applied to data, to minimize the differences between different
calibrations.

The network is trained by comparing the predicted muon signal with the true
one, present in simulations. The loss function for each trace is defined as the mean
square error between the true bin values at time t, Sµ

t , and the predicted ones, repre-

sented with the symbol Ŝµ
t , for the muon trace, as follows:

J =
1

200

200

∑
t=1

(
Ŝµ

t − Sµ
t

)2
(6.4)
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FIGURE 6.10: Top: Predicted muon signal trace (blue dots) from the total trace (gray line)
and compared to the original muon trace (blue line). Bottom: Same comparison but for the
electromagnetic component (red). The simulated trace is obtained from a station at r =
1400 m from the core of a shower with log10(EMC/eV) = 19.95 and θMC = 34◦.

The training has been performed thanks to CECI [136], on the cluster Dragon2,
using a NVidia Tesla V100 GPU. We used 150 epochs with 512 batches; For the hy-
perparameters we chose a fixed learning rate of 10−3 and the ADAM optimizer. The
standard training consisted in training the network using standard simulations and
not including the stations’ age in the input features and lasted around 2.6 h, while the
aging SD training, including the stations’ age and using the aging simulations, lasted
around 6.8 h. The trend of the loss as a function of the epochs for the two train-
ings is displayed in Fig. 6.9, showing the loss decreasing as the number of epochs
increases. The similar behaviour and absolute values of the training and validation
loss confirm that the network does not show signs of over(under)fitting. The pre-
processing of data was implemented in Python3.9 [137] (using the libraries numpy,
scipy and pandas) and ROOT [138], while the network was built and trained using
PyTorch1.13.1 [139].

6.5 Performance

An example of a predicted muon trace can be seen in Fig. 6.10, top panel: the contin-
uous line shows the true muon trace, while the blue dots are the predictions in each
time bin, while the total signal is displayed in light gray. Uncertainties are defined
as the errors in the bin and the total lenght trace has been shortened to display bet-
ter the results. It can be noticed that the trace is well reproduced, with the majority
of the muon signal being properly reconstructed. Since the electromagnetic and the
muonic components are the main contributions to the total signal, the electromag-
netic trace can be obtained as a difference between the total and the muonic signal,
shown in Fig. 6.10, bottom panel, in red.

To evaluate the perfomance of the network, the integrated muon signal, defined
as Sµ = ∑200

t=1 Sµ
t , is used. This observables is related to the number of muons that

reach the ground [11] and, because of this, convey a great importante for mass com-
position studies.
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FIGURE 6.11: Perfomances of the standard training on the standard set. Bias (left) and res-
olution (right) of predicted muon signal as a function of the total signal for different pri-
maries. Standard test set predicted with standard training.
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FIGURE 6.12: Bias of predicted muon signals as a function of the primary energy (left) and
the zenith angle (right). Standard training on standard set.
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FIGURE 6.13: Resolution of predicted muon signals as a function of the primary energy
(left) and the zenith angle (right). Standard training on standard set.

In this part of the study, we present the results obtained on the standard test set
when the muon traces are reconstructed using the standard training. In the next para-
graphs, the aging effect and the aging SD training will be discussed. The predicted,
Sµ

DNN , and the true muon signal, Sµ
MC, are compared to evaluate the bias and res-

olution of the predictions. The results are shown in Fig. 6.11, where it can be seen
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FIGURE 6.14: Bias of the standard set for two training configurations. More details in the
text.

that the bias for all the primaries as a function of the total signal, left plot, is between
−5% and 5%. The maximum difference between primaries is ≈ 6%, with heavier
ones having a negative bias at larger energies, while the lighter ones having a pos-
itive one. It becomes smaller from small signals to higher signals, up to ≈ 10 VEM,
where the biases for the primaries start to deviate between each other, with heavier
elements being stable around 0 and −2% and lighter elements slightly increasing
towards positive biases. The resolution, instead, show a similar trend for all the
primaries, improving from ≈ 27% at 3 VEM to ≈ 6% at 100 VEM, with an almost
constant difference of around 4% between light and heavy nuclei. These results are
in agreement with the previous study [140], as it can be appreciated more from the
figures in Figs. 6.12 and 6.13, where bias and resolution are analyzed as a function
of the energy and arrival direction of the primary particle.

6.5.1 Tests on the capability of the model

To investigate further the possibilities offered by the DNN (comparing also the effect
of the new changes) and test its limits, several crosschecks were performed.

Firstly, we removed the azimuth angle information during the training, to have
a more direct comparison with previous results. As it can be seen in Fig. 6.14, left,
the bias increases at the highest signals, especially for light nuclei. The stations with
higher signals are the one closer to the shower core and that often show signs of
saturation in the High Gain channel. This effect was not present in the previous
analysis since these stations were excluded from the sample. The inclusion of the
azimuth angle of the station in the shower plane, ζ, mitigates the increase in the
bias, as shown in Fig. 6.11, left.

The network was then trained without the station’s distance to the shower axis,
r, and ζ, to verify the limits at which it is possible to extract a reliable muon trace.
The results are shown in Fig. 6.14, right, in which the bias gets worse as the total
signal increases, reaching the level of −13% in the case of iron. The exclusion of
important information about the shower and the station leads to a difficulty for the
network to predict in an accurate way the muonic time signal.

An additional test was performed to assess if the network is able to predict out-
side of the phase-space of the training dataset. In order to do that, the network was
trained (this time including all the relevant station and shower information) only
on protons and the predictions were performed on irons. The results are shown
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FIGURE 6.15: Perfomance of the DNN trained using only protons from the standard set.
Left: Bias for proton and iron. Right: Resolution for proton and iron. More details in the
text.

in Fig. 6.15: Left plot shows that irons can be reconstructed with a bias of ≈ −5%
up to signals of 100 VEM, while at the highest signals reaches level of -9%. The reso-
lution, instead, shows no significant changes compared to the training using all the
primaries. This last crosscheck were performed to verify that the network’s predic-
tions are not introducing extreme biases due to the training, since the application of
the network to data will face the well-known discrepancy between data and simula-
tions regarding the number of muons.

