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ABSTARCT 

 

   At present, there exist rich amount of experimental data for the weak decays of heavy 

flavor hadrons.  Weak leptonic and semileptonic decays are reasonably well understood in the 

Standard Model of fundamental interactions, however, weak hadronic decays have posed serious 

problems for the model as these decays experience strong interaction interference due to the 

gluons exchange among the quarks involved.  In this thesis, two-body weak hadronic decays of 

heavy flavor mesons have investigated in the framework of the Standard Model. It has been 

found experimentally that two-body decays dominate the decay spectrum. Theoretical focus has, 

so far, been on the s-wave meson (i.e. pseudoscalar (P) and vector mesons (V)) emitting weak 

decays. However, charm and bottom mesons, being heavy, can also emit p-wave mesons, i.e. 

axial-vector (A), tensor (T) and scalar (S) mesons.  Naively, the p-wave mesons emitting decays 

of the hadrons are expected to be suppressed kinematically due to the large mass of these meson 

resonances. However, now reasonable amount of experimental data has become available for 

branching ratios of the p-wave emitting decays of heavy flavour mesons which are found to be 

quite large, and require theoretical understanding.  In this thesis, such weak decays of bottom 

mesons ( −

B , 0
B  and 

sB ), which are the bound state of bottom quark and a light anti- quark, and 

of a unique bottom-charm (
c

B ) meson made up of  heavy quarks only, have been investigated 

using the improved ISGW –II (Isgur, Scora, Grinstein and Wise) quark model. It has been the 

first model to calculate the form factors for s-wave meson to p-wave meson transitions using the 

constituent quark picture. Firstly, form factors for s-wave meson to p-wave meson transitions 

have been determined in this thesis using this model. Finally, branching ratios of weak hadronic 

decays involving cb →  and ub →  transitions are predicted that are found to be in good 

agreement with the available experimental data for bottom mesons ( −

B , 0
B  and 

sB ). Since 
c

B  

meson is recently observed, and measurements for its weak decays are expected in future 

experiments, it is hoped that the predictions made in this thesis  would help the experimentalists 

to identify the p-wave meson emitting decays of the heaviest bottom meson. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

 

In the early sixties, Gell-Mann and Zweig independently put forth the idea of quark 

structure of the hadrons. They suggested that mesons and baryons are composites of three 

flavors of the quarks called up, down and strange (u, d, s) and their antipartners called 

antiquarks [1]. On the leptonic side, at that time four leptons, electron (e), muon ( )µ  and 

their respective neutrino partners (
eν , µν ), had been observed. Inspired by the quark-lepton 

analogy, Bjorken and Glashow proposed the existence of the fourth flavor of quark named 

charm (c) in 1964
1
. Later, in 1970, mass of the charm quark was estimated through 

Glashow, Illiopoulos and Maiani (GIM) mechanism, which explained the observed 

suppression of certain processes, like 0
K µ µ+ −→ . Discovery of the )(/ ccJ ψ having 

mass 3.1 GeV in 1974, at SLAC and Brookhaven laboratory finally confirmed the existence 

of the charm quark [2], i.e. the first heavy flavor quark. Subsequently, evidence for even 

heavier quark called bottom quark (b) was obtained in 1977 with the discovery of another 

narrow resonance ϒ  ( )bb  meson carrying mass 9.5 GeV. Around the same time, a heavy 

lepton namely tau ( )τ  was added to the list of the leptons. Again quark-lepton analogy 

suggested existence of the sixth quark called top quark (t) which eluded its discovery for 

                                                 
1 In 1965, Greenberg introduced the new property of the quark that is color charge and suggested that the 

hadrons are color neutral. 
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some time. Finally in 1994,  existence of the top quark with mass around 175 GeV has been 

established at Fermilab Tevatron collider [2, 3].  

At the present energy scale, the fundamental constituents of the matter are pointlike 

quarks and leptons carrying spin half. The six quarks are grouped in three generations as (u, 

d), (c, s), (t, b) similar to the six leptons ( , )ee ν , ( , )µµ ν , ( , )ττ ν . On the basis of mass 

pattern, quarks are classified as the light (u, d, s) and heavy (c, b, t) flavors [4]. The heavy 

flavor hadrons contain at least one heavy flavor quark. It may be remarked here that quarks 

are not observed as free particles, experimentally baryons and mesons, the bound states of 

these quarks
2
, are produced. 

Study of the heavy flavor hadrons is a very rich source of information for the 

fundamental interactions. There are four types of the fundamental interactions; strong,  

electromagnetic, weak and gravitational, in terms of which we can understand, in principle, 

all the processes occurring in nature from the elementary particles to the extra-galactic 

level. At the present energy scale of high-energy accelerators, the gravitational interactions 

are not relevant in the study of hadrons. The electromagnetic interactions are mediated by 

photon ( )γ , the weak interactions are carried out by exchange of three intermediate bosons 

0( , )W Z
± , and the strong interactions among the quarks are mediated by eight gluons ( )g . 

After the development of the well-tested quantum electrodynamics (QED), through the 

independent works of Feynman, Schwinger and Tomonaga by 1950, a major step in this 

direction was taken by Weinberg and Salam in 1967, who independently developed the 

unified electroweak quantum gauge field theory based on the (2) (1)LSU U× symmetry 

originally suggested by Glashow in 1964.This theory predicted the existence of the three 

bosons mediating the weak interactions
3
. In 1973, (3)SU based quantum field theory of the 

                                                 
2 The top quark cannot form bound states because of its short life time. 
3
 They also predicted an additional scalar boson called the Higgs Boson that has not yet been observed. 
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strong interactions at the quark level was formulated by Politzer, Gross and Wilczek, which 

is similar in structure to the quantum QED. Since the strong interaction deals with color-

charge, it is called quantum chromodynamics (QCD) [5], in which gluons act as massless 

quanta of the strong-interactions. In QCD, diminution of the the strong interaction charge 

occur at the short distances. So a perturbative theory could be successfully employed in the 

high energy domain, but at large distances ( 1 )fm≈  quarks are subjected to the confining 

forces, which have not yet been derived from the first principles. Finally, all these 

theoretical efforts culminated in the development of the ‘Standard Model’ (SM) of the 

strong and electroweak interactions among the quarks and leptons, which is based on the 

(3) (2) (1)C L YSU SU U× ×  relativistic quantum gauge field theory [6]. 

Though the Standard Model [7] has achieved a remarkable success in understanding 

various phenomena involving the elementary particles, it does not yield the final picture. 

For instance, the model has many free parameters, like Cabibbo-Kobayashi-Maskawa 

(CKM) weak mixing angles, which are empirically determined from the weak hadronic 

decays. Study of properties and decays of the heavy flavor hadrons can provide useful 

information on these parameters and to investigate the strong interaction effects at low 

energies. An intense activity on theoretical and experimental studies of the  decays of the 

heavy flavor hadrons have been going on for the last few decades. Soon after the discovery 

of )(/ ccJ ψ meson, weakly decaying pseudoscalar charm mesons ( 0
,D D

+  and sD
+ ) and 

their excited states were produced [4]. Data on their masses and decays have been collected 

at electron-positron collider and fixed target experiments. After the discovery of  ( )bbϒ  

state, naked bottom states ( 0 ,B B
+  and sB

+ ) came into observation, and their masses were 

observed in such experiments [4]. However, major progress for measurements of their 

decays could occur only in the last few decades. At present, there exist rich amount of 
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experimental data for the weak decays of heavy flavor mesons particularly for low lying 

spin zero particles [4].  

Weak quark and lepton currents in the Standard Model generate leptonic, 

semileptonic and hadronic weak decays. The lifetime of the hadrons, their exclusive 

leptonic and semileptonic decays are reasonably well understood in this model [8, 9]. 

However, theoretical description of the exclusive weak hadronic decays confronts serious 

problems as these decays experience strong interaction interference due to the gluons 

exchange among the quarks involved. Fortunately, the short time-scale of weak decays 

allows one to separate the possible corrections from the strong interactions into short and 

long distance parts [8]. The asymptotic freedom property of the QCD allows a perturbative 

calculation of the effects of hard-gluon exchange on the weak Hamiltonian. The short 

distance effects can be resummed in the QCD coefficients, and the effective weak 

Hamiltonian has been constructed [8]. However, evaluation of matrix elements of the weak 

Hamiltonian between initial and final hadron states is not straightforward, due to the 

nonperturbative nature of the confinement mechanism responsible for forming the hadrons 

out of the interacting quarks. [8, 9]. Due to the lack of exact dynamics of the  long distance 

strong interactions, hadronization of the quarks is generally studied through 

phenomenological approaches [8-19] like quark models, QCD sum rules, heavy quark 

effective theory (HQET) and lattice QCD.  

Experimental data for the weak hadronic decays of the charm and bottom mesons, 

show the dominance of two-body decay modes. Initially, one expected  their weak decays 

to have less interference due to the strong interactions, their measurements have revealed 

the contrary. The present data on these decays have posed serious problems for theory, 

which have led to several theoretical efforts [8-19] incorporating new ideas. At present, all 

over the world, several groups [20-22] at Fermilab, Cornell, CERN, DESY, KEK and 
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Beijing Electron Collider etc. are working to ensure wide knowledge of the heavy flavor 

physics. Thus, in the near future a large quantity of new and more accurate data on decays 

of the heavy flavor hadrons, including  Bc , /J ψ  and ϒ , can be expected which calls for 

their comprehensive theoretical analysis. One of the goals of heavy flavor hadron physics is 

to elucidate the relationship among the particles of different generations. The b quark is 

specially interesting in this respect as it has W-mediated transitions to both first generation 

(u) and second generation (c) quarks. Therefore, in this thesis, we have investigated the 

two-body weak hadronic decays of heavy flavor mesons in the framework of standard 

model.  

In chapter 2, we lay down the physical and mathematical preliminaries which have 

been applied for the study of weak decays of mesons emitting the s-wave mesons, 

pseudoscalar (P) and vector (V) mesons. To start with, we present the hadron spectroscopy 

upto the bottom level and classification of the weak decays into leptonic, semileptonic and 

nonleptonic decays. In general, these weak decays proceed through exchange of virtual W-

boson between the charged weak (V-A) currents. Since leptons do not participate in the 

strong interactions, leptonic decays remain unaffected by the strong interaction effects and 

thus are well understood in the standard model [23]. We discuss the semileptonic decays of 

the bottom (B) mesons as they provide information about binding of the quarks. Since these 

decays proceed via spectator quark diagrams, their decay amplitudes can easily expressed 

in terms of the matrix elements of the hadronic weak currents between the parent and 

daughter meson states, which are usually calculated from the phenomenological models [8, 

10, 11]. This forms the basis of the ‘factorization approach’, later applied to the weak 

nonleptonic decays. Theoretically, the two-body nonleptonic decays occur through several 

quark level processes, like W-emission (spectator diagram), W-exchange, W-annihilation 

and penguin diagrams. Out of these, W-emission diagrams are found to be dominant, as the 
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W-exchange and W-annihilation processes are helicity and color suppressed at the tree 

level. Weak decay amplitudes arising through the spectator diagrams can be expressed in 

terms of products of appropriate meson decay constants and the same form factors that are 

required for the semileptonic decays. We use the B P→ form factors obtained in the Bauer, 

Stech and Wirbel (BSW) quark model framework [8]. Majority of these decay modes are 

seen to result in a large variety of s-wave mesons [18, 19, 24]. However, B mesons being 

heavy can also emit  p-wave mesons like axial-vector (A), tensor (T) and scalar mesons (S) 

along with a pseudoscalar meson [25-27] which have attracted the attention of the 

experimentalist in the last few decades and the branching ratios of some of such decays 

have been measured. Therefore, we investigate p-wave meson emitting decays of heavy 

flavor hadrons decays in the following chapters. 

In chapter 3, we extend factorization approach to study two-body hadronic weak 

decays of bottom emitting pseudoscalar and axial-vector mesons, i.e. 

0/ / /sB B B PA PA′→ . After describing the spectroscopy of the two kinds of axial-vector 

mesons, i.e. A ( 1
PC

J
++= ) and A′ ( 1

PC
J

+−= ), we proceed to obtain the weak decay 

amplitudes in the Standard Model framework.  Similar to the s-wave mesons emitting 

decays, here also two kinds of the spectator diagrams, color-favored and color-suppressed 

diagrams, can contribute to /B PA PA′→  decays. Using the factorization scheme, decay 

amplitudes are expressed in terms of the meson to meson form factors and meson decay 

constants. Though the meson decay constants are now reasonably known, the form factors 

are not properly understood. Isgur, Scora, Grinstein and Wise (ISGW I) model has been the 

first to calculate the form factors for s-wave meson to p-wave meson transitions [10] 

needed for /B PA PA′→  decays [25]. However, the form factors evaluated in this model 

are reliable only at the maximum momentum transfer, whereas the weak hadronic decays 

require them at relatively lower momentum transfer. This model has now been improved, 
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called as ISGW II model [10], in which the form factors provide a more realistic behavior. 

Therefore, we adopt this model for our purpose and calculate the /B A A′→  transition 

form factors in the ISGW II model [10]. Consequently, we predict branching ratios of  

B PA→  decays involving cb →  and ub →  transitions in the CKM-favored and CKM-

suppressed modes. Experimentally [4], at present, branching ratios of eleven decays have 

been measured and upper limits are also available for five other decays. We compare our 

theoretical predictions with the available experimental measurements and also with other 

theoretical works.  

In chapter 4, we have studied hadronic weak decays of bottom mesons emitting 

pseudoscalar and tensor mesons [26]. We first calculate the decay amplitudes in terms of 

the form factors and appropriate meson decay constants. Decay constants of tensor mesons 

vanish due to the tracelessness of the polarization tensor of spin 2 meson and its auxiliary 

condition. Therefore, either color-favored diagram or color-suppressed diagram can 

contribute to these decays and thus analysis of these decays becomes free of the 

interference between these diagrams. Here also, we employ ISGW II model [10] to 

determine the B T→  transition form factors appearing in the decay matrix elements of 

weak currents involving cb →  and ub →  transitions. Consequently, we predict the 

branching ratios of  PTB →  decays in the CKM-favored and CKM-suppressed modes. 

Experimentally [4], branching ratios of only six decay modes have been measured and 

upper limits are available for five other decays. We compare the predicted branching ratios 

with the experimental results and with other theoretical values. 

 In chapter 5, we have studied hadronic weak decays of bottom mesons emitting 

pseudoscalar and scalar involving cb →  and ub →  transitions. We extend our model by 

employing the ISGW II model to determine the form factors appearing in the decay matrix 

element of weak currents for B S→  transition. Consequently, we calculate the decay 
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amplitude and predict branching ratios in the CKM-favored and CKM-suppressed modes. 

Though, for these decays both kinds of the spectator diagrams, color-favored and color-

suppressed diagrams, can contribute, usually one of these gets suppressed due to the small 

values of the scalar meson decay constants. Experimentally not much data exist for 

B PS→  decays, only three measured branching ratios decays are available [4]. We 

compare our results with other theoretical calculations. 

 In chapter 6, we study hadronic weak decays of uniquely observed bottom-charm 

( cB ) meson. In 1998, Bc meson, a unique state, composed of the two heavy quarks,  bottom 

and charm, has been observed by the CDF collaboration [28]. Later, it announced an 

accurate determination of the cB  meson mass, 
cBm = (6.2857 ± 0.0053 ± 0.0012) GeV and 

its life time 12.045.0 12.0

10.0 ±= +
−cBτ ps [29] in conformity with theoretical predictions. A 

peculiarity of the cB  decays, with respect to the decays of B and Bs mesons, is that both the 

quarks (b and c ) may decay weakly, thereby generating bottom changing and bottom 

conserving decay modes, respectively. The investigation of the cB  meson is of special 

interest as unlike its diagonal heavy quarkonium ( , )bb cc  partners it decays only through 

weak interactions. Study of  
cB
+  meson is becoming one of the most interesting topics of 

research in high-energy physics (HEP) both on experimental and theoretical side. Already 

there exists an extensive literature for the semileptonic and nonleptonic decays of 
cB  

emitting s-wave mesons, pseudoscalar and vector mesons. However, relatively less work 

has been done on the p-wave meson emitting weak decays of 
cB  meson. Therefore, we 

extend our analysis to cB  meson decays emitting a pseudoscalar meson and a p-wave 

meson ( / /cB PA PT PS→ ) [30]. In case of cB  meson decays, one naively expects the 

bottom conserving (and charm changing) decay modes to be kinematically suppressed in 

comparison to the bottom changing mode [30]. On the contrary, we find that the bottom 
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conserving decays have branching ratios larger than that of the bottom changing modes due 

to the significant difference in the corresponding CKM factors.  

 Summary and conclusions of the work done are given in the last chapter. 
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CHAPTER 2   

PRELIMINARIES AND GENERAL FORMALISM 

 

In this chapter, we give the mathematical and physical preliminaries that will be 

relevant to our work. We first present the basic ingredient of the Standard model which has 

been established to describe the interaction of fundamental particles. We then develop the 

weak Hamiltonian responsible for flavor changing weak decays and introduce QCD 

modifications at different levels. After giving the main features of the spectroscopy for 

mesons carry charm and bottom quantum number, we introduce the basic techniques for 

computation of the weak decay rates involving spectator and non spectator processes. The 

possible strong interaction effects which can modify the naïve weak processes are dealt 

with in the following sections.  

 

2.1 MATTER CONTENT 

There are 12 elementary particles of spin ½ known as the fermions [1], comprising 

of six leptons and six quarks, represented by spinor fields. The leptons which occur in pairs 

l  and
lν  are divided into three families or generations as, 

e

e

µ τ

µ τ
νν ν−− −

−− −    
        

    
                          Equation Chapter 2 Section 2     (2.1) 

and undergo only electroweak transitions.  
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The six quarks calssified analogously are 

 
u c t

b s b

     
     
     

    (2.2) 

The defining property of quarks is that they carry color charge and hence can also 

interact via strong interactions. Various properties of leptons and quarks are given in the 

Appendix A. 

 

2.2 FORCE QUANTA 

Interactions in physics are the ways that particles influence each other via fields. The 

Standard Model explains such forces in terms of force mediating spin 1 particles, bosons, 

associated with the gauge invariance groups, which are responsible for the exsisting strong, 

electromagnetic and weak interactions. Typical examples of these are shown below in 

Figures 2.1 (a), 2.1 (b) and 2.1 (c).  

 

i) For the electromagnetic interactions:γ − photon 

 

Figure 2.1(a) Electromagnetic Interactions 
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ii)  For the weak interactions: W ± , 
0Z − gauge bosons 

 

Figure 2.1(b) Weak Interactions 

iii)   For the strong interactions: 8-glouns 

 

 

 

 

 

Figure 2.1(c) Strong Interactions 

 

Last but not least, an essential ingredient of the Standard Model, a particle called the 

Higgs boson, has yet to be found in an experiment. The race is on to hunt for the Higgs- the 

key to the origin of particle mass. Finding it would be a big step for particle physics, 

although its discovery would not write the final ending to the story.  

 

2.3 PARTICLE INTERACTIONS 

2.3.1 ELECTROMAGNETIC INTERACTIONS 

Quantum Electrodynamics (QED) is the relativistic quantum field theory of 

electromagnetic (em) interactions involving electrons and photons. It gives a spectacularly 

accurate description of the electron's properties in terms of only two parameters, the 
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electron mass, me, and the fine structure constant, α . The electromagnetic interactions, 

arising out of the coupling of the photon γ  with the charged particles, are represented by 

the simplest group, (1)emU . The coupling of the electromagnetic quark and lepton current to 

the massless photon is given by 

    ,em

l
L ej Aµ

µ= −       (2.3) 

with 

, , , , , , ,

,em

i i i i

i u d s c b t i e

j Q q q Q l lµ µ µ
µ τ

γ γ
− − −= =

= +∑ ∑          (2.4) 

A
µ is the vector field and iQ  is the charge of the fermions in units of e.  

First order electromagnetic interactions of fermions describing the emission or 

absorption of  γ  with a strength e. two such processes combine together to give general 

electromagnetic phenomena of second order, like the lepton-lepton and lepton-quark 

scattering, occurring with the strength given by the fine structure constant, 

     
2

.
4

e
α

π
=              (2.5)  

 

2.3.2 WEAK INTERACTIONS  

Fundamental weak interactions occur for all fundamental particles except gluons 

and photons. Weak interactions involve the exchange or production of W or Z bosons. The 

interaction responsible for all processes in which flavor changes and hence for the 

instability of heavy quarks and leptons and particles that contain them. Weak interactions 

that do not change flavor (or charge) have also been observed. In particle physics, the 

electroweak interaction is the unified description of two of the four known fundamental 

interactions of nature: electromagnetism and the weak interaction. The theory of 
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electroweak interaction was developed around 1968 by Glashow, Salam and Weinberg (see 

W and Z bosons). The weak interaction lagrangian is 

,a Y

W a
L gJ W g J Bµ µ

µ µ′= + ,    (2.6) 

gives the coupling of weak currents to the vector bosons 
aWµ  and Bµ  with strengths g  and 

g′  corresponding to the (2) (1)L YSU U× group. These W bosons physically occur as W ± , 

the linear combination of 
1W  and 

2W  and
0

Z  which is a combination of 
3W  and Bµ  leaving 

the orthogonal combination for the photon field Aµ , 

1 2

2

W iW
W

µ µ
µ
± ±

=  , 

 
0

3 cos sinW WZ W Bµ µ µθ θ= − , and                                               (2.7) 

     

3 sin cosW WA W Bµ µ µθ θ= + ,                        (2.8) 

 

with 
Wθ  is the Weinberg mixing angle satisfying  

 

2 2 1/2
cos

( )

W
W

Z

M g

M g g
θ = =

′+
 .               (2.9) 

 

The electromagnetic coupling e is then simply cos Wg θ′ . 

 

 Weak current 
aJµ  consists of the weak charged currents Jµ

±
 coupling to the bosons and 

the weak neutral current 
ncJµ coupling to the 

0
Z respectively. The weak neutral current is 

given by the left handed 
3J µ  and the pure vector current 

   
3 2sinnc em

W
J J Jµ µ µθ= −

  (2.10)
 

is the charge of the fermions in units of e and 
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3

5 5

5 5

1
[( ) (1 ) ( ) (1 )

4

( ) (1 ) ( ) (1 ) ].

e

e

u d

J u c t c d s b s

t b

e

e

µ µ µ

µ τ µ µ µ

τ

γ γ γ γ

ν

ν ν ν γ γ ν µ τ γ γ µ
τν

   
   = − − −   
   
   

   
   − − −   

       (2.11)

 

Infact, in the Standard model there exist no flavor changing neutral current. Experimental 

evidence to support this comes from the upper limit on generic decays like 

6( ) 7.4 10B D e eπ+ + + − −→ < × . 

       Since the weak bosons are massive 80≈ GeV and 
qM and 

lep WM M< (except for the 

top or t-quark) there can be no possible first order weak processes observable at low 

energies. The virtual W-bosons lead to a variety of second order weak transitions through 

the numerous combinations. Thus, in general the weak Hamiltonian involves a transition 

matrix element of the type W
f H i , where f and i denotes the final and initial states, 

respectively.   

The weak charged V-A currents for the flavor changing interaction are  

w
J J lµ µµ− = + , 

where  

   

5, , 1µ

d

J   (u c  t  ) γ ( - γ ) s  

b

µ

′ 
 ′=  
 ′ 

,                                    (2.12)               

  

   

5, , 1e µ

e

l   (  ) γ ( - γ )  µ µ τν ν ν µ

τ

−

−

−

 
 

=  
 
 

,                                 (2.13)                                 

and †
+ −=J J

µ µ
. 

In the current J µ , the weak eigenstates d ′ , s′  and ′b  are related to the mass eigenstates d , 

s  and b as follows:   
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  =  ,

d d

s V s

b b

′   
   ′   
   ′   

 (2.14) 

 where   

 = 

ud us ub

cd cs cb

td ts tb

V V V

V V V V

V V V

 
 
 
  

,                                                 (2.15) 

 is a unitary matrix known as the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
4
 [2]. 

It can be parameterized in many representations due to the arbitrariness of phases in the 

quark fields. The most commonly used form in the literature [2] is,  

                           

1 1 3 1 3

1 2 1 2 3 2 3 1 2 3 2 3

1 2 1 2 3 2 3 1 2 3 2 3

 =   ,i i

i i

c s c s c

V s c c c c e s s c c s e s c

s s c s c e c s c s s e c c

δ δ

δ δ

− − 
 − + 
 + − 

     (2.16) 

where  = ,  = ,( = 1,2,3)i i i ic cos s sin iθ θ  are the three Euler angles and δ  is the phase factor 

generating the CP violation. The mixing  is, in fact, responsible for the variety of weak 

decays of hadrons arising from transitions between generations. There appears to exist an 

hierarchy in the weak transitions between the different families. The heavier the 

neighboring families, the lesser they communicate, and families which are farthest, 

communicate the least. The dominant decay chain follows → → → →t b c s u .   

     

u c t

d s b

     
     
     
     
     

 

The elements of the CKM matrix are the parameters of the Standard Model and are 

determined empirically [1] as,   

0.0010

0.0011

0.00026 0.000044

0.00037 0.000043

0.97419 0.00022 0.2257 0.0010 0.00359 0.00016

 = 0.2256 0.0010 0.97334 0.00023 0.0415 .

0.00874 0.0407 0.0010 0.999133

V
+
−

+ +
− −

± ± ± 
 ± ± 
 ±             (2.17)

 

                                                 
4
The color structure is omitted here for the sake of simlicity. 
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The errors given here arise due to the fact that these parameters denote the quark weak 

couplings, while the decay rates are measured at the hadron level.  

      Since the leptonic part is not strongly interacting, it can be calculated in straight-

forward manner. However, the hadronic part cannot be treated so easily and has to be 

studied separately. This decoupling of the leptonic and quark currents into separate terms 

appears naturally within the semileptonic decays, and forms the basis for the so-called 

factorization approach. Replacing the leptonic current lµ  by the weak quark current Jµ , the 

weak Hamiltonian for nonleptonic decays is constructed, which would experience 

significant modification due to the strong interaction among the participation quarks. This 

will be discussed in detail in subsequent sections. 

 

2.3.3 STRONG INTERACTIONS 

Quantum Chromodynamics (QCD), the gauge field theory which describes the 

strong interactions of colored quarks and gluons is (3)CSU component of the Standard 

Model [3]. It is developed in analogy with QED by generating the gauge invariant 

lagrangian for (1)U  to (3)SU . Corresponding to the electric charge in QED the quarks in 

QCD carry three possible color charges which are designated in the literature as red (R), 

blue (B) and green (G) and form an (3)SU  color triplet 

.3

 
 =  
 
 

R

B

G

q

q

q

     (2.18) 

Leptons are color neutral and do not participate in the strong interactions. The color 

interactions are mediated by eight massless gluons, the gauge bosons corresponding to the 

eight generators of the unbroken (3)CSU  and form a color octet. 

The quark-gluon interaction lagrangian in QCD is 
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   int

1

2

a

s i a i

i a

L g q G qµ
µλ γ= ∑∑ ,     (2.19) 

where i is the flavor index, sg  is the dimensionless strong coupling constant, i.e. 
4

s
s

g
α

π
= , 

( 1, 2,...., 8)a aλ =  are the Gell-Mann traceless and hermitian color matrices and 
aGµ  are the 

gluon fields. 

 Conversely,  2( )sα µ  grows as grows 2µ  decreases, leading to a breakdown of the 

perturbation theory. The gauge coupling becomes strong at these large distances or small 

moments, with a probable power like potential ( )V r r≈  between quarks implying infrared 

slavery or confinement of quarks and gluon within the hadrons within the hadrons. Thus, 

2 2

QCD
µ = Λ  nonperturbative effects start dominating. At present, there is no completely 

satisfactory description of this long range force. Though the lattice gauge theories are 

expected to give some clues, these are still in their nascence and dependent on the 

computational limitations. Lack of knowledge of the strong interactions at low energies, 

limits the evaluation of the hadron dynamics from the first principles, and one often has to 

rely on phenomenological models to understand them. We hope that the study of the weak 

decays of hadrons will provide some information on these long distance QCD effects. 

 

2.4 STANDARD MODEL 

The standard model is a theory concerning the electromagnetic, weak and strong 

interactions, described in previous sections, which mediate the dynamics of known 

subatomic particles that includes (3) (2) (1)C L YSU SU U× × gauge groups. The Standard 

Model developed from the Weinberg-Salam electroweak theory [4] and QCD of strong 

interaction [3]. It describes matter and its interactions in terms of a few building blocks; 
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quarks and leptons and the intermediate gauge bosons associated with the respective gauge 

groups [5].  

Inspite of the remarkable successes of the Standard Model particularly for leptonic 

and semileptonic processes, it does not provide the final picture [6-9]. For instance, the 

model has many free parameters, like weak mixing angles. Study of weak decays, 

particularly in the heavy flavor sector, can provide useful information on these parameters, 

and to investigate the strong interaction effects at low energies. An intense activity on 

theoretical and experimental studies of the weak decays of the charm and bottom hadrons 

have been going on for the last three decades. Weak currents in the Standard Model 

generate leptonic, semileptonic and hadronic decays of the heavy flavor hadrons. 

Theoretical description of the exclusive weak hadronic decays based on Standard Model is 

not yet obtained as these experiences strong interaction interference. Since the quarks are 

confined inside the colorless hadrons, matching between theory and experiment requires an 

exact knowledge of the low energy strong interactions.  

 

2.5 CONSTRUCTION OF THE EFFECTIVE FLAVOR CHANGING WEAK 

HAMILTONIAN  

 All the flavor changing weak decays involve the charged current Jµ
±

 and neglecting 

the 2
q  dependence of the W propagator at low energies, as the momentum transfer is much 

smaller than the W mass, we can use the approximation 

2
( ; ) ( )W

W

g
D M x y x y

M

µυ
µυ δ− ≈ − , 

shown in Figure 2.2. This reduces the weak Hamiltonian to the current ⊗  current form, 

   †1
{ ( ), ( )}

22

F
W

G
H dx J x J xµ

µ= ∫ ,               (2.20) 
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where the weak current J µ  
arises from group SU(2)L group and can have a vector or an 

axial-vector V, A character such that 

5(1 )j iJ V A q qµ µ µ µγ γ= − = − ,       (2.21)           

and the Fermi coupling constant is, 

2

24 2
F

W

g
G

M
= .     (2.22) 

 

 

Figure 2.2 Current ⊗ Current form of weak interactions 

 

2.6 CLASSIFICATION OF WEAK DECAYS  

 As quarks and leptons both can participate in the weak interactions (Figure 2.2), in 

general, weak decays are classified into three broad categories, pure leptonic, semileptonic 

and nonleptonic decays [10-14], which proceed through exchange of virtual
5
W-bosons 

between the weak currents.   

a)  Pure Leptonic Weak Decays 

 In leptonic weak processes, all the fermions involved in the weak interactions are 

leptons like, µ
− 
→ e

−
 +νe + νµ  (Figure 2.3). Since leptons do not participate in the strong 

interactions, such decays are uncomplicated by strong interaction effects and thus are well 

                                                 
5
The W-boson is generally virtual except in the case of decays of t quark, whose mass is greater than W. 
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understood in the standard model [10-14]. In fact, µ-decay has been used to fix the weak 

coupling constant strength [8] 
51.166 10FG

−= × GeV
-2

 from the µ -lifetime, 

2 5

3
,

192

F
G mh µ

µ
µτ π

Γ = =  obtained from the lowest order weak leptonic Hamiltonian  

   

†{ , },
2

F
W

G
H l lµ

µ=
                                                      (2.23) 

where 5

, ,

(1 )
l

l e

l lµ µ
µ τ

γ γ ν
=

= −∑ is the weak leptonic (V-A) current. 

 

 

Figure 2.3 Lowest order of Feynman diagram for pure leptonic weak decay of muon 

 

b) Semileptonic Weak Decays 

Semileptonic weak decays can have either purely leptonic final states or both 

leptonic and hadronic parts. For instance,  

i) In the leptonic decays of the bottom mesons, no hadrons appear in the final 

states and therefore, occur through the annihilation of the quark and antiquark in 

the initial state meson [15] as shown in Figure 2.4.  
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Figure 2.4 Weak annihilation diagram for leptonic decay of bottom mesons 

 

Thus, due to the absence of flavor changing neutral currents in the Standard 

Model only charged mesons decay to lepton and its neutrino partner, for 

example, B ττ ν− −→ .  Historically, the striking 10
-4

 suppression of the 

kinematically favored leptonic decay 
eeπ ν− −→  relative to µπ µ ν− −→  was 

successfully explained by the weak interactions. 

ii) In the semileptonic decays, one quark decays through emission of W-boson 

whereas the other constituent quark remains spectator [15]. For example, 

0

e
B D e ν− −→ , proceed via spectator quark diagram as shown in Figure 2.5. 

 

Figure 2.5 Spectator diagram for semileptonic decay of bottom mesons 

 

c) Nonleptonic Weak Decays 

Nonleptonic weak processes, the decay involves all the hadrons in the initial and 

final states for example, 0
B D π− −→ , as shown in Figure 2.6. The nonleptonic decays 

of bottom mesons are more complicated as compared to the leptonic and semileptonic 

decays due to the strong interaction interference in the hadronic final states [16]. 
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Figure 2.6 Spectator diagram for nonleptonic decay of bottom mesons 

 

In this thesis, we investigate the nonleptonic decays of the heavy flavor hadrons, for 

which the required spectroscopy of the s-wave meson is presented in the following section. 

 

2.7  S-WAVE MESON SPECTROSCOPY  

            According to the quark model, s-wave mesons are bound states of quarks
6
 q  and 

q , where q = u, d, s, c or b. These quarks belong to the irreducible representation 5 of 

(5)SU  such that  

u

d

s

c

b

 
 
 
 =
 
 
 
 

5                 (2.24)                                                                  

and antiquarks belong to  

* ( )u d s c b=5 .                                        (2.25) 

 

The spins of the quarks q  and q  will give rise to s-wave pseudoscalar ( 0− ) and vector (1− ) 

states. Since 

            
*5 5 24 1,⊗ = ⊕                                                   (2.26)    

                                                 
6
The top quark is unique in that, unlike the other quarks, it is massive enough to decay to a real W boson. The 

decay time is so short, as compared to the typical timescale of hadronic interactions, thatno bound states 

would be seen. 
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the mesons belong to SU(5) singlet or 24-plet.  

 Under the (5)  (4) (1)bSU SU U⊃ ⊗  branching of the quark multiplet is given by   

−⊃ ⊕
0 1

5      4    1 ,  

i.e.                                                                 

u

d
b

s

c

−

 
 
  ⊕
 
 
 

1

0

   ( ) ,   

 where the subscripts denote the bottom quantum number belonging to the U(1)b group. 

Thus, the meson multiplet have the following decomposition under SU(4):  

 −⊃ ⊕ ⊕ ⊕*

1 0 1
24 4 (15 1) 4 , 

⊃
0

1 1 .                    

The naked bottom mesons containing a single b quark lie in SU(4)-sub multiplet 4 and the 

antimesons of these states lie in 4*.  

 

2.7.1 PSEUDOSCALAR MESONS  

            The pseudoscalar mesons containing single b quark under (4)  (3) (1)cSU SU U⊃ ⊗  

branching are identified as  

 
( , , )0 0

04 3 sB B B
+⊃ ( ),cB

+
+⊕ 11

                                  
(2.27) 

where the subscript denotes the charm quantum number. 

Similarly, *4 contains 

 
* * ( , , )0 0

04 3
s

B B B−⊃
*

( )cB
−

−⊕ 11 .                             (2.28)            

15-plet mesons are decomposed as given below  

( , , , , , , , , )
0 0 0

0 0 8 1515           8     1  K K K K
+ + − −⊃ ⊕ π π π η η  

        s
D D D

+ +⊕ * 0

1    3     ( , , ) ( , , ),
s

D D D
− −

−⊕ 0

1      3    
           

(2.29) 

and singlet state is given by 
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( ).η⊃ 0 01           1                                               (2.30) 

            In the real world, mixture of the states 
8η , 

15η  and 
0η  are identified with the 

physical states η , η′  and 
cη  through  

8 15 0  =   cos     sin  (  cos      sin  ),P P P P− +η η θ θ η φ η φ  

                         8 15 0  =   sin     cos  (  cos     sin  ),′ + +P P P Pη η θ θ η φ η φ  

                          15 0  =   (   sin      cos  ).c P P− +η η φ η φ
                                             

(2.31)
                

The mixing angles 
Pθ  and 

Pφ  are determined from the empirical properties of these states. 

cη  is normally considered to be cc  state, which corresponds to  = 60
o

P
φ  (ideal mixing), 

and  = 10
o

P
θ − , 0  23−  follows from the quadratic and linear mass formulas, respectively 

[1]. Similarly, bη  is taken to be bb  state in the limit of ideal mixing. Experimentally, all 

these mesons have been detected and their masses are well measured.  

 

2.7.2  VECTOR MESONS  

The vector mesons are similarly described by the following replacement  

a) Isovector :    ρπ →  

b) Isodoublets   :     **,K K D D→ → *
B B→   

c) Isosinglets    :     *,ss DD → ,φη → ,' ωη → cη ψ→
 
as 

                         * * *
( , , )

0 0

04 3 sB B B
+⊃ *

( )cB
+⊕ 11 ,                         (2.32)              

                     
* * * * *( , , )

s
B B B−⊃ 0 0

04 3 *( )11
c

B −
−⊕ ,                        (2.33)                                  

 
* * * *

( , , , , , , , , )K K V V K Kρ ρ ρ+ + − −⊃ ⊕ 0 0 0

0 0 8 1515           8     1    

                
( , , )

s
D D D

+ +⊕ * * *0 *

1       3   ( , , )
s

D D D
− −

−⊕ * *0 *

1        3   ,                       (2.34) 

and 

( ).V⊃ 0 01           1                    (2.35) 
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The physical states ω , φ  and ψ  are the mixture of diagonal states 8V , 15V  and 0V . These 

are given by  

 8 V V 15 V 0 V  =  V  sin     cos  ( V  cos     V  sin  ),ω θ θ φ φ+ +  

 8 V V 15 V 0 V  =  V  cos     sin  ( V  cos     V  sin  ),φ θ θ φ φ− +  

                                 15 V 0 V  =  (  V  sin     V  cos  ).ψ φ φ− +                                         (2.36) 

 

Ideal mixing [6], fixes  = 35.3o

V
θ  and  = 60o

V
φ . Thus, /J ψ  is purely cc  state,  = ssφ  and 

(   )
 = 

2

uu dd
ω

+
. Similarly, ideal mixing fixes ϒ  to be  bb  state. We wish to point out that 

except for Bc
*
, all the meson masses are available experimentally. Theoretical estimates for 

hyperfine splitting *
cc

BB
m m− obtained in different quark models [17, 18] range from 65  to 

90 MeV. For the present work, we take * 73 15
cc

BB
m m− = ±  MeV from [19], which has 

been quite successful in giving charmonium and bottomium mass spectra.  

