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Abstract

The ΛCDM model of cosmology has had resounding success in describing the evolution of the

Universe as a whole throughout cosmic history. This has been corroborated by a wide variety

of experiments and observations across all cosmic scales, and we have entered an era of precision

experiments that allow us to scrutinize the model’s predictions at smaller scales than ever. This

thesis presents a collection of studies on the impact of existing and upcoming observational data on

constraints of extensions to the standard cosmological model through thorough analyses of exper-

iment systematics, and the development of new methodology. We begin with a study of the Gaia

mission’s parallax zero point, and we show that Gaia data can independently secure uncertainties

of geometric anchors in future determinations of the local distance ladder. This will be useful for

verifying or disputing tensions between early- and late-time estimates of the Hubble constant, which

describes the present rate of the Universe’s expansion. We continue with a study of the impact of

detector crosstalk systematics on upcoming searches for primordial gravitational wave signatures in

the cosmic microwave background, which require unprecedented levels of sensitivity and precision.

The results of our work directly inform the development and design of future experiments. We then

present the development of the Small Correlated Against Large Estimator for directly quantifying

the small-scale statistics of gravitational lensing in the cosmic microwave background without the

need for traditional reconstruction of the lensing deflection field. Our method can be used to im-

prove our understanding of dark matter and matter clustering at the scales of galaxy clusters, and

it can help to provide a detection of the minimum neutrino mass in upcoming cosmic microwave

background experiments.
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Chapter 1

Introduction

1.1 Timeline and History of the Universe

C
ontemporary models of physical cosmology are generally constructed within the

paradigm of the theory of general relativity (Einstein, 1916, 1917). Detailed courses

in modern cosmology are provided by textbooks from which much of the introduc-

tion content is adapted in this chapter (Dodelson, 2003; Dodelson & Schmidt, 2020;

Baumann, 2022). Models of cosmology follow spacetime metrics that describe homogeneous and

isotropic geometries to be in line with observations. There exists a set of maximally-symmetric

spacetime metrics that satisfy these properties, and within it, three subclasses can be classified with

a parameter k which controls the curvature of the spacetime geometry, as well as a parameter a

which scales the spatial coordinates. The scale parameter is usually allowed to vary with time:

a(t). This is commonly referred to as the FLRW metric (derived independently by its namesakes:

Friedmann 1922; Lemâıtre 1933; Robertson 1935; Walker 1935), and it can be expressed in spherical

polar coordinates as follows

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.1)

where dΩ2 = dθ2 + sin2 θdϕ2, and in units of the speed of light c = 1. The spatial curvature k

defines the specific subclass of maximally-symmetric geometries that exist within the FLRW metric.

A spatially flat geometry can be defined with k = 0, which corresponds to Minkowski space in the

absence of the scale parameter. Contemporary experiments report results that are consistent with

a spatially flat Universe (Planck Collaboration et al., 2020a).

The scale parameter a(t) is typically defined such that at present time t0, a0 = a(t0) = 1, and

solutions to the Einstein equations using the FLRW metric indicate that the evolution of the scale

parameter are dependent on the energy density ρ and pressure P of all the contents of the Universe.

In particular, this set of solutions is typically referred to as the Friedmann equations, shown below

1
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H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.2)

ä

a
= −4πG

3
(ρ+ 3P ). (1.3)

One can define the critical density of the Universe today ρcrit,0 as the density of today’s Universe

required for a flat geometry (setting k = 0 in Equation (1.2))

ρcrit,0 =
3H2

0

8πG
. (1.4)

It is simplest to consider the evolution of the scale parameter by considering the components of

the Universe’s energy density individually. The reaction of each component of the energy density

then reacts uniquely to the expansion through the continuity equation. A simple way to obtain it is

to apply a time derivative to both sides of Equation (1.2) for a flat Universe (k = 0), and substitute

in the original version of Equation (1.2) (also flat) as well as Equation (1.3):

8πG

3
ρ̇ = 2

ȧ

a

(
ä

a
− ȧ2

a2

)
(1.5)

= −8πG

3
H(ρ+ 2P + 2ρ) (1.6)

ρ̇ = −3H(ρ+ P ) . (1.7)

The continuity equation Equation (1.7) describes the way energy is conserved throughout the

Universe’s expansion, and combining it with the equation of state w = P/ρ and solving for ρ

with Equation (1.7) yields ρ ∝ a−3(1+w). For each major component of the energy density, this

corresponds to:

ρ ∝





a−4 radiation ,

a−3 matter ,

a0 vacuum (dark) energy .

(1.8)

By defining dimension-less density parameters Ω = ρ/ρcrit, one can rework Equation (1.2) for

a Universe containing radiation (subscript r), matter (subscript m), and vacuum energy (subscript

Λ; also referred to as dark energy; see Einstein 1917; Zel’dovich 1968; Riess et al. 1998; Perlmutter

et al. 1999 for derivation from field equations and observational evidence; see Li et al. 2013 for a

review):

H2(a)

H2
0

= Ωr,0

(
a

a0

)−4

+Ωm,0

(
a

a0

)−3

+Ωk,0

(
a

a0

)−2

+ΩΛ,0. (1.9)

For a Universe with k ̸= 0, the density parameter associated with spatial curvature (subscript

k) is defined with respect to the sum of all other density parameters such that Ωk = 1−∑ΩX for

X ∈ {r,m,Λ}. The primary implication of Equation (1.9) is that the evolution of the Universe’s

scale factor a(t) is uniquely affected according to the abundance, distribution and behaviour of

each respective component of the Universe’s contents. Observational evidence (such as the cosmic
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Ch. 4
Ch. 5-6

Ch. 2-3

Figure 1.1: A simplified timeline of the Universe’s history adapted from NASA (2023). The topics of
this thesis span the entire range of the Universe’s history, from the early Universe to the present day.
Chapters 2-3 focus on improving local distance ladder measurements with Gaia data. Chapter 4
focuses on characterizing detector systematics in upcoming searches for inflationary signals in the
polarized cosmic microwave background. Chapters 5-6 focus on the development and application
of a novel estimator for the small-scale statistics of gravitational lensing in the cosmic microwave
background.

microwave background described in §1.2) support the expanding Universe model, and imply the

Universe’s origin from a hot Big Bang.

An important effect of cosmic expansion is that it induces cosmological redshift to photons

travelling extremely large distances, defined as a function of its observed wavelength λ0 and emitted

wavelength λ:

z =
λ0 − λ

λ
. (1.10)

The redshift can be related to the scale factor through the relation 1 + z = a−1. The expansion

of space in our Universe is monotonic, so cosmic time can be described with any of t, a, or z. It

is also useful to define the comoving distance χ and conformal time η. The comoving distance is a

non-observable parameterization of cosmic distance that takes into account its expansion. In units

of the speed of light c = 1, the comoving distance to a source at redshift z and emitting light at

time t1 which we observe at t0 is defined as:

χ =

∫ t0

t1

dt

a(t)
=

∫ z

0

dz

H(z)
. (1.11)

Similarly, conformal time is defined with respect to the time since the Big Bang t = 0:

η =

∫ t

0

dt

a(t)
. (1.12)

In summary, the combination of Equation (1.9) with modern observations suggests that:
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1. The Universe expands over time. That is to say that the distance between two points in space

are expected to increase over time following a(t),

2. The Universe’s contents, which can be described by energy densities ρ and Ω, are diluted due

to its expansion,

3. The Universe’s expansion rate H(t) is intricately tied to its contents at time t, and

4. The Universe had a hot, thermal origin followed by a period of expansion during which all

cosmic structures such as stars, galaxies, galaxy clusters eventually formed. Refer to Figure 1.1

for a general timeline of the Universe’s history.

The prevailing model of cosmology at present is spatially flat ΛCDM, in which dark energy (Λ)

and cold dark matter (CDM) are the dominant components of the Universe’s energy density today.

It particularly imposes that CDM makes up the entirety of the dark matter in the Universe, and

a majority of all matter. We further discuss dark matter models in §1.4.1. One of the attractive

features of ΛCDM is that it can be described by a total of six free parameters, with all remaining

physical cosmological parameters derived from some combination of those few (Planck Collaboration

et al., 2020a). We provide a glimpse into the Universe’s history in the context of ΛCDM in the

following sections of the chapter. We begin with an extensive review of the cosmic microwave

background in §1.2, with a particular focus on the effects of gravitational lensing from large-scale

massive structures in the Universe. §1.3 provides a brief overview of cosmic distance measurements

in the context of the Hubble constant H0 = H(z = 0). In §1.4, we bring into focus some of the

questions that cosmologists are working to answer today, and we connect the subjects in §1.2-1.3 to

the main content of this dissertation. Finally, we highlight some key statistical methods and tools

used in this thesis in §1.5, and provide an outline of its contents in §1.6.

1.2 The Cosmic Microwave Background

The cosmic microwave background (CMB) is a radiation signal originating from the early Universe.

This is when radiation was finally allowed to free-stream through the Universe after neutral hydrogen

was first formed (commonly, but inaccurately, referred to as recombination). This occurred at a

redshift of approximately z ≈ 1100. The original form of the CMB was a mostly uniform blackbody

of ∼ 3000K which has since been cosmologically redshifted to ∼ 2.73K (Mather et al., 1994). As

a continuous signal observed in all directions, the CMB’s signals have been studied by comparing

correlation statistics across various angular scales on the sky. The CMB temperature power spectrum

CTT
ℓ (defined in §1.2.2) quantifies anisotropies in the CMB temperature signal at various angular

scales. The observed anisotropies in the CMB temperature field today are on the order of ∼ 100µK,

and they have been studied with increasing ferocity over the last few decades. We begin this Section

with an overview of CMB observations in §1.2.1, followed by a review of the physics contained within

the CMB’s features.

The signals present in the observed CMB can be broadly divided into two categories: primary

and secondary anisotropies. Features of the CMB that were present as the photons were first free-

streaming away from the surface of last scattering are considered primary anisotropies. The primary

anisotropies in the CMB are sourced by density (also referred to as scalar) perturbations. Primary
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anisotropies reflect the characteristics of the CMB’s uncontaminated form, and the power/cross

spectra (defined as Equation (1.19) in §1.2.2) of the original CMB are heavily dependent on the

geometry and contents of the Universe at recombination. The primary features of the CMB have

been measured many times, and they have been shown to be consistent with ΛCDM (Bennett et al.,

2013; Planck Collaboration et al., 2020a; Aiola et al., 2020; Sobrin et al., 2022). Further studies

of the CMB’s primary fluctuations seek uncover minor inconsistencies with ΛCDM, which would

allow for extensions to the standard model that include novel physics and/or resolve tensions with

other observations. Many contemporary experiments are designed with polarization sensitivity to

characterize the CMB’s polarized features, usually decomposed into E- and B-modes, which we

define in §1.2.2. One example of an undetected feature of the primary CMB is the presence of

B-mode polarization generated due to primordial gravitational waves sourced by inflation. ΛCDM

predicts only E-mode polarization signals in the primary CMB, which are sourced from the Thomson

scattering of photons in inhomogeneous media which made up the environment at recombination.

Inflationary models naturally predict the existence of B-mode signals due to the gravitational waves

(also referred to as tensor perturbations) created by the rapid expansion of space, but the predicted

amplitudes of primary B-mode fluctuations are significantly lower than the E-mode signal, or even

secondary sources of B-mode polarization signals. A deeper discussion of the primary anisotropies

of the CMB is provided in §1.2.2.

Features imprinted on CMB photons after recombination as they travel towards us are considered

secondary anisotropies. These are induced by the large-scale structures (LSS) in between us and the

surface of last scattering through a variety of mechanisms. The physical processes that CMB photons

can experience also change as the LSS evolves over cosmic time. While secondary anisotropies have

historically been considered nuisances for the purposes of studying the primary CMB, deeper study

of CMB’s secondary anisotropies provide a unique probe of the development and evolution of LSS

in our Universe. We briefly describe a range of CMB secondary anisotropies in §1.2.3. The weak

gravitational lensing of CMB photons from LSS is an example of a CMB secondary feature, and it

is a key focus of this dissertation. A review of CMB lensing is provided in §1.2.4. We finish this

Section with a detailed description of a full observation and analysis procedure in §1.2.5.

1.2.1 History of Cosmic Microwave Background Observations

Evidence for the cosmic microwave background was indirectly observed as early as 1940, when

McKellar (1940) observed CN absorption lines from a stellar spectrum to infer a ‘maximum “ef-

fective” temperature of interstellar space’ to be 2.7K. The cosmic microwave background was first

directly detected by Penzias & Wilson (1965), who jointly reported an excess radio blackbody tem-

perature of TCMB = 3.5 ± 1.0 K that could be observed in all directions across the sky. They

eventually realized that their radio signature closely matched a radiative blackbody predicted by

Dicke et al. (1965) and Peebles (1965) from the principles of evolutionary cosmology described in

§1.1. Their pioneering work confirmed the existence of a smooth, isotropic radiation field pre-

dicted by contemporary cosmological models. A major subsequent breakthrough came from the

Cosmic Background Explorer (COBE; Smoot et al. 1991; Efstathiou et al. 1992; Mather et al.

1994), which was a satellite mission able to detect anisotropic structure in the CMB at a tem-

perature contrast of approximately ∆T/T ≳ 10−4 with their Differential Microwave Radiometer

(DMR; Smoot et al. 1991; Bennett et al. 1996). COBE also measured the CMB temperature to be
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TCMB = 2.726±0.010 K with the Far-InfraRed Absolute Spectrophotometer (FIRAS; Mather et al.

1994) instrument. The subsequent Balloon Observations Of Millimetric Extragalactic Radiation

and Geophysics (BOOMERanG; Netterfield et al. 2002) mission followed up on COBE’s discovery,

reporting the spatial flatness of the Universe by measuring the angular size of the first acoustic peak

of the power spectrum. The Wilkinson Microwave anisotropy Probe (WMAP) was another major

leap forward in CMB observations. This satellite mission mapped out the CMB across the entire sky

at 13 arcminute resolution across 5 frequencies along with polarization sensitivity (Dunkley et al.,

2009; Bennett et al., 2011, 2013). WMAP’s observations allowed cosmologists to precisely measure

cosmological parameters which predict the angular power spectra that were observed. The most

recent satellite mission was Planck, which further cemented our understanding of cosmological mod-

els (Planck Collaboration et al., 2014a,b, 2016a,b, 2020b,a). Planck ’s ΛCDM results are typically

used in the standard cosmological models for contemporary cosmological analyses, especially in the

context of early-Universe studies. There is a focus shift in contemporary CMB experiments, which

are now designed to study the CMB at higher resolution and sensitivity with polarization. One

exception is the search for a primordial B-mode polarization signal, which remains a major goal to

validate cosmic inflationary theories.

Current experiments include theAtacamaCosmology Telescope (ACT; Fowler et al. 2010; Dunk-

ley et al. 2011). ACT is a ground-based telescope whose team recently published their sixth data

release (Madhavacheril et al., 2023; Qu et al., 2023). The South Pole Telescope (SPT; Schaffer et al.

2011; Story et al. 2015; Henning et al. 2018; Chown et al. 2018) is another ground-based telescope

which has also recently upgraded their telescope to their SPT-3G configuration, and is continuing

observations with ∼ 16 000 detectors with polarization sensitivity (Sobrin et al., 2022). Both ACT

and SPT have mapped the CMB at high resolution, furthering our understanding of galaxy cluster-

ing related CMB secondaries including the Sunyaev-Zel’dovich effect and weak gravitational lensing

(both discussed later in this Section). The Cosmology Large Angular Scale Surveyor (CLASS;

Essinger-Hileman et al. 2014; Eimer et al. 2023) is a current ground-based survey covering 70% of

the sky to constrain parameters sensitive to large scales like τ or r. These experiments pave the

way for the next generation of high-resolution CMB observations. The Simons Observatory (SO;

Ade et al. 2019) is approaching first light. It is a ground-based telescope which will observe the

CMB at six frequencies with a total of 60 000 detectors targeting cosmological parameters that are

sensitive to both large and small angular scales. CMB-Stage IV (CMB-S4; Abazajian et al. 2016) is

a proposed ground-based experiment which will further the ambitions of the Simons Observatory at

even higher sensitivity. A report of the collaboration’s science goals can be found here: Abazajian

et al. (2019). Balloon-borne experiments are an effective way of avoiding atmospheric noise while

being cheaper than a space satellite mission. SPIDER (SPIDER Collaboration et al., 2021) is a good

example of such an experiment. The Lite (Light) satellite for the studies of B-mode polarization

and Inflation from cosmic background Radiation Detection (LiteBIRD; LiteBIRD Collaboration

et al. 2023) satellite is a Japanese-led mission which will observe the CMB at 15 frequency bands

with polarization sensitivity to constrain inflationary models.

The natural structure of the CMB angular power spectrum in T , E, and B decreases with

increasing multipole ℓ (or decreasing angular scale of resolution), and the power spectrum of the

noise from the detectors (after deconvolution of the beam) is expected to increase with ℓ. The

desired signal in the B fields is also expected to be significantly weaker than those observed from
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the other two. It is for this reason that each subsequent generation of CMB experiments shares the

recurring theme of improving detector sensitivity, and also increasing the number of detectors.

1.2.2 Primary Anisotropies

A majority of the signal in the cosmic microwave background originates from the physical structure

of the Universe’s contents at the time of recombination. The major components of the Universe

in the early Universe were the photons (radiation), dark matter, and baryonic matter. One way

to understand the structure of these constituents is to work forwards in time beginning from the

Big Bang. Current models of cosmology rely on inflationary theories in the earliest moments of the

Universe to seed a random distribution of over/under-densities of matter and radiation. It is worth

noting here that ΛCDM does not include cosmic inflation in its model, and further discussion on

inflation is provided in §1.4.3. Invoking an epoch of cosmic inflation can generate the necessary

starting point for structure evolution by dragging quantum curvature fluctuations into cosmic scales

(Baumann & McAllister, 2015), generating the initial density field which evolves into the structures

we see today. The distribution of matter at position x and conformal time η can be expressed

through the density ρ(x), or the density contrast:

δ(x, η) =
ρ(x, η)− ρ̄(η)

ρ̄(η)
, (1.13)

where ρ̄(η) is the mean matter density of the Universe at conformal time η. The density contrast

quantifies the relative density of matter at a given position and time. The statistics of the distribution

of matter are then contained in the matter power spectrum, defined through the Fourier transform of

the density contrast (with k as the Fourier analogue of x). The Fourier transform f(k) of a general

function f(x) is defined as:

f(k) =

∫
d3xf(x)e−ik·x , (1.14)

with inverse Fourier transform:

f(x) =

∫
d3k

(2π)3
f(k)eik·x . (1.15)

The matter power spectrum P (k, η) is defined in Fourier space with respect to the density contrast

δ(k, η):

⟨δ(k, η)δ∗(k′, η)⟩ = (2π)3P (k, η)δ3(k− k′) . (1.16)

The initial seeds of density (sometimes referred to as scalar) perturbations can be described by

an initial power spectrum, which are predicted differently depending on the flavour of inflationary

theory. Cosmic inflation is also predicted to produce gravitational wave (or tensor) perturbations,

which we cover briefly later in this section. Simple models of inflation predict an initial scalar

perturbation amplitude As, as well as spectral tilt ns which describe the height and shape of the

initial power spectrum respectively (Equations (1.28)–(1.29) in Baumann & McAllister 2015). One

can then work forward in time, taking into account all the interactions of matter fluctuations, to

predict the spectrum of fluctuations that is expected at the time of recombination.
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While the Universe was seeded all over with countless perturbations of various amplitudes and

sizes, it is informative to first consider the evolution of a single overdense perturbation in an otherwise

uniform field. Both dark matter and baryonic matter interact gravitationally. They move towards

regions of overdensities (or away from underdensities). Dark matter responds only to gravity, so

we expect the dark matter component of our perturbation to grow over time. Meanwhile, photons

interact directly with the (ionized) baryons through Thomson scattering off of free electrons, but not

with the dark matter. Protons scatter photons much less efficiently than electrons due to their mass,

and their nature as composites; however, they are strongly coupled to the free electrons through

Coulomb scattering. Another component of the energy density that one may consider are cosmic

neutrinos. These would have interacted gravitationally with all matter, but they were also relativistic

in the early Universe. This means that they simply free-stream away from the initial perturbation.

In summary, the baryons and photons were ‘coupled’, but the dark matter and photons were not.

Our overdense perturbation corresponds to a pressure gradient for the photons (and by extension

the baryons). The outward pressure of photons acts against gravity and carries the photon/baryon

fluid away from the initial overdensity at the sound speed. This continues until the Universe has

eventually expanded and cooled enough for the baryons to no longer be ionized (z ∼ 1100). By this

time, the acoustic wave will have propagated out to a distance depending on the sound speed of the

fluid cs. This is usually referred to as the sound horizon, which is parameterized as follows:

rs,CMB =

∫ tCMB

0

dt

a(t)
cs(t) =

∫ ∞

zCMB

dz

H(z)
cs(z) , (1.17)

where we have parameterized the integrals to describe the sound horizon at recombination, or the

surface of last scattering. See Eisenstein (2020) for a visual animation of the single perturbation’s

evolution, which produces a density peak at the sound horizon.