6.6 Aging effects

The loss of light in the WCDs can cause a change in the time trace of the signal over
the years, as previously seen. Since the DNN is trained on simulated traces, when
predicting the muon signal on data this effect could introduce a bias. Using the sim-
ulations library built on the aging model and validated on high-level observables,
the network was trained with the two different modes, as explained before. For the
predictions, three different datasets were obtained: Standard set and aging set when
the DNN was trained on standard simulated traces and the standard and agingSD test
sets were used for the predictions, named standardstd and agingSDstd respectively,
an aging SD set when the training was perfomed using simulations including the ag-
ing and informing the network about the age of the station, named agingSDage. The
first set, standardstd, is used as a benchmark to assess the perfomance of the DNN in
the case of no aging, the second one, agingSDstd, is utilized to study the bias intro-
duce in the network when aging appears in the traces and the last one, agingSDage,
serves as a validation of the method.

While the bias displays a constant behaviour over the years for standardstd, grey
filled point in Fig. 6.16(c) for both proton and iron, as expected, the agingSDstd shows
an increase of 2% bias over time, for proton (red) and iron (blue) represented with
open symbols. The addition of the knowledge about the time spent on the field by
the station, is able to remove this dependence, as observed for agingSDage (shown
with filled red and blue points in Fig. 6.16(c)). However, a small worsening of the
bias is observed for protons, coming especially from stations with signals lower than
30 VEM, Fig. 6.16(b), while for Stot > 100 VEM, Fig. 6.16(b), the aging training miti-
gates well the aging effects. The cause of the observed worsening could be related
to the added complexity of the array introduced in the model, but this is not yet
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FIGURE 6.16: Bias of predicted muon signals for different total signal’s thresholds as a
function of time. Several samples and trainings are shown. See text for more details.

understood. The resolution of the predicted muon signals as a function of time is
displayed in Fig. 6.17 and shows that the aging effects have a small impact (less than
1%), in both signal ranges (larger than 100 VEM and less than 30 VEM). The same
behaviour of bias and resolution is observed when studying these two variables as
a function of the stations’ age, as shown in Appendix G.

The agingSDage bias and resolution as functions of the total signal are compatible
with the ones obtained for the other two datasets, as shown in Fig. 6.18, with the
additional property that the time-dependency has been removed. Thus, this model
improve upon predicting the muon traces from data.

Another dependency that is also possible to study, is the behaviour of the bias in
the muon signal prediction as a function of the distance to shower core, obtained by
dividing the true muonic signal by the predicted one. For the small reconstructed
energy bin considered in Fig. 6.19, 18.97 < log10(E/eV) < 19.15, the bias is below
5% for 500 m < rrec < 1500 m in the case of vertical (top left) and inclined shower
(top right), where rrec is the distance of the station to the reconstructed shower core.
Stations at distances below 500 m are not considered, since that region is too close
to the core and other effects could distort the prediction. The bottom left and right
plots in Fig. 6.19 show the bias as a function of the distance for the electromagnetic
signal, where the electromagnetic signal is calculated as the difference between the
total and the muonic signals.

When considering the distance of the stations to the true shower axis, the effect
of the core reconstruction uncertainty can be extracted. Comparing the trend of true
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FIGURE 6.17: Resolution of predicted muon signals for different total signal’s thresholds as
a function of time. Several samples and trainings are shown. See text for more details.
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FIGURE 6.18: Bias and resolution of predicted muon signals as a function of the total sig-
nal for standard simulations, aging simulations and two different types of training. More
details can be found in the text.

muon signal over the true distance (Sµ
MC(rMC)) with the predicted one as a function

of the reconstructed distance (Sµ
DNN(rrec)), their ratio shows, in addition to the in-

trisic bias of the DNN model, the bias introduced by the core uncertainty. It can be
observed, in Fig. 6.20, that the total bias as a function of the distance is less than 10%
both for vertical and inclined events and for light and heavy nuclei.



6.6. Aging effects 117

 [m]rec r
200 400 600 800 1000 1200 1400

D
N

N
µ

/S
M

C
µ

 S

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

p

Fe

/eV) < 19.15
rec

(E
10

18.97 < log

 < 1.2θ1.0 < sec 

 [m]rec r
200 400 600 800 1000 1200 1400

D
N

N
µ

/S
M

C
µ

 S

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

p

Fe

/eV) < 19.15
rec

(E
10

18.97 < log

 < 2.4θ2.0 < sec 

 [m]rec r
200 400 600 800 1000 1200 1400

D
N

N
em

/S
M

C
em

 S

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

p

Fe

/eV) < 19.15
rec

(E
10

18.97 < log

 < 1.2θ1.0 < sec 

 [m]rec r
200 400 600 800 1000 1200 1400

D
N

N
em

/S
M

C
em

 S

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

p

Fe

/eV) < 19.15
rec

(E
10

18.97 < log

 < 2.4θ2.0 < sec 

FIGURE 6.19: Bias as a function of the distance of the station to the reconstructed shower
core.
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FIGURE 6.20: Bias as a function of the distance of the station to the reconstructed or true
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6.7 Reconstructing the muon signal from data

Having assessed the perfomances of the network and the effect caused in the re-
constructed muon signal due to the aging, the DNN model was applied to data
to extract the muonic contribution from the total measured signals. The ICRC2019
datasets, produced with Offline v3r99p2, for SD and golden hybrid events were
used, to predict Sµ

DNN for a total number of traces equals to 1284464 (SD) and 18683
(Hybrid). These traces were selected with the same selection criteria employed for
simulations, as described in Section 6.4.2.

The muon lateral distribution for each event, i.e. the muon signals Sµ
DNN of the

candidate stations as a function of the distance to the shower axis r, was then ob-
tained by grouping together the traces belonging to the same event. An example can
be seen in Fig. 6.21 for an almost vertical shower (θSD ≈ 15◦) with ESD ≈ 13 EeV,
where the black dots show the predicted muon signal for the candidate stations,
while the gray open symbols represent the total signals measured with the SD,
shown for comparison. The lateral distribution of muons for each event is fitted
with a linear function in log-log scale, red line in Fig. 6.21, and, the muon signal,
Sµ

DNN is obtained as a fitted parameter of the function:

Sµ
r = Sµ

ref

(
r

rref

)α

(6.5)

The fit was perfomed at different distances, rref, to obtain the muon signal for dif-
ferent r. The fit was performed on 283 036 SD events, with a ≈ 5% reduction to
268 293 events in the final stage, after applying quality cuts on the fit results: Mini-
mum 3 stations have to be present in the reconstruction, the convergence of the fit is
required and the parameter α must be negative and > −5. Fit results with negative
or extremely high muon signals (> 10000 VEM) were discarded. For the golden hy-
brid events, the reconstructed events amounted to 3175 after cuts (3262 before cuts,
2.7% rejection).