In the following, we discuss the main aspects of the leptonic, semileptonic and 

nonleptonic weak decays of bottom mesons. 

 

2.8 LEPTONIC WEAK DECAYS OF B MESONS  

A key feature of leptonic and semileptonic decays of bottom mesons is their relative 

simplicity a consequence of the fact that here the effects of the strong interactions can be 

isolated. In case of leptonic decays, the two initial state quarks must annihilate to generate 

lepton and its neutrino partner (Fig. 2.4). Thus, only charged bottom meson can decay to 

such leptonic pairs for instance / /
e

B e µ τν µ ν τ ν− − − −→ , out of these e−  and µ −  emitting 

decays are helicity suppressed, but for B ττ ν− −→  decay the large τ mass reduces the 

helicity suppression. The experimental branching ratio for B ττ ν− −→  decay is (1.4 ± 

0.4)×10
-4

 [1]. The matrix element of the hadronic current to the vacuum is given by  
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0 =
B B

J B i f Pµ ,                                                           (2.37) 

where 
BP  is the four-momentum of pseudoscalar meson. The decay constant fB measures 

the amplitude of the quarks to have zero separation. In the heavy quark limit the 

pseudoscalar decay constant is given by the formula [15],  

 
2

2 12 | (0) |
   =    B

B

f
M

ψ
,                                                          (2.38) 

which yield,  

0.260Bf = GeV, 

taking 
2

)0(ψ from the Table 2.1, which is in nice agreement with the experimental 

observation:  

Bf = (0.247 ± 0.069) GeV,  

derived form the decay rate formula [11],  

2
2 2

2 22

2
( ) 1

8

lF
bq B l B

B

G m
B l V m m f

m
ν

π

 
Γ → = −  

 
,                                    (2.39) 

where 
bqV  is the CKM matrix element, 

lm and 
Bm  are masses of the lepton and charged 

meson, respectively. Note that B ττ ν− −→  decay is sensitive to non-Standard Model 

contributions from the charged Higgs boson mediated amplitudes [1]; it can either increase 

or decrease the expected branching ratio. Theoretical predictions  for  fB  range from 0.120 

to 0.290 GeV [15, 20]. Similarly, we find 
sB

f  = (0.345 ± 0.069) GeV, whose theoretical 

predictions varies from 204 to 300 [15, 20]. 

 

2.9 SEMILEPTONIC WEAK DECAYS OF B MESONS 

We now discuss the semileptonic decays 
lB X lν→  of heavy mesons in which the 

hadronic system X is a single meson, usually a pseudoscalar (P) or a vector (V) particle. 
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Semileptonic decays play a prominent role in heavy quark physics, as they provide 

information about the binding of quarks. These decays proceed via the spectator diagram, 

already shown for b quark decays in Fig 2.5. Models must account for strong interaction 

effects only among three primary quarks (b, q and c or u) rather than five in the more 

complicated case of the hadronic decays. Thus, hadronic physics enters through a single 

hadron-hadron matrix element, which is expressed in terms of a few form factors [15].  

The semileptonic decays of bottom mesons can proceed through the selection rules 

[21]  

i. Bottom changing and charm conserving, 

   1, 0, 0b C S∆ = ∆ = ∆ =   for 
lb u lν→ ;                                (2.40) 

ii. Bottom changing and charm changing, 

   1, 1, 0b C S∆ = ∆ = ∆ =   for 
lb c lν→ .                                (2.41) 

Out of these, b c→ transition is dominant among the b quark decays due to the larger 

CKM factor. 

In general, the semileptonic decay amplitude ( )lA B X lν→  can be expressed as 

2

( )
2

F
SL Qq

G
A B X V L Hµ

µ→ = ,                               (2.42) 

where 

2 5 1
( ) (1 ) ( ),

,

L u k k

H X J B

µ µ

µ µ

γ γ υ= −

=
                                     

(2.43) 

For  X = P or V and k1= kl , k2= kv if the decaying quark is a b quark. 
2

bqV is the appropriate 

CKM matrix elements for b q→ transition. For example, 
lB Dl ν−→ , is described by the 

product of two terms, a hadronic current and a leptonic current as 

5(1 )D J B lµ µν γ γ× − . The leptonic piece is straight forward to calculate. Using the 
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Lorenz invariance the hadronic weak currents are expressed in terms of form factors, which 

have certain 2
q  dependence, where 2

( )B Dq p p
µ µ= − , 

Bp
µ  and 

Dp
µ   being the B and D 

momenta four-vectors, respectively. 

 

2.9.1 
l

B Plv→→→→  DECAY: METHODOLOGY 

           From Lorentz invariance, one finds the most general form factor decompositions for 

pseudoscalar mesons can be given in terms of matrix elements of the currents defined [15, 

21] as, 

2 2 2 2

2 2

1 02 2
( ) ( ) ( )

P PB B

PB

m m m m
P J B P P q F q q F q

q q
µ µ µ

− −
= + − + ,                   (2.44) 

where ( )B Pq P Pµ µ= −  and )0()0( 01 FF =  The form factors 2

0 ( )F q  and 2

1( )F q can be 

associated with the exchange of particles with quantum numbers 0PJ +=  and 1PJ −= , 

respectively.  

          The decay width of 
lB Plν→  can be expressed as a function of the four-

momentum transfer (q
2
) between initial and final hadrons. The semileptonic decay width 

[15, 20] for  
lB P lν→  is given by the formula 

2 2 2 22 2 22
2

2 2 2 2

23 2 3

2 2 22 2
2 2 2 2

0 12 2 2 2 2

( , , )
( ) ( )

(2 ) 24

( , , )3
( ) 1 ( ) ,

2 2 ( )

q B PlF
l Qq B P

m
l B

B Pl l

B P

m m qG q m
B Pl V dq m m

q m

m m qm m
F q F q

q q m m

λ
ν

π

λ

 −
Γ → = − × 

 

  
+ +   −   

∫

           

(2.45) 

where ml is the mass of the lepton and 
2 2 2

max0 ( )≤ ≤ = −
B P

q q m m and 

2 2 2 2 2 2 2 2( , , ) ( ) 4= + − −
B P B P B P

m m q m m q m mλ   is related to the three momentum of the daughter 

meson in the rest frame of B meson by 

2 2 2( , , )

2
= B P

P

B

m m q
P

m

λ
. 
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2.10 MOMENTUM  TRANSFER DEPENDENCE OF FORM FACTORS  

In order to calculate the decay modes with a pseudoscalar or vector meson in the 

final state, we need to estimate the relevant form factors and their 2
q  dependence. The 

maximum 2
q  is obtained when 

Dp = 0, that is called the “zero recoil” point. Conversely, 

2
q = 0 occurs when the D has its maximum possible momentum. It should be realized that 

the mass of the virtual W is given by the value of 2
q . At zero recoil (maximum 2

q ), the 

form factors are maximum, because the overlap between the B and D meson wave 

functions is the largest. The form factors decrease as 2
q  decreases [15].  

             There are several different types of models [21-24], which have been developed to 

investigate semileptonic weak decays. Quark model calculations estimates meson wave 

functions and use them to compute matrix elements that appear in the hadronic currents. 

These integrals are performed by analyzing the decay at a particular value of 2
q , either 

2
q = 0 or 2

q = 2

maxq . In quark model calculations the form factors with 2
q  is determined as a 

separate step in the calculation in fact, this variation is assumed to have a very simple form. 

Because the physics being described is nonperturbative, none of these phenomenological 

forms should be taken too seriously. One approach, used in the KS [22] and BSW models 

[21], is called “nearest pole dominance,” which has its origin in vector-dominance ideas. 

Here, 2
q  dependence of a form factor 

if  is assumed to have the form  

2

2 2

(0)
( )

(1 / )

i
i n

pole

f
f q

q m
=

−
, 

where n is an integer, usually one for mesons. The pole mass 
polem  is the mass of the lowest 

lying meson with the quantum numbers appropriate current. In this work, we employ the 

BSW model framework [21] for evaluating the meson form factors, which have been quite 

successful in describing weak mesonic decays. Originally the BSW model assumed the 
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monopole 2
q  dependence (n = 1) for all the form factors. However, in the improved 

version [24] of the BSW model (BSW II), consistency with the heavy quark symmetry 

seems to require certain form factors such as F1, A0, A2 and V to have dipole 2
q  dependence 

and F0 and A1 to have monopole q
2
 dependence, i.e. 

2 0
0 2 2

(0)
( )

(1 / )
S

F
F q

q m
=

−
 and 2 1

1 2 2 2

(0)
( )

(1 / )
V

F
F q

q m
=

−
,  

where Sm
 
and  Vm  are the pole masses of scalar and vector mesons, respectively. We give 

the pole masses used for numerical calculations in Table 2.1. 

 

Table 2.1 Pole masses (GeV) used in numerical calculations 

 

 

 

 

 

 

 

 

 

 

 

 

2.11 BSW MODEL FRAMEWORK 

In this framework, the initial and final state mesons are given by the relativistic 

bound states of a quark 1q  and an antiquark 2q  in the infinite momentum frame using the 

relativistic harmonic oscillator potential [21], 

 

Current 

(0 )m
−−−−  

0
A  

(1 )m
−−−−  

1
,F V  

(0 )m
++++  

0
F  

(1 )m
++++  

1 2
,A A  

dc  1.87 2.01 2.47 2.42 

sc  1.97 2.11 2.60 2.53 

uc  5.27 5.32 5.78 5.71 

sb  5.38 5.43 5.89 5.82 

cb  6.30 6.34 6.80 6.73 
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Zψ

δπ

                     

(2.46) 

where ),0,0,( 0 PPP =µ  with ∞→P , x  denotes the fraction of the longitudinal momentum 

carried by the non-spectator quark 1q , and 1Tp  denotes its transverse momentum: 

Ppx Z1= , ),( 11 yx pp=1Tp . 

We calculate all the form factors appearing in the expression (2.41) and (2.43) to later 

investigate their flavor dependence. 

By expressing the current µJ  in terms of the annihilation and creation operators, the 

form factors are given by the following integrals: 

1

2 *

0 1 T T

0

(0) (0) ( (p , ) (p , ))
BP BP

T P BF F d p x x dxψ ψ= = ∫ ∫ .                            (2.47) 

The meson wave function is given by 

))
22

1
(

2
exp()2exp()1(),( 2

2

22

2

2
2 21

m

mm
x

m
xxNx

qq

mm

−
−−−−−=

ω
ωψ 2

TT pp ,        (2.48) 

where m  denotes the meson mass and im  denotes the i
th

 quark mass, mN  is the 

normalization factor and ω  is the average transverse quark momentum, 2ω=2

Tp .  

   

2.12 FORM FACTORS AND BRANCHING RATIOS  

              In the BSW model [21], the form factors are usually calculated by taking 

ω =0.50 GeV for all the mesons and  0.35u dm m= =  GeV, 0.55sm =  GeV, 1.7cm =  GeV 

and 9.4=bm  GeV. The B P→  form factors thus obtained are given in column 3 of Table 

2.2. 
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Table 2.2 Form factors of B P→→→→  transition ( ωωωω = 0.50 GeV) 

 

 

 

 

 

 

 

 

 

 

Using these form factors, we obtain the branching ratios for various 
lB Plν→  decays, 

as given in column 2 of Table 2.3. We make the following observations: 

 

i. For ∆b = 1, ∆C = 0,∆S = 0 mode, branching ratios of the dominant decays 

are 0( )+→ eB B eπ ν  = 1.45×10
-4 

and 0
( )

+→B B µπ µν  = 1.45×10
-4

, which are 

slightly higher than the experimental value (1.36±0.09)×10
-4

.  

ii. In case of ∆b =1, ∆C=  1, ∆S = 0 mode, branching ratios of dominant decays 

are 0( )+ → eB B D eν  = 2.09×10
-2

 and  0( )+→ eB B D eν  = 1.94×10
-2

,  which 

match well with the experimental value (2.27±0.12) ×10
-2

  and (2.10±0.11) 

×10
-2

.   

 

 

 

 

 

Modes Transition 
0

(0)
BP

F  

 

∆b = 0, ∆C = 0,∆S = 0 

B π→  0.39 

sB K→  0.42 

 

∆b =1, ∆C = 1,∆S = 0 

B D→  0.70 

s sB D→  0.67 
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Table 2.3 Branching ratios of 
l

B Plνννν→→→→  decays 

 

Decays ωωωω =0.50 GeV Expt. 

∆b = 1, ∆C = 0, ∆S = 0 

0

eB eπ ν+ →  7.77×10
-5

 (7.7±1.2)×10
-5

 

0B µπ µν+ →  7.78×10
-5

 (7.7±1.2)×10
-5

 

0

eB eπ ν+→  1.45×10
-4

 (1.36±0.09)×10
-4

 

0B µπ µν+→  1.45×10
-4

 (1.36±0.09)×10
-4

 

∆b =1, ∆C=  1,  ∆S = 0 

0

eB D eν+ →  2.09×10
-2

 (2.27±0.12) ×10
-2

 

0B D µµν+ →  2.09×10
-2

 (2.27±0.12) ×10
-2

 

0

eB D eν+→  1.94×10
-2

 (2.17±0.11) ×10
-2

 

0B D µµν+→  1.94×10
-2

 (2.17±0.11) ×10
-2

 

0

s s eB D eν+→  1.84×10
-4

 --- 

0

s sB D µµν+→  1.84×10
-4

 --- 

 

 

2.13 NONLEPTONIC WEAK PROCESSES 

 In treating exclusive hadronic decay, it is important to recognize from the outset 

the complex relation between the quark level operators and the actual hadrons; the explicit 

structure of hadrons is certain to play an important role in understanding exclusive decays. 

The simplest nonleptonic decays are the one involving two-body final states and their most 

general form is 1 2

eff

W
M M H B  where the QCD modified weak hamiltonian is  

                             
1 1 2 3 4 2 1 4 3 2= [ ( )( ) ( )( )],

2

eff F
W

G
H c q q q q c q q q q+

 

with 

                                   
1

1
( )

2
c c c+ −= +  and 

2

1
( ).

2
c c c+ −= −
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To calculate the weak decay amplitudes of the weak hamiltonian between the initial 

one particle and final two particle state, one usually tries to employ a framework in which it 

is related to the matrix elements of either the currents or of the weak hamiltonian  eff

WH  

between single particle states. Such matrix elements contain all information conscerning the 

modification of the basic weak interactions by virtual strong interaction effects.  In 

addition, final state interactions [25] are also likely to be important, especially for the 

charmed mesons, as charm quark masses lie in a region where resonances rescattering due 

to the indivisual characteristics of particles, like braod width which normally the kinamatics 

and phase space. 

 

2.14 WEAK HAMILTONIAN FOR BOTTOM CHANGING DECAYS 

          The weak Hamiltonian generating the b quark decays [26] is given by 

           

1 [ ( )( ) ( )( ) ( )( )
2

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ],

∆b  *  * * F
w ub cd ub cs ub ud

* * * 

ub us cb ud cb us

* * 

cb cs cb cd

G
H     V  V  ub dc   V  V ub s c   V  V ub du   

V  V ub su   V  V  cb du   V  V  cb su   

V  V  cb sc  V  V cb dc  

= = + + +

+ + +

+

                     (2.49) 

where     

               ( i jq q ) = ( 5(1 )i jq qµγ γ− )                                               (2.50) 

denotes the V A−  current and the color and space-time structure is omitted. Vij are CKM 

matrix. Following selection rules for various decay modes generated by the Hamiltonian 

are given below: 

1. CKM-enhanced modes:  

 ∆b = 1, ∆C = 1, ∆S = 0;       ∆b = 1, ∆C = 0, ∆S = -1, 

2. CKM-suppressed modes: 

  ∆b = 1, ∆C = 1, ∆S = -1;      ∆b = 1, ∆C = 0, ∆S = 0,  
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3. CKM-doubly-suppressed modes:  

     ∆b = 1, ∆C = ∆S = -1;             ∆b = 1 ∆C = -1, ∆S = 0.                           (2.51) 

            The weak Hamiltonian defined in (2.49) contains two weak quark currents. As the 

quarks involved may exchange gluons and the produced quarks in the weak interactions 

finally form physically observable hadron states, it is not easy to determine the decay 

matrix element in a straight forward manner. Since the data is measured at the level of 

hadrons, which are bound states of quarks, one has to match the two levels. Therefore, it is 

very important to include the QCD modification of the decay amplitudes at various levels, 

e.g. at quark level and at the hadron level. The effects at the weak vertex are calculated 

using the perturbative QCD, whereas the long-distance QCD effects like hadronization are 

a lot more complex. These QCD modifications are explained as follows.  

 

2.15 QCD MODIFICATIONS 

 Since, the weak Hamiltonian (2.49) contain weak quark currents only, the 

nonleptonic decays experience significant strong interaction intreference, due to gluon 

exchange among the quarks. Further, the produced quarks in the weak interactions finally 

form physically observable hadron states. Therefore, it is essential to investigate the strong 

interaction effects on the weak decay amplitudes. For this purpose, it is important to 

recognise the two scales involved in the weak decays of the hadrons. Firstly, the distance 

scale for W-exchange is 161 / 10 ,weak WR M cm
−≈ ≈  and secondly the confinement scale 

given by 
QCDΛ ( 1 hadronR fermi≈ , the typical radius of a hadron). These two different scales 

allow one to separate the strong interactiona as short and long distance QCD effects. In 

practice, the short distance gluon exchange effects are calculated around the weak vertex 

using the perturbative QCD, whereas the long distance strong interactions effects, being 

non-perturbative in nature, are treated phenomenologically.  
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2.15.1 HARD GLUON CORRECTIONS  

 Through the short distance gluon exchange effects, the color structure of the 

interaction may be distorted by color octet currents. At the bare quark level, in the absence 

of QCD effects, the general Hamiltonian is given by    

 

(0)

2 1 4 3

 
  = ( )( )

2

F
W

G
H q q q q .                                                (2.52) 

Here, i  and j  are the flavor indices and color index is omitted. At the weak interaction 

scale ~ 1/ WM , the gluons exchanged between the quarks, having a large momenta, are 

called hard-gluons. The lowest order correction to the basic weak vertex (Figure 2.7), arise 

from such gluons shown in Figure 2.8. In the leading order at the mass scale µ  (i.e. first 

order in ( )Sα µ ), the weak Hamiltonian then becomes [27],    

 
2

(1) (0)

2 1 4 32

3
= ( )( ).

82

a aS WF
W W

MG
H H ln q q q q

α
λ λ

π µ
−                    (2.53) 

This result reveals that hard gluonic effects induce product of weak color octet currents 

containing the same chirality and flavor structure as the color singlet current in (0)

WH . 

 

 

Figure 2.7 Basic quark weak vertex 
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Figure 2.8 Lowest order corrections to the weak Hamiltonian 

 

Using the Fierz identity,   

 
8

=1

2
 = 2 ,

3

a a

ij kl ij kl il kj

a

λ λ δ δ δ δ− +∑                                  (2.54) 

 and Dirac algebra   

 
5 5 5 5[ (1 )] [ (1 )] = [ (1 )] [ (1 )] ,µ µ

µ αβ δε µ αε δβγ γ γ γ γ γ γ γ− − − − −            (2.55) 

(1)

WH  can be expressed as   

2 2
(1)

2 1 4 3 2 3 4 12 2

3
= [(1 )( )( ) ( )( )].

4 42

S W S WF
W

M MG
H ln q q q q ln q q q q

α α
π µ π µ

+ −
         

(2.56) 

The first term represents the renormalized charged current interaction, and the 2nd term 

describes a new effective neutral current interaction shown in Figure 2.9. 

 

Figure 2.9  Effective charged current and effective neutral current processes 
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Using operator product expansion (OPE) and renormalization group theory, the 

short distance correction can be calculated [21, 24, 28] to all orders in sα . The effective 

weak Hamiltonian finally
7
 becomes   

 
1 1 2 3 4 2 1 4 3 2= [ ( )( ) ( )( )],

2

eff F
W

G
H c q q q q c q q q q+

 

 (2.57) 

where c1 and c2 are known as the scale dependent Wilson QCD coefficients [21]. Defining 

1 2( ) ( ) ( )c c cµ µ µ± = ± .                                            (2.58) 

The leading-log approximation gives  

6

2 (33 2 )( )
( )

( )

fn
s W

s

M
c

γ

α
µ

α µ

±−

−

±

 
=  
 

 ,                                             (2.59) 

where 2 2γ γ− += − = , and 
fn  is the number of active flavors, which is taken to be five in 

this case. 

The QCD modified weak Hamiltonian describing the B decays is then given by, 

 

A. BOTTOM CHANGING ( 1b∆ =∆ =∆ =∆ = ) DECAYS 

i) The CKM-favored modes (∆b = 1, ∆C = 1,  ∆S = 0;   ∆b = 1, ∆C = 0, ∆S  =   

-1) 

                        

*
1 2

*
1 2

*
1 2

*
1 2

{ [ ( )( ) ( )( )]
2

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]},

F
W cb ud

cb cs

cb us

cb cd

G
H V V c cb du c db cu

V V c cb sc c sb cc

V V c cb su c sb cu

V V c cb dc c db cc

= + +

+ +

+ +

+

                              (2.60) 

                                                 
7
 In fact, several other terms, with smaller QCD coefficients, arise in the full effective weak Hamiltonian. 
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ii) The CKM-suppressed modes (∆b = 1, ∆C = 1, ∆S = -1; ∆b = 1, ∆C = 0, ∆S = 

0,   ∆b = 1, ∆C = ∆S = -1; ∆b = 1 ∆C = -1, ∆S = 0) 

         

*
1 2

*
1 2

*
1 2

*
1 2

{ [ ( )( ) ( )( )]
2

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]},

F
W ub cs

ub ud

ub us

ub cd

G
H V V c ub sc c sb uc

V V c ub du c db uu

V V c ub su c sb uu

V V c ub dc c db uc

= + +

+ +

+ +

+

                       (2.61) 

2.15.2  LONG DISTANCE EFFECTS 

            One, usually assumes that the long distance QCD effects arising from confinements 

of the quarks, can be absorbed into the initial and final state hadron wave functions [21, 

28]. Such strong interaction effects manifest themselves in the decay constants of the 

mesons and the formfactors appearing in the weak currents of meson states. These have 

already been discussed in the context of leptonic and semileptonic decays. However, for 

nonleptonic weak decays these may be additional long distance effects due to strong 

interactions, Final State Interactions (FSIs) [29] among the decay products, broad width 

resonaces [30], soft gluon exchange giving rise to nonfactorizable contributions [31]. These 

are essentially non-perturbative phenomena which can not be calculated from the first 

principles in the QCD. Due to larger characteristic energy transfer in bottom mesons such 

effects are expected to be small and are ignored in our analysis [25]. 

 

2.16  SPECTATOR QUARK MODEL 

         Now, we move to consider various quark level processes that can contribute to the 

nonleptonic decays. These processes can be classified as: (a) W-external emission (tree 

level), (b) W-internal emission (color-suppressed), (c) W-exchange (neutral mesons only), 
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(d) W-annihilation (charged mesons only), (e) Pure Penguin (internal gluon emission, as 

shown in Fig. 2.10. Like bottom meson decays, weak nonleptonic decays of Bc meson 

acquire dominant contributions from spectator diagram involving W-emission processes (a) 

and (b), which has been quite successful in describing two body decays of heavy flavor 

mesons. For pseudoscalar mesons, the W-annihilation diagram is disfavored by helicity 

arguments [21], which yield the following relative ratio of annihilation to spectator graph, 

 

3

2 3| (0) | ,
qanni

S

spect Q

m
m

M
ψ α

 Γ
≈ ≈   Γ          

                         (2.62) 

 where 
q

m  and 
Q

M  represent masses of the light and heavy quark in heavy flavor mesons. 

As the mass of heavy quark goes up, the annihilation graph becomes less and less 

important. The W-exchange diagrams are further suppressed by a factor 1/ 9  in comparison 

to annihilation graph, due to the required color matching. Penguin diagrams are suppressed 

for bottom conserving and charm changing decay modes due to GIM mechanism. For 

bottom changing decays, they may generate a small contribution only to  (∆b = 1, ∆C = 0, 

∆S = 0) and (∆b = 1, ∆C = 0, ∆S = -1) modes. Following assumptions are made in this 

approach [28]: 

a) The initial hadron is represented by its valance quark configuration. More 

complex bound state fluctuations, often addressed as the sea of quarks and 

gluons, are disregarded.  

b) Soft gluon interactions accompanying the weak process are neglected.  

c) The inclusive sum of hadronic final states is replaced by the final state of 

"free" quarks emitted in the decay.  

In the constituent quark model, the contributions arising from spectator quark processes can 

be obtained using factorization scheme, which is discussed in next the section.  
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Figure 2.10  Weak quark level processes: (a) W-external emission, 

                             (b) W-  internal emission,  (c) W-exchange,  (d) W-annihilation 

and  (e) Pure Penguin 
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2.17 FACTORIZATION SCHEME 

Factorization is the assumption that two body hadronic decays of B mesons can be 

expressed as the product of two independent hadronic currents, one describing the 

formation of a meson from the converted b quark and the light spectator quark, and the 

other describing the production of a meson by the hadronization of the virtual W 
– 

[21, 24, 

30]. This assumption can be justified more in the decays of heavier hadrons by assuming 

that the lighter meson couples with vacuum through the vacuum insertion approximation 

(VIA). Thus three-body matrix elements for the decay 
1 2→B M M  are reduced to the two-

body ones, 

† †

1 2 1 2< | | > < | | 0 >< | | >≈M M J J B M J M J B
µ µ

µ µ , (2.63) 

As we know that the exclusive decay rates depend on long distance dynamics, in the 

factorization hypothesis the long distance effects enter through the hadronic matrix 

elements 
1< | | 0 >M Jµ  and †

2< | | >M J B
µ . To compute †

2< | | >M J B
µ , one takes 

recourse to some quark model hadronic wave functions. Using the lorentz invariance, these 

matrix elements are usually expressed in terms of form factors, which are calculated in the 

chosen quark model. The form factors have certain 2
q  dependence, q  is the momentum  

transfer between initial and final meson.  It may be noted that these matrix elements also 

appear in the semileptonic decays 2 lB M lν→ , so some of these form factors may be 

ontained from experimental decay rates, which involve the form factors appearing in the 

semileptonic decays.  To evaluate 
1< | | 0 >M Jµ  part, one may use the current field [21] 

identities like,  

 
1

1 1
( )  =   ,

A A
ud f f m f m Aµ π µ ρ ρ µ µ

π ρ∂ + + +…  

where the currents are proportional to the interpolating stable or quasi-stable hadron fields 

carrying the quantum number of the quark currents, 
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5 5( )  = ( (1 ) ) ( (1 ) ) ,

H
ud u d u dµ µ µγ γ γ γ   − → −                       (2.64) 

Here, the subscript H now denotes hadron field operators with the appropriate quantum 

numbers, e.g. the Cabibbo enhanced weak Hamiltonian now can be written as, 

*

1 2[ ( ) ( ) ( ) ( ) ]
2

eff F
W ud sc H H H H

G
H V V a ud s c a uc s d′ ′ ′ ′= + ,                    (2.65) 

where H denotes the effective hadronic field. Note that we have replaced the QCD 

coefficients 
1,2 ( )c µ  by new scale independent parameters 1a  and 2a , which now determine 

the strength of the charged and neutral current interaction, respectively. 

1 1 2
cm

a c c
µ

ξ
=

= + ,        
2 2 1

cm
a c c

µ
ξ

=
= + .                          (2.66) 

These involve new and free parameters ξ  of a priori unknown size. 0ξ =  means color 

matching is necessary for forming a hadron and 1ξ =  means it is not. Hence, the relation of 

the coefficients 
1a  and 

2a , to the QCD short-distance coefficients c+  and c−  of the 

effective quark Hamiltonian is not straightforward. It must be kept in mind that the origin 

of various terms in (3.24) is different, while c±  are due to hard gluon effects, the 

parameters ξ  is appearing due to the soft gluons [21, 24, 28]. The parameter ξ  denotes the 

relative size of the matrix element in color space. Naively, we could expect 
1

cN
ξ = , 

(number of colors, 3)cN =  arising from color mismatch in forming the color singlets. 

However, charm meson data seemed to favor ξ  = 0. In practice, 1a  and 2a  are treated as a 

free parameter to be fixed from experiments. 

Finally, given a nonleptonic weak decay 1 2B M M→ , the decay amplitude can be 

expanded as  



 49

 

{ }

1 2

† †

1 2 2 1

( )
2

0 0 .

FG
B M M Cabibbo factors QCD factors

M J M J B M J M J Bµ µ µ µ

→ + = × ×

+              

(2.67) 

 

By factorizing these matrix elements, one can distinguish three classes of decays: 

• class I transition caused by color favored diagram: the corresponding decay 

amplitudes are proportional to 
1a , where )(

1
)()( 211 µµµ c

N
ca

c

+= , and cN  is the 

number of colors. 

• class II transition caused by color suppressed diagram: the corresponding decay 

amplitudes in this class are proportional to 2a , i.e. for the color suppressed modes  

).(
1

)()( 122 µµµ c
N

ca
c

+=    

• class III transition caused by both color favored and color suppressed diagrams: 

these decays experience the interference of color favored and color suppressed 

diagrams. 

  26.1)(1 =µc , 51.0)(2 −=µc  at 2≈ cmµ ,                                                       

     12.1)(1 =µc  , 26.0)(2 −=µc  at 2

bm≈µ  [25]. 

 

2.18  BOTTOM MESON DECAYS AND RELATIVE SIGN OF ( )
2 1

a a   

In the decays of charmed mesons the effect of color supression is obscured by the 

effects of final state interactions (FSI), and soft gluon effects which enhance W-exchange 

digrams. When the BSW model is used to fit the data on charm decays it gives values 

1 1.26a =  and 
2 0.51a = −  justified in the large 

cN  limit. The BSW model assumes that values 
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of the coefficients can be extrapolated to 2= cmµ  to 2= bmµ  taking into account the 

evaluation of strong coupling constant (alphas). This extrapolation give the predictions 

1 1.10=a  and 2 0.24= −a for B decays. It may be noted that the smaller magnitude of 2a  

means that in contrast to the charm sector one expects to find a more consistant pattern of 

color suppression in B meson decays. However, the experimental results on  B meson 

decays have clearly shown that large 
cN  limit does not work well.  

           By comparing B−  and 0B  decays, 
1| |,a  

2| |a  and the relative sign of 
2 1/a a  can be 

determined. CLEO [24, 25] data clearly indicate a constructive interference in charged 

B decays, B PP→ , in sharp contrast to charm decays and hence a positive value of 2a , 

while the sign of 1a  stays same. Thus, 0
B D π+ −→  yield [24, 25] 

                                                      
1| |   =   1.03 0.04 0.16,± ±a                              (2.68) 

 0
B Xψ→  decays yield [24]:   

                                                      
2| |   =   0.23 0.01 0.01,a ± ±                             (2.69) 

 and data on 0 0 *0 *0/ / /B D D D Dπ ρ π ρ− − − − −→  clearly yield [24, 25] 

                    2

1

   =   0.25 0.07 0.06.
a

a
± ±   

         By comparing branching ratios of B− and 0B decay modes it is possible to determine 

the sign of 2a  relative to 1a . The BSW model, predicts the following ratios [24]:  

 

Mode Destructive Constructive Experimental 

0
( )

( )

B B D

B B D

π
π

− −

− + −

→
→

 
30.56 10−×  31.73 10−×  3

(1.81 0.10) 10
−± ×  

0
( )

( )

B B D K

B B D K

− −

− + −

→
→

 
30.60 10−×  31.65 10−×  3(2.00 0.61) 10−± ×  
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These ideas have been applied to investigate the weak hadronic decays of the heavy 

flavor hadrons. Theoretical focus has, so far, been on the weak hadronic decays emitting s-

wave mesons, / /B PP PV VV→ , in the final state [32, 33].  It may be noted that, B 

mesons, being heavy, can also emit p-wave mesons [34, 35] like axial-vector (A), tensor (T) 

and scalar (S) mesons. Experimentally, there exists a reasonable amount of data on 

branching ratios of axial-vector, tensor and scalar mesons emitting decays of bottom 

mesons, which has recently attracted the interest of physicists. On the experimental side, we 

expect numerous experimental observations of heavy flavor decays involving p-wave 

mesons due to the growing experimental facilities at BARBAR, DELPHI, Belle, CLEO, 

CDF etc. Therefore, we study p-wave emitting decays of bottom mesons in the subsequent 

chapters.  
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CHAPTER 3   

HADRONIC WEAK DECAYS OF BOTTOM 

MESONS EMITTING PSEUDOSCALAR  

AND AXIAL-VECTOR MESONS  

 

3.1 INTRODUCTION 

Phenomenological quark model approach has been quite successful in the 

understanding of semileptonic decays of B mesons. For weak hadronic decays emitting s-

wave mesons, the factorization hypothesis [1, 11] worked reasonably well to explain the 

available experimental data.  Besides these decays, B mesons, being heavy, can also emit p-

wave mesons [12-15], axial-vector (A), tensor (T) and scalar (S) mesons. In this chapter, we 

investigate axial-vector emitting decays of 0,B B
−  and 0

sB  mesons, which are the bound 

state of b quark and a light antiquark (u, d or s), in the CKM-favored and CKM-suppressed 

modes. Since B decays has six selection rules for b c→  and b u→  transitions, large 

number of such decays are possible to occur. Selection rules for various decay modes 

generated are given below: 
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1. CKM-enhanced modes:  

 ∆b = 1, ∆C = 1, ∆S = 0;      ∆b = 1, ∆C = 0, ∆S = -1, 

2. CKM-suppressed modes: 

  ∆b = 1, ∆C = 1, ∆S = -1;      ∆b = 1, ∆C = 0, ∆S = 0,  

3. CKM-doubly-suppressed modes:  

     ∆b = 1, ∆C = ∆S = -1;        ∆b = 1 ∆C = -1, ∆S = 0.             

On the experimental side, many of these decays have been observed that require 

theoretical understanding. In the following, experimentally [16], a few B PA→  (where A  

represents an axial-vector meson) decays have been measured and few upper limits are 

available:  

0 3

1( ) (4 4) 10B B D a
− − −→ = ± × , 

0 3

1( ) (1.5 0.6) 10B B Dπ− − −→ = ± × , 

1( )cB B π χ− −→ = 5(2.2 0.5) 10−± × , 

1( )cB B K χ− −→ = 4(4.9 0.5) 10−± × , 

0

1( )B B K a
− −→ = 5(3.5 0.7) 10−± × , 

0

1( )B B aπ− −→ = 6(26.0 7.0) 10−± × , 

0

1( )B B aπ− −→ = 6(20.0 6.0) 10−± × , 

0

1( )B B D a
+ −→ = 2(0.6 0.3) 10−± × , 

0 0

1( )cB B K χ→ = 4(3.9 0.4) 10−± × , 

0

1( )B B K a
− +→ = 6(16.0 4.0) 10−± ×  

0 6

1( ) (33.2 5.0) 10B B aπ ± −→ = ± ×∓ , 

0 3

1( ) 1.8 10sB B D a
− − −→ < × , 
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0 3

1( (1400)) 2.6 10B B Kπ− − −→ < × , 

0

1( )sB B D a
+ −→  32.2 10−< × , 

0

1( (1400))B B Kπ + −→  31.1 10−< × , 

0 0 0 3

1( ) 1.1 10B B aπ −→ < × . 

Using the factorization scheme to obtain the decay amplitudes, we calculate the 

branching ratios of these decay modes. Naively, the p-wave meson emitting decays of 

hadrons are expected to be suppressed kinematically due to the large mass of these meson 

resonances. However, we find some of these decay channels have branching ratios 

comparable to that of the s-wave mesons emitting decay modes and can be within the reach 

of future experiments. 

 

3.2 AXIAL-VECTOR MESON SPECTROSCOPY 

 Experimentally [16], two types of the axial-vector mesons exist with different 

charge conjugations, i.e. 3

1P ( ++= 1PC
J )

 
and 1

1P )1( −+=PCJ ,
 
behave well with respect to the 

quark model qq  assignments. Strange and charmed states are most likely a mixture of 3

1P  

and 1

1P  states, since there is no quantum number forbidding such mixing. In contrast, 

hidden-flavor diagonal 3

1P  and 1

1P  states have opposite C-parity and therefore cannot mix. 

The following non-strange and uncharmed mesons have been observed: 

1. For 3

1P  multiplet, 

i) Three isovector 1(1.230)a  with the quark content ud ,  / 2uu dd−  and du , 

respectively, are 

1a
+ , 0

1a and 1a
−                                                     (3.1) 
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ii) Four isoscalars 1(1.285)f , 1(1.420)f , )512.1(1f ′  and )511.3(1cχ , out of 

which 
1f (1.420) is a multiquark state in the form of a πKK  bound state [17] 

or a *KK deuteron-state [18]. 

2. For 1

1P  multiplet, 

i) isovector 1(1.229)b  with flavor content same as given in (3.1) and  

ii) three isoscalars )170.1(1h , )380.1(1h′  and )526.3(1ch . C-parity of )380.1(1h′  

and spin and parity of the )526.3(1ch remains to be confirmed.  

Note that the numbers given in the brackets indicate mass (in GeV) of the respective 

mesons, and hereafter we use the same convention. In the present analysis, mixing of the 

isoscalar states of (1++ ) mesons is defined as 

1

1

1
(1.285) ( ) cos ( )sin ,

2

1
(1.512) ( )sin ( ) cos ,

2

A A

A A

f uu d d ss

f uu dd ss

φ φ

φ φ

= + +

′ = + −

                                       (3.2) 

 ),()511.3(1 ccc =χ  

where                 )()( physicalideal AA θθφ −= . 

Similarly, mixing of isoscalar (1+− ) mesons is given by 

                      

1

1

1
(1.170) ( )cos ( )sin ,

2

1
(1.380) ( )sin ( ) cos ,

2

A A

A A

h uu dd ss

h uu dd ss

φ φ

φ φ

′ ′

′ ′

= + +

′ = + −

                                       (3.3) 

            )()526.3(1 cchc = , 

with    ( ) ( )
A A

ideal physicalφ θ θ′ ′= − .                                   (3.4) 
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Proximity of 1(1.230)a  and )285.1(1f  and to a lesser extent that of 1(1.229)b  and )170.1(1h  

indicates the ideal mixing for both ++1  and −+1  nonets, i.e.  

    �0== ′AA φφ .                                      (3.5) 

This is also supported by their decay patterns. 
1f (1.285) decays predominantly to π4  

andηππ , while '

1f (1.512) decays to πKK . Similarly, 
1h (1.170) decays predominantly to ρπ  

and '

1h (1.380) decays to *KK and *KK states. 

States involving a strange quark of ( 1 )
PC

A J
++= and ( 1 )PCA J +−′ = mesons ( su  or sd ) 

mix to generate the physical states in the following manner: 

1 1 1 1 1

1 1 1 1 1

(1.270) sin cos ,

(1.400) cos sin .