In reality, the Universe was seeded with many initial over/underdensities after inflation. These

initial perturbations were of quite small amplitude on an otherwise smooth background energy

density. The cosmological information of relevance is contained in the collective evolution of all

these perturbations (commonly referred to as baryon acoustic oscillations, or BAOs), resulting in a

statistical correlation, or preference, for structures at the scale of the sound horizon. The presence of

these acoustic oscillations in the density field at recombination is encoded within correlations between

CMB photons. The structural information of photons (and baryons) at the last scattering surface is

contained within the primary anisotropies of the CMB; hot spots indicate regions that were relatively

underdense, and cold spots indicate regions that were relatively overdense at the surface of last

scattering. This is explained by the Sachs-Wolfe effect, which postulates that photons from overdense

regions are redshifted more than photons from underdense regions due to the relative differences in

depth of each region’s respective gravitational potential wells. A full-sky CMB temperature map

can be typically transformed into a spherical harmonic representation, which is analogous to the

Fourier transform of a flat, 2D image. The spherical harmonic transform of a field described on

the unit sphere X(n̂) = X(θ, ϕ) is defined through a set of coefficients aXlm for predefined spherical

harmonics functions Yℓm(θ, ϕ) of multipole (or degree) ℓ and order m:

X(θ, ϕ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aXℓmYℓm(θ, ϕ) . (1.18)
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In spherical harmonics, the angular multipole can be thought of as analogous to a Fourier mode,

and it corresponds to an inverse of angular size α = 2π/(ℓ + 1). The distribution of temperature

contrasts as well as their angular sizes and separations is quantitatively described by the angular

power spectrum, which satisfies the following:

⟨aXℓmaYℓ′m′⟩ = CXY
ℓ δℓℓ′δmm′ , (1.19)

where aXℓm are the set of spherical harmonics coefficients for the field X at multipole ℓ and order m.

It is possible to take the cross spectrum of two different fields X and Y . The angular power spectrum

is a measure of the variance of the CMB field at a given angular scale α = 2π/(ℓ + 1). The CMB

temperature power spectrum CTT
ℓ is shown in Figure 1.2. The first peak at ℓ ∼ 200 corresponds

to an angular scale of 1◦, which is the angular size subtended by the BAO sound horizon at the

surface of last scattering rs,CMB (also referred to as the fundamental mode). Subsequent peaks of

the CMB temperature power spectrum are overtones of the fundamental mode, and still deeply tied

to the BAO physics. The amplitude of the primary CMB temperature power spectrum is quickly

suppressed at smaller angular scales, as the diffusion damping of photons erases the temperature

contrast information at smaller scales ℓ ≳ 2000 (Silk, 1968). In short, the photon/baryon fluid was

not perfectly coupled, and photons were able to diffuse from hot regions to colder regions through

the random motions in between scattering events.

The primary CMB is also expected to be linearly polarized due to quadrupolar temperature

structure at the surface of last scattering. Observed polarization information from the CMB is

typically decomposed into E- and B-mode components, which is a basis that is independent of

observer coordinates (Seljak & Zaldarriaga, 1996; Zaldarriaga & Seljak, 1997; Kamionkowski et al.,

1997; Zaldarriaga, 2001). The E- and B-mode transformation is defined such that both fields are

invariant to translations and rotations. The E-modes are additionally defined to be invariant to

reflections, and the B-modes are defined to change sign with a reflection. They are named as such

because the electric and magnetic fields in electromagnetism follow the same behaviour under those

transformations. CMB polarization is observed as linearly polarized light, which is described by the

Stokes parameters Q and U . The decomposition from linear Stokes parameters Q(ℓ) and U(ℓ) in

Fourier space (where θ is defined as the angle between a reference axis and ℓ̂) is defined as follows

(Dodelson, 2003):

E(ℓ) ≡ Q(ℓ) cos(2θ) + U(ℓ) sin(2θ) (1.20)

B(ℓ) ≡ −Q(ℓ) sin(2θ) + U(ℓ) cos(2θ) . (1.21)

The primary E-mode polarization is expected to be sourced by the quadrupolar temperature

structure which is present from the existing distribution of density fluctuations at recombination.

The epoch of inflation which we invoked earlier to source the scalar perturbations is also expected to

generate gravitational waves, which are tensor perturbations that are expected to generate primary

B-mode signals. In the absence of tensor perturbations, the primary BB power spectrum signal is

expected to be exactly zero. The B-mode polarization signal from tensor perturbations is expected

to be significantly weaker than either the scalar T or E-mode signals (refer back to Figure 1.2

for a visual comparison), and a detection of the primary B-mode signal is desired to quantify the
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Figure 1.2: Theoretical CMB primary TT , EE, and BB power spectra compared to their lensed
counterparts. A tensor-to-scalar ratio r = 10−3 is assumed. The noise spectrum NTT

ℓ at proposed
CMB-S4 levels is also shown.

ratio between the amplitudes of tensor and scalar perturbations. This parameter is the tensor-to-

scalar ratio r, and different models of cosmic inflation predict their own value of r (see Baumann &

McAllister 2015 for a nice review of inflationary theories). The current upper limit on r is r ≲ 0.06

(Planck Collaboration et al., 2020b), and the next generation of CMB experiments are aiming to

constrain r ≳ 10−3 (Ade et al., 2019; Abazajian et al., 2019; LiteBIRD Collaboration et al., 2023).

1.2.3 Secondary Anisotropies

A majority of the features in the observed CMB at scales ℓ ≲ 2000 are considered to originate from

the primary anisotropies discussed in the previous section, but there are also a number of secondary

anisotropies that are expected to be present in the CMB. These are sourced by the large-scale

structures (LSS) in between us and the surface of last scattering. One may take the perspective

that secondary anisotropies contaminate the primary signal in the observed CMB, but we show in

this Section that these secondaries impart valuable information about the distribution and evolution

of the structures from which they are generated. This is especially the case as experiments reach

higher sensitivities to probe the angular scales at which secondary anisotropies begin to dominate

the observed signal. We also show that secondary anisotropies maybe characterized and cleaned

from the observed CMB signal in many cases. Some examples of secondary anisotropies include

the thermal and kinetic Sunyaev-Zel’dovich effects (tSZ and kSZ), the integrated Sachs-Wolfe effect,

weak gravitational lensing, and others. In a similar sense to the secondary anisotropies, foreground

signals from dust emission may also contaminate the observed CMB. We reserve a more thorough

review of the weak gravitational lensing of the CMB for § 1.2.4, as it is the direct focus of Chapters 5-6

of this dissertation.
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A notable secondary feature of the CMB is the Thomson scattering of CMB photons after

recombination. The Universe remains neutral until the epoch of reionization, so this effect is typically

parameterized as the optical depth to reionization τ . The optical depth serves to generally suppress

the observed CMB temperature fluctuations by a factor of e−τ , and a measurement of τ serves to

constrain the time at which reionization occurred. Keating & Miller (2006) and Reichardt (2016)

provide good reviews with further discussion of the CMB optical depth.

As photons stream away from the surface of last scattering, they may encounter massive struc-

tures that form over cosmic time. One physical interaction that may occur at late times is the inverse

Compton scattering off of free (hot) electrons that surround galaxies and galaxy clusters. This is the

Sunyaev-Zel’dovich effect, and there are a few different versions. The thermal Sunyaev-Zel’dovich

effect (tSZ; Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich 1970, 1972) describes how thermal

electrons can impart a general boost to the photons’ energies relative to the CMB blackbody as

they pass through. This phenomenon is also produced by the newly freed electrons at the epoch of

reionization as well as the hot intergalactic medium (IGM) at late cosmic times. The tSZ’s spectral

distortion effect can be characterized along the lines of sight of galaxy clusters in a CMB experi-

ment if it is sensitive to multiple frequencies ν, and it is typically characterized through maps of

the Compton-y parameter (Zeldovich & Sunyaev, 1969; Sunyaev & Zeldovich, 1970). The observed

temperature of the CMB is affected through the tSZ effect as follows:

∆TtSZ(ν) = yTCMB

( hν

kBTCMB

ehν/kBTCMB + 1

ehν/kbTCMB − 1
− 4
)
. (1.22)

The Compton-y parameter is interpreted as a measure of the total integrated electron gas pressure

along the line of sight. Compton-y maps can be created from Planck data combined with ACT

(Madhavacheril et al., 2020a) as well as SPT (Bleem et al., 2022), and they can be combined with

observations of galaxy cluster density to probe the ionized content of the late Universe (Yan et al.,

2021; Lokken et al., 2022).

The kinetic Sunyaev-Zel’dovich effect (kSZ; Sunyaev & Zeldovich 1980) is a Doppler shift in the

energies of scattered photons due to the bulk motion of free electrons surrounding galaxy clusters

and at the epoch of reionization. Consider the example of free electrons around a galaxy cluster.

The kSZ effect is sourced by the peculiar velocities of the electrons, which move according to the

gravitational potential of each cluster, as well as the general gravitational potential of the local large

scale structure. As a Doppler shift, the relevant components of these motions are the radial velocities,

and we expect the kSZ effect to manifest as small-angular scale anisotropies of the observed CMB

temperature field such that ∆T/TCMB = −τvr/c, where τ is the optical depth of the cluster. The

kSZ is also expected to be sourced by the free electrons at the epoch of reionization, and Smith

& Ferraro (2017) present an estimator to detect the reionization signal at small angular scales of

the CMB. Such a detection is possible with upcoming experiments such as CMB-S4, and can help

to constrain the time and duration of reionization (Alvarez et al., 2021). Alternatively, Foreman

et al. (2023) show that it is possible to clean kSZ signals to better observe other CMB features at

small-scales.

The Universe at late times (z → 0) begins to become dominated by dark energy, which causes

the expansion of the Universe to accelerate. This causes the gravitational potentials of the largest

structures to decay as the expansion pushes them apart. A CMB photon passing through such
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structures at late-times experiences an initial gravitational blueshift as it travels into the gravitational

potential, and a gravitational redshift as it travels out of the potential. The gravitational potential

slowly decreases as the photon passes through, so it experiences a slightly stronger blueshift than

redshift. This is often referred to as the integrated Sachs–Wolfe effect (see Nishizawa (2014) for a

review), and it can be detected by combining observations of the CMB with maps of large-scale

galaxy clustering data to place constraints on models of dark energy (Fosalba et al., 2003; Ho et al.,

2008; Giannantonio et al., 2008; Ferraro et al., 2015; Dong et al., 2021).

Secondary anisotropies in the CMB can also be present in the polarization signal. If the existing

linear polarization signal in the primary CMB experiences a net rotation, then the effect may be

observed through correlations between the observed E- and B-mode fields of the CMB (i.e., the EB

cross spectrum). This phenomenon is referred to as cosmic birefringence (refer to Komatsu 2022

for a review). Cosmic birefringence is predicted to be sourced by some models of dark matter and

dark energy such as the axion or ultra-light axion (Marsh, 2016; Ferreira, 2021), and a ∼ 3σ hint

of its existence has been shown in WMAP and Planck data (Diego-Palazuelos et al., 2022; Eskilt &

Komatsu, 2022).

1.2.4 The Lensed Cosmic Microwave Background

Gravitational lensing of the CMB by cosmological structures along the line of sight has become a

standard observational tool to probe the content and evolution of the universe (see Lewis & Challinor

(2006) for an extensive review). The CMB lensing deflections are sourced by the 3D gravitational

potentials Φ(r, η) of massive LSS. The gravitational potentials are defined at position r = χn̂ that

is at some comoving distance χ away from us in the direction n̂. The growth of structure over

time causes the potentials to evolve, so the 3D gravitational potential is also parameterized by the

conformal time η. The lensing potential ϕ(n̂) at line of sight n̂ is typically defined such that the

total deflection experienced by a CMB photon is the gradient of the lensing potential perpendicular

to the line of sight (described with the operator ∇n̂). The lensing potential is the projection of the

3D gravitational potential (which does the lensing) along the line of sight n̂ between the observer

(us at comoving distance χ = 0) and the surface of last scattering (at comoving distance χ = χCMB)

in a flat Universe:

ϕ(n̂) ≡ −2

∫ χCMB

0

dχΦ(χn̂, η0 − χ)Wϕ(χ) , (1.23)

where η0 is the conformal time today, and η0−χ is then the conformal time at which the photon was

located at χn̂. Note that there is an extra convolution with a lensing kernel Wϕ(χ) which controls

the strength of the lensing as a function of the source potential Φ’s distance away from us. Most of

the lensing deflections are ‘weak’ lensing, meaning that the deflections are of order ∼ arcmin (refer

to §1 of Lewis & Challinor 2006 for the reasoning), and massive structures at z ≈ 2 are the most

efficient lenses for the CMB due to the geometry of the source, lens, observer system. As defined

earlier, the total deflection experienced by a CMB photon is then:

α = ∇n̂ϕ(n̂) = −2

∫ χCMB

0

dχ∇n̂Φ(χn̂, η0 − χ)Wϕ(χ) . (1.24)

The lensing convergence is also typically defined such that κ(n̂) = −∇n̂ · ∇n̂ϕ(n̂)/2. The
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lensing potential ϕ, deflection α, and convergence κ are different physical quantities, but they

all contain the same information relevant to the lensing physics: the distribution and nature of

the gravitational potentials Φ of massive LSS. The lensing deflection power spectrum and lensing

convergence power spectrum are typically defined in terms of the lensing potential power spectrum

as Cαα
L = L2(L + 1)2Cϕϕ

L /2π, and Cκκ
L = L2(L + 1)2Cϕϕ

L /4. Lewis & Challinor (2006) show

in their Equations (3.4)–(3.11), and subsequently (3.14) that the angular power spectrum of the

lensing potential Cϕϕ
L is directly tied to the physical power spectrum of the gravitational potentials

PΦ(k, η). This is directly related to the power spectrum of matter density perturbations P (k, η)

(Equation (3.15) of Lewis & Challinor 2006):

PΦ(k, η) =
9Ω2

m(η)H4(η)

8π2

P (k, η)

k
. (1.25)

Gravitational lensing imparts several effects on the observed CMB. At the map-level, the observed

CMB temperature T̃ is simply shifted by the deflection angle:

T̃ (n̂) = T (n̂+α) = T (n̂) +∇n̂T (n̂) ·∇n̂ϕ(n̂) +O(ϕ2) . (1.26)

This has the general effect of magnifying and demagnifying the features of the observed CMB

temperature field. In power spectra, this manifests as a transfer of power between angular multipoles.

The CMB temperature field is equally likely to be magnified or demagnified, while preserving the

total observed power (i.e, the integrated TT power spectrum is conserved). This has the qualitative

effect of smoothing out the observed CMB TT power spectral features; the primary TT peaks are

suppressed, and the troughs are raised up. The damping tail at ℓ ≫ 3000 also receives power

from the larger-scales, so we see a general increase in lensed TT power to the point that it is the

dominant signal at small angular scales. Both of these phenomena are featured in Figure 1.3. In

polarization, the effects are similar, but one must remember that we observe the linear polarization,

and transform it into E- and B-modes. The redistribution of linear polarization in map-space

translates into a mixture of power between the observed E- and B-modes in combination with the

transfer of power between multipoles described earlier. The EE power spectrum experiences very

similar qualitative changes as the TT power spectrum, as shown in Figure 1.2. This can be explained

with the same reasoning as the peak smearing phenomenon; there is significantly more primary EE

power than primary BB power (if any), so it is more likely to leak E-modes into B-modes than the

other way around. This is also seen in Figure 1.2, where the lensed BB power is significantly higher

in amplitude than its primary counterpart due to the added power from the original E field. As a

final note on the direct effects of lensing on the observed CMB field(s), we see in Equation (1.26)

that the extra lensing contributions depend directly on the gradient (and higher order derivatives)

of the original CMB field itself. We show later that this is taken advantage of in estimators for the

lensing potential field and its statistics.

Estimates of the lensing potential angular power spectra directly inform us of the statistics of

matter distribution in the Universe, which makes CMB lensing a powerful cosmological probe. Im-

provements in measurements of the CMB with telescopes like the Atacama Cosmology Telescope

(ACT, Aiola et al. 2020), the South Pole Telescope (SPT, Henning et al. 2018) and the Planck satel-

lite (Planck Collaboration et al., 2020b) have unveiled the fluctuations in the temperature and

polarization signal of this primordial light down to arcminute scales.
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Figure 1.3: A comparison of the CMB TT power spectrum before and after lensing. The peak
smoothing can be observed in the inset zoomed in at 400 < ℓ < 900, and the excess power at
ℓ ≫ 3000 is apparent.

Extracting (or ‘reconstructing’) the lensing signal from CMB temperature T and/or polarization

E and B maps can proceed via a number of approaches. The pioneering works of Hu & Okamoto

(2002) and Okamoto & Hu (2003) developed the concept of the quadratic estimator (QE) for the

lensing signal, which combines pairs of observed maps TT , EE, BB, TE, TB, and EB, to ‘recon-

struct’ the lensing potential field. This is made possible by taking advantage of the correlations, or

covariances, induced by the redistribution of power across multipoles and/or polarization. The Hu

& Okamoto (2002); Hu et al. (2007) quadratic estimator for the deflection field α(L) constructed

with the quadratic pair XY ∈ {TT,EE,BB, TE, TB,EB} has the following form:

αXY (L) =
AXY (L)

L

∫
d2ℓ1
(2π)2

X(l1)Y (L− l1)FXY (l1,L− l1) , (1.27)

where AXY (L) is a normalization factor dependent on the choice of filtering functions FXY (Hu &

Okamoto, 2002, Equations (13-15)) or (Hu et al., 2007, Equations (19-22)) and fXY (Hu & Okamoto,

2002, Table 1) or (Hu et al., 2007, Equation (17)):

AXY (L) = L2

[∫
d2ℓ1
(2π)2

fXY (l1,L− l1)FXY (l1,L− l1)

]−1

. (1.28)

The filtering functions presented in Hu et al. (2007) differ from those in Hu & Okamoto (2002)

through a slightly different treatment of the quadratic pair. In this case, the X field is filtered to

optimize for information from CMB gradient contribution in Equation (1.26), and the Y field is

filtered to optimize for information from the lensing contribution. The gradient filter in particular

is constructed such that the X field receives no contributions from small-scales ℓ ≳ 2000 to mitigate
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Figure 1.4: Part of the reconstructed lensing potential map from Madhavacheril et al. (2023, Figure
4, included with permission from the authors). Overlaid contours are from the Planck observations
of the CIB. The reconstructed lensing potential visibly correlates well with the CIB, which can be
used as a tracer for the massive Large Scale Structures that source the lensing potential.

bias (Hu et al., 2007). Note that this now includes the possibility of a XY = ET estimator (BT

and BE are neglected due to the low amplitude of the primary B field). The filtering in Hu et al.

(2007) is in contrast to the original Hu & Okamoto (2002) estimator which employs filters optimized

to minimize variance in the reconstructed deflection field.

The iterative EB estimator (Hirata & Seljak, 2003a; Smith et al., 2012) is expected to be espe-

cially effective at large angular scales (L ≲ 1000) due to the transfer of power from E modes into B

modes, the latter of which contains only a meager signal in the primary CMB caused by a possible

epoch of cosmic inflation. Application of the QE on Planck data has allowed for a 40σ detection

of gravitational lensing (Aghanim et al., 2020), and there has also been recent success from ACT

(Qu et al., 2023; Madhavacheril et al., 2023). The reconstructed lensing potential map from Mad-

havacheril et al. (2023) is shown in Figure 1.4 (their Figure 4), which visually matches the structure

of the observed cosmic infrared background (CIB) observed by Planck (used as a reasonable proxy

for the distribution of galaxies sourcing the lensing field). However, the effectiveness of the QE may

soon be limited as experiments push to smaller scales and lower noise. Indeed, the recent analysis of

a set of very deep SPTpol data showed improved results compared with the more standard QE ap-

proach (Millea et al., 2021). The QE formalism, which only crudely approximates the full maximum

likelihood estimate of the signal, is statistically suboptimal on small angular scales and in low-noise

regimes (Hirata & Seljak, 2003b,a; Smith et al., 2012; Carron & Lewis, 2017; Horowitz et al., 2019;

Hadzhiyska et al., 2019).

