

Measurement of angular distributions of γ -rays from $^{139}\text{La} + \text{n}$ to excited states of ^{140}La

Takuya OKUDAIRA¹, Shunsuke ENDO¹, Hiroyuki FUJIOKA⁵, Katsuya HIROTA², Kohei ISHIZAKI², Atsushi KIMURA¹, Masaaki KITAGUCHI², Jun KOGA³, So MAKISE³, Yudai NIINOMI², Kenji SAKAI¹, Tatsushi SHIMA⁴, Hirohiko M. SHIMIZU², Shusuke TAKADA³, Yuika TANI⁵, Tomoki YAMAMOTO², Hiromoto YOSHIKAWA⁴, and Tamaki YOSHIOKA³

¹*Japan Atomic Energy Agency, Tokai, Ibaraki 319-1184 Japan*

²*Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601 Japan*

³*Kyushu University, 744 Motooka, Nishi, Fukuoka, Fukuoka, 819-0395 Japan*

E-mail: okudaira.post.j-parc.jp

(Received January 10, 2020)

A clear angular distribution of γ -rays in a transition from the p-wave resonance formed after neutron absorption of ^{139}La to the ground state of ^{140}La has been observed in an experiment using the ANNRI beam line at J-PARC. Measurement of angular distributions of the γ -rays in the transition to the excited states of ^{140}La is reported in the paper.

KEYWORDS: Symmetry violation, Nuclear reaction, Neutron

1. Introduction

Small parity violation caused by the hadronic weak interaction with the size of 10^{-7} has been observed in the proton-proton scattering [1–3]. In neutron absorption reactions of heavy nuclei, very large parity violations with the size of 10^{-1} at maximum have been reported. The parity violation occurs at the p-wave resonance located at a tail of an s-wave resonance of the several nuclei such as ^{139}La , ^{131}Xe , ^{81}Br . This effect is theoretically understood that the tiny parity violation caused by weak interaction is largely enhanced with the interference between the p-wave and s-wave amplitudes. This assumption is referred to as "s-p mixing". The γ -rays from the p-wave resonance formed after the neutron capture have an angular distribution under the assumption of the s-p mixing. The corresponding differential cross section for unpolarized neutrons and unpolarized nuclei can be written as

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(a_0 + a_1 \cos \theta_\gamma + a_3 (\cos^2 \theta_\gamma - \frac{1}{3}) \right), \quad (1)$$

where θ_γ is the emission angle of γ -rays with respect to the incident neutron momentum, and a_0 , a_1 and a_3 are the function of the incident neutron momentum, the resonance parameters and the spin of the final state. For detail descriptions of a terms, please see Ref [4] and Ref [5]. The coefficient a_0 is described as an ordinal symmetric Brite-Wigner function, and a_1 is antisymmetric around the peak energy of the resonance. Therefore, neutron energy dependence of the differential cross section of the p-wave resonance is described as the Brite-Wigner function distorted by the effect of a_1 for the angle of $\cos \theta_\gamma \neq 0$.

The angular distribution of the γ -rays has been measured in the neutron absorption reaction of ^{139}La [5]. In the paper, the angular distribution was evaluated as an asymmetry of the p-wave resonance A_{LH} defined as

$$A_{\text{LH}} = \frac{N_{\text{L}} - N_{\text{H}}}{N_{\text{L}} + N_{\text{H}}}, \quad (2)$$