The same procedure has been applied to the predicted signals in the test sets of
simulations. The precaution of performing the splitting in train-validation-test sets
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FIGURE 6.22: Muon signal as a function of the energy for different distances to the shower
axis (800, 1000 and 1200 m), and different zenith ranges.

at the event level, indeed, allowed to preserve the integrity of the events and fit an
LDF to the muon signals.

6.7.1 Energy dependence

The parametrization of the lateral profile provide a robust estimation of the muon
signal for each event, allowing a more accurate study of the muon component in air
showers. In this section, the analysis was performed using the SD dataset, in order
to have a large statistics. The muon signal increases with the energy and with the
mass of the primary particle, as modeled in Section 1.1.3, Eq. (1.7). This behaviour is
reproduced in the results shown in Fig. 6.22, where the logarithm of Sµ is displayed
as a function of the logarithm of the reconstructed energy ESD for proton (red), iron
(blue) and data (black) for different zenith angles (from vertical, left, to inclined,
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FIGURE 6.23: β parameter as a function of the zenith angle for data and simulations, in-
cluding AugerMix; three different distances.

right) and different distances to the shower core (800, 1000, 1200 m from top to bot-
tom). Distances closer or further from the core are avoided in this preliminary study,
to avoid unwanted biases arising from the simplified LDF fit procedure and to allow
that the obtained signals is between two candidate stations. The separation between
proton and iron at higher zenith angles becomes smaller since, in this case, S(1000)
is mainly muonic, thus ESD is based on Sµ, which creates a degeneracy. For vertical
shower, ESD is related to the sum of Eem and Eµ and thus depends more on Eem.

It can already be noticed in the figure, that in each distance ranges and for dif-
ferent showers’ inclinations, the slope for data is different compared to simulations.
The slope, β, is another important parameter in the description of the development
of the hadronic shower, as explained in Section 1.1.3, as it relates with the fraction
of charged pions over the total, or, more in general, the fraction of hadrons with a
sufficient energy to re-interact rather than decay [141]. Due to this, it is sensitive to
the hadronic interactions involved in the shower development. The trend of β as
a function of the zenith angle, specifically secθ, Fig. 6.23, shows a dependency that
is more prominent for data compared to simulations of pure primaries. When the
information about the shower and the mass composition, AugerMix, are included in
simulations, the slopes agree more at large zenith angles. For more vertical showers,
however, β still shows a disagreement. The similar trend with the AugerMix and
the difference with pure composition, is another indication through β of a mixed
composition through the data. This zenith angle dependency is not expected, since
the value of β for simulated muon signals as a function of the true energy of the
primary is mostly constant over θ at ≈ 0.9, as shown by the magenta line in the case
of β obtained at 1000 m. This points towards a bias that has to be investigated in
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more details. The higher value of β for reconstructed proton and iron compared to
pure simulations can also be associated with an energy bias of the SD energy, since
it does not appear when Sµ is shown as a function of the true energy. As the ESD is
corrected for the zenith angle through the attenuation curve described in Section 1.3,
a possible different attenuation in simulations with respect to data can also produce
the described effect.

Another property of β that can be observed from this study is the dependence
on the distance to the shower axis, with β decreasing further from the shower axis,
due to the effect on muons at the different distances by the different phases of the
shower development [141].

6.7.2 Sµ and Xmax

The simultaneous study of the two mass sensitive variables [55, 60, 61], Nµ and Xmax,
has provided valuable information regarding the modeling of the shower develop-
ment, in particular about the hadronic interactions, revealing a muon deficit in sim-
ulations, described in 1.1.3. The previous mentioned measurements were obtained
with the use of very inclined showers, where the muonic component is dominant.
Such a deficit has also been observed for the first time in vertical shower [131] by
exploiting the capabilities of the DNN to extract the muon trace from the total trace
and use Sµ as a proxy for the muon number. The DNN model that has been shown
in this Chapter was based on a similar approach.

With the use of the golden hybrids events, the relation between Sµ and Xmax can
be studied, as it can be seen seen in the left plots of Fig. 6.24 and Fig. 6.25 (vertical,
θ < 34◦ and inclined, 54◦ < θ < 65◦, respectively) at different distances for showers
with energies 19 < log10(E/eV) < 19.05. In both figures, the statistical uncertainties
are displayed as lines, while the errors represented by square brackets on the muon
signal from data show the systematics due to the energy reconstruction, since a bias
is present in the reconstructed SD energy, as shown in the previous chapter. In order
to evaluate the systematics arising from the energy assignment, the uncertainties
are estimated by evaluating the muon signals for energy ranges ≈ ±10% around
the energy bin under study: the upper error of the muon signal is obtained in the
energy bin 19.05 < log10(E/eV) < 19.1, while the lower error by looking at the
muon signal in the energy bin 18.95 < log10(E/eV) < 19. Systematic uncertainties
on Xmax are not shown, but are in the order of ≈ 6 g cm−2 [50]. However, systematic
uncertainties on Sµ Xmax need to be estimated in a more complete study.

The predictions for simulations are shown with filled colored symbols, while the
AugerMix is represented with open symbols. The muon deficit has been verified, in
particular for vertical showers, where is in agreement with the previous results [131].
It can be seen that the mean value of Xmax is different between data and AugerMix.
This could be due to a bias in the SD energy related to the muon deficit, since show-
ers for data are selected in the chosen energy bin using their SD reconstructed energy,
while simulations are selected based on their Monte Carlo energy.

Since the statistics of golden hybrids is limited, the dataset was enlarged with
the values of the predicted Xmax from SD events, obtained by another analysis,
also based on Deep Learning [53], thus the observable is called here as XDNN

max
1.