The derivation of the QE procedure relies on the assumption that lensing is a weak effect, in

the sense that it has only a small effect on the statistics of the CMB sky. This is an appropriate

approximation for most of the regimes in which the QE has historically been applied, but at lower

noise levels, this approximation quickly begins to break down. On small angular scales, at ℓ ≫
2000, the power resulting from gravitational lensing dominates over the primordial unlensed power

spectrum, as can be seen in Figure 1.2,1.3. In this lensing-dominated regime, QE techniques are

suboptimal in the limit of low noise levels. Figure 1.5 shows that the additive bias N
(0)
L from the

TT reconstruction noise becomes lower than that of the iterative EB estimator at small angular

scales (L ≳ 2000) due to increasing noise from the EB estimator. The zero-th order reconstruction

noise, N
(0)
L , stems from the inherent variance in the primary CMB that is propagated through

the reconstruction of the lensing potential. The reconstruction information is estimated from the
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Figure 1.5: A comparison of the CMB lensing convergence power spectrum with the additive bias
from reconstruction noise experienced by traditional quadratic estimator techniques with CMB-S4-
like noise levels. The EB estimator’s effectiveness due to its low reconstruction noise at large scales
(L < 1000) is apparent, but the reconstruction noise quickly grows at small-scales. At small-scales,
the TT reconstruction techniques will be more effective.

observed realization of the CMB, and the statistical limit to the amount of information one can

obtain from a single realization sets the uncertainty. The noise power is greater than the signal

power at small-scales; however, this bias can be removed with well-established methods (Dvorkin

& Smith, 2009; Hanson et al., 2011). Bias from higher-order reconstruction noise N
(1)
L also need

to be estimated and removed at small angular scales; these stem from additional permutations

of the connected four-point function as discussed in Kesden et al. (2003). Recent advances in

computation and statistical methodology allow for the computation of the full maximum likelihood

lensing map (Hirata & Seljak, 2003b; Carron & Lewis, 2017; Millea et al., 2020) thereby surpassing

the performance of QE techniques in simulated data.

Quadratic estimators can also be shown to be suboptimal in the small-scale, low-noise limit

because they are weighted by the sky-averaged variance of the large-scale modes, despite precise

measurement of the large-scale modes. Due to cosmic variance on large scales, this weighting con-

tributes to excess variance in the lensing reconstruction. This limitation can be circumvented with

the so-called ‘Gradient Inversion’ approach to reconstruction (Seljak & Zaldarriaga, 2000; Horowitz

et al., 2019; Hadzhiyska et al., 2019) which, unlike the QE technique, is not limited by cosmic

variance exhibited by the large scale temperature fluctuations.

Quadratic estimators and other estimators like the gradient inversion estimator aim to reconstruct

a map of the underlying lensing potential explicitly. A reconstructed map of the lensing field is

valuable for delensing (Kesden et al., 2002; Knox & Song, 2002; Seljak & Hirata, 2004; Green et al.,

2017; Hotinli et al., 2022) and for cross-correlation with other maps of large scale structure (e.g.

(Sherwin et al., 2012; Bianchini et al., 2015; Liu & Hill, 2015; Schmittfull & Seljak, 2018; Robertson

et al., 2021; Darwish et al., 2021b; Baxter et al., 2022; Chang et al., 2022; Lin et al., 2020; Piccirilli

et al., 2022)), but the lensing power spectrum carries valuable information even without an associated

map-level reconstruction. Phenomena which impact matter clustering can be constrained using
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measurements of the matter power spectrum, without requiring a map of overdensities. Examples

include the effects of neutrino mass and related quantities (Kaplinghat et al., 2003; Lesgourgues

& Pastor, 2012; Green & Meyers, 2021; Abazajian et al., 2022), dark matter interactions (Tulin &

Yu, 2018; Gluscevic et al., 2019; Buen-Abad et al., 2022), ultralight dark matter (Hui et al., 2017;

Ferreira, 2021), warm dark matter (Drewes et al., 2017), and baryonic feedback (Chisari et al., 2019).

Chapter 5 of this dissertation covers the development of the Small Correlated Against Large

Estimator (SCALE), a novel estimator for the CMB lensing power spectrum at small angular scales

(ℓ ≫ 3000). SCALE takes advantage of the correlations between the CMB temperature modes

between large- and small-scales. We continue in Chapter 6 with an application of SCALE in the

parameter estimation of cosmological models.

1.2.5 Observing the Cosmic Microwave Background

The process of designing, constructing, and operating a CMB experiment is increasingly long and

complex. Upcoming experiments are being proposed and designed over 10 years before they are

expected to operate (Abazajian et al., 2016, 2019; LiteBIRD Collaboration et al., 2023). This

includes a wide range of experiments from ground-based, balloon-borne, and satellite missions.

Although there are many experiments designed and optimized for different science cases, they have

and continue to share similarities in their overall observation procedure.

Current and upcoming experiments employ the use of either superconducting transition edge

sensors (TES; Suzuki et al. 2020) or microwave kinetic inductance detectors (MKIDs; Ulbricht et al.

2021; Baselmans et al. 2022). The detectors are designed to be sensitive to specific frequencies as

well as linear polarization, and are typically arranged in large arrays. Two important properties of

the detectors to consider are their noise equivalent temperature ([NET] = µK/
√
Hz, also sometimes

called sensitivity), and their beam shape/size (Knox, 1995). The noise equivalent temperature

of a detector NETdet describes the equivalent white noise that it experiences during observations

over time, and it translates into a flat line in a power spectral decomposition: P (f) = NET2

(in the absence of detector motions). While this is an intrinsic property of the detector itself,

an experiment is typically characterized by the noise equivalent temperature of the entire array:

NETarr = NETdet/
√
Ndet, where Ndet is the total number of detectors in the array. The beam of a

detector refers to the angular shape and size of its sensitivity region when pointed at a source, and

it is analogous to the point spread function of an optimal instrument. While CMB detector beams

can have non-trivial shapes and sidelobes, they are typically modelled by a 2-dimensional Gaussian

with size θFWHM such that their observed solid angle is approximately Ωdet = θ2FWHM.

An array of detectors is assembled onto a ‘focal plane’, and there is freedom in choosing the

physical layout of the detectors and where they are pointing. Configurations are typically chosen

such to maximize the number of detectors on the focal plane while minimizing the amount of overlap

between the detector beams. The latter is done to avoid any leakage of signals between detectors,

and is often referred to as optical crosstalk. There is also freedom to either focus on a few specific

observing frequencies or to diversify into a wide range of frequency coverage. Choosing fewer ob-

serving frequencies allows for more detectors on an array to be dedicated to each frequency, lowering

the overall noise equivalent temperature for the array at each given frequency. Choosing to cover

more observing frequencies means taking a hit in the array’s overall noise equivalent temperature for

each frequency, but can be informative for characterizing spectral features in observations. This is
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particularly useful for characterizing the foreground contamination in the CMB signal (van Engelen

et al., 2014; Osborne et al., 2014; Flauger et al., 2014; Madhavacheril & Hill, 2018; Beck et al., 2020;

Abylkairov et al., 2021; Darwish et al., 2021a; LiteBIRD Collaboration et al., 2023).

After a focal plane has been established, a survey area must be chosen for the survey. The overall

noise levels of CMB observations are dependent on the total observation time: σ = NET/
√
tpix,

where tpix is the total amount of time spent observing each pixel in the map. It is useful for later

analysis to define a noise level such that w ≡ (σ2Ω)−1. One may choose to focus observations on a

small region of the sky, and frequently repeat observations to beat down noise. This would optimize

for a cleaner picture of the observing region, but angular power spectrum analysis would be limited

to multipoles higher than the angular size of the sky area. One may alternatively choose to survey

a larger area of the sky, resulting in overall noisier maps. A positive trade-off for these maps is that

they would then contain both information at lower multipoles, as well as more sky area to limit the

effects of cosmic variance at higher multipoles. There are also several other considerations such as

the galactic foregrounds that are present in the sky, and the presence of other astrophysical sources

that may contaminate the CMB signal. Experiments may choose to avoid certain parts of the sky

that are known to be heavily contaminated. The choice of survey area is typically a compromise

between these considerations, and is often a major factor in the design of a CMB experiment.

The focal plane of an experiment does not cover the entirety of its survey area, so a scanning

strategy must be chosen to map out the entire area. This is usually done in ground-based experiments

by sweeping across the survey area, and slowly filling up the map in the perpendicular direction with

this motion. This scanning motion is typically repeated iteratively for the duration of observations.

A satellite experiment has access to the entire sky, and typically rotates along an axis to sweep out

rings of the sky. The satellite’s rotation axis is also made to precess, and the combination of the

satellite’s rotation, precession, and its orbit around the Earth/Sun allows it to eventually map out

the full sky. It is important to consider here that the sweeping motions of the focal plane are expected

to induce extra components of noise into the observations, regardless of the scanning strategy. It

was mentioned previously that the detectors’ intrinsic noise properties are captured by their noise

equivalent temperature, but the repeated motions of the focal plane can cause the (originally) white

noise to become correlated such that the power spectral decomposition of the detector timestreams,

or time ordered data (TODs), is no longer flat. This is normally referred to as 1/f noise, and the

power spectral decompositions (PSD) of a noise TOD can be modelled as follows:

P (f) = NET2
det

(
fα + fα

knee

fα + fα
min

)
, (1.29)

where α is a spectral index that is typically −1 (hence 1/f), fmin is the minimum frequency consid-

ered, and fknee is a frequency at which the modelled PSD typically has a ‘knee’ in its shape. This

shape is dependent on the choice of on the scanning strategy of the experiment. In the case of a

satellite mission, it is dependent on the rotation and precession speed of the satellite.

As CMB experiment scans its survey area, groups of detectors in the focal plane are continuously

connected to a set of readout electronics. Consider a group of detectors connected to a single wire

that leads to a readout system. Each detector is typically assigned a unique frequency, and the

readout system is designed to monitor the voltage of the circuit relative to a predetermined voltage

bias for all readout frequencies at all times. Fluctuations in the voltage at a particular detector’s
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frequency over time are registered as that detector’s ‘signal’, or TOD. This is known as a frequency

multiplexing (fMUX) readout system (Dobbs et al., 2009; de Haan et al., 2020). It is known that

detectors sharing the same readout electronics can potentially leak signals into each other’s TODs

at this stage, and it is typically referred to as electrical crosstalk. Electrical crosstalk is expected

to be strongest for pairs of detectors that are close together in the frequency schedule (i.e., their

assigned readout frequency), and it is an effect that is expected to be at the level of less than 1%

(Montgomery et al., 2022). Previous and current experiments have estimated their levels of crosstalk

through calibration with cosmic rays, and found that their calibrations were sufficient to remove most

effects of crosstalk from their data (Planck Collaboration et al., 2016c; Ade et al., 2022).

A set of detector TODs, d(t), must first be transformed into CMB map(s), m, for use in cosmo-

logical analyses. A pointing matrix P can be constructed containing information about the direction

of the sky at which each detector is pointing at a given time t. This can be used to transform the

TODs into a set of sky maps using a mapmaking equation. If a set of detector TODs can be expressed

as follows:

d = Pm+ n, (1.30)

where the first term is the signal from the sky, and the second term is noise. The noise n can be

further decomposed into correlated and non-correlated components, where the correlated component

is due to the 1/f noise described in Equation (1.29). A simple mapmaking equation can be obtained

by solving for m while minimizing its variance:

m = (PTN−1P)−1PTN−1d, (1.31)

where N is the covariance of all noise TODs n. This includes the correlations between noise TODs

from the effects of 1/f noise described in Equation (1.29), and the mapmaking equation is a simple,

but effective way to transform observed CMB data from TOD space into map space (Keihänen et al.,

2005; Kurki-Suonio et al., 2009; Keihänen et al., 2010).

A given experiment may produce a set of observed mapsm in terms of Stokes parameters I (which

is readily transformed into relative temperature), as well as Q and U (which are linear polarization

components). The observed linear polarization is dependent on our frame of reference, so it is useful

for cosmological analyses to transform the polarization data into a basis that is independent of

reference frame. This is typically done by decomposing the CMB polarization data into curl-free

E-modes, and divergence-free B-modes (Zaldarriaga, 2001). CMB maps are typically projected onto

Hierarchical Equal Area isoLatitude Pixelation (HEALPix; Górski et al. 2005) projections of the

sphere, which recursively divide the sky into ‘rhombus’-like pixels with equal solid angle.

CMB maps provide a depiction of the experiment’s data that is conceptually easy to understand,

but it is not a form that is readily applicable for cosmological analyses. The Gaussian statistics of

the maps can be determined through their angular power spectra, which can be computed through

spherical harmonic decompositions, see Equation (1.19). The information in the power spectrum

is considered Gaussian because it captures the variance between any two points on the field. In

other words, it is a two-point function. Higher order statistics such as the skewness or kurtosis

of the observed field can be quantified through the angular bispectrum (or a three-point function

comparing any three points of the field at once) or the angular trispectrum (or a four-point function
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comparing any four points of the field at once) respectively. It is also possible at this stage to use

information obtained from the different observing frequencies to characterize the foreground signals

present in the CMB map, which do not follow the same spectral patterns as the CMB blackbody,

and ‘clean’ them from the maps (Tegmark et al., 2003; Madhavacheril & Hill, 2018; Beck et al., 2020;

Abylkairov et al., 2021; Darwish et al., 2021a). Assuming that the correlated noise contributions to

the detector TODs was cleaned properly, then there should remain residual white noise in the CMB

maps, which should manifest as a combination of white noise in the angular power spectrum. In

terms of temperature power, this manifests as

NTT
ℓ = w−1 exp

(
ℓ(ℓ+ 1)σ2

b

)
, (1.32)

where σb = θFWHM/2
√
2 ln 2 is the width of the instrumental beam, and w is the same noise level

defined earlier (Knox, 1995). Typical CMB experiment noise levels are reported as w−1/2 in units

of µK-arcmin. The effective noise power in polarization power is simply twice that of the temper-

ature noise power, as the intensity information is approximately split equally into the two linear

polarization pieces.

The power spectra of the observed CMB maps are typically compared to theoretical models of

the CMB, which are dependent on the cosmological parameters of interest. Parameter estimation is

typically performed through a Markov Chain Monte Carlo (MCMC) analysis, which is a Bayesian

statistical technique that is further described in § 1.5. To do this, a full set of covariances between the

observed CMB band-powers ought to be determined. The primary CMB is expected to be a Gaussian

random field, meaning that CMB power between disjoint multipoles is not expected to correlate. In

practice, small correlations are expected due to the effects of foregrounds and gravitational lensing,

among others. In the limit of these small correlations, the uncertainty of estimated band-powers is

well described by

∆Cℓ =

√
2

(2ℓ+ 1)∆ℓfsky
(Cℓ +Nℓ), (1.33)

where ∆ℓ is the multipole width of each band-power, and fsky is the fraction of the sky that is

observed (Knox, 1995).

There exist many software packages to facilitate and/or simulate the entire process outlined

in this section. The latter kind in particular are useful to predict the performance of upcoming

experiments, which is informative for their designs. The Time Ordered Astrophysics Scalable

Tools (TOAST; Kisner et al. 2023)1, which is a software based in C++ with a Python wrapper built

to simulate the CMB observation process. It takes in parameters describing an experiment’s focal

plane configuration, detector properties, and scanning strategy, and it creates ‘sky signal’ TODs

based on the particular pixels of an input map that each detector is pointing at. It can also

generate the noise TODs expected from Equation (1.29). The TOAST framework is designed to be

scalable such that simulations can be modified to optimize for speed or memory depending on the

machine running it. With a set of detector TODs, a common mapmaking software is called MAp-

making through Destriping for Anisotropy Measurements (MADAM; Keihänen et al. 2005, 2010)2.

There exists an option within TOAST to automatically feed the detector TODs into MADAM to output

1https://github.com/hpc4cmb/toast
2https://github.com/hpc4cmb/libmadam

https://github.com/hpc4cmb/toast
https://github.com/hpc4cmb/libmadam
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simulated observed CMB maps. There also exist a set of software called Boltzmann codes that

predict theoretical CMB power spectra given a set of cosmological parameters. These work by

seeding a set of initial conditions for the perturbations predicted by a given set of cosmological

parameters, usually within a standard model like ΛCDM, and evolve them into observables in the

CMB and LSS. Examples include the Code for Anisotropies in the Microwave Background (CAMB;

Lewis & Challinor 2011)3 and the Cosmic Linear Anisotropy Solving System (CLASS; Blas et al.

2011)4. Several common software packages have been developed to manipulate the CMB maps

themselves. As mentioned previously, full sky CMB maps are typically represented with HEALPix

pixelization (Górski et al., 2005)5. Standard HEALPix software includes routines for map-space and

spherical harmonic operations. Another useful package is pixell6, which is maintained by the

Simons Observatory team, and contains many utility functions for CMB map analysis.

LiteBIRD: Multi-frequency probe of CMB Polarization

The Lite satellite for the study of B-mode polarization and Inflation from cosmic background Ra-

diation Detection (LiteBIRD; LiteBIRD Collaboration et al. 2023) is a proposed satellite mission

led by the Japanese Aerospace Exploration Agency (JAXA) with the primary goal of detecting an

inflationary signature in the low multipole ℓ < 30 moments of the B-mode polarization field of the

CMB. Its main strategy to improve on existing observations is to include three separate focal planes

in a Low Frequency Telescope (LFT), a Medium Frequency Telescope (MFT), and a High Frequency

Telescope (HFT). By combining a large number of detectors in 15 frequency bands 34 to 448 GHz.

For comparison, the Planck mission observed over 9 different frequency bands (Planck Collaboration

et al., 2020b). Observing in more frequency bands allows for better characterization of foregrounds,

which are known to be a significant source of contamination in the B-mode signal (BICEP2 Col-

laboration et al., 2014; Flauger et al., 2014; Bonaldi et al., 2014). We also saw before that adding

more detectors to an experiment helps to beat down noise. As a satellite mission, LiteBIRD also

has access to the entire sky to observe at lower multipoles at lower cosmic variance (corresponding

to lower errors in Equation (1.33)) as well as avoiding most of the atmospheric contamination that

would exist in ground-based observations (Errard et al., 2015). The LiteBIRD target sensitivity

is r ≳ 10−3, which is approximately a factor of 10 improvement over the current upper limit of

r ≲ 0.06 (Planck Collaboration et al., 2020b), so its design will need to overcome a plethora of noise,

systematics, and contaminants to constrain such a weak signal.

1.3 Measures of Cosmic Distance

1.3.1 The Cosmic Distance Ladder

Measurements of astronomical distance are a challenge relevant to all fields of astronomy. One

major application for cosmology is its application for quantifying the Hubble law at late times.

Accurate measurements of distances to “nearby” galaxies in the Hubble flow can be combined with

spectroscopic redshift observations to estimate the Hubble constant H0 (Wong et al., 2020; Riess

3https://camb.info/
4https://github.com/lesgourg/class_public
5https://healpix.sourceforge.io/
6https://github.com/simonsobs/pixell

https://camb.info/
https://github.com/lesgourg/class_public
https://healpix.sourceforge.io/
https://github.com/simonsobs/pixell
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et al., 2022; Uddin et al., 2023; Scolnic et al., 2023). The distances to these galaxies are usually

estimated with standardizable candles such as Type Ia supernovae (SNIa), which are extremely

bright catastrophic events. We do not know the brightness of these supernovae a priori, there is

observational evidence that the shape of their light curves is correlated with their peak luminosity

(Fausnaugh et al., 2021; Scolnic et al., 2022; Uddin et al., 2023). The luminosities of these supernovae

may be calibrated if they are observed in host galaxies for which we have a distance estimate

established from other method. These nearby distance measures generally also require some sort of

calibration, so the multistep approach to estimating the distance to the far-away galaxies is usually

referred to as the “distance ladder”. While the particular objects and techniques may vary from

analysis to analysis, the general theme remains of calibrating distance measures to increasingly

distant objects.

Distance ladder measurements of the Hubble constant have come a long way since its humble

beginning: Edwin Hubble originally estimated H0 = 500 km s−1 Mpc−1 (Hubble, 1929). The

Supernova H0 for the Equation of State (SH0ES) team presents perhaps the most prominent con-

temporary study, which employs an empirical period–luminosity (PL) relation for Cepheid variable

stars just as Hubble did (Riess et al., 2022, 2023). Cepheids are remarkably bright variable stars

with a stable pulsation period that can be tied to their luminosity through well understood physics

(Madore & Freedman, 1991). The PL relation for Cepheid variable stars is calibrated with geo-

metric distance measures to ‘nearby’ Cepheids in either the Milky Way itself, or local galaxies like

the Large Magellanic Cloud (LMC), M31, or NGC4258 (Riess et al., 2022). Once a PL relation

is established, it can be used to determine distances to intermediate distance galaxies with both

observable Cepheids and SNIa. Supernova observations are typically recorded in catalogues such

as the Pantheon(+) sample (Scolnic et al., 2022) or the Carnegie Supernova Project (Uddin et al.,

2023). The intermediate distances are once again used to calibrate the absolute brightness of SNIa.

Once calibrated, observations of SNIa light curves in galaxies in the Hubble flow can be used to

determine the distance to these galaxies. The combination of these distance measures with spec-

troscopic redshifts allows for the estimation of the Hubble constant H0. The full distance ladder

constructed by the SH0ES team is shown in Figure 1.6 (Riess et al., 2022, Figure 12).

