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Abstract

In this paper we consider classical effects in a model for a scalar field incorporating Lorentz symmetry 
breaking due to the presence of a single background vector vμ coupled to its derivative. We investigate of the 
interaction energy between stationary steady sources concentrated along parallel branes with an arbitrary 
number of dimensions, and derive from this study some physical consequences. For the case of the scalar 
dipole we show the emergence of a nontrivial torque, which is a distinctive sign of the Lorentz violation. 
We also investigate a similar model in the presence of a semi-transparent mirror. For a general relative 
orientation between the mirror and the vμ, we are able to perform calculations perturbatively in vμ up to 
second order, and we also present exact results specific cases. For all these configurations, the propagator 
for the scalar field and the interaction force between the mirror and a point-like field source are computed. 
It is shown that the image method is valid in our model for the Dirichlet’s boundary condition, and we 
argue that this is a non-trivial result. We also show the emergence of a torque on the mirror depending on 
its orientation with respect to the Lorentz violating background: this is a new effect with no counterpart in 
theories with Lorentz symmetry in the presence of mirrors.
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1. Introduction

Lorentz symmetry violating (LV) field theories received substantial attention as a possible 
signature for underlying new physics arising from the Planck scale. The search for Lorentz vi-
olation effects have been developed in several branches of physics mainly in the framework of 
the Standard Model Extension (SME) [1–4]: we mention, for instance, QED effects [5–13], ra-
diative corrections [14–16], the study of Lorentz symmetry violation with boundary conditions 
[17], effects in classical electrodynamics [18–24], Casimir effect [25–27], and effects in the hy-
drogen atom [28], among many others. Models which exhibit Lorentz symmetry breaking and 
higher order derivatives have also been studied [29–35]. In particular, scalar fields are especially 
interesting for exploring the fundamental theoretical properties of field theories with Lorentz 
violation [36–47] and, for the case of the Higgs fields, also for phenomenology [48,49].

Some recent works [50,51] considered a model composed by a massive real scalar field with 
an aether-like CPT-even Lorentz symmetry breaking term, which is a coupling between the 
derivative of the scalar field and a constant background vector vμ, and studying the Casimir effect 
both for zero [50] and finite temperature [51]. Inspired by these works, also using a scalar field 
as the theoretical setup, one of the most fundamental questions one can ask concerns the phys-
ical phenomena produced by the presence of point-like sources, mainly the possible emergence 
of phenomena with no counterpart in the Lorentz invariant case. A related question concerns the 
modifications the Lorentz violating scalar field propagator undergoes due to the presence of a sin-
gle semi-transparent-mirror, and its influence on static point-like field sources. These questions 
deserve investigations not only for their theoretical aspects, but also because of their possible 
relevance in the search for Lorentz symmetry breaking.

In this work, starting from the model studied in [50,51], we consider stationary delta-like 
currents which are taken to be distributed along parallel D-branes, and calculate exactly their 
interaction energy, deriving from it some interesting particular cases. The same analysis is per-
formed for a distribution of scalar dipoles. Finally, we investigate some consequences in our 
Lorentz violating model due to the presence of a two dimensional semi-transparent mirror in a 
3 + 1 dimensional spacetime. The calculations can be performed perturbatively for a general ori-
entation of the mirror and the background vector. Exact results are also obtained for two special 
cases: when the LV vector has only components parallel to the mirror, and when it has a single 
component perpendicular to the mirror. For all these configurations, we obtain the propagator 
for the scalar field and the interaction force between the plate and a point-like field source. We 
also compare the interaction forces with the ones obtained in the free theory (without the mir-
ror) and we verify that the image method is valid in all the situations considered, for Dirichlet’s 
boundary condition. This is a nontrivial result since, even if LV in this model clearly preserves 
the linearity of the equations of motion, the image method is also dependent of the symmetries 
of the problem, which are modified by the presence of the LV background. We show that a new 
effect arises when a point-like source is placed in the vicinity of the mirror, namely the existence 
of a small torque on the mirror, depending on its position relative to the background vector. This 
is an effect due to the Lorentz symmetry breaking, with no counterpart in standard scalar field 
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theory. Finally, we argue that, when we have the presence of the mirror, the LV term cannot be 
eliminated with a coordinates change.

The paper is organized as follows: in Section 2, we develop a general setup considering effects 
of the presence of N stationary field sources (scalar charges and dipoles distributions) concen-
trated at distinct regions of space, for arbitrary dimensions. In Section 3, where we have the main 
results of the paper, we compute, in a 3 + 1 spacetime, the propagator for the scalar field in the 
presence of a semi-transparent mirror considering different configurations for the background 
vector. We use these results to study the interaction energy between a point-like scalar charge 
and the mirror in Section 4. We obtain some new results, particularly a spontaneous torque act-
ing on a setup where the distance between the charge and the mirror is kept fixed. Section 5 is 
dedicated to the conclusions and final remarks.

2. Interaction between external sources

In this section we shall deal with a model in D + D⊥ + 1 spacetime dimensions, where D
will denote the dimensionality of the sources considered, D⊥ will be the number of orthogo-
nal space directions, and the remaining coordinate x0 represents time. It will be convenient to 
denote by x⊥ and x‖ the space directions perpendicular and parallel to the sources, so that the 
position four-vector is given by xμ = (x0,x⊥,x‖

)
. We shall also use similar notations for the 

momenta pμ, as well as for any other four-vector whenever necessary. The spacetime metric is 
ημν = diag(+1, −1, −1, . . . , −1). We shall be dealing with sources represented by delta func-
tions of different dimensions (or derivatives of those), representing charges evenly distributed on 
D dimensional branes, in the most general sense. Some particular cases will be considered after 
general results are obtained. To avoid the problematic case of coinciding sources, we shall always 
consider that D⊥ = 1, 2, 3, . . ., while D can be any integer, including zero, which corresponds to 
point-like sources.

Let us consider a massive real scalar field φ in a Lorentz-symmetry breaking scenario, defined 
by the following Lagrangian density [50,51],

L = 1

2
∂μφ∂μφ − 1

2
m2φ2 + 1

2
vμvν∂μφ∂νφ + Jφ , (1)

where m stands for the scalar field mass, J is the external source and vμ is the Lorentz violating 
background vector which is a dimensionless quantity, assumedly very small.

The scalar model considered by us can be related (in the massless case) with the LV modifica-
tion of electrodynamics studied in [18]: the two bosonic degrees of freedom of the electromag-
netic field have essentially the same dynamics as described by the massless limit of Eq. (1), so we 
will be able to reproduce some of the results presented in [18]. The choice of the simplified scalar 
model we consider allows to obtain more general, and even some exact, results, at the price of not 
being directly comparable with experiments. The Lorentz violating background is parametrized 
by a single vector coefficient vμ, which justify the denomination of “aether-like” scalar model 
used for example in [50,51]. A general parametrization for LV in a single scalar field theory have 
recently been proposed in [47], and the model studied by us can be seen as a particular case of 
the minimal (involving only operators of mass dimension not greater than four), CPT-even LV 
operator involving the Klein-Gordon field denoted as

LLV = 1
kμν
c ∂μφ∂νφ , (2)
2
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where kμν
c can be considered to be traceless, since its trace corresponds to a Lorentz invariant 

correction to the kinetic term, which can be eliminated via a redefinition of the field and the
parameters of the theory. Our model corresponds to the particular choice kμν

c = vμvν . Notice 
that the tracelessness condition of kμν

c , in our particular case, is equivalent to v2 = vμvμ = 0, 
which is a condition we can impose without actually modifying any of the results we will present, 
except for the calculation presented in the Appendix.