In this way, the total dataset in which both XDNN
max and Sµ

DNN are present, contains
48 751 events, a factor larger than ten compared to the hybrid dataset. This increase
strongly reduces the statistical uncertainties, as it can be noticed in both Fig. 6.24

1Courtesy of Jonas Glombitza
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and Fig. 6.25, right plots. It also changes the mean value of the shower maximum
for vertical event, shifting it by ≈ 20 g/cm2, from ≈ 747 g/cm2 to ≈ 767 g/cm2, for
golden hybrid events and SD events, respectively. Also in this case, the muon deficit
is present, confirming with a higher statistics what was previously found.

This difference of ≈ 20 g/cm2 in Xmax between golden hybrid events and SD
events in the case of vertical events provides a better agreement with the value ob-
tained from the AugerMix, but the cause is not yet understood. A similar shift of
≈ 20 g/cm2 is observed between vertical and inclined golden hybrid events.

The results shown here are preliminary, assessing the capabilities of this study.
Future studies could address the biases observed in this work and perform more de-
tailed analysis using these new datasets enriched by two mass-sensitive observables.
Moreover, a quantification of the observed discrepancy can be made.
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FIGURE 6.24: Vertical events. Sµ as a function of Xmax for hybrid events (left) and SD
events (right) at different distances (800, 1000, 1200 from top to bottom). Systematic uncer-
tainties on Xmax for the golden hybrid events are in the order of ≈ 6 g cm−2 [50]. Data are
shown in black, AugerMix with open symbols and pure primaries simulations are colored.
See text for more details.
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FIGURE 6.25: Inclined events. Sµ as a function of Xmax for hybrid events (left) and SD
events (right) at different distances (800, 1000, 1200 from top to bottom). Systematic uncer-
tainties on Xmax for the golden hybrid events are in the order of ≈ 6 g cm−2 [50]. Data are
shown in black, AugerMix with open symbols and pure primaries simulations are colored.
See text for more details.
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Summary and conclusions
UHECRs are the most energetic particles known today in the Universe, and the

study of their properties can shed light on some of the mysteries revolving around
their sources, the production and acceleration mechanisms and the propagation
through magnetic fields during their journey to Earth. The Pierre Auger Observa-
tory is the largest cosmic ray observatory in the world and has been collecting data
for the last 20 years.

Due to this long operation period, an important task consists of monitoring the
array’s performance to ensure high-quality data collection. Indeed, the measured
signal in the tanks has been found to decrease over time. In this thesis, the long-
term performance of the SD have been studied, observing that the light time-decay
of the pulse shape histograms of vertical muons from low-energetic showers used
to calibrate the stations, τ, decreases by about 11 ns in each station over 15 years,
with the stations grouping in two different populations (Chapter 2). A similar result
was obtained for the Area over Peak, a variable used to monitor the status of the
stations and obtained from the calibration histograms, with a decrease of ∆A/P ≈
0.35 [25 ns] over the same period.

With the use of dedicated GEANT4 detector simulations, the cause of this decrease
was investigated by varying the optical properties of the tanks, namely the water
absorption and the liner reflectivity. A decrease of 1.7% over the years of the latter
has been found to be able to describe the signal decrease, with the distribution of
stations at each year being bimodal. The two populations of reflectivity observed
over the array were found to be related to the time of deployment. A deeper study
of the technical information of the liner producers could reveal some relations with
this pattern. The reflectivities for all the stations over the years were modeled by
matching simulated shape histograms with those obtained from data. As a blind test
of the model, A/P was reproduced for all the stations, with a small A/P difference
of 0.1 [25 ns] between data and simulations.

For the first time in Auger, a more realistic time-dependent simulation of the
SD has been realized using the aging model. A new Module, called SdEvolution,
was developed in Offline to take into account the aging effects in simulations by
modifying the reflectivity of the simulated tanks, accordingly with the time of the
simulated events. The calibration constants used in simulations were also modified
accordingly to reproduce the time response of the tanks correctly. A new simulations
library, for four different primaries in 18.5 < log10(E/eV) < 20.2 and with θ < 65◦,
was produced. The roll-out of the deployment was also included as a temporal de-
pendency. Simulations were obtained in two configurations, standard and agingSD,
in order to assess the impact of the aging.

The signal loss affected the number of triggered stations in data, displaying a
continuous decrease over the years and the same trend was reproduced in simula-
tions that account for aging. A discrepancy in the absolute values was observed, and
a deeper study of the trigger effects due to aging could shine some light on the mat-
ter. A worsening of the energy resolution by about 5% in 15 years was predicted as
a consequence of the loss of triggered stations over the years in data. With the aging
simulations, the aging effect on the detector resolution was independently assessed
and found in agreement with the prediction, between 2 and 4%. The detector energy
resolution in aging simulations itself was found to be in better agreement with the
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measurement from data compared to the standard simulations, as well as the total
resolution. The possibility to separately obtain the total and the detector resolution
allowed the study of the shower-to-shower fluctuations in simulations. They show
a decrease as a function of the primary energy between 1% and 3% per decade. The
absence of significant differences in the shower-to-shower fluctuations between the
two simulation configurations also proved the goodness of the procedure. While the
resolution worsened due to the aging, the mean reconstructed energy showed sub-
per cent changes over the years. This is another proof of the robustness of the Auger
calibration using atmospheric muons.

The change of τ consequently also affects the risetime, the time for the measured
PMT trace to go from 10 to 50% of its integrated charge, with an observed decrease
by about 15 ns in 15 years for data. This observable is related to the muon content
of the shower and thus is used to infer the primary mass event-by-event with the
"∆ method". This method was applied to both data and simulations, showing that
the decrease of ∆ is reproduced with the aging simulations. The effect of the use of
simulations describing the aging or not on the interpretation of ∆ in terms of 〈ln A〉
was studied, showing that without the aging corrections, the method would have
predicted a heavier composition compared to the one that considers the decrease of
the risetime over the years, especially at lower energies. It was also shown that the
decrease is not energy-dependent. At the same time, a structure with breaks was
observed for the evolution as a function of the energy, as reported in other analyses.
These features are related to a change in the mass composition of data, going from
Oxygen to Iron, with a transition region that starts at ≈1019 eV up to ≈1019.6 eV.