Riess et al. (2022) use their empirical determination of the Cepheid PL relation to calibrate the

Pantheon+ sample of SNIa (Scolnic et al., 2022) and estimate H0 = 73.04 ± 1.04 km s−1 Mpc−1,

corresponding to just over ∼ 1% precision. They also present their “error budget” which breaks down

their uncertainty estimate into contributions from each component of the analysis, i.e. each step in

the distance ladder. The largest share of the error budget belongs to the calibration of supernovae

brightness (shown in Figure 24 of Riess et al. 2022). The population of observed supernovae is

already limited by randomness, and the subset of supernovae which can be used for calibration is

small in correspondence with the local volume containing galaxies with observable objects in the

lower steps of the distance ladder. In other words, the sample size of sources in the center panel

of Figure 1.6 needs to be larger to better empirically calibrate the SNIa luminosity. The supernova

calibration is expected to improve over time. Sample sizes will grow significantly with wide searches

being performed by surveys such as the upcoming Vera Rubin Observatory (Bianco et al., 2022), the

Zwicky Transient Facility (Bellm et al., 2019), and Transiting Exoplanet Survey Satellite (TESS;

Ricker et al. 2014; Holwerda et al. 2021). Individual observations of supernovae will also improve

with the advent of the James Webb Space Telescope (JWST; Gardner et al. 2006; Riess et al. 2023).
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Figure 1.6: The distance ladder constructed by Riess et al. (2022, Figure 12, reproduced by per-
mission of the AAS). The first rung of the ladder is on the bottom left, and contains the sample
of nearby Cepheids used to calibrate the PL relation. The LMC contains 70 observable Cepheids
that are used in the calibration. The second rung, in the center, contains the sample of nearby
galaxies with observable Cepheid variables and at an observed SNIa. The final rung, in the top
right, contains the sample of SNIa observed in the Hubble flow used to estimate H0.
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Absolute distance calibration and the Large Magellanic Cloud

Another important component of the H0 error budget is the absolute scale calibration of distances

to the closest objects in the distance ladder (shown in Figure 24 of Riess et al. 2022), since any

discrepancy at the earliest steps propagates further down to each subsequent step in the distance

ladder. The absolute scale calibration relies on geometric measures of distance; for Milky Way

Cepheids, the parallax distance is used. A calibrator source (e.g., Cepheid) at the lowest rung in the

distance ladder has their luminosity calibrated with respect to their geometric distance measure rcal:

Lcal ∝ r2cal. The same types of calibrator sources are then used to calibrate the luminosity of SNIa

in ‘nearby’ galaxies: LSN ∝ Lcal. The SNIa luminosity is then used to infer the distance to ‘distant’

galaxies rgxy in the Hubble flow: LSN ∝ r2gxy. The Hubble constant is then inversely proportional

to the distances at the farthest part of the distance ladder, and we see that the geometric distance

determination of the calibrator sources has qualitatively the same influence: H0 ≈ vgxy/rgxy ∝ r−1
cal .

Local extragalactic populations of Cepheids are particularly useful for the first step of the distance

calibration. The Riess et al. (2022) study in particular uses samples of Cepheids in the LMC, M31,

and NGC4258. If a geometric distance to one of these galaxies can be obtained, then one is able to

calibrate the PL relation for a larger sample (O(10)) of Cepheids with a single distance measurement

to the host galaxy.

The Large Magellanic Cloud (LMC) is a dwarf galaxy in the outer halo of the Milky Way, with its

first documented observation in history recorded by al-Sufi (964). Since then, it has been the subject

of study as one of our closest examples of a galaxy separate from our own Milky Way (Alves, 2004;

Gaia Collaboration et al., 2018a, 2021a). Its proximity also has profound effects on the dynamics

of the Milky Way and its components (Erkal et al., 2019; Petersen & Peñarrubia, 2020; Garavito-

Camargo et al., 2021; Correa Magnus & Vasiliev, 2022). It is particularly relevant to the calibration

of the distance ladder because it contains a sample of 70 Cepheid variables that can be included

in the geometric calibration of the PL relation (Riess et al., 2019, 2022). An incredibly precise

distance to the LMC is reported to be RLMC = 49.59± 0.09 (statistical)± 0.54 (systematic) kpc by

Pietrzyński et al. (2019), using eclipsing binary distance measures. Recent observations of sources in

the LMC by the Gaia mission open up an opportunity to independently determine a LMC distance

with Gaia astrometry, which is the focus of Chapter 3 in this thesis. We provide a summary of the

Gaia mission in the following section. An accurate distance to the LMC allows one to utilize a large

sample of distance calibrators as it is one of the nearest extragalactic sources, so it is considered a

vital anchor in the cosmic distance ladder.

1.3.2 Gaia : Ultra-Precision Astrometry

The Gaia satellite is tasked with performing the world’s largest simultaneous astrometric, photomet-

ric, and spectroscopic survey (Gaia Collaboration et al., 2016). In the first three of its five planned

data releases, the Gaia mission has significantly advanced our understanding of Galactic dynamics,

as well as our understanding of the formation and evolution of our own Milky Way. Some of the

most influential discoveries in the Gaia era come from projecting the high-precision astrometric data

into kinematic phase spaces (Antoja et al., 2018; Helmi et al., 2018). The Gaia data have revealed

resonances in certain phase spaces that can be traced to our Galaxy’s self interactions with its in-

ternal structure (Binney & Schönrich, 2018; Bennett & Bovy, 2019; Khoperskov et al., 2019; Hunt
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et al., 2022; Frankel et al., 2023; Tremaine et al., 2023), or to merger events with dwarf galaxies in

the distant past (Lane et al., 2023; Helmi et al., 2018). Gaia data have also been used to precisely

measure the distance to the Galactic Center as well as the pattern speed of the Galactic bar (Leung

et al., 2023), as well as characterize the orbits of dwarf galaxies (Fritz et al., 2018). The Gaia

data can also be combined with high-resolution spectroscopic surveys to uncover the distribution of

chemical structure and stellar populations in the Milky Way (Patil et al., 2023).

Data Release 2 and the Parallax Zero Point

With its second data release (DR2) in April 2018, the survey accrued astrometric and photometric

measurements for over one billion sources down to a magnitude of G ≲ 21 (Gaia Collaboration

et al., 2018b). The Gaia satellite measures absolute parallaxes by comparing positions of stars

in two fields of view (FOVs) widely separated by the “basic” angle Γf = 106.5◦ along the plane

of its scanning motion. For a source passing through the center of one of the FOVs, its position

is described by ϕ = ±Γf/2 with respect to the axis bisecting the formal basic angle in the same

plane. An analytical solution shows that perturbations to such a source’s observed parallax (ϖ)

is degenerate with perturbations to the true basic angle Γ (Equation 15 in Butkevich et al. 2017),

repeated here

δΓ = ζ sin(ϕ)δϖ = ζ sin(Γf/2)δϖ, (1.34)

where ζ is a function of the satellite’s orientation with respect to the Solar System barycenter. In

other words, oscillations in the instrument’s basic angle are degenerate with an absolute perturbation

in the observed parallax. This effect is largely corrected by the on-board basic angle monitor, but

the scanning motions of the spacecraft leave residual contributions to the parallax zero point that

are difficult to model.

A similar effect is also expected to arise from the use of distinct calibration units for sources of

different apparent magnitudes (Riello et al., 2018). In addition, Gaia’s astrometric solution relies on

the position of each source’s centroid on the CCD, which is affected by the brightness of the source.

There were two methods of determining the positions of centroids: both dim and bright sources

(G ≳ 13 and G < 13 respectively) have the positions of their centroids measured as they cross a

fiducial line on the CCD, and bright sources G > 13 also have their orthogonal positions determined

with the entire column traced out by the centroids as they drift across the detector (Lindegren et al.,

2018). This extra dimension of position measurement could leave different systematics within the

astrometric measurements. In addition, the astrometric calibration used in DR2 makes use of an

effective wavenumber determined using mean integrated blue (GBP ) and red (GRP ) photometric

magnitudes. The unique observed colour of each source is expected to contribute to fluctuations to

the astrometric solution, equivalent to a parallax zero point dependence on observed colour. Finally,

the parallax zero point has also been shown to vary on large scales across the sky by mapping the

observed parallaxes of quasars in the DR2 sample (Arenou et al., 2018).

In general, Gaia parallaxes have been reported to be too small. The parallax zero point offset

in DR2 has been reported by the Gaia collaboration to be ϖ0 = −29 ± 1 µas, measured using the

parallaxes of quasars in the DR2 sample (Lindegren et al., 2018). This is further supported when they

compare DR2 parallaxes of various globular clusters to those found in literature (ϖ0 ≈ −25 µas),

but a slightly different result was found using dwarf spheroidal galaxies (ϖ0 ≈ −49 µas) (Khan et al.,
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Figure 1.7: Distribution of inverse parallaxes in Gaia DR2. The shaded pink region indicates sources
for which a 50 µas systematic in the parallax would correspond to at least a 20% error. There is
overlap of this region with approximately 25% the Gaia data.

2019). Riess et al. (2018) found ϖ0 = −46±13 µas by combining Gaia parallaxes with Hubble Space

Telescope photometry of Milky Way Cepheids. Stassun & Torres (2018) report ϖ0 = −82± 33 µas,

and Graczyk et al. (2019) determine a zero point of ϖ0 = −31 ± 11 µas from analyses comparing

existing measurements of parallax for eclipsing binary stars with Gaia parallaxes. Zinn et al. (2019)

report a modelled ϖ0 = −52.8±2.4 (random) ±8.6 (systematic) −(150.7±22.7)(νeff−1.5)− (4.21±
0.77)(G−12.2)µas with significant dependence on the effective wavenumber and observed magnitude

using asteroseismology of red giant branch stars. Similarly, Sahlholdt & Silva Aguirre (2018) report

a parallax zero point of ϖ0 = −35 ± 16 µas using the asteroseismology of dwarf stars, and Hall

et al. (2019) use the asteroseismology of red clump stars to determine a mean parallax zero point of

ϖ0 = −41± 10 µas, with individual estimates of ϖ0 = −38± 13 µas in Ks and ϖ0 = −42± 13 µas

in G. Using deep learning of spectro-photometric distances, Leung & Bovy (2019a) determine a

modeled constant zero point of ϖ0 = −52.3± 2.0 µas and they present quadratic parameterizations

of the zero point’s dependences on G, observed colour, and effective temperature.

If one considers a constant parallax zero point of ϖ0 ∼ 50 µas in Gaia DR2 data, then Fig-

ure 1.7 indicates that approximately 25% of the entire DR2 sample would be impacted with a 20%

systematic. A solid understanding of the Gaia parallax zero point is necessary to realize the full

potential of its astrometric dataset, and we present a robust estimate of the parallax zero point

in DR2 (ϖ0 = −48 ± 1µas) along with characterization of its dependence on observed magnitude,

colour, and source position in Chapter 2 of this dissertation.

Data Release 3

The Gaia collaboration published its third data release in two stages. The Early Data Release

3 (EDR3) was put out in late 2020 (Gaia Collaboration et al., 2021b), and it contains improved

photometric (Riello et al., 2021) and astrometric (Lindegren et al., 2021a) data for over 1.8 billion

sources down to a magnitude limit of G < 21. It notably features a more robust analysis of the

parallax zero point in the wake of a harsh requirement for accurate astrometry in the DR2 era. The

Gaia collaboration now provides the gaiadr3-zeropoint7 to query the parallax zero point, and

7https://pypi.org/project/gaiadr3-zeropoint/

https://pypi.org/project/gaiadr3-zeropoint/
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takes into account the various dependencies on each source’s features (Lindegren et al., 2021b).

The full Data Release 3 (DR3) was published in mid-2022 (Gaia Collaboration et al., 2023).

It contains low-resolution XP spectra within its photometric bands, as well as the high-resolution

RVS spectra used to measure the radial velocities. The low-resolution XP spectra come from

within their BP ∈ [330, 680] nm, as well as RP ∈ [640, 1050] nm photometry bands. The XP

spectral data are available in a continuous representation of 55 coefficients per band which are

readily transformed into the conventional sampled spectra with provided basis functions (Carrasco

et al., 2021; Gaia Collaboration et al., 2023). XP sampled spectra occupy 343 bins from 336 nm to

1020 nm. There are 220 million objects with XP spectra available out of 1.8 billion total sources in

the DR3 catalogue. The Gaia XP spectra are very low-resolution, and the RVS spectra cover only

a small wavelength range, so the information contained within an individual object’s Gaia spectra

may not be much. However, the sheer size of the Gaia catalogue makes it a promising resource if

one is able to statistically combine many objects with similar features.

Chapter 3 presents a calibration of bright giant stars in the LMC using the XP spectra in

Gaia DR3 combined with precise astrometry of nearby, similar giant stars. The calibration is then

used to estimate the distance to the LMC, which has profound implications for the local estimate

of H0. An independent estimate of the LMC distance either lower than or in agreement with

the Pietrzyński et al. (2019) value would exacerbate or verify tensions between local and early-

Universe measurements H0; whereas, an independent estimate of the LMC distance higher than the

Pietrzyński et al. (2019) value would alleviate the tension. We further discuss the H0 tension in the

following sections.

Future Data Releases

While theGaia mission is past its original end date, it has been extended well past the time of writing.

The Gaia collaboration has announced at least two more data releases past 2025, and 20308. These

future releases are expected to contain even more sources, a fainter magnitude limit, as well as all

around improved astrometry, photometry, and spectra simply due to the longer observation period.

1.3.3 Planck : The Inverse Distance Ladder

Measures of cosmic distance can also work forwards from the edge of the observable Universe, in

contrast to the distance ladder. The observed CMB power spectra are sensitive to a wide range

of cosmological parameters, and the Hubble constant is one of them. The BAO sound horizon is a

feature in the matter power spectrum set by the photon-baryon interactions described in §1.2.2. The

sound horizon at recombination, described by Equation (1.17), is related to the angular size of the

peak of the CMB TT power spectrum through the angular diameter distance. The angular diameter

distance to recombination can be parameterized with respect to the redshift of recombination if the

spatial curvature of the Universe is known (Hu & White, 1997). The ΛCDM model imposes a flat

Universe with zero curvature, so one may estimate H0 using the location of the peaks of the CMB

power spectra under this restriction (Bennett et al., 2013; Planck Collaboration et al., 2020a). The

Planck collaboration reports H0 = 67.37 ± 0.54 km s−1 Mpc−1 under the ΛCDM model (Planck

Collaboration et al., 2020a), which is in 5σ disagreement with the SH0ES result (Riess et al., 2022).

8https://www.cosmos.esa.int/web/gaia/release

https://www.cosmos.esa.int/web/gaia/release
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The main methodology to add flexibility to the CMB estimate of H0 is to relax the restrictions

on spatial curvature. This is done by removing the zero curvature restriction, and supplementing

the CMB likelihood with an alternate measure of angular diameter distance to break the degeneracy

between H0 and the spatial curvature (Aubourg et al., 2015). This information can be included in

the form of measuring the size of the BAO sound horizon through correlations in the distributions

of galaxies in clustering data (see Bassett & Hlozek 2010 for a review). The BAO scale, in this case,

is used as a ‘standard ruler’ in the ‘inverse distance ladder’ without the need to restrict the analysis

to a particular cosmology with fixed curvature (Aubourg et al., 2015; Lemos et al., 2019; Camarena

& Marra, 2020). These analyses generally agree with the CMB + ΛCDM measurements, or they

estimate a value of H0 that is 1-2σ away from either the CMB or SH0ES value.

As a final note, the future of CMB measurements of the Hubble constant can be improved after

applying delensing of the CMB maps (Hotinli et al., 2022; Ange & Meyers, 2023). We discussed in

§1.2.4 the effect of peak smearing in the CMB temperature power through the effects of gravitational

lensing. Since these peaks are used to estimate the angular diameter of the BAO sound horizon at

recombination, the effect of the lensing is to add uncertainty to the BAO sound horizon. The process

of delensing a CMB map requires a reconstruction of the lensing deflection field α, and an inverse

lensing operation can be applied to recover an estimate of the unlensed CMB fields (Reinecke et al.,

2023).

1.3.4 Alternative Distance Measures and Probes of the Hubble Constant

The early-Universe estimates of H0 are generally restricted to include to CMB measurement of the

BAO scale, since it is one of the probes from the earliest moments of the Universe’s history that

we can use. One other way to include information from the early Universe is to place limits on the

baryon abundance at early times through Big Bang Nucleosynthesis (BBN) abundances (Abbott

et al., 2018; Schöneberg et al., 2019). This information, combined with BAO measurements allows

for an estimate of H0 without CMB information, but is consistent with those estimates.

There are several other methods for estimating the distances to galaxies in the Hubble flow (and

by extension estimating the Hubble constant). Several studies have replaced the Cepheids in the

early steps of the distance ladder calibration with Tip of the Red Giant Branch (TRGB) stars, which

are a standard candle that are expected to be less affected by dust extinction due to their red colour

Freedman et al. (2019); Scolnic et al. (2023); Uddin et al. (2023). A calibration of TRGBs originally

concluded H0 = 69.8 ± 0.8 (stat.) ± 1.7 (sys.) km s−1 Mpc−1, and seemed to provide relief to the

tension between early- and late-Universe estimates of H0 (Freedman et al., 2019; Freedman, 2021).

However, subsequent studies of the TRGB calibration (combined with other standard candles like

Cepheids in Uddin et al. 2023, or as the sole calibrator for SNIa in Scolnic et al. 2023) have placed

estimates of H0 back in agreement with other late-Universe estimates.

Another late-Universe estimate of the Hubble constant uses time delay cosmography. This by-

passes the requirement to construct and calibrate a distance ladder by taking advantage of the

angular diameter distance dependence on the Hubble parameter H(z). The basic setup requires

observations of a quasar that has gravitationally lensed by a foreground galaxy to produce multiple

images. The photons that are observed as multiple images take different paths around the host

galaxy, and as such arrive at the observer at different times. The time delay observed between the

images can then be observed through the natural variability of the quasar, and the time delay can
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be related to the angular diameter distance to the lensing galaxy, which is sensitive to the Hubble

constant. A more detailed description of time delay cosmography is reviewed by Birrer et al. (2022).

A recent estimate of H0 = 73.3+1.7
−1.8 km s−1 Mpc−1 with time delay cosmography was reported by the

H0LiCOW collaboration (Wong et al., 2020), which is in good agreement with other late-Universe

measurements. This was later corroborated by Millon et al. (2020); Birrer et al. (2020), although the

same team showed that the time delay cosmography estimate of H0 can share a strong dependence

on the assumed mass profile of the lensing galaxy (Gilman et al., 2020; Yıldırım et al., 2023). This

is known as the mass sheet degeneracy, and subsequent analysis using separate observations of the

stellar kinematics in a lensing galaxy to resolve the mass sheet degeneracy have produced results

consistent with the original time delay cosmography estimate (Shajib et al., 2023).

Among a host of possible distance ladder calibrations, methods like time delay cosmography seem

appealing if one wishes to avoid compounding measurement uncertainties through the combination of

observations. There is potential to use the observations of gravitational wave (sometimes shortened

to GW) transients as ‘standard sirens’. The absolute luminosity of catastrophic merger event signals

is associated with the amplitude, or ‘strain’ of the gravitational wave signal under the assumption of

a model for gravity, typically standard general relativity (Holz et al., 2018). If the particular merger

event happens to produce an electromagnetic counterpart, then the event may be localized to a host

galaxy whose spectroscopic redshift may be measured. The combination of distance and redshift

information can then be used to infer the Hubble constant, as was performed by Abbott et al. (2017).

Their estimate is not very precise, but it proves that gravitational wave merger events can be used

as standard sirens if the host galaxy can be localized. Continued observations of gravitational wave

merger events will inevitably produce a large enough sample of localized events (Chen et al., 2018).

In a similar vein, the use of fast radio bursts (FRBs) to estimate distance has also been proposed

(Walters et al., 2018; Wu et al., 2020). FRBs are extremely short, broadband radio signals that

are likely to be extragalactic in origin (see Cordes & Chatterjee 2019 for a detailed review). An

effect of radio signals travelling through the intergalactic medium (IGM) is that they experience a

frequency-dependent time delay. The time delay is characterized by the dispersion measure (DM),

which is a measure of the total integrated column of free electrons in the IGM along the line of

sight. FRB signals from host galaxies farther away are expected to experience longer time delays

between frequencies as a result of a larger integrated column of free electrons. The measured DM of

an FRB may then be used as a very rough measure of the distance to its source. One must localize

an FRB signal to its host galaxy in order to measure its spectroscopic redshift, as with the GW

standard sirens. Very Long Baseline Interferometry (VLBI) techniques combining observations from

existing experiments like the Canadian Hydrogen Intensity Mapping Experiment (CHIME; CHIME

Collaboration et al. 2022) make the localization of FRBs possible (Cassanelli et al., 2022; Michilli

et al., 2023). The Hubble constant can be inferred with only information provided by FRBs, as

shown in James et al. (2022); Hagstotz et al. (2022), and the constraints are expected to improve as

more FRBs are localized.
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1.4 Contemporary Challenges in Cosmology

1.4.1 Dark Matter and the Growth of Structure

The Planck results (Planck Collaboration et al., 2020a) indicate that approximately 20% of the

Universe’s matter is baryonic matter (i.e., matter that interacts directly with electromagnetism).