It is known that in a single-field theory, the LV contained in Eq. (2) can actually be eliminated 
by means of a coordinate choice, absorbing kμν

c in the spacetime metric itself [52,53]. However, 
in a general scenario, involving different fields and interactions among them, this can be done for 
only one field at a time. Also, the presence of the mirror, which by itself already breaks Lorentz 
invariance, precludes the elimination of the LV by a coordinate redefinition. This is why it is still 
important to investigate the consequences of the LV described by Eq. (2), since we can always 
imagine the scalar field as belonging to a more complicated theory, where we are actually not 
allowed, or it is not preferred to use this freedom to eliminate kμν

c from the theory. We can still 
use this freedom, however, to check the validity of one of our results, as we will comment shortly.

The free propagator G0 (x, y) is the inverse of the kinetic operator O,

O = � + m2 + (v · ∂)2 , (3)

which can be calculated by standard field theory methods. In the Fourier representation, we can 
write

G0 (x, y) =
ˆ

dD+D⊥+1p

(2π)D+D⊥+1

eip·(x−y)

[p2 + (p · v)2 − m2] . (4)

This propagator is the basic ingredient we need to obtain several physical quantities. For example, 
since the theory is quadratic in the field variables φ, it can be shown that the contribution of the 
source J (x) to the vacuum energy of the system is given by [54,55]

E = 1

2T

¨
dD+D⊥+1x dD+D⊥+1y J (x)G0 (x, y)J (y) , (5)

where T → ∞, T being the time coordinate.

2.1. Charges distributions

As discussed in [54,55], a stationary and uniform scalar charge distribution lying along D-
dimensional parallel branes can be described by the external source

JI (x) =
N∑

k=1

σkδ
D⊥ (x⊥ − ak) , (6)

where ak , k = 1, . . . , N , are N fixed D⊥-dimensional spatial vectors describing the position of 
the branes in the transversal space, and the parameters σk are the coupling constants between 
the field and the delta functions, playing the physical role of generalized charge densities on the 
branes. Substituting (6) into (5), discarding the self-interacting energies, we have

EI = 1

2T

N∑
k=1

N∑
l=1

σkσl (1 − δkl)

×
¨

dD+D⊥+1x dD+D⊥+1y δD⊥ (x⊥ − ak)G0 (x, y) δD⊥ (y⊥ − al ) , (7)
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where δkl is the Kronecker delta. This expression can be simplified by using Eq. (4) and com-
puting the integrals in the following order, dD⊥x⊥, dD⊥y⊥, dx0, dDx‖, then introducing the 
Fourier representation for the Dirac delta function and integrating in dp0, dDp‖, identifying the 
time interval as T = ´

dy0, and LD = ´
dDx‖ as being the volume of a given brane. After these 

manipulations, we obtain

EI = EI

LD
= −1

2

N∑
k=1

N∑
l=1

σkσl (1 − δkl)

ˆ
dD⊥p⊥
(2π)D⊥

e−ip⊥·akl

[p2⊥ − (v⊥ · p⊥)2 + m2] , (8)

where akl = ak − al and we have defined EI as the energy per unit of D-brane volume.
In order to calculate the remaining integral in (8), we proceed as in [17,38] and take into 

account the relative orientation of the vector p⊥ = (p1, . . . , pD⊥
)

and the spatial components 
perpendicular to the sources of the Lorentz violating vector, i.e., v⊥ = (v1, . . . , vD⊥

)
, hence we 

split p⊥ into two parts, one parallel and the other normal to v⊥, namely p⊥ = p⊥n + p⊥p , where

p⊥p = v⊥
(v⊥ · p⊥

v2⊥

)
, p⊥n = p⊥ − v⊥

(v⊥ · p⊥
v2⊥

)
, (9)

so that p⊥n · v⊥ = 0 by construction. Now we define the vector q⊥ = (q1, . . . , qD⊥
)

as follows,

q⊥ = p⊥n + p⊥p

√
1 − v2⊥ . (10)

With these definitions one may write

p⊥p = v⊥(v⊥ · q⊥)

v2⊥
√

1 − v2⊥
, p⊥n = q⊥ − v⊥(v⊥ · q⊥)

v2⊥
, (11)

leading to

p⊥ = q⊥ + (v⊥ · q⊥)v⊥
v2⊥

⎛
⎜⎝ 1√

1 − v2⊥
− 1

⎞
⎟⎠ , (12)

and

q2⊥ = p2⊥ − (v⊥ · p⊥)2 . (13)

Another definition which will be useful in what follows is

bkl = akl +
⎛
⎜⎝1 −

√
1 − v2⊥√

1 − v2⊥

⎞
⎟⎠
(

v⊥ · akl

v2⊥

)
v⊥ , (14)

such that

p⊥ · akl = bkl · q⊥ . (15)

Finally, the Jacobian of the transformation from p to q can be calculated from (11), resulting in

det

[
∂p⊥
∂q⊥

]
= 1√

1 − v2
. (16)
⊥
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Putting all the previous expressions together, we end up with

EI = −1

2

N∑
k=1

N∑
l=1

σkσl (1 − δkl)√
1 − v2⊥

ˆ
dD⊥q⊥
(2π)D⊥

e−iq⊥·bkl

q2⊥ + m2
, (17)

and now the integral can be solved exactly [54], leading to

EI = −1

2

mD⊥−2

(2π)D⊥/2

1√
1 − v2⊥

N∑
k=1

N∑
l=1

σkσl (1 − δkl) (mbkl)
1−(D⊥/2) K(D⊥/2)−1 (mbkl) ,

(18)

where Kn(x) stands for the K-Bessel function [56], and

bkl =| bkl |=
√

a2
kl + (v⊥ · akl)

2

1 − v2⊥
. (19)

Expression (18) is an exact result, which gives the interaction energy per unit of D-brane 
volume between N D-dimensional steady and uniform field sources for the model. As expected, 
for vμ = 0 or v⊥ = 0 expression (18) reduces to the standard Lorentz invariant result obtained in 
[54]. In the final result, the presence of the LV amounts to the dependence of the energy not only 
on the perpendicular distance between the sources, akl , but also on the orientation of the sources 
relative to the LV vector v⊥.

