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Abstract. The theory of symmetries of systems of coupled, ordinary differential equations
(ODE’s) is used to develop a concise algorithm for cartographing the space of solutions to
vacuum Bianchi Einstein’s Field Equations (EFE). The symmetries used are the well known
automorphisms of the Lie algebra for the corresponding isometry group of each Bianchi Type,
as well as the scaling and the time reparameterization symmetry. Application of the method
to Type III results in: a) the recovery of all known solutions without prior assumption of any
extra symmetry, b) the enclosure of the entire unknown part of the solution space into a single,
second order ODE in terms of one dependent variable and c) a partial solution to this ODE.
It is also worth-mentioning the fact that the solution space is seen to be naturally partitioned
into three distinct, disconnected pieces: one consisting of the known Siklos (pp-wave) solution,
another occupied by the Type III member of the known Ellis-MacCallum family and the
third described by the aforementioned ODE. Lastly, preliminary results reported show that
the unknown part of the solution space for other Bianchi Types is described by a strikingly
similar ODE, pointing to a natural operational unification as far as the problem of solving the
cosmological EFE’s is concerned.

1. Introduction
Since the early times of cosmology, Automorphisms have been identified as possible key elements
for a unified treatment of spatially homogeneous Bianchi Geometries [1]. Harvey has found the
automorphisms of all 3-dimensional Lie Algebras [2], while the corresponding results for the
4-dimensional Lie Algebras have been reported in [3]. Jantzen’s tangent space approach sees
the automorphic matrices as the means for achieving a convenient parametrization of a full
scale-factor matrix in terms of a, desired, diagonal matrix [4]. Samuel and Ashtekar were the
first to look upon Automorphisms from a space viewpoint [5]. The notion of Time-Dependent
Automorphism Inducing Diffeomorphisms (A.I.D.’s), i.e. coordinate transformations mixing
space and time in the new spatial coordinates and inducing automorphic motions on the scale-
factor matrix, the lapse and the shift has been developed in [6].
In this communication we revisit the problem of solving the EFE’s for vacuum Bianchi
Geometries. We begin with a full metric, i.e. we make no assumption for the lapse function
N2, the shift vector Nα and the spatial metric γαβ . Then we use the Time-Dependent A.I.D.’s
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to put the shift vector to zero. At this point the idea is to exploit, in a systematic way,
the remaining symmetries of the field equations –sometimes called ”rigid” [7]– to transform
them to the most simple form possible, without loss of generality. These are the well known
symmetries following from the constant Automorphism group within each Bianchi Type, as
well as the scaling of the metric by a constant and the time reparameterization symmetry
(see e.g. [8]). Applying this analysis to Bianchi Type III Vacuum Cosmology we produce an
exhaustive cartography of the entire space of its solutions.

2. The Method
As it is well known, for spatially homogeneous spacetimes with a simply transitive action of
the corresponding isometry group [9], [8], the line element, assumes the form

ds2 =
(
NαNα −N2

)
dt2 + 2Nασα

i dxidt + γαβσα
i σβ

j dxidxj (1)

where the 1-forms σα
i , are defined from:

dσα = Cα
βγσβ ∧ σγ ⇔ σα

i,j − σα
j,i = 2Cα

βγσγ
i σβ

j . (2)

Then the field equations are (e.g. [6]):

Eo
.= KαβKαβ −K2 −R = 0 (3)

Eα
.= Kµ

αCε
µε −Kµ

ε Cε
αµ = 0 (4)

Eαβ
.= K̇αβ + N (2Kτ

αKτβ −KKαβ) + 2Nρ
(
KανC

ν
βρ + KβνC

ν
αρ

)
−NRαβ = 0 (5)

where
Kαβ = − 1

2N

(
γ̇αβ + 2γανC

ν
βρN

ρ + 2γβνC
ν
αρN

ρ
)

