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Abstract

In this talk, we discuss photon pairing phenomenon in the strong coupling phase of mas-
sive Quantum Electrodynamics (QED) through the analysis of the Cooper equation. Using
the well known low energy effective Lagrangian for photon, it is shown that when the cou-
pling constant exceeds some finite value, the normal vacuum of QED becomes unstable with
respect to the formation of the photon pair. It is also found that the pairing instability is en-
hanced and the critical coupling has a tendency to become smaller in the presence of the weak

constant electric field. This may give a theoretical basis for the anomalous GSI e*e™ events.

1. Introduction

A number of observations based on the computer simulations using the lattice gauge the-
ory and on the Schwinger-Dyson equation suggest that there exists the strong coupling phase
in Quantum Electrodynamics (QED) when the coupling constant « = (e?/47) becomes
larger than some critical value.’?%) Much effort has been paid to investigate the character-
istics of this new phase of QED, because it is hoped that it may give a theoretical basis for
explaining the GSI peak®) and may resolve the Flavour-Changing Neutral Current (FCNC)
problem in the technicolour theory.? The purpose of this talk is to give some discussions on
the photon pairing phenomenon in the strong coupling phase of massive'QED with the help
of the Cooper equation that is well known in the theory of the superconductivity. The talk
is based on the paper listed ref.5).

2. The low eénergy effective Lagrangian and the Hamiltonian for photon

Let us begin with the Euler Heisenberg effective Lagrangian for photon Leys 8 .

) )
Legs = =7 FuF™ + a(F¥ Fu )l + 5(F¥FL)? » (1)

where F¥ = QrAY —9YA* | F = %“:WWFW and a = b= (a?/90m?*) . Here & is



the completely anti-symmetric tensor with €g123 = +1 , A* the renormalized photon field,
m the electron mass and « = (e?/4r) the renormalized fine structure constant. Here and
in the following the indices g, v, ... run from 0 to 3 and the indices 7, 7, ... run
from 1 to 3 . ,

The effective Lagrangian in the presence of the external field A% can be obtained the

deviding the photon field A* in (1) into two parts,
A¥ — Ab 4 A% (2)

(We use the same notation A* asin (1), since there may be no confusions.) Here we define
the A* by [6S/6A.]a=a. =0 , where S is the action given by S = [d*zL.; . Then
we get L.sr as the sum of three terms, i.e. L. = Lo+ L+ Le , where

1 -
Le==7G" G +a(G*G)’ +HGGu)
L= —%F""Fw +a(F¥ ) +b(F*F,,)?
Leo=2a(G*G)(FPF,,) + 26(G* G, ) (FP F,,)
+4a(G* Fl,)* + 4b(G* F . )?
+2(G* F,u ) (F#" Fpo) + 2b(G* Fu )(F Fa) (3)
and G* = GPAY — GV AP | GM = %a‘“’ﬁ" G,s . We can neglect L. since it has no effect on
our problem.
From now on, we choose the Feynman gauge for convenience by adding Ler = —3$(8.4%)*
to L.s; but our arguments are gauge invariant, of cource.
The canonical momentum II# defined by II* = (8LL;;/0A,) (Liyy = Legs+Lor)is
given by I1%= —(8,4#) , TI* = IM* + ID* | where
% == — FO 4 8a(F* F, ) F* + 8b(F**F,, ) F**
% =8a(G* G, ) F* + 85(G* G, ) F* + 16a(G* F,,)G™
+166(G* F,,,)G% + 16a(G** F,, ) F% + 16b(G* E.,, ) F**
+8a(F¥ F,,)G% + 8b(FH F,,)G% . (4)
Therefore, the Hamiltonian density H.sr = H,,A" — L = Ho + M1+ Hg s obtained

up to O(a?) as follows;

Heff=7'fo +Hr+He ,
1

’Ho==—-2

1 .. . .
I, I0* + Z(F”F}j) — (8, A*) + (8% 4,)
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Hy = —a(2* Tl — FY Fy;)? — b(2e0i: I FI*)?
He=—8a(G* G, )(2I* Il — FY Fyj) — 8b(G* G, ) (2e0ie [T F7*)?
—4a(GYF;; — 2GY Fo;)? — dbleoiju (G¥ F* — TI'GH*))?
—4a(21I*11,, — FYF;;)(GY Fy; — 2G% Fy;)
—4b(2¢0i;1 11 F7%)[e0ije (GO FI* — I'G7F)] . (5)

3. The Cooper equation
Now if we introduce a(A)T(k)' as the creation operator for photon with momentum k

and helicity A , the Cooper state we use in the following is given as
d*k
= —_— M (k) T (—K) 10)][26@ (0)] 1/ 6
0= %[ Gy 0 V0 V10 s 0) 2 (6)
where ko = |k| , 6®(0) = (27)73 fd®z = (2x)73V (V is the volume of this system.),
[0) is the normal vacuum of QED and f(k) the weight function which is determined by
the variational principle.