A A

A A

K K K

K K K

θ θ

θ θ

′

′

= +

= −

                                  (3.6) 

where AK1 and 1AK ′ denote the strange partners of 1(1.230)a  and 1(1.229)b  respectively. 

Particle Data Group [16] assumes that the mixing is maximal, i.e. 0

1 45θ = , whereas 

1 1(1.270) / (1.400)K K ττ ν→ +  data yields 0

1 37θ = ± and 0

1 58θ = ±  [19]. However, the study 

of 1 1(1.270) , (1.400)D K Kπ π→  decays rules out positive mixing-angle solutions. As 

1 (1.400)D K π− +→  gets largely suppressed for 0

1 37θ = −  the solution 0

1 58θ = −  [13] is 

experimentally favored, which is used in our analysis.  

 The mixing of charmed ( cu  or cd )  and strange charmed ( cs ) states mesons is 

similarly given by 

  

1 1

1 1

1 1 1

1 1 1

(2.427) sin cos ,

(2.422) cos sin ,

A D A D

A D A D

D D D

D D D

θ θ

θ θ

′

′

= +

= −

                                        (3.7) 

and 
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1 1

1 1

1 1 1

1 1 1

(2.460) sin cos ,

(2.535) cos sin ,

s s

s s

s s A D s A D

s s A D s A D

D D D

D D D

θ θ

θ θ

′

′

= +

= −

                                                 (3.8) 

However, in the heavy quark limit, the physical mass eigenstates with 1PJ +=  are 3 2

1P  and 

1 2

1P  rather than 3

1P  and 1

1P  states as the heavy quark spin QS  decouples from the other 

degrees of freedom, so that 
QS  and the total angular momentum of the light antiquark are 

separately good quantum numbers. Therefore, we can write 

  

1 2 1 3

1 1 1

3 2 1 3

1 1 1

1 2
| | | ,

3 3

2 1
| | | .

3 3

P P P

P P P

> = − > + >

> = > + >

                                                               (3.9) 

 Hence, the states 
1(2.427)D  and 

1(2.422)D  can be identified with 1 2

1P  and 3 2

1P , 

respectively. However, beyond the heavy quark limit, there is a mixing between 1 2

1P  and 

3 2

1P  denoted by  

  

1 2 3 2

1 1 2 1 2

1 2 3 2

1 1 2 1 2

(2.427) cos sin ,

(2.422) sin cos .

D D D

D D D

θ θ

θ θ

= +

= − +

                                                     (3.10) 

Likewise for strange axial-vector charmed mesons, 

   

1 2 3 2

1 1 3 1 3

1 2 3 2

1 1 3 1 3

(2.460) cos sin ,

(2.535) sin cos .

s s s

s s s

D D D

D D D

θ θ

θ θ

= +

= − +

                                                     (3.11) 

The mixing angle 
2 ( 5.7 2.4)θ = − ± �  is obtained by Belle through a detailed  *

B D ππ→  

analysis [20, 21], while 3 7θ ≈ �  is determined from the quark potential model [13]. 
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3.3 DECAY AMPLITUDES AND RATES 

The decay rate formula for (0 ) (0 ) (1 )B P A
− − +→ +  decays is given by 

                              
3

2

2
( ) ( )

8

c

A

p
B P A A B P A

mπ
Γ → = → ,                                 (3.12) 

where cp  is the magnitude of the three-momentum of a final-state particle in the rest frame 

of B meson and Am  denotes the mass of the axial-vector meson. 

 

 

 +  

Figure 3.1 B PA→ decay amplitude in factorization scheme  

 

 

The factorization scheme expresses the decay amplitudes as a product of the matrix 

elements of weak currents (up to the weak scale factor of 
2

FG
× CKM elements×QCD factor) 

like 

                            

0 0 ,

0 0 .

w

w

PA H B P J A J B A J P J B

PA H B P J A J B A J P J B

µ µ
µ µ

µ µ
µ µ

+

′ ′ ′+

∼

∼

                  (3.13) 

as shown in Figure 3.1. 

Using Lorentz invariance, matrix elements of the current between meson states can be 

expressed [3, 4] as 
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    ( ) 0 PP k A if kµ µ= − , 

    *( , ) 0A A AA k A m fµ µ∈ =∈ , 

                                           *( , ) 0A A AA k A m fµ µ′ ′ ′′ ∈ =∈ ,                                       (3.14)      

  

* * *

* * *

( , ) ( ) ( )( ) ( )( ) ,

( , ) ( ) ( )( ) ( )( ) .

A B B B A B B A

A B B B A B B A

A k V B k l c k k k c k k k

A k V B k r s k k k s k k k

µ µ µ µ

µ µ µ µ

+ −

′ ′ ′+ −

∈ = ∈ + ∈ ⋅ + + ∈ ⋅ −

′ ∈ = ∈ + ∈ ⋅ + + ∈ ⋅ −

 

 

Finally the decay amplitudes can be expressed as 

 

2 2

1

2 2

1

( ) ( 2 ( ) ( )),

( ) ( 2 ( ) ( )),

B P B A

A A A P P

B P B A

A A A P P

A B PA m f F m f F m

A B PA m f F m f F m

→ →

′→ →
′ ′ ′

→ = +

′→ = +

                               (3.15) 

where  

   
2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ,B A

P P B A P P P
F m l m m m c m m c m

→

+ −= + − +  

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ).B A

P P B A P P PF m r m m m s m m s m
′→

′ + −= + − +                  (3.16) 

 

Sandwiching the weak Hamiltonian between the initial and final states, we obtain 

decay amplitudes of −B , 0B  and  0

sB  mesons for the various decay modes as given in the 

Tables 3.1, 3.2, 3.3 (a) and 3.3 (b).  
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Table 3.1 Decay Amplitudes for →→→→B PA  decays in CKM-favored mode involving →→→→b c  

transition 

 

Decays Amplitudes 

0,1,1 =∆=∆=∆ SCb                                        *

2
udcb

F VV
G

×  

0

1B Dπ− −→  1 1

1 1 1 1 1

2 2

1 2 2

2 2

2 2 2

(sin ( ) cos ( ))

2 ( sin ( ) cos ( ))

A A

A A A A

B D B D

B B

D D D D D

a f F m F m

m a f F m f F m

π π π

π π

θ θ

θ θ

′

′ ′

→ →

→ →

+

+ +
 

0

1B Dπ− −→  1 1

1 1 1 1 1

2 2

1 2 2

2 2

2 2 2

(cos ( ) sin ( ))

2 ( cos ( ) sin ( ))

A A

A A A A

B D B D

B B

D D D D D

a f F m F m

m a f F m f F m

π π π

π π

θ θ

θ θ

′

′ ′

→ →

→ →

−

+ −
 

0

1B D a
− −→  1

1 1 1

2 2

2 1( ) 2 ( )
B a B D

D D a a aa f F m a m f F m
→ →+  

0

1B D b
− −→  1

1 1 1

2 2

2 1( ) 2 ( )
B b B D

D D b b ba f F m a m f F m
→ →+  

0 0 0

1B Dπ→  
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →− −  

0 0 0

1B Dπ→  
1 1 1 1 1

2 2

2 2 2
2 ( cos ( ) sin ( ))

A A

B B

D D D D D
m a f F m f F m

π πθ θ
′

→ →− +  

0

1B Dπ − +→  1 12 2

1 2 2(sin ( ) cos ( ))A AB D B D
a f F m F mπ π πθ θ ′→ →+  

0

1B Dπ − +→  1 12 2

1 2 2(cos ( ) sin ( ))A AB D B D
a f F m F mπ π πθ θ ′→ →−  

0 0

1B Dη→  
1 1 1 1 1

2 2

2 2 22 ( sin sin ( ) cos sin ( ))
A A

B B

D D P D D P Dm a f F m f F mη ηθ φ θ φ
′

→ →+  

0 0

1B Dη→  
1 1 1 1 1

2 2

2 2 2
2 ( cos sin ( ) sin sin ( ))

A A

B B

D D P D D P D
m a f F m f F m

η ηθ φ θ φ
′

→ →−  

0 0

1B Dη′→  
1 1 1 1 1

2 2

2 2 2
2 ( sin cos ( ) cos cos ( ))

A A

B B

D D P D D P D
m a f F m f F m

η ηθ φ θ φ
′

′ ′→ →+  

0 0

1B Dη′→  
1 1 1 1 1

2 2

2 2 22 ( cos cos ( ) sin cos ( ))
A A

B B

D D P D D P Dm a f F m f F mη ηθ φ θ φ
′

′ ′→ →−  

0

1B D a
+ −→  

1 1 1

2

1
2 ( )B D

a a a
a m f F m

→
 

0

1B D b
+ −→  

1 1 1

2

1
2 ( )B D

b b b
a m f F m

→
 

0 0 0

1B D a→  
1 2

2

1
( )

2

B a

D Da f F m
→−  

0 0

1B D f→  
1 2

2

1
cos ( )

2

B f

D A Da f F mφ →
 

0 0 0

1B D b→  
1 2

2

1
( )

2

B b

D Da f F m
→−  

0 0

1B D h→  
1 2

2

1
cos ( )

2

B h

D A Da f F mφ →
′  

0 0 0

1sB K D→  
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))s s

A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →+  

0 0 0

1sB K D→  
1 1 1 1 1

2 2

2 2 22 ( cos ( ) sin ( ))s s

A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →−  

0

1s sB Dπ − +→  1 1

1 1

2 2

1 3 3(sin ( ) cos ( ))s s A s s AB D B D

D Da f F m F mπ θ θ ′→ →+  
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0

1s sB Dπ − +→  1 12 2

1 3 3(cos ( ) sin ( ))s s A s s AB D B D
a f F m F mπ π πθ θ ′→ →−  

0 0 0

1sB D K→  1 12 2

2 1 1(sin ( ) cos ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →+  

0 0 0

1sB D K→  1 12 2

2 1 1(cos ( ) sin ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →−  

0

1s sB D a
+ −→  

1 1 1

2

12 ( )s sB D

a a aa m f F m
→

 

0

1s sB D b
+ −→  

1 1 1

2

12 ( )s sB D

b b ba m f F m
→

 

1,0,1 −=∆=∆=∆ SCb                                     
*

2

F
cb cs

G
V V×  

1cB K χ− −→  
1 1 1

2

22 ( )
c c c

B Km a f F mχ χ χ
→

 

0

1sB D D
− −→  

1 1 1 1 1

2 2

1 3 32 ( sin ( ) cos ( ))
s s A s s A s

B D B D

D D D D Da m f F m f F mθ θ
′

→ →+  

0

1sB D D
− −→  

1 1 1 1 1

2 2

1 3 32 ( cos ( ) sin ( ))
s s A s s A s

B D B D

D D D D Da m f F m f F mθ θ
′

→ →−  

0

1sB D D
− −→  1 12 2

1 2 2
(sin ( ) cos ( ))A A

s s s

B D B D

D D D
a f F m F mθ θ ′→ →+  

0

1sB D D
− −→  1 12 2

1 2 2(cos ( ) sin ( ))A A

s s s

B D B D

D D Da f F m F mθ θ ′→ →−  

1cB Kη− −→  1 12 2

2 1 1(sin ( ) cos ( ))A A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →+  

1cB Kη− −→  1 12 2

2 1 1(cos ( ) sin ( ))A A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →−  

0 0

1cB K χ→  
1 1 1

2

2
2 ( )

c c c

B K
m a f F mχ χ χ

→  

0

1sB D D
+ −→  

1 1 1 1 1

2 2

1 3 3
2 ( sin ( ) cos ( ))

s s A s s A s

B D B D

D D D D D
a m f F m f F mθ θ

′

→ →+  

0

1sB D D
+ −→  

1 1 1 1 1

2 2

1 3 32 ( sin ( ) cos ( ))
s s A s s A s

B D B D

D D D D Da m f F m f F mθ θ
′

→ →+  

0

1sB D D
− +→  1 12 2

1 2 2(sin ( ) cos ( ))A A

s s s

B D B D

D D Da f F m F mθ θ ′→ →+  

0

1sB D D
− +→  1 12 2

1 2 2(cos ( ) sin ( ))A A

s s s

B D B D

D D Da f F m F mθ θ ′→ →−  

0 0

1cB Kη→  1 12 2

2 1 1
(sin ( ) cos ( ))A A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →+  

0 0

1cB Kη→  1 12 2

2 1 1(cos ( ) sin ( ))A A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →−  

0

1s cB ηχ→  
1 1 1

2

22 cos ( )s

c c c

B

Pm a f F m
η

χ χ χφ →
 

0

1s cB η χ′→  
1 1 1

2

22 sin ( )s

c c c

B

Pm a f F m
η

χ χ χφ ′→
 

0

1s s sB D D
+ −→  

1 1 1 1 1

2 2

1 3 32 ( sin ( ) cos ( ))s s

s s A s s A s

B D B D

D D D D Da m f F m f F mθ θ
′

→ →+  

0

1s s sB D D
+ −→  

1 1 1 1 1

2 2

1 3 32 ( cos ( ) sin ( ))s s

s s A s s A s

B D B D

D D D D Da m f F m f F mθ θ
′

→ →−  

0

1s s sB D D
− +→  1 12 2

1 3 3(sin ( ) cos ( ))s s A s s A

s s s

B D B D

D D Da f F m F mθ θ ′→ →+  

0

1s s sB D D
− +→  1 12 2

1 3 3(cos ( ) sin ( ))s s A s s A

s s s

B D B D

D D Da f F m F mθ θ ′→ →−  

0

1s cB fη ′→  1 2

2 ( )s

c c

B f
a f F mη η

′→−  

0

1s cB hη ′→  1 2

2 ( )s

c c

B h
a f F mη η

′→−  
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Table 3.2 Decay Amplitudes for →→→→B PA  decays in CKM-suppressed mode involving →→→→b c  

transition 

 

 

Decays Amplitudes 

1, 1, 1b C S∆ = ∆ = ∆ = −                                       
*

2

F
cb us

G
V V×   

0

1B K D
− −→  1 1

1 1 1 1 1

2 2

1 2 2

2 2

2 2 2

(sin ( ) cos ( ))

2 ( sin ( ) cos ( ))

A A

A A

B D B D

K K K

B K B K

D D D D D

a f F m F m

m a f F m f F m

θ θ

θ θ

′

′

→ →

→ →

+

+ +
 

0

1B K D
− −→  1 1

1 1 1 1 1

2 2

1 2 2

2 2

2 2 2

(cos ( ) sin ( ))

2 ( cos ( ) sin ( ))

A A

A A

B D B D

K K K

B K B K

D D D D D

a f F m F m

m a f F m f F m

θ θ

θ θ

′

′

→ →

→ →

−

+ −
 

0

1B D K
− −→  1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

(sin ( ) cos ( ))

2 ( sin ( ) cos ( ))

A A

A A

B K B K

D D D

B D B D

K K K K K

a f F m F m

m a f F m f F m

θ θ

θ θ

′

′

→ →

→ →

+

+ +
 

0

1B D K
− −→  1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

(cos ( ) sin ( ))

2 ( cos ( ) sin ( ))

A A

A A

B K B K

D D D

B D B D

K K K K K

a f F m F m

m a f F m f F m

θ θ

θ θ

′

′

→ →

→ →

−

+ −
 

0 0 0

1B K D→  
1 1 1 1 1

2 2

2 2 2
2 ( sin ( ) cos ( ))

A A

B K B K

D D D D D
m a f F m f F mθ θ

′

→ →+  

0 0 0

1B K D→  
1 1 1 1 1

2 2

2 2 2
2 ( cos ( ) sin ( ))

A A

B K B K

D D D D D
m a f F m f F mθ θ

′

→ →−  

0

1B K D
− +→  1 12 2

1 2 2(sin ( ) cos ( ))A AB D B D

K K Ka f F m F mθ θ ′→ →+  

0

1B K D
− +→  1 12 2

1 2 2(cos ( ) sin ( ))A AB D B D

K K Ka f F m F mθ θ ′→ →−  

0

1B D K
+ −→  

1 1 1 1 1

2 2

1 1 1
2 ( sin ( ) cos ( ))

A A

B D B D

K K K K K
m a f F m f F mθ θ

′

→ →+  

0

1B D K
+ −→  

1 1 1 1 1

2 2

1 1 12 ( cos ( ) sin ( ))
A A

B D B D

K K K K Km a f F m f F mθ θ
′

→ →−  

0 0 0

1B D K→  1 12 2

2 1 1(sin ( ) cos ( ))A AB K B K

D D Da f F m F mθ θ ′→ →+  

0 0 0

1B D K→  1 12 2

2 1 1(cos ( ) sin ( ))A AB K B K

D D Da f F m F mθ θ ′→ →−  

0 0

1sB Dη→  
1 1 1 1 1

2 2

2 2 22 ( sin cos ( ) cos cos ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

→ →− −  

0 0

1sB Dη→  
1 1 1 1 1

2 2

2 2 22 ( cos cos ( ) sin cos ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

→ →− +  

0

1s sB K D
− +→  1 12 2

1 3 3(sin ( ) cos ( ))s s A s s AB D B D

K K Ka f F m F mθ θ ′→ →+  

0

1s sB K D
− +→  1 12 2

1 3 3(cos ( ) sin ( ))s s A s s AB D B D

K K Ka f F m F mθ θ ′→ →−  

0 0

1sB Dη′→  
1 1 1 1 1

2 2

2 2 22 ( sin sin ( ) cos sin ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

′ ′→ →+  

0 0

1sB Dη′→  
1 1 1 1 1

2 2

2 2 22 ( cos sin ( ) sin sin ( )s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

′ ′→ →−  

0 0

1sB D f ′→  - 1 2

2 cos ( )sB f

D A Da f F mθ ′→
 

0 0

1sB D h′→   - 1 2

2 cos ( )sB h

D A Da f F mθ ′→
′  

0

1s sB D K
+ −→    

1 1 1 1 1

2 2

1 1 12 ( sin ( ) cos ( )s s s s

A A

B D B D

K K K K Km a f F m f F mθ θ
′

→ →+  

0

1s sB D K
+ −→  

1 1 1 1 1

2 2

1 1 12 ( cos ( ) sin ( )s s s s

A A

B D B D

K K K K Km a f F m f F mθ θ
′

→ →−  
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1, 0, 0b C S∆ = ∆ = ∆ =                                              
*

2

F
cb cd

G
V V×  

1cB π χ− −→   -
1 1 1

2

22 ( )
c c c

Bm a f F mπ
χ χ χ

→  

0

1B D D
− −→  - 

1 1 1 1 1

2 2

1 2 22 ( sin ( ) cos ( ))
A A

B D B D

D D D D Dm a f F m f F mφ φ
′

→ →+  

0

1B D D
− −→  - 

1 1 1 1 1

2 2

1 2 22 ( cos ( ) sin ( ))
A A

B D B D

D D D D Dm a f F m f F mθ θ
′

→ →−  

0

1B D D
− −→  - 1 12 2

1 2 2(sin ( ) cos ( ))A AB D B D

D D Da f F m F mθ θ ′→ →+  

0

1B D D
− −→  - 1 12 2

1 2 2(cos ( ) sin ( ))A AB D B D

D D Da f F m F mθ θ ′→ →−  

1cB aη− −→  - 1 2

2 ( )
c c

B a
a f F mη η

→
 

1cB bη− −→  - 1 2

2 ( )
c c

B b
a f F mη η

→
 

0 0

1cB π χ→   
1 1 1

2

2
2 ( )

c c c

B
m a f F m

π
χ χ χ

→  

0

1cB ηχ→                           - 
1 1 1

2

2
2 sin ( )

c c c

B

P
m a f F m

η
χ χ χφ →  

0

1cB η χ′→   -
1 1 1

2

22 cos ( )
c c c

B

Pm a f F mη
χ χ χφ ′→  

0

1B D D
+ −→  -

1 1 1 1 1

2 2

1 2 22 ( sin ( ) cos ( ))
A A

B D B D

D D D D Dm a f F m f F mθ θ
′

→ →+  

0

1B D D
+ −→  -

1 1 1 1 1

2 2

1 2 2
2 ( cos ( ) sin ( ))

A A

B D B D

D D D D D
m a f F m f F mθ θ

′

→ →−  

0

1B D D
− +→  - 1 12 2

1 2 2(sin ( ) cos ( ))A AB D B D

D D Da f F m F mθ θ ′→ →+  

0

1B D D
− +→  - 1 12 2

1 2 2(cos ( ) sin ( ))A AB D B D

D D Da f F m F mθ θ ′→ →−  

0 0

1cB aη→  
1 2

2

1
( )

2 c c

B a
a f F mη η

→
 

0

1cB fη→  
- 1 2

2

1
cos ( )

2 c c

B f

Aa f F mη ηφ →
 

0 0

1cB bη→  
1 2

2

1
( )

2 c c

B b
a f F mη η

→
 

0

1cB hη→  
- 1 2

2

1
cos ( )

2 c c

B h

Aa f F mη ηφ →
′  

0 0

1s cB K χ→   -
1 1 1

2

22 ( )s

c c c

B K
m a f F mχ χ χ

→
 

0

1s sB D D
+ −→    -

1 1 1 1 1

2 2

1 2 22 ( sin ( ) cos ( ))s s s s

A A

B D B D

D D D D Dm a f F m f F mθ θ
′

→ →+  

0

1s sB D D
+ −→  -

1 1 1 1 1

2 2

1 2 22 ( cos ( ) sin ( ))s s s s

A A

B D B D

D D D D Dm a f F m f F mθ θ
′

→ →−  

0

1s sB D D
− +→  - 1 12 2

1 3 3(sin ( ) cos ( ))s s A s s AB D B D

D D Da f F m F mθ θ ′→ →+  

0

1s sB D D
− +→  - 1 12 2

1 3 3(cos ( ) sin ( ))s s A s s AB D B D

D D Da f F m F mθ θ ′→ →−  

0 0

1s cB Kη→  - 1 12 2

2 1 1(sin ( ) cos ( ))s A s A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →+  

0 0

1s cB Kη→  - 1 12 2

2 1 1(cos ( ) sin ( ))s A s A

c c c

B K B K
a f F m F mη η ηθ θ ′→ →−  
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Table 3.3 (a) Decay Amplitudes for →→→→B PA  decays involving →→→→b u  transition 
 

 

Decays Amplitudes 

1, 1, 1b C S∆ = ∆ = − ∆ = −                                  
*

2

F
ub cs

G
V V×  

0

1sB Dπ− −→  
1 1 1 1 1

2 2

1 3 32 ( sin ( ) cos ( ))
s sA s s A s

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →+  

0

1sB Dπ− −→  
1 1 1 1 1

2 2

1 3 3
2 ( cos ( ) sin ( ))

s sA s s A s

B B

D D D D D
m a f F m f F m

π πθ θ
′

→ →−  

1sB Dη− −→  
1 1 1 1 1

2 2

1 3 3
2 ( sin sin ( ) cos cos ( ))

s sA s s A s

B B

D D P D D P D
m a f F m f F m

η ηφ θ φ θ
′

→ →+  

1sB Dη− −→  
1 1 1 1 1

2 2

1 3 32 ( sin cos ( ) cos sin ( ))
s sA s s A s

B B

D D P D D P Dm a f F m f F mη ηφ θ φ θ
′

→ →−  

0

1B K D
− −→  

1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))
A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →+  

0

1B K D
− −→  

1 1 1 1 1

2 2

2 2 22 ( cos ( ) sin ( ))
A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →−  

1sB Dη− −′→  
1 1 1 1 1

2 2

1 3 3
2 ( cos sin ( ) cos cos ( ))

s sA s s A s

B B

D D P D D P D
m a f F m f F m

η ηφ θ φ θ
′

′ ′→ →+  

1sB Dη− −′→  
1 1 1 1 1

2 2

1 3 32 ( cos cos ( ) cos sin ( ))
s sA s s A s

B B

D D P D D P Dm a f F m f F mη ηφ θ φ θ
′

′ ′→ →−  

0

1B D K
− −→  1 12 2

2 1 1(sin ( ) cos ( ))A AB K B K

D D Da f F m F mθ θ ′→ →+  

0

1B D K
− −→  1 12 2

2 1 1(cos ( ) sin ( ))A AB K B K

D D Da f F m F mθ θ ′→ →−  

0

1sB D a
− −→  

1 2

1

1
( )

2 s s

B a

D Da f F m
→

 

1sB D f
− −→  

1 2

1

1
cos ( )

2 s s

B f

D A Da f F m
→φ  

0

1sB D b
− −→  

1 2

1

1
( )

2 s s

B b

D Da f F m
→

 

1sB D h
− −→  

1 2

1

1
cos ( )

2 s s

B h

D A Da f F mφ →
′  

0

1sB Dπ + −→  
1 1 1 1 1

2 2

1 3 3
2 ( sin ( ) cos ( ))

s sA s s A s

B B

D D D D D
m a f F m f F m

π πθ θ
′

→ →+  

0

1sB Dπ + −→  
1 1 1 1 1

2 2

1 3 3
2 ( cos ( ) sin ( ))

s sA s s A s

B B

D D D D D
m a f F m f F m

π πθ θ
′

→ →−  

0 0 0

1B K D→  
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))
A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →+  

0 0 0

1B K D→  
1 1 1 1 1

2 2

2 2 22 ( cos ( ) sin ( ))
A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →−  

0 0 0

1B D K→  1 12 2

2 1 1(sin ( ) cos ( ))A AB K B K

D D Da f F m F mθ θ ′→ →+  

0 0 0

1B D K→  1 12 2

2 1 1(cos ( ) sin ( ))A AB K B K

D D Da f F m F mθ θ ′→ →−  

0

1sB D a
− +→  1 2

1 ( )
s s

B a

D Da f F m
→

 

0

1sB D b
− +→  1 2

1 ( )
s s

B b

D Da f F m
→

 

0

1s sB K D
+ −→  

1 1 1 1 1

2 2

1 3 32 ( sin ( ) cos ( ))s s

s sA s s A s

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →+  

0

1s sB K D
+ −→  

1 1 1 1 1

2 2

1 3 3
2 ( cos ( ) sin ( ))s s

s sA s s A s

B K B K

D D D D D
m a f F m f F mθ θ

′

→ →−  
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0 0

1sB Dη→  
1 1 1 1 1

2 2

2 2 22 ( sin cos ( ) cos cos ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

→ →− +  

0 0

1sB Dη→  
1 1 1 1 1

2 2

2 2 22 ( cos cos ( ) sin cos ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

→ →− −  

0 0

1sB Dη′→  
1 1 1 1 1

2 2

2 2 22 ( sin sin ( ) cos sin ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

′ ′→ →+  

0 0

1sB Dη′→  
1 1 1 1 1

2 2

2 2 22 ( cos sin ( ) sin sin ( ))s s

A A

B B

D D P D D P Dm a f F m f F m
η ηθ φ θ φ

′

′ ′→ →−  

0 0

1sB D f ′→  - 1 2

2 cos ( )sB f

D A Da f F mφ ′→
 

0 0

1sB D h′→  - 1 2

2 cos ( )sB h

D A Da f F mφ ′→
′  

0

1s sB D K
− +→  1 12 2

1 1 1(sin ( ) cos ( ))s A s A

s s s

B K B K

D D Da f F m F mθ θ ′→ →+  

0

1s sB D K
− +→  1 12 2

1 1 1(cos ( ) sin ( ))s A s A

s s s

B K B K

D D Da f F m F mθ θ ′→ →−  

1, 0, 0b C S∆ = ∆ = ∆ =                                           
*

2

F
ub ud

G
V V×  

0

1B aπ− −→  
1

1 1 1

2 2

2 1

1
( ) 2 ( )

2

B a B

a a aa f F m m a f F mπ
π π

→ →+  

0

1B bπ− −→  
1

1 1 1

2 2

2 1

1
( ) 2 ( )

2

B b B

b b ba f F m m a f F mπ
π π

→ →+  

0

1B aπ− −→  
1

1 1 1

2 2

1 2

1
( ) 2 ( )

2

B a B

a a aa f F m m a f F m
π

π π
→ →+  

0

1B bπ− −→  
1 2

1

1
( )

2

B b
a f F m

→

π π  

1B fπ− −→  
1

1 1 1

2 2

1 2

1
cos ( ) 2 cos ( )

2

B f B

A f A f fa f F m m a f F m
π

π πφ φ→ →+  

1B hπ− −→  
1

1 1 1

2 2

1 2

1
cos ( ) 2 cos ( )

2

B h B

A h A h ha f F m m a f F mπ
π πφ φ→ →

′ ′+  

1B aη− −→  
1

1 1 1

2 2

2 1

1
sin ( ) 2 sin ( )

2

B a B

P a a P aa f F m m a f F mη
η ηφ φ→ →+  

1B bη− −→  
1

1 1 1

2 2

2 1

1
sin ( ) 2 sin ( )

2

B b B

P b b P ba f F m m a f F m
→ →η

η ηφ + φ  

1B aη− −′→  
1

1 1 1

2 2

2 1

1
cos ( ) 2 cos ( )

2

B a B

P a a P aa f F m m a f F m
η

η ηφ φ ′→ →
′ ′ +  

1B bη− −′→  
1

1 1 1

2 2

2 1

1
cos ( ) 2 cos ( )

2

B b B

P b b P ba f F m m a f F mη
η ηφ φ ′→ →

′ ′ +  

0

1B aπ + −→  
1 1 1

2

1
2 ( )B

a a a
m a f F m

π→
 

0

1B bπ + −→  
1 1 1

2

1
2 ( )B

b b b
m a f F m

π→
 

0 0 0

1B aπ→  
1

1 1 1

2 2

2

1
( ( ) ( ))

2

B a B

a a aa f F m m f F m
π

π π
→ →− −  

0 0

1B fπ→  
1

1 1 1

2 2

2

1
( cos ( ) cos ( ))
2

B f B

A f f A fa f F m m f F m
π

π πφ φ→ →−  
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0 0 0

1B bπ→  
1 2

2

1
( )

2

B b
a f F mπ π

→−  

0 0

1B hπ→  
1 2

2

1
cos ( )

2

B h

A
a f F mπ πφ →

′  

0

1B aπ − +→  1 2

1 ( )
B a

a f F mπ π
→

 

0

1B b
− +→ π  1 2

1 ( )
B b

a f F mπ π
→

 

0 0

1B aη→  
1

1 1 1

2 2

2

1
( sin ( ) sin ( ))

2

B a B

P a a P a
a f F m m f F m

η
η ηφ φ→ →− +  

0

1B fη→  
1

1 1 1

2 2

2

1
( cos sin ( ) cos sin ( ))
2

B f B

A P f f A P f
a f F m m f F m

η
η ηφ φ φ φ→ →+  

0 0

1B bη→  
1 2

2

1
sin ( )

2

B b

Pa f F mη ηφ →−  

0

1B hη→  
1 2

2

1
cos sin ( )

2

B h

A Pa f F mη ηφ φ →
 

0 0

1B aη′→  
1

1 1 1

2 2

2

1
( cos ( ) cos ( ))

2

B a B

P a a P a
a f F m m f F m

η
η ηφ φ ′→ →

′ ′− +  

0

1B fη′→  
1

1 1 1

2 2

2

1
( cos cos ( ) cos cos ( ))
2

B f B

A P f f A P f
a f F m m f F m

η
η ηφ φ φ φ ′→ →

′ ′ +  

0 0

1B bη′→  
1 2

2

1
cos ( )

2

B b

Pa f F mη ηφ →
′ ′−  

0

1B hη′→  
1 2

2

1
cos cos ( )

2

B h

A Pa f F mη ηφ φ →
′ ′  

0

1sB K a
+ −→  

1 1 1

2

12 ( )sB K

a a am a f F m
→

 

0

1sB K b
+ −→  

1 1 1

2

12 ( )sB K

b b bm a f F m
→

 

0 0 0

1sB K a→  
1 1 1

2

22 ( )sB K

a a am a f F m
→

 

0 0

1sB K f→  
1 1 1

2

22 cos ( )sB K

f f A fm a f F mφ →
 

0 0 0

1sB Kπ→  
1 12 2

2 1 1

1
(sin ( ) cos ( ))

2

s A s AB K B K
a f F m F mπ π πθ θ ′→ →+  

0 0 0

1sB Kπ→  
1 12 2

2 1 1

1
(cos ( ) sin ( ))

2

s A s AB K B K
a f F m F mπ π πθ θ ′→ →−  

0

1sB Kπ − +→  1 12 2

1 1 1(sin ( ) cos ( ))s A s AB K B K
a f F m F mπ π πθ θ ′→ →+  

0

1sB Kπ − +→  1 12 2

1 1 1(cos ( ) sin ( ))s A s AB K B K
a f F m F mπ π πθ θ ′→ →−  

0 0

1sB Kη→  
1 12 2

2 1 1

1
(sin sin ( ) cos sin ( ))

2

s A s AB K B K

P Pa f F m F mη η ηθ φ θ φ ′→ →+  

0 0

1sB Kη→  
1 12 2

2 1 1

1
(sin cos ( ) sin sin ( ))

2

s A s AB K B K

P Pa f F m F mη η ηφ θ θ φ ′→ →−  

0 0

1sB Kη′→  
1 12 2

2 1 1

1
(sin cos ( ) cos cos ( ))

2

s A s AB K B K

P Pa f F m F mη η ηθ φ θ φ ′→ →
′ ′ ′+  

0 0

1sB Kη′→  
1 12 2

2 1 1

1
(cos cos ( ) sin cos ( ))

2

s A s AB K B K

P Pa f F m F mη η ηθ φ θ φ ′→ →
′ ′ ′−  
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Table 3.3 (b) Decay Amplitudes for →B PA  decays involving →b u  transition 

 

 

Decays Amplitudes 

1, 0, 1b C S∆ = ∆ = ∆ = −                                          
*

2

F
ub us

G
V V×  

0

1B Kπ− −→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(sin ( ) cos ( ))

2

2 ( sin ( ) cos ( ))

A A

A A

B K B K

B B

K K K K K

a f F m F m

m a f F m f F m

π π π

π π

θ θ

θ θ

′

′

→ →

→ →

+

+ +

 

0

1B Kπ− −→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(cos ( ) sin ( ))

2

2 ( cos ( ) sin ( ))

A A

A A

B K B K

B B

K K K K K

a f F m F m

m a f F m f F m

π π π

π π

θ θ

θ θ

′

′

→ →

→ →

−

+ −

 

1B Kη− −→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(sin sin ( ) cos sin ( ))

2

2 ( sin sin ( ) cos sin ( ))

A A

A A

B K B K

P P

B B

K K P K K P K

a f F m F m

m a f F m f F m

η η η

η η

θ φ θ φ

θ φ θ φ

′

′

→ →

→ →

+

+ +

 

1B Kη− −→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(cos sin ( ) sin sin ( ))

2

2 ( cos sin ( ) sin sin ( ))

A A

A A

B K B K

P P

B B

K K P K K P K

a f F m F m

m a f F m f F m

η η η

η η

θ φ θ φ

θ φ θ φ

′

′

→ →

→ →

−

+ −

 

0

1B K a
− −→  

1

1 1 1

2 2

1 2

1
( ( ) 2 ( ))

2

B a B K

K K a a aa f F m m a f F m
→ →+  

1B K f
− −→  

1

1 1 1

2 2

1 2

1
( cos ( ) 2 cos ( ))

2

B f B K

K A K f f A fa f F m m a f F mφ φ→ →+  

0

1B K b
− −→  

1 2

1

1
( )

2

B b

K Ka f F m
→

 

1B K h
− −→  

1 2

1

1
cos ( )

2

B h

K A Ka f F mφ →
′  

1B Kη− −′→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(sin cos ( ) cos cos ( ))

2

2 ( sin cos ( ) cos cos ( ))

A A

A A

B K B K

P P

B B

K K P K K P K

a f F m F m

m a f F m f F m

η η η

η η

θ φ θ φ

θ φ θ φ

′

′

→ →
′ ′ ′

→ →

+

+ +

 

1B Kη− −′→  
1 1

1 1 1 1 1

2 2

2 1 1

2 2

1 1 1

1
(cos cos ( ) sin cos ( ))

2

2 ( cos cos ( ) sin cos ( ))

A A

A A

B K B K

P P

B B

K K P K K P K

a f F m F m

m a f F m f F m

η η η

η η

θ φ θ φ

θ φ θ φ

′

′

→ →
′ ′ ′

′ ′→ →

−

+ −

 

0

1B Kπ + −→  
1 1 1 1 1

2 2

1 1 12 ( sin ( ) cos ( ))
A A

B B

K K K K Km a f F m f F mπ πθ θ
′

→ →+  

0

1B Kπ + −→  
1 1 1 1 1

2 2

1 1 12 ( cos ( ) sin ( ))
A B

B B

K K K K Km a f F m f F mπ πθ θ→ →−  

0 0 0

1B Kπ→  
1 12 2

2 1 1

1
(sin ( ) cos ( ))

2

A AB K B K
a f F m F mπ π πθ θ ′→ →+  
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0 0 0

1B Kπ→  
1 12 2

2 1 1

1
(cos ( ) sin ( ))

2

A AB K B K
a f F m F mπ π πθ θ ′→ →−  

0 0

1B Kη→  
1 12 2

2 1 1

1
(sin sin ( ) sin cos ( ))

2

A AB K B K

P Pa f F m F mη η ηφ θ φ θ ′→ →+  

0 0

1B Kη→  
1 12 2

2 1 1

1
(sin cos ( ) sin sin ( ))

2

A AB K B K

P Pa f F m F mη η ηφ θ φ θ ′→ →−  

0 0 0

1B K a→  
1 1 1

2

22 ( )B K

a a am a f F m→  

0 0

1B K f→  
1 1 1

2

22 ( )B K

f f fm a f F m→  

0

1B K a
− +→  1 2

1 ( )
B a

K Ka f F m
→  

0

1B K b
− +→  1 2

1 ( )
B b

K Ka f F m
→

 

0 0

1B Kη′→  
1 12 2

2 1 1

1
(cos sin ( ) cos cos ( ))

2

A AB K B K

P Pa f F m F mη η ηφ θ θ θ ′→ →
′ ′ ′−  

0 0

1B Kη′→  
1 12 2

2 1 1

1
(cos cos ( ) cos sin ( ))

2

A AB K B K

P Pa f F m F mη η ηφ θ φ θ ′→ →
′ ′ ′−  

0

1sB K K
+ −→  

1 1 1 1 1

2 2

1 1 12 ( sin ( ) cos ( ))s s

A A

B K B K

K K K K Km a f F m f F mθ θ
′

→ →+  

0

1sB K K
+ −→  

1 1 1 1 1

2 2

1 1 12 ( cos ( ) sin ( ))s s

A A

B K B K

K K K K Km a f F m f F mθ θ
′

→ →−  

0 0

1sB fπ ′→  
- 1 2

2

1
( )

2

sB f
a f F mπ π

′→  

0 0

1sB hπ ′→  
- 1 2

2

1
( )

2

sB h
a f F mπ π

′→
 

0 0

1sB aη→  -
1 1 1

2

2
2 cos ( )sB

a a P f
m a f F m

ηφ →
 

0

1sB fη→  
- 1 2

2

1
sin cos ( )

2

sB f

A Pa f F mη ηφ φ →
 

0

1sB fη ′→  
1 2

2

1
cos sin ( )

2

sB f

A Pa f F mη ηφ φ ′→−  

0

1sB hη ′→  2

2

1
cos sin ( )

2

sB h

A Pa f F mη ηφ φ ′→
′−  

0

1sB K K
− +→  1 12 2

1 1 12 (sin ( ) cos ( ))s A s AB K B K

K K Ka f F m F mθ θ ′→ →+  

0

1sB K K
− +→  1 12 2

1 1 12 (cos ( ) cos ( ))s A s AB K B K

K K Ka f F m F mθ θ ′→ →−  

0 0

1sB aη ′→  
1 1 1

2

2
2 sin ( ))sB

a a P a
m a f F m

ηφ ′→
 

0

1sB fη′→  
1 1 1

2

22 cos sin ( ))sB

f f A P fm a f F m
ηφ φ ′→

 

0

1sB fη′ ′→  
1 2

2

1
cos cos ( )

2

sB f

A Pa f F mη ηφ φ ′→
′−  

0

1sB hη′ ′→  
1 2

2

1
cos cos ( )

2

sB h

A Pa f F mη ηφ φ →
′ ′ ′−  
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1, 1, 0b C S∆ = ∆ = − ∆ =  
*

2

F
ub cd

G
V V×  

0

1B Dπ− −→  -
1 1 1 1 1

2 2

1 2 22 ( sin ( ) cos ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →+  

0

1B Dπ− −→  - 
1 1 1 1 1

2 2

1 2 22 ( cos ( ) sin ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →−  

0

1B Dπ− −→  -
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →+  

0

1B Dπ− −→  -
1 1 1 1 1

2 2

2 2 22 ( cos ( ) sin ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →−  

1B Dη− −→  -
1 1 1 1 1

2 2

1 2 22 ( sin sin ( ) cos sin ( ))
A A

B B

D D P D D P Dm a f F m f F mη ηθ φ θ φ
′
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1B Dη− −→  -
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B B
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′
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2 2
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2 2
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B B
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1
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2
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1

1
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0
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1

1
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2
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1

1
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2
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0
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0
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0
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D D D D D
m a f F m f F m
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′
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0
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2 2

1 2 22 ( cos ( ) sin ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′

→ →−  
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1B Dπ→  -
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))
A A

B B

D D D D Dm a f F m f F mπ πθ θ
′
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1B Dπ→  -
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2 2

2 2 22 ( cos ( ) sin ( ))
A A
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D D D D Dm a f F m f F mπ πθ θ
′
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′
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′
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2 2
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′
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′
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0 0

1B D f→  
- 1 2

2

1
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2
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2

1
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2
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2

1
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1 2 22 ( sin ( ) cos ( ))s s
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′
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0
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2 2

1 2 22 ( cos ( ) sin ( ))s s

A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →−  
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1sB K D→  -
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2 2

1 2 22 ( sin ( ) cos ( ))s s

A A
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D D D D Dm a f F m f F mθ θ
′

→ →+  
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1sB K D→  -
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2 2

1 2 22 ( cos ( ) sin ( ))s s

A A

B K B K

D D D D Dm a f F m f F mθ θ
′

→ →−  

0

1sB D K
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1 1 12 (sin ( ) cos ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →− +  

0

1sB D K
− +→  1 12 2

1 1 12 (cos ( ) sin ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →− −  
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1sB D K→  1 12 2

2 1 12 (sin ( ) cos ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →− +  
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2 1 12 (cos ( ) sin ( ))s A s AB K B K

D D Da f F m F mθ θ ′→ →− −  

 

 

In order to calculate the decay amplitudes given in the Tables 3.1, 3.2, 3.3 (a) and 3.3 

(b), one has to calculate the form factors given in (3.16). In the next section, we obtained the 

form factors in ISGW II model. 