It is interesting to notice that the possibility of removing the LV from the theory via a coordi-
nate choice allows us to find an alternative derivation of this result, which serves as a consistency 
check. If we consider the coordinate change

xμ → x′μ = xμ − 1

2

(
vνxν

)
vμ , (20)

we can rewrite our model as a scalar theory living in a spacetime with a modified metric given 
by,

gμν = ημν − vμvν , (21)

in the first nontrivial order of v. Clearly, this metric effectively absorbs the LV term present in 
Eq. (1), so our theory is actually equivalent to the Lorentz invariant model given by

S [φ,J ] =
ˆ

d4x
√−gL0 (φ, ∂φ,J ) , (22)

where L0 corresponds to Eq. (1) with v = 0, and we have dropped the primes on the new 
coordinates. The determinant of the modified metric can be shown to be, in the first order, √−g = √

1 − v2, where we are not considering v2 = 0 for reasons that will be clear shortly. 
The determinant factor in Eq. (22) can be absorbed by the rescaling

(
1 − v2

)1/4
φ → φ ,

(
1 − v2

)1/4
J → J . (23)
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The end result is a model identical to the one considered in [54], where LV have disappeared 
completely. The resulting energy can be read from that reference, being given by

ELI = −1

2

mD⊥−2

(2π)D⊥/2

N∑
k=1

N∑
l=1

σkσl (1 − δkl) (makl)
1−(D⊥/2) K(D⊥/2)−1 (makl) . (24)

We can re-obtain (at the leading order) the result of the LV case, Eq. (18), by applying the 
inverse of the coordinate choice (20). One subtle point, however, is the following: in deriving the 
energy density, we integrate over delta functions of the form δ

(
p0
)

and δD
(
p‖
)
, which ends up 

eliminating all the dependency on the temporal and parallel parts of vμ. As a result, in order to 
obtain our result, we have to set vμ → v⊥. Therefore, we consider the inverse coordinate choice 
as

xi⊥ → xi′⊥ = xi⊥ + 1

2
vi⊥v

j
⊥x

j
⊥ , (25)

where the sum over repeated Latin indices is implied. Applying this transformation to the sepa-
ration vector akl , we obtain for the modulus of a′

kl ,

a′
kl =

√
a2
kl + (v⊥ · akl)

2 , (26)

where terms of higher order in v⊥ were discarded. This reproduces Eq. (19), in the leading order. 
Finally, the inverse of the rescaling (23) is

φ →
(

1 + v2
)−1/4

φ , J →
(

1 + v2
)−1/4

J , (27)

and, noticing that 
√

1 + v2 →
√

1 − v2⊥, we obtain the 
(
1 − v2⊥

)−1/2
factor present in Eq. (18).

In order to gain insight into our results, we will now discuss some particular cases. For the 
massless case, we have to consider separately D⊥ = 2 and D⊥ 	= 2. Taking m = 0 in (17), the 
relevant integral is written as

EI (m = 0) = −1

2

N∑
k=1

N∑
l=1

σkσl (1 − δkl)√
1 − v2⊥

ˆ
dD⊥q⊥
(2π)D⊥

e−iq⊥·bkl

q2⊥
, (28)

and for D⊥ 	= 2 we may directly integrate this expression, by analytic continuation [54], obtain-
ing

EI (m = 0,D⊥ 	= 2) = − 2(D⊥/2)−3

(2π)D⊥/2

1√
1 − v2⊥

	

(
D⊥
2

− 1

) N∑
k=1

N∑
l=1

σkσl (1 − δkl)

×
[

a2
kl + (v⊥ · akl)

2

1 − v2⊥

]1−(D⊥/2)

, (29)

with 	 (x) standing for the Gamma Euler function. For the specific case of D⊥ = 2, this last 
expression is divergent, so a different regularization of the integral (28) is needed. We proceed 
as in [18,54,55], introducing a mass regulator M , as follows

EI (m = 0,D⊥ = 2) = −1

2

N∑
k=1

N∑
l=1

σkσl (1 − δkl)√
1 − v2

lim
M→0

ˆ
d2q⊥
(2π)2

e−iq⊥·bkl

q2⊥ + M2
, (30)
⊥
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so that we can use the integral [54]
ˆ

d2q⊥
(2π)2

e−iq⊥·bkl

q2⊥ + M2
= 1

2π
K0 (Mbkl) , (31)

as well as the asymptotic expression of the Bessel function for small arguments,

−K0 (Mbkl) = ln

(
Mbkl

2

)
+ γ , (32)

= ln

(
bkl

a0

)
− ln 2 + γ + ln (Ma0) , (33)

where γ is the Euler constant and a0 is an arbitrary constant length scale. Terms that not depend 
on the distances akl do not contribute to the force between the point-like currents, so they can be 
discarded. We therefore arrive at

EI (m = 0,D⊥ = 2) = 1

4π

√
1 − v2⊥

N∑
k=1

N∑
l=1

σkσl (1 − δkl) ln

(
bkl

a0

)
. (34)

Notice that in these manipulations, we exchanged the dependence on the arbitrary regulating 
mass M for a regulating length a0. Despite explicitly appearing in Eq. (34) to keep the argument 
of the logarithm dimensionless, a0 does not appear in derivatives of the energy, so it will not have 
any physical impacts.

In order to clarify the effects of the anisotropies generated by the Lorentz-symmetry breaking, 
we will now consider some examples derived from our general calculations. So, from now on we 
fix the dimensionality of spacetime to be 3 + 1, and the number of sources to be N = 2. When 
D⊥ = 3, D = 0 we have two point-like sources in 3 +1 dimensions, and the energy (18) becomes

EI (D⊥ = 3,D = 0,N = 2) = − σ1σ2

4π
√

1 − v2

e−mb

b
, (35)

where we discarded the sub-index ⊥ for simplicity, and

b = b12 = b21 =
√

a2
12 + (v · a12)

2

1 − v2 =
√

a2 + (v · a)2

1 − v2 . (36)

If v = 0, the expression (35) reduces to the well-known Yukawa potential, otherwise the factor 
proportional to (v · a)2 in the definition of b in (36) implies in a dependence of the energy on the 
relative orientation of the two charges and the LV background. As a noteworthy particular case, 
if the distance vector a is perpendicular to the background vector v, Eq. (35) becomes

EI (D⊥ = 3,D = 0,N = 2,v · a = 0) = − σ1σ2

4π
√

1 − v2

e−m|a|

| a | . (37)

In this case the coefficient 1/
√

1 − v2 can be absorbed into the definition of the coupling con-
stants σ1 and σ2, and Eq. (37) reduces to the standard Yukawa potential.

Another interesting limit is the massless one, when we obtain

EI (D⊥ = 3,D = 0,N = 2,m = 0) = − σ1σ2√
2

[
a2 + (v · a)2

2

]−1/2

. (38)

4π 1 − v 1 − v
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This result can be directly compared with the one obtained in the corresponding LV electrody-
namics (EM) model studied in [18]. Equation (16) of [18] presents the interaction energy between 
two point-like charges in electrodynamics as

EEM = +σ1σ2

4π

√
1 − v2

1 + v2

[
a2 + (v · a)2

1 − v2

]−1/2

. (39)

Besides the expected minus sign relating the scalar and EM result, one notices that the EM case 
depends on the temporal component v0, which decouples in the scalar model. Indeed, making 
v0 = 0, the result presented in Eq. (39) reproduces that of Eq. (38), with a minus sign. In general, 
the same happens for other quantities that we will calculate in the massless case, enabling us to 
reobtain the results presented in [18] as particular cases of the calculations presented in this case.