(6)

is the extrinsic curvature and

Rαβ = Cκ
στC

λ
µνγακγβλγσνγτµ + 2Cκ

βλCλ
ακ + 2Cµ

ακCν
βλγµνγ

κλ+

2Cλ
βκCµ

µνγαλγκν + 2Cλ
ακCµ

µνγβλγκν
(7)

the Ricci tensor of the hyper-surface.
In [6] particular spacetime coordinate transformations have been found, which reveal as

symmetries of (3), (4), (5) the following transformations of the dependent variables N,Nα, γαβ :

Ñ = N, Ñα = Λρ
α (Nρ + γρσ P σ), γ̃µν = Λα

µ Λβ
ν γαβ (8)

where the matrix Λ and the triplet Pα must satisfy:

Λα
ρ Cρ

βγ = Cα
µν Λµ

β Λν
γ , 2 Pµ Cα

µνΛ
ν
β = Λ̇α

β (9)

For all Bianchi Types, this system of equations admits solutions which contain three
arbitrary functions of time plus several constants depending on the Automorphism group of
each type. The three functions of time, are distributed among Λ and P (which also contains
derivatives of these functions). So one can use this freedom either to simplify the form of the
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scale factor matrix or to set the shift vector to zero. The second action can always be taken,
since, for every Bianchi type, all three functions appear in Pα.

In this work we adopt the latter point of view. When the shift has been set to zero, there is
still a remaining ”gauge” freedom consisting of all constant Λα

β (Automorphism group matrices).
Indeed the system (9) accepts the solution Λα

β = constant, Pα = 0. The generators of the
corresponding motions, induced in the space of dependent variables spanned by γαβ

′s (the
lapse is given in terms of γαβ , γ̇αβ by algebraically solving the quadratic constraint equation )
γ̃µν = Λα

µ Λβ
ν γαβ are [10] :

X(I) = λρ
(I)α γρβ

∂

∂γαβ
(10)

with λ satisfying:
λα

(I)ρ Cρ
βγ = λρ

(I)β Cα
ργ + λρ

(I)γ Cα
βρ. (11)

Now, these generators define a Lie algebra and each one of them induces, through its integral
curves, a transformation on the configuration space spanned by the γαβ ’s. If a generator is
brought to its normal form (e.g. ∂

∂zi
), then the Einstein equations, written in terms of the new

dependent variables, will not explicitly involve zi. They thus become a first order system in
the function żi [11]. If the above Lie algebra happens to be abelian, then all generators can
be brought, to their normal form simultaneously. If this is not the case, we can diagonalize
in one step the generators corresponding to any eventual abelian subgroup. The rest of the
generators (not brought in their normal form) continue to define a symmetry of the reduced
system of EFE’s if the algebra of the X(I)’s is solvable [12]. One can thus repeat the previous
step, by choosing one of these remaining generators. This choice will of course depend upon
the simplifications brought to the system at the previous level. Finally if the algebra does
not contain any abelian subgroup, one can always choose one of the generators, bring it to its
normal form, reduce the system and search for its symmetries (if there are any). Lastly, two
further symmetries of (3), (4), (5) are also present and can be used in conjunction with the
constant automorphisms: The time reparameterization t→ f(t)+α, owing to the non-explicit
appearance of time in these equations, and the scaling by a constant γαβ → µγαβ as can be
straightforwardly verified. Their corresponding generators are:

Y1 =
1
ḟ

∂

∂t
, Y2 = γαβ

∂

∂γαβ
(12)

These generators commute among themselves, as well as with the X(I)’s, as it can be easily
checked.

3. Application to Bianchi Type III
We are now going to apply the Method, previously discussed, to the case of Bianchi Type III.
For this type the structures constants are [13]

C1
13 = −C1

31 = 1
Cα

βγ = 0 for all other values of αβγ
(13)

Using these values in the defining relation (2) of the 1-forms σα
i we obtain

σα
i =

 0 e−x 0
0 0 1
1
2 0 0

 (14)
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The corresponding vector fields ξi
α ( satisfying [ξα, ξβ] = Cγ

αβξγ ) with respect to which the Lie
Derivative of the above 1-forms is zero are:

ξ1 = ∂y ξ2 = ∂z ξ3 = ∂x + y∂y (15)

The Time Depended A.I.D.’s are described by

Λα
β =

 e−2P (t) 0 x(t)
0 c22 c23

0 0 1

 (16)

Pα =
(

x(t)Ṗ (t) +
1
2
ẋ(t), P 2(t), Ṗ (t)

)
(17)

where P (t), x(t) and P 2(t) are arbitrary functions of time. As we have already remarked the
three arbitrary functions appear in Pα and thus can be used to set the shift vector to zero.