 

3.4 MAIN FEATURES OF ISGW II MODEL 

The basic idea of the ISGW model is to make a correspondence between the Lorentz-

invariant form factors which occur as the coefficient of the various vectors iX
µ  that one can 

form from available kinematic variables in the expansion of the matrix element 

( , ) (0) ( )X X BX p s j B pµ  of the physical B  and X mesons, and those  which appear in the 

quark-model calculation of ( , ) (0) ( )
X X B

X p s j B p
µɶ ɶɶ ɶ ɶ  where, for example, ( , )

X X
X p sɶ ɶ ɶ is the 

quark-model state vector in the weak binding, nonrelativistic limit and is given by 
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3( , ) 2 ( )

, , ,

SX

L S
L

SmS LS

X X X m m X SSLm

q q

X X

X X

X p s m d p C p

m m
q p p s q p p s

m m

φ χ= Σ

   
+ −   

   

∫
�ɶ ɶ ɶ ɶ

� � � �

ɶ ɶ

  

here Xmɶ is defined as the mock mass in if
ɶ , SSm

SS
χ couples the spin s and s to the total spin S, 

( )X pφ
�

is the qq relative momentum wave function and the C factors couple L and S to the 

total angular momentum Xs . This so called ‘mock meson method’ is based on the 

observation that in this limit the quark model state vectors form good representations of the 

Lorentz group. ISGW model expresses the properly normalized meson state vectors in the 

nonrelativistic limit and normalize the form factors at maximal 2
q , where both mesons are at 

rest. They obtain an exponential 2
q dependence of the form factors using wave functions 

which are variational solutions of the Schrödinger equation based on the harmonic oscillator 

wave functions, with the coulomb and linear potential. 

In general, the form factors evaluated are reliable only at 2 2= mq q , the maximum 

momentum transfer 2( )B Xm m− . The reason is that the form-factor 2
q  dependence in the 

ISGW model is proportional to 2 2exp[ ( )]mq q− −  and hence the form factor decreases 

exponentially as a function of 2 2( )mq q− . This has been improved in the ISGW II model in 

which the form factor has a more realistic behavior at large 2 2( )mq q−  which is expressed in 

terms of a certain polynomial term. In addition to the form factor momentum dependence, 

the ISGW II model incorporates a number of improvements, such as the constraints imposed 

by heavy quark symmetry, hyperfine distortions of wave functions, etc [4]. The new version 

of the ISGW model is called the ISGW II model [4] which includes the following features: 

 (1) heavy quark symmetry constraints on the relations between form factors away from 

zero recoil are respected,  
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(2) heavy quark symmetry constraints on the slopes of form factors near zero recoil are 

built in, 

(3) the naive currents of the quark model are related to the full weak currents via the 

matching conditions of heavy quark effective theory (HQET),  

(4) heavy-quark-symmetry-breaking color magnetic interaction are included, whereas 

ISGW only included the symmetry breaking due to the heavy quark kinetic energy,  

(5) the ISGW prescription for connecting its quark model form factors is modified to be 

consistent with the constraints of heavy quark symmetry breaking at order 1/ Qm , 

(6) relativistic corrections to the axial vector coupling constants are taken into account, 

and  

(7) more realistic form factors shapes, based on the measured pion form factors, are 

employed.  

The form factor expressions have drastically changed in the new version of ISGW model 

in the light of HQS, so in the present thesis we use ISGW II model to calculate the form 

factors.  

 

3.4.1  / ′′′′→→→→B A A  TRANSITION FORM FACTORS 

The form factors have the following expressions in the ISGW II model [4]. 

2
( )

52 2

( 1)1 5
[ ( )] ,

6 2

ld A d B
B B

B q BA

m m m
l m F

m

ω βω
β

µ β µ β− −

− +
= − + −

ɶ ɶɶ
ɶ     

2

( )

2

2

( )

2

1 ,
2 2

2
,

2 3 2

d q B c cd A

q B B A BA

d q B c cd A

q B B A BA

m mm m
c c F

m m m

m mm m
c c F

m m m

β

β µ β

βω

β µ β

+ −

+ −

+

+ −

−

−

+ −

−

 
+ = − −  

 

 +
− = − −  

 

ɶ

ɶ ɶ

ɶɶ

ɶ ɶ

                     (3.17) 
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2 ( )

52

1
[ ( 1) ] ,

32

rd AB B

q B

m mm
r F

m

β
ω

µ β+

= + −
ɶɶ
ɶ  

2
( )

2

2

( )

2

1 ,
2 2

4
,

2 3 2

s sd d d B

B B q BA

q d B s sd

q B A BA

m m m
s s F

m m

m mm
s s F

m m

β

β µ β

βω

β µ β

+ −

+ −

+

+ −

+

−

+ −

+

 
+ = − − +  

 

 −
− = − −  

 

ɶ

ɶ

ɶ

                     (3.18) 

where 

   

1 1
( ) ( ) 2 2

5 5 5

3 1
( ) ( ) 2 2

5 5 5

1 1
( ) ( ) 2 2

5 5 5

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

c

c

c

c

c

c

Bl r A

B A

Bc c s s A

B A

Bc c s s A

B A

m m
F F F

m m

m m
F F F

m m

m m
F F F

m m

+ − + −

+ − + −

−
+ +

− −− −

= =

= =

= =

ɶ ɶ

ɶ ɶ

ɶ ɶ

                     (3.19) 

The 2( )t q≡ dependence is given by 

1
2

m

B X

t t

m m
ω

−
− =ɶ , 

and  

51
32 2

2

5

1
1 ( )

18

X B X
m

B BX

m
F h t t

m B

β β
−

     
= + −         

ɶ

ɶ
,                                    (3.20) 

where 

                    
2

2

2

( )33 1 16
( ) ln[ ]

4 2 33 2 ( )

S QMd

b q B X BX B X f S q

m
h

m m m m m m n m

α µ

β α
= + +

−
,            (3.21) 

with  

( )2 2 21

2
BX B X

β β β= + ,                               (3.22) 

and  

1

1 1

q bm m
µ

−

±

 
= ±  
 

, 
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which is used throughout the analysis for transition B X→ , where ( )X qb= in the states 

1

01 ( 0 )PC
S J

−+= , 3

11 ( 1 )PC
P J

++= , 1

11 ( 1 )PC
P J

+−= . m~  is the sum of the mesons constituent 

quarks masses, m  is the hyperfine averaged physical masses, nf is the number of active 

flavors, which is taken to be five in the present case, 
2( )m B Xt m m= −  is the maximum 

momentum transfer and 
QMµ  is the quark model scale. The subscript in the q depends upon 

the quark currents q bµγ  and 5q bµγ γ  appearing in different transitions. For sB X→  

transition, qm  is replaced with sm . The values of parameter β  for different s-wave and p-

wave mesons are given in the Table 3.4 [4].  

 

Table 3.4 The parameter ββββ  for s-wave and p-wave mesons in the ISGW II model 

 

Quark Content  ud  us  ss  cu  cs  ub  sb  

S
ββββ (GeV) 0.41 0.44 0.53 0.45 0.56 0.43 0.54 

P
ββββ (GeV) 0.28 0.30 0.33 0.33 0.38 0.35 0.41 

 

 

  

In the original version of the ISGW I model [4], the function 
nF  has a different 

expression in its ttm −  dependence. 

1
2

2

2 2

( )
exp{ }

4

n

mA B A
n

B BA B A BA

t tm m
F

m m m k

β β

β β

    −
= −   
   

ɶ

ɶ ɶ ɶ
,           

 k  = 0.7 the relativistic correction factor. The form factors are given by 
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2

2 2
52 2 2

1

2

2 1 2
52

( )1 1
[ ( )] ,

2 2

(1 )] .
4 2

m B
B B

B B A BA

c B

B B A BA

m t t m
l m F

m k m m

m m m m
c F

m m

β
β

µ β µ β

β

µ β µ β

− −

+

− −

−
= − + −

= − −

ɶ
ɶ ɶ

ɶ ɶ

           

The form factors , , , ,l c c r s+ − + and s−  are calculated in improved version, the ISGW II 

model [4]. Note that the results for the form factor c+  are quite different in the ISGW and 

ISGW II models [4]: c+ is positive in the former model while it becomes negative in the 

latter. Expressions in (3.17) and (3.18), the ISGW II model allows one to determine the form 

factors c−  and s− , which vanish in the ISGW I model [3]. The obtained form factors are 

given in Tables 3.5 and 3.6. 

 

 

Table 3.5 Form factors of (0 ) (1 )− +− +− +− +→→→→B A  transition at 2 ==== m
q t in the ISGW II quark 

Model 

 

Transition l c+ c- 

1B a→  -2.385 -0.032 -0.0091 

1B f→  -2.378 -0.032 -0.0090 

1B K→  -1.619 -0.035 -0.0074 

1B D→  -0.546 -0.049 -0.0041 

1sB f ′→  -1.847 -0.043 -0.0067 

1sB K→  -2.623 -0.038 -0.0085 

1s sB D→  -0.661 -0.062 -0.0040 
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Table 3.6 Form factors of (0 ) (1 )− +− +− +− +′′′′→→→→B A  transition at 2 ==== m
q t in the ISGW II quark 

Model 

 

Transition r s+ s- 

1B b→  1.945 0.126 -0.094 

1B h→  1.908 0.128 -0.096 

1B K→  1.423 0.125 -0.085 

1B D→  0.796 0.108 -0.043 

1sB h′→  2.388 0.143 -0.107 

1sB K→  2.124 0.128 -0.096 

1s sB D→  0.965 0.124 -0.048 

 

For B P→ transition form factors, we use the BSW model results which have already 

been described in detail in section 2.11 of chapter 2. 

 

3.5 DECAY CONSTANTS OF AXIAL-VECTOR MESONS 

For axial-vector meson, decay constants for 
−+=1PC

J  mesons may vanish due to 

the C-parity behavior. Under charge conjunction, the two types of axial-vector mesons 

transform as 

                          

(1 ) (1 )

(1 ) (1 )

a b

b a

a b

b a

M M

M M

++ ++

+− +−

→ +

→ −

                      )3,2,1,( =ba  

where a

bM  denotes meson 3×3 matrix elements in SU(3) flavor symmetry. Since the weak 

axial-vector current transforms as b

a

a

b AA )()( µµ +→  under charge conjunction, only the ( ++1 ) 

state can be produced through the axial-vector current in the SU(3) symmetry limit [19]. 

Particle Data Group [16] assumes that the mixing is maximal, i.e. 045=θ , whereas 
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1 1(1.270) / (1.400)K K ττ ν→ +  data yields 037θ = ± and 058θ = ± . To determine the decay 

constant of 1K (1.270), we use the following formula: 

  1 1

1

2 2 2 2 22
2 2

1 3

( 2 )( )
( ) | |

16

K KF
us K

m m m mG
K V f

m

τ τ

τ

τ

τ ν
π

+ −
Γ → = ,                            (3.23) 

which gives 
1 (1270) 0.175 0.019Kf = ± GeV. The decay constant of 1K (1.400) can be obtained 

from
1 1(1.400) (1.270) cotK Kf f θ= . A small value around 0.011 GeV for the decay constant of 

1BK  may arise through SU(3) breaking, which yields 

1 1 1(1.400) 1 1cos sin

0.087 ,

A AK K Kf f f

GeV

θ θ
′

= −

= −
                                                 (3.24) 

for 0

1 58θ = −  [13]. Similarly, decay constant of 1a (1.260) can be obtained from 1( )B a ττ ν→ . 

However, this branching ratio is not given in Particle Data Group [16], although the data on 

1a τ ττ ν ρπν→ →  have been reported by various experiments.  We take 

1
0.203 0.018af = ± GeV from the analysis given by J.C.R. Bloch et al. [22]. For the decay 

constant of 1f (1.285), we assume 
1 1f af f≈ . The decay constants  

1

0.127
AD

f = −  GeV, 
1

0.045
AD

f
′

=  GeV, 
1

0.121
s AD

f = −  GeV, 
1

0.038
s AD

f
′

=  GeV, 

1

0.115
AB

f = −  GeV, 
1

0.064
AB

f
′

=  GeV, 
1

0.101
s AB

f = −  GeV, 

  
1

0.054
s AB

f
′

=  GeV and
1

0.160
c

fχ ≈ −  GeV,                        (3.25) 

have been taken from [13]. 

In case of pseudoscalar mesons, to evaluate the factorization amplitudes, we use the 

following decay constants [23-25]: 

πf = 0.131 GeV, Kf = 0.160 GeV, Df = 0.208 GeV, 
sDf = 0.273 GeV,    

0.133fη =  GeV, 0.126fη ′ =  GeV   and 0.400
c

fη =  GeV.                 (3.26) 

 



83 

 

3.6 NUMERICAL RESULTS AND DISCUSSIONS  

     Finally, we calculate branching ratios of B meson decays in CKM-favored and CKM-

suppressed modes involving cb →   and ub →  transitions. Using the decay rate formula 

(3.12), the form factors calculated in section 3.4 and the numerical values of decay constants 

given in section 3.5, we predict the branching ratios as given in column 2
nd

 of the Tables 3.7, 

3.8, 3.9 (a) and 3.9 (b) for various possible modes. 

 

Table 3.7 Branching ratios for →B PA  decays in CKM-favored mode involving →→→→b c  

transition 

 

Decays Branching ratios 

0,1,1 =∆=∆=∆ SCb  

0

1B Dπ− −→  1.8×10
-3

 

0

1B Dπ− −→  3.9×10
-4

 

0

1B D a
− −→  5.6×10

-3
 

0

1B D b
− −→  6.5×10

-4
 

0 0 0

1B Dπ→  5.8×10
-5

 

0 0 0

1B Dπ→  1.1×10
-6

 

0

1B Dπ − +→  2.7×10
-3

 

0

1B Dπ − +→  3.1×10
-4

 

0 0

1B Dη→  3.0×10
-5

 

0 0

1B Dη→  5.8×10
-7

 

0 0

1B Dη′→  1.4×10
-5

 

0 0

1B Dη′→  2.8×10
-7

 

0

1B D a
+ −→  1.1×10

-2
 

0

1B D b
+ −→  9.9×10

-8
 

0 0 0

1B D a→  5.7×10
-4

 

0 0

1B D f→  5.2×10
-4

 

0 0 0

1B D b→  3.0×10
-4
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0 0

1B D h→  3.1×10
-4

 

0 0 0

1sB K D→  9.1×10
-5

 

0 0 0

1sB K D→  1.8×10
-6

 

0

1s sB Dπ − +→  3.6×10
-3

 

0

1s sB Dπ − +→  3.0×10
-4

 

0 0 0

1sB D K→  1.4×10
-3

 

0 0 0

1sB D K→  7.3×10
-7

 

0

1s sB D a
+ −→  9.9×10

-3
 

0

1s sB D b
+ −→  8.9×10

-8
 

1,0,1 −=∆=∆=∆ SCb  

1cB K χ− −→  1.3×10
-4

 

0

1sB D D
− −→  2.5×10

-3
 

0

1sB D D
− −→  7.6×10

-5
 

0

1sB D D
− −→  5.1×10

-3
 

0

1sB D D
− −→  9.6×10

-4
 

1cB Kη− −→  2.5×10
-3

 

1cB Kη− −→  7.0×10
-5

 

0 0

1cB K χ→  1.2×10
-4

 

0

1sB D D
+ −→  2.3×10

-3
 

0

1sB D D
+ −→  7.0×10

-5
 

0

1sB D D
− +→  4.7×10

-3
 

0

1sB D D
− +→  9.0×10

-4
 

0 0

1cB Kη→  2.3×10
-3

 

0 0

1cB Kη→  6.5×10
-5

 

0

1s cB ηχ→  4.3×10
-5

 

0

1s cB η χ′→  3.8×10
-5

 

0

1s s sB D D
+ −→  2.1×10

-3
 

0

1s s sB D D
+ −→  6.3×10

-5
 

0

1s s sB D D
− +→  6.9×10

-3
 

0

1s s sB D D
− +→  9.3×10

-4
 

0

1s cB fη ′→  1.1×10
-3

 

0

1s cB hη ′→  9.4×10
-4
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Table 3.8 Branching ratios for →→→→B PA  decays in CKM-suppressed mode involving 

→→→→b c  transition 

 

Decays Branching ratios 

1, 1, 1b C S∆ = ∆ = ∆ = −  

0

1B K D
− −→  1.5×10

-4
 

0

1B K D
− −→  3.0×10

-5
 

0

1B D K
− −→  1.6×10

-4
 

0

1B D K
− −→  1.7×10

-4
 

0 0 0

1B K D→  6.8×10
-6

 

0 0 0

1B K D→  1.4×10
-7

 

0

1B K D
− +→  2.0×10

-4
 

0

1B K D
− +→  2.4×10

-5
 

0

1B D K
+ −→  4.6×10

-4
 

0

1B D K
+ −→  1.3×10

-4
 

0 0 0

1B D K→  8.1×10
-5

 

0 0 0

1B D K→  7.3×10
-7

 

0 0

1sB Dη→  2.4×10
-6

 

0 0

1sB Dη→  5.0×10
-8

 

0

1s sB K D
− +→  2.7×10

-4
 

0

1s sB K D
− +→  2.3×10

-5
 

0 0

1sB Dη′→  2.6×10
-6

 

0 0

1sB Dη′→  5.4×10
-8

 

0 0

1sB D f ′→  3.9×10
-5

 

0 0

1sB D h′→  2.3×10
-5

 

0

1s sB D K
+ −→  4.1×10

-4
 

0

1s sB D K
+ −→  1.2×10

-4
 

1, 0, 0b C S∆ = ∆ = ∆ =  

1cB π χ− −→  6.3×10
-6

 

0

1B D D
− −→  1.6×10

-2
 

0

1B D D
− −→  3.0×10

-6
 

0

1B D D
− −→  1.7×10

-4
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0

1B D D
− −→  3.2×10

-5
 

1cB aη− −→  9.4×10
-5

 

1cB bη− −→  7.0×10
-5

 

0 0

1cB π χ→  2.9×10
-6

 

0

1cB ηχ→  1.4×10
-6

 

0

1cB η χ′→  5.2×10
-7

 

0

1B D D
+ −→  1.4×10

-4
 

0

1B D D
+ −→  2.8×10

-6
 

0

1cB ηχ→  1.4×10
-6

 

0

1cB η χ′→  5.2×10
-7

 

0

1B D D
+ −→  1.4×10

-4
 

0

1B D D
+ −→  2.8×10

-6
 

0

1B D D
− +→  1.6×10

-4
 

0

1B D D
− +→  2.9×10

-5
 

0 0

1cB aη→  4.4×10
-5

 

0

1cB fη→  3.9×10
-5

 

0 0

1cB bη→  3.3×10
-5

 

0

1cB hη→  3.5×10
-5

 

0 0

1s cB K χ→  4.5×10
-6

 

0

1s sB D D
+ −→  1.3×10

-4
 

0

1s sB D D
+ −→  2.5×10

-6
 

0

1s sB D D
− +→  2.4×10

-4
 

0

1s sB D D
− +→  3.0×10

-5
 

0 0

1s cB Kη→  1.4×10
-4

 

0 0

1s cB Kη→  1.2×10
-6
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We make the following observations:  

3.6.1 B PA→→→→  DECAYS INVOLVING b c→→→→  TRANSITION 

1.  1, 1, 0b C S∆ = ∆ = ∆ = mode :  

a) Branching ratios for dominant mode is 0

1( )B B D a
+ −→ having branching ratio 

1.1×10
-2

. We hope that this value is within the reach of the current experiments.  

b) For 1→B Da  decay mode the calculated branching ratios are 

0

1( )B B D a
− −→ =5.6×10

-3  
     3(4 4) 10−± ×       (Expt) 

0

1( )B B D a
+ −→ =1.1×10

-2      2(0.6 0.3) 10−± ×   (Expt) 

0 0 0

1( )B B D a→ =5.7×10
-4 

Similarly, for 1B Dπ→  decay mode the, we calculate  

0

1( )B B Dπ− −→ =1.8×10
-3  

 3(1.5 0.6) 10−± ×     (Expt) 

          0

1( )B B Dπ − +→ =2.7×10
-3 

 

          0 0 0

1( )B B Dπ→ =5.8×10
-5 

Theoretical estimates are consistent with the observed modes. 

c) The next order branching ratios in this mode are 0

1( )B B D a
− −→ = 5.6×10

-3
, 

0

1( )s sB B D a
+ −→ = 9.9×10

-3
, 0

1( )s sB B Dπ − +→ = 3.6×10
-3 

and 0 0 0

1( )sB B D K→  = 

1.4×10
-3

. 
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d) Decays 0

1 1/s sB D K D K
+ − + −→ 1 1/ /s sK D K D

− + − +   are forbidden in the spectator model. 

These decays may be generated through quark annihilation diagrams.  However, 

these annihilation contributions involve creation of ( )ss  pair which is relatively 

suppressed. 

e)  0 0 0

1 1/B D f D h′ ′→  are forbidden in the limit of ideal mixing for 1 1f f ′−  and 1 1h h′−  

mesons. Any deviation from the ideal mixing may generate these decays. 

f) It may be noted that no penguin or single quark transition contribute to this decay 

mode. However, 0B  meson decays of this mode may have contribution from 

annihilation diagrams. 

2. 1, 0, 1b C S∆ = ∆ = ∆ = − mode :    

a) For 1cK χ  mode, we obtain 

 
1( )cB B K χ− −→ = 1.3×10

-4
, 

 0 0

1( )cB B K χ→ = 1.2×10
-4

, 

which are smaller than the measured branching ratios, i.e 1( )cB B K χ− −→  = 

4(4.9 0.5) 10−± ×  and 0 0

1( )cB B K χ→ =   4(3.9 0.4) 10−± × , roughly by a factor of 4. 

Though, it may be remarked that penguin and annihilation diagrams do not contribute 

to these decays.   

b) We obtain 0

1( )sB B D D
− −→  = 5.1×10

-3
, 0

1( )sB B D D
− −→  = 2.5×10

-3
, 0

1( )sB B D D
− −→  

= 9.6×10
-4

,
 0

1( )sB B D D
− −→  = 7.6×10

-5
, 0

1( )sB B D D
− +→  = 4.7×10

-3
, 

0

1( )sB B D D
+ −→  = 2.3×10

-3
, 0

1( )sB B D D
− +→  = 9.0×10

-4 
and 0

1( )sB B D D
+ −→  = 

7.0×10
-5

. Inspite of the kinematic suppression, these modes acquire large branching 

ratios as these involve color-favored quark diagram and large value of decay 

constants of the charmed mesons. 
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c) Due to the vanishing decay constant ( )Af ′ , decays 1cB K h
− −→  and 0 0

1cB K h→   are 

forbidden in the present analysis. 

d) Also, 0 0

1s cB π χ→ 1/ cηχ 1/ cη χ′ 1/ D D
+ −

1/ D D
+ − 0 0

1/D D
0 0

1/D D / 1D D
− +

1/ D D
− + 0 0

1/ /D D

0 0

1D D
0

1/ caη 1/ c fη 0

1 1 1/ / /c c cf b hη η η′ ′  are forbidden in present framework. However 

these are likely to remain suppressed as these decays require cc  pair to be created. 

e) Annihilation diagrams do not contribute to this decay mode. However, 

0

1 1/s sB DD DD→ 1 1/ /s sD D D D  decay modes may have suppressed contribution 

from penguin diagrams which include ( )cc  pair.  

3. 1, 0, 0b C S∆ = ∆ = ∆ = mode :  

a) For dominant decay, we predict branching ratios as 0

1( )B B D D
− −→  = 1.6×10

-2
.  

b) In the present analysis, we obtain 1( )cB B π χ− −→  = 0.63×10
-5

 which is smaller than 

the experimental branching ratio 5(2.2 0.6) 10−± × . 

c) Decays 0 0 0 0 0 0

1 1 1 1 1 1/ / / / /c c s s s sB h h D D D D D D D Dπ η + − + −′→ 0 0 0 0

1 1/ /D D D D   1/ s sD D
− +  

1/ s sD D
− +

1 1/ /c cf hη η′ ′  and 0 0

1s cB K h→  are forbidden in the present analysis. 

Annihilation diagrams, elastic FSI and penguin diagrams may generate these decays 

to the naked charm mesons. However, decays emitting charmonium 1ch  remains 

forbidden in the ideal mixing limit. 

4. 1, 1, 1b C S∆ = ∆ = ∆ = − mode :  

a) Branching ratios of the dominant decays in the present mode are 0

1( )B B D K
− −→  = 

1.7×10
-4

,
 0

1( )B B D K
− −→  = 1.6×10

-4
, 0

1( )B B K D
− −→  = 1.5×10

-4
, 0

1( )B B D K
+ −→ = 

4.6×10
-4

, 0

1( )B B K D
− +→  = 2.0×10

-4
, 0

1( )B B D K
+ −→  = 1.3×10

-4
, 0

1( )s sB B D K
+ −→  

=  4.1×10
-4

, 0

1( )s sB B K D
− +→  =  2.7×10

-4  
and 0

1( )s sB B D K
+ −→  =  1.2×10

-4
. 
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b) Decays 0 0 0 0 0 0 0

1 1 1 1 1 1 1/ / / / / /sB D D D D D a D b D aπ π π π− + − + + − + −→ 0 0 0

1 1/ /D f D b
0

1/D h  

are forbidden in our analysis. Annihilation diagrams also do not contribute to these 

decays. However, these may acquire non zero branching ratios through elastic FSI. 

 

 

Table 3.9 (a) Branching ratios for →→→→B PA  decays involving →→→→b u  transition 

 

 

Decays Branching ratios 

1, 1, 1b C S∆ = ∆ = − ∆ = −  

0

1sB Dπ− −→  9.9×10
-6

 

0

1sB Dπ− −→  5.2×10
-7

 

1sB Dη− −→  5.1×10
-6

 

1sB Dη− −→  2.6×10
-7

 

0

1B K D
− −→  1.4×10

-6
 

0

1B K D
− −→  4.9×10

-8
 

1sB Dη− −′→  2.4×10
-6

 

1sB Dη− −′→  1.2×10
-7

 

0

1B D K
− −→  1.3×10

-5
 

0

1B D K
− −→  1.2×10

-7
 

0

1sB D a
− −→  1.4×10

-4
 

1sB D f
− −→  1.3×10

-4
 

0

1sB D b
− −→  7.7×10

-5
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1sB D h
− −→  8.1×10

-5
 

0

1sB Dπ + −→  1.9×10
-5

 

0

1sB Dπ + −→  9.6×10
-7

 

0 0 0

1B K D→  1.3×10
-6

 

0 0 0

1B K D→  4.6×10
-8

 

0 0 0

1B D K→  1.2×10
-5

 

0 0 0

1B D K→  1.1×10
-7

 

0

1sB D a
− +→  2.7×10

-4
 

0

1sB D b
− +→  1.4×10

-4
 

0

1s sB K D
+ −→  1.5×10

-5
 

0

1s sB K D
+ −→  7.6×10

-7
 

0 0

1sB Dη→  4.5×10
-7

 

0 0

1sB Dη→  1.6×10
-8

 

0 0

1sB Dη′→  4.9×10
-7

 

0 0

1sB Dη′→  1.8×10
-8

 

0 0

1sB D f ′→  5.9×10
-6

 

0 0

1sB D h′→  3.5×10
-6

 

0

1s sB D K
− +→  3.3×10

-4
 

0

1s sB D K
− +→  2.6×10

-7
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Decays 

Branching ratios  

This Work CMV [14] CHENG [10] 

1, 0, 0b C S∆ = ∆ = ∆ =  

0

1B aπ− −→  12.0×10
-6

 13.6×10
-6

 1.4

1.314.4−

+ ×10
-6

 

0

1B bπ− −→  1.03×10
-6

 4.2×10
-6

 0.0

0.00.4−

+ ×10
-6

 

0

1B aπ− −→  27.8×10
-6

 43.2×10
-6

 0.3

0.37.6−

+ ×10
-6

 

0

1B bπ− −→  17.8×10
-6

 18.6×10
-6

 0.3

0.39.6−

+ ×10
-6

 

1B fπ− −→  55.2×10
-6

 34.1×10
-6

 - 

1B hπ− −→  18.5×10
-6

 18.6×10
-6

 - 

1B aη− −→  6.0×10
-6

 13.4×10
-6

 - 

1B bη− −→  0.63×10
-6

 0.06×10
-6

 - 

1B aη− −′→  2.8×10
-6

 13.6×10
-6

 - 

1B bη− −′→  0.37×10
-6

 0.58×10
-6

 - 

0

1B aπ + −→  46.5×10
-6

 36.7×10
-6

 2.3

2.223.4−

+ ×10
-6

 

0

1B bπ + −→  3.92×10
-10

 4.4×10
-6

 0.3×10
-6

 

0 0 0

1B aπ→  3.4×10
-6

 0.27×10
-6

 0.1

0.10.9−

+ ×10
-6

 

0 0

1B fπ→  3.5×10
-6

 0.47×10
-6

 - 

0 0 0

1B bπ→  0.47×10
-6

 0.15×10
-6

 0.2

0.21.1−

+ ×10
-6

 

0 0

1B hπ→  0.5×10
-6

 0.16×10
-6

 - 

0

1B aπ − +→  77.2×10
-6

 74.3×10
-6

 0.2

0.29.1−

+ ×10
-6

 

0

1B bπ − +→  33.2×10
-6

 36.2×10
-6

 0.3

0.311.2−

+ ×10
-6

 

0 0

1B aη→  5.5×10
-8

 0.54×10
-6

 - 

0

1B fη→  2.3×10
-8

 37.1×10
-6

 - 

0 0

1B bη→  0.29×10
-6

 0.17×10
-6

 - 

0

1B hη→  0.30×10
-6

 18.2×10
-6

 - 

0 0

1B aη ′→  0.04×10
-8

 0.09×10
-6

 - 

0

1B fη′→  1.98×10
-8

 22.1×10
-6

 - 

0 0

1B bη ′→  0.17×10
-6

 0.02×10
-6

 - 

0

1B hη′→  1.8×10
-7

 11.2×10
-6

 - 

0

1sB K a
+ −→  36.4×10

-6
 19.2×10

-6
 - 

0

1sB K b
+ −→  3.1×10

-10
 - - 

0 0 0

1sB K a→  9.8×10
-9

 0.09×10
-6

 - 
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0 0

1sB K f→  1.2×10
-6

 0.03×10
-6

 - 

0 0 0

1sB Kπ→  2.3×10
-6

 - - 

0 0 0

1sB Kπ→  8.6×10
-10

 - - 

0

1sB Kπ − +→  81.9×10
-6

 - - 

0

1sB Kπ − +→  3.1×10
-8

 - - 

0 0

1sB Kη→  1.4×10
-6

 - - 

0 0

1sB Kη→  3.6×10
-10

 - - 

0 0

1sB Kη′→  8.1×10
-7

 - - 

0 0

1sB Kη′→  6.1×10
-11

 - - 

 

 

 

Table 3.9 (b) Branching ratios for →→→→B PA  decays involving →→→→b u  transition 

 

Decays Branching ratios 

This Work CMV [14] CHENG [10] 

1, 0, 1b C S∆ = ∆ = ∆ = −  
0

1B Kπ− −→  0.37×10
-6

 2.5×10
-6

  0.1

0.12.7+

− ×10
-6

 

0

1B Kπ− −→  0.34×10
-6

 0.7×10
-6

  0.4

0.43.0+

− ×10
-6

 

1B Kη− −→  0.18×10
-6

 0.95×10
-6

 - 

1B Kη− −→  0.18×10
-6

 95.1×10
-6

 - 

0

1B K a
− −→  2.2×10

-6
 43.4×10

-6
 0.9

0.913.9+

− ×10
-6

 

1B K f
− −→  4.1×10

-6
 31.1×10

-6
 - 

0

1B K b
− −→  1.4×10

-6
 18.1×10

-6
 0.5

0.56.5+

− ×10
-6

 

1B K h
− −→  1.4×10

-6
 19.0×10

-6
 - 

1B Kη− −→  8.1×10
-8

 0.53×10
-6

 - 

1B Kη− −′→  9.3×10
-8

 80.0×10
-6

 - 

0

1B Kπ + −→  1.9×10
-6

 4.3×10
-6

 0.8

0.63.0+

− ×10
-6

 

0

1B Kπ + −→  5.9×10
-7

 2.3×10
-6

  1.1

1.05.4+

− ×10
-6

 

0 0 0

1B Kπ→  1.6×10
-7

 2.3×10
-6

  0.0

0.01.0+

− ×10
-6

 

0 0 0

1B Kπ→  3.9×10
-10

 1.7 ×10
-6

 0.3

0.32.9+

− ×10
-6

 

0 0

1B Kη→  9.4×10
-8

 - - 

0 0

1B Kη→  2.7×10
-10

 - - 

0 0 0

1B K a→  7.5×10
-8

 42.3×10
-6

 0.3

0.36.9+

− ×10
-6

 

0 0

1B K f→  8.9×10
-8

 34.7×10
-6

 - 

0

1B K a
− +→  5.9×10

-6
 72.2×10

-6
 1.0

1.018.3+

− ×10
-6
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0

1B K b
− +→          2.6×10

-6
       35.7×10

-6
 1.0

0.912.1+

− ×10
-6

 

0 0

1B Kη′→  5.3×10
-8

 1.1×10
-6

 - 

0 0

1B Kη′→  2.0×10
-10

 51.4×10
-6

 - 

0

1sB K K
+ −→  1.5×10

-6
 3.3×10

-6
 - 

0

1sB K K
+ −→  0.46×10

-6
 1.8×10

-6
 - 

0 0

1sB fπ ′→  7.5×10
-8

 - - 

0 0

1sB hπ ′→  3.5×10
-8

 - - 

0 0

1sB aη→  2.6×10
-8

 0.14×10
-6

 - 

0

1sB fη→  3.1×10
-8

 0.19×10
-6

 - 

0

1sB fη ′→  4.6×10
-8

 - - 

0

1sB hη ′→  2.2×10
-8

 - - 

0

1sB K K
− +→  6.3×10

-3
 - - 

0

1sB K K
− +→  1.8×10

-9
 - - 

0 0

1sB aη ′→  3.0×10
-8

 0.14×10
-6

 - 

0

1sB fη′→  3.5×10
-8

 0.18×10
-6

 - 

0

1sB fη′ ′→  2.6×10
-8

 - - 

0

1sB hη′ ′→  1.3×10
-8

 - - 

1, 1, 0b C S∆ = ∆ = − ∆ =  

0

1B Dπ− −→  5.9×10
-7

                -                              - 

0

1B Dπ− −→  2.0×10
-8                        

-                              - 

0

1B Dπ− −→  6.4×10
-8                        

-                              -  

0

1B Dπ− −→  2.2×10
-9                        

-                              - 

1B Dη− −→  3.1×10
-7                        

-                              - 

1B Dη− −→  1.1×10
-8                        

-                              - 

1B Dη− −′→  1.5×10
-9                        

-                              - 

1B Dη− −′→  5.0×10
-9                        

-                              - 

0

1B D a
− −→  4.5×10

-6                        
-                              - 

1B D f
− −→  4.1×10

-6                        
-                              - 

0

1B D b
− −→  2.4×10

-6                        
-                              - 

1B D h
− −→  2.5×10

-6                        
-                              - 

0

1B D a
− −→  5.0×10

-7                        
-                              - 

0

1B D b
− −→  2.9×10

-7                        
-                              - 

0

1B Dπ + −→  1.1×10
-6                        

-                              - 
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0

1B Dπ + −→  3.8×10
-8                        

-                              - 

0 0 0

1B Dπ→  3.0×10
-8                        

-                              - 

0 0 0

1B Dπ→  1.0×10
-9                        

-                              - 

0 0

1B Dη→  1.5×10
-8                        

-                              - 

0 0

1B Dη→  5.3×10
-10                      

-                              - 

0 0

1B Dη′→  7.3×10
-9                        

-                              - 

0 0

1B Dη′→  2.5×10
-10                      

-                              - 

0

1B D a
− +→  8.4×10

-6                        
-                              - 

0

1B D b
− +→  4.4×10

-6                     
-                              - 

0 0 0

1B D a→  2.3×10
-7                     

-                              - 

0 0

1B D f→  2.1×10
-7                     

-                              - 

0 0 0

1B D b→  1.2×10
-7                     

-                              - 

0 0

1B D h→  1.3×10
-7                     

-                              - 

0

1sB K D
+ −→  8.7×10

-7                     
-                              - 

0

1sB K D
+ −→  3.0×10

-8                     
-                              - 

0 0 0

1sB K D→  4.7×10
-8                     

-                              - 

0 0 0

1sB K D→  1.6×10
-9                     

-                              - 

0

1sB D K
− +→  1.0×10

-5                     
-                              - 

0

1sB D K
− +→  5.4×10

-9                     
-                              - 

0 0 0

1sB D K→  5.7×10
-7                     

-                              - 

0 0 0

1sB D K→  3.0×10
-10                   

-                              - 

 

 

 

3.6.2 →B PA  DECAYS INVOLVING →b u  TRANSITION 

1. 1, 0, 0∆ = ∆ = ∆ =b C S mode :  

a) For 1B aπ→  decay mode, we calculate 

                   0

1( )B B aπ− −→ =12.0×10
-6        6(26.0 7.0) 10−± ×    (Expt), 

which is smaller by a factor of 2 with experimental value. 