The force between two point-like scalar charges can be calculated from Eqs. (35) and (36), 
resulting in

FI (D⊥ = 3,D = 0,N = 2) = −∇EI (D⊥ = 3,D = 0,N = 2)

= − σ1σ2

4π
√

1 − v2

e−mb

b2

(
m + 1

b

)[
a + (v · a)v√

1 − v2

]
, (40)

which depends on the direction of the background vector. When m = 0, the interaction force can 
be written in the following way

FI (D⊥ = 3,D = 0,N = 2,m = 0) = − σ1σ2

4πa2

(1 − v2)â + (v · â)v[
1 − v2 + (v · â)2

]3/2 , (41)

where â is an unit vector which points on the direction of the distance vector a.
Notice that (41) is an anisotropic force that decays with the inverse square of the distance. 

In the special situation where v and â are perpendicular to each other, the force (41) becomes a 
Coulombian-like interaction with effective coupling constants σ → σ(1 − v2)−1/4. Since v is a 
small quantity, it is relevant to expand expression (41) in the lowest order in vμ,

FI (D⊥ = 3,D = 0,N = 2,m = 0) ∼= −σ1σ2

4π

1

a2

[(
1 + 1

2
v2 − 3

2

(
v · â)2) â + (v · â)v

]
.

(42)

The first term inside the brackets is proportional to â, is a force in the same direction of the 
Lorentz invariant case, but modulated by a function of the angle between a and v, the second 
term, however, is a new contribution proportional to the LV vector v itself.

An interesting consequence of the anisotropy in the interaction energy (35) is the emergence 
of an spontaneous torque on a scalar dipole, depending on its orientation relative to the LV 
background. To see this, we consider a typical scalar dipole composed by two opposite coupling 
constants σ1 = −σ2 = σ , placed at positions a1 = R + A

2 and a2 = R − A
2 , A taken to be a fixed 

vector. From Eq. (35), we obtain

Edipole
I (D⊥ = 3,D = 0,N = 2) = σ 2

4π
√

1 − v2

e−m|A|f (θ)

| A | f (θ)
, (43)

where

f (θ) =
√

1 + v2 cos2(θ)

1 − v2 , (44)
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and 0 ≤ θ ≤ π stands for the angle between A and the background vector v. This interaction 
energy leads to an spontaneous torque on the dipole as follows,

τ
dipole
I (D⊥ = 3,D = 0,N = 2) = −∂Edipole

I (D⊥ = 3,D = 0,N = 2)

∂θ

= − σ 2

8π | A |
v2(

1 − v2
)3/2

1

f 2(θ)

(
m | A | + 1

f (θ)

)
sin(2θ)e−m|A|f (θ) . (45)

This spontaneous torque on the scalar dipole is an exclusive effect due to the Lorentz violating 
background. If vμ = 0 (or, more specifically, v⊥ = 0), the torque vanishes, as it should, as well 
as for the specific configurations θ = 0, π/2, π . For the massless case the torque becomes

τ
dipole
I (D⊥ = 3,D = 0,N = 2,m = 0) ∼= − σ 2v2

8π | A | sin(2θ) , (46)

which exhibits a maximum value at θ = π/4. A similar effect was also described in [18,57].
One interesting question regards possible phenomenological implications of the presence of 

this LV induced torque on a dipole. Clearly, the scalar model cannot be directly applied to any 
low energy experiments, but as we mentioned, the results for the more realistic EM case are very 
similar, and indeed this spontaneous torque of order ∼ σ 2v2

8π |A| was also found in the EM calculation 
presented in [18]. The most obvious candidate for an experiment measuring such kind of torque 
would be some kind of torsion pendulum, where sensibilities for torques of order 10−16Nm (or 
10−26 × 1/
P in natural units, 
P being the Planck length) are possible [58]. However, this is 
still far from the order of magnitude of these induced torques, which for a dipole of centimeter 
size, and with charge of ne times the electron charge, would be of order

τLV ∼ v2n2
e × 10−37 × 1/
P . (47)

Since v2 should be certainly many orders of magnitude smaller than unity, it is hard to imagine 
that τLV could be measured with current technology.

The final examples we consider involve one and two dimensional sources, i.e., strings and 
planes. For D⊥ = 2, D = 1 and N = 2 we have two delta-like scalar charges distributions con-
centrated along two different parallel strings placed at a distance a from each other. In this case, 
from Eq. (18) the energy per string length reads

EI (D⊥ = 2,D = 1,N = 2) = − σ1σ2

2π

√
1 − v2⊥

K0 (mb) , (48)

which is reduced, in the case m = 0, to

EI (D⊥ = 2,D = 1,N = 2,m = 0) = − σ1σ2

2π

√
1 − v2⊥

ln

(
b

a0

)
, (49)

where we used (34).
Finally, for D⊥ = 1, D = 2 and N = 2, corresponding to two delta currents concentrated on 

parallel planes, we have

EI (D⊥ = 1,D = 2,N = 2) = − σ1σ2

2m

√
1 − v2

e−mb , (50)
⊥
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or, in the massless limit,

EI (D⊥ = 1,D = 2,N = 2,m = 0) = σ1σ2

2
√

1 − v2⊥

√
a2 + (v⊥ · a)2

1 − v2⊥
. (51)

2.2. Point-like dipoles

The technique developed in this section can be applied to other interesting systems, such as 
dipole distributions, when the relevant currents involve derivatives of delta functions. In this sub-
section we provide some results in the case of two steady point-like dipoles placed at fixed points 
in 3 + 1 dimensions. This setup can be described by external sources given by the directional 
derivatives of the Dirac delta function [54], as follows

JII (x) =
2∑

k=1

V(k) · ∇
[
δ3 (x − ak)

]
, (52)

where Vμ

(k) designates the dipole moments 1 and 2, taken to be fixed in the reference frame in 
which we are performing the calculations. Following the same steps presented in the previous 
section, we obtain for the interaction energy between the two dipoles,

EII = −
ˆ

d3p⊥
(2π)3 e−ip⊥·a

(
V(1)⊥ · p⊥

) (
V(2)⊥ · p⊥

)
[p2⊥ − (v · p⊥)2 + m2] , (53)

where a = a1 − a2 = a12.
Performing the same change in the integration variables as used in the previous section, and 

adopted in [17,38], using the definition (14), we end up with

EII = 1

4π

√
1 − v2⊥

e−mb

b3

{[
(mb)2 + 3 (mb + 1)

]
b2

[(
V(1)⊥ · a

) (
V(2)⊥ · a

)

+ (v · a)

1 − v2

[(
V(1)⊥ · a

) (
V(2)⊥ · v

)+ (V(2)⊥ · a
) (

V(1)⊥ · v
)]