Having a set of simulations that describes better the detector, a Deep Learning
model was developed based on previous works to extract the muon trace from the
total trace in candidate stations. Modifications of the DNN were applied to im-
prove the performance, including for example the azimuth angle of the stations, and
inform the network regarding the signal’s decrease over time, introducing the sta-
tion’s age as an input. The dataset was enlarged by including events with saturated
high-gain channels. The performance agreed with previous works, showing, in ad-
dition, that a time-dependent bias can be removed with the age information. The
extraction of the muon signal was then perfomed on data. The muon shower esti-
mator at 1000 m was obtained event-by-event from the muons lateral distribution.
This provided the possibility to study the evolution of the muon signal as a function
of the energy, with the slope, β, of the trend pointing towards a mix composition.
The study of β as a function of the zenith angle, indeed, confirmed an agreement
with the AugerMix, but at the same time showed a bias for vertical showers, requir-
ing a deeper study of the features underneath. The muon signal for each event was
analyzed in conjunction with the shower maximum, Xmax, obtained from golden hy-
brid events and from another method that predicts XDNN

max from the SD signals using
DNNs. The presence of the muon deficit has been observed with both dataset for
vertical and inclined showers, with a 10-fold increase in statistics when the muons
signals are combined with the XDNN

max , strongly reducing the statistical uncertainties.
This work open the possibility to combine Xmax and the muon signal Sµ to perform
composition studies with a significantly larger dataset.

The next step of this analysis will address in more details the systematic un-
certainties of the muon signal predictions, also comparing the present results with
simulations produced with different hadronic models. The systematics due to the
DNN model would be addressed too.

The perfomance of the neural network could also be improved by including in
the training of the DNN the information relative to the τ observed in each station
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at each time, since this is directly related to the signal loss in the tank. The age of
the station, indeed, provide information about the aging but does not distinguish
between the two different tank populations observed in the field.

Future studies based on the work presented in this thesis could try to understand
and explain the discrepancy observed in simulations between τ and A/P, with a
focus on the effects of the electronics in calibration and shape histograms.

Last but not least, a measurement of the shower-to-shower fluctuations from data
could be performed and compared to the results obtained in this work.
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Appendix A

CIC fitted polynomial coefficients

y0 y1 y2

a 0.952 0.06 -0.37
b -1.64 -0.42 0.09
c -0.9 -0.04 1.3

TABLE A.1: Fitted parameters for the attenuation curve in three different energy ranges [1].
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Appendix B

Example of a bad station with an
erratic behaviour
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FIGURE B.1: τ over time for station with Id = 1132.

 t [ns]
0 50 100 150 200 250 300 350 400 450

 a
.u

.

4−10

3−10

2−10

1−10

1

Station 1132; PMTs combined

 1.8 ns± = 59.0 τ1 event in 2011; 

 79.1 ns± = 111.6 τ1 event in 2016; 

(a) Comparison of events in 2011 and 2016

 t [ns]
0 50 100 150 200 250 300 350 400 450

 a
.u

.

4−10

3−10

2−10

1−10

1

1 event for station 1132; year 2016

PMTs combined

PMT1

PMT2

PMT3

(b) 1 event in 2016, all PMTs
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Appendix C

Tank populations

C.1 Distributions of the two populations over time
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FIGURE C.1: Time decay constant distributions for different tank ages (year of deploy-
ment).
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FIGURE C.2: A/P distributions for different tank ages (year of deployment).
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FIGURE C.3: Best match liner reflectivity distributions for different tank ages (year of de-
ployment).
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C.2 Distributions of the two populations
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FIGURE C.4: Spatial distributions of the time decay constant for different ages of the tanks.
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FIGURE C.5: Spatial distributions of the liner reflectivity for different ages of the tanks.
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C.3 Evolution over time of the three liner categories
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FIGURE C.6: Evolution in the array over the years for the three station liner populations.
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Appendix D

Reconstructed fractions of
primaries as a function of MC
energy
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FIGURE D.1: Fractions of different nuclei as a function of the true Monte Carlo energy ob-
tained from the comparison between the rescaled distributions of each primary to the total
non-weighted reconstructed energy distribution.
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Appendix E

∆ method: Zenith angle
dependence of observed features
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FIGURE E.1: Normalized ∆ to proton simulations as a function of the reconstructed energy.
Data are fitted using a broken linear function. Data is split in different zenith angle groups.
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Appendix F

S1000 bias and resolution

F.1 S1000 bias over time
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FIGURE F.1: Left: S1000 bias between reconstructed energy and true Monte Carlo energy
as a function of the years for different primaries, weighted by the energy spectrum. Open
symbols: standard simulations. Filled symbols: agingSD simulations. Right: Change of the
S1000 bias over time for the two different simulation configurations of the array: an ideal
SD and a SD with a time-dependent behavior.
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FIGURE F.2: Energy resolution as a function of the Monte Carlo energy of the showers.
Left: Energy resolution due to detector effects. Right: Energy resolution due to aging ef-
fects.
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Appendix G

DNN perfomance: Bias and
resolution as a function of age
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FIGURE G.1: Bias of predicted muon signals for different total signal’s thresholds as a func-
tion of the station age. Several samples and trainings are shown. See text for more details.
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FIGURE G.2: Resolution of predicted muon signals for different total signal’s thresholds as
a function of the station age. Several samples and trainings are shown. See text for more
details.
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Appendix H

Twin showers

H.1 bootstrap.xml.in

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE bootstrap [
<!ENTITY standardSdIdealDetConfig SYSTEM ’@CONFIGDIR@/standardSdIdealDetConfig.xml’>
<!ENTITY standardSdSimModuleConfig SYSTEM ’@CONFIGDIR@/standardSdSimModuleConfig.xml’>
<!ENTITY standardSdRecModuleConfig SYSTEM ’@CONFIGDIR@/standardSdRecModuleConfig.xml’>

]>

<bootstrap
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’@SCHEMALOCATION@/bootstrap.xsd’
xmlns:xlink="http://www.auger.org/schema/types">

&standardSdIdealDetConfig;
&standardSdSimModuleConfig;
&standardSdRecModuleConfig;

<centralConfig>

<configLink
id = "ModuleSequence"
type = "XML"
xlink:href = "./ModuleSequence.xml"/>

<configLink
id = "EventFileReader"
type = "XML"
xlink:href = "./EventFileReader.xml"/>

<configLink
id = "EventGenerator"
type = "XML"
xlink:href = "./EventGenerator.xml"/>