      0

1( )B B aπ− −→ =27.8×10
-6 

       6(20.0 6.0) 10−± ×    (Expt) 
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       0

1( )B B aπ + −→ =46.5×10
-6 

          6(33.2 5.0) 10−± ×   (Expt) 

agrees with the experimental value. 

0 0 0

1( )B B aπ→ =3.4×10
-6                   

    31.1 10−< ×          (Expt)
 

is well below the experimental upper limit. Annihilation diagram may contribute to 

these decays which may improve the branching ratios. 

 

 

b) 0 0 0 0

1 1 1 1 1 1 1/ / / / / / cB K K K K K K K K f h hπ π π− − − − − − − −′ ′→ , 0
B → 1 1/K K K K

+ − + − 0 0

1/ /K K   

0 0 0 0

1 1 1 1 1/ / / / /K K f h f hπ π η η′ ′ ′ ′ 0 0

1 /K K
0 0

1 /K K 1 1/K K K K
− + − +

1 1/ /f hη η′ ′ ′ ′  and  0

sB →  

0

1K f ′ 0 0

1/K b
0

1/ K h
0

1/ K h′   are forbidden in the present analysis. Annihilation process 

and FSIs may generate these decays. 

c) 0 0

1 1/B K Kπ π− − −→  and  0

1 1/B K Kπ π+ − + −→  are also forbidden in the present 

analysis which may be generated through annihilation diagram or elastic FSI.  

2. 1, 1, 1b C S∆ = ∆ = − ∆ = − mode :   

a) Dominant decay in the present mode are 0

1( )sB B D a
− −→  = 1.4×10

-4
, 

1( )sB B D f
− −→  

= 1.3×10
-4

, 0

1( )sB B D a
− +→  = 2.7×10

-4
, 0

1( )sB B D b
− +→  = 1.4×10

-4
 and 

0

1( )s sB B D K
− +→  = 3.3×10

-4
. 

b) Calculated branching ratios 0

1( )sB B D a
− −→  = 1.4×10

-4
 and   0

1( )sB B D a
− +→  = 

2.7×10
-4 

are consistent with the experimental upper limits 31.8 10−< ×  and 32.2 10−< × . 
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c) Decays 0 0 0 0

1 1 1 1 1 1/ / / / /s sB K D K D D K D K D f D h
− − − − − − −′ ′→  and 0

1sB Dπ + −→ 1/ /Dπ + −  

0 0 0 0

1 1 1 1/ / /D D D a D bπ π − + − + 0 0 0

1 1/ / /D a D f
0 0 0

1 1/D b D h  are forbidden in the present 

analysis. Annihilation and FSIs may generate these decays. 

3. 1, 1, 0b C S∆ = ∆ = − ∆ = mode :  

a) Branching ratios of 0

1( )B B D a
− +→ = 8.4×10

-6
, which is very small as compare to 

experimental value 3(6.0 3.3) 10−± × . The disagreement with the experiment may be 

attributed due to the reason that annihilation diagram may generate this decay, which 

are neglected in the present work. 

b) Decays 0 0 0 0

1 1 1 1 1 1/ / / / /s s s sB K D K D D f D h D K D K
− − − − − − −′ ′→  and 0

1sB K D
+ −→ 1/ sK D

+ −  

0 0

1 1 1 1/ / / /s sD f D h D K D K
− + − +′ ′  are forbidden in the present analysis. Annihilation 

diagrams may generate these decays. 

4. 1, 0, 1b C S∆ = ∆ = ∆ = − mode :   

a) For 
1B Kπ→  decay mode,  

               0

1( )B B Kπ− −→ =3.4×10
-7

                 32.6 10−< ×      (Expt)                             

0

1( )B B Kπ + −→ =5.9×10
-7  

                       31.1 10−< ×       (Expt) 

              0 0 0

1( )B B Kπ→ =3.9×10
-10           

 

which are well below the experimental upper limits and 

             0

1( )B B K a
− +→ =5.9×10

-6       6(16.0 4.0) 10−± ×       (Expt) 

b)  Decays 0 0 0 0

1 1 1 1 1 1/ / / / /B K K K a K b K f K hπ π− − − − − − −′ ′→ , 0
B → 0 0 0

1 1/ /K f K b′ 0

1 /K h   

0

1K h′  and 0 0 0 0 0

1 1/sB K K K K→ 1/ /aπ + − 0 0 0

1 1 1/ / /b a fπ π π+ − 0 0

1bπ 0

1 1/ / /h aπ π − +

1 /bπ − +  

0

1 1/b hη η 0 0

1 /K K  0 0 0

1 1 1/ /K K b hη η′ ′  are forbidden in the present analysis. Annihilation 

and FSIs may generate these decays. 
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3.6.3 COMPARISON WITH OTHER WORKS 

Also, we compare our results with branching ratios calculated in the other models 

[13, 14, 15]. The predicted branching ratios in CMV [13] shown in 3
rd

 column of tables VI, 

VII, VIII(a) and VIII(b) are generally larger as compared to the present branching ratios 

because of the difference in the form factors have been used in the two works, particularly 

for ( )

1B K
′→ η . In CMV [13] the large value of branching ratio ( )

1B K
′→ η as a combination 

of effects of the penguin contribution in the effective Hamiltonian and the two mixing 

1 1A AK K ′−  and η η′− . Branching ratios have also been calculated by Cheng [14, 15]. His 

predictions for hadronic charmed [14] decays B( 0

1B Dπ− −→ ) = 3.7×10
-4

, B( 0

1B Dπ− −→ ) = 

1.1×10
-3

, B( 0

1sB D D
− −→ ) = 9.6×10

-4
, 

 
B( 0

1sB D D
− −→ ) = 1.3×10

-3
, B( 0

1sB D D
− −→ ) = 

4.3×10
-3

, B( 0

1sB D D
− −→ ) = 3.1×10

-4
, B( 0

1B Dπ − +→ ) = 6.8×10
-4

, B( 0

1B Dπ − +→ ) =   

1.0×10
-3

,  B( 0

1sB D D
− +→ ) = 8.8×10

-4
, B( 0

1sB D D
− +→ ) = 1.2×10

-3
, B( 0

1sB D D
+ −→ ) = 

3.9×10
-3

, B( 0

1sB D D
+ −→ ) = 2.8×10

-4
, B( 0

1s sB Dπ − +→ ) = 5.2×10
-4

 and B( 0

1s sB Dπ − +→ ) = 

1.5×10
-3 

are different from our results owing to the different values used for the decay 

constants and different form factor values used. Branching ratios for hadronic charmless [15] 

decays are generally smaller than our numerical values of branching ratios. The 

disagreement with their predictions may be attributed to the difference in the form factors 

obtained in the covariant light-front approach (CLF). 
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CHAPTER 4   

HADRONIC WEAK DECAYS OF BOTTOM 

MESONS EMITTING PSEUDOSCALAR  

AND TENSOR MESONS  

 

4.1 INTRODUCTION 

In this chapter, we analyze two-body weak hadronic decays of −B , 0B and 0

sB  

mesons to pseudoscalar  meson and tensor meson, for which the experiments have provided 

the following branching ratios  [1]: 

    
0 4

2( ) (7.8 1.4) 10B B Dπ− − −→ = ± × , 

6

2 10)5.22.8()( −−− ×±=→ fBB π , 

0.4 6

2 0.5( ) (1.3 ) 10B B K f
− − + −

−→ = × , 

)( 2

−− → KBB η = 6(9.1 3.0) 10−± × , 

)( 0

2

0
KBB η→ = 6(9.6 2.1) 10−± × , 

)( 2

00
fDBB → = 4(1.2 0.4) 10−± × , 

0 4

2( ) 3.0 10B B aπ ± −→ < ×∓ , 
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0 6

2( ) 6.9 10B B Kπ− − −→ < × , 

)( 2

0 +−→ aDBB s

4109.1 −×< , 

0 5

2( ) 1.8 10B B Kπ + − −→ < × , 

0 3

2( ) 2.2 10B B Dπ − + −→ < × . 

Employing the factorization scheme, we calculate the decay amplitudes for CKM-favored 

and CKM-suppressed modes involving cb →   and ub →  transitions in the Isgur, Scora, 

Grinstein and Wise (ISGW II) model [2, 3]. In general, W-annihilation and W-exchange 

diagrams [4, 5] may also contribute to these decays under consideration. Normally, such 

contributions are expected to be suppressed due to the helicity and color arguments and are 

neglected in this work. We also compare our predictions with the recent works [6, 7]. 

 

4.2 TENSOR MESON SPECTROSCOPY 

Experimentally [1], the tensor meson ( 2 )+=P
J  sixteen-plet comprises of an 

isovector )318.1(2a , strange isospinor )429.1(*

2K , charm SU(3) triplet )457.2(*

2D ,  

)573.2(*

2sD  and  three isoscalars )275.1(2f , )525.1(2f ′  and )555.3(2cχ . These states behave 

well with respect to the quark model assignments, though the spin and parity of the charm 

isosinglet )573.2(*

2sD   remain to be confirmed. The numbers given within parentheses 

indicate mass (in GeV units) of the respective mesons. )555.3(2cχ  is assumed to be pure 

)( cc state, and mixing of the isoscalar states is defined as:   

                

2

'

2

1
(1.275) ( ) cos ( )sin ,

2

1
(1.525) ( )sin ( ) cos ,

2

T T

T T

f uu dd ss

f uu dd ss

φ φ

φ φ

= + +

+ −

                                         (4.1) 

where )()( physicalideal TT θθφ −=  and )( physicalTθ = 27�  [1].  
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4.3 METHODOLOGY 

The effective weak Hamiltonian generating the b -quark decays involving b c→  and 

b u→  transitions has given already been in earlier chapter 2 for CKM-favored and CKM-

suppressed modes, respectively. 

 

4.3.1 DECAY AMPLITUDES AND RATES 

The decay rate formula for (0 ) (0 ) (2 )B P T
− − +→ +  decay is given by 

                              

2
5

2

2
( ) ( )

12

cB

T T

pm
B PT A B PT

m mπ

 
Γ → = → 

 
,                            (4.2) 

where cp  is the magnitude of the three-momentum of the final-state particle in the rest 

frame of B meson and Bm  and Tm  denote masses of the B meson and tensor meson, 

respectively. 

   The factorization scheme in general expresses the weak decay amplitude as the 

product of matrix elements of weak currents (up to the weak scale factor of 
2

FG
× CKM 

elements × QCD factor), 

                            ( ) 0 0A B PT P J T J B T J P J Bµ µ
µ µ→ = + .                      (4.3) 

The matrix elements 0P J µ
 and P J Bµ  are already given in the chapter 2, in (2.68). 

However, the matrix elements 0)( µµ JqT  vanish due to the tracelessness of the 

polarization tensor µυ∈  of spin 2 meson and the auxiliary condition  0=∈µυ
µq  [8].   

Remaining matrix element is expressed as: 

* *

*

( ) ( ) ( ) ( )

( )[( ) ( ) ],

T B B B T B T B

B B B T B T

T P J B P ih P P P P P k P

b P P P P b P Pµ µ

υα λ ρ υ
µ µυλρ α µυ

α β
αβ+ −

= ∈ ∈ + − + ∈

+ ∈ + + −
                  (4.4) 

in the ISGW model [3] which yields 
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),()( 2*

P

TB

BBPW mFPPifBHPT →∈−= υµ
µυ                        (4.5) 

where  

2 2 2 2 2 2 2

B( ) ( ) ( ) ( ) ( ).B T

P P T P p PF m k m m m b m m b m→

+ −= + − +                    (4.6) 

Thus 

2( ) ( ) ( )
2

B TF
P P

G
A B PT CKM factors QCD factors CG factors f F m

→→ = × × × × .      (4.7) 

Sandwiching the weak Hamiltonian between the initial and final states, we obtain 

decay amplitudes of −B , 0B  and  0

sB  mesons for various decay modes as given in the 

Tables 4.1, 4.2, 4.3 (a) and 4.3 (b).  

 

Table 4.1 Decay amplitudes of →→→→B PT  decays in CKM-favored mode involving 

→→→→b c transition 

 

Decays Amplitudes 

1, 1, 0b C S∆ = ∆ = ∆ =                   *

2

F
cb ud

G
V V×  

0

2DB
−− → π  )( 2

1
2

ππ mFfa
DB→

 

−− → 2

0
aDB  )( 2

2
2

D

aB

D mFfa
→

 

+−→ 2

0
DB π  )( 2

1
2

ππ mFfa
DB→

 

0

2

00
aDB →  

)(
2

1 2

2
2

D

aB

D mFfa
→

−  

2

00
fDB →  

)(cos
2

1 2

2
2

D

fB

TD mFfa
→φ  

2

00
fDB ′→  

)(sin
2

1 2

2
2

D

fB

TD mFfa
′→φ  

+−→ 2

0

ss DB π  )( 2

1
2

ππ mFfa ss DB →
 

0

2

00
KDBs →  )( 2

2
2

D

KB

D mFfa s →
 

1, 0, 1b C S∆ = ∆ = ∆ = −                  *

2

F
cb cs

G
V V×  

0

2DDB s

−− →  )( 2

1
2

ss D

DB

D mFfa
→

 

−− → 2KB cη  )( 2

2
2

cc
mFfa

KB

ηη
→
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Table 4.2 Decay amplitudes of →→→→B PT  decays in CKM-suppressed mode involving 

→→→→b c transition 

 

Decays Amplitudes 

1 1 1b , C , S∆ = ∆ = ∆ = −        
2

*F
cb us

G
V V×  

0

2DKB
−− →  )( 2

1
2

K

DB

K mFfa
→

 

−− → 2

0
KDB  )( 2

2
2

D

KB

D mFfa
→

 

+−→ 2

0
DKB  )( 2

1
2

K

DB

K mFfa
→

 

0

2

00
KDB →  )( 2

2
2

D

KB

D mFfa
→

 

+−→ 2

0

ss DKB  )( 2

1
2

K

DB

K mFfa ss →
 

2

00
fDBs →  )(sin 2

2
2

D

fB

TD mFfa s →φ  

2

00
fDBs

′→  )(cos 2

2
2

D

fB

TD mFfa s ′→− φ  

1 0 0b , C , S∆ = ∆ = ∆ =             
2

*F
cb cd

G
V V×  

0

2DDB
−− →  )( 2

1
2

D

DB

D mFfa
→

 

−− → 2aB cη   )( 2

2
2

cc
mFfa

aB

ηη
→

 

+−→ 2

0
DDB   )( 2

1
2

D

DB

D mFfa
→

 

0

2

0
aB cη→  

- 2 2

2

1
( )

2 c c

B a
a f F m

→

η η  

2

0
fB cη→  

)(cos
2

1 2

2
2

cc
mFfa

fB

T ηη φ →  

2

0
fB c

′→ η  
)(sin

2

1 2

2
2

cc
mFfa

fB

T ηη φ ′→  

+−→ 2

0

ss DDB   )( 2

1
2

D

DB

D mFfa ss →
 

0

2

0
KB cs η→   2 2

2 ( )s

c c

B K
a f F m

→

η η  

 

+−→ 2

0
DDB s

 )( 2

1
2

ss D

DB

D mFfa
→

 

0

2

0
KB cη→  )( 2

2
2

cc
mFfa

KB

ηη
→

 

0

2s s sB D D
− +→  )( 2

1
2

s

ss

s D

DB

D mFfa
→

 

2

0
fB cs η→  )(sin 2

2
2

c

s

c
mFfa

fB

T ηη φ →
 

2

0
fB cs

′→ η  - )(cos 2

2
2

c

s

c
mFfa

fB

T ηη φ ′→
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Table 4.3 (a) Decay amplitudes of →→→→B PT  decays involving →→→→b u transition 

 

Decays Amplitudes 

1 1 1b , C , S∆ = ∆ = − ∆ = −           
2

*F
ub cs

G
V V×  

−− → 2

0
KDB  )( 2

2
2

D

KB

D mFfa
→

 

0

2aDB s

−− →  
)(

2

1 2

1
2

ss D

aB

D mFfa
→

 

2fDB s

−− →  
)(cos

2

1 2

1
2

ss D

fB

TD mFfa
→φ  

2fDB s
′→ −−  

)(sin
2

1 2

1
2

ss D

fB

TD mFfa
′→φ  

0

2

00
KDB →  )( 2

2
2

D

KB

D mFfa
→

 

+−→ 2

0
aDB s  )( 2

1
2

ss D

aB

D mFfa
→

 

2

00
fDBs →  )(sin 2

2
2

D

fB

TD mFfa s →φ  

2

00
fDBs

′→  )(cos 2

2
2

D

fB

TD mFfa s →− φ  

+−→ 2

0
KDB ss

 )( 2

1
2

s

s

s D

KB

D mFfa
→

 

1 0 0b , C , S∆ = ∆ = ∆ =                  
2

*F
ub ud

G
V V×  

−− → 2

0
aB π  

)(
2

1 2

2
2

ππ mFfa
aB→

 

−− → 2aB η  
)(sin

2

1 2

2
2

ηη φ mFfa
aB

P

→
 

−− ′→ 2aB η  
)(cos

2

1 2

2
2

ηη φ ′

→

′ mFfa
aB

P
 

0

2aB
−− → π  

)(
2

1 2

1
2

ππ mFfa
aB→

 

2fB
−− → π  

)(cos
2

1 2

1
2

ππ φ mFfa
fB

T

→
 

2fB ′→ −− π  
)(sin

2

1 2

1
2

ππ φ mFfa
fB

T

′→
 

+−→ 2

0
aB π  )( 2

1
2

ππ mFfa
aB→

 

0

2

00
aB π→  

)(
2

1 2

2
2

ππ mFfa
aB→

−  

2

00
fB π→  

)(cos
2

1 2

2
2

ππ φ mFfa
fB

T

→
 

2

00
fB ′→ π  

)(sin
2

1 2

2
2

ππ φ mFfa
fB

T

′→
 



107 

 

0

2

0
aB η→  

)(sin
2

1 2

2
2

ηη φ mFfa
aB

P

→
−  

2

0
fB η→  

)(cossin
2

1 2

2
2

ηη φφ mFfa
fB

TP

→  

2

0
fB ′→ η  

)(sinsin
2

1 2

2
2

ηη φφ mFfa
fB

TP

′→
 

0

2

0
aB η ′→  

)(cos
2

1 2

2
2

ηη φ ′

→

′− mFfa
aB

P  

2

0
fB η ′→  

)(coscos
2

1 2

2
2

ηη φφ ′
→

′ mFfa
fB

TP  

2

0
fB ′′→η  

)(sincos
2

1 2

2
2

ηη φφ ′

′→
′ mFfa

fB

TP  

0

2

00
KBs π→  

)(
2

1 2

2
2

ππ mFfa
KBs →

 

+−→ 2

0
KBs π  )( 2

1
2

ππ mFfa
KBs →

 

0

2

0
KBs η→  

)(sin
2

1 2

2
2

ηη φ mFfa
KB

P
s →

 

0

2

0
KBs η ′→  

)(cos
2

1 2

2
2

ηη φ ′

→

′ mFfa
KB

P
s  

 

 

 

 

 

Table 4.3 (b) Decay amplitudes of →→→→B PT  decays involving →→→→b u  transition 

 

Decays Amplitudes 

1 0 1b , C , S∆ = ∆ = ∆ = −        
2

*F
ub us

G
V V×  

0

2aKB
−− →  

)(
2

1 2

1
2

K

aB

K mFfa
→

 

2fKB
−− →  

)(cos
2

1 2

1
2

K

fB

TK mFfa
→φ  

2fKB ′→ −−  
)(sin

2

1 2

1
2

K

fB

TK mFfa
′→φ  

−− → 2

0
KB π  

)(
2

1 2

2
2

ππ mFfa
KB→

 

−− → 2KB η  
)(sin

2

1 2

2
2

ηη φ mFfa
KB

P

→
 

−− ′→ 2KB η  
)(cos

2

1 2

2
2

ηη φ ′

→

′ mFfa
KB

P  
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+−→ 2

0
aKB  )( 2

1
2

K

aB

K mFfa
→

 

0

2

00
KB π→  

)(
2

1 2

2
2

ππ mFfa
KB→

 

0

2

0
KB η→  

)(sin
2

1 2

2
2

ηη φ mFfa
KB

P

→
 

0

2

0
KB η′→  

)(cos
2

1 2

2
2

ηη φ ′

→

′ mFfa
KB

P
 

2

00
fBs π→  

)(sin
2

1 2

2
2

ππ φ mFfa
fB

T
s →

 

2

00
fBs

′→ π  
)(cos

2

1 2

2
2

ππ φ mFfa
fB

T
s ′→−  

2

0
fBs η→  

)(sinsin
2

1 2

2
2

ηη φφ mFfa
fB

TP
s →

 

+−→ 2

0
KKBs  )( 2

1
2

K

KB

K mFfa s →
 

0

2sB f ′→ η  
- 2 2

2

1
sin cos ( )

2

sB f

P Ta f F mη ηφ φ ′→  

2

0
fBs η ′→  

)(sincos
2

1 2

2
2

ηη φφ ′
→

′ mFfa
fB

TP
s  

2

0
fBs

′′→η  
)(coscos

2

1 2

2
2

ηη φφ ′

′→
′− mFfa

fB

TP
s  

1 1 0b , C , S∆ = ∆ = − ∆ =             
2

*F
ub cd

G
V V×  

0

2aDB
−− →  

 )(
2

1 2

1
2

D

aB

D mFfa
→

 

2fDB
−− →  

 )(cos
2

1 2

1
2

D

fB

TD mFfa
→φ  

2fDB ′→ −−  
 )(sin

2

1 2

1
2

D

fB

TD mFfa
′→φ  

−− → 2

0
aDB  )( 2

2
2

D

aB

D mFfa
→

 

0

2

00
aDB →  

- )(
2

1 2

2
2

D

aB

D mFfa
→

 

2

00
fDB →  

 )(cos
2

1 2

2
2

D

fB

TD mFfa
→φ  

2

00
fDB ′→  

)(sin
2

1 2

2
2

D

fB

TD mFfa
′→φ  

+−→ 2

0
aDB   )( 2

1
2

D

aB

D mFfa
→

 

+−→ 2

0
KDBs   )( 2

1
2

D

KB

D mFfa s →
 

0

2

00
KDBs →   2 2

2 ( )sB K

D Da f F m
→  
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4.4 CALCULATION OF THE →B T  TRANSITION FORM FACTORS IN ISGW II    

MODEL 

The form factors have the following expressions in the ISGW II quark model, (whose 

salient features are already described in section 3.4 of chapter 3) for B T→  transitions [3]: 

 

( )

5(1 )
2

kd

B

m
k Fω

β
= + ɶ , 

2 2
( )

52 2

2 2 2
( )

52 2 2

1 ,
24 2

1 1 ,
2 4 22

b bd dT T

BT B BTd b B B

b bd d b dT T T

B BT BT B BTb T B

m m
b b F

mm m m

m m m m
b b F

m mm m

β β

β ββ

β β β

µ β β ββ

+ −

+ −

+

+ −

−

+ −

+

 
+ = − 

 

  
− = − − + −   

  

ɶɶ

ɶ ɶɶ

               (4.8) 

where 

,)~()~(

,)~()~(

,)~()~(

2
1

2
3

5

)(

5

2
1

2
5

5

)(

5

2
1

2
1

5

)(

5

−−−

−
+

−

=

=

=

−+

−+

T

T

B

Bbb

T

T

B

Bbb

T

T

B

Bk

m

m

m

m
FF

m

m

m

m
FF

m

m

m

m
FF

                             (4.9) 

 

Here, dm  is the spectator quark mass in the decaying particle. For sB T→ transitions, dm  is 

replaced with 
sm . Values of the parameter β  for different s-wave and p-wave mesons are 

given in Table 3.4 of chapter 3. We obtain the following form factors describing TB →  

transitions which are given in Table 4.4 at q2 = tm.  
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Table 4.4 Form factors of →B T  transition at 2 ==== m
q t  in the ISGW II quark model 

 

Transition k b+ b- 

2aB →  0.432  -0.013  0.015  

2fB →  0.425  -0.014  0.014  

2KB →  0.480 -0.015  0.015  

2DB →  0.677  -0.013  0.013  

2fBs
′→  0.572 -0.016  0.017  

2KBs →  0.492  -0.013  0.015  

2ss DB →  0.854  -0.015  0.016  

 

 

4.5 NUMERICAL RESULTS AND DISCUSSIONS 

We use the decay rate formula given in (4.2), to evaluate the numerical values of the 

branching ratios of B meson emitting pseudoscalar and tensor mesons in CKM-favored and 

CKM-suppressed modes involving cb →   and ub →  transitions. Here we have used the 

pseudoscalar decay constants [9, 10] given in (3.26) and the form factors calculated in 

section 4.4. Obtained results are given in column 2
nd

 of the Tables 4.5, 4.6, 4.7 (a) and 4.8 

(b) for various possible modes.  
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Table 4.5 Branching ratios of →B PT  decays in CKM-favored mode involving 

→b c transition 

 

Decays Branching ratios  

This Work KLO [6] 

0,1,1 =∆=∆=∆ SCb  

0

2DB
−− → π  6.7×10

-4
 3.5×10

-4
 

−− → 2

0
aDB  1.8×10

-4
 1.0×10

-4
 

+−→ 2

0
DB π  6.1×10

-4
 3.3×10

-4
 

0

2

00
aDB →  8.2×10

-5
 4.8×10

-4
 

2

00
fDB →  8.8×10

-5
 5.3×10

-5
 

2

00
fDB ′→  1.7×10

-6
 0.62×10

-6
 

+−→ 2

0

ss DB π  7.1×10
-4

 - 

0

2

00
KDBs →  1.1×10

-4
 - 

1,0,1 −=∆=∆=∆ SCb  

0

2DDB s

−− →  6.8×10
-4

 4.9×10
-4

 

−− → 2KB cη  1.4×10
-4

 1.1×10
-4

 

+−→ 2

0
DDB s  6.4×10

-4
 4.6×10

-4
 

0

2

0
KB cη→  1.3×10

-4
 9.6×10

-5
 

−−→ 2

0

sss DDB  7.7×10
-4

 - 

2

0
fB cs η→  2.7×10

-6
 - 

2

0
fB cs

′→η  1.3×10
-4

 - 
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Table 4.6 Branching ratios of →B PT  decays in CKM-suppressed mode involving 

→b c transition 

 

Decays Branching ratios 

This Work KLO [6] 

1,1,1 −=∆=∆=∆ SCb  

0

2DKB
−− →  4.8×10

-5
 2.5×10

-5
 

−− → 2

0
KDB  8.7×10

-6
 7.3×10

-6
 

+−→ 2

0
DKB  4.5×10

-5
 2.4×10

-5
 

0

2

00
KDB →  8.1×10

-6
 6.8×10

-6
 

+−→ 2

0

ss DKB  5.2×10
-5

 - 

2

00
fDBs →  9.9×10

-8
 - 

2

00
fDBs

′→  6.7×10
-6

 - 

0,0,1 =∆=∆=∆ SCb  

0

2DDB
−− →  2.5×10

-5
 2.2×10

-5
 

−− → 2aB cη  9.2×10
-6

 4.9×10
-6

 

+−→ 2

0
DDB  2.4×10

-5
 2.1×10

-5
 

0

2

0
aB cη→  4.3×10

-6
 2.3×10

-6
 

2

0
fB cη→  4.8×10

-6
 2.7×10

-6
 

2

0
fB c

′→η  6.7×10
-8

 0.02×10
-6

 

+−→ 2

0

ss DDB  2.9×10
-5

 - 

0

2

0
KB cs η→  6.9×10

-6
 - 
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Table 4.7 (a) Branching ratios of →B PT  decays involving →b u  transition 

 

Decays Branching ratios 

This Work KLO [6] MQ [7] 

1,1,1 −=∆−=∆=∆ SCb  

−− → 2

0
KDB  1.3×10

-6
 1.2×10

-6
 - 

0

2aDB s

−− →  2.0×10
-5

 9.4×10
-6

 - 

2fDB s

−− →  2.2×10
-5

 1.0×10
-5

 - 

2fDB s
′→ −−  4.3×10

-7
 0.12×10

-6
 - 

0

2

00
KDB →  1.2×10

-6
 1.1×10

-6
 - 

+−→ 2

0
aDB s  3.8×10

-5
 1.8×10

-5
 - 

+−→ 2

0
KDB ss  2.6×10

-5
 - - 

0 0

2sB D f→  1.5×10
-8

 - - 

2

00
fDBs

′→  1.0×10
-6

 - - 

0,0,1 =∆=∆=∆ SCb  

0

2aB
−− → π  6.7×10

-6
 2.6×10

-6
 4.38×10

-6
 

2fB
−− → π  7.1×10

-6
 - - 

2fB ′→ −− π  1.5×10
-7

 - - 

−− → 2

0
aB π  0.38×10

-6
 0.001×10

-6
 0.015×10

-6
 

−− → 2aB η  0.23×10
-6

 0.29×10
-6

 45.8×10
-6 

 

−− ′→ 2aB η  0.13×10
-6

 1.31×10
-6

 71.3×10
-6

 

+−→ 2

0
aB π  13.0×10

-6
 4.88×10

-6
 8.19×10

-6
 

0

2

00
aB π→  0.18×10

-6
 0.0003×10

-6
 0.007×10

-6
 

2

00
fB π→  1.9×10

-7
 - - 

2

00
fB ′→ π  3.9×10

-9
 - - 

0

2

0
aB η→  0.11×10

-6
 0.14×10

-6
 25.2×10

-6
 

2

0
fB η→  1.1×10

-7
 - - 

2

0
fB ′→ η  2.4×10

-9
 - - 

0

2

0
aB η ′→  0.06×10

-6
 0.62×10

-6
 43.3×10

-6
 

2

0
fB η ′→  6.3×10

-8
 - - 

2

0
fB ′′→ η  1.3×10

-9
 - - 

+−→ 2

0
KBs π  7.8×10

-6
 - - 

0

2

00
KBs π→  2.2×10

-7
 - - 

0

2

0
KBs η→  1.3×10

-7
 - - 

0

2

0
KBs η ′→  7.5×10

-8
 - - 
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Table 4.7 (b) Branching ratios of →B PT  decays involving →b u transition 

 

Decays Branching ratios 

This Work KLO [6] MQ [7] 

1,0,1 −=∆=∆=∆ SCb  

0

2aKB
−− →  0.51×10

-6
 0.31×10

-6
 0.39×10

-6
 

2fKB
−− →  5.4×10

-7
 - - 

2fKB ′→ −−  1.5×10
-8

 - - 

−− → 2

0
KB π  0.02×10

-6
 0.09×10

-6
 0.15×10

-6
 

−− → 2KB η  0.01×10
-6

 0.03×10
-6

 1.19×10
-6

 

−− ′→ 2KB η  0.007×10
-6

 1.40×10
-6

 2.70×10
-6

 

+−→ 2

0
aKB  0.95×10

-6
 0.58×10

-6
 0.73×10

-6
 

0

2

00
KB π→  0.02×10

-6
 0.08×10

-6
 0.13×10

-6
 

0

2

0
KB η→  0.01×10

-6
 0.03×10

-6
 1.09×10

-6
 

0

2

0
KB η′→  0.006×10

-6
 1.3×10

-6
 2.46×10

-6
 

+−→ 2

0
KKBs  5.9×10

-7
 - - 

2

00
fBs π→  1.9×10

-10
 - - 

2

00
fBs

′→ π  1.4×10
-8

 - - 

2

0
fBs η→  1.1×10

-10
 - - 

2

0
fBs

′→η  8.3×10
-9

 - - 

2

0
fBs η′→  6.5×10

-11
 - - 

2

0
fBs

′′→η  4.7×10
-9

 - - 

0,1,1 =∆−=∆=∆ SCb    

0

2aDB
−− →  6.5×10

-7
 - - 

2fDB
−− →  6.9×10

-7
 - - 

2fDB ′→ −−  1.4×10
-7

 - - 

−− → 2

0
aDB  7.3×10

-8
 - - 

+−→ 2

0
aDB  1.2×10

-6
 - - 

0

2

00
aDB →  3.4×10

-8
 - - 

2

00
fDB →  3.6×10

-8
 - - 

2

00
fDB ′→  7.1×10

-10
 - - 

+−→ 2

0
KDBs

 8.3×10
-7

 - - 

0

2

00
KDBs →  4.6×10

-8
 - - 
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We make the following observations:  

4.5.1 B PT→→→→  DECAYS INVOLVING b c→→→→  TRANSITION 

1.  1, 1, 0b C S∆ = ∆ = ∆ = mode :  

a) Calculated branching ratio 0

2( )B B Dπ− −→  = 6.7×10
-4 

 agrees well with the 

experiment value [1] 4(7.8 1.4) 10−± × , and 0

2( )B B Dπ − +→  = 6.1×10
-4

, is well below 

the experimental upper limit 32.2 10−< × . 

b) Branching ratios of other dominant modes are 0

2( )B B D a
− −→ = 1.8×10

-4
, 

0

2( )s sB B Dπ − +→  = 7.1×10
-4

, and 0 0 0

2( )sB B D K→  = 1.1×10
-4

. We hope that these 

values are within the reach of the future experiments. 

c) Decays 0

2

00
aDB →  and 2

00
fDB →  have branching ratios of the order of 10

-5
, 

since these involve color-suppressed spectator process. The branching ratio of 

0 0

2B D f ′→  decay is further suppressed due to the 2 2f f ′−  mixing being close to the 

ideal mixing. 

d) Decays −+−+′→ 22

0

2

0

2

0

2

00 //// KDaDDDDB sηηπ +−

2/ sDK  and  −+→ 2

0

2

00 / aDDKB ss  are 

forbidden in the present analysis due to the vanishing matrix element between the 

vacuum and tensor meson. However, these may occur through an annihilation 

mechanism. The decays −+→ 2

0

2

00 / aDDB π  may also occur through elastic final state 

interactions (FSIs). 

2. 1,0,1 −=∆=∆=∆ SCb mode :    

a) Dominant modes are found to have branching ratios: 0

2( )sB B D D
− −→  = 6.8×10

-4
, 

2( )cB B Kη− −→  = 1.4×10
-4

, 0

2( )sB B D D
− +→  = 6.4×10

-4
,
 0 0

2( )cB B Kη→   =  1.3×10
-4

, 

0

2( )s s sB B D D
− −→  = 7.7×10

-4 
and 0

2( )s cB B fη ′→  =  1.3×10
-4

. 
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b) Decays 0 0

2 2/s sB D D D D
− − −→ 2/ (1 )cK Pχ− , −+→ 2

0

sDDB
+−

2/ DDs )1(/ 2 PK cχ−  and 

2

00

csB χπ→ 2/ cηχ 2/ cχη′ −+
2/ DD

0

2

0/ DD
0

2

0

2

0

22 //// aDDDDDD css η+−−+  are 

forbidden in our work. Penguin diagrams may cause −− → 2

0

sDDB
0

2/ DDs

− and 

−+→ 2

0

sDDB
+−

2/ DDs  decays, however these are likely to remain suppressed as these 

decays require cc  pair to be created. 

3. 0,0,1 =∆=∆=∆ SCb mode :   

a) For dominant decays, we predict 0

2( )B B D D
− −→  = 2.5×10

-5
, 0

2( )B B D D
− +→  = 

2.4×10
-5

 and  0

2( )s sB B D D
− +→  = 2.9×10

-5
.  

b)  Decays )1(/ 22

0
PDDB cχπ −−− → , +−→ 2

0

2

00 / ss DDDDB  −+
2/ DD  −+

2

0

2

0 // ss DDDD  

)1(/)1(/ 22

0
PP cc ηχχπ )1(/ 2 Pcχη ′  and −+→ 22

00 / DDKB scs χ  are forbidden in our 

analysis. Annihilation diagrams, elastic FSI and penguin diagrams may generate 

these decays to the naked charm mesons. However, decays emitting charmonium 

)1(2 Pcχ  remains forbidden in the ideal mixing limit. 

4.  1,1,1 −=∆=∆=∆ SCb mode :  

a) Branching ratios of the dominant decays are 0

2( )B B K D
− −→  = 4.8×10

-5
,
 

0

2( )B B K D
− +→   =  4.5×10

-5
  and 0

2( )s sB B K D
− +→  =  5.2×10

-5
. 

b) Decays −+→ 2

0

2

00 / KDDKB  and 0 0 0 0

2 2 2/ /sB D D D
− +→ π π η 0

2/ /Dη ′
2 /D a

+ − 0 0

2 /D a  

2sD K
+ −  are forbidden in our analysis. Annihilation diagrams do not contribute to 

these decays. However, these may acquire nonzero branching ratios through elastic 

FSI. 