The rest (approx. 80%) of the matter is known to interact gravitationally, but not electromagneti-

cally, hence the name dark matter. Dark matter has yet to be observed directly, but its abundance

relative to baryonic matter means that it dominates the growth and dynamics of large scale struc-

tures. The existence and abundance of dark matter is well documented and supported by a wide

variety of evidence across cosmological scales ranging from the CMB (Bennett et al., 2013; Planck

Collaboration et al., 2020a), to the Lyman-α forest (Croft et al., 1998; McDonald et al., 2000, 2005;

Zaroubi et al., 2006; Palanque-Delabrouille et al., 2013; Iršič et al., 2017b; Villasenor et al., 2023;

Rogers et al., 2023), to the distribution and clustering of galaxies (Gil-Maŕın et al., 2015; Ross et al.,

2020; Alam et al., 2021), to the dynamics of galaxies and substructures within galaxies (Posti &

Helmi, 2019; Zavala & Frenk, 2019; Gilman et al., 2020; Garavito-Camargo et al., 2021). There have

also been extensive studies cross-matching the data between these experiments (Baxter et al., 2018;

Chabanier et al., 2019; Sun et al., 2022; Karim et al., 2022; Chang et al., 2022; Givans et al., 2022;

Madhavacheril et al., 2023; Qu et al., 2023).

The true nature of dark matter is yet to be fully understood. The ΛCDM model imposes that all

of the dark matter is ‘cold dark matter’ (CDM), which means that the velocity dispersion of whatever

particles or objects makes up the dark matter is relatively low. In contrast, ‘hot dark matter’ (HDM)

or ‘warm dark matter’ (WDM) models have been proposed consider the possibility that the dark

matter components are moving at relativistic speeds, or somewhere in between (Primack & Gross,

2001; Boyarsky et al., 2009; Viel et al., 2013; Lovell et al., 2014; Drewes et al., 2017; Iršič et al.,

2017c; Murgia et al., 2018; Palanque-Delabrouille et al., 2020; Garzilli et al., 2021). Models of ‘fuzzy

dark matter’ (fDM) have also been proposed, which invoke ultralight particles (such as ultralight

axions) to suppress the formation and growth of structure at scales below a few kpc (Hui et al., 2017;

Iršič et al., 2017a; Armengaud et al., 2017; Kobayashi et al., 2017; Ferreira, 2021; Dentler et al.,

2022; Laguë et al., 2022; Vogt et al., 2023). We refer the reader to Arbey & Mahmoudi (2021) for a

deeper review of dark matter in the context of cosmology.

A majority of the observational evidence indicates that at least most of the dark matter is con-

sistent with behaving like CDM at the largest scales of the Universe, but we have begun to observe

inconsistencies between the observed structure growth and clustering at the smaller scales and pre-

dictions with CDM (Weinberg et al., 2015). The core-cusp problem describes a discrepancy between

the innermost shape of predicted mass profiles of massive dark matter halos with CDM (constant-

density cores) and the estimated mass profiles from dynamical observations (an increased, sharper,

cusp-like density towards the center). A deep discussion of the core-cusp problem is provided by

Ludlow et al. (2013). CDM models also appear to predict an overabundance of dark matter sub-

structures compared to the amount of dwarf galaxies we do observe in groups of galaxies (Stoehr

et al., 2002; Kravtsov, 2010). This is commonly referred to as the missing satellites problem, al-

though recent observations suggest that the ‘missing satellites’ around the Milky Way maybe within

statistical tolerances (Kim et al., 2018; Nashimoto et al., 2022).

As briefly covered at the end of §1.2.4, some WDM or fDM models present an opportunity to
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explain the suppression of structures small-scales and simultaneously provide an explanation for

what makes up the dark matter (Hui et al., 2017; Drewes et al., 2017; Ferreira, 2021; Vogt et al.,

2023). Other explanations include the effects of neutrino mass and related quantities (Kaplinghat

et al., 2003; Lesgourgues & Pastor, 2012; Green & Meyers, 2021; Abazajian et al., 2022), dark

matter interactions (Tulin & Yu, 2018; Gluscevic et al., 2019; Buen-Abad et al., 2022), and baryonic

feedback (Chisari et al., 2019). One of the major motivations for the development and application

of a new small-scale CMB lensing estimator Chapters 5-6 is to better provide observations of the

small-scale clustering statistics in the late Universe, which in turn provides more robust constraints

for models of dark matter and the growth of structure.

1.4.2 Discordance between early- and late-Universe observations

The Hubble tension describes apparent disagreement between early- and late- Universe estimates

of H0, and it is a hot topic in cosmology. Figure 1.8 is presented in Riess et al. (2019, Figure 4),

and it compares H0 measurements from various experiments. The early-Universe measurements

are based on the CMB power spectra, and either the ΛCDM model or the inverse distance ladder.

The late-Universe measurements are based on the distance estimates to galaxies in the Hubble flow,

and they are calibrated with various astrophysical sources. Refer back to §1.3 for an overview of

the measurements themselves. The point of tension in Figure 1.8 is that the CMB-based estimates

generally agree with each other, and the local estimates are generally consistent with each other.

However, there is presently a 4-5σ disagreement between CMB-based estimates and local estimates.

The Hubble tension has sparked extensive and careful studies of the treatment and comparison

of statistics and systematics in H0 estimates (Chen et al., 2003; Marshall et al., 2006; Chen & Ratra,

2011; Verde et al., 2013; Hee et al., 2016; Charnock et al., 2017), or reconciling the differences with

the extension of cosmological models (Di Valentino et al., 2015; Bernal et al., 2016; Di Valentino

et al., 2016; Huang & Wang, 2016). An exciting prospect for bringing early- and late-Universe

measurements into agreement is the consideration of new physics or extensions to the standard

ΛCDM model, some of which are shown in Figure 1.8 along with the direction in which they would

shift early-Universe estimates. Thorough reviews compiling the wide variety of theoretical models

proposed as solutions to the Hubble tension can be found here (Di Valentino et al., 2021; Hu &Wang,

2023). One compelling direction that is being considered is the possibility of an early dark energy

component that contributes to the early Hubble parameter much before recombination (z ≳ 3000).

Such a model serves to reduce the BAO sound horizon at recombination (rs in Equation (1.17) goes

down if H(z) at early times goes up), while leaving late-time BAO predictions unaffected. This

shifts the CMB+BAO estimate of H0 higher, and can provide relief to the tension between early-

and late-time measurements (Hojjati et al., 2013; Karwal & Kamionkowski, 2016; Poulin et al., 2019;

Smith et al., 2021; Kamionkowski & Riess, 2022).

Another source of discordance between early- and late-Universe cosmological measurements is

the σ8 or S8 tension. The amplitude of matter fluctuations at late-times on a smoothed distance

scale of 8h−1 Mpc is parameterized by σ8. Here h = H0/(100 km s−1 Mpc−1) is a rescaled Hubble

constant. There is no profound reason for defining a quantity at specifically the distance scale

8h−1 Mpc. The importance of σ8 is rather to act as a quantitative anchor for the overall clustering

of matter that is independent of cosmological modelling. Similarly, the parameter S8 ≡ σ8

√
Ωm/0.3

is a rescaled version of σ8 that is parameterized to mitigate its degeneracy with the overall matter



CHAPTER 1. INTRODUCTION 32

Figure 1.8: A comparison of early- and late-Universe Hubble constant measurements presented by
Riess et al. (2019, Figure 4, reproduced by permission of the AAS). The early- and late-Universe
measurements are in 4.4σ disagreement, and there are several proposed extensions to the standard
cosmological model to relieve the tension.
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density. The σ8 or S8 tension describes the disagreement between the values of σ8 or S8 measured

by matter-clustering experiments at late-times when compared to expected values from ΛCDM

following parameters from CMB measurements. Overall, the measured clustering of late-time matter

fluctuations is lower than expected (Gómez-Valent & Solà Peracaula, 2018; Nunes & Vagnozzi, 2021;

Poulin et al., 2023).

Chapters 2-3 of this dissertation strive to improve geometric distance estimates with Gaia data.

Further, independent cosmic distance measures, especially those at the lowest step of the distance

ladder, can have a profound impact on the local determination of the Hubble constant as discussed

in §1.3. The implications for the Hubble tension are interesting regardless of whether Gaia data can

be used to resolve the tension, or if its application verifies the discrepancy.

1.4.3 Beyond Standard Cosmological Models

The ΛCDM model has, for the most part, had resounding success in describing the evolution of the

Universe from the earliest times to the present day. We have seen in the previous sections that the

model has some difficulties tying together measurements between observations from the early- and

late-Universe. This has motivated a variety of extensions to the so-called standard model to explain

the discrepancies, which we have already covered.

An important and popular extension to the standard model is the addition of the inflationary

epoch described in §1.2.2 (see Tsujikawa 2003; Baumann & McAllister 2015 for reviews; Baumann

2022 also introduces inflation in Chapter 2). The inflationary epoch is called upon to explain the

flatness problem, which lack of spatial curvature (Ωk < 10−5) in the Universe (Planck Collaboration

et al., 2020a). It is also used to explain why the CMB is the same temperature down to a few

parts in 10−4 K. There is a need to explain why the CMB appears to have been causally connected

in all directions, which is the horizon problem. Theories from particle physics also predict the

existence of exotic species such as magnetic monopoles which we do not observe in nature. We

discussed earlier that the initial scalar perturbations in the early Universe could be generated by

an epoch of inflation. One may expect such a drastic expansion of space to disperse the Universe’s

energy away, and inflationary theories typically solve this with a large injection of energy from the

physical field or phenomenon driving the expansion. This is often referred to as reheating. Cosmic

inflation is typically proposed very shortly after the Big Bang, and facilitates the extremely rapid

expansion of the Universe, usually by a factor of at least e∼60 (Tsujikawa, 2003; Baumann, 2022).

The inflationary epoch is invoked to intensely stretch out the (initially causally connected, or close

enough together light to travel from one point to the other in the time since the Big Bang η) fabric

of spacetime to smooth out the curvature of space. At the same time, this dilutes the exotic species

that are predicted to exist to less than one expected particle per observable volume of the Universe.

Finally, as we explained in §1.2.2 inflation be employed to bring quantum fluctuations of curvature

perturbations to cosmic scales, which are the initial seeds of density perturbations.

One of the ‘smoking gun’ pieces of evidence predicted by inflationary theories is the generation of

tensor perturbations, or primordial gravitational waves. These are predicted to be observable as the

source of a primary signal in the CMB BB power spectrum, see Figure 1.2. Up until now, the ratio

between the amplitudes of the tensor and scalar perturbations have been constrained to be r ≲ 0.06

(Planck Collaboration et al., 2020a). The primary challenge with detecting the primary BB signal

is its low amplitude, which we can see in Figure 1.2 is several orders of magnitude lower than the
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EE signal. To compound to this, the generation of secondary BB power from gravitational lensing

dominates over the primary signal to the point that it is no longer visible in Figure 1.2 (Seljak &

Hirata, 2004). CMB delensing techniques can serve to remove the secondary BB signal, as discussed

in §1.2.4 (Kesden et al., 2002; Knox & Song, 2002; Hotinli et al., 2022). Another additional challenge

is the contamination of the CMB polarization signal from dusty foregrounds, which is known to be

a nuisance (BICEP2 Collaboration et al., 2014; Flauger et al., 2014; Bonaldi et al., 2014; Mortonson

& Seljak, 2014).

We described the LiteBIRD mission at the end of §1.2.5, which aims to observe the CMB polariza-

tion signal at a wide variety of frequencies to characterize the foreground contamination (LiteBIRD

Collaboration et al., 2023). Their target is to constrain values of r ≳ 10−3, which requires a robust

understanding of its instrument systematics. Chapter 4 of this dissertation describes a study on

the impact of electrical crosstalk, an instrument-specific systematic effect, on LiteBIRD observables.

We performed realistic simulations of the CMB observation process described in §1.2.5 through the

TOAST software package that we modified to include the effects of detector crosstalk to investigate

the potential impact of crosstalk on the LiteBIRD target sensitivity on r.

1.5 Modern Statistical and Machine Learning Techniques

1.5.1 Bayesian Inference

Precise constraints of physical models now demand robust statistical analysis of cosmological obser-

vations. Standard techniques of modern cosmological and astrophysical methodology revolve around

Bayes theorem (Dodelson, 2003; Hob, 2009; Joyce, 2021). Within this paradigm, physical models

are described with likelihoods p(d|θ) which describe the probability that a set of data d are observed

when given a particular set of parameters θ which govern the model. Bayes theorem defines the

posterior, which is the probability distribution of all parameters θ conditioned on the set of observed

data d:

p(θ|d) = p(d|θ)p(θ)
p(d)

. (1.35)

The posterior contains information about the physical model within the likelihood, combined with

prior knowledge about each individual parameter through p(θ). The model evidence p(d) is the

marginalized likelihood of the data over all possible values of the parameter space, and it is usually

ignored unless a study is comparing the efficacy of different models.

A general data-set d = {di}may contain N observables, where i ∈ 0, 1, . . . , N . The full likelihood

function (if the data are independent of each other) can then be a product of distribution functions

which describe the probability of each observation di being observed under a given set of parameters

θ:

p(d|θ) =
N∏

i

p(di|θ). (1.36)

There is a great deal of flexibility when it comes to building physical models that can be described

by a likelihood function. One of the simplest (and widely used) likelihood functions is the normal,
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or Gaussian, distribution. It is parameterized in one-dimension as follows:

N (x|µx, σ
2
x) =

1√
2πσ2

x

e
(x−µx)2

σ2
x . (1.37)

A quantity x is considered “normally distributed” if it follows a statistical distribution described by

Equation (1.37). This set of distributions is characterized by a central value, or mean, µx which

at which the probability peaks, and there are symmetrical, exponential tails on either side whose

width, or variance, is set by σ2
x. Similarly, the multivariate normal distribution is parameterized

with a covariance matrix Σ which describes the correlations between observables:

N (x|µ,Σ) =
1√

(2π)N det(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ) . (1.38)

Normal distributions can be generalized with higher-order statistics, which can introduce skewness

(asymmetric tails) and kurtosis (heavier/lighter tails).

Prior distributions for parameters may be informative or uninformative. One may choose to

use prior knowledge about a parameter if it was measured to be a particular value in a previous

study. In this scenario, an informative prior distribution may be chosen in a form similar to Equa-

tion (1.37), where the previous study’s measurement is used to set the mean and variance of the

prior. Uninformative priors are usually chosen to be uniform, or flat, distributions, which means that

all values of the parameter are equally likely. One may also choose to use a log-uniform distribution

if it is necessary to provide similar weight to a particularly large range of parameter space spanning

multiple decades.

The power of constructing probabilistic models in the Bayesian framework is the ability to model

the dependence of parameters on each other, or on new hyperparameters that are not directly

observed. Including this extra complexity transforms the model into a hierarchical model, and it is

a powerful tool for describing complex physical systems. One note of caution is that the inclusion of

hyperparameters leads to an increase in the dimensionality of the parameter space, which can make

it difficult to compute or explore the full posterior distribution. One must also be wary of including

too many parameters, in which case the results may become overfitted.

1.5.2 Sampling Methods

It is possible to analytically or numerically compute the posterior distribution of simple models for

small data sets using Equation (1.35). Modern astrophysical and cosmological models are described

by many parameters as well as data-sets are commonly highly dimensional, which both contribute to

posterior distributions which are intensely complex. While it is still possible to numerically compute

these highly dimensional posterior distributions, it is computationally impractical to explore large

volumes of parameter space through brute force. In this case, it is often more practical to ‘sample’

the density of posterior distributions with clever algorithms.

A common, and simple, way to sample posterior distributions is the Markov chain Monte Carlo

(MCMC) method. Popular Python implementations of MCMC algorithms include emcee9 (Foreman-

Mackey et al., 2013), and PyMC10 (Salvatier et al., 2015). Cosmology specific packages include

9https://github.com/dfm/emcee
10https://github.com/pymc-devs/pymc

https://github.com/dfm/emcee
https://github.com/pymc-devs/pymc


CHAPTER 1. INTRODUCTION 36

CosmoMC11 (Lewis & Bridle, 2002), and Cobaya12 (Torrado & Lewis, 2019, 2021). We make partic-

ular use of emcee for a simple cosmological parameter estimator in Chapter 6 due to its simplicity

and ability to construct log-probabilities with blackbox functions. MCMC algorithms are gener-

ally simple to implement, but they are not always efficient at sampling complex parameter spaces,

especially for models with high dimensionality.

An alternative to more traditional MCMC algorithms is a sub-class called Hamiltonian Monte

Carlo (HMC) algorithms. These make clever use of Hamiltonian dynamics to more efficiently sample

the parameter space, especially for models with highly correlated parameters (Neal, 2012). The

samples produced by an HMC algorithm also generally experience lower levels of auto-correlation

than those produced by MCMC algorithms. A popular software implementation of HMC algorithms

is Stan13 with Python implementation PyStan14 (Carpenter et al., 2017), which we make use of in

Chapters 2-3.

1.5.3 Deep Learning and Emulators

Datasets across astronomy and cosmology are increasingly growing in size and complexity. Deep

learning tools have seen widespread use among other machine learning techniques in the era of data-

driven astronomy. The application of Neural Networks (NN) have seen success in the classification

of astronomical transients from light curves (Hložek et al., 2023), the prediction of stellar parameters

from observed spectra (Leung & Bovy, 2019b), and more (Smith & Geach 2023 presents an extensive

overview of deep learning in astronomy; see Alzubaidi et al. 2021 for deep learning in general). We

make use of stellar parameters predicted by astroNN15 (Leung & Bovy, 2019b) in Chapter 2. These

NNs were designed to mimic the structure of animal brains, which are made up of a large number

of neurons that are inter-connected in non-trivial ways. In astronomy, they are often used to map

a set of i input features x = {xi} to a set of j output features y = {yj} through a series of hidden

layers. These hidden layers are composed of ‘connections’ which combine inputs from the previous

layer with a non-linear function to produce outputs for the next layer. A NN can be trained to

learn the output features with a set of labelled training data {xt,yt} for which the output features

are known. During the training process, the NN is optimized to minimize the difference between

the predicted output features yp and the known output features yt by adjusting the weights for

each connection’s contribution to their next layer. The nature of the training process allows the

NN to learn complex relationships between the input and output features, which can be used to

predict the output features for new input features. The caveat is that the NN is only able to make

predictions within the range of input features that it was trained on, similar to an interpolation. The

TensorFlow16 (Abadi et al., 2015) and PyTorch17 (Paszke et al., 2019) packages provide frameworks

for constructing and training NNs in Python.

An application of modern machine learning techniques in cosmology is the emulation of cosmolog-

ical power spectra. The computation of power spectra from Boltzmann codes was briefly discussed in

§1.2, and they are able to produce outputs from cosmological parameters on the order of O(1 s). This

11https://github.com/cmbant/CosmoMC
12https://github.com/CobayaSampler/cobaya
13https://github.com/stan-dev/stan
14https://github.com/stan-dev/pystan
15https://github.com/henrysky/astroNN
16https://github.com/tensorflow/tensorflow
17https://github.com/pytorch/pytorch

https://github.com/cmbant/CosmoMC
https://github.com/CobayaSampler/cobaya
https://github.com/stan-dev/stan
https://github.com/stan-dev/pystan
https://github.com/henrysky/astroNN
https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
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kind of speed is unattainable for power spectra predicted from cosmological simulations which hope

to include non-linear effects in the growth of structure, so attention has been turned to emulation

to predict power spectra from cosmological parameters (Lawrence et al., 2010; Rogers et al., 2019;

Pedersen et al., 2021; Jamieson et al., 2023). Applications of Boltzmann codes for the computation

of power spectra can also become a bottleneck for parameter estimation pipelines using the tech-

niques described in §1.5.2. The sampling process may require new power spectra to be generated at

every step in the parameter space, and replacing a Boltzmann code with an emulator trained on its

output may yield significant speedups (Spurio Mancini et al., 2022). We train two power spectrum

emulators within the CosmoPower18 (Spurio Mancini et al., 2022) framework in Chapter 6 to speed

up cosmological parameter estimation.

1.6 Thesis Overview

In this chapter, we reviewed the state of the art in cosmological observations, the theoretical models

that are used to describe them, as well as some statistical and computational methods that are used

in the field. We put a particular focus on observations of the cosmic microwave background, as well

as measures of cosmic distance, in order to set the stage for the problems in contemporary studies

for which we aim to contribute new understanding for through the contents of this thesis.