<configLink
id = "SDenseStationListXMLManager"
type = "XML"
xlink:href = "./SDenseStationMultipleRing.xml"/>

</centralConfig>

<parameterOverrides>
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<configLink id="EventGenerator">
<EventGenerator>

<eventIdentifier>
<libraryIdentifier> s@LINER@ </libraryIdentifier>
</eventIdentifier>

</EventGenerator>
</configLink>

<configLink id="EventFileReader">
<EventFileReader>

<CORSIKA>
<InputFilenames> @INPUT_FILE@ </InputFilenames>
</CORSIKA>

</EventFileReader>
</configLink>

<configLink id="SModelsXMLManager">
<SModelsXMLManager>

<stationModels>
<liner id="1073B-tyvek">

<reflectivity>
<scaleY> @LINER@ </scaleY>
</reflectivity>

</liner>
<water id="standard">

<waterAbsorptionLength>
<scaleY unit="m"> 100 </scaleY>
</waterAbsorptionLength>

</water>
</stationModels>

</SModelsXMLManager>
</configLink>

<configLink id="SdSimCalibrationManager">
<SdSimCalibrationManager>

<simModule name="G4StationSimulatorOG">
<electronics isUUB="0">

<PMT id=’1’>
<peak> @PEAK_PMT1@ </peak>
<charge> @CHARGE_PMT1@ </charge>
</PMT>
<PMT id=’2’>
<peak> @PEAK_PMT2@ </peak>
<charge> @CHARGE_PMT2@ </charge>
</PMT>
<PMT id=’3’>
<peak> @PEAK_PMT3@ </peak>
<charge> @CHARGE_PMT3@ </charge>
</PMT>

</electronics>
</simModule>

</SdSimCalibrationManager>
</configLink>
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<configLink id="RandomEngineRegistry">
<RandomEngineRegistry>

<!-- The initial seed for the eDetector random engine
a seed of "0" means a random initialization -->

<DetectorSeed> 2 </DetectorSeed>

<!-- The initial seed for the ePhysics random engine
a seed of "0" means a random initialization -->

<PhysicsSeed> 2 </PhysicsSeed>

</RandomEngineRegistry>
</configLink>

<configLink id="G4StationSimulator">
<G4StationSimulator>

<fastMode> 1 </fastMode>
<fullTrackMode> 0 </fullTrackMode>

</G4StationSimulator>
</configLink>

<configLink id="RecDataWriter">
<RecDataWriter>

<!-- Save SD FADC-Traces above this energy -->
<minEnergyForTraces unit="EeV"> 0 </minEnergyForTraces>

<saveSDTraces> 2 </saveSDTraces>
<saveMCTraces> 1 </saveMCTraces>

<savePETimeDistribution> 0 </savePETimeDistribution>

<saveParticles> 1 </saveParticles>

<asciiOutput>
<outputFileMode> eNone </outputFileMode>
</asciiOutput>

<rootOutput>
<outputFileName> @OUTPUT_DIR@/@OUTPUT_DAT@.root </outputFileName>
<outputFileMode> eWrite </outputFileMode>
</rootOutput>

</RecDataWriter>
</configLink>

<configLink id="LDFFinderKG">
<LDFFinderKG>

<coreType> MC </coreType>
</LDFFinderKG>
</configLink>

</parameterOverrides>

</bootstrap>
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H.2 ModuleSequence.xml.in

<!DOCTYPE sequenceFile [
<!ENTITY % sd SYSTEM "@CONFIGDIR@/standardSdSequences.dtd">
%sd;
] >

<sequenceFile>

<enableTiming/>

<moduleControl>

<loop numTimes="unbounded" pushEventToStack="yes">

<module> EventFileReaderOG </module>

<loop numTimes="1" pushEventToStack="yes">

<module> EventGeneratorOG </module>

<!-- simulation of muon background -->
<module> SdAccidentalInjectorKG </module>
<module> G4StationSimulatorOG </module>

<!-- SdSimulation -->
<loop numTimes="unbounded" pushEventToStack="no">

<module> CachedShowerRegeneratorOG </module>
<module> G4StationSimulatorOG </module>

</loop>

<module> SdSimulationCalibrationFillerOG </module>
<module> SdPMTSimulatorOG </module>
<module> SdFilterFADCSimulatorMTU </module>
<module> SdBaselineSimulatorOG </module>
<module> TankTriggerSimulatorOG </module>
<module> TankGPSSimulatorOG </module>

<module> CentralTriggerSimulatorXb </module>
<module> CentralTriggerEventBuilderOG </module>
<module> EventBuilderOG </module>

<!-- SdSimReconstruction -->
<module> EventCheckerOG </module>
<module> SdCalibratorOG </module>
<module> SdSignalRecoveryKLT </module>
<module> SdMonteCarloEventSelectorOG </module>
<module> SdEventSelectorOG </module>
<module> SdPlaneFitOG </module>
<module> LDFFinderKG </module>
<try>

<module> ScintillatorLDFFinderKG </module>
</try>

<module> SdEventPosteriorSelectorOG </module>

<!-- export the ADST -->
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<module> RecDataWriterNG </module>

</loop>
</loop>

</moduleControl>

</sequenceFile>
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SdEvolution configuration files

I.1 bootstrap_evolution.xml.in

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE bootstrap [
<!ENTITY standardSdRealDetConfig SYSTEM ’@CONFIGDIR@/standardSdRealDetConfig.xml’>
<!ENTITY standardSdSimModuleConfig SYSTEM ’@CONFIGDIR@/standardSdSimModuleConfig.xml’>
<!ENTITY standardSdRecModuleConfig SYSTEM ’@CONFIGDIR@/standardSdRecModuleConfig.xml’>

]>

<bootstrap
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’@SCHEMALOCATION@/bootstrap.xsd’
xmlns:xlink="http://www.auger.org/schema/types">

&standardSdRealDetConfig;
&standardSdSimModuleConfig;
&standardSdRecModuleConfig;

<centralConfig>

<configLink
id = "ModuleSequence"
type = "XML"
xlink:href = "ModuleSequence_evolution.xml"/>

<configLink
id = "EventFileReader"
type = "XML"
xlink:href = "EventFileReader.xml"/>

<configLink
id = "EventGenerator"
type = "XML"
xlink:href = "EventGenerator.xml"/>