The remaining symmetry of the EFE’s is, consequently, described by the constant matrix:

M =

 es1 0 s4

0 es2 s3

0 0 1

 (18)

where the parametrization has been chosen so that the matrix becomes identity for the zero
value of all parameters.

Thus the induced transformation on the scale factor matrix is γ̃αβ = Mµ
αMν

β γµν , which define
a group of transformations Gr of dimension r = dim(Aut(III)) = 4. The four generators of
the group are:

X1 = 2γ11
∂

∂γ11
+ γ12

∂

∂γ12
+ γ13

∂

∂γ13
(19)

X2 = γ12
∂

∂γ12
+ 2γ22

∂

∂γ22
+ γ23

∂

∂γ23
(20)

X3 = γ12
∂

∂γ13
+ γ22

∂

∂γ23
+ 2γ23

∂

∂γ33
(21)

X4 = γ11
∂

∂γ13
+ γ12

∂

∂γ23
+ 2γ13

∂

∂γ33
(22)

The algebra gr that corresponds to the group Gr has the following table of commutators:

[X1, X2] = 0, [X1, X3] = 0, [X1, X4] = X4,
[X2, X3] = X3, [X2, X4] = 0, [X3, X4] = 0 (23)

As it is evident from the above commutators (23) the group is non-abelian, so we cannot
diagonalize at the same time all the generators, but as it can easily verified, the group is
solvable. Furthermore X3, X4, Y2 generate an Abelian subgroup, and we can, therefore, bring
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them to their normal form simultaneously. The appropriate transformation of the dependent
variables is: 

γ11 = eu1+2 u6

γ12 = eu1+u2+u4+u6

γ13 = eu1+u6 (eu6 u3 + eu2+u4 u5)

γ22 = eu1+2 u4

γ23 = eu1+u4 (eu2+u6 u3 + eu4 u5)

γ33 = eu1
(
1 + e2 u6 u3

2 + 2 eu2+u4+u6 u3 u5 + e2 u4 u5
2
)

(24)

In these coordinates the generators Y2, XA assume the form:

Y2 = ∂
∂u1

X3 = ∂
∂u3

X4 = ∂
∂u5

X2 = ∂
∂u4

− u5
∂

∂u5
X1 = ∂

∂u6
− u3

∂
∂u3

(25)

Except of the parametrization ( 24) there is also another one achieving the same result (25),
which simply attributes a - sign to γ12 and therefore any solution later described will remain
valid under this change.

Evidently, a first look at (24) gives the feeling that it would be hopeless even to write down
the Einstein equation. However, the simple form of the generators (25) ensures us that these
equations will be of first order in the functions u̇1, u̇3 and u̇5.

3.1. Description of the Solution Space
Before we begin solving the Einstein equations, a few comments for the possible values of the
functions ui, i = 1, . . . , 6 will prove very useful.

The determinant of γαβ , is

det[γαβ ] = e3 u1+2 (u4+u6)
(
1− e2 u2

)
(26)

so we must have u2 < 0 .
The transformation from the γ’ s to the u’ s, becomes singular when γ12 = 0, since the

function u2 equals to

u2 = ln(|γ12|)−
ln(γ11 γ22)

2
. (27)

So two cases are naturally arising, according to whether γ12 is different or equal to zero.
If γ12 6= 0 the two linear constraint equations, written in the new variables (24), give

E1 = 0⇒ −eu6
(
eu6 u̇3 + eu2+u4 u̇5

)
= 0 (28)

