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Abstract 

PHOTON PAIRING IN QUANTUM ELECTRODYNAMICS 

T. Inagaki 

Department of Physics, Faculty of Science and Technology, 

Keio University, Yokohama 223, Japan 

In this talk, we discuss photon pairing phenomenon in the strong coupling phase of mas­

sive Quantum Electrodynamics (QED) through the analysis of the Cooper equation. Using 

the well known low energy effective Lagrangian for photon, it is shown that when the cou­

pling constant exceeds some finite value, the normal vacuum of QED becomes unstable with 

respect to the formation of the photon pair. It is also found that the pairing instability is en­

hanced and the critical coupling has a tendency to become smaller in the presence of the weak 

constant electric field. This may give a theoretical basis for the anomalous GSI e+ e- events. 

1. Introduction 

A number of observations based on the computer simulations using the lattice gauge the­

ory and on the Schwinger-Dyson equation suggest that there exists the strong coupling phase 

in Quantum Electrodynamics (QED) when the coupling constant o: = ( e2 / 47r) becomes 

larger than some critical value. 1>2>3> Much effort has been paid to investigate the character­

istics of this new phase of QED, because it is hoped that it may give a theoretical basis for 

explaining the GSI peak4) and may resolve the Flavour-Changing Neutral Current (FCNC) 

problem in the technicolour theory.1> The purpose of this talk is to give some discussions on 

the photon pairing phenomenon in the strong coupling phase of massive QED with the help 

of the Cooper equation that is well known in the theory of the superconductivity. The talk 

is based on the paper listed ref.5). 

2. The low energy effective Lagrangian and the Hamiltonian for photon 

Let us begin with the Euler Heisenberg effective Lagrangian for photon Ceff 6) 

(1) 
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the completely anti-symmetric tensor with c0123 = +1 , Aµ the renormalized photon field, 

m the electron mass and a= (e2/47r) the renormalized fine structure constant. Here and 

in the following the indices µ, v, ... run from 0 to 3 and the indices i, j, ... run 

from 1 to 3 . 

The effective Lagrangian in the presence of the external field A~ can be obtained the 

deviding the photon field Aµ in (1) into two parts, 

(2) 

(We use the same notation Aµ as in (1), since there may be no confusions.) Here we define 

the A~ by [oS/oAµ]A=Ac = 0 , where S is the action given by S = J d4xCeff . Then 

we get Leff as the sum of three terms, i.e. Leff = Le+ C +Ca , where 

Ce=-~GµvGµv + a(GµvG,,v) 2 + b(G,,"Gµv) 2 , 

c = -~Fµv Fµv + a(Fµv Fµv) 2 + b(Fµv Fµv) 2 ' 

Ca= 2a( Gl'VGµv)(Fp<r F po-)+ 2b( Gµv{Jµv)(Fp<r Fpu) 

+4a( Gµv Fµv )2 + 4b( Gµv Fµv )2 

+2a( aµv Fµv)(FptrF ptr) + 2b( aµv F,,v)(FPtl' F ptr) ' (3) 

and Gµv = 13µ A~ - av A~ , (Jµv = ~cµvpuaptr . We can neglect Ce since it has no effect on 

our problem. 

From now on, we choose the Feynman gauge for convenience by adding Cap = -H 8µAµ )2 

to Leff but our arguments are gauge invariant, of cource. 

The canonical momentum IIµ defined by IIµ = ( ac~ff I 8Aµ) ( .c~ff = Leff+ LaF ) is 

given by II0 = -(8µAµ) , Ilk= II(i)k + II(2)k , where 

II(l)k = _pOk + 8a(Fµv Fµv)FOk + 8b(Fµv Fµv)FOk ' 

II(2)k =Ba( Gµv G µv) pOk + 8b( Gµv {J µv) pOk + l 6a( Gµv Fµv) GOk 

+l6b(Gµv Fµv){JOk + l6a(Gµv Fµv)F 0k + l6b(Gµv Fµv)fOk 

+8a(Fµv Fµv)GOk + 8b(Fµv Fµv){JOk . (4) 

Therefore, the Hamiltonian density 1ieff = IIµAµ - C~ff = 1i0 +1i1 +1ia is obtained 

up to O(o:2
) as follows; 
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k . . 2 . 'k)2 1£1=-a(2II.Ih - F'1 F;i) - b(2co;fkII'F1 , 

1to = -8a( Gµ"Gµv)(2IIkIIk - pii F;;) - 8b( GµvGµv)(2co;;kIT; pik)2 

-4a( Gii F;; - 2G0i Fo; )2 - 4b[co;;k( G°' pik - IIiGfk)J2 

k ·· ·· o· -4a( 2II Ilk - F'1 F;;) ( G'1 F;; - 2G 1 Fo;) 

-4b(2co;;kII; pik)[co;;k( G0; pik - IIiGfk)] 

3. The Cooper equation 

(5) 

Now if we introduce a<A>t(k) as the creation operator for photon with momentum k 

and helicity A , the Cooper state we use in the following is given as 

IC)= L j d
3

3
k j(k)a<A>t(k)a<A)t(-k)I0)[26<3>(o)t112 , (6) 

A=R,L (27r) 2ko 

where ko = !kl , 5(3)(0) = (27r}-3 J d3x = (27r}-3V ( V is the volume of this system.), 

ID) is the normal vacuum of QED and /(k) the weight function which is determined by 

the variational principle. 