+
(

v · a
1 − v2

)2 (
V(1)⊥ · v

) (
V(2)⊥ · v

)]

− (mb + 1)

[(
V(1)⊥ · V(2)⊥

)+
(
V(1)⊥ · v

) (
V(2)⊥ · v

)
1 − v2

]}
. (54)

In the massless case, we can use (14) and write

EII (m = 0) = 1

4π
√

1 − v2

[
a2 + (v · a)2

1 − v2

]−3/2{
3

[
a2 + (v · a)2

1 − v2

]−1

×
[(

V(1)⊥ · a
) (

V(2)⊥ · a
)+ (v · a)

1 − v2

[(
V(1)⊥ · a

) (
V(2)⊥ · v

)+ (V(2)⊥ · a
) (

V(1)⊥ · v
)]

+
(

v · a
1 − v2

)2 (
V(1)⊥ · v

) (
V(2)⊥ · v

)]− (V(1)⊥ · V(2)⊥
)−

(
V(1)⊥ · v

) (
V(2)⊥ · v

)
1 − v2

}
. (55)
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For the case where v = 0 or v = 0, we have the well-known result obtained in standard scalar 
field theory [54],

EII (m = v = 0) = σ1σ2

4π | a |3
[

3

(
V(1)⊥ · a

) (
V(2)⊥ · a

)
a2 − (V(1)⊥ · V(2)⊥

)]
. (56)

Different particular cases can be analyzed, and torques depending on the orientation of the 
dipoles relative to the LV background can be deduced. Since these results follow directly from 
the approach outlined in the previous subsection, we will not quote the explicit expressions here.

3. The propagator in the presence of a semi-transparent mirror

In this section we compute the propagator for the model (1) in the presence of a two-
dimensional semi-transparent mirror. We keep spacetime 3 + 1 dimensional hereafter, and take a 
coordinate system where the mirror is perpendicular to the x3 axis, located on the plane x3 = 0. 
This configuration is described by the potential μ2 δ(x3), where μ > 0 is a coupling constant with 
appropriate dimension, establishing the degree of transparency of the mirror: the limit μ → ∞
corresponds to a perfect mirror [59,60]. Therefore, the Lagrangian density is given by

L = 1

2
∂μφ∂μφ − 1

2
m2φ2 + 1

2
(v · ∂φ)2 − 1

2
μδ(x3)φ2 + Jφ . (57)

Here some comments are in order. The external delta-like potential in the Lagrangian (57) can 
be interpreted as a semi-transparent mirror for the scalar field due to the following reasons: we 
can show that the limit μ → ∞ of this coupling is equivalent to imposing Dirichlet boundary 
conditions on the scalar field on the x3 = 0 plane; besides, there is a close connection between 
the scalar field with Dirichlet boundary conditions and the electromagnetic field in the presence 
of a conducting plate, where the name mirror is more appropriate. In fact, a model for a semi-
transparent mirror with delta-like potentials can also be established for the electromagnetic field 
[61,62]. Finally, the presence of the delta function potential precludes the elimination of the LV 
by means of a coordinate choice, since while the (v · ∂φ)2 term can be absorbed by the kinetic 
term with the redefinition of the metric, the LV parameter vμ will reappear in the argument of 
the delta function potential that represents the mirror. Actually, the x3 = 0 plane in the original 
coordinates will be in general mapped to a new plane in 3 + 1 spacetime, with v dependent 
orientation.

The propagator G(x, y) for this theory satisfies the differential equation[� + m2 + (v · ∂)2 + μδ(x3)
]
G(x,y) = −δ4(x − y) , (58)

and also a kind of Bethe-Salpeter equation

G(x,y) = G0(x, y) +
ˆ

d4z G(x, z)μδ(z3)G0(z, y) , (59)

where G0(x, y) is the free propagator given by the Eq. (4), which solves (58) without the po-
tential. From now on, we define xμ

p = (x0, x1, x2) and pμ
p = (p0, p1, p2) as the coordinates and 

momentum parallel to the mirror, respectively.
In order to solve Eq. (58), it is convenient to write G(x, y) and G0(x, y) as Fourier transforms 

in the parallel coordinates, as follows,
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G(x,y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp)G(pp;x3, y3) , (60a)

G0(x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp)G0(pp;x3, y3) , (60b)

where G(pp; x3, y3) and G0(pp; x3, y3) stand for the reduced Green’s functions [59,60]. Substi-
tuting (60) in (59) and performing some manipulations we arrive at

G(pp;x3, y3) = G0(pp;x3, y3) + μG(pp;x3,0)G0(pp;0, y3) . (61)

Setting y3 = 0 in (61), we can obtain G(pp; x3, 0) strictly in terms of G0(pp; x3, 0). Using 
the result back again in Eq. (61), we obtain

G(pp;x3, y3) = G0(pp;x3, y3) + μG0(pp;x3,0)G0(pp;0, y3)

1 − μG0(pp;0,0)
. (62)

Substituting (62) in equation (60) leads to

G(x,y) = G0(x, y) + Ḡ(x, y) , (63)

where

Ḡ(x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp) μG0(pp;x3,0)G0(pp;0, y3)

1 − μG0(pp;0,0)
. (64)

The propagator (63) is composed of the sum of the free propagator (4) with the correction 
(64), which accounts for the presence of the semi-transparent mirror. Taking the limit μ → ∞ in 
(62) and evaluating the resulting expression for x3 = 0, we can show that

lim
μ→∞G(pp;x3 = 0, y3) = G0(pp;0, y3) − G0(pp;0,0)G0(pp;0, y3)

G0(pp;0,0)
= 0 , (65)

so the Green’s function of the model satisfies the Dirichlet boundary condition on the plane 
x3 = 0 in the limit μ → ∞. In this sense, we can interpret the delta-like external potential in (57)
as a kind of mirror, with degree of transparency given by μ.

From now on, we will calculate Ḡ(x, y) for different configurations of the mirror with respect 
to the background vector.

3.1. The propagator in the lowest order in v

Since vμ is assumedly a very small parameter, we will perform the calculations perturbatively 
up to the second order in vμ, which is the lowest order in which the background vector appears 
non-trivially. Expanding the propagator (4), we obtain

G0(x, y) =
ˆ

d4p

(2π)4

eip·(x−y)

(p2 − m2)

[
1 − (p · v)2

(p2 − m2)

]
. (66)

Splitting G0(x, y) into parallel and perpendicular coordinates with respect to the mirror, we have

G0(x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp)

[ˆ
dp3

2π

e−ip3(x3−y3)

(p2 − m2)

(
1 − (p · v)2

(p2 − m2)

)]
, (67)
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where p3 stands for the momentum perpendicular to the mirror. From Eq. (60), we identify the 
term between brackets on the right hand side of Eq. (67) as being G0(pp; x3, y3).