E2 = 0⇒ −1
2

eu4
(
eu2+u6 u̇3 + eu4 u̇5

)
= 0 (29)
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This system admits only the trivial solution, since the determinant of the 2x2 matrix formed
by the coefficients of u̇3, u̇5 becomes zero only for the forbidden value u2 = 0. We thus have

u3 = k3, u5 = k5 (30)

Now, these values of u3, u5 make γ13, γ23 functionally dependent upon γ11, γ12, γ22 (see (24)).
It is thus possible to set these two components to zero by means of an appropriate constant
automorphism.
In the case γ12 = 0 we can again bring simultaneously into normal form the corresponding
X3, X4, Y2 . The appropriate change of dependent variables is given by:

γαβ =

 eu1+2 u6 0 eu1+2 u6 u3

0 eu1+2 u5 eu1−u4+u5

eu1+2 u6 u3 eu1−u4+u5 eu1 (1 + e−2 u4 + e2 u6 u2
3)

 (31)

In these variables all three linear constraint equations can be integrated, yielding:

E1 = 0⇒ −e2 u6 u̇3 = 0⇒ u3 = k3 (32)

E2 = 0⇒ −1
2

e−u4+u5 (u̇4 + u̇5) = 0⇒ u5 = k5 − u4 (33)

E3 = 0⇒ −2 e2 u4+2 u6 u3u̇3 + u̇4 + u̇5 + 2 e2 u4 u̇6 = 0⇒ u6 = k6 (34)

Again, these values imply that a constant automorphism suffices to set the (13) and (23)
components of the scale-factor matrix to zero, i.e. to put it into diagonal form. We have thus
reached a first important conclusion, that is:

Without loss of generality, we can start our investigation of the solution space for Type
III vacuum Bianchi Cosmology from a block-diagonal form of the scale-factor matrix (and, of
course, zero shift)

γαβ =

 γ11 γ12 0
γ12 γ22 0
0 0 γ33

 (35)

Note that this conclusion could have not been reached off mass-shell, due to the fact that the
time-dependent Automorphism (16) does not contain the necessary two arbitrary functions
of time in the (13) and (23) components ( besides the fact that all the freedom in arbitrary
functions of time has been used to set the shift to zero). As we have earlier remarked, since the
algebra (23) is solvable, the remaining (reduced) generators X1, X2 (corresponding to diagonal
constant automorphisms) as well as Y2 continue to define a Lie-Point symmetry of the reduced
EFE’s and can thus be used for further integration of this system of equations.

3.1.1. Case I: γ12 = 0 The remaining (reduced) automorphism generators are

X1 = 2γ11
∂

∂γ11
, X2 = 2γ22

∂

∂γ22
(36)
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The appropriate change of dependent variables which brings these generators -along with Y2-
into normal form, is described by the following scale-factor matrix :

γαβ =

 eu1+ u3 0 0
0 eu2+ u3 0
0 0 eu3

 (37)

In these variables the first two linear constraint equations are identically satisfied, while the
third reads E3 = 0 ⇒ −2 u̇1 = 0 ⇒ u1 = k1. Substituting this value of u1 into the quadratic
constraint equation E0 we obtain the lapse function

N2 =
1
16

eu3 u̇3(2u̇2 + 3u̇3) (38)

Now, substitution of u1 = k1 and the above value for the lapse N2 into the spatial EFE’s
results in the single, independent equation :

(u̇2 + u̇3)(2u̇3ü2 − 2u̇2ü3 + 2u̇2
2u̇3 + 3u̇2

3 + 5u̇2u̇
2
3) (39)