<!-- REAL Sd managers -->

<configLink
id = "SManagerRegister"
type = "XML"
xlink:href = "SManagerRegisterConfig_evolution.xml"/>

<configLink
id = "T2LifeROOTFileManager"
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type = "XML"
xlink:href = "T2LifeROOTFileManagerConfig.xml"/>

<configLink
id = "SStationListXMLManager"
type = "XML"
xlink:href = "SStationListIdealAltitude_evolution.xml"/>

<configLink
id = "SdEvolution"
type = "XML"
xlink:href = "@CONFIGDIR@/SdEvolutionBXL.xml"/>

</centralConfig>

<parameterOverrides>

<configLink id="EventFileReader">
<EventFileReader>
<CORSIKA>

<InputFilenames>
@INPUT_FILE@.part

</InputFilenames>
</CORSIKA>
</EventFileReader>

</configLink>

<configLink id="SModelsXMLManager">
<SModelsXMLManager>
<stationModels>

<liner id="1073B-tyvek">
<reflectivity>

<scaleY> 0.94 </scaleY>
</reflectivity>
</liner>

</stationModels>
</SModelsXMLManager>

</configLink>

<!-- for reproducibility -->
<configLink id="RandomEngineRegistry">

<RandomEngineRegistry>
<DetectorSeed> @DETECTOR_SEED@ </DetectorSeed>
<PhysicsSeed> 2000 </PhysicsSeed>
</RandomEngineRegistry>

</configLink>

<configLink id="SdEvolution">
<SdEvolution>
<LinerFile> ./sdEvolution.root </LinerFile>
</SdEvolution>

</configLink>

<configLink id="SdSimulationCalibrationFiller">
<SdSimulationCalibrationFiller>
<useParametrization> 1 </useParametrization>
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</SdSimulationCalibrationFiller>
</configLink>

<configLink id="EventGenerator">
<EventGenerator>

<coreRandomization>
<useRandomStation> 1 </useRandomStation>

</coreRandomization>

<timeInterval>

<timeOrdered>
<nEvents> @NEVENTS@ </nEvents>
<timeRandomized> 1 </timeRandomized>
</timeOrdered>

<startTime> 2005-01-01T00:00:00 </startTime>
<endTime> 2020-01-01T00:00:00 </endTime>

</timeInterval>

</EventGenerator>
</configLink>

<configLink id="RecDataWriter">
<RecDataWriter>
<minEnergyForTraces unit="EeV"> 0 </minEnergyForTraces>
<saveSDTraces> 2 </saveSDTraces>
<saveMCTraces> 1 </saveMCTraces>
<savePETimeDistribution> 1 </savePETimeDistribution>
<saveParticles> 1 </saveParticles>

<storeLidarData> 0 </storeLidarData>
<storeAllPixels> 0 </storeAllPixels>
<SaveRadio> 0 </SaveRadio>

<useWeatherStations> 0 </useWeatherStations>
<rootOutput>

<outputFileName> @OUTPUT_FILE_ADST@ </outputFileName>
<outputFileMode> eWrite </outputFileMode>

</rootOutput>
<asciiOutput>

<outputFileMode> eNone </outputFileMode>
</asciiOutput>
</RecDataWriter>

</configLink>

</parameterOverrides>

</bootstrap>

I.2 bootstrap_standard.xml.in



156 Appendix I. SdEvolution configuration files

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE bootstrap [
<!ENTITY standardSdRealDetConfig SYSTEM ’@CONFIGDIR@/standardSdRealDetConfig.xml’>
<!ENTITY standardSdSimModuleConfig SYSTEM ’@CONFIGDIR@/standardSdSimModuleConfig.xml’>
<!ENTITY standardSdRecModuleConfig SYSTEM ’@CONFIGDIR@/standardSdRecModuleConfig.xml’>

]>

<bootstrap
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’@SCHEMALOCATION@/bootstrap.xsd’
xmlns:xlink="http://www.auger.org/schema/types">

&standardSdRealDetConfig;
&standardSdSimModuleConfig;
&standardSdRecModuleConfig;

<centralConfig>

<configLink
id = "ModuleSequence"
type = "XML"
xlink:href = "ModuleSequence_standard.xml"/>

<configLink
id = "EventFileReader"
type = "XML"
xlink:href = "EventFileReader.xml"/>

<configLink
id = "EventGenerator"
type = "XML"
xlink:href = "EventGenerator.xml"/>

<!-- REAL Sd managers -->

<configLink
id = "SManagerRegister"
type = "XML"
xlink:href = "SManagerRegisterConfig_standard.xml"/>

<configLink
id = "SStationListXMLManager"
type = "XML"
xlink:href = "SStationListIdealAltitude_standard.xml"/>

</centralConfig>

<parameterOverrides>

<configLink id="EventFileReader">
<EventFileReader>
<CORSIKA>

<InputFilenames>
@INPUT_FILE@.part

</InputFilenames>



I.2. bootstrap_standard.xml.in 157

</CORSIKA>
</EventFileReader>

</configLink>

<configLink id="SModelsXMLManager">
<SModelsXMLManager>
<stationModels>

<liner id="1073B-tyvek">
<reflectivity>

<scaleY> 0.94 </scaleY>
</reflectivity>
</liner>

</stationModels>
</SModelsXMLManager>

</configLink>

<configLink id="G4StationSimulator">
<G4StationSimulator>
<fullTrackMode> 0 </fullTrackMode>
<fastMode> 1 </fastMode>
</G4StationSimulator>

</configLink>

<!-- for reproducibility -->
<configLink id="RandomEngineRegistry">

<RandomEngineRegistry>
<DetectorSeed> @DETECTOR_SEED@ </DetectorSeed>
<PhysicsSeed> 2000 </PhysicsSeed>
</RandomEngineRegistry>

</configLink>

<configLink id="SdSimulationCalibrationFiller">
<SdSimulationCalibrationFiller>
<useParametrization> 1 </useParametrization>
</SdSimulationCalibrationFiller>

</configLink>

<configLink id="EventGenerator">
<EventGenerator>

<coreRandomization>
<useRandomStation> 1 </useRandomStation>

</coreRandomization>

<timeInterval>

<timeOrdered>
<nEvents> @NEVENTS@ </nEvents>
<timeRandomized> 1 </timeRandomized>
</timeOrdered>