Then, the expectation value of the Hamiltonian H( = J d3x1ietf) under the constant 

electric field only (Go; = E; = const, G;; = 0) , can be written as the sum of three terms; 

(Cl: H: IC)=(CI: Ho: IC)+ (Cl: H1: IC)+ (Cl: Ho: IC) , 

(Cl: Ho: IC)=2 j d3kko IJ(k)l 2 
, 

(Cl: H1: IC)=- : 3 j d3kd3k' kok'of*(k)f(k'){a[4 + (1 + cos8)2
] - b(l + cos8)2

} , 

(Cl: Ho: IC)= j d3k k0"1x(k)lf(k)l 2 
, (7) 

where ": . . . :" stands for the normal ordering and Ho = J d3x1to , H1 = J d3 x1£1 , 

Ho = f d3x1£0 and 8 is the angle between k and k' . If we denote the angle between k 

and the electric field vector E as cp, the function x(k) in (7) can be described as follows, 

x(k) = -16(a + b)k~IEl 2 sin2 cp • (8) 

In order to minimize the expectation value of the normal ordered Hamiltonian under the 

normalization condition (CIC)= J d3kl/(k)l2 = 1 , we take the variation of 

(Cl : H: IC) - &(CIC) with respect to f"(k) . Thus we get the Cooper equation; 

(2ko + x(k) -e)f(k)=~kojd3kd3k'k'of(k') 
ko 11"3 

x { a[4 + (1+cos8)2
] - b(l +cos 8)2

} , (9) 
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where £ is the energy of our Cooper state. 

In the following discussion, we analyze this Cooper equation in two cases separately; 

without or with the external electric field. 

(i) Photon pairing in the absence of the external field. 

In this case, we denote the solution of the Cooper equation as fo(k) and the energy of 

the Cooper state as £0 • Then we obtain the following integral equation. We assume here 

that the solution of this Cooper state depends only on k0 , because the system has the 

rotational symmetry. Therefore, the Cooper equation takes the form, 

(2ko - Eo)fo(ko) = 
21

2
(4a - b)ko f" dk~k'~fo(k'o) , 

371'" lo (10) 

where A is the ultraviolet cut off. Since b = (7 /4)a > 0 , photon-photon interaction in 

massive QED is attractive in the low energy region. 

The solution of (10) has obviously the form f 0 (k0 ) oc k0 (2k0 - £0)-1 and the energy 

eigenvalue of the Cooper state is determined by the following equation, 

g 1" k~dko 1=- ' m4 o 2ko - Eo 
(11) 

where g = (16/15)7r2o:2 . Equation (11) shows that there exists negative energy eigenvalue 

state (£ < 0) when 

[ A ]-1 
g > 90 = 2m4 1 dkok~ = 8(m/A)4 (12) 

This means that when o: > O:c = J15/27r(m/A)2 
, the normal vacuum of massive QED 

becomes unstable with respect to the formation of the photon pair (Cooper instability) and 

the new condensed vacuum is realized after the condensation of these pairs. 

The above results agree qualitatively with those obtained in ref.3) using the B-S equation. 

(ii) Photon pairing under the electric field. 

By assuming that E is small, we solve (9) perturbatively in E . We expand the energy 

£ of the Cooper state and the weight function f (k) with respect to E , 

E=l'o + l'1jEj 2 + ... , 

f(k) = fo(ko) + fi(ko)(k · E)2 + h(ko)IEl 2 + ... (13) 
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e0 and f 0 (k0 ) satisfy (10), of cource. The energy shift e1IEl2 caused by the external 

electric field is calculated easily and is given by, 

2 32 [ (A kgdk0 ] [ (A k~dko ]-l 0 ei!EI = -3(a + b) lo (2ko - e0 ) 2 lo (2ko - eo)2 < . (14) 

Equation (14) means that if we consider up to O(IEl2), the energy eigenvalue of the Cooper 

state becomes smaller, therefore the critical coupling a~ for E # 0 has the tendency to 

become smaller than ac for E = 0 . (Fig.1) 

£/A 

E= 0 

Fig.1 The relation between the energy e /A and the fine structure constant a in the 

absence of the electric field (E = 0) and under the presence of the electric field 

(E = 0). 

4. Comments 

In this talk, we have seen the Cooper instability of photon can occur in the massive 

QED. Therefore, the next task, which is of great interest, is to consider the characteristics 

of the stable condensed vacuum just as in the theory of the superconductivity. Since many 

observable phenomena in this strong coupling phase would be dependent upon the con­

denced nature of the vacuum, the formulation has to be established just like the Bogoliubov 

transformation in the superconductor theory, to discuss the characteristics of this phase. 

Especially in connection with the chiral symmetry breaking, it is also very interesting 

whether the photon pairing phenomenon occurs in massless QED because this theory is 
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very unstable in the infrared region. If this phenomenon occurred, what would the critical 

coupling be? 

Although our results bring us a hope for explaining the anomalous GSI event, the photon 

pairing under the strong electromagnetic field should be studied of cource before applying 

our conclusions to the real experiment. 
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