 

 



117 

 

4.5.2 B PT→→→→  DECAYS INVOLVING b u→→→→  TRANSITION 

1.   0,0,1 =∆=∆=∆ SCb mode :   

a) )( 2fBB
−− → π  = 7.1×10

-6
 is in good agreement with the experimental value 

(8.2±2.5)×10
-6

 and  )( 2

0 +−→ aBB π  = 1.3×10
-5

  is well below the experimental 

upper limit 4100.3 −×< . 

b) 0

22

0 / KKKKB
−−− → , 0

2B K K
+ −→ 0 0

2/ K K 0

2

0/ KK
0

2

0/ KK /  2K K
− +  −+

2/ aπ  and 

0

2

0

2

0 / aKaKBs

−+→ 2

0

2

0 // fKfK ′  are forbidden in the present analysis. 

Annihilation process and FSIs may generate these decays. 

c) 0

2KB
−− → π  and  −+→ 2

0
KB π  are also forbidden in the present analysis which 

may be generated through annihilation diagram or elastic FSI.  

2. 1, 1, 1b C S∆ = ∆ = − ∆ = − mode :   

a) Branching ratios 0

2( )sB B D a
− −→  = 2.0×10

-5
, 

2( )sB B D f
− − ′→  = 2.2×10

-5
, 

0

2( )sB B D a
− +→  = 3.8×10

-5
 and 0

2( )s sB B D K
− +→  = 2.6×10

-5
 
 
have relatively large 

branching ratios.  

b)  Decays 0

2

0

22

0

222

0 ///// KDDKDKDDDB sss

−−−−−−− ′→ ηηπ , −+→ 2

0

2

00 / sDDKB π  

and 0

2

0

22

0 // DDDKB ss ππ −+−+→ 0

2/ Dη  0

2/ Dη′ 0 0

2 2/ /D a D a
− +  are forbidden in the 

present analysis. Annihilation and FSIs may generate these decays. 

3. 1, 1, 0b C S∆ = ∆ = − ∆ = mode :  

a) Branching ratios of )( 2

00
fDBB →  = 3.6×10

-8
 is smaller than the experimental 

value 4(1.2 0.4) 10−± × . It may be noted that W-annihilation and W-exchange 

diagrams may also contribute to the B decays under consideration. Normally, 

such contributions are expected to be suppressed due to the helicity and color 

arguments. Including the factorizable contribution of such diagrams, the decay 
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amplitude of 2

00
fDB →  get modified to (leaving aside the scale factor 

*

2
cdub

F VV
G

) 

        )( 2

00
fDBA → = )(cos

2

1 2

2
2

D

fB

TD mFfa
→φ + 

                                                   2 2

2

1
cos ( )

2

f D

B T Ba f F mφ → .                          (4.10) 

  Using Bf  = 0.176 GeV, we find that the experimental branching ratio 

)( 2

00
fDBB →  requires )( 22

B

Df
mF

→
 = -9.99 GeV. This in turn enhances the   

branching ratio for 2fDB
−− →  to 1.2×10

-4
. 

b) Dominant decay is B( +−→ 2

0
aDB ) = 1.2×10

-6
 and next order dominant decays 

are B( 2fDB
−− → ) = 6.9×10

-7
  B( 0

2aDB
−− → ) = 6.5×10

-7
  and 

B( +−→ 2

0
KDBs

) = 8.3×10
-7

. 

c) Decays 0 0 0 0

2 2 2 2 2 2/ / / / /s sB K D D D D D D K
− − − − − − −′→ π π η η −

2/ Dcη , 0

2sB K D
+ −→   

0 0 0 0

2 2 2 2 2/ / / / / sD D D D D Kπ π η η+ − − +′ −

2/ Dcη  and 0

2

00
DKBs →  are forbidden in the 

present analysis. Annihilation diagrams may generate these decays. 

4. 1, 0, 1b C S∆ = ∆ = ∆ = − mode :   

a)    2( )B B K f
− −→  = 0.54×10

-6
 is smaller than the experimental value 

0.4 6

0.5(1.3 ) 10+ −

− × . This decay mode is also likely to have contribution from the W-

annihilation and W-exchange processes. Including the factorizable contribution 

of such diagrams, the decay amplitudes of 2B K f
− −→  get modified to (putting 

aside the scale factor *

2

F
ub us

G
V V  
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2( )A B K f

− −→ = )(cos
2

1 2

1
2

K

fB

TK mFfa
→φ + 

2 2

1

1
cos ( )

2

f K

B T Ba f F mφ → .                     (4.11) 

       As it is not possible to evaluate the form factor 2f K
F

→  at 2

Bm  even in the 

phenomenological models, it is treated as a free parameter. Taking 
Bf  = 0.176 

GeV, we find that the experimental branching ratio 

2( )B B K f
− −→ = 0.4 6

0.5(1.3 ) 10+ −

− ×  requires 2 2( )f K

BF m
→  = - 0.083 GeV. This value 

in turn enhances the branching ratio for 2B K f
− −→  through the W-annihilation 

contribution to 1.3×10
-6

.  

b)    Branching ratios of )( 2

−− → KBB η  = 1.2×10
-8

 is small than the experimental 

value 6(9.1 3.0) 10−± × . Similar to 2B K f
− −→  decay, this decay mode is also 

likely to have contribution from the W-annihilation and W-exchange processes. 

Including the factorizable contribution of such diagrams, the decay amplitudes 

of 2KB η→  get modified to (leaving aside the scale factor *

2
usub

F VV
G

) 

          )( 2

−− → KBA η = )(sin
2

1 2

2
2

ηη φ mFfa
KB

P

→
+ 

           )(sin
2

1 2

2
2

B

K

PB mFfa
ηφ →

, 

          )( 0

2

0
KBA η→ = )(sin

2

1 2

2
2

ηη φ mFfa
KB

P

→
+ 

          )(sin
2

1 2

2
2

B

K

PB mFfa
ηφ →

.               (4.12) 

        For Bf  = 0.176 GeV, we find that the experimental branching ratio 

)( 2

−− → KBB η  = 6(9.1 3.0) 10−± ×  requires )( 22

B

K
mF

η→
 = - 3.03 GeV. This in 
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turn enhances the branching ratio for 0

2

0
KB η→  to 8.1×10

-6
, which is consistent 

with the experimental value 6(9.6 2.1) 10−± × . 

c)     Decays −−− → 2

00

2 / aKKB π , 0

2

0

2

0 / aKKB
−+→ π 2

0

2

0 // fKfK ′  and 
0

s
B →  

2
/K K

+ − 0 0 0 0

2 2 2 2
/ / /K K a a aπ π π+ − − + 0

2

0

2

00

2 /// aKKa ηη ′  are forbidden in the 

present analysis. Annihilation and FSIs may generate these decays. 

 

4.5.3 COMPARISON WITH OTHER WORKS 

We also compare our results with branching ratios calculated in the other models [6, 

7, 11]. The predicted branching ratios in KLO [6] shown in 3
rd

 column of Tables 4.5, 4.6, 4.7 

(a) and 4.7 (b) are generally smaller as compared to the present branching ratios because of 

the difference in the form factors since different quark masses have been used in the two 

works. Branching ratios have also been calculated by Cheng [11]. His predictions 

B( 0

2DB
−− → π ) = 6.7×10

-4
 and B( +−→ 2

0
DB π ) = 6.1×10

-4 
 match well with the numerical 

branching ratios obtained in the present work. However, the other branching ratios 

B( 0

2DDB s

−− → ) = 4.2×10
-4

,  B( +−→ 2

0
DDB s

) = 3.8×10
-4

 and B( +−→ 2

0

ss DB π ) = 3.8×10
-4

 are 

different from our results owing to the different values used for the decay constant 
sDf . MQ 

[7] have recently studied few charmless decays of PTB →  mode. Some of the branching 

ratios are smaller than our numerical value of branching ratios, while the others are large as 

compared to the present predictions, particularly for η  or ′η  emitting decays. The 

disagreement with their predictions may be attributed to the difference in the form factors 

obtained in the covariant light-front approach (CLF) and inclusion of the non-factorizable 

contributions in their results. It may be noted that the form factors at small 2
q  obtained in 

the CLF and ISGW II quark model agrees within 40% [3]. However, when  2
q  increases 
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2( )h q , 2( )b q+  and 2( )b q−  increases more rapidly in the covariant light front model than in 

the ISGW II model. Another important fact is that the behavior of the form factor k  in both 

models is different. 

 The Belle collaboration is currently searching for some PTB →  modes and their 

preliminary results indicate that the branching ratios for these may not be very small 

compared to PPB →  modes. We hope our predictions would be within the reach of the 

current experiments. Observation of these decays in the B experiments such as Belle, Babar, 

BTeV, LHC and so on will be crucial in testing the ISGW II and other quark models as well 

as validity of the factorization scheme.  
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CHAPTER 5   

HADRONIC WEAK DECAYS OF BOTTOM 

MESONS EMITTING PSEUDOSCALAR  

AND SCALAR MESONS  

 

5.1 INTRODUCTION 

In this chapter, we study B decays emitting a pseudoscalar and a scalar mesons in 

CKM-favored and CKM-suppressed modes, for which the experiments have reported three 

measured branching ratios and one upper limit as follows [1]: 

5

0( ) (1.8 0.4) 10B B Kη− − −→ = ± × , 

0 5

0( ) (4.7 0.5) 10B B Kπ− − −→ = ± × , 

0 0

0( )B B Kη→ = 5(1.10 0.22) 10−± × , 

0

0( )sB B D a
+ −→  51.9 10−< × . 

These modes give additional and complementary information about exclusive nonleptonic 

weak decays of B mesons. Here also, we obtain the decay amplitudes using the factorization 

hypothesis and consequently, predict branching ratios of these decays based on the spectator 
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quark model. It is expected that some of these decay channels have relatively large 

branching ratios and can be measured within the reach of future experiments.  

 

5.2 SCALAR MESON SPECTROSCOPY 

The heavy scalar meson ( 0 )+=P
J  comprises of the isovector 0 (1.474)a , isodoublet 

0 (1.412)K and isoscalars 0 (1.370)f , 0 (1.500)f / 0 (1.710)f  and one isoscalar 

0 (1 )(3.145)c Pχ , charm triplet  0 0(2.308), (2.317)sD D [1], behave well with respects to quark 

model assignments.                                              

In the present analysis, mixing of the isoscalar states of mesons can also be expressed 

as 

   

0

0

1
( )sin cos ,

2

1
( )cos sin ,

2

f uu dd ss

f uu dd ss

θ θ

θ θ

= + +

′ = + −

                                               (5.1)    

where ( )ideal Sθ π θ θ= + −  and 68 .Sθ = �   

 

5.3 METHODOLOGY 

The effective weak Hamiltonian generating the bottom meson decays involving 

b c→  and b u→  transitions has already been given in earlier chapter 2 for CKM-favored 

and CKM-suppressed modes, respectively. 

5.3.1 DECAY AMPLITUDES AND RATES 

The decay rate formula for (0 ) (0 ) (0 )B P S
− − +→ +  decays is given by 

                              
2

2
( ) ( )

8

c

B

p
B P S A B P S

mπ
Γ → = → ,                  (5.2) 
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where cp  is the magnitude of the three-momentum of a final-state particle in the rest frame 

of B meson and Bm  denotes the mass of the B meson. 

The factorization scheme expresses the decay amplitude as the product of matrix 

elements of weak currents (up to the weak scale factor of 
2

FG
×CKM elements×QCD 

factors) as 

                ( ) 0 0A B PS P J S J B S J P J Bµ µ
µ µ→ +∼ ,                       (5.3) 

Using the Lorentz invariance, matrix element of the current 0P Jµ  and µP J B  are 

already given in chapter 2. Remaining matrix element of the current between meson states 

can be expressed [2-4] as 

( ) 0 ,=S S SS k J f kµ µ µ  

 

( ) ( ) ( ( ) ( ) )S B B S B SS k A B k i u k k u k kµ µ µ+ −= + + − ,                                   (5.4) 

                  

Thus, the decay amplitude becomes  

  2 2( ) ( )( ( ) ( )) ,
2

B S B PF
P P S S

G
A B PS CKM factors QCD factors f F m f F m→ →→ = × × +           (5.5) 

where [2, 3] 

2 2 2 2 2 2( ) ( ) ( ) ( ).B S

P B S P P PF m m m u m m u m
→

+ −= − +                            (5.6)     

Sandwiching the weak Hamiltonian between the initial and the final states, the decay 

amplitudes for CKM-favored and CKM-suppressed PSB →  decay modes are obtained as 

shown in Tables 5.1, 5.2, 5.3 (a) and 5.3 (b). 
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Table 5.1 Decay amplitudes of →→→→B PS  decays in CKM-favored mode involving 

→→→→b c transition 

 

Decays Amplitudes 

1, 1, 0b C S∆ = ∆ = ∆ =                  *

2

F
cb ud

G
V V×  

0

0B Dπ− −→  0

0 0

2 2 2 2

1 2( ) ( )
B D B

B D D Ba f F m m a f F m mπ
π π

→ →− + −   

0

0B D a
− −→  0

0 0

2 2 2 2

2 1( ) ( )
B a B D

D B a a B Da f F m m a f F m m
→ →− + −  

0 0 0

0B Dπ→  
0

2 2

2

1
( )

2

B

D Ba f F m m
π

π
→− −  

0

0B Dπ − +→  0

0

2 2

1 ( )
B D

B Da f F m mπ
→ −  

0 0

0B Dη→  
0

2 2

2

1
sin ( )

2

B

D P Ba f F m mη
ηφ → −  

0 0

0B Dη′→  
0

2 2

2

1
cos ( )

2

B

D P Ba f F m mη
ηφ ′→

′−  

0

0B D a
+ −→  

0

2 2

1 ( )B D

a B Da f F m m→ −  

0 0 0

0B D a→  
0

0

2 2

2

1
( )

2

B a

D B aa f F m m
→− −  

0 0 0

0sB K D→  
0

2 2

2 ( )sB K

D B Ka f F m m
→ −  

0

0s sB Dπ − +→  0

0

2 2

1 ( )s s

s

B D

B Da f F m mπ
→ −  

0 0 0

0sB D K→  0

0

2 2

2 ( )sB K

D B Ka f F m m
→ −  

0

0s sB D a
+ −→  

0

2 2

1 ( )s s

s

B D

a B Da f F m m
→ −  

1, 0, 1b C S∆ = ∆ = ∆ = −                    *

2

F
cb cs

G
V V×  

0

0sB D D
− −→  

0

2 2

1 ( )
s

B D

D B Da f F m m→ −  

0

0sB D D
− −→  0

0

2 2

1 ( )
s

B D

D B Da f F m m
→ −  

0cB Kη− −→  0

0

2 2

2 ( )
c

B K

B Ka f F m mη
→ −  

0

0sB D D
+ −→  

0

2 2

1 ( )
s

B D

D DB
a f F m m→ −  

0

0sB D D
− +→  0

0

2 2

1 ( )
s

B D

D DB
a f F m m

→ −  

0 0

0cB Kη→  0

0

2 2

2 ( )
c

B K

KB
a f F m mη

→ −  

0

0s s sB D D
+ −→  

0

2 2

1 ( )s s

s s s

B D

D B Da f F m m
→ −  

0

0s s sB D D
− +→  0

0

2 2

1 ( )s s

s s s

B D

D B Da f F m m
→ −  

0

0s cB fη→  0

0

2 2

2 ( )s

c s

B f

B fa f F m mη
→− −  
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Table 5.2 Decay amplitudes of →→→→B PS  decays in CKM-suppressed mode involving 

→→→→b c transition 

 

Decays Amplitudes 

1, 1, 1b C S∆ = ∆ = ∆ = −         *

2

F
cb us

G
V V×  

0

0B K D
− −→  0

0

2 2

1 ( )
B D

K B Da f F m m
→ −  

0

0B D K
− −→  0

0

2 2

2 ( )
B K

D B Ka f F m m
→ −  

0 0 0

0B K D→  
0

2 2

2
( )B K

D B K
a f F m m→ −  

0

0B K D
− +→  0

0

2 2

1 ( )
B D

K B Da f F m m
→ −  

0

0B D K
+ −→  

0

2 2

1 ( )B D

K B Da f F m m→ −  

0 0 0

0B D K→  0

0

2 2

2 ( )
B K

D B Ka f F m m
→ −  

0 0

0sB Dη→  
0

2 2

2

1
sin ( )

2

sB

P D Ba f F m m
η

ηφ →− −  

0

0s sB K D
− +→  0

0

2 2

1 ( )s s

s

B D

K B Da f F m m
→ −  

0 0

0sB Dη′→  
0

2 2

2

1
cos ( )

2

sB

P D Ba f F m m
η

ηφ ′→
′− −  

0 0

0sB D f→  0

0

2 2

2 ( )sB f

D B fa f F m m
→ −  

0

0s sB D K
+ −→  

0

2 2

1 ( )s s

s

B D

K B Da f F m m
→ −  

1, 0, 0b C S∆ = ∆ = ∆ =          *

2

F
cb cd

G
V V×  

0

0B D D
− −→  

0

2 2

1 ( )B D

D B Da f F m m→ −  

0

0B D D
− −→  0

0

2 2

1 ( )
B D

D B Da f F m m
→ −  

0cB aη− −→  0

0

2 2

2 ( )
c

B a

B aa f F m mη
→ −  

0

0B D D
+ −→  

0

2 2

1 ( )B D

D DB
a f F m m→ −  

0

0B D D
− +→  0

0

2 2

1 ( )
B D

D DB
a f F m m

→ −  

0 0

0cB aη→  
- 0

0

2 2

2

1
( )

2 c

B a

B aa f F m mη
→ −  

0

0s sB D D
+ −→  

0

2 2

1 ( )s s

s

B D

D B Da f F m m
→ −  

0

0s sB D D
− +→  0

0

2 2

1 ( )s s

s

B D

D B Da f F m m
→ −  

0 0

0s cB Kη→  0

0

2 2

2 ( )s

c

B K

B Ka f F m mη
→ −  

 



128 

 

Table 5.3 (a) Decay amplitudes of →→→→B PS  decays involving →→→→b u transition 

 

Decays Amplitudes 

1, 1, 1b C S∆ = ∆ = − ∆ = −                        *

2

F
ub cs

G
V V×  

0

0sB Dπ− −→  
0

2 2

1

1
( )

2 s

B

D Ba f F m mπ
π

→ −  

0sB Dη− −→  
0

2 2

1

1
sin ( )

2 s

B

D P Ba f F m m→η

ηφ −  

0

0B K D
− −→  

0

2 2

2
( )B K

D B K
a f F m m→ −  

0sB Dη− −′→  
0

2 2

1

1
cos ( )

2 s

B

D P Ba f F m m
η

ηφ ′→
′−  

0

0B D K
− −→  0

0

2 2

2 ( )
B K

D B Ka f F m m
→ −  

0

0sB D a
− −→  

0

0

2 2

1

1
( )

2 s

B a

D B aa f F m m
→ −  

0

0sB Dπ + −→  
0

2 2

1
( )

s

B

D B
a f F m m

π
π

→ −  

0 0 0

0B K D→  
0

2 2

2
( )B K

D KB
a f F m m

→ −  

0 0 0

0B D K→  0

0

2 2

2
( )

B K

D KB
a f F m m

→ −  

0

0sB D a
− +→  0

0

2 2

1 ( )
s

B a

D B aa f F m m
→ −  

0

0s sB K D
+ −→  

0

2 2

1 ( )s

s s

B K

D B Ka f F m m
→ −  

0 0

0sB Dη→  
0

2 2

2

1
sin ( )

2

s

s

B

D P B Ka f F m m
ηφ →− −  

0 0

0sB Dη′→  
0

0

2 2

2

1
sin ( )

2

s

s

B f

D P B fa f F m m
→− φ −  

0 0

0sB D f→  
0

2 2

2

1
cos ( )

2

s

s

B

D P B Ka f F m m
′→ηφ −  

0

0s sB D K
− +→  0

0

2 2

1 ( )s

s s

B K

D B Ka f F m m
→ −  

0,0,1 =∆=∆=∆ SCb                                      *

2
udub

F VV
G

×  

0

0B aπ− −→  
0

0 0

2 2 2 2

2 1

1
( ( ) ( ))

2

B a B

B a a Ba f F m m a f F m mπ
π π

→ →− + −  

0B aη− −→  
0

0 0

2 2 2 2

2 1

1
( sin ( ) sin ( ))

2

B a B

P B a a P Ba f F m m a f F m mη
η ηφ φ→ →− + −  

0B aη− −′→  
0

0 0

2 2 2 2

2 1

1
( sin ( ) sin ( ))

2

B a B

P B a a P Ba f F m m a f F m mη
η ηφ φ ′→ →

′ ′− + −  
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0

0B aπ− −→  
 0

0 0

2 2 2 2

1 2

1
( ( ) ( ))

2

B a B

B a a Ba f F m m a f F m m
→ →π

π π− + −  

0

0B aπ + −→  
0

0
0

2 2

1 ( )B

a B
a f F m m

→ −π
π  

0 0 0

0B aπ→  
0

0

2 2

2

1
( )

2

B a

B a
a f F m mπ −

→− −  

0

0B aπ − +→  
0

0
0

0

2 2

1 ( )
B a

aB
a f F m mπ

→ −  

0 0

0B aη→  
0

0

2 2

2

1
sin ( )

2

B a

P B a
a f F m mη φ −

→− −  

0 0

0B aη ′→  
0

0

2 2

2

1
cos ( )

2

B a

P B a
a f F m mη φ →

′− −  

0

0sB K a
+ −→  

0

2 2

1 ( )s

s

B K

a B Ka f F m m
→ −  

0 0 0

0sB Kπ→  0

0

2 2

2 ( )s

s

B K

B Ka f F m mπ
→ −  

0

0sB Kπ − +→  0

0

2 2

1 ( )s

s

B K

B Ka f F m mπ
→ −  

0 0

0sB Kη→  
0

0

2 2

2

1
sin ( )

2

s

s

B K

P B Ka f F m mη φ → −  

0 0

0sB Kη′→  
0

0

2 2

2

1
cos ( )

2

s

s

B K

P B Ka f F m mη φ →
′ −  
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Table 5.3 (b) Decay amplitudes of →→→→B PS  decays involving →→→→b u  transition 

 

Decays Amplitudes 

1, 0, 1b C S∆ = ∆ = ∆ = −                           *

2

F
ub us

G
V V×      

0

0B K a
− −→  

0

0

2 2

2

1
( )

2

B a

K B aa f F m m
→ −  

0

0B Kπ− −→  
0

0 0

2 2 2 2

2 1

1
( ( ) ( ))

2

B K B

B K K B
a f F m m a f F m m

−

−

→ − + −π
π π  

0B Kη− −→  
0

0 0

2 2 2 2

2 1

1
( sin ( ) sin ( ))

2

B K B

P B K K P B
a f F m m a f F m m−

→ →− + −η
η ηφ φ  

0B Kη− −′→  
0

0 0

2 2 2 2

2 1

1
( cos ( ) cos ( ))

2

B K B

P B K K P B
a f F m m a f F m m−

′→ →
′ ′− + −η

η ηφ φ  

0

0B Kπ + −→  
0

0
0

2 2

1 ( )B

K B
a f F m m

π
π

→ −  

0 0 0

0B Kπ→  0
0

0
0

2 2

2

1
( )

2

B K

KB
a f F m mπ

→ −  

0 0

0B Kη→  
0

0

2 2

2

1
sin ( )

2

B K

P KB
a f F m m

→ −η φ  

0 0

0B Kη′→  
0

0

2 2

2

1
cos ( )

2

B K

P KB
a f F m m

→
′ −η φ  

0

0B K a
− +→   

0
0

0
0

2 2

1 ( )
B a

K aB
a f F m m

→ −  

0

0sB K K
+ −→  

0

2 2

1 ( )s

s

B K

K B Ka f F m m
→ −  

0 0

0sB fπ→  
0

0

2 2

2

1
sin ( )

2
s

s

B f

s B fa f F m mπ φ →− −  

0

0sB fη→  
0

0

2 2

2

1
sin sin ( )

2
s

s

B f

P s B fa f F m mη φ φ →− −  

0

0sB K K
− +→  0

0

2 2

1 ( )s

s

B K

K B Ka f F m m
→ −  

0

0sB fη′→  
0

0

2 2

2

1
cos sin ( )

2
s

s

B f

P s B f
a f F m mη φ φ →

′− −  
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1, 1, 0b C S∆ = ∆ = − ∆ =                               *

2

F
ub cd

G
V V×  

0

0B Dπ− −→  
0

2 2

1

1
( )

2

B

D Ba f F m m
→− −π

π  

0

0B Dπ− −→  
0

2 2

2 ( )B

D Ba f F m m→− −π
π  

0B Dη− −→  
0

2 2

1

1
sin ( )

2

B

D P Ba f F m m→− −η
ηφ  

0B Dη− −′→  
0

2 2

1

1
cos ( )

2

B

D P Ba f F m m
′→

′− −η
ηφ  

0

0B D a
− −→  

0

0

2 2

1

1
( )

2

B a

D B aa f F m m
→− −  

0

0B D a
− −→  0

0 0

2 2

2 ( )
B a

D B aa f F m m
→− −  

0

0B Dπ + −→  
0

2 2

1 ( )B

D B
a f F m m→− −π

π  

0 0 0

0B Dπ→  
0

2 2

2

1
( )

2

B

D B
a f F m m→ −π

π  

0 0

0B Dη→  
0

2 2

2

1
sin ( )

2

B

D P B
a f F m m

→ −η
ηφ  

0 0

0B Dη′→  
0

2 2

2

1
cos ( )

2

B

D P B
a f F m m

′→
′−η

ηφ  

0

0B D a
− +→  0

0

2 2

1 ( )
B a

D aB
a f F m m

→− −  

0 0 0

0B D a→  
0

0

2 2

2

1
( )

2

B a

D aB
a f F m m

→ −  

0

0sB K D
+ −→  

0

2 2

2 ( )s

s

B K

D B Ka f F m m
→− −  

0 0 0

0sB K D→  0

0

2 2

1 ( )s

s

B K

D B Ka f F m m
→− −  

0

0sB D K
− +→  0

0

2 2

1 ( )s

s

B K

D B Ka f F m m
→− −  

0 0 0

0sB D K→  0

0

2 2

2 ( )s

s

B K

D B Ka f F m m
→− −  
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5.3.2 DECAY CONSTANTS OF SCALAR MESON 

 At present, the decay constants of the scalar mesons are poorly known. Since, the 

diagonal-scalar resonances 0

0 0( ,a f  and 
0 )′f  cannot be produced via the vector current owing 

to the C-invariance or conservation of the vector current, their respective decay constant 

values vanish, i.e.  

0
0 00

0.′= = =f fa
f f f                                    (5.7) 

 However, the decay constants of off-diagonal states may not vanish due to SU(2) and SU(3) 

breaking. Maltman using finite energy sum rules [5] has obtained 

0 (1.450)a
f ± = 1.1 MeV and 

0K
f  = 42 MeV,                                       (5.8)                                                                 

consistent with the range estimated by Narison on the basis of QCD spectral rules [6] 

    
0K

f = 33 to 46 MeV.                                                (5.9) 

Chernyak [7] has calculated 
0K

f = (70 ± 10) MeV, indicating quite strong SU(3) breaking for 

the scalar mesons. 

Another calculation of the scalar meson decay constants based on the generalized 

NLJ model [8] yields 

  
0 (1.450)a

f ± = 0.4 MeV and 
0K

f   = 31 MeV.                         (5.10) 

The value of the scalar decay constants 

                              
0

0.0011
a

f ± = , 
0

0.021Kf =  GeV, 
0

0.088
D

f =  GeV, 

              
0

0.073
sD

f =  GeV, 
0

0.112
B

f =  GeV and 
0

0.112
sB

f =  GeV,                 (5.11)                 

have been taken from [4, 9]. 
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 5.4 CALCULATION OF THE →B S  TRANSITION FORM FACTORS IN ISGW II     

MODEL 

The form factors have the following expressions in the improved ISGW II quark 

model [3]: 

( )

5

( )

5

2
,

3

2
,

3

u ud

B

u ud B

S B

m
u u F

m m
u u F

m

β

β

+ −

+ −

+

+ −

−

+ −

+ = −

− =
ɶ

ɶ

                     (5.12) 

where 

1 1
( ) 2 2

5 5

1 1
( ) 2 2

5 5

( ) ( ) ,

( ) ( ) ,

u u SB

B S

u u SB

B S

mm
F F

m m

mm
F F

m m

+ −

+ −

−
+

−−

=

=

ɶ ɶ

ɶ ɶ

                                (5.13) 

We obtain the required form factors for B S→  transition in the ISGW II model which 

present in Tables 5.4 at q
2
 = tm.  

 

Table 5.4 Form factors of →→→→B S  transition at 2 ==== m
q t  in the ISGW II quark model 

 

Transition u+ u- 

0B a→  0.408 -0.670  

0B f→  0.434  -0.748  

0B K→  0.431  -0.712  

0B D→  0.249  -0.658  

0sB f ′→  0.449  -0.766  

0sB K→  0.426 -0.697 

0sB D→  0.294 -0.773 
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5.5 NUMERICAL RESULTS AND DISCUSSIONS 

For the numerical calculation, we use the B P→  transition form factors [10] given in 

chapter 2 and B S→  transition form factors calculated in last section 5.4. Using the decay 

constants given in section 5.3.2 and (3.26), we obtain the numerical values of the branching 

ratios for B PS→  decays, which are given in the Tables 5.5, 5.6, 5.7 (a) and 5.7 (b).  

  

Table 5.5 Branching ratios of →→→→B PS  decays in CKM-favored mode involving 

→→→→b c transition 

Decays Branching ratios 

1, 1, 0b C S∆ = ∆ = ∆ =                   

0

0B Dπ− −→  1.0×10
-4 

 

0

0B D a
− −→  4.0×10

-5 
 

0 0 0

0B Dπ→  2.8×10
-3

 

0

0B Dπ − +→  2.8×10
-4

 

0 0

0B Dη→  1.5×10
-5

 

0 0

0B Dη′→  7.3×10
-6

 

0

0B D a
+ −→  3.2×10

-7
 

0 0 0

0B D a→  1.5×10
-5

 

0 0 0

0sB K D→  4.3×10
-5

 

0

0s sB Dπ − +→  3.2×10
-4

 

0 0 0

0sB D K→  2.1×10
-5

 

0

0s sB D a
+ −→  2.9×10

-7
 

1, 0, 1b C S∆ = ∆ = ∆ = −                     
0

0sB D D
− −→  1.4×10

-3
 

0

0sB D D
− −→  4.2×10

-4
 

0cB Kη− −→  5.6×10
-5

 

0

0sB D D
+ −→  1.3×10

-3
 

0

0sB D D
− +→  3.9×10

-4
 

0 0

0cB Kη→    5.3×10
-5

 

0

0s s sB D D
+ −→  1.2×10

-3
 

0

0s s sB D D
− +→  5.4×10

-4
 

0

0s cB fη→  4.5×10
-5
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Table 5.6 Branching ratios of →→→→B PS  decays in CKM-suppressed mode involving 

→→→→b c transition 

 

Decays Branching ratios 

1, 1, 1b C S∆ = ∆ = ∆ = −                   

0

0B K D
− −→  7.8×10

-6
 

0

0B D K
− −→  1.3×10

-6
 

0 0 0

0B K D→  3.3×10
-6

 

0

0B K D
− +→  2.0×10

-5
 

0

0B D K
+ −→  6.3×10

-6
 

0 0 0

0B D K→  2.0×10
-6

 

0 0

0sB Dη→  1.1×10
-6

 

0

0s sB K D
− +→  2.4×10

-5
 

0 0

0sB Dη′→  1.3×10
-6

 

0 0

0sB D f→  1.5×10
-6

 

0

0s sB D K
+ −→  5.6×10

-6
 

1, 0, 0b C S∆ = ∆ = ∆ =                   

0

0B D D
− −→  1.1×10

-4
 

0

0B D D
− −→  1.5×10

-5
 

0cB aη− −→  2.4×10
-6

 

0

0B D D
+ −→  1.0×10

-4
 

0

0B D D
− +→  1.4×10

-5
 

0 0

0cB aη→  1.1×10
-6

 

0

0s sB D D
+ −→  8.9×10

-5
 

0

0s sB D D
− +→  1.9×10

-5
 

0 0

0s cB Kη→  2.0×10
-6
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Table 5.7 (a) Branching ratios of →→→→B PS  decays involving →→→→b u  transition 

 

 

Decays 

Branching ratios 

This work Cheng [10]  

1, 1, 1b C S∆ = ∆ = − ∆ = −                     
0

0sB Dπ− −→  3.2×10
-6

 - 

0sB Dη− −→    1.7×10
-6

 - 

0

0B K D
− −→  5.8×10

-7
 - 

0sB Dη− −′→  8.5×10
-7

 - 

0

0B D K
− −→    3.3×10

-7
 - 

0

0sB D a
− −→  3.9×10

-6
 - 

0

0sB Dπ + −→  6.0×10
-6

 - 

0 0 0

0B K D→  5.4×10
-7

 - 

0 0 0

0B D K→  3.1×10
-7

 - 

0

0sB D a
− +→  7.3×10

-6
 - 

0

0s sB K D
+ −→  4.7×10

-6
 - 

0 0

0sB Dη→  1.9×10
-7

 - 

0 0

0sB Dη′→  2.1×10
-7

 - 

0 0

0sB D f→  2.3×10
-7

 - 

0

0s sB D K
− +→  5.0×10

-6
 - 

1, 0, 0b C S∆ = ∆ = ∆ =                                        
0

0B aπ− −→  6.9×10
-8 

 0.6×10
-6

 

0B aη− −→  4.2×10
-8 

 - 

0B aη− −′→  2.4×10
-8 

 - 

0

0B aπ− −→  1.0×10
-6

 4.1×10
-6

 

0

0B aπ + −→  1.2×10
-9

 0.1×10
-6

 

0 0 0

0B aπ→        2.6×10
-8

      0.3×10
-6

 

0

0B aπ − +→        1.9×10
-6

       12.9×10
-6

 

0 0

0B aη→        1.6×10
-8

       - 

0 0

0B aη′→        9.4×10
-9

       - 

0

0sB K a
+ −→          9.6×10

-10
       - 

0 0 0

0sB Kπ→        3.2×10
-8

       - 

0

0sB Kπ − +→        1.2×10
-6

       - 

0 0

0sB Kη→        2.0×10
-8

       - 

0 0

0sB Kη′→       1.1×10
-8

       - 
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Table 5.7 (b) Branching ratios of →→→→B PS  decays involving →→→→b u  transition 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decays 

Branching ratios 

This work  Cheng [10] 

1, 0, 1b C S∆ = ∆ = ∆ = −    
0

0B K a
− −→  7.8×10

-8
  5.6×10

-6
 

0

0B Kπ− −→  2.5×10
-9

  0.3×10
-6

 

0B Kη− −→  1.1×10
-9

  - 

0B Kη− −′→  4.6×10
-10

  - 

0

0B Kπ + −→  2.4×10
-8

  1.1×10
-6

 

0 0 0

0B Kπ→  3.7×10
-9

  0.6×10
-6

 

0 0

0B Kη→  2.2×10
-9

  - 

0 0

0B Kη′→  1.3×10
-9

  - 

0

0B K a
− +→  1.5×10

-7
  11.6×10

-6
 

0

0sB K K
+ −→  1.9×10

-8
  - 

0 0

0sB fπ→  2.5×10
-9

  - 

0

0sB fη→  1.5×10
-9

  - 

0

0sB K K
− +→  9.0×10

-8
  - 

0

0sB fη′→    8.9×10
-10

  - 

1, 1, 0b C S∆ = ∆ = − ∆ =                  
0

0B Dπ− −→  2.4×10
-7

 - 

0

0B Dπ− −→  2.6×10
-8

 - 

0B Dη− −→  1.3×10
-7

 - 

0B Dη− −′→  6.4×10
-8

 - 

0

0B D a
− −→  1.2×10

-7
 - 

0

0B D a
− −→  1.4×10

-8
 - 

0

0B Dπ + −→  4.5×10
-7

 - 

0 0 0

0B Dπ→  1.2×10
-8

 - 

0 0

0B Dη→  6.4×10
-9

 - 

0 0

0B Dη′→  3.2×10
-9

 - 

0

0B D a
− +→  2.3×10

-7
 - 

0 0 0

0B D a→  6.3×10
-9

 - 

0

0sB K D
+ −→  3.5×10

-7
 - 

0 0 0

0sB K D→  1.9×10
-8

 - 

0

0sB D K
− +→  1.5×10

-7
 - 

0 0 0

0sB D K→  8.5×10
-9

 - 
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The following observations are made: 

5.5.1 →B PS  DECAYS INVOLVING b c→→→→  TRANSITION 

1. 1, 1, 0b C S∆ = ∆ = ∆ = mode :  

a) In the present mode, dominant decays are B( 0

0s sB Dπ − +→ ) = 3.2×10
-4

,  

B( 0

0B Dπ − +→ ) = 2.8×10
-4

 and B( 0

0B Dπ− −→ ) = 3.6×10
-2

. These may also be 

generated through annihilation mechanism and seem to be the best candidates 

for experimental observation. 

b) Decay 0 0 0

0B Dπ→  may also be get contribution through elastic final state 

interactions (FSI). 

c) Decays 0 0

0 0 0/ /s sB K D D f D K
− + + −→  are forbidden in the present analysis. 

Annihilation diagram may generate these decays. 

2. 1, 0, 1b C S∆ = ∆ = ∆ = − mode :  

a)  Branching ratios of the dominant decays are,  B( 0

0sB D D
− −→ )  =   1.4×10

-3
,  

B( 0

0sB D D
+ −→ ) = 1.3×10

-3
 and  B( 0

0s s sB D D
− +→ )  = 1.2×10

-3
 . Next order 

dominant decays are B( 0

0s s sB D D
− +→ ) = 5.4×10

-4
, B( 0

0sB D D
− −→ ) = 4.2×10

-4
  

and  B( 0

0sB D D
− +→ ) = 3.9×10

-4
. However, 0

0sB D D
− −→  and 0

0sB D D
+ −→   

decays may appear through penguin diagram. 

b) Decays 
0 (1 )cB K Pχ− −→ , 0 0

0 (1 )cB K Pχ→  and 0

sB →  0

1(1 ) /c Pπ χ  

1(1 ) /c Pηχ 0 0 0 0

1 0 0 0 0(1 ) / / / / /c P D D D D D D D Dη χ + − − +′ 0

0/ caη  are forbidden in 

present analysis.  

3. 1, 1, 1b C S∆ = ∆ = ∆ = − mode :  

a) B( 0

0s sB K D
− +→ ) = 2.4×10

-5
 and B( 0

0B K D
− +→ ) = 2.0×10

-5 
decays are   

dominant. 
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b) In the present analysis 0

sB → 0 0

0 0/D Dπ π − +

0/ /D a
+ − 0 0

0 /D a
0

0cD χ  decays are 

forbidden. Moreover, these decays also get contribution through the annihilation 

process. 