In Chapters 2-3, we present work on using data from the Gaia satellite to improve knowledge

of the earliest steps of the local distance ladder, with the ultimate goal of improving the local

determination of the Hubble constant H0. We begin in Chapter 2 with a study of the systematic

parallax zero point that is persistent in Gaia DR2 astrometry with a probabilistic model that

simultaneously calibrates a luminosity model for red clump stars and infers the parallax zero point.

We infer the Gaia DR2 parallax zero point to be ϖ0 = −48 ± 1µas, which is the most precise

determination of the systematic for DR2. We also show extensions to our probabilistic model that

allow us to characterize the variations of the Gaia parallax zero point as a function of a source’s

observed magnitude, observed colour, and position on the sky. Chapter 3 continues the study of

Gaia distances by searching for bright, giant stars in the Large Magellanic Cloud that have spectra

similar to nearby, bright giants with high quality parallax measurements in Gaia DR3. We infer the

distance to the LMC to be RLMC = 48.90+0.52
−0.48 kpc using a model that assumes the matched stars

share the same luminosity and calibrates the absolute brightness using the nearby parallaxes. Our

estimate is in agreement with the accepted value reported by Pietrzyński et al. (2019) at similar

precision, and it represents the possibility for using Gaia data to independently validate the absolute

distance calibration at the lowest step(s) of the local distance ladder.

We move on to studies of the cosmic microwave background in Chapter 4, where we tailor

existing simulations of CMB satellite observations to include the effects of detector crosstalk. These

simulations allow us study the impact of realistic crosstalk on the LiteBIRD mission’s observables,

and we find that the impact of unmitigated crosstalk will affect CMB polarization power spectra by

at most a few percent. The results of this chapter bode well for the LiteBIRD mission’s prospects

of meeting its target requirements for constraining the tensor-to-scalar ratio to r ≳ 10−3.

Chapter 5 shifts our focus one final time to the study of the small-scale (ℓ ≫ 3000) gravitational

lensing of the CMB. We present the development of the Small Correlated Against Large Estimator,

18https://github.com/alessiospuriomancini/cosmopower

https://github.com/alessiospuriomancini/cosmopower
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which we show can outperform traditional quadratic estimators in terms of the signal-to-noise of

recovered CMB lensing potential power spectrum at L ∼ 7000 at the noise levels of upcoming, and

future experiments. Chapter 6 continues with the application of SCALE for parameter estimation

in simulated maps of the lensed CMB at noise levels similar to the proposed CMB-S4 experiment.

We show that the inclusion of SCALE can improve constraints cosmological parameters sensitive to

small-scale lensing, with the neutrino mass mν as an example. We show that SCALE can provide

enough information to provide a 2.4σ detection of the minimum neutrino mass mν = 0.06 eV, which

goes undetected if the only observables are CMB power spectra. We conclude in Chapter 7 with a

summary of the main results of this thesis in the context of the challenges we set out to address.



Chapter 2

Gaia DR2 parallax zero point:

Hierarchical modelling of the red

clump

Originally published as: “The Gaia DR2 parallax zero point: Hierarchical modeling of red clump

stars” Chan, Victor. C., & Bovy, Jo 2020, MNRAS, 493, 4367, doi: 10.1093/mnras/staa571. The

body of the published manuscript has been adapted for this dissertation with some minor clarifications,

and a majority of the introduction has been moved to Chapter 1 (see §1.3.2).

Abstract

The systematic offset of Gaia parallaxes has been widely reported with Gaia’s second data

release, and it is expected to persist in future Gaia data. In order to use Gaia parallaxes to infer

distances to high precision, we develop a hierarchical probabilistic model to determine the Gaia

parallax zero point offset along with the calibration of an empirical model for luminosity of red clump

stars by combining astrometric and photometric measurements. Using a cross-matched sample of

red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and

Gaia Data Release 2 (DR2), we report the parallax zero point offset in DR2 to be ϖ0 = −48±1 µas.

We infer the red clump absolute magnitude to be MK = −1.622± 0.004 in Ks, MG = 0.517± 0.004

in G, MJ − 1.019± 0.004 in J , and MH − 1.516± 0.004 in H. The intrinsic scatter of the red clump

is ∼ 0.09 mag in J , H and Ks, or ∼ 0.17 mag in G. We tailor our models to accommodate more

complex analyses such as investigating the variations of the parallax zero point with each source’s

observed magnitude, observed colour, and sky position. In particular, we find fluctuations of the

zero point across the sky to be of order or less than a few 10 s of µas.
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2.1 Introduction

S
ystematics in the parallaxes reported in the Gaia mission’s Data Release 2 (DR2)

have been intensely studied to make full use of the astrometric data available. In this

chapter, we describe hierarchical Bayesian models inspired by Sesar et al. (2017) and

Hawkins et al. (2017) to simultaneously estimate the Gaia parallax zero point and

constrain an empirical relation for the luminosity of red clump stars. We outline the red clump

sample and the data used in these analyses in §2.2. The hierarchical model and several add-ons for

additional detailed analysis are described in §2.3. Results of each model/analysis are presented in

§2.4, with inferred parameters collected in Table 2.1. We discuss the internal consistencies between

each model as well as compare our measurements with other reports in §2.5. Finally, we conclude

with a summary in §2.6.

2.2 Data

2.2.1 Red-clump sample

As a part of SDSS-III/IV (Eisenstein et al., 2011; Blanton et al., 2017), the Apache Point Obser-

vatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2017) is a spectroscopic survey

in the near infrared. Observing in the infrared is a major advantage for its data, as this allows for

measurements that are less affected by dust extinction when compared to optical measurements.

The survey data has been pre-processed and is publicly available online as part of the SDSS Data

Release 14 (DR14; Holtzman et al. 2015; Garćıa Pérez et al. 2016; Abolfathi et al. 2018). This data

set includes detailed measurements of each source’s chemical abundances (with S/N > 100) as well

as the stellar parameters Teff and log g due to its spectroscopic resolution of R ≈ 22 500 (Wilson

et al., 2019). We make use of the Two Micron All Sky Survey (2MASS) J , H, and Ks photometry

(Skrutskie et al., 2006). The 2MASS photometry has been previously corrected for reddening with

the Rayleigh-Jeans Colour Excess method (Equation 1 in Majewski et al. 2011), yielding measured

extinction values AJ , AH , and AK for each object.

We also make use of inferred values for Teff , log g, as well as the chemical abundance data,

specifically [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [S/Fe], and [Ca/Fe]. The abundances for Z = {O, Mg,

Si, S, Ca} are used to construct a value of [α/Fe] by calculating

[α/Fe] =

∑
z∈Z wz[z/Fe]∑

z∈Z wz
, (2.1)

where w = 1 or w = 0 depending on whether the measurement of [Z/Fe] exists respectively. The

abundance measurements upon which [α/Fe] is based are not taken from SDSS DR14, but they are

instead products of an artificial neural network astroNN trained on APOGEE spectra from DR14

(Leung & Bovy, 2019b). Typical sources in astroNN have inferences of chemical abundances to

≈ 0.03 dex, Teff to ≈ 30 K, and log g to ≈ 0.05 dex.

We use only a sub-sample of the APOGEE data set that has been classified as red-clump stars by

Bovy et al. (2014). The red-clump stars were identified with strict cuts first in effective-temperature–

surface-gravity–metallicity space followed by further cuts in colour–surface-gravity–metallicity space.

This was done to minimize contamination from other red giant branch stars within the population.
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The Bovy et al. (2014) cuts leave a small amount of contamination (≲ 10%) by non red-clump

stars, which could be identified with better measurements of log g. In order to further purify the red-

clump sample, we apply cuts to sources in the sample for which (log g)APOGEE−(log g)astroNN < −0.2.

As this quality cut serves to remove suspected contamination sources in the sample, it should improve

our calibrations of the red clump luminosity. We do not expect there to be any bias induced on

statistical inferences. We provide a brief discussion on the importance of an accurate red clump

luminosity calibration in §2.5.1.

2.2.2 Gaia DR2 data

With the advent of DR2, the Gaia mission currently has measurements of sky position and photom-

etry in its G-band (330–1050 nm) for nearly 1.7 billion sources (Gaia Collaboration et al., 2018b).

Over 1.3 billion of the sources in DR2 also have measurements of parallax (ϖ) and proper motion.

The current reported limiting magnitude in DR2 is G ≈ 21, and the data set is reported to be

complete over 3 ≲ G ≲ 17.

The Gaia mission only reports the 5-parameter astrometric data (position, parallax, and proper

motion) for sources that satisfy three requirements: (1) they must be brighter than the limiting

magnitude (G < 21), (2) each source must have been observed on at least six occasions that are

separated by at least four days, and (3) the astrometric parameters must be measured to within

a magnitude-dependent uncertainty. The full details of the astrometric solution are discussed by

Lindegren et al. (2018).

We cross-match the Gaia DR2 sample with the red-clump sample to obtain the G magnitudes,

GBP (330–680 nm; also referred to as BP ) and GRP (630–1050 nm; also referred to as RP ) mag-

nitudes, as well as parallaxes and their uncertainties. The Gaia data set includes measurements

of negative parallaxes, which can still contain useful information when combined with their uncer-

tainties. An exception must be made for unphysical measurements of negative parallaxes that are

too confident because these must be outliers, so we make further cuts on the quality of the parallax

measurements by removing any sources with a measured ϖ/σϖ < −3, or ϖ = 0 from our sample.

Additionally, the Gaia collaboration has advised that the G magnitudes be corrected according

to the following procedure1:

Gcorr =





−0.0473 + 1.164G− 0.0468G2 + 0.0035G3, 2 < G ≤ 6

G− 0.0032(G− 6), 6 < G ≤ 16

G− 0.032, G > 16.

(2.2)

This correction is applied only when theGmagnitudes are used in the context of usingG to determine

the red clump luminosity through the distance modulus (further elaborated upon in §2.3). Our final

data set contains 27,934 red clump stars with values for d =
{
ϖ,σϖ, G,GBP , GRP , J,H,Ks, AJ ,

AH , AKs
, Teff, [Fe/H], [α/Fe]

}
.

1https://www.cosmos.esa.int/web/gaia/dr2-known-issues

https://www.cosmos.esa.int/web/gaia/dr2-known-issues
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Figure 2.1: The Gaia parallax offset assuming the distances to each star in the red clump catalogue
are correct. The red line indicates the median of the sample at −56.2 µas. The dotted black line is
located at G = 13 mag, where the astrometric solution pipeline is reported to change.

2.2.3 Gaia Extinction Model

As mentioned previously, the 2MASS photometry from the red clump catalog (J , H, and Ks bands)

have been corrected for extinction using the Rayleigh-Jeans Colour Excess method, so each star has

associated AJ , AH , and AK extinction values that have been implicitly included in their respective

apparent magnitudes as m0 = m−Am. The Gaia G band has not been extinction corrected, so we

use the following procedure to estimate the G band extinction coefficient.

For each star in the red clump sample, we compute synthetic G and Ks band photometry using

the pystellibs2, pyphot3, and pyextinction4 tools, and we determine the AG/AK extinction

ratios with the following steps:

1. We generate initial synthetic stellar spectra (denoted F0(λ)) with the Castelli & Kurucz

(2003)/Kurucz (2005) stellar model library in pystellibs for each source using their respective

Teff, log g, and Z.

2. The extinction-free Ks band magnitude (denoted K0) is computed with pyphot for each stellar

spectrum F0(λ) using the 2MASS Ks passband (Cohen et al., 2003).

3. Assuming a value of AV , we use the Fitzpatrick (1999) extinction law A(λ)/AV computed using

the pyextinction tool, redden each stellar spectrum with A(λ) = AV × A(λ)/AV , yielding

2https://github.com/mfouesneau/pystellibs
3https://github.com/mfouesneau/pyphot
4https://github.com/mfouesneau/pyextinction

https://github.com/mfouesneau/pystellibs
https://github.com/mfouesneau/pyphot
https://github.com/mfouesneau/pyextinction
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Fr(λ) = F0(λ)× 10−0.4A(λ). We then require knowledge of AV for each star in order to apply

the correct extinction to each stellar spectrum.

4. The extinguished Ks band magnitude (denoted K) is computed with pyphot for each reddened

spectrum Fr(λ) using the 2MASS Ks passband.

5. By repeated application of the previous two steps, we solve for each AV value that matches

the given AK value obtained from the RJCE method. We then redden each stellar spectrum

again using this value of AV , yielding FR(λ).

6. The extinction-free G0 magnitude is computed with pyphot for each un-reddened stellar spec-

trum F0(λ) using the Máız Apellániz & Weiler (2018) revised G passband. Similarly, we

compute each extinguished G from the reddened spectrum FR(λ).

7. The extinction ratio for each star is then produced as AG/AK = (G−G0)/AK .

The G band extinction correction is then simply given by (AG/AK)AK , the extinction ratio deter-

mined using the synthetic photometry multiplied by the AK value obtained from the RJCE method.

We find that our sample of red clump extinction ratios are well approximated by

AG/AK = 7.09− 2.16AK + 0.68A2
K + 0.18A3

K − 0.12A4
K

+ 0.49/1000K(Teff − 4835K). (2.3)

This parameterization is shown along with the sample and its residuals in Figure 2.2.

2.3 Joint Luminosity and Gaia parallax zero point offset cal-

ibration methodology

2.3.1 Hierarchical modeling of the red clump in Gaia DR2

We construct a probabilistic model based on previous analyses of Gaia observations of standard

candles. In particular, our model is inspired by Sesar et al. (2017), in which RR Lyrae were used

to simultaneously validate Gaia DR1 parallaxes and fit a luminosity function for the stars. With

parallax calibration parameters θϖ, red clump luminosity function parameters θRC, and distance

prior parameters θr, the posterior probability of all the model parameters θ = (θϖ, θRC, θr) is then

proportional to the likelihood of the data d, and the prior probability of the model parameters.

p(θ|d) ∝ p(d|θ)p(θ). (2.4)

The likelihood of the entire red clump data set can be split into the parallax and magnitude likeli-

hoods for each i-th star independently:

p(d|θ) =
∏

i

p(ϖi|θϖ)p(mi|θRC) (2.5)

We model the parallax measurements of each red clump star in Gaia DR2 as being drawn from
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Figure 2.2: The stellar extinction ratios AG/AK for the red clump sample. Top: The sample of ex-
tinction ratios using the steps from §2.2.3, along with the polynomial fit described by Equation (2.3).
Bottom: The residuals from the polynomial fit. Equation (2.3) describes the sample of modeled ex-
tinction ratios to within a few percent.
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a normal distribution. In other words, the likelihood of the DR2 parallax measurements is

p(ϖi|θϖ) ∼ N
(
ϖi

∣∣ϖ′
i, ς

2
ϖi

)
, where (2.6)

N
(
x
∣∣µx, σ

2
x

)
=

1√
2πσ2

x

e
− (x−µx)2

2σ2
x , (2.7)

ϖ′
i = 1/ri +ϖ0, and (2.8)

ς2ϖi
= (fϖσϖi

)2 + σ2
ϖ,+. (2.9)

The distribution for each star is centered around its “true observed parallax” ϖ′
i set by Equa-

tion (2.8), which is the inverse of its true heliocentric distance ri summed with the systematic

parallax zero point offset ϖ0. This is the parallax that Gaia would observe for a source taking

into account the parallax zero point in the limit of no other measurement uncertainties. We later

consider the significance of a non-constant parallax zero point ϖ0(Teff, G, α, δ) that is dependent on

colour, magnitude, and sky position. The uncertainty for each parallax measurement is assumed to

be Gaussian, with σ2
ϖi

being the reported parallax uncertainty from Gaia DR2, but we allow for

adjustments to the reported uncertainties to account for mis-estimated uncertainties. Equation (2.9)

includes two error correction parameters fϖ, and σ2
ϖ,+, which were used to inflate the Tycho-Gaia

Astrometric Solution (TGAS) parallax uncertainties reported in Gaia DR1 (Lindegren et al., 2016).

The values used in Gaia DR1 were fϖ = 1.4, and σϖ,+ = 0.2 mas. The reported values for Gaia

DR2 are fϖ = 1.08, σϖ,+(G < 13) = 0.021 mas, and σϖ,+(G > 13) = 0.043 mas5. We include these

parameters θϖ = {ϖ0, fϖ, σϖ,+} in our model as a validation of the reported parallax uncertainties

and corrections in Gaia DR2. It is also of note that the astrometric solutions for bright (G < 13)

and dim (G ≥ 13) sources are different (Arenou et al., 2018); thus, we also consider a few models

with separate Gaia systematic parameters θϖ = {ϖ0, fϖ, σϖ,+} for bright/dim sources.

The red clump requires a model for the luminosity as a function of intrinsic stellar properties such

as metallicity, and colour. The absolute magnitude M of the i-th red clump star can be described

as

Mi = Mref + α
(
[J0 −K0]i − [J0 −K0]ref

)
+ β

(
[Fe/H]i − [Fe/H]ref

)
, (2.10)

where (J0 − K0) is the extinction corrected colour. Mref is a reference value parameter which

represents the absolute magnitude of a typical red clump star. Both terms denoted with a subscript

“ref” are fixed representative values of the red clump population. In every one of our models,

we use the median of each corresponding property in the sample: (J0 − K0)ref = 0.60 mag, and

[Fe/H]ref = −0.12 dex.

We then choose to model the absolute magnitude of each red clump star as being drawn from a

Student’s t-distribution centered around Mref, or

p
(
Mi

∣∣∣[Fe/H]i, (J0 −K0)i

)
∼ S

(
Mi

∣∣∣Mref, σ
2
M , ν

)
, where (2.11)

S(ti|ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)
(
1 +

t2i
ν

)− ν+1
2

, and (2.12)

ti =
Mi −Mref

σM
.

5https://www.cosmos.esa.int/documents/29201/1770596/Lindegren_GaiaDR2_Astrometry_extended.pdf

https://www.cosmos.esa.int/documents/29201/1770596/Lindegren_GaiaDR2_Astrometry_extended.pdf
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Figure 2.3: The Student’s t-distribution in comparison with a Gaussian distribution for different
values of ν. The dashed line shows a standard normal distribution. For large values of ν the
distribution is approximately Gaussian (the ν = 100 distribution essentially overlaps the Gaussian
curve), but for small values of ν the distribution has much heavier tails than a Gaussian. We use
the Student’s t-distribution as a flexible model for the luminosity function of the red clump.
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Here, ν is a parameter that controls the shape of the distribution. The role of ν in the Student’s

t-distribution is illustrated in Figure 2.3. A lower value of ν introduces a positive excess kurtosis

to the distribution; in other words, the peak at the central value Mref gets narrower, and the tails

become elevated. This allows the luminosity calibration to be less susceptible to outliers which still

contaminate the red clump sample after quality cuts. The Student’s t-distribution converges to a

normal distribution as ν → ∞. The uncertainties associated with m0, [Fe/H], (J0 − K0), and the

luminosity model chosen in Equation (2.10) are captured in σ2
M as a model parameter, which then

sets the width of the distribution.

To tie the luminosity and parallax calibration models together, we unite the observed magnitude

of each star with its observed parallax through the distance to the star, ri. This was already done

for the parallaxes through Equation (2.8), and can be done for the magnitudes through the distance

modulus,

µi = m0,i −Mi = 5 log10 ri − 5, (2.13)

where m0 is the extinction corrected apparent magnitude. When using the G magnitudes in partic-

ular, we use the corrected G magnitudes using Equation (2.2), and apply the extinction correction

from our model. We then model the likelihood of the observed distance modulus as a Student’s

t-distribution centered around the true distance modulus, or

p
(
µi(mi)

∣∣∣µi(ri), σ
2
M

)
= S

(
µi(mi)

∣∣∣µi(ri), σ
2
M , ν

)
. (2.14)

The approximation from Equation (2.11) to Equation (2.14) is valid only if measurement uncertain-

ties for m0, (J0 −K0) and [Fe/H] are sufficiently small compared to σ2
M . We provide a discussion

for this later on.

The true distance to each star is unknown, so we include each true distance ri as a model

parameter under an exponentially decreasing volume density prior with scale distance L as described

by Bailer-Jones (2015):

p(ri|L) =
r2i
2L3

exp(−ri/L). (2.15)

The likelihood for the entire data set d is then

p(d|θ) =
∏

i

N (ϖi|ϖ′
i, ς

2
ϖi

)S
(
µi(mi)

∣∣∣µi(ri), σ
2
M , ν

)
p(ri|L). (2.16)

A schematic of our probabilistic model illustrating the dependencies of each parameter and observed

quantity is shown in Figure 2.4. Each of the single circled parameters require prior probabilities. The

prior for r is described by Equation (2.15). We assign the following broad priors for the remaining

parameters:

� Zero point parallax:

Uniform prior between −100 < ϖ0/µas < 100

� Gaia parallax error scaling:

Uniform prior between 0.2 < fϖ < 2

� Gaia parallax error offset:

Log-uniform prior with 0.1 < σϖ,+/µas and no upper bound
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Figure 2.4: A probabilistic graphical model illustrating the base luminosity and parallax calibration
for red clump stars. Double circled nodes indicate observed parameters (or likelihoods), and single
circled nodes indicate fit parameters (which require priors). Nodes inside the rectangle are different
for each star. The direction of each arrow indicates the conditional dependence of each parameter.
For example, the arrow pointing from r to m0 indicates p(m0|r).