<startTime> 2005-01-01T00:00:00 </startTime>
<endTime> 2020-01-01T00:00:00 </endTime>

</timeInterval>

</EventGenerator>
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</configLink>

<!-- to limit ADST size -->
<configLink id="RecDataWriter">

<RecDataWriter>
<minEnergyForTraces unit="EeV"> 0 </minEnergyForTraces>
<saveSDTraces> 2 </saveSDTraces>
<saveMCTraces> 1 </saveMCTraces>
<savePETimeDistribution> 1 </savePETimeDistribution>
<saveParticles> 1 </saveParticles>

<storeLidarData> 0 </storeLidarData>
<storeAllPixels> 0 </storeAllPixels>
<SaveRadio> 0 </SaveRadio>

<useWeatherStations> 0 </useWeatherStations>
<rootOutput>

<outputFileName> @OUTPUT_FILE_ADST_STD@ </outputFileName>
<outputFileMode> eWrite </outputFileMode>

</rootOutput>
<asciiOutput>

<outputFileMode> eNone </outputFileMode>
</asciiOutput>
</RecDataWriter>

</configLink>

</parameterOverrides>

</bootstrap>

I.3 ModuleSequence_evolution.xml.in

<!DOCTYPE sequenceFile [
<!ENTITY % sd SYSTEM "@CONFIGDIR@/standardSdSequences.dtd">
%sd;
] >

<sequenceFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<enableTiming/>

<moduleControl>

<loop numTimes="unbounded" pushEventToStack="yes">

<module> EventFileReaderOG </module>
<loop numTimes="unbounded" pushEventToStack="yes">

<module> EventGeneratorOG </module>

<try>
<loop numTimes="unbounded" pushEventToStack="no">

<module> CachedShowerRegeneratorOG </module>
<module> SdEvolutionBXL </module>
<module> G4StationSimulatorOG </module>

</loop>
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<module> SdSimulationCalibrationFillerOG </module>
<module> SdPMTSimulatorOG </module>
<module> SdFilterFADCSimulatorMTU </module>
<module> SdBaselineSimulatorOG </module>
<module> TankTriggerSimulatorOG </module>
<module> TankGPSSimulatorOG </module>

<module> CentralTriggerSimulatorXb </module>
<module> CentralTriggerEventBuilderOG </module>

</try>

<module> EventBuilderOG </module>
<try>
<module> SdCalibratorOG </module>
<module> SdMonteCarloEventSelectorOG </module>
<module> SdEventSelectorOG </module>
<module> SdPlaneFitOG </module>
<module> LDFFinderKG </module>
<module> Risetime1000LLL </module>
<module> EnergyCalculationPG </module>
<module> SdEventPosteriorSelectorOG </module>
</try>

<module> RecDataWriterNG </module>

</loop>

</loop>
</moduleControl>

</sequenceFile>

I.4 ModuleSequence_standard.xml.in

<!DOCTYPE sequenceFile [
<!ENTITY % sd SYSTEM "@CONFIGDIR@/standardSdSequences.dtd">
%sd;
] >

<sequenceFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<enableTiming/>

<moduleControl>

<loop numTimes="unbounded" pushEventToStack="yes">

<module> EventFileReaderOG </module>
<loop numTimes="unbounded" pushEventToStack="yes">

<module> EventGeneratorOG </module>

<try>
<loop numTimes="unbounded" pushEventToStack="no">

<module> CachedShowerRegeneratorOG </module>
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<module> G4StationSimulatorOG </module>
</loop>
<module> SdSimulationCalibrationFillerOG </module>
<module> SdPMTSimulatorOG </module>
<module> SdFilterFADCSimulatorMTU </module>
<module> SdBaselineSimulatorOG </module>
<module> TankTriggerSimulatorOG </module>
<module> TankGPSSimulatorOG </module>

<module> CentralTriggerSimulatorXb </module>
<module> CentralTriggerEventBuilderOG </module>

</try>

<module> EventBuilderOG </module>
<try>
<module> SdCalibratorOG </module>
<module> SdMonteCarloEventSelectorOG </module>
<module> SdEventSelectorOG </module>
<module> SdPlaneFitOG </module>
<module> LDFFinderKG </module>
<module> Risetime1000LLL </module>
<module> EnergyCalculationPG </module>
<module> SdEventPosteriorSelectorOG </module>
</try>

<module> RecDataWriterNG </module>

</loop>

</loop>
</moduleControl>

</sequenceFile>

I.5 SManagerRegisterConfig_evolution.xml.in

<?xml version="1.0" encoding="iso-8859-1"?>

<SDetectorManagerList
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’@SCHEMALOCATION@/SManagerRegisterConfig.xsd’>

<manager> T2LifeROOTFileManager </manager>

<!-- The SStationListXMLManager reads station positions from an XML file -->
<manager> SStationListXMLManager </manager>

<!-- The SModelsXMLManager reads static quantities describing the
stations, like tank geometry, materials, etc -->

<manager> SModelsXMLManager </manager>

<!-- The SdSimCalibrationManager is used to read the calibration
constants and histograms for simulated stations -->

<manager> SdSimCalibrationManager </manager>
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</SDetectorManagerList>

I.6 SManagerRegisterConfig_standard.xml.in

<?xml version="1.0" encoding="iso-8859-1"?>

<SDetectorManagerList
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’@SCHEMALOCATION@/SManagerRegisterConfig.xsd’>

<!-- The SStationListXMLManager reads station positions from an XML file -->
<manager> SStationListXMLManager </manager>

<!-- The SModelsXMLManager reads static quantities describing the
stations, like tank geometry, materials, etc -->

<manager> SModelsXMLManager </manager>

<!-- The SdSimCalibrationManager is used to read the calibration
constants and histograms for simulated stations -->

<manager> SdSimCalibrationManager </manager>

</SDetectorManagerList>

I.7 Area and Peak parametrization parameters

Area
PMT a0 a1 a2 a3 a4

1 194.351 1923.57 17354 300731 4.71121e+06
2 194.858 1937.63 16556.8 296074 4.95229e+06
3 193.835 1912.93 18936.4 312170 3.9768e+06

Peak
PMT p0 p1 p2

1 59.7545 188.378 508.687
2 59.6984 187.433 730.954
3 59.7489 186.893 608.274
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