The fact that [59]

ˆ
dp3

2π

e−ip3(x3−y3)

(p2 − m2)
= −e−λ|x3−y3|

2λ
, (68)

where λ =
√

m2 − p2
p , leads to,

G0(pp;x3, y3) = −e−λ|x3−y3|

2λ

{
1 + 1

2

[(
pp · vp

)2
λ2

(
1 + λ | x3 − y3 |

)

− 2iv3
(
x3 − y3

)(
pp · vp

)+ (v3)2
(

1 − λ | x3 − y3 |
)]}

, (69)

with vμ
p = (v0, v1, v2) and v3 standing for the background vector parallel and perpendicular to 

the mirror, respectively. Substitution of this last expression into Eq. (64), and taking into account 
contributions up to second order in vμ, provides

Ḡ(x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp)

{
1 + (pp · vp)2

2λ2

[(
4λ + μ

2λ + μ

)
+ λ(| x3 | + | y3 |)

]

− iv3(x3 − y3)(pp · vp) + (v3)2

2

[(
4λ + μ

2λ + μ

)
− λ(| x3 | + | y3 |)

]}

× μe−λ(|x3|+|y3|)

2λ(2λ + μ)
. (70)

As expected in this perturbative result, the limit vμ → 0 correctly reproduces the standard result 
for the scalar field theory in the presence of a semi-transparent mirror [59].

3.2. Exact propagators

There are two special cases for which we carry out the calculations without the necessity 
of treating the background vector perturbatively, corresponding to the spacial part of vμ being 
parallel and perpendicular to the mirror. In this subsection we present the exact propagator in the 
presence of a semi-transparent mirror in these cases.

When the component of the background vector perpendicular to the mirror is equal to zero 
(v3 = 0), we have (see the Appendix)

G0(pp;x3, y3) = −e−L|x3−y3|

2L
, (71)

where L =
√

m2 −
[
p2

p + (pp · vp)2
]
. Substituting (71) in (64), we arrive at

Ḡ(x, y) =
ˆ

d3pp

3 eipp ·(xp−yp) μe−L(|x3|+|y3|)
. (72)
(2π) 2L(2L + μ)
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On the other hand, when vμ
p = 0 and v3 	= 0, we can write (see the Appendix)

G0(pp;x3, y3) = −e
−λ
(√

1−(v3)2
)−1|x3−y3|

2λ
√

1 − (v3)2
, (73)

what leads to

Ḡ(x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp) μe
−λ
(√

1−(v3)2
)−1

(|x3|+|y3|)

2λ
√

1 − (v3)2
(

2λ
√

1 − (v3)2 + μ
) . (74)

It is easy to see that these expressions reproduce the result previously obtained when expanded 
up to the second order in vμ.

4. Charge-mirror interaction

Having calculated the relevant propagator in the previous section, here we consider the inter-
action energy between a point-like current and the semi-transparent mirror, which is given by 
[59]

E = 1

2T

¨
d4x d4y J (x)Ḡ(x, y)J (y) . (75)

Without loss of generality (due to translation invariance in the directions parallel to the mirror) 
and for simplicity, we choose a point-like scalar charge placed at a = (0, 0, a), corresponding to 
the source J (x) = σδ3(x − a). Again, we will present a result perturbative in v for the general 
case, and also exact results for particular cases.

4.1. Perturbative results

Expanding the expressions up to second order of v, following the same steps presented in the 
previous sections, we obtain

EMC = μσ 2

8π2

ˆ
d2pp

⎧⎪⎨
⎪⎩1 +

(
pp · vp

)2
2
(

p2
p + m2

)
⎡
⎢⎣
(

4
√

p2
p + m2 + μ

)
(

2
√

p2
p + m2 + μ

) + 2a

√
p2

p + m2

⎤
⎥⎦

+ (v3)2

2

⎡
⎢⎣
(

4
√

p2
p + m2 + μ

)
(

2
√

p2
p + m2 + μ

) − 2a

√
p2

p + m2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

× e
−2a

√
p2

p+m2

2
√

p2
p + m2

(
2
√

p2
p + m2 + μ

) , (76)

where a > 0 is the distance between the mirror and the charge. The sub-index MC means that 
we have the interaction energy between the mirror and the charge.

Equation (76) can be simplified by using polar coordinates, integrating out in the solid angle 
and performing the change of integration variable p → y = 2

√
p2 + m2 where | pp |= p,
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EMC = μσ 2

16π

∞̂

2m

dy
e−ay

(y + μ)

[
1 + v2

p

1

y2

(
y2

4
− m2

)(
(2y + μ)

(y + μ)
+ ay

)

+ (v3)2

2

(
(2y + μ)

(y + μ)
− ay

)]
. (77)

The relevant integrals can be found in [63],

∞̂

2m

dy
e−ay

(y + μ)
= eμaEi (1,2ma + μa) , (78)

∞̂

2m

dy
e−ay

y2 (y + μ)

(
y2

4
− m2

)(
(2y + μ)

(y + μ)
+ ay

)
= 1

2
eμaEi (1,2ma + μa) , (79)

and

∞̂

2m

dy
e−ay

(y + μ)

(
(2y + μ)

(y + μ)
− ay

)
= 2

[
(μa + 1) eμaEi (1,2ma + μa)

− (m + μ)

(2m + μ)
e−2ma

]
, (80)

where Ei (u, s) is the exponential integral function [56] defined by

Ei(n, s) =
∞̂

1

e−ts

tn
dt 
(s) > 0 , n = 0,1,2, · · · , (81)

which can be extended by analytic continuation as follows

Ei(n, s) = sn−1	(1 − n, s) , (82)

	 (m, s) being the incomplete Gamma function.
As a result, the interaction energy reads

EMC =μσ 2

16π

{
eμaEi (1,2ma + μa) + v2

p

2
eμaEi (1,2ma + μa)

+ (v3)2
[
(μa + 1) eμaEi (1,2ma + μa) − (m + μ)

(2m + μ)
e−2ma

]}
. (83)

This is a perturbative result and gives the interaction energy between a point-like scalar charge 
and a semi-transparent mirror in the massive case. The first term on the right hand side reproduces 
the result of the standard (Lorentz invariant) scalar field [59], the remaining terms are corrections 
due to the Lorentz symmetry breaking.

From the energy (83), we derive two kinds of physical phenomena. The first one is a force 
between the mirror and the charge,
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FMC = − ∂EMC

∂a
= − μσ 2

16πa

[(
1 + v2

p

2

)(
μaeμaEi (1,2ma + μa) − e−2ma

)
(84)

+ (v3)2

(
(2 + μa)μaeμaEi (1,2ma + μa)

− (μa + 1)e−2ma + 2
m + μ

2m + μ
mae−2ma

)]
, (85)

which is always attractive, provided that v2
p, (v3)2 << 1.

Let us define the following dimensionless functions,

Fp(x, y) = x

2

[
e−2y − xexEi (1,2y + x)

]
, (86)

F3(x, y) = x

[
(x + 1)e−2y − (x + 2) xexEi (1, y + x) − 2

(y + x)

(2y + x)
ye−2y

]
, (87)

and rewrite the force (84) in the form

FMC = σ 2

16π

1

a2

[
μa
(
e−2ma − μaeμaEi (1,2ma + μa)

)

+ v2
p

2
Fp(μa,ma) + (v3)2F3(μa,ma)

]
, (88)

where we have a Coulombian behavior modulated by the expression inside brackets. The correc-
tion due to the Lorentz symmetry breaking is given by the functions Fp and F3, the first one is 
associated with the components of the background vector parallel to the mirror and the second 
one, with the component perpendicular to the mirror. Fp is positive in its domain and F3 assume 
positive and negative values, as shown in Fig. 1 and 2. Both functions vanish in the limit μ = 0, 
where we have no mirror present.