This equation is, as expected from the theory, of the first order in u̇2, u̇3. Notice that this result
could have not been reached had we chosen any particular time gauge, such as N2 = F (u2, u3, t).
Not only u2, u3, t would appear in the Spatial EFE’s, but also the number of independent such
equations would have been increased to 2. This remark should not be taken as a negative view
for complete gauge fixing, but rather as pointing to the fact that keeping the gauge freedom into
the game helps manifesting the symmetries of the system and eventually solving the equations.
Equation (39) is readily integrated, leading to two different space-times according to which
parenthesis is set to zero. If the first is made to vanish, i.e. u2 = k2 − u3, the ensuing
line-element is the known (Type III) cosmological disguise of Minkowski space-time ([14]):

ds2 = − 1
16

eu3 u̇2
3 dt2 +

1
4
eu3 dx2 + ek1+u3−2x dy2 + ek2 dz2 (40)

the constants being of course absorbable by the constant automorphisms and a shift in u3.
If the second parenthesis of (39) is set to zero, i.e. u2 = k3 − 3u3

2 + ln(1 + k2 e
u3
2 ), we obtain

an equivalent form of the Type III member of the known Ellis-MacCallum family of solutions
([8],[14]):

ds2 = κ2

(
− e

3u3
2 u̇2

3

4(e
u3
2 − 1)

dt2 + eu3 dx2 + eu3−2x dy2 + e
−u3

2 (e
u3
2 − 1) dz2

)
(41)

where again we have used constant automorphisms and a shift of u3 to take outside of the
metric an overall constant. The properties of this line element were investigated in [16]. The
interesting thing is that the metric (41) admits, except of (15), a fourth Killing vector field
acting on the surfaces of simultaneity, namely

ξ4 = −y ∂x +
e2 x − y2

2
∂y (42)

There is thus a G4 symmetry group acting (of course, multiply transitively) on each V3 of this
metric, with an algebra having the following table of (non-vanishing) commutators:

[ξ1, ξ3] = ξ1, [ξ1, ξ4] = −ξ3, [ξ3, ξ4] = ξ4 (43)

However, it is interesting to note that we have not imposed the extra symmetry from the
beginning, but rather it emerged as a result of the investigation process.
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3.1.2. Case II: γ12 6= 0 The remaining (reduced) automorphism generators are

X1 = 2γ11
∂

∂γ11
+ γ12

∂

∂γ12
, X2 = γ12

∂

∂γ12
+ 2γ22

∂

∂γ22
(44)

The appropriate change of dependent variables which brings these generators -along with Y2-
into normal form, is now given by:

γαβ =

 eu1+2 u4 eu1+u2+u4 0
eu1+u2+u4 eu1+2 u2 u3 0
0 0 eu1

 (45)

The generators are now reduced to

Y2 =
∂

∂u1
, X2 =

∂

∂u2
, X1 =

∂

∂u4
(46)

indicating that the system will be of first order in the derivatives of these variables. The
remaining variable u3 will enter, (along with u̇3, ü3 ) explicitly in the system and is therefore
advisable (if not mandatory) to be used as the time parameter, i.e. to effect the change of time
coordinate

t→ u3(t) = s, u1(t)→ u1(t(s)), u2(t)→ u2(t(s)), u4(t)→ u4(t(s)). (47)

This choice of time will of course be valid only if u3 is not a constant. We are thus led to
consider two cases according to the constancy or non-constancy of this variable.
The case u3 = k3

In this case the integration of EFE’s is yields (see [16]) the line element:

ds2 = −λ2 dξ2 +
ξ2

4
dx2 + e−2xξ4λ dy2 +

λ− 1
2λ− 1

dz2 + 2e−xξ2λ dy dz (48)

where 0 < λ < 1
2 .

This metric is an equivalent form of a solution originally given by Siklos [15] and reproduced
in [14]. An overall multiplicative constant has been omitted from (87) since it admits the
following Homothetic Killing vector field (LH gAB = µ gAB)