Then, the expectation value of the Hamiltonian H(= [d®zM.s;) under the constant

electric field only (Gg; = E; = const,G;; = 0) , can be written as the sum of three terms;
(C|:H:|C)=(C|: Hy:|C)+(C|: H;:|C)+(C|: Hg:|C) ,
(Cl: Ho:10)=2 [ kol f)P
(C|: H;: |C)= —%fd%dsk’ kok'o f* (k) f(k'){a[d + (1 + cos8)?] — b(1 + cos 8)*} ,
(C|: Ho: [C)= [ &k ks x|SR (7)
where “ ... :” stands for the normal ordering and Hy = [d°zH, , H; = [d’zH;,

Hg = [dzHe and 6 is the angle between k and k' . If we denote the angle between k
and the electric field vector E as ¢, the function x(k) in (7) can be described as follows,

x(k) = ~16(a + b)kZ|E[*sin®p . (8)

In order to minimize the expectation value of the normal ordered Hamiltonian under the

normalization condition (C|C) = [d%k|f(k)]> =1 , we take the variation of

- (C|: H:|C)—E(C|C) with respect to f*(k) . Thus we get the Cooper equation;

(2ko + X—fff") - E)f(k)= ',%kO / Crd KK o f(K')

x{a[4 + (1 + cos8)?] — b(1 + cos §)*} , (9)
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where £ is the energy of our Cooper state.
In the following discussion, we analyze this Cooper equation in two cases separately;

without or with the external electric field.

(i) Photon pairing in the absence of the external field.

In this case, we denote the solution of the Cooper equation as fy(k) and the energy of
the Cooper state as & . Then we obtain the following integral equation. We assume here
that the solution of this Cooper state depends only on k¢ , because the system has the

rotational symmetry. Therefore, the Cooper equation takes the form,
2 A 1 103 ’
(2K = £0)folko) = 5= (4a - b)kofo dkh K3 fo(K'o) (10)

where A is the ultraviolet cut off. Since b = (7/4)a > 0 , photon-photon interaction in
massive QED is attractive in the low energy region.

The solution of (10) has obviously the form fo(ko)  ko(2ko — &)~! and the energy
eigenvalue of the Cooper state is determined by the following equation,

_ g A Kidko
_m4 0 2]‘50—50 ’

(11)

where g =(16/15)r%a? . Equation (11) shows that there exists negative energy eigenvalue

state (£ < 0) when
A -1
g > go = 2m* [/0 dkokg} = 8(m/A)* . (12)

This means that when a > a. = 4/15/27(m/A)? , the normal vacuum of massive QED
becomes unstable with respect to the formation of the photon pair (Cooper instability) and
the new condensed vacuum is realized after the condensation of these pairs.

The above results agree qualitatively with those obtained in ref.3) using the B-S equation.

(ii) Photon pairing under the electric field.
By assuming that E is small, we solve (9) perturbatively in E . We expand the energy
& of the Cooper state and the weight function f(k) with respect to E ,

5=50+£1'EI2+... y
(k)= fo(ko) + fi(ko)(k - E)* + folko) E[* +... . (13)
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& and fo(ke) satisfy (10), of cource. The energy shift &|E|? caused by the external

electric field is calculated easily and is given by,

32 A k3dko A kbdk, } -t
2_ _ o 070 I <0 . 14
gllEl 3 (a+ b) l;/o (2k0 — 80)2] { 0 (2ko - 80)2 ( )

Equation (14) means that if we consider up to O(|E|?), the energy eigenvalue of the Cooper
state becomes smaller, therefore the critical coupling o for E # 0 has the tendency to

become smaller than o, for E=0 . (Fig.1)

£/A
A

-~

E#0

Fig.1 The relation between the energy & /A and the fine structure constant o in the

absence of the electric field (E = 0) and under the presence of the electric field

4. Comments

In this talk, we have seen the Cooper instability of photon can occur in the massive
QED. Therefore, the next task, which is of great interest, is to consider the characteristics
of the stable condensed vacuum just as in the theory of the superconductivity. Since many
observable phenomena in this strong coupling phase would be dependent upon the con-
denced nature of the vacuum, the formulation has to be established just like the Bogoliubov
transformation in the superconductor theory, to discuss the characteristics of this phase.

Especially in connection with the chiral symmetry breaking, it is also very Interesting

whether the photon pairing phenomenon occurs in massless QED because this theory is
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very unstable in the infrared region. If this phenomenon occurred, what would the critical
coupling be?

Although our results bring us a hope for explaining the anomalous GSI event, the photon
‘pairing. under the strong electromagnetic field should: be studied of cource before applying

our conclusions to the real experiment.
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