The second phenomena is obtained when we fix the distance between the charge and the 
mirror and vary the orientation of the whole system with respect to the background vector. In 
this case, we can show that a torque emerges on the system. In order to calculate this torque, we 
define as 0 ≤ α ≤ π the angle between the normal to the mirror (x̂3) and the background vector, 
in such a way that

(v3)2 = v2 cos2(α) , v2
p = v2 sin2(α) , (89)

then the torque can be computed from Eq. (83) as follows,

τMC = −∂EMC

∂α

= −μσ 2v2

16π
sin(2α)

[(
μa + 1

2

)
eμaEi (1,2ma + μa) − (m + μ)

(2m + μ)
e−2ma

]
. (90)

Equation (90) is a new effect, which disappears in the v = 0 limit. Defining the function

T (x, y) = x

[
(y + x)

e−2y −
(

x + 1
)

exEi (1,2y + x)

]
, (91)
(2y + x) 2
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Fig. 1. Function Fp , appearing in the force described in Eq. (88), where the vertical axis is in arbitrary units.

Fig. 2. Function F3, appearing in the force described in Eq. (88), where the vertical axis is in arbitrary units.

we can write Eq. (90) in the form

τMC = σ 2v2

16π

1

a
sin(2α)T (μa,ma) . (92)

In Fig. 3, we show the behavior of T in terms of μa and ma. The function is positive except in 
a very small region around μa = ma = 0, and goes to zero if ma is large or μa approaches zero. 
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Fig. 3. Function T of Eq. (91), where the vertical axis is in arbitrary units.

Fig. 4. Graph of the function T for ma = 0 (dash-point), ma = 0.1 (dash) and ma = 0.2 (solid) as a function of μa, 
where the vertical axis is in arbitrary units.

This behavior can also be seen in Fig. 4, where we have three plots, with three different values 
for the mass, in the vicinity of μa = 0. In the limit μa → 0, the result in Eq. (91) vanishes, 
as expected. This torque and the force modulation contained in Eq. (88) are phenomenological 
signatures of the Lorentz violation introduced by the vμ, and might be relevant in experimental 
setups involving mirrors.
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For the massless case, the energy (83) becomes

EMC (m = 0) = μσ 2

16π

{
eμaEi (1,μa) + v2

p

2
eμaEi (1,μa)

+ (v3)2 [(μa + 1) eμaEi (1,μa) − 1
]}

. (93)

The limit μ → ∞ is interesting, corresponding physically to the field subjected to Dirichlet 
boundary conditions in the plane. In this limit, we have a perfect two-dimensional mirror and, 
from Eq. (83), we obtain

EMC (μ → ∞) = σ 2

16π

e−2ma

a

(
1 + v2

p

2
− ma(v3)2

)
. (94)

The first term on the right hand side is the three-dimensional Yukawa potential between two 
charges at a distance 2a apart. The second and third terms are corrections due to the Lorentz 
symmetry breaking up to second order in vμ. The corresponding interaction force between the 
point-like charge and the perfect mirror is given by

FMC (μ → ∞) = −∂EMC (μ → ∞)

∂a

= σ 2

8π

e−2ma

a

[(
1 + v2

p

2

)(
m + 1

2a

)
− m2a(v3)2

]
. (95)

In Eq. (40) we have the interaction force between two point-like scalar charges for the model 
(1). Expanding this expression up to second order in vμ, we can obtain the interaction force for 
the special case where we have two opposite point-like charges, σ1 = σ and σ2 = −σ , placed at 
a distance 2a apart. In this specific situation, this force turns out to be equivalent to Eq. (95). The 
interesting conclusion is that the image method is valid for the Lorentz violation theory (1) up to 
second order in vμ for the Dirichlet boundary condition.

Taking the limit when μ → ∞ in Eq. (93) or equivalently putting m = 0 in (94), we obtain 
the interaction energy between a point charge and a perfect mirror for the massless scalar field, 
and consequently the interaction force,

FMC (μ → ∞,m = 0) = σ 2

16πa2

(
1 + v2

p

2

)
, (96)

which is the usual Coulombian force with an overall minus sign between the scalar charge and 
its image, placed at a distance 2a apart. With the same analysis, one can argue that Eq. (96) is 
in agreement with Eq. (42), and again the validity of the image method is verified. In the same 
limit, from Eq. (90), we have

τMC (μ → ∞,m = 0) = −∂EMC (μ → ∞,m = 0)

∂α
= σ 2v2

32πa
sin(2α) . (97)

When α = 0, π/2, π , corresponding to the mirror being parallel, perpendicular or antiparallel to 
the background vector v, the torque (97) vanishes. The configurations α = 0, π are stable equilib-
rium situations, while for α = π/2 we have an unstable equilibrium point. When α = π/4, 3π/4, 
the torque (97) exhibits its maximum and minimum values, respectively. The equilibrium situa-
tion is attained when the mirror is parallel or antiparallel to the background vector.
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4.2. Exact results

The first case in which we can provide exact results is when vμ = v
μ
p , what leads to

EMC = μσ 2

8π2

ˆ
d2pp

e
−2a

√
p2

p−(pp ·vp

)2+m2

2
√

p2
p − (pp · vp

)2 + m2

(
2
√

p2
p − (pp · vp

)2 + m2 + μ

) . (98)

Performing a change in the integration variables similar to the one we have made in the Appendix, 
and then using polar coordinates, we have

EMC = μσ 2

4π
√

1 − v2
p

∞̂

0

dq q
e−2a

√
q2+m2

2
√

q2 + m2
(

2
√

q2 + m2 + μ
) . (99)

Now, carrying out the change of integration variable y = 2
√

q2 + m2, we obtain

EMC = μσ 2

16π
√

1 − v2
p

eμaEi (1,2ma + μa) . (100)

Equation (100) gives the exact expression for the interaction energy between a point-like current 
and a semi-transparent mirror for the special case where the background vector has only the 
parallel components to the mirror. We notice that (100) is the usual result found in standard 

scalar field theory with an effective coupling constant σ → σ
(

1 − v2
p

)−1/4
. Taking the limit 

μ → ∞ in Eq. (100) and computing the interaction force, we arrive at

FMC (μ → ∞) = σ 2

16π
√

1 − v2
p

e−2ma

a

(
2m + 1

a

)
, (101)

which is the interaction force characterized by the Dirichlet’s boundary condition.
In Eq. (40) we have the exact interaction force between two point-like currents. For the special 

situation where v3 = 0, σ1 = σ, σ2 = −σ and a → 2a, this result turns out to be equivalent to 
Eq. (101). Thus, we again verify that for this special case, (v3 = 0), the image method is valid.