HA = ξ
∂

∂ξ
+ (1− 2λ)y

∂

∂y
+ z

∂

∂z

It also admits three more Killing vector fields ( except (15)) acting on space-time, namely

v1 = e−
x

2 λ ∂ξ +
2 λ

ξ
e−

x
2 λ ∂x

v2 = e−
x

2 λ y ∂ξ +
2 λ y

ξ
e−

x
2 λ y ∂x +

λ(λ− 1)
4λ− 1

e
4λ−1
2λ

x ξ−4λ+1 ∂y

−λ e
2λ−1
2λ

x ξ−2λ+1∂z

v3 = e−
x

2 λ z ∂ξ +
2 λ z

ξ
e−

x
2 λ ∂x − λ e

2λ−1
2λ

x ξ−2λ+1 ∂y

−λ (2λ− 1) e−
x

2 λ ξ ∂z
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The first of these is null vA
1 vB

1 gAB = 0 and covariantly constant vA
1 ;B = 0, signaling that the

metric is a pp-wave.
The case u3 6= k3

The function u3 is now a valid choice of time and det[γαβ ] = e3 u1+2 (u2+u6) (−1 + s) implies the
range (1,+∞) for the new time s. The only non-vanishing linear constraint equation E3 = 0
yields

u4 =
∫

u̇2

2s− 1
ds + k4 (49)

while the quadratic constraint equation E0 = 0 gives the lapse

(N)2 =
eu1

4 (1− 2 s)2 (−3 + 4 s)

[
2 (2 s− 1)2 u̇1 + 3 (2 s− 1)2 (s− 1) u̇2

1

+(4 s− 2) u̇2 + 8 s (s− 1) (2 s− 1) u̇1 u̇2 + 4 s (s− 1) u̇2
2

]
(50)

If we insert these values (N)2 , u4 into the spatial EFE’s they become the following polynomial
system of first order in u̇1, u̇2

ü1 =
(
1 u̇1 u̇2

1 u̇3
1

)
A1


1
u̇2

u̇2
2

u̇3
2

 , ü2 =
(
1 u̇1 u̇2

1 u̇3
1

)
A2


1
u̇2

u̇2
2

u̇3
2

 (51)

A1 =



0 2
4 s2−7 s+3

4 s
8 s2−10 s+3

0

1
4 s2−7 s+3

4 8 s (2 s−3) (s−1)
8 s2+10 s−3

0

2 s−3
4 s−3 − 16 s2 (s−1)

8 s2−10 s+3
0 0

−6 s (s−1)
4 s−3 0 0 0


(52)

A2 =



0 −8 s+5
8 s3−18 s2+13 s−3

24 s2−50 s+18
8 s2−10 s+3

8 s (2 s−3)(s−1)
8 s2−10 s+3

−4 s+2
4 s2−7 s+3

12 s
−2 s+3 − 16 s2 (s−1)

8 s2+10 s−3
0

−6 s+3
4 s−3 −6 s (s−1)

4 s−3 0 0

0 0 0 0


(53)

Due to the form of A1, A2 (their components are rational functions of the time s), system (51)
can be partially integrated with the help of the following Lie-Bäklund transformation

u̇1(s) =
(2 s− 3) tan r(s)− 2 s (8 s2 − 10 s + 3) ṙ(s)

4 s
√

s− 1 (4 s− 3)

u̇2(s) =
2 s− 1

8 s(4 s− 3)
√

(s− 1)3
(
2 (−4 s + 3)

√
s− 1 + 3 (s− 1) tan r(s)

+2 s (s− 1) (4 s− 3) ṙ(s)) (54)
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resulting in the single, second order ODE for the variable r(s)

r̈ =
(

tan r −
√

s− 1
2

)
ṙ2 +

(−16 s + 6)
√

s− 1 + (5 s− 3) tan r

2 s (4 s− 3)
√

(s− 1)
ṙ

+
−9 (s− 1)2 tan2 r + 18 (s− 1)3/2 tan r + 4 s (4 s− 3)

8 s2 (4 s− 3)2 (s− 1)3/2
(55)

This equation contains all the information concerning the unknown part of the solution space
of the Type III vacuum Cosmology. Unfortunately, it does not posses any Lie-point symmetries
that can be used to reduce its order and ultimately solve it. However, its form can be
substantially simplified through the use of new dependent and independent variable (ρ, u(ρ))
according to r(s) = ± arcsin u(ρ)√