� Distance prior scale length for Equation (2.15):

Uniform prior between 300 < L/pc < 3000

� Colour (J0 −K0) slope for red clump luminosity:

Uniform prior between −5 < α < 5

� Metallicity [Fe/H] slope for red clump luminosity:

Uniform prior between −5 < β/(mag dex−1) < 5

� Reference absolute magnitude for red clump stars in the Ks band:

Uniform prior between −2 < MK,ref/mag < −1

� Reference absolute magnitude for red clump stars in the J band:

Uniform prior between −2.5 < MJ,ref/mag < −1.5

� Reference absolute magnitude for red clump stars in the H band:

Uniform prior between −2 < MH,ref/mag < −1

� Reference absolute magnitude for red clump stars in the Gaia G band:

Uniform prior between 0 < MG,ref/mag < 1

� Spread in red clump luminosities in each photometric band:

Log-uniform prior between 0.01 < σMm
/mag < 0.8

� Student’s t-distribution degrees of freedom parameter for each photometric band:

Log-uniform prior between 0 < ν < 1000
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2.3.2 Multivariate Photometry Models

The Gaia parallax validation model described so far uses only one photometric measurement for

each star. In general, k apparent magnitudes may be included in a single analysis through the

multivariate t-distribution

p
(
µ⃗i(m⃗i)

∣∣∣µ⃗i(ri),Σm

)
= S

(
µ⃗i(m⃗i)

∣∣∣µ⃗i(ri),ΣM , ν
)
, where (2.17)

S
(
x⃗
∣∣∣µ⃗,Σ, ν

)
=

Γ[(ν + k)/2]

Γ(ν/2)
√
νkπk|Σ|

[
1 +

1

ν
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

]
. (2.18)

Each component of µ⃗i(m⃗i) can be a distance modulus computed with one of the photometric bands

using the left-hand side of Equation (2.13), and each component of µ⃗i(ri) is the true distance

modulus computed with the distance using the right-hand side of Equation (2.13). As with the

single-variable Student’s t, Σ is related to the width of the distribution like σM while also taking

into account covariances across each photometric band.

We implement the multivariate t-distribution to create a model which accepts both Ks and G

band photometry simultaneously. This model should act as a check for the Gaia G-band extinction

model discussed in §2.2.3. For any given star, photometric measurements in different bands are

expected to be highly correlated, meaning that we do not expect to infer the model parameters to

higher precision with the inclusion of multiple photometric information. Rather, this multivariate

model serves as a method to validate the extinction estimates for AG described in §2.2.3, which are

expected to be less accurate than the given AK values. We specifically choose the Ks information to

match with G because it is expected to be the least extinguished as the reddest photometric band

available.

We also consider a different model which is more intuitively comparable to the single photometry

models. While the luminosity of the red clump in each band is expected to be highly correlated, the

luminosity of each star is not expected to be as strongly correlated with the intrinsic colour. We can

therefore model photometry in different bands (say, G and Ks) by modeling the absolute magnitude

distribution of one band (say, Ks) with one Student’s t-distribution and the colour distribution (say,

G−Ks) with another Student’s t-distribution, with the latter given by

p(G0,i −K0,i|MG,i−MK,i, σ
2
GK)

= S(G0,i −K0,i|MG,i −MK,i, σ
2
GK), (2.19)

where MK,i and MG,i are still modeled with separate versions of Equation (2.10). This version of

the multiple photometry model is implemented by simply including Equation (2.19) in the likelihood

set by Equation (2.16).

2.3.3 Variation of the Gaia Zero Point Parallax

We consider various ways in which the Gaia parallax zero point may depend on other quantities. To

account for the differences in astrometric solutions for sources with G < 13 and G ≥ 13, we first im-

plement a single photometry model with separate parallax-related parameters θϖ = {ϖ0, fϖ, σϖ,+}
for each of the two cases. This and every other model discussed in this section uses only the Ks
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Figure 2.5: The HEALPIX projection of the sky distribution of the red clump sample divided into
varying resolutions through conditions described in §2.3.3. We use this to determine the parallax
zero point offset’s variation on the sky.

photometric information to calibrate the red clump luminosity model.

As mentioned previously, the Gaia parallax zero point should exhibit continuous and multivariate

dependences on properties such as the observed magnitude G, the observed colour GBP −GRP , and

the position of the source on the sky. Note that we investigate dependencies of the parallax zero

point with respect to the uncorrected (using neither Equation (2.2) nor the extinction corrections)

G magnitudes because we want to model how the DR2 pipeline leaves systematic residuals in the

astrometry. The photometric/colour dependencies are easily included in the model by introducing

a functional form for ϖ0:

ϖ0 = z(G,GBP −GRP ) = z0 + zG(G) + zc(GBP −GRP ). (2.20)

In particular, we investigate simple quadratic parameterizations for the dependences on both G, and

GBP − GRP . Due to the change in the astrometric processing at G = 13, we also consider models

with independent zero point functional parameterizations for sources G < 13 and G ≥ 13.

We further consider models in which the Gaia parallax parameters θϖ = {ϖ0, fϖ, σϖ,+} are not

required to follow any specific functional parameterization, but rather we model them as separate

constants in binned G or GBP − GRP space. In particular, we consider 17 bins of width 0.5 mag

from 9.5 – 18 mag in G space, and we consider 7 bins of width 0.5 mag from 1 – 4.5 mag in

GBP − GRP space. Stars outside of these ranges are discarded for each respective analysis. For

each of these binned models, we also consider separate L parameters for each bin to account for

the distance dependence of G, or any possible 3D position clustering of red clump stars of similar

observed colour.
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The dependence on sky position can be probed by projecting the red clump sample onto HEALPIX

maps (Górski et al., 2005). The HEALPIX framework divides the surface of a sphere into 12 diamond-

shaped patches of equal solid angle at lowest order (called NSIDE, and beginning at 1). Higher

resolution patches on the sphere are obtained by further dividing each patch into 4. Each division of

map patches into 4 increases the NSIDE of the map by a factor of 2. The zero point dependence on

sky position can then be modelled through unique values of ϖ0, and L for each HEALPIX patch on

a sky map. In particular, we consider maps of order NSIDE = {1, 2, 4, 8}, corresponding to patches

of approximately {3438, 860, 215, 54} square degrees respectively. The equal-area property of each

patch in a HEALPIX projection is useful for regularly sampling the variation of ϖ0 across the sky,

but the effectiveness of this method is restricted by the need for a sufficiently large subsample of red

clump stars within each patch. Much of the red clump sample is located within the Galactic disk,

so the most precise measurements of ϖ0 on the sky will come from the Galactic disk.

In order to retrieve similar quality inferences of the parallax zero point across the sky, we have

developed a method for analyzing a single sky map with varying HEALPIX resolutions dependent on

the number of stars within each patch. HEALPIX patches are recursively split into higher resolution

sub-patches if the parent patch contains greater than 200 stars. Each daughter sub-patch is further

broken up if it still contains greater than 200 stars and is of order NSIDE < 8. If the sub-patch

contains between 25 – 200 stars or has reached NSIDE = 8, then it is kept at that resolution. If the

sub-patch contains fewer than 25 stars, then it is discarded. The resulting star density map across

our sample can be seen in Galactic coordinates in Figure 2.5. The highest resolution patches allow

for detailed analysis of the zero point’s variation along the Galactic plane, while the lower resolution

patches should group enough stars away from the Galactic plane together to provide reasonable

inferences of the parallax zero point. All parameters remain global with the exception of ϖ0 and L,

which are specific to each patch. Again, we also consider a model with independent sky variations

of ϖ0 for sources G < 13 and G ≥ 13.

2.3.4 Red Clump Luminosity Calibration: Dependence on [α/Fe]

To determine the red-clump luminosity function for sub-populations within the red clump sample,

we separate the data into bins in [α/Fe] (calculated with Equation (2.1) using APOGEE abundance

data) space. The sample is split into 7 evenly sized bins from [α/Fe] = −0.05 dex to 0.3 dex that

are 0.05 dex wide. The chemical distribution of the entire sample can be seen in Figure 2.6 along

with the boundaries of the [α/Fe] bins described. The low-alpha ([α/Fe] ≲ 0.15 dex) and high-alpha

([α/Fe] ≳ 0.15 dex) sequences can clearly be seen in abundance space.

To test possible differences in the luminosity calibration between red clump stars of varying

chemical compositions, we alter the model described by Figure 2.4 to include independent red clump

luminosity parameters θRC = {α, β,Mref, σM , ν} for each [α/Fe] bin while the remaining parameters

are still relevant to the global sample. Keep in mind that we are still taking into account the

red clump luminosity dependence on (J0 −K0) and [Fe/H] separately for each [α/Fe] bin through

Equation (2.10). We expect small changes in the red clump luminosity calibration for each sub-

population, which can be seen as variations of θRC parameters in [α/Fe] space.
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Figure 2.6: The distribution of red clump sample stars in chemical abundance space. The dotted
blue line indicates the median metallicity [Fe/H] of the full sample. The boundaries of the [α/Fe] bins
described in §2.3.4 are shown as dashed red lines. These bins are used in the analysis of variations
of the red clump luminosity calibration across sub-populations.

2.3.5 Tests of red clump stellar evolution models

Bovy et al. (2014) determined distances to the red clump in our sample using colour and metallicity

trends determined from PARSEC stellar models (Bressan et al., 2012), applying a constant calibra-

tion offset obtained from a Hipparcos red clump sample. We test the stellar model used in Bovy

et al. (2014) as follows: We adjust Equation (2.13) to

µi = m0,i −M ′
i , (2.21)

where

M ′
i = Mi

(
[J0 −K0]i, [Fe/H]i

)
+m0,i − µ∗

i , (2.22)

and M∗
i = m0,i −µ∗

i is the absolute magnitude of a red clump star predicted with the stellar model.

The new observed distance modulus which will replace Equation (2.13) for this validation model is

then

µi = µ∗
i −Mi. (2.23)

Here, Mi still represents a red clump luminosity calibrated with the probabilistic model, but it is

not tied to any photometric band. Instead, it is related to the accuracy of the stellar models used to

determine µ∗
i in Bovy et al. (2014). We expect Mi → 0, with each parameter within Equation (2.10)

now describing possible residuals of the stellar model; i.e, the parameters Mref, α, and β are expected

to be 0 if the stellar models used in the catalogue describe the red clump at least as well as the

empirical models in this paper.
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2.3.6 Implementation of Models

A full probabilistic graphical model in Figure 2.7 illustrates each extension to the base model in

Figure 2.4. The sheer number of parameters that need to be sampled for each model (especially

the distances to ∼ 28000 stars) hinders the use of traditional Markov chain Monte Carlo (MCMC)

techniques. We choose instead to use Stan, a Hamiltonian Monte Carlo (HMC) software (Carpenter

et al., 2017). Some advantages of using HMC instead of MCMC include a generally more efficient

sampling of parameter space, especially in the case of highly correlated parameters. HMC also

provides more accurate and precise sampling of parameter space for both models with complex

distributions and models with many parameters. The principles and benefits of HMC are further

described in great detail by Neal (2012).

Each of the models described in this paper was implemented in the Python 3 wrapper for Stan,

also known as PyStan6. The posterior distribution space for each model was sampled with 4 chains

for 2500 steps, and the first 1000 steps of each chain were discarded as warm-up steps. In total,

6000 samples were collected for the posterior distributions of each model we report. The parameters

were intialized randomly according to their respective priors with the exception of the distances.

The true distance parameter for each star was initialized using the absolute inverse of its parallax

reported in Gaia DR2.

2.4 Results

2.4.1 Basic results

The posterior distributions for all models are summarized in Table 2.1. We report the median

and ±1σ ranges for each model parameter. It is worthwhile to note that we also obtain posterior

distributions for the distances to each individual star in our sample. Individual distances are typically

constrained to ∼ 10%, which may seem insignificant, but the combined data set allows for the

parallax zero point to be inferred to ∼ 1% across every model.

We find that zero points inferred across each base model using Ks, J , and H photometry are

consistent (ϖ0 = −48±1 µas), with an inconsistent result from the zero point inferred with the base

model using G photometry (ϖ0 = −38.30+0.88
−0.80 µas). This inconsistency is alleviated with the joint

photometry model using the multivariate t-distribution to include Ks and G data simultaneously.

The resulting zero point inferred with joint photometry is ϖ0 = −48.94+0.93
−0.96 µas. We also infer

consistent Gaia parallax uncertainty correction parameters (fϖ and σϖ,+) across all base model

and the joint photometry analyses. A representative posterior distribution is shown in Figure 2.8

along with the correlations between each model parameter in the base model using Ks photometry.

We infer the absolute magnitude of the red clump to be Mref = −1.622 ± 0.004 in Ks, Mref =

0.447 ± 0.005 in G, Mref = −1.019 ± 0.004 in J , and Mref = −1.516 ± 0.004 in H. Red clump

luminosity calibrations infer significant colour (J0 − K0) and metallicity ([Fe/H]) dependences in

every photometric band considered. These dependences are implied again with the validation of

reported APOGEE distances discussed later.

The Student’s t-distribution appears to be able to capture outliers in the sample by widening the

distribution about µi(mi); the degrees-of-freedom parameter is inferred to be approximately ν ≈ 1.3

6Stan Development Team. 2018. PyStan: the Python interface to Stan, Version 2.17.1.0. http://mc-stan.org

http://mc-stan.org
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Figure 2.7: A probabilistic graphical model illustrating the extensions to the base luminosity and
parallax calibration of red clump stars Figure 2.4. The colours illustrate an independent add-on to
the existing base model shown in Figure 2.4. Blue: Adding functional dependencies to the parallax
zero point ϖ0, or modeling the spatial variations of ϖ0 across the sky with HEALPIX patches. Green:
Adding an extinction model for the Gaia G band photometry. Red : Adding a [α/Fe] dependence
of the red clump luminosity calibration set by Equation (2.10). Purple: Changing the red clump
luminosity calibration to a validation of the distance moduli reported in the red clump catalogue
(Bovy et al., 2014). Gray fill : Including multiple photometric bands simultaneously in the analysis.
A unique copy of each of these parameters is added for each corresponding photometric band.
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Figure 2.8: The posterior distributions of global parameters with respect to the Ks data for constant
ϖ0. All parameters are precisely constrained by the data, and ϖ0 is strongly correlated with the
absolute magnitude MK,ref and is weakly correlated with the distance prior parameter L. The
parallax zero point has close to vanishing correlations with the remaining parameters.
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Table 2.1: Inferred model parameters for all models discussed in this paper along with ±1σ un-

certainties. Adjacent rows from the same model/analysis are indicated with shared background

highlighting.

Photometric band ϖ0 fϖ σϖ,+ Mref σM α β ν FWHM/2.355 L

and model [µas] – [µas] [mag] [mag] – [mag/dex] – [mag] [pc]

Ks (Base) −47.87+0.79
−0.76 1.46+0.01

−0.01 0.44+0.90
−0.28 −1.622+0.004

−0.004 0.097+0.003
−0.003 0.24+0.07

−0.07 −0.21+0.01
−0.01 1.29+0.03

−0.03 0.088+0.003
−0.003 987+4

−4

G (Base) −39.91+0.81
−0.79 1.49+0.01

−0.01 0.56+1.25
−0.39 0.435+0.004

−0.005 0.123+0.003
−0.003 2.93+0.08

−0.08 −0.11+0.02
−0.02 1.48+0.03

−0.03 0.116+0.004
−0.004 1024+4

−4

J (Base) −47.91+0.79
−0.76 1.46+0.01

−0.01 0.41+0.87
−0.25 −1.019+0.004

−0.004 0.097+0.003
−0.003 1.25+0.08

−0.07 −0.21+0.01
−0.01 1.29+0.03

−0.03 0.088+0.003
−0.003 987+4

−4

H (Base) −49.69+0.82
−0.81 1.46+0.01

−0.01 0.41+0.85
−0.25 −1.516+0.004

−0.004 0.098+0.003
−0.003 0.50+0.07

−0.08 −0.19+0.01
−0.01 1.30+0.03

−0.03 0.089+0.004
−0.004 981+4

−4

Ks (Base; Fixed fϖ, σϖ,+) −50.25+0.86
−0.85 1.08 21,G<13

43,G>13 −1.613+0.004
−0.004 0.093+0.002

−0.002 0.28+0.08
−0.07 −0.22+0.01

−0.01 1.27+0.03
−0.02 0.084+0.003

−0.003 983+4
−4

Ks (Joint Ks & G; Multi-t) −48.76+0.94
−0.98 1.45+0.01

−0.01 0.41+0.75
−0.25 −1.628+0.006

−0.005
a0.041+0.001

−0.001 −0.01+0.09
−0.09 −0.19+0.02

−0.02 2.69+0.05
−0.04

a0.061+0.001
−0.001 984+4

−4

G (Joint Ks & G; Multi-t) −48.76+0.94
−0.98 1.45+0.01

−0.01 0.41+0.75
−0.25 0.484+0.006

−0.005
a0.049+0.001

−0.001 2.75+0.09
−0.09 −0.11+0.02

−0.02 2.69+0.05
−0.04

a0.066+0.001
−0.001 984+4

−4

Ks (Joint Ks & G; G−Ks) −47.94+0.87
−0.81 1.46+0.01

−0.01 0.42+0.88
−0.27 −1.622+0.004

−0.004 0.219+0.003
−0.003 0.25+0.07

−0.07 −0.21+0.01
−0.01 1.29+0.03

−0.03 0.066+0.061
−0.061 987+4

−4

G (Joint Ks & G; G−Ks) −47.94+0.87
−0.81 1.46+0.01

−0.01 0.42+0.88
−0.27 0.494+0.004

−0.004 0.156+0.001
−0.001 3.04+0.08

−0.08 −0.12+0.01
−0.01 2.54+0.03

−0.03 0.162+0.002
−0.002 987+4

−4

Ks (Joint Ks & J ; J −Ks) −47.89+0.82
−0.83 1.46+0.01

−0.01 0.42+0.89
−0.27 −1.622+0.004

−0.004 0.097+0.003
−0.003 0.25+0.07

−0.08 −0.21+0.01
−0.01 1.29+0.03

−0.03 0.088+0.003
−0.003 987+4

−4

J (Joint Ks & J ; J −Ks) −47.89+0.82
−0.83 1.46+0.01

−0.01 0.42+0.89
−0.27 −1.020+0.004

−0.004 0.098+0.003
−0.003 1.25+0.07

−0.08 −0.21+0.01
−0.01 1.51+0.03

−0.03 0.093+0.001
−0.001 987+4

−4

Ks (G < 13) −35.74+1.55
−1.53 1.23+0.03

−0.03 0.51+1.16
−0.34 −1.665+0.006

−0.006 0.103+0.003
−0.003 0.34+0.07

−0.08 −0.20+0.01
−0.01 1.34+0.03

−0.03 0.095+0.004
−0.004 581+4

−4

Ks (G ≥ 13) −42.36+0.84
−0.86 1.52+0.01

−0.01 0.49+1.12
−0.32 −1.665+0.006

−0.006 0.103+0.003
−0.003 0.34+0.07

−0.08 −0.20+0.01
−0.01 1.34+0.03

−0.03 0.095+0.004
−0.004 1262+7

−6

Ks (G < 13; Fixed fϖ, σϖ,+) −35.39+1.57
−1.54 1.08 21 −1.666+0.006

−0.005 0.094+0.003
−0.003 0.32+0.08

−0.08 −0.20+0.01
−0.01 1.28+0.03

−0.03 0.086+0.003
−0.003 581+4

−4

Ks (G ≥ 13; Fixed fϖ, σϖ,+) −44.75+0.87
−0.86 1.08 43 −1.666+0.006

−0.005 0.094+0.003
−0.003 0.32+0.08

−0.08 −0.20+0.01
−0.01 1.28+0.03

−0.03 0.086+0.003
−0.003 1261+6

−6

Ks (G < 13; Fixed Mref) −46.68+0.63
−0.63 1.20+0.03

−0.02 0.52+1.13
−0.35 −1.622 0.104+0.003

−0.003 0.33+0.07
−0.07 −0.21+0.01

−0.01 1.34+0.03
−0.03 0.096+0.004

−0.004 569+3
−3

Ks (G > 13; Fixed Mref) −48.17+0.46
−0.44 1.51+0.01

−0.01 0.46+1.02
−0.30 −1.622 0.104+0.003

−0.003 0.33+0.07
−0.07 −0.21+0.01

−0.01 1.34+0.03
−0.03 0.096+0.004

−0.004 1236+5
−5

Ks (G dep.; All G; Fixed Mref)
b − 60.91 1.42+0.01

−0.01 0.41+0.80
−0.25 −1.622 0.104+0.003

−0.003 0.15+0.07
−0.07 −0.21+0.01

−0.01 1.31+0.03
−0.02 0.095+0.004

−0.004 986+3
−3

Ks (G dep.; G < 13; Free Mref)
b72.51 1.31+0.03

−0.02 0.52+1.21
−0.35 −1.943+0.013

−0.013 0.111+0.003
−0.003 0.04+0.08

−0.08 −0.12+0.02
−0.02 1.38+0.03

−0.03 0.103+0.004
−0.004 660+5

−6

Continued on next page
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Table 2.1 – Continued from previous page