4. 1, 0, 0b C S∆ = ∆ = ∆ = mode :  

a) In this mode, branching ratios of the dominant decay are  B( 0

0B D D
− −→  ) = 

1.1×10
-4

 and B( 0

0B D D
+ −→  ) = 1.0×10

-4
. 

b) Decays 0 (1 )cB Pπ χ− −→ , 0 0 0

0B D D→ 0/ s sD D
− + 0 0

0/D D 0/ s sD D
+ − 0

0/ (1 )c Pπ χ  

0/ (1 )c Pηχ 0 0/ (1 ) /c cP fη χ η′  and 0

0 0s cB K χ→  are forbidden in this framework. 

Decays involving naked charm mesons may be generated through annihilation 

diagrams, elastic FSI and penguin diagrams. However, decays emitting 

charmonium  0 (1 )c Pχ  remains forbidden. 

In case of b u→  transitions, the branching ratios of all the decays are highly 

suppressed due to the small values of the CKM factor as well as the decay constants of scalar 

mesons. However, these may get contributions from W-annihilation and penguin diagrams. 

 

5.5.3 COMPARISON WITH OTHER WORKS 

We compare our results with branching ratios calculated in the other models [10, 11]. 

The predicted branching ratios in Cheng [10] shown in 3
rd

 column of Tables 5.7 (a) and 5.7 

(b) are generally smaller as compared to the present branching ratios because of the 

difference in the form factors obtained in the covariant light-front approach (CLF) and 

different quark masses have been used in the two works. Branching ratios for the hadronic 

weak charmed mesons have also been calculated by Cheng [11]. His predictions 

B( 0

0B Dπ − +→ ) = 2.6×10
-4

 and B( 0

0s sB Dπ − +→ ) = 3.3×10
-4

 match well with our values of the 
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branching ratios and B( 0

0B Dπ− −→ ) = 7.7×10
-4

 , B( 0

0sB D D
− −→ ) = 8.4×10

-4
, 

B( 0

0sB D D
− −→ ) = 5.1×10

-3
, B( 0

0sB D D
− +→ ) = 7.3×10

-4
 and B( 0

0sB D D
+ −→ ) = 4.7×10

-3
 are 

different from our results. The disagreement with their predictions may be attributed to the 

difference in the form factors values and different values used for the decay constant. 
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CHAPTER 6   

HADRONIC WEAK DECAYS OF NAKED 

BOTTOM-CHARM MESON TO 

PSEUDOSCALAR AND P-WAVE MESONS  

 

6.1 INTRODUCTION 

The Bc meson discovered at Fermilab [1] is a unique quark-antiquark bound state 

)( cb  composed of two heavy quarks ),( cb  with different flavors and are thus flavor 

asymmetric. Recently, CDF Collaboration [2] announced an accurate determination of the 

Bc meson mass and its life time, which is in good agreement with their theoretical 

estimates. The investigation of the Bc meson properties (mass spectrum, decay rates, etc.) is 

therefore of special interest compared to symmetric heavy quarkonium ),( ccbb  states. The 

difference of quark flavors forbids the annihilation of Bc meson into gluons. As a result, the 

pseudoscalar )( cb  state is much more stable than the heavy quarkonium states, and decays 

only weakly. The decay processes of the Bc meson can be broadly divided into three 

classes: 
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i)       involving the decay of b quark with c being spectator,  

ii)       involving the decay of c quark with b being spectator and  

iii)      the two component annihilate, b and c , weakly.  

Processes i) and ii), as mentioned above, can contribute to semileptonic and nonleptonic 

weak decays, while the process iii) can only contribute to leptonic decays. Experimental 

study [3] of the Bc mesons are in plan for B-Physics both at the TEVATRON and Large 

Hadron Collider (LHC). These experimental efforts have opened up new investigation 

concerning the structure of strong and weak interactions for heavy flavor sector. Also, Bc 

meson attracts the interest of experimentalists for testing the predictions of various 

theoretical efforts in the laboratory Theoretically, there exists an extensive study 

concerning semileptonic and nonleptonic decays of Bc to s-wave mesons in different 

models [4-21]. Their estimates of cB  decay rates indicate that the c-quark give dominant 

contribution as compared to b-quark decays. However, a little attention is being paid to the 

decays of Bc meson to a p-wave meson final state including an axial-vector (A), a tensor (T) 

or scalar (S) mesons [6, 8, 12, 17-21]. 

In this chapter, we extend the formalism developed in earlier chapters to study the 

weak hadronic decays of cB  meson involving one p-wave meson in the final state in CKM-

favored and CKM-suppressed modes: 

/ ,

,

c

c

B P A A

B P T

′→ +

→ +

 

and        → +cB P S .    

 Using factorization scheme and employing the Isgur, Scora, Grienstein and Wise (ISGW 

II) quark model [22, 23] to obtain the form factors involved in the decay amplitude and 
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consequently, we predicted their branching ratios. The study of cB  meson is of special 

interest as a lot of data is expected on its weak decays in the near future.  

 

6.2 WEAK HAMILTONIAN  

We have already stated that 
cB  meson can decay to the final states either via b-

quark or c-quark decay. In addition to the QCD modified weak Hamiltonian for the Bottom 

changing ( 1b∆ = ) decays as given in chapter 2, we also need weak Hamiltonian for Bottom 

conserving and charm changing ( 0)b∆ =  decays as given by  

6.2.1 BOTTOM CHANGING DECAYS 

i) The CKM favored cb →  transition 

         

*
1 2

*
1 2

*
1 2

*
1 2

{ [ ( )( ) ( )( )]
2

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]},

F
W cb ud

cb cs

cb us

cb cd

G
H V V c cb du c db cu

V V c cb sc c sb cc

V V c cb su c sb cu

V V c cb dc c db cc

= + +

+ +

+ +

+

 

 

iii) The CKM suppressed ub →  transition, 

           

*
1 2

*
1 2

*
1 2

*
1 2

{ [ ( )( ) ( )( )]
2

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]}.

F
W ub cs

ub ud

ub us

ub cd

G
H V V c ub sc c sb uc

V V c ub du c db uu

V V c ub su c sb uu

V V c ub dc c db uc

= + +

+ +

+ +

+
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6.2.2 CHARM CHANGING AND BOTTOM CONSERVING DECAYS 

 

i)  CKM favored ( = 1, = 1)C S∆ − ∆ −  decays 

                  
*

1 2[ ( )( ) ( )( )];
2

F
W ud cs

G
H V V c ud sc c sd uc= +                              

Equation Chapter 6 Section 6(6.1) 

 

ii)  CKM suppressed ( = 1, = 0)C S∆ ∆  decays                 

                       

*

1 2

*

1 2

{ [ ( )( ) ( )( )]
2

[ ( )( ) ( )( )]},

F
W cd ud

cs ud

G
H V V c cd du c cu dd

V V c cs du c cu ds

= +

+ +

                                       (6.2) 

    

iii)  CKM doubly suppressed ( = = 1)C S∆ − ∆ −  decays 

                              
*

1 2[ ( )( ) ( )( )]
2

F
W us cd

G
H V V c us dc c ds uc= + .                     (6.3) 

By factorizing matrix elements of the four-quark operator contained in the effective 

Hamiltonian, here also we can divide the decays in three classes as stated in chapter 2.  

 

6.3 
c

B  DECAYS INTO PSEUDOSCALAR AND AXIAL-VECTOR MESONS 

In this section, we study the CKM-favored and CKM-suppressed 

(0 ) / (1 )− +′→ +cB P A A  decays in analogy to the methodology given chapter 3.  

In earlier chapters, we have studied decays of bottom mesons involving b-quark as a 

decaying particle. However, cB  meson, being heavy, can also emit bottom mesons in the 

final state; therefore, we need spectroscopy of these mesons.  
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6.3.1 SPECTROSCOPY OF BOTTOM AXIAL-VECTOR MESONS 

  In addition to the axial-vector meson spectroscopy upto the charm sector, which are 

already given in chapter 3 upto charm level, we also need the bottom axial-vector meson 

spectroscopy for the 
cB  decays.         

Similar to the mixing scheme applied for the strange and charm level, we use the 

following mixing scheme in case of the bottom ( )bu  and bottom-strange ( )bs  mesons, 

 

1 1 4 1 4

1 1 4 1 4

(5.670) sin cos ,

(5.721) cos sin ,

A A

A A

B B B

B B B

θ θ

θ θ

′

′

= +

= −

                              (6.4) 

and 

1 1 5 1 5

1 1 5 1 5

(5.762) sin cos ,

(5.830) cos sin ,

s s A s A

s s A s A

B B B

B B B

θ θ

θ θ

′

′

= +

= −

                                (6.5) 

Recent work of Colangelo, De Fazio and Ferrandes [24] shows that, like the charm 

mesons, the mixing angle for the beauty sector is also small, i.e. ( 1.60 0.69)− ± � , which is 

used for 4θ  as well as 5θ  in this work.  

 

6.3.2 DECAY RATE FORMULA 

 Following the discussion and formalism for the (0 ) (0 ) (1 )B P A
− − +→ + decays given in 

the section 3.3 of chapter 3, we obtain the decay rate formula for (0 ) (0 ) (1 )cB P A
− − +→ +  

as:  

                              
3

2

2
( ) ( )

8

c
c c

A

p
B P A A B P A

mπ
Γ → = → ,                       

where cp  is the magnitude of the three-momentum of a final-state particle in the rest frame 

of cB  meson and Am  denotes the mass of the axial-vector meson. 
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 Sandwiching the weak Hamiltonian between the initial and the final states, the decay 

amplitudes for various
cB PA→  decay modes are obtained, which are given in Tables 6.1 

and 6.2.  

 

Table 6.1 Decay amplitudes of CKM-favored mode of →→→→c
B PA  decays for bottom 

conserving and charm changing modes 

Decays Amplitudes 

∆b =0, ∆C = -1, ∆S = -1 

0

1sc BB
++ → π  1 12 2

1 5 5(sin ( ) cos ( ))c s A c s AB B B B
a f F m F mπ π πθ θ ′→ →+  

0

1c sB Bπ+ +→  1 12 2

1 5 5(cos ( ) sin ( ))c s A c s AB B B B
a f F m F mπ π πθ θ ′→ →−  

++ → 1

0
BKBc  1 12 2

2 4 4(sin ( ) cos ( ))c A c AB B B B

Ka f F m F mπ πθ θ ′→ →+  

0

1cB K B
+ +→  1 12 2

2 4 4(cos ( ) sin ( ))c A c AB B B B

Ka f F m F mπ πθ θ ′→ →−  

0, 1, 1b C S∆ = ∆ = − ∆ =  

0

1cB K B
+ +→  1 12 2

1 4 4(sin ( ) cos ( ))c A c AB B B B

K K Ka f F m F mθ θ ′→ →− +  

0

1cB K B
+ +→  1 12 2

1 4 4(cos ( ) sin ( ))c A c AB B B B

K K Ka f F m F mθ θ ′→ →− −  

0

1cB K B
+ +→  1 12 2

2 4 4(sin ( ) cos ( ))c A c AB B B B

Ka f F m F mπ πθ θ ′→ →− +  

0

1cB K B
+ +→  1 12 2

2 4 4(cos ( ) sin ( ))c A c AB B B B

Ka f F m F mπ πθ θ ′→ →− −  

0, 1, 0b C S∆ = ∆ = − ∆ =  

0

1c sB K B
+ +→  1 12 2

1 5 5(sin ( ) cos ( ))c s A c s AB B B B

K K Ka f F m F mθ θ ′→ →+  

0

1c sB K B
+ +→  1 12 2

1 5 5(cos ( ) sin ( ))c s A c s AB B B B

K K Ka f F m F mθ θ ′→ →−  

0

1cB Bπ+ +→  1 12 2

1 4 4(sin ( ) cos ( ))c A c AB B B B
a f F m F mπ π πθ θ ′→ →− +  

0

1cB Bπ+ +→  1 12 2

1 4 4(cos ( ) sin ( ))c A c AB B B B
a f F m F mπ π πθ θ ′→ →− +  

0

1cB Bπ+ +→  
1 12 2

2 4 4

1
(sin ( ) cos ( ))

2

c A c AB B B B
a f F m F mπ π πθ θ ′→ →+  

0

1cB Bπ+ +→  
1 12 2

2 4 4

1
(cos ( ) sin ( ))

2

c A c AB B B B
a f F m F mπ π πθ θ ′→ →−  

1cB Bη+ +→  
1 12 2

2 4 5 4 5

1
(sin sin ( ) cos cos ( ))

2

c A c AB B B B
a f F m F mη π πθ θ θ θ ′→ →− +  

1cB Bη+ +→  
1 12 2

2 4 5 4 5

1
(cos sin ( ) sin cos ( ))

2

c A c AB B B B
a f F m F mη π πθ θ θ θ ′→ →− −  
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Table 6.2 Decay amplitudes of CKM-favored modes of →→→→c
B PA  decays for bottom 

changing modes 

 

Decays Amplitudes 

0,1,1 =∆=∆=∆ SCb  

0

1DDBc

−− →  
1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))c c

A A

B D B D

D D D D Da m f F m f F mθ θ
′

→ →+  

0

1cB D D
− −→  

1 1 1 1 1

2 2

2 2 22 ( sin ( ) cos ( ))c c

A A

B D B D

D D D D Da m f F m f F mθ θ
′

→ →+  

−− → 1aB cc η  )(2 2

1 111 a

B

aa mFfma cc η→
 

−− → 1bB cc η  )(2 2

1 111 b

B

bb mFfma cc η→
 

1ccB χπ −− →  )( 2

1
1

π
χ

π mFfa ccB →
 

1c cB hπ− −→  1 2

1 ( )c cB h
a f F mπ π

→
 

−− → 1

0
DDBc  1 12 2

2 2 2(sin ( ) cos ( ))c A c AB D B D

D D Da f F m F mθ θ ′→ →+  

0

1cB D D
− −→  1 12 2

2 2 2(cos ( ) sin ( ))c A c AB D B D

D D Da f F m F mθ θ ′→ →−  

1,0,1 −=∆=∆=∆ SCb  

−− → 1

0
KDBc  

1 1 1 1 1

2 2

1 1 12 ( sin ( ) cos ( ))c c

A A

B D B D

K K K K Ka m f F m f F mθ θ
′

→ →+  

0

1cB D K
− −→  

1 1 1 1 11

2 2

1 1 12 ( cos ( ) sin ( ))c c

A A

B D B D

K K K K Ka m f F m f F mθ θ
′

→ →−  

0

1aDB sc

−− →  )(2 2

2 111 a

DB

aa mFfma sc →
 

1fDB sc

−− →  )(cos2 2

2 111 f

DB

ff mFfma sc →θ  

0

1c sB Dπ− −→  
1 12 2

2 3 3

1
(sin ( ) cos ( ))

2

c s A c s AB D B D
a f F m F mπ π πθ θ ′→ →+  

0

1c sB Dπ− −→  
1 12 2

2 3 3

1
(cos ( ) sin ( ))

2

c s A c s AB D B D
a f F m F mπ π πθ θ ′→ →−  

1c sB Dη− −→  
1 12 2

2 3 3

1
(cos sin ( ) sin cos ( ))

2

c s A c s AB D B D

P Pa f F m F mη η ηθ φ θ φ ′→ →−  

1c sB Dη− −→  
1 12 2

2 3 3

1
(cos sin ( ) sin cos ( ))

2

c s A c s AB D B D

P Pa f F m F mη η ηθ φ θ φ ′→ →−  

0

1DKBc

−− →  1 12 2

1 2 2(sin ( ) cos ( ))c A c AB D B D

K K Ka f F m F mθ θ ′→ →+  

0

1cB K D
− −→  1 12 2

1 2 1 2(cos ( ) sin ( ))c A c AB D B D

K K K Ka f F m a f F mθ θ ′→ →−  

1c sB Dη− −′→  
1 12 2

2 3 3

1
(sin cos ( ) cos cos ( ))

2

c s A c s AB D B D

P Pa f F m F mη η ηθ φ θ φ ′→ →
′ ′ ′+  

1c sB Dη− −′→  
1 12 2

2 3 3

1
(cos cos ( ) sin cos ( ))

2

c s A c s AB D B D

P Pa f F m F mη η ηθ φ θ φ ′→ →
′ ′ ′−  

1c s cB D h
− −→  1 2

1 ( )c c

s s

B h

D Da f F m
→
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1csc DB χ−− →  )()(2 2

1

2

2
1

111 s

cc

sc

sc

cc D

B

D

DB
mFfamFfma

χ
χχχ

→→ +  

1c c sB Dη− −→  1 1

1 1 1 1 1

2 2

2 3 3

2 2

1 3 3

(sin ( ) cos ( ))

2 ( sin ( ) cos ( ))

c s A c s A

c c c

c c c c

s s A s s A s

B D B D

B B

D D D D D

a f F m F m

a m f F m f F m

η η η

η η

θ θ

θ θ

′

′

→ →

→ →

+

+ +
 

1c c sB Dη− −→  1 1

1 1 1 1 1

2 2

2 3 3

2 2

1 3 3

(cos ( ) sin ( ))

2 ( cos ( ) sin ( ))

c s A c s A

c c c

c c c c

s s A s s A s

B D B D

B B

D D D D D

a f F m F m

a m f F m f F m

η η η

η η

θ θ

θ θ

′

′

→ →

→ →

−

+ −
 

0, 1, 1b C S∆ = ∆ = ∆ = −  

1c cB K χ− −→  1 2

1 ( )c cB

K Ka f F m
χ→

 

1c cB K h
− −→  1 2

1 ( )c cB h

K Ka f F m
→

 

0

1c sB D D
− −→  1 12 2

2 3 3(sin ( ) cos ( ))c s A c s AB D B D

D D Da f F m F mθ θ ′→ →+  

0

1c sB D D
− −→  1 12 2

2 3 3(cos ( ) sin ( ))c s A c s AB D B D

D D Da f F m F mθ θ ′→ →−  

0

1c sB D D
− −→  

1 1 1 1

2 2

2 2 22 (sin ( ) cos ( ))c s c sB D B D

D D D Dm a f F m F mθ θ→ →+  

0

1c sB D D
− −→  

1 1 1 1

2 2

2 2 22 (cos ( ) sin ( ))c s c sB D B D

D D D Dm a f F m F mθ θ→ →−  

1c cB Kη− −→  
1 1 1 1

2 2

1 1 12 (sin ( ) cos ( ))c c c cB B

K K K Km a f F m F m
η ηθ θ→ →+  

1c cB Kη− −→  
1 1 1 1

2 2

1 1 12 (cos ( ) sin ( ))c c c cB B

K K K Km a f F m F m
η ηθ θ→ →−  

0, 0, 0b C S∆ = ∆ = ∆ =  

0

1cB Dπ− −→  
1 12 2

2 2 2

1
(sin ( ) cos ( ))

2

c A c AB D B D
a f F m F mπ π πθ θ ′→ →+  

0

1cB Dπ− −→  
1 12 2

2 2 2

1
(cos ( ) sin ( ))

2

c A c AB D B D
a f F m F mπ π πθ θ ′→ →−  

0

1cB Dπ− −→  1 12 2

1 2 2(sin ( ) cos ( ))c A c AB D B D
a f F m F mπ π πθ θ ′→ →+  

0

1cB Dπ− −→  1 12 2

1 2 2(cos ( ) sin ( ))c A c AB D B D
a f F m F mπ π πθ θ ′→ →−  

1cB Dη− −→  
1 12 2

2 2 2

1
(sin ( ) cos ( ))

2

c A c AB D B D
a f F m F mη η ηθ θ ′→ →+  

1cB Dη− −→  
1 12 2

2 2 2

1
(cos ( ) sin ( ))

2

c A c AB D B D
a f F m F mη η ηθ θ ′→ →−  

1cB Dη− −′→  
1 12 2

2 2 2

1
(sin ( ) cos ( ))

2

c A c AB D B D
a f F m F mη η ηθ θ ′→ →

′ ′ ′+  

1cB Dη− −′→  
1 12 2

2 2 2

1
(cos ( ) sin ( ))

2

c A c AB D B D
a f F m F mη η ηθ θ ′→ →

′ ′ ′−  

0

1cB D a
− −→  

1 1 1

2

2
2 ( )cB D

a a a
a m f F m

→
 

1cB D f
− −→  

1 1 1

2

2
2 cos ( )cB D

f f A f
a m f F mφ →

 

1c cB Dη− −→  6.79×10
-5

 

1c cB D χ− −→  1

1 1 1

2 2

2 1(2 ( ) ( ))c c c

c c c

B D B

D Da m f F m a f F m
χ

χ χ χ
→ →− +  
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1c cB D h
− −→  1 2

1 ( )c cB h

D Da f F m
→−  

0

1cB D a
− −→  

1 1 1

2

12 ( )cB D

a a aa f m F m
→

 

0

1cB D b
− −→  

1 1 1

2

12 ( )cB D

b b ba f m F m
→

 

1c cB Dη− −→  
1 1 1 1

1 1

2 2

1 2 2

2 2

2 2 2

(2 (sin ( ) cos ( ))

(sin ( ) cos ( )))

c c c c

c c

c c c

B B

D D D D

B D B D

a m f F m F m

a f F m F m

η η

η η η

θ θ

θ θ

→ →

→ →

− +

+ +
 

0, 1, 0b C S∆ = ∆ = − ∆ =  

0

1cB D D
− −→  

1 1 1 1

1 1

2 2

2 2 2

2 2

1 2 2

(2 (sin ( ) cos ( ))

(sin ( ) cos ( )))

c c

c c

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

− +

+ +
 

0

1cB D D
− −→  

1 1 1 1

1 1

2 2

2 2 2

2 2

1 2 2

(2 (cos ( ) sin ( ))

(cos ( ) sin ( )))

c c

c c

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

− −

+ −
 

0

1cB D D
− −→  

1 1 1 1

1 1

2 2

1 2 2

2 2

2 2 2

(2 (sin ( ) cos ( ))

(sin ( ) cos ( )))

c c

c c

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

− +

+ +
 

0

1cB D D
− −→  

1 1 1 1

1 1

2 2

1 2 2

2 2

2 2 2

(2 (cos ( ) sin ( ))

(cos ( ) sin ( )))

c c

c c

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

− −

+ −
 

0, 1, 1b C S∆ = ∆ = − ∆ = −  

0

1c sB D D
− −→  

1 1 1 1

1 1

2 2

1 3 3

2 2

2 3 3

(2 (sin ( ) cos ( ))

(sin ( ) cos ( )))

c c

s s s s

c s A c s A

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ ′

→ →

→ →

+

+ +
 

0

1c sB D D
− −→  

1 1 1 1

1 1

2 2

1 3 3

2 2

2 3 3

(2 (cos ( )sin ( ))

(cos ( ) sin ( )))

c c

s s s s

c s A c s A

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ ′

→ →

→ →+ −
 

0

1c sB D D
− −→  

1 1 1 1

1 1

2 2

2 2 2

2 2

1 2 2

2 (sin ( ) cos ( ))

(sin ( ) cos ( ))

c s c s

c c

s s s

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

+

+ +
 

0

1c sB D D
− −→  

1 1 1 1

1 1

2 2

2 2 2

2 2

1 2 2

2 (cos ( ) sin ( ))

(cos ( ) sin ( ))

c s c s

c c

s s s

B D B D

D D D D

B D B D

D D D

a m f F m F m

a f F m F m

θ θ

θ θ

→ →

→ →

−

+ −
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6.3.3 CALCULATION OF THE FORM FACTORS IN ISGW II MODEL 

In this section, we extend ISGW II model framework [22] to calculate /cB A A′→  

and cB P→   transition form factors.  

A. / ′→
c

B A A  TRANSITION FORM FACTORS 

 The form factors have the following simplified expressions in the ISGW II model for 

/cB A A′→  transitions caused by b c→ quark transition [22]: 

2

( )

52 2

( 1)1 5
[ ( )] ,

6 2

c

c c

c c

c B lc A
B B

B q B A

mm m
l m F

m

βω ω
β

µ β µ β− −

− +
= − + −

ɶ ɶɶ
ɶ                             (6.6) 

  

2 2

( )

2
1 ,

2 2

c

c c c

c B c cA

B B A B A

mm
c c F

m m

β

β µ β
+ −+

+ −

−

 
+ = − − 

 
 

ɶ

ɶ ɶ
                     (6.7) 

 

 

2 2

( )

2

2
,

2 3 2

c

c c c

c B c cA

B B A B A

mm
c c F

m m

βω

β µ β
+ −−

+ −

−

 +
− = − − 

 
 

ɶɶ

ɶ ɶ
                                  (6.8) 

 

2 ( )

52

1
[ ( 1) ] ,

32

c c

c

B B rA

B

m m
r F

β
ω

µ β+

= + −
ɶ ɶ

ɶ                                        (6.9) 

  

          

2

( )

2
,

22

c

cc c

c B s sc

B AB B

mm
s s F

m

β

µ ββ
+ −+

+ −

+

 
+ =  

 
 ɶ

                                       (6.10) 

 

       

2 2

( )

2

1 4
,

3 22

c

cc

c B s s

A B AB

m
s s F

m

βω

µ ββ
+ −−

+ −

+

 −
− = − 

 
 

ɶ

ɶ
                     (6.11) 

where 
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11 1

( )
c bm m

µ −

± = + .                                  (6.12) 

and  

                      

1 1
( ) ( ) 2 2

5 5 5

3 1
( ) ( ) 2 2

5 5 5

1 1
( ) ( ) 2 2

5 5 5

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

c

c

c

c

c

c

Bl r A

B A

Bc c s s A

B A

Bc c s s A

B A

m m
F F F

m m

m m
F F F

m m

m m
F F F

m m

+ − + −

+ − + −

−
+ +

− −− −

= =

= =

= =

ɶ ɶ

ɶ ɶ

ɶ ɶ

                   (6.13) 

The 2( )t q≡  dependence is given by   

AB

m

mm

tt

c
2

1~ −
=−ω ,                                (6.14) 

and 

51
2 2 3

2

5

1
1 ( )

18

c

c c

B AA
m

B B A

m
F t t

m

β β
χ

β

−     
= + −             

ɶ

ɶ

,                            (6.15) 

with 

                    
2

2

2

( )33 1 16
ln[ ]

4 2 33 2 ( )
c c c

S QMc

b c B A B A B A f S c

m

m m m m m m n m

α µ
χ

β α

 
= + +   − 

,                         (6.16) 

and  

( )2 2 21

2c cB A B A
β β β= + .                    (6.17) 

m~  is the sum of the mesons constituent quarks masses, m  is the hyperfine averaged 

physical masses, nf is the number of active flavors, which is taken to be five in the present 

case, 
2)( ABm mmt

c
−=  is the maximum momentum transfer and QMµ  is the quark model 

scale. The values of parameter β  for different s-wave and p-wave mesons are given in the 

Table 6.3 [22]. Using a similar method, /
c

B A A′→  transition form factors for 

c s→ channel can also be obtained [22]. These are given in Tables 6.4 and 6.5. 
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Table 6.3 The values of parameter ββββ  for s-wave and p-wave mesons in the ISGW II 

quark model 

 

Quark content  ud  us  ss  cu  cs  ub  sb  cc  bc  

sββββ (GeV) 0.41 0.44 0.53 0.45 0.56 0.43 0.54 0.88 0.92 

Pββββ (GeV) 0.28 0.30 0.33 0.33 0.38 0.35 0.41 0.52 0.60 

 

 

Table 6.4 Form factors of →→→→c
B A  transition at 2 ==== m

q t  in the ISGW II quark model 

 

               Modes Transition l c+ c- 

∆b = 0, ∆C = -1, ∆S = -1 1sc BB →  -15.816 1.710 0.177 

1BBc →  -2.838 0.453 0.065 

∆b =1, ∆C = 0, ∆S = -1 
1DB →  -2.129 -0.030 -0.001 

1sc DB →  -1.982 -0.043 -0.001 

∆b =1, ∆C = 1, ∆S = 0 
1( )c cB ccχ→  -0.491 -0.148 -0.006 

 

 

Table 6.5 Form factors of 
c

B A′′′′→→→→  transition at 2 ==== m
q t in the ISGW II quark model 

 

Modes Transition r s+ s- 

∆b = 0, ∆C = -1, ∆S = -1 1c sB B→  -10.424 -0.701 -0.279 

1cB B→  -3.947 -0.201 0.0003 

∆b =1, ∆C = 0, ∆S = -1 
1B D→  1.451 0.038 -0.023 

1c sB D→  1.424 0.062 -0.032 

∆b =1, ∆C = 1, ∆S = 0 
1( )c cB h cc→  2.129 0.212 -0.062 
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B. →
c

B P  TRANSITION FORM FACTORS 

For cB P→  transition form factors also, we the use ISGW II quark model [22] 

which provides the following formulae for b c→ quark transition: 

( )

( )

2 2

( )

32

2 2

( )

32

1 1 ,
2

1 ,
2

f f
c

c

f f
c c

c

c B f fP

c P B P

B c B f f

c P B P

mm
f f F R

m m

m m
f f F R

m m

β

µ β

β

µ β

++ −
+ −

−+ −
+ −

+

+ −

+

−

+ −

+

  
+ = − −  

    

 
− = − 

 
 

ɶ

ɶ

ɶ

ɶ

                                 (6.18) 

For more details of the form factors and correction factors one can refer to the original 

work [22]. The obtained form factors, f+  and f− ,  are given in column 3
rd

  and 4
th

  of Table 

6.6, respectively. 

 

Tables 6.6  Form factors of →→→→c
B P  transition at 2 ==== m

q t  in the ISGW II quark model 

 

 

  

Decay constants for the pseudoscalar and axial-vector mesons are already been 

discussed in chapter 3.   

 

 

Modes Transition f+ f- 

∆b = 0, ∆C = -1, ∆S = -1 
sc BB →  0.926 -0.374 

BBc →  1.103  -0.652 

∆b =1, ∆C = 0, ∆S = -1 DBc →  2.110 -1.975 

sc DB →−  1.543 -1.356 

∆b =1, ∆C = 1, ∆S = 0 )( ccB cc η→  1.193 -0.716 
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6.3.4 NUMERICAL RESULTS AND DISCSSIONS 

 Using / /cB A A P′→  form factors obtained in the previous section and the decay rate 

formula given in section 6.3.2, we finally predict branching ratios of various 
cB PA→  

decays as shown in Tables 6.7 and 6.8. The numerical values for the decay constants of 

pseudoscalar mesons used here are taken from (3.26) while for the axial-vector meson one 

can refer to section 3.5. 

 

Table 6.7 Branching ratios of CKM-favored mode of →→→→c
B PA  decays for bottom 

conserving and charm changing modes 

 

Decays Branching ratios 

0, 1, 1b C S∆ = ∆ = − ∆ = −  
0

1sc BB
++ → π  2.9×10

-2
 

0

1c sB Bπ+ +→  0.47×10
-2

 

++ → 1

0
BKBc  0.54×10

-2
 

0

1cB K B
+ +→  0.10×10

-2
 

0, 1, 1b C S∆ = ∆ = − ∆ =  
0

1cB K B
+ +→  9.1×10

-5
 

0

1cB K B
+ +→  1.6×10

-5
 

0

1cB K B
+ +→  1.5×10

-5
 

0

1cB K B
+ +→  2.6×10

-6
 

0, 1, 0b C S∆ = ∆ = − ∆ =  
0

1c sB K B
+ +→  7.5×10

-4
 

0

1c sB K B
+ +→  1.1×10

-4
 

0

1cB Bπ+ +→  0.22×10
-2

 

0

1cB Bπ+ +→  4.1×10
-4

 

0

1cB Bπ+ +→  1.8×10
-4

 

0

1cB Bπ+ +→  3.3×10
-5

 

1cB Bη+ +→  2.1×10
-4

 

1cB Bη+ +→  3.6×10
-5

 

 

 



156 

 

Table 6.8 Branching ratios of CKM-favored modes of →→→→c
B PA  decays for bottom 

changing modes 

Decays Branching ratios 

0,1,1 =∆=∆=∆ SCb  
0

1DDBc

−− →  3.1×10
-5

 

0

1cB D D
− −→  9.8×10

-6
 

−− → 1aB cc η  0.31×10
-2

 

−− → 1bB cc η  2.6×10
-8

 

1ccB χπ −− →  0.07×10
-2

 

1c cB hπ− −→  0.06×10
-2

 

−− → 1

0
DDBc

 6.1×10
-5

 

0

1cB D D
− −→  6.5×10

-6
 

1,0,1 −=∆=∆=∆ SCb  
−− → 1

0
KDBc  4.9×10

-7
 

0

1cB D K
− −→  1.5×10

-7
 

0

1aDB sc

−− →  1.1×10
-8

 

1fDB sc

−− →  1.3×10
-8

 

0

1c sB Dπ− −→  7.9×10
-9

 

0

1c sB Dπ− −→  7.2×10
-10

 

1c sB Dη− −→  4.9×10
-9

 

1c sB Dη− −→  4.3×10
-10

 

0

1DKBc

−− →  2.5×10
-7

 

0

1cB K D
− −→  3.7×10

-8
 

1c sB Dη− −′→  3.0×10
-9

 

1c sB Dη− −′→  2.5×10
-10

 

1c s cB D h
− −→  0.15×10

-2
 

1csc DB χ−− →  0.10×10
-2

 

1c c sB Dη− −→  3.3×10
-5

 

1c c sB Dη− −→  1.3×10
-4

 

0, 1, 1b C S∆ = ∆ = ∆ = −  

1c cB K χ− −→  5.1×10
-5

 

1c cB K h
− −→  4.4×10

-5
 

0

1c sB D D
− −→  6.0×10

-6
 

0

1c sB D D
− −→  3.3×10

-7
 

0

1c sB D D
− −→  8.6×10

-7
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0

1c sB D D
− −→  2.7×10

-7
 

1c cB Kη− −→  1.4×10
-4

 

1c cB Kη− −→  4.0×10
-5

 

0, 0, 0b C S∆ = ∆ = ∆ =  
0

1DKBc

−− →  2.5×10
-7

 

0

1cB K D
− −→  3.6×10

-8
 

0

1cB Dπ− −→  1.0×10
-7

 

0

1cB Dπ− −→  1.4×10
-8

 

0

1cB Dπ− −→  3.8×10
-6

 

0

1cB Dπ− −→  5.0×10
-6

 

1cB Dη− −→  6.5×10
-8

 

1cB Dη− −→  8.4×10
-9

 

1cB Dη− −′→  4.0×10
-8

 

1cB Dη− −′→  4.9×10
-9

 

0

1cB D a
− −→  2.6×10

-6
 

1cB D f
− −→  3.1×10

-6
 

1c cB D χ− −→  2.5×10
-5

 

1c cB D h
− −→  4.8×10

-5
 

0

1cB D a
− −→  8.6×10

-5
 

0

1cB D b
− −→  7.3×10

-11
 

1c cB Dη− −→  5.9×10
-5

 

1c cB Dη− −→  6.8×10
-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0, 1, 0b C S∆ = ∆ = − ∆ =  
0

1cB D D
− −→  4.0×10

-7
 

0

1cB D D
− −→  2.9×10

-8
 

0

1cB D D
− −→  6.2×10

-8
 

0

1cB D D
− −→  3.3×10

-8
 

0, 1, 1b C S∆ = ∆ = − ∆ = −  
0

1c sB D D
− −→  5.7×10

-7
 

0

1c sB D D
− −→  6.7×10

-7
 

0

1c sB D D
− −→  1.5×10

-5
 

0

1c sB D D
− −→  1.2×10

-6
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 We observe the following: 

 

i) Naively, the c → d, s (charm changing and bottom conserving) decay 

channels are expected to be kinematically suppressed, however, the large 

value of the CKM matrix elements along with the large value of c → d, s 

transition form factors overcome this suppression. As a result, branching 

ratios of the charm changing mode are enhanced as compare to the bottom 

changing modes. 

ii) The dominant decay for charm changing and bottom conserving are:  

B( 0

1sc BB
++ → π ) = 2.9×10

-2
, B( ++ → 1

0
BKBc ) = 0.54×10

-2
, B( 0

1c sB Bπ+ +→ ) = 

0.47×10
-2

, B( 0

1cB Bπ+ +→ ) = 0.24×10
-2

 and B ( 0

1cB K B
+ +→ ) = 0.10×10

-2
. 

iii) For bottom changing transitions the dominating decays are: B( −− → 1aB cc η ) = 

0.31×10
-2

, B(
1c s cB D h

− −→ ) = 0.15×10
-2

 and B(
1csc DB χ−− → ) = 0.10×10

-2
 . 

The rest of the decay modes remain highly suppressed partly due to the 

small values of the CKM matrix elements and the small values of the form 

factors. 

iv) In contrast to the charm meson sector, the experimental data of B meson 

decays favor the constructive interference between color favored and color 

suppressed diagrams [25], giving 08.010.11 ±=a  and 02.020.02 ±=a . 

Taking 10.11 =a  and 20.02 =a  for the constructive interference case, we 

obtain larger value for B( 1csc DB χ−− → ) = 0.12×10
-2

 in comparison to 

0.10×10
-2

 (for destructive interference). 
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6.3.5 COMPARISON WITH OTHER WORKS 

We also give the comparison of the present results with other predictions, obtained 

only for 
1c cB hπ− −→ 1/ cπ χ− , using the nonrelativistic constituent quark model [6], sum 

rules of QCD [8], relativistic constituent quark model [12] and the instantaneous 

nonrelativistic approach to the Bethe-Salpeter equation [17]. Prediction for the branching 

ratio of 
1c cB hπ− −→  is 1.60×10

-2
 [8] and   0.11×10

-2
 [12] match well with our result 

0.06×10
-2

 which, however, smaller than the values 1.60×10
-2

 and   0.11×10
-2

 given by [8] 

and [12], respectively. The branching ratio for 
1c cB π χ− −→  predicted by [6], [8], [12] and 

[17] are 0.00014×10
-2

,
 
0.0089×10

-2
, 0.0068×10

-2
 and 0.0070×10

-2
, respectively, which are 

smaller in comparison with our prediction 0.07×10
-2

. The disagreement in the predictions 

may be attributed due to the different values of the form factors used in these approaches.  

 

6.4 
c

B  DECAYS INTO PSEUDOSCALAR AND TENSOR MESONS 

  In analogy to the framework given for B PT→  meson decays in chapter 4, here 

also, we extend the same formalism to investigate the 
cB  meson decaying to pseudoscalar 

and tensor mesons [20].  Using the effective weak Hamiltonian for bottom changing modes 

as given in (2.61) and (2.62) in chapter 2 and for bottom conserving and charm changing 

modes given in (6.1), (6.2) and (6.3), we obtain the decay amplitudes for CKM-favored and 

CKM-suppressed modes listed in Tables 6.9 and 6.10. It may be noted that cB P→  form 

factors do not appear in these decay amplitudes.  