ρ2−1
, s = 3 (ρ−1)

3 ρ−5 , ρ > 5
3 thereby obtaining the equation

ü = ± 1− u̇2√
(6 ρ− 10) (ρ2 − u2 − 1)

⇒ ü2 =
(1− u̇2)2

(6 ρ− 10) (ρ2 − u2 − 1)
(56)

with the corresponding lapse

(N)2 =
u̇2 − 1

8 (3 ρ− 5) (ρ2 − u2 − 1)
eu1 (57)

(u̇ = du
dρ ) and the scale-factor matrix is given by (45) after insertion of (49), u3 = s = 3 (ρ−1)

3 ρ−5
and the transformations of u1, u2 that led to u. Independently of the way we have reached
this result, one can check (through an algebraic computing facility such as Mathematica) that
the line element thus described is indeed a solution of all the EFE’s, provided of course (56)
is satisfied. One can also check that it does not admit any Homothetic or null, covariantly
constant vector field. Therefore, the two independent constants of the general solution to (56)
along with a multiplicative constant will comprise the expected three essential constants of the
general Type III vacuum Cosmology.

In [16] a partial solution of (56) was presented and in [17] the general solution of this equation
was obtained. The corresponding line element is

ds2 = −N2 dρ2 + γαβ σα
i σ

β
j dxi dxj (58)

where the scale factor matrix γαβ(ρ) and the lapse function N(ρ) are given by the equations:

(N)2 =
u′2 − 1

8 (3 ρ− 5) (ρ2 − u2 − 1)
eu1 and γαβ =

 eu1+2 u4 eu1+u2+u4 0
eu1+u2+u4 3 ρ−3

3 ρ−5 eu1+2 u2 0
0 0 eu1

 (59)

The functions u1, u2, u4 satisfy

u′1 =
−3u + (3 ρ− 1) u′

2
(
u′2 − 1

) u′′ (60)

u′2 =
(3 ρ− 1)

(
−1 + u′2 + (3 ρ− 5)2 u u′′ − (3 ρ− 5)2 (ρ− 1) u′ u′′

)
4 (3 ρ− 5)2 (ρ− 1)

(
u′2 − 1

) (61)

u′4 =
3 ρ− 5
3 ρ− 1

u′2 (62)
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and the function u(ρ) obeys a second order differential equation, of the form:

ü2 =
(−1 + u̇2)2

(κ + λ ρ) (ρ2 − u2 − 1)
κ = −10, λ = 6 (63)

In order to solve (63), for arbitrary constants (κ, λ) , we apply the contact transformation:

u(ρ) = − 8
λ y(x) + 4 (2x−1)

λ y′(x) ρ = −κ
λ + 4

λ y′(x)

u′(ρ) = 2 x− 1 u′′(ρ) = λ
2 y′′(x)

(64)

which reduces it to

x2 (x− 1)2 y′′
2 = −4y′ (x y′ − y)2 + 4 y′

2 (x y′ − y)− κ

2
y′

2 +
κ2 − λ2

16
y′ (65)

This equation is a special form of the equation SD-Ia, appearing in [18], where a classification
of second order second degree ordinary differential equations was performed. The general
solution of (65) is obtained with the help of the sixth Painlevé transcendent P := PVI(α, β, γ, δ)
and reads:

y =
x2 (x− 1)2

4 P (P − 1)(P − x)

(
P ′ − P (P − 1)

x (x− 1)

)2

+
1
8

(1±
√

2 α)2 (1− 2 P )− β

4

(
1− 2 x

P

)
−γ

4

(
1− 2 (x− 1)

P − 1

)
+
(

1
8
− δ

4

) (
1− 2 x (P − 1)

P − x

)
(66)

where the sixth Painlevé transcendent P := PVI(α, β, γ, δ) is defined by the ODE:

P ′′ =
1
2

(
1

−1 + P
+

1
P

+
1

−x + P

)
P ′2 −

(
1

−1 + x
+

1
x

+
1

−x + P

)
P ′

+
(−1 + P ) P (−x + P )