The second exact case we discuss is when only v3 is nonzero, what leads to the result

EMC = σ 2

16π

μ[
1 − (v3)2

]eμa
[
1−(v3)2]−1

Ei

(
1,2ma

[
1 − (v3)2

]−1 + μa
[
1 − (v3)2

]−1
)

.

(102)

Eq. (102) is equivalent to the result obtained in standard scalar field theory with an effec-

tive mass m → m 
[
1 − (v3)2

]−1
and an effective degree of transparency of the mirror μ →

μ 
[
1 − (v3)2

]−1
. From Eq. (102) we can compute the interaction force in the limit μ → ∞, 

resulting in

FMC (μ → ∞) = σ 2

16π

e−2m
[
1−(v3)2

]−1
a

a

(
1

a
+ 2m

[
1 − (v3)2

]−1
)

. (103)

For the massless case, the interaction force (103) becomes the corresponding Coulombian in-
teraction between two charges at a distance 2a apart with an overall minus sign. Thus, in this 
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particular scenario, Lorentz violation effects disappear from the end result. As before, taking 
vμ
p = 0, σ1 = σ, σ2 = −σ and a → 2a in Eq. (40), we reproduce the result in Eq. (103). Thus, 

the image method is also valid for the case where vμ = (0,0,0, v3
)
.

It is important to mention that the validity of the image method in a Lorentz-violating scenario 
is a non-trivial result, since the presence of the LV background reduces the symmetry of the 
problem, which is a key element in the application of the method. This suggests that the presence 
of mirrors in Lorentz-violating scenarios is a subject which deserves more investigation.

5. Final remarks

In this paper, we investigated the interactions between external sources for a massive real 
scalar field in the presence of an aether-like CPT-even Lorentz symmetry breaking term. First 
we performed an analysis in D⊥ + D + 1 dimensions where we considered steady field sources 
concentrated along parallel D-branes, without recourse to any approximation schemes. We dis-
cussed some particular instances of our general results and observed effects with no counterpart 
in the standard (Lorentz invariant) scalar field theory. For example, we have shown the emer-
gence of an spontaneous torque on a classical scalar dipole which is an exclusive effect due to 
the Lorentz symmetry breaking, agreeing with results obtained in different, more complicated 
models such as [57].

Afterwards, some consequences of the Lorentz violation theory (1) due to the presence of a 
semi-transparent mirror were studied in 3 +1 dimensions. We considered different configurations 
of the background vector, starting by taking into account all the components of the background 
vector, and treating it perturbatively up to second order. Next, we provided exact results for 
two special cases, specifically when the background vector has only components parallel and 
perpendicular to the mirror. For all these configurations of the background vector, we obtained 
the propagator for the scalar field and the interaction force between the mirror and a point-
like current. We showed that the image method is valid in the considered theory for Dirichlet 
boundary condition. We also showed that a new effect arises from the obtained results, a torque 
acting on the mirror according to its positioning with respect to the background vector.

These results suggest that the extension of these studies to more general LV models is a very 
interesting prospect. Despite not being directly applicable to the phenomenological search of 
Lorentz violation established within the formalism of the Standard Model extension [1–4], the 
scalar field can still be explored as a prototype, establishing interesting effects of LV yet to be 
explored. A first natural extension of our results would be to more general LV backgrounds 
as described by Eq. (2). The extension of these studies for non-minimal (higher-derivative) LV 
models would also be of interest.
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Appendix A. The Eqs. (71) and (73)

In this appendix we provide additional details on the computation of Eqs. (71) and (73). We 
note that in some of the intermediate expressions that follow, the condition v2 = 0 cannot be 
imposed to ensure the tracelessness of the LV coefficient kμν defined in Eq. (2); however, this 
condition can be safely imposed in the final result, from which one can obtain, in the proper 
limiting cases, the perturbative results previously obtained, thus ensuring the consistency of the 
calculation.

Starting from Eq. (4), in order to put G0 (x, y) in an appropriated form, we have to carry out 
a change of the integration variables similar to the ones employed in references [17,38]. We split 
the four-vector momentum pμ into two parts, one parallel, pμ

pa , and the other normal, pμ
no, to the 

Lorentz violation parameter vμ,

pμ = pμ
no + pμ

pa , p =
(v · p

v2

)
vμ , pμ

no = pμ −
(v · p

v2

)
vμ , (A.1)

where pno · v = 0 and (p · v)2 = p2
pav

2. Now, we define the four-vector qμ

qμ = pμ
no + pμ

pa

√
1 + v2 = pμ +

(v · p
v2

)
(
√

1 + v2 − 1)vμ . (A.2)

With definitions (A.1) and (A.2), we have

pμ
pa = (v · q)

v2

vμ

√
1 + v2

, pμ
no = qμ − (v · q)

v2 vμ , (A.3)

pμ = qμ + (v · q)

v2

(
1√

1 + v2
− 1

)
vμ ,

and

q2 = p2 + (p · v)2 . (A.4)

With the aid of the definition

bμ = (xμ − yμ
)+
(

1 − √
1 + v2

√
1 + v2

)(
v · (x − y)

v2

)
vμ , (A.5)

and Eq. (A.3), we obtain

p · (x − y) = b · q. (A.6)

The Jacobian of the transformation from pμ to qμ can be calculated from Eq. (A.3)

det

[
∂pμ

∂qν

]
= − 1√

1 + v2
. (A.7)

Using these results, we obtain

G0 (x, y) = − 1√
1 + v2

ˆ
d4q

(2π)4

eib·q

(q2 − m2)

= − 1√
1 + v2

ˆ
d3qp

(2π)3 eibp ·qp

ˆ
dq3

2π

e−iq3b3

(q2 − m2)
. (A.8)
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The first integral in Eq. (A.8) is given by
ˆ

d3qp

(2π)3 eibp ·qp = −
√

1 + v2
p

ˆ
d3pp

(2π)3 eipp ·(xp−yp

)
, (A.9)

where we used the Eqs. (A.6) and (A.7), while the last integral is given by

ˆ
dq3

2π

e−iq3b3

(q2 − m2)
= −e−L|b3|

2L
, (A.10)

where L =
√

m2 − q2
p or, from Eq. (A.4), L =

√
m2 −

[
p2

p + (pp · vp

)2], and b3 is found by 

taking μ = 3 in (A.5), as follows,

b3 =
(
x3 − y3

)
+
(

1 − √
1 + v2

√
1 + v2

)(
v · (x − y)

v2

)
v3 . (A.11)

Collecting terms, we write

G0 (x, y) =
ˆ

d3pp

(2π)3 eipp ·(xp−yp

) ⎡⎣−1

2

√
1 + v2

p

1 + v2

e−L|b3|

L

⎤
⎦ . (A.12)

Finally, taking v3 = 0 in the term between brackets on the right-hand side of the Eq. (A.12), we 
obtain the Eq. (71). In the same way, taking vμ

p = 0, we obtain Eq. (73).
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