In earlier chapters, we have studied decays of bottom mesons involving b-quark as a 

decaying particle. However, cB  meson, being heavy, can also emit bottom mesons in the 

final state; therefore, we need spectroscopy of these mesons.  
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6.4.1 SPECTROSCOPY OF BOTTOM TENSOR MESONS 

In addition to the tensor meson spectroscopy upto the charm level, which are 

already given in chapter 4, we also need the bottom tensor meson spectroscopy for the cB  

decays, i.e, 2 (5.747),B and 0 (5.840)sB  [1]. 

        

 

Table 6.9 Decay amplitudes of →→→→c
B PT  decays for bottom conserving and charm 

changing modes 

 

Decays Amplitudes 

∆b =0, ∆C = -1, ∆S = -1 

0

2sc BB
++ → π  2 2 *

1 ( )c sB B

cs uda f F m V V
→

π π  

++ → 2

0
BKBc  2 2 *

2 ( )cB B

K K cs uda f F m V V
→

 

∆b =0, ∆C = -1, ∆S = 1 

0

2BKBc

++ →  2 2 *

1 ( )cB B

K K cd usa f F m V V
→

 

++ → 2

0
BKBc  2 2 *

2 ( )cB B

K K cd usa f F m V V
→

 

∆b =0, ∆C = -1, ∆S = 0 

0

2sc BKB
++ →  2 2 *

1 ( )c sB B

K K cs usa f F m V V
→

 

0

2BBc

++ → π  2 2 *

1 ( )cB B

cd uda f F m V V
→

π π  

++ → 2

0
BBc π  

2 2 *

2

1
( )

2

cB B

cd uda f F m V V
→

π π  

++ → 2BBc η  
2 2 *

2

1
cos ( )

2

cB B

P cs usa f F m V V
→

η η− φ  
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Table 6.10 Decay amplitudes of →→→→c
B PT  decays for bottom changing modes 

 

Decays Amplitudes 

0,1,1 =∆=∆=∆ SCb  

2ccB χπ −− →  2 2 *

1 ( )c cB

cb uda f F m V V
→χ

π π  

−− → 2

0
DDBc

 2 2 *

2 ( )cB D

D D cb uda f F m V V
→  

1,0,1 −=∆=∆=∆ SCb  

−− → 2

0

sc DB π  
2 2 *

2

1
( )

2

c sB D

ub usa f F m V V
→

π π  

−− → 2sc DB η  
2 2 *

2

1
sin ( )

2

c sB D

P ub usa f F m V V
→

η ηφ  

0

2DKBc

−− →  2 2 *

1 ( )cB D

K K ub usa f F m V V
→  

−− ′→ 2sc DB η  
2 2 *

2

1
cos ( )

2

c sB D

P ub usa f F m V V
→

′ ′η ηφ  

2csc DB χ−− →  2 2 *

1 ( )c c

s s

B

D D cb csa f F m V V
→χ

 

−− → 2scc DB η  2 2 *

2 ( )c s

c c

B D

cb csa f F m V V
→

η η  

0, 1, 1b C S∆ = ∆ = ∆ = −  

2cc KB χ−− →  2 2 *

1 ( )c cB

K K cb usa f F m V V
→χ  

−− → 2

0

sc DDB  2 2 *

2 ( )c sB D

D D cb usa f F m V V
→

 

0, 0, 0b C S∆ = ∆ = ∆ =  
−− → 2

0
DBc π  

2 2 *

2

1
( )

2

cB D

ub uda f F m V V
→

π π  

0

2DBc

−− → π  
2 2 *

1 ( )cB D

ub uda f F m V V
→

π π  

−− → 2DBc η  
2 2 *

2

1
sin ( )

2

cB D

P ub uda f F m V V
→

η ηφ  

−− ′→ 2DBc η  
2 2 *

2

1
cos ( )

2

cB D

P ub uda f F m V V
→

′ ′η ηφ  

2cc DB χ−− →  2 2 *

1 ( )c cB

D D cb cda f F m V V
→χ

 

−− → 2DB cc η  2 2 *

2 ( )c

c c

B D

cb cda f F m V V
→

η η  

0, 1, 0b C S∆ = ∆ = − ∆ =  
0

2DDBc

−− →  
2 2 *

1 ( )cB D

D D ub cda f F m V V
→

 

−− → 2

0

DDBc  
2 2 *

2 ( )cB D

D D ub cda f F m V V
→

 

0, 1, 1b C S∆ = ∆ = − ∆ = −  

−− → 2

0

sc DDB  
2 2 *

2 ( )c sB D

D D ub csa f F m V V
→

 

0

2DDB sc

−− →  
2 2 *

1 ( )c

s s

B D

D D ub csa f F m V V
→
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6.4.2 FORM FACTORS INVOLVING →→→→
c

B T TRANSITION 

Here also, we use the ISGW II model [22] to calculate the required form factors h, 

k , b+  and b−  using the following expressions: 

2

( )

52

1
,

22 2

c

cc c

d B hd

q T B TB B

mm
h F

m mm

β

µ ββ −

 
= − 

 
 ɶɶ

 

           
( )

5(1 )
2

c

kd

B

m
k Fω

β
= + ɶ ,                                               (6.19) 

   

2 2 2
( )

52 2

2 2 2
( )

52 2 2

1 ,
24 2

1 1 ,
2 4 22

c c cc c

c c c c cc

b bd dT T

B T B B Tq b B B

b bd d b d dT T T

B B T q B T B B Tb T B

m m
b b F

mm m m

m m m m m
b b F

m m mm m

β β

β ββ

β β β

µ β β ββ

+ −

+ −

+

+ −

−

+ −

+

 
+ = − 

 
 

  
 − = − − + − 

  
  

ɶɶ

ɶ ɶɶ

 

where 

3 1
( ) 2 2

5 5

1 1
( ) 2 2

5 5

5 1
( ) 2 2

5 5

3 1
( ) 2 2

5 5

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

c

c

c

c

c

c

c

c

Bh T

B T

Bk T

B T

Bb b T

B T

Bb b T

B T

m m
F F

m m

m m
F F

m m

m m
F F

m m

m m
F F

m m

+ −

+ −

− −

−

−
+

− −−

=

=

=

=

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

                              (6.20) 

 

The obtained the form factors describing cB T→  transitions are given in Table 6.11 at q
2
 = 

tm.   
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Table 6.11 Form factors of →→→→c
B T  transition at q

2
 = tm  in the ISGW II quark model 

 

Modes Transition h k b+ b- 

∆b = 0, ∆C = -1,∆S = -1 
2c sB B→  0.119 3.632 -0.049 0.165 

2cB B→  0.100 2.722 -0.034 0.148 

∆b =1, ∆C = 0,∆S = -1 
2cB D→  0.017 0.556 -0.008 0.011 

2c sB D→  0.019 0.739 -0.011 0.014 

∆b =1, ∆C = 1,∆S = 0 
2c cB → χ  0.023 1.411 -0.017 0.019 

 

 

6.4.3 NUMERICAL RESULTS AND DISCUSSIONS 

For numerical calculations, we have taken the values of pseudoscalar mesons decay 

constants (given in GeV units) from Chapter 2. Finally, the branching ratios of 
cB PT→  

meson decays in charm changing and in bottom changing decay modes are calculated. The 

measurement of these decays would provide an additional test of the quark models used to 

compute the hadronic matrix elements. The results are given in Tables 6.12 and 6.13 for the 

various possible CKM-favored and CKM-suppressed decay modes.  
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Table 6.12 Branching ratios of →→→→c
B PT  decays for bottom conserving and charm 

changing modes 

 

Decays Branching ratios 

This work CMM [18] 

∆b =0, ∆C = -1, ∆S = -1 

0

2sc BB
++ → π  3.0×10

-4
 2.0×10

-4
 

++ → 2

0
BKBc  1.0×10

-5
 4.2×10

-6
 

∆b =0, ∆C = -1, ∆S = 1 

0

2BKBc

++ →  1.8×10
-7

 1.9×10
-7

 

++ → 2

0
BKBc  2.7×10

-8
 1.2×10

-8
 

∆b =0, ∆C = -1, ∆S = 0 

0

2sc BKB
++ →  3.7×10

-7
 5.0×10

-7
 

0

2BBc

++ → π  1.6×10
-5

 1.2×10
-5

 

++ → 2

0
BBc π  1.4×10

-6
 3.9×10

-7
 

++ → 2BBc η  2.0×10
-7

 6.5×10
-8
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Table 6.13 Branching ratios of →→→→c
B PT  decays for bottom changing modes 

 

Decays Branching ratios 

This work Chang [17] CMM [18] 

∆b =1, ∆C = 1, ∆S = 0 

2ccB χπ −− →  2.0×10
-4

 2.5×10
-4

 7.5×10
-5

 

−− → 2

0
DDBc

 4.0×10
-6

 - 6.3×10
-8

 

∆b =1, ∆C = 0, ∆S = -1  

−− → 2

0

sc DB π  6.8×10
-10

 - 1.9×10
-11

 

−− → 2sc DB η  3.6×10
-10

 - 2.5×10
-12

 

0

2DKBc

−− →  1.6×10
-8

 - 1.4×10
-10

 

−− ′→ 2sc DB η  3.1×10
-10

 - 1.7×10
-11

 

2csc DB χ−− →  3.2×10
-4

 4.5×10
-4

 1.54×10
-4

 

−− → 2scc DB η  1.4×10
-5

 - 1.4×10
-6

 

∆b =1, ∆C = 1, ∆S = -1 

2cc KB χ−− →  1.5×10
-5

 - 5.5×10
-6

 

−− → 2

0

sc DDB  4.4×10
-7

 - 1.9×10
-8

 

∆b =1, ∆C = 0, ∆S = 0 

−− → 2

0
DBc π  5.7×10

-9
 - 5.8×10

-11
 

0

2DBc

−− → π  2.1×10
-7

 - 1.8×10
-9

 

−− → 2DBc η  3.0×10
-9

 - 7.5×10
-12

 

−− ′→ 2DBc η  2.6×10
-9

 - 5.4×10
-11

 

2cc DB χ−− →  1.2×10
-5

 - 7.6×10
-6

 

−− → 2DB cc η  4.5×10
-7

 - 1.9×10
-8

 

∆b =1, ∆C = -1, ∆S = 0 

0

2DDBc

−− →  3.0×10
-8

 - 8.6×10
-10

 

−− → 2

0

DDBc
 1.6×10

-9
 - 5.6×10

-11
 

∆b =1, ∆C = -1, ∆S = -1 

−− → 2

0

sc DDB  6.7×10
-8

 - 5.7×10
-9

 

0

2DDB sc

−− →  9.9×10
-7

 - 2.2×10
-8
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The observations are listed as follows:  

i) Dominant decays for bottom changing decay modes are, B(
2csc DB χ−− → )  =  

3.2 × 10
-4

   and B( 2ccB χπ −− → ) = 2.0×10
-4

, which seems to be at the reach of 

future experiments. The next order dominant decays are B(
2c cB K χ− −→ ) = 

1.5×10
-5

 , B( −− → 2scc DB η ) = 1.4×10
-5

 and B( 2c cB D χ− −→ ) = 1.2×10
-5

. 

ii) Branching ratio of decay, B( 2ccB χπ −− → ) = 2.0×10
-4

 ,  are comparable with the 

numerical value of the recent work [17]. 

iii) Branching ratio of dominant decay for charm changing decay mode is, 

B( 0

2sc BB
++ → π ) = 3.0×10

-4
, which proceeds via b-quark as an spectator, has a 

similar order of branching ratio than c quark spectator decays, i.e. 

2 2/c s c cB D χ π χ− − −→ , although it is suppressed by phase space but favored by 

the CKM factor.  

iv) Among 0,1,1 =∆=∆=∆ SCb  mode,  0 0 0

2 2 2/ /cB K K a aπ π− − − −→ 2/ fπ −  

0 0

2 2 2 2 2 2/ / / / / / cf a K K a D D aπ η η η− − − − − −′ ′  are forbidden in our analysis. However, 

these decays occur through the annihilation mechanism. Decay 0

2cB D D
− −→  

may also be generated through elastic final state interactions (FSIs). 

v)  In case of 1, 0, 1b C S∆ = ∆ = ∆ = −  decay mode, 0

2cB K D
− −→ 0

2/ D K
−  

0 0

2 2/ / sD K D a
− −

2 2/ /s sD f D f
− − ′  are forbidden. However, these decays occur 

through the annihilation mechanism. Decay 0

2cB K D
− −→  may also be generated 

through elastic final state interactions (FSIs). 
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6.4.4 COMPARISON WITH OTHER WORKS 

 For the sake of comparison, the results of other works [17, 18] are given in the 

Table V. C.H. Chang et al. [17] has calculated only the c spectator decay modes using 

generalized instantaneous approximation. In general, the present branching ratios of few 

decays are of the same order of magnitude as observed in [17, 18] and in other cases 

branching ratios are larger as compared to [18]. Ivanov et al. [12] studied exclusive 

nonleptonic and semileptonic decays of the cB  meson within a relativistic constituent quark 

model developed by them. In their recent work [12], they have calculated the nonleptonic 

decays with one of the final state being pure cc . They predict B( 2ccB χπ −− → ) as 4.6×10
-4

, 

which are large as compare to present results. Similarly, in another recent work [6] the 

same decays have been quoted with the branching ratio (B(
2ccB χπ −− → ) =  2.2×10

-4
) that 

is of the same order of magnitude as the compared to present work. It has also been 

observed that the largest numerical values of branching ratios cB PT→  are of the same 

order as those of some  / /cB PP PV VV→  decay modes [6-18]. In B meson decays, the 

experimental data favors constructive interference, in contrast to the charm meson sector, 

between the color favored and color suppressed diagrams, thereby yielding 08.010.11 ±=a  

and 02.020.02 ±=a . Our results remain unaffected from interference of 1a (color favored) 

and 2a (color suppressed). 
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6.5 
c

B  DECAYS INTO PSEUDOSCALAR AND SCALAR MESONS 

In this section, we extend our analysis to study the two-body hadronic weak decays 

of Bc meson to pseudoscalar (P) meson and scalar (S) meson. Here also, we use the same 

methodology given in chapter 5 for B PS→ . In the factorization hypothesis, we calculate 

the decay amplitude for cB PS→  decays for bottom changing and bottom conserving-

charm changing modes which are given in Tables 6.14 and 6.15. 

 

6.5.1 SPECTROSCOPY OF BOTTOM SCALAR MESONS 

cB  meson, being heavy, can also emit bottom mesons in the final state. In addition 

to the scalar meson spectroscopy upto the charm level, which are already given in chapter 

5, we also need the bottom scalar meson spectroscopy for the cB  decays, i.e, 

0 (5.670),B and 0 (5.767)sB  [1]. 

 

Table 6.14 Decay amplitudes of →→→→c
B PS  decays for bottom conserving and charm 

changing modes 

 

Decays Amplitudes 

a) CKM-favored mode 

∆b =0, ∆C = -1, ∆S = -1 
0

0c sB Bπ+ +→  0

0

2 2 *

1 ( )c s

c s

B B

B B cs uda f F m m V V
→

π −  

0

0cB K B
+ +→  0

0 0

2 2 *

2 ( )c

c

B B

K B B cs uda f F m m V V
→ −  

0

0cB B K
+ +→  

0

2 2 *

2 ( )c

c

B B

K B B cs uda f F m m V V
→ −  

0

0c sB B a
+ +→  

0

2 2 *

1 ( )c s

c s

B B

a B B cs uda f F m m V V
→ −  

b) CKM-suppressed mode 

∆b =0, ∆C = -1, ∆S = 0 
0

0c sB K B
+ +→  0

0

2 2 *

1 ( )c s

c s

B B

K B B cd uda f F m m V V
→ −  

0

0cB Bπ+ +→  0

0

2 2 *

1 ( )c

c

B B

B B cd uda f F m m V V
→

π− −  

0

0cB Bπ+ +→  0

0

2 2 *

2 ( )c

c

B B

B B cd uda f F m m V V
→

π −  
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Table 6.15 Decay amplitudes of →→→→c
B PS  decays for bottom changing modes 

 

Decays   Amplitudes 

0,1,1 =∆=∆=∆ SCb  

0

0cB D D
− −→  

0

2 2 *

2 ( )c

c

B D

D B D cb uda f F m m V V
→ −  

0c cB aη− −→  
0

2 2 *

1 ( )c c

c c

B

a B cb uda f F m m V V
→η

η−  

0c cB π χ− −→  0

0

2 2 *

1
( )c c

c c

B

B cb ud
a f F m m V V

→χ

π χ−  

0

0cB D D
− −→  0

0

2 2 *

2 ( )c

c

B D

D B D cb uda f F m m V V
→ −  

1,0,1 −=∆=∆=∆ SCb  

0

0cB K D
− −→  0

0

2 2 *

1 ( )c

c

B D

K B D ub usa f F m m V V
→ −  

0

0cB D K
− −→  2 2 *

1 ( )c

c

B D

K B D ub usa f F m m V V
→ −  

0

0c sB Dπ− −→  
0

0

2 2 *

2

1
( )

2

c s

c s

B D

B D ub usa f F m m V V
→

π −  

0c sB Dη− −→  
0

0

2 2 *

2

1
sin ( )

2

c s

c s

B D

P B D ub usa f F m m V V
→

η φ −  

0

0cB K D
− −→  0

0

2 2 *

1 ( )c

c

B D

K B D ub usa f F m m V V
→ −  

0c sB Dη− −′→  
0

0

2 2 *

2

1
cos ( )

2

c s

c s

B D

P B D ub usa f F m m V V
→

′η φ −  

0c s cB D χ− −→  0

0

2 2 *

1 ( )c c

s c c

B

D B cb csa f F m m V V
→χ

χ−  

0c c sB Dη− −→  0

0 0

2 2 2 2 *

2 1( ( ) ( ))c s c c

c c s s c c

B D B

B D D B cb csa f F m m a f F m m V V
→ →η

η η− + −  

 

 

 

 

0cB Bη+ +→  
0

0

2 2 *

2

1
( )

2

c

c

B B

B B cd uda f F m m V V
→

η −  

0

0cB B a
+ +→  

0

2 2 *

1 ( )c

c

B B

a B B cd uda f F m m V V
→− −  

0

0c sB B K
+ +→  

0

2 2 *

1 ( )c s

c s

B B

K B B cs usa f F m m V V
→ −  

∆b =0, ∆C = -1, ∆S = 1 
0

0cB K B
+ +→  0

0

2 2 *

1 ( )c

c

B B

K B B cd usa f F m m V V
→− −  

0

0cB K B
+ +→  0

0

2 2 *

2 ( )c

c

B B

K B B cd usa f F m m V V
→− −  

0

0cB B K
+ +→  

0

2 2 *

2 ( )c

c

B B

K B B cd usa f F m m V V
→− −  

0

0cB B K
+ +→  

0

2 2 *

1 ( )c

c

B B

K B B cd usa f F m m V V
→− −  
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1,1,1 −=∆=∆=∆ SCb  

0

0c sB D D
− −→  

0

2 2 *

2 ( )c s

c s

B D

D B D cb usa f F m m V V
→ −  

0c cB Kη− −→  
0

2 2 *

1 ( )c c

c c

B

K B cb uda f F m m V V
→η

η−  

0c cB K χ− −→  0

0

2 2 *

1 ( )c c

c c

B

K B cb usa f F m m V V
→χ

χ−  

0

0c sB D D
− −→  0

0

2 2 *

2 ( )c s

c s

B D

D B D cb usa f F m m V V
→ −  

0,0,1 =∆=∆=∆ SCb  

0

0cB D a
− −→  

0

2 2 *

1 ( )c

c

B D

a B D ub uda f F m m V V
→ −  

0

0cB Dπ− −→  
0

0

2 2 *

2

1
( )

2

c

c

B D

B D ub uda f F m m V V
→

π −  

0

0cB Dπ− −→  
0

0

2 2 *

1 ( )c

c

B D

B D ub uda f F m m V V
→

π −  

0cB Dη− −→  
0

0

2 2 *

2

1
sin ( )

2

c

c

B D

P B D ub uda f F m m V V
→

η φ −  

0cB Dη− −′→  
0

0

2 2 *

2

1
cos ( )

2

c

c

B D

P B D ub uda f F m m V V
→

′η φ −  

0c cB D χ− −→  0

0

2 2 *

1 ( )c c

c c

B

D B cb cda f F m m V V
→χ

χ− −  

0c cB Dη− −→  2 2 2 2 *

2 1( ( ) ( ))c s c c

c c s s c c

B D B

B D D B cb cda f F m m a f F m m V V
→ →η

η η− − + −  

∆b =1, ∆C = -1, ∆S = 0 

0

0cB D D
− −→  0

0 0

2 2 2 2 *

2 1( ( ) ( ))c c

c c

B D B D

D B D D B D ub cda f F m m a f F m m V V
→ →− − + −  

0

0cB D D
− −→  

0

0 0

2 2 2 2 *

2 1( ( ) ( ))c c

c c

B D B D

D B D D B D ub cda f F m m a f F m m V V
→ →− − + −  

∆b =1, ∆C = -1, ∆S = -1 

0

0c sB D D
− −→  

0

0 0

2 2 2 2 *

1 2( ( ) ( ))c c s

s c c s

B D B D

D B D D B D ub csa f F m m a f F m m V V
→ →− + −  

0

0c sB D D
− −→  0

0 0

2 2 2 2 *

1 2( ( ) ( ))c c s

s c c s

B D B D

D B D D B D ub csa f F m m a f F m m V V
→ →− + −  
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6.5.2 CALCULATION OF THE →→→→
c

B S  TRANSITION FORM FACTORS IN    

ISGW II MODEL 

The effective weak Hamiltonian generating the bottom meson decays involving 

b c→  and b u→  transitions is given in earlier chapter 3 in section 3.3 for CKM-favored 

and CKM-suppressed modes, respectively. Scalar meson spectroscopy has already been 

discussed in the section 5.2, chapter 5.  

The required form factors for cB S→ , u+  and u− , are calculated from the 

following expressions taken from ISGW II model [22]: 

( )

5

( )

5

2
,

3

2
,

3

c

c

c

u ud

B

d B u u

S B

m
u u F

m m
u u F

m

β

β

+ −

+ −

+

+ −

−

+ −

+ = −

− =
ɶ

ɶ

                                      (6.21) 

where 

1 1
( ) 2 2

5 5

1 1
( ) 2 2

5 5

( ) ( ) ,

( ) ( ) ,

c

c

c

c

Bu u S

B S

Bu u S

B S

m m
F F

m m

m m
F F

m m

+ −

+ −

−
+

−−

=

=

ɶ ɶ

ɶ ɶ

                                   (6.22) 

We obtain the form factors describing cB S→  transitions which are given in Table 6.16 at 

q
2
 = tm.   

Table 6.16 Form factors for →→→→c
B S  transition at q

2
 = tm  in the ISGW II quark model 

 

 

Modes Transition u+ u- 

∆b = 0, ∆C = -1,∆S = -1 
0c sB B→  -0.227 4.012 

0cB B→  -0.066 1.018 

∆b =1, ∆C = 0,∆S = -1 
0cB D→  0.124 -0.271 

0c sB D→  0.177 -0.389 

∆b =1, ∆C = 1,∆S = 0 
0c cB → χ  0.437 -1.462 
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For c
B P→  transition, the obtained form factors are given in Table 6.17.  

Tables 6.17 Form factors for →
c

B P  transition at q
2
 = tm  in the ISGW II quark 

model 

 

 

6.5.3 NUMERICAL RESULTS AND DISCUSSIONS 

Using the same formalism given in chapter 5, we obtain the branching ratios for the 

bottom charm meson emitting pseudoscalar and scalar mesons as given in Tables 6.18 and 

6.19. Here also, we use the pseudoscalar (0 )−  decay constants given in (3.26) and decay 

constants of the scalar meson [26-30] decay constants given in chapter 5 for numerical 

calculations.  

Table 6.18 Branching ratios for →→→→c
B PS  decays for bottom conserving and charm 

changing modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modes Transition f+ f- 

∆b = 0, ∆C = -1, ∆S = -1 
sc BB →  0.926 -0.374 

BBc →  1.103 -0.652 

∆b =1, ∆C = 0, ∆S = -1 DBc →  2.139 -2.003 

sc DB →−  1.543 -1.356 

∆b =1, ∆C = 1, ∆S = 0 )( ccB cc η→  1.193 -0.716 

Decays Branching ratios 

∆b =0, ∆C = -1, ∆S = -1 
0

0c sB Bπ+ +→  3.9×10
-4

 

0

0cB K B
+ +→  2.9×10

-5
 

∆b =0, ∆C = -1, ∆S = 0 
0

0c sB K B
+ +→  5.1×10

-6
 

0

0cB Bπ+ +→  1.9×10
-5

 

0

0cB Bπ+ +→  1.6×10
-6

 

0cB Bη+ +→  1.0×10
-6

 

∆b =0, ∆C = -1, ∆S = 1 
0

0cB K B
+ +→  5.0×10

-7
 

0

0cB K B
+ +→  7.9×10

-8
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Table 6.19 Branching ratios of →→→→c
B PS  decays for Bottom changing modes 

Decays Branching ratios 

0,1,1 =∆=∆=∆ SCb  

0

0cB D D
− −→  2.6×10

-5
 

0c cB aη− −→  1.1×10
-7

 

0c cB π χ− −→  9.7×10
-5

 

0

0cB D D
− −→  1.1×10

-6
 

1,0,1 −=∆=∆=∆ SCb  

0

0cB D K
− −→  7.6×10

-9
 

0

0c sB Dπ− −→  1.9×10
-10

 

0c sB Dη− −→  1.2×10
-10

 

0

0cB K D
− −→  4.2×10

-9
 

0c sB Dη− −′→  7.2×10
-11

 

0c s cB D χ− −→  1.9×10
-4

 

0c c sB Dη− −→  4.4×10
-4       

(6.7×10
-4

) 

1,1,1 −=∆=∆=∆ SCb  

0

0c sB D D
− −→  8.6×10

-7
 

0c cB Kη− −→  2.1×10
-6

 

0c cB K χ− −→  7.3×10
-6

 

0

0c sB D D
− −→  1.4×10

-7
 

0,0,1 =∆=∆=∆ SCb  

0

0cB D a
− −→  4.1×10

-10
 

0

0cB Dπ− −→  1.5×10
-9

 

0

0cB Dπ− −→  5.3×10
-8

 

0cB Dη− −→  9.1×10
-10

 

0cB Dη− −′→  5.5×10
-8

 

0c cB D χ− −→  6.6×10
-6

 

0c cB Dη− −→  3.7×10
-5      

(4.7×10
-5 

) 

∆b =1, ∆C = -1, ∆S = 0 
0

0cB D D
− −→  1.1×10

-10    
(3.8×10

-8
) 

0

0cB D D
− −→  1.6×10

-7       
(2.0×10

-7
) 

∆b =1, ∆C = -1, ∆S = -1 
0

0c sB D D
− −→  2.0×10

-6      
(2.8×10

-6
) 

0

0c sB D D
− −→  5.7×10

-8      
(7.9×10

-7
) 

          Values given in parentheses are for constructive interference. 
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We observe the following:  

i) Dominant decay for charm changing and bottom conserving is  

B( 0

0c sB Bπ+ +→ ) = 3.9×10
-4

. B( 0

0cB K B
+ +→ ) = 2.9×10

-5
 and B( 0

0cB Bπ+ +→ ) 

= 1.9×10
-5

 are next order dominant decays. 

ii) For bottom changing transitions the dominating decays are B(
0c c sB Dη− −→ ) 

= 6.7×10
-4

 and B( 0c s cB D χ− −→ ) = 1.9×10
-4

. The next order branching ratios 

are B(
0c cB π χ− −→ ) = 9.7×10

-5
, B(

0c cB Dη− −→ ) = 4.7×10
-5

 and 

B( 0

0cB D D
− −→ ) = 2.6×10

-5
. The rest of the decay modes remain highly 

suppressed partly due to the small values of the CKM matrix elements, the 

small values of the form factors and vanishingly small decay constants of the 

scalar mesons. 

iii) Among 1,b∆ = 1,C∆ = 0S∆ = , 1,b∆ = 0,C∆ = 1S∆ = − , 1,b∆ = 1,C∆ =  

1S∆ = −  and  1,b∆ = 0,C∆ = 0S∆ =  modes, several other decays are 

permitted through the annihilation mechanism, but are forbidden in our 

analysis. Few decays may also be generated through elastic final state 

interactions (FSI). 

iv) In sharp contrast to the charm meson decays, the experimental data show 

constructive interference for B meson decays involving both the color 

favored and color suppressed diagrams [25]. It may be noted that except few 

decays, all the other decays of 
c

B  meson involve either the color favored or 

the color suppressed diagram. Therefore, their branching ratios remain 

unaffected due to the sign of 
2

a . However, the numerical branching ratios 

correspond to these decays get enhanced as, B( 0c c sB Dη− −→ ) = 6.7×10
-4

, 
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B( 0c cB Dη− −→ ) = 4.7×10
-5

, B(
0

0c sB D D
− −→ ) = 2.8×10

-6
,  B( 0

0c sB D D
− −→ ) = 

7.9×10
-7

, B(
0

0cB D D
− −→ ) = 2.0×10

-7
 and B( 0

0cB D D
− −→ ) = 3.8×10

-8
. 

Because of the constructive interference the branching ratio increases by a 

factor of 2 to 20, as shown in Table 6.19. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

In this thesis, we have investigated the two-body weak hadronic decays of heavy 

flavor mesons. It has been found experimentally that two-body decays dominate the decay 

spectrum. Theoretical focus has also, so far, been on the s-wave meson (i.e. Pseudoscalar 

and Vector mesons) emitting decays. However, charm and bottom mesons, being heavy, 

can also emit p-wave mesons, i.e. axial-vector (A), tensor (T) and scalar (S) mesons.  

Naively, the p-wave mesons emitting decays of the hadrons are expected to be suppressed 

kinematically due to the large mass of these meson resonances. However, there now exist 

reasonable amount of experimental data on branching ratios of p-wave emitting decays of 

charm and bottom mesons which requires theoretical understanding. In our research work, 

we have studied such weak decays of bottom mesons ( −B , 0B  and 0

sB ), which are the 

bound state of b quark a light anti quark and of a uniquely observed bottom-charm ( cB ) 

meson made up of both the heavy quarks.  

In chapter 2, we lay down the physical and mathematical preliminaries which have 

been applied for the study of weak decays of mesons emitting the s-wave mesons. To start 

with we present the hadron spectroscopy upto the bottom level and classification of the 

weak decays into leptonic, semileptonic and nonleptonic decays. In general, these weak 

decays proceed through exchange of virtual W-boson between the charged weak (V-A) 
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currents. We have discussed the semileptonic decays of the bottom mesons, which proceed 

via the so-called spectator quark diagrams. Their decay amplitudes can easily be expressed 

in terms of decay constants of meson or the form factors appearing in the matrix elements 

of weak hadronic current between the initial and the final states. This forms the basis for 

the ‘factorization approach’ later applied to the weak nonleptonic decays. These form 

factors are usually calculated from the phenomenological approaches. We have used 

B P→  form factors based on the BSW quark model framework which match well with the 

experimental information. In the following chapters, we have extended the factorization 

approach to study p-wave meson emitting decays, i.e. / /B PA PT PS→  decays. 

  In chapter 3, we have studied hadronic weak decays of bottom mesons emitting 

pseudoscalar and an axial-vector mesons. After describing the axial-vector meson 

spectroscopy of the two kinds, i.e. A ( 1
PC

J
++= ) 

 
and A′ )1( −+=PCJ , we have obtained the 

decay amplitudes in terms of appropriate meson decay constants and meson to meson 

transition form factors for the color-favored and color-suppressed diagrams. We have 

obtained the /B A A′→  transition form factors using the ISGW II model which provides a 

more realistic description. Consequently, we have predicted the branching ratios of  

B PA→  decays involving cb →  and ub →  transitions in the CKM-favored and CKM-

suppressed modes. Experimentally, branching ratios of eleven decays have been measured 

and upper limits are also available for five other decays. Branching ratios predicted in our 

model reasonably match well with the available experimental data. We found that the 

decays involving cb →  transition can have branching ratios of the order of  10
-3

 to 10
-8

, 

whereas the decays occurring through ub →  transition acquire branching ratios of the 

order of 10
-5

 to 10
-11

. We have shown that the predicted branching ratios are comparable to 

that of the s-wave meson emitting weak decays. Specifically, the dominant decay modes 
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0

1B D D
− −→  and 0

1B D a
+ −→  have branching ratios 1.6×10

-2
 and 1.1×10

-2
 respectively. We 

have also compared our predictions with other theoretical results. 

In chapter 4, we have studied hadronic weak decays of bottom mesons emitting 

pseudoscalar and tensor mesons. Because of the tracelessness of the polarization tensor of 

spin 2 meson and the auxiliary condition the tensor meson does not materialize from the 

weak currents. Therefore, either color-favored or color-suppressed diagrams contribute to 

these decays. We employ ISGW II model to determine the B T→  transition form factors 

appearing in the decay matrix element of weak currents involving cb →  and ub →  

transitions. Consequently, we have obtained the decay amplitudes and predicted the 

branching ratios of  PTB →  decays in CKM-favored and CKM-suppressed modes. 

Experimentally, there exist branching ratios of only six decay modes, while the upper limits 

are available for five other decays. We found that the decays involving cb →  transition 

have branching ratios of the order of  10
-4

 to 10
-8

 and decays involving ub →  transition 

have branching ratios of the order of 10
-5

 to 10
-11

. Dominant decay modes are 0

2DDB s

−− → ,  

0

2DB
−− → π , −− → 2

0
aDB , +−→ 2

0
DDB s , +−→ 2

0
DB π , −−→ 2

0

sss DDB , +−→ 2

0

ss DB π  and  

0

2

00
KDBs → . Here also, we have compared the predicted branching ratios with the 

experimental measurements and also with other theoretical calculations. We have noticed 

that the calculated branching ratios 0

2( )B B Dπ− −→ = 6.7×10
-4 

 ( 4(7.8 1.4) 10−± ×  Expt) and 

)( 2fBB
−− → π =7.1×10

-6 
((8.2±2.5)×10

-6 
Expt) are in good agreement with the 

experimental value, whereas  the remaining decays seems to acquire contribution from W-

annihilation diagram to bridge the gap between theoretical and experimental value and the 

experimental upper limits honored the predicted branching ratios..  

 In chapter 5, we have studied hadronic weak decays of bottom mesons emitting 

pseudoscalar and scalar mesons involving cb →  and ub →  transitions. To determine the 
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form factors appearing in the decay matrix element of weak currents of B S→  transition, 

we use the ISGW II model. Consequently, we obtain the decay amplitude and calculated 

the branching ratios in the CKM-favored and CKM-suppressed modes. Though, for these 

decays both kinds of the spectator diagrams can contribute, usually one of these is 

suppressed due to the small values of the scalar meson decay constants. Therefore, these 

decays are not seriously affected by the nature of interference of the color-favored and 

color-suppressed processes. On experimental side, branching ratios of only three decay 

modes are measured and upper limit is available for one other decay. The main conclusion 

is that the dominant decays are 0

0B Dπ− −→ , 0

0B D a
− −→ , 0

0sB D D
− −→ , 0

0

− −→B D D , 

0

0sB D D
− +→ , 0

0

− +→B D D , 0

0B Dπ − +→ , 0 0 0

0B D a→ , 0

0s sB D
− +→ π , 0 0 0

0sB D K→ ,  

0

0s s sB D D
− +→  and 0

0

− +→s sB D D . We hope these decays would be the best candidates from 

experimental point of view. Here also, we have compared our predicted branching ratios 

with other theoretical calculations.  

In chapter 6, we have studied hadronic weak decays of uniquely observed bottom-

charm (
cB ) meson, which is the only quark-antiquark, bound system composed of the 

heavy quarks ( , )b c  with different flavors. Investigation of the Bc meson decay rates is 

therefore of special interest compared to the symmetric heavy quarkonium ( , )bb cc  states. 

Heavy quarkonium states decay through quark-antiquark annihilation processes, while for 

cB  meson W-annihilation diagram is relatively suppressed in comparison to the W-emission 

from either b quark, or c quark. The decay processes of the Bc meson can thus be broadly 

divided into two classes: bottom changing and bottom conserving (but charm changing) 

decay modes. Already, there exists an extensive literature for the semileptonic and 

nonleptonic decays of Bc emitting s-wave mesons, pseudoscalar (P) and vector (V) mesons. 

However, relatively less work has been done on its kinematically allowed p-wave meson 
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emitting weak decays. Therefore, we have extended our work to predict c
B  decays emitting 

axial-vector (A), tensor (T) or scalar (S) mesons in the CKM-favored channels and CKM-

suppressed channels. Since, there is no experimental information available on these decay 

modes, we have compared our predictions with other theoretical results. One naively 

expects the bottom conserving modes to be kinematically suppressed in comparison to the 

bottom changing modes. However, we have shown that the branching ratios of the bottom 

conserving are relatively larger than that of the bottom changing mode due to the large 

difference in the corresponding values of the CKM matrix elements. Particularly, we have 

found that 0

1sc BB
++ → π , 0

2sc BB
++ → π   and 0

0c sB Bπ+ +→   are dominant. These observations 

would help the experimentalists to identify the p-wave meson emitting decays of the 

heaviest bottom meson. 

 The continued operation and upgrade of the high energy accelerators and the 

facilities at various labs all over the world ensure that the knowledge and database of High 

Energy Physics will continue to expand. We hope that the results obtained in the present 

thesis would act as guide to these experimental searches and help in deciphering the relative 

strengths of various competing weak decay mechanisms in the heavy flavor sector. 

 

 



APPENDIX A 

 

Table 1. Properties of Leptons 

 

Leptons Mass 

(MeV) 

Spin Lepton numbers 

Le Lµµµµ Lττττ 

electron(e
-
) 0.51 ½ 1 0 0 

neutrino(νe) 17×10
-6 ½ 1 0 0 

muon(µ) 105.66 ½ 0 1 0 

mu-neutrino(νµ) < 0.27 ½  0 1 0 

tau(τ) 1784.1 ½  0 0 1 

tau-neutrino(ντ) < 35 ½  0 0 1 

 

 

 

 

 

 

 

 

 



 

Table 2. Properties of Quarks 

 

 

Quark Mass 

(GeV) 

Baryon 

number 

Spin 

(ħ/2) 

Charge 

(Q) 

Isospin 

I, I3 

Strange 

(S) 

Charm 

(C) 

Bottom 

(B) 

Top 

(T) 

u 0.34 1/3  ½  2/3 1/2,1/2 0 0 0 0 

d 0.34 1/3 ½  -1/3 1/2,-1/2 0 0 0 0 

s 0.51 1/3 ½  -1/3 0,0 -1 0 0 0 

c 1.6 1/3 ½  2/3 0,0 0 1 0 0 

b 5.0 1/3 ½  -1/3 0,0 0 0 -1 0 

t 174 1/3 ½  2/3 0,0 0 0 0 1 