(−1 + x)2 x2

(
α +

(−1 + x) γ

(−1 + P )2
+

xβ

P 2
+

(−1 + x) x δ

(−x + P )2

)
(67)

The values of the parameters (α, β, γ, δ) of the Painlevé transcendent, can be obtained from
the solution of the following system:

α− β + γ − δ ±
√

2 α + 1 = −κ

2
(68)

(β + γ)
(
α + δ ±

√
2 α
)

= 0 (69)

(γ − β)
(
α− δ ±

√
2 α + 1

)
+

1
4

(
α− β − γ + δ ±

√
2 α
)2

=
κ2 − λ2

16
(70)

1
4

(γ − β)
(
α + δ ±

√
2 α
)2

+
1
4

(β + γ)2
(
α− δ ±

√
2 α + 1

)
= 0 (71)

Plugging in (68) the values of κ = −10, λ = 6 for Type III, we have twelve solutions, of this
system. The eight of them correspond to the ”−

√
2 α” case and the rest four to the ”+

√
2 α”

case.
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Case I: −
√

2 α

α = 0, β = 0, γ = 0, δ = −4 (72)
α = 0, β = −2, γ = 2, δ = 0 (73)
α = 2, β = 0, γ = 0, δ = −4 (74)
α = 2, β = −2, γ = 2, δ = 0 (75)

α = 8, β = 0, γ = 0, δ = 0 (76)

α =
1
2
, β = −9

2
, γ =

1
2
, δ =

1
2

(77)

α =
1
2
, β = −1

2
, γ =

9
2
, δ =

1
2

(78)

α =
9
2
, β = −1

2
, γ =

1
2
, δ = −3

2
(79)

Case II: +
√

2 α

α = 0, β = 0, γ = 0, δ = −4 (80)
α = 0, β = −2, γ = 2, δ = 0 (81)

α = 2, β = 0, γ = 0, δ = 0 (82)

α =
1
2
, β = −1

2
, γ =

1
2
, δ = −3

2
(83)

Particular solutions of (67) give raise to Kinnersley vacuum solution [19] and to a line element
with Euclidean signature [17].

3.2. Preview for other Bianchi Types
The method described in the previous sections can be applied to other Types as well. The
general pattern is s similar to that of Type III: The pp-wave solutions ( for Types admitting
such geometries) occupy one part of the solution space, the other known solutions reside on
another part, and the unknown part of the solution space is always described by the same ODE
(63), with different parameters κ, λ for each Type. As indicative examples we give the form of
the ODE for Types IV and V IIh:

Type IV

ü2 =
(−1 + u̇2)2

(κ + λ ρ) (ρ2 − u2 − 1)
κ = −6, λ = 6 (84)

Type VIIh

ü2 =
(−1 + u̇2)2

(κ + λ ρ) (ρ2 − u2 − 1)
κ = −6 + 4

h2 , λ = 6 (85)

and of course
Type III

ü2 =
(−1 + u̇2)2

(κ + λ ρ) (ρ2 − u2 − 1)
κ = −10, λ = 6 (86)
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4. Discussion
We have seen how the Automorphisms of Bianchi Type Geometries can be used as symmetries
of the corresponding EFE’s, in order to reduce the degree of these equations, and ultimately
integrate them in full. For the case of Type III the solution space is seen to be naturally
partitioned in three disconnected components: One occupied by the Type III member of the
known Ellis-MacCallum family, another described by the non-linear equation equation which
is fully integrated and a piece occupied by the known Siklos solution, an equivalent form of
which is

ds2 = −λ2 dξ2 +
ξ2

4
dx2 + e−2xξ4λ dy2 +

λ− 1
2λ− 1

dz2 + 2e−xξ2λ dy dz (87)

This line element obtains from the general case, for the particular value of u3 := γ11 γ22

γ2
12

=

cont; u3 in this paper is, by a choice of time ”gauge”, taken to be the term 3 ρ−3
3 ρ−5 in γαβ .
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