Photometric band ϖ0 fϖ σϖ,+ Mref σM α β ν FWHM/2.355 L

and model [µas] – [µas] [mag] [mag] – [mag/dex] – [mag] [pc]

Ks (G dep.; G ≥ 13; Free Mref)
b − 24.31 1.53+0.01

−0.01 0.56+1.54
−0.38 −1.943+0.013

−0.013 0.111+0.003
−0.003 0.04+0.08

−0.08 −0.12+0.02
−0.02 1.38+0.03

−0.03 0.103+0.004
−0.004 1433+11

−11

Ks (G dep.; G < 13; Fixed Mref)
b − 42.93 1.20+0.03

−0.03 0.50+1.14
−0.33 −1.622 0.106+0.003

−0.003 0.30+0.07
−0.07 −0.21+0.01

−0.01 1.34+0.03
−0.03 0.098+0.004

−0.004 569+3
−3

Ks (G dep.; G ≥ 13; Fixed Mref)
b − 60.90 1.49+0.01

−0.01 0.46+1.05
−0.29 −1.622 0.106+0.003

−0.003 0.30+0.07
−0.07 −0.21+0.01

−0.01 1.34+0.03
−0.03 0.098+0.004

−0.004 1236+5
−6

Ks (G dep.; G < 13; Mref prior)
b − 29.20 1.20+0.02

−0.03 0.52+1.17
−0.34 −1.658+0.003

−0.003 0.106+0.003
−0.003 0.30+0.08

−0.08 −0.21+0.01
−0.01 1.34+0.03

−0.03 0.098+0.004
−0.004 579+4

−4

Ks (G dep.; G ≥ 13; Mref prior)
b − 56.58 1.50+0.01

−0.01 0.48+1.04
−0.32 −1.658+0.003

−0.003 0.106+0.003
−0.003 0.30+0.08

−0.08 −0.21+0.01
−0.01 1.34+0.03

−0.03 0.098+0.004
−0.004 1256+6

−6

Ks (G dep.; Binned; Fixed Mref)
c − 47.60+0.37

−0.37
c1.39+0.01

−0.01
c1.56+0.59

−0.59 −1.622 0.108+0.003
−0.003 0.31+0.07

−0.08 −0.21+0.01
−0.01 1.35+0.03

−0.03 0.100+0.004
−0.004

c603+2
−2

Ks (BP −RP dep.; All G) b − 100.33 1.43+0.01
−0.01 0.44+0.97

−0.28 −1.651+0.005
−0.004 0.101+0.003

−0.003 0.13+0.07
−0.07 −0.13+0.01

−0.01 1.34+0.03
−0.03 0.093+0.004

−0.004 998+4
−4

Ks (BP −RP dep.; G < 13) b − 204.21 1.26+0.03
−0.03 0.48+1.11

−0.32 −1.658+0.006
−0.006 0.105+0.003

−0.003 0.16+0.07
−0.08 −0.08+0.02

−0.02 1.41+0.03
−0.03 0.098+0.004

−0.004 574+4
−4

Ks (BP −RP dep.; G ≥ 13) b − 106.98 1.50+0.01
−0.01 0.51+1.16

−0.34 −1.657+0.006
−0.006 0.105+0.003

−0.003 0.16+0.07
−0.08 −0.08+0.02

−0.02 1.41+0.03
−0.03 0.098+0.004

−0.004 1256+7
−6

Ks (BP −RP dep.; Binned) c − 49.40+0.58
−0.58

c1.31+0.01
−0.01

c1.52+0.99
−0.99 −1.634+0.004

−0.004 0.106+0.003
−0.003 0.26+0.07

−0.07 −0.19+0.01
−0.01 1.37+0.03

−0.03 0.098+0.004
−0.004

c953+4
−4

Ks (Sky dep.; All G) c − 43.06+0.37
−0.37 1.44+0.01

−0.01 0.00+0.00
−0.00 −1.650+0.004

−0.005 0.095+0.003
−0.003 −0.08+0.07

−0.08 −0.14+0.01
−0.01 1.29+0.03

−0.03 0.087+0.003
−0.003

c891+3
−3

Ks (Sky dep.; G < 13) c − 34.92+0.69
−0.69 1.23+0.03

−0.03 0.00+0.00
−0.00 −1.668+0.006

−0.005 0.101+0.003
−0.003 −0.17+0.07

−0.08 −0.09+0.01
−0.01 1.37+0.03

−0.03 0.093+0.004
−0.004

c571+3
−3

Ks (Sky dep.; G ≥ 13) c − 42.04+0.46
−0.46 1.51+0.01

−0.01 0.00+0.00
−0.00 −1.668+0.006

−0.005 0.101+0.003
−0.003 −0.17+0.07

−0.08 −0.09+0.01
−0.01 1.37+0.03

−0.03 0.093+0.004
−0.004

c1229+6
−6

Ks ([α/Fe] bins) −48.60+0.77
−0.80 1.46+0.01

−0.01 0.49+1.04
−0.32

c − 1.629+0.003
−0.003

c0.086+0.003
−0.003

c − 0.18+0.08
−0.08

c0.01+0.02
−0.02

c1.29+0.03
−0.03 0.078+0.003

−0.003 985+4
−4

µ (Stellar model validation) −47.21+0.80
−0.85 1.47+0.01

−0.01 0.44+0.89
−0.28

d − 0.036+0.004
−0.004

d0.105+0.003
−0.003

d1.48+0.07
−0.07

d − 0.39+0.01
−0.01

d1.33+0.03
−0.03 0.096+0.004

−0.004 990+4
−4

a Diagonal components of Σ reported here. G and Ks share a covariance σGK = 0.041+0.001
−0.001. FWHM are computed in one dimension along the zero point of the other band.

b Reported values are integrated means of the modeled/inferred functional forms of each dependence, which are further described in §2.4.2.

c Reported values are computed inverse variance weighted means of each all inferred binned distributions. See Figure 2.10 and Figure 2.11 for the binned distributions.

d Parameters reported here are not the same red clump luminosity calibration parameters, and a detailed interpretation is discussed in §2.4.3.
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across all models. Consequently, the scaling parameter σM does not fully describe the dispersion

of stars about Mref. The Student’s t-distribution has a formal variance of ∞ for 1 < ν < 2, but

we wish to describe the width of the Student’s t-distribution with a combination of σM and ν. We

are only interested in the dispersion of stars that have not been considered outliers (which exist in

the heightened tails of the distribution), so we report dispersions about the red clump luminosity

calibration given by the full width at half maximum (FHWM) of each inferred distribution. Table 2.1

includes the FWHM/2
√
2 ln(2) for each red clump luminosity distribution, which is equivalent to

1σ for a Gaussian distribution.

Note that the spread in the red clump luminosity distribution describes the spread in distance

moduli as in Equation (2.14). This includes uncertainties from photometric (σm ≲ 0.025 mag) and

metallicity (σ[Fe/H] ≲ 0.01 dex) measurements; however, these uncertainties are much smaller than

the spread in the distributions (FWHM/2.355 ∼ 0.1 mag). Taking this into account, the dispersion

in the red clump distributions should be dominated by a combination of intrinsic dispersion and

modeling uncertainties.

The inconsistencies in inferred Gaia parallax zero points between G and 2MASS photometry

appears to be resolved with the implementation of the multiple photometry models. The inferred

absolute magnitude of the red clump in G changes from MG = 0.447± 0.004 to MG = 0.508± 0.005

in the multivariate t model, and to MG = 0.517 ± 0.004 in the model with separate single-variable

t-distributions for Ks and G − Ks. As a result, the inferred Gaia parallax zero point becomes

consistent with the previous estimates of ϖ0 ≈ −49µas. This is likely an indication that our model

for the G band extinction is not accurate enough for an independent analysis of the Gaia parallax

zero point using only G photometry. Only by supplementing the model with Ks photometry are we

able to achieve consistent results.

In the case of considering 2 constant zero points for G < 13 and G ≥ 13, we infer ϖ0 =

−35.74 ± 1.55 µas for sources G < 13 and ϖ0 = −42.36 ± 0.86 µas for sources G ≥ 13. We also

find once again that the Gaia parallax uncertainty parameters are discrepant from those reported,

although we see a larger fϖ inferred for dim sources compared to bright sources. This is similar to

the reported values of σϖ,+. In an identical analysis with the exception of fixing fϖ and σϖ,+ to the

reported values, we find very similar posterior distributions, implying that our probabilistic model

prefers inflating Gaia parallax errors with fϖ rather than σϖ,+ to similar effect. We support this

by running the base model analysis using Ks photometry, but adding a gamma distribution prior

on σϖ,+:

p(σϖ,+|u, v) =
vuσϖ,+

u−1e−vσϖ,+

Γ(u)
, (2.24)

where u > 0 and 1/(10 µas) < v < 1/(0.1 µas) are hyperparameters with the described priors. In

particular, we find v, the ’rate parameter’, to hug the upper bound of the prior 1/(0.2+0.5
0.1 µas). This

in turn causes σϖ,+ to again be consistent with 0 (σϖ,+ = 1.2+1.2
−0.8 µas). All remaining parameters

in this model remain consistent with the original model.

Finally, we repeat the above analysis with free fϖ and σϖ,+, but we fix Mref = −1.622. Jus-

tification for this analysis is presented in the following section. We infer more consistent values of

ϖ0 = −46.68± 0.63 µas for G < 13 and ϖ0 = −48.17± 0.46 µas for G ≥ 13.
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Figure 2.9: Inferred parallax zero point variations G. Individual estimates of the zero point for
each star are shown by solving Equation 2.8 for ϖ0, using the mean of the posterior samples of
the distances to each star as well as its measured parallax. Red lines show the resulting quadratic
parameterization of the zero point variations in G < 13 and G ≥ 13. The model with a liberal
MK,ref prior appears to infer less inaccurate distances and parallax zero point offset than the other
two models with more conservative priors on MK,ref. See Figure 2.1 for a comparison using distances
from the APOGEE red clump catalogue Bovy et al. (2014).
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Figure 2.10: The variations in parallax model parameters with G. All results shown are from Ks-
based models in which Mref = −1.622 is fixed. Blue: Inferred model parameters across bins in G.
Green: Inferred quadratic dependences for ϖ0 as a function of G. The separate parameterizations
for G < 13 and G ≥ 13 are shown.Red: Inferred distributions of constant parameters for all G.
Orange: Inferred parameters from a model in which parameters are considered constant in G, with
these four parameters being considered separately for G < 13 and G ≥ 13. The parallax zero point
offset is approximately constant down to G ≲ 15, where the majority of our sample lives.
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2.4.2 Variation of the Gaia Zero Point

We begin by reporting the results from inferring a quadratic form of the zero point dependence on

G separately for sources G < 13 and G ≥ 13 to account for differences in astrometric solution. This

was done using the Ks photometry to calibrate the red clump luminosity. We find

ϖ0/µas =9.29+0.88
−0.91(G− 12)2 − 37.45+1.59

−1.57(G− 12)

+ 30.47+2.92
−3.00 (G < 13), (2.25)

ϖ0/µas =− 0.27+0.51
−0.49(G− 14.5)2 − 12.04+0.61

−0.59(G− 14.5)

− 11.28+1.46
−1.49 (G ≥ 13). (2.26)

This is illustrated in Figure 2.9 in the panel labeled “Free Mref”. The inferred G < 13 fit appears

to behave very differently from the constant parallax zero points inferred in the prevoius models,

allowing for relatively large positive values of the zero point for sources of low G. This appears

to be an effect of using photometric information to infer the red clump luminosity calibration, the

distances to each star, as well as the zero point dependence on G all at the same time. The fact

that this model infers Mref = −1.943±0.013 in Ks (See Table 2.1) in contrast to the previous model

further suggests that this method of modeling the parallax zero point offset variation with G may

be inaccurate to some degree.

To alleviate this possible degeneracy of photometric information, we implement an identical

model with the exception of applying a strict prior by fixing Mref = −1.622. We find

ϖ0/µas =− 0.59+0.83
−0.80(G− 12)2 − 4.96+1.01

−1.03(G− 12)

− 45.66+0.88
−0.86 (G < 13), (2.27)

ϖ0/µas =− 2.68+0.49
−0.49(G− 14.5)2 − 4.90+0.55

−0.54(G− 14.5)

− 47.62+0.59
−0.61 (G ≥ 13), (2.28)

which appears to agree with previous estimates much better. This is illustrated in Figure 2.9 in the

panel labeled “Fixed Mref”.

To demonstrate a model in which the prior on Mref is slightly more relaxed, we repeat the above

analyses. This time, Mref is given a prior which reflects the inferred value from the base model. In

other words, we implement:

p(Mref) = N (−1.622, (0.004)2), (2.29)

and we find

ϖ0/µas =0.55+0.81
−0.84(G− 12)2 − 8.82+1.09

−1.08(G− 12)

− 36.54+1.24
−1.26 (G < 13), (2.30)
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Figure 2.11: Variations of the Gaia parallax zero point with observed colour. Red: The quadratic
parameterizations of the variation. Orange: The parallax zero point across colour bins for all G.
A density of individual estimates from each star using Equation (2.8) with measured parallax and
distance posteriors from the “All G” quadratic parameterization model is shown in the background.
The G < 13 quadratic parameterization appears to not be a good model of the parallax zero point
variation with colour; whereas, the remaining models agree with one another.

ϖ0/µas =− 2.38+0.50
−0.49(G− 14.5)2 − 5.77+0.54

−0.55(G− 14.5)

− 43.32+0.74
−0.76 (G ≥ 13). (2.31)

We infer Mref = −1.658 ± 0.003 from this model, and the resulting fit can be seen in Figure 2.9 in

the panel labeled “Prior Mref”. The inferred parameterization appears similar to the Fixed Mref

model, with a slightly stronger slope in G < 13. Both models appear to favour a linear solution to

the G dependence of the zero point, with quadratic coefficients consistent with 0.

We also report results from a model considering a single quadratic parameterization of the zero

point dependence on G for all G. For this model, we fix Mref = −1.622. We find

ϖ0/µas =− 0.52+0.17
−0.16(G− 16)2 − 7.65+0.89

−0.87(G− 16)

− 62.50+1.18
−1.10. (2.32)

Finally, we investigate a model in which we do not enforce a specific functional parameterization

of the parallax zero point’s dependence on G. The results are shown in Figure 2.10, in which the

parallax parameters θϖ = {ϖ0, fϖ, σϖ,+} and L are modeled as separate constants along bins in

G space. We fix Mref = −1.622 in this model. The variations of ϖ0 with G appear to be well

modeled by the quadratic parametrization for G ≥ 13, while it appears to be better parameterized

as a constant for G < 13.
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The Gaia parallax zero point also appears to exhibit variations with respect to observed colour.

The following models allow Mref to be free, as the observed colour and magnitude of the sources

should not share the same degeneracies as in the G dependent models. In the quadratic parameter-

ization for all sources, we find

ϖ0/µas =− 6.21+1.68
−1.66([GBP −GRP ]− 1)2

− 22.71+3.00
−2.96([GBP −GRP ]− 1)− 27.35+1.49

−1.43. (2.33)

In considering separate quadratic parameterizations for sources G < 13 and G ≥ 13, we find

ϖ0/µas =− 8.74+13.18
−13.42([GBP −GRP ]− 1)2 (G < 13)

− 85.67+13.25
−13.05([GBP −GRP ]− 1)− 9.72+3.18

−3.06, (2.34)

ϖ0/µas =− 13.58+1.88
−1.86([GBP −GRP ]− 1)2 (G ≥ 13)

− 5.19+3.35
−3.52([GBP −GRP ]− 1)− 31.82+1.59

−1.58. (2.35)

All three parameterizations are shown in Figure 2.11, where the inferred functional forms are com-

pared to individual estimates of ϖ0 for each star using its measured parallax and the mean of its

inferred distance posterior in the original Ks photometry model in Equation (2.8). The separate

parameterization for G < 13 appears not to be a good fit to the data; whereas, the parameterization

for all G appears to behave better. This is further supported with the analysis of the variations with

observed colour in bins, the results from which are also shown in Figure 2.11. We also find signifi-

cant variation of the parallax zero point across the sky. Sky maps of zero points with hierarchical

HEALPIX resolutions are shown in Figure 2.12. The maps appear to show variations with respect to

Galactic latitude, which we attribute to the correlation of the characteristic scale length associated

with the distance prior (Equation (2.15)). The APOGEE data set reaches much deeper along the

Galactic plane, meaning inferred values of L are larger close to the Galactic plane. The inferred ϖ0

across each patch is then slightly correlated with L.

It is highly unlikely that the parallax zero point offset would have a pattern that follows Galactic

latitude, as the Gaia satellite does not a priori know about the Galactic plane. The observed

variation with sky position is therefore most likely due to intrinsic differences between the red clump

stars at different Galactic latitudes that are not fully captured by our model. But the observed

zero point variations across the sky still serve as an upper limit on the true variation of the zero

point across the sky, because a large variation would be picked up by our model. In an analysis

of the variations of ϖ0 across the sky for all G, we find the median parallax zero point (with ±1σ

dispersion) across patches to be ϖ̃0 = −42.18+13.10
−14.96 µas. Similarly we find the spreads in patches

for each split in G to be ϖ̃0(G < 13) = −39.92+17.82
−24.96 µas and ϖ̃0(G ≥ 0) = −41.03+13.11

−14.80 µas. We

do not expect the Gaia parallax zero point to fluctuate by more than a few 10s of µas for any given

observed magnitude and colour, as such fluctuations would be the ones captured by the inference

rather than those induced by the degeneracies with L.
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Figure 2.12: Variations of the Gaia parallax zero point across the sky, shown here in Galactic
coordinates. Patches with ϖ0/σϖ0

< 3 have been masked. Top: Inferred zero points for all G.
Middle: Inferred zero points for G < 13. Bottom: Inferred zero points for G ≥ 13.
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2.4.3 Modeling the Red Clump

The analysis of the red clump luminosity calibration in Ks as a function of [α/Fe] are shown in

Figure 2.13. The absolute magnitude exhibits clear trends for the low-alpha ([α/Fe] < 0.15 dex)

and high-alpha ([α/Fe] > 0.15 dex) populations. In addition, the inverse variance averages of the

calibration scatter in each population are FWHM/2.355 = 0.103± 0.004 mag for [α/Fe] < 0.15 dex,

and FWHM/2.355 = 0.040 ± 0.008 mag for [α/Fe] ≥ 0.15. While the luminosity dependence on

[Fe/H], βK , appears to become stronger with [α/Fe], the evolution of the (J0 −K0) slope αK does

not seem to be as well constrained. This is understandable, as αK has also been less constrained than

βK for every other analysis. Nevertheless, this is further evidence for different behaviours between

at least two sub-populations of red clump stars, and suggests that more detailed modeling of these

populations may be necessary for precise use of red clump stars in the future. The small luminosity

scatter for high-[α/Fe] stars means that highly precise red-clump distances can be obtained for them.

Finally, we discuss the results of the verification of stellar models used in the APOGEE red

clump catalogue discussed in §2.3.5. We find that the inferred residual Mref = −0.036 ± 0.004

with a dispersion of FWHM/2.355 = 0.096 ± 0.004 shows the stellar evolution models describe the

overall luminosity of the red clump quite well. However, we infer significant non-zero values of

α = 1.48 ± 0.07 and β = −0.39 ± 0.01 mag/dex, implying that the stellar evolution models leave

significant residual luminosity dependencies on stellar temperature and metallicity [Fe/H].

2.5 Discussion

2.5.1 Consistency of zero point calibrations

Throughout most of our analyses, the Gaia parallax zero point is usually inferred to be within

the range of ϖ0 ≈ −47 to −49 µas when modeled as a constant. There are two main exceptions.

First, the model using G photometry only infers ϖ0 ≈ −38 µas. We attribute this to an incomplete

understanding of interstellar extinction in G, and we resolved the inconsistency by supplementing

the model with Ks photometry. The Ks measurements include robust measurements of extinction,

and shift the inference with G photometry to match with the other models. The second inconsistency

comes from inferring two constant zero points for sources dimmer and brighter than G = 13. As

similar inconsistencies were seen with the modeling of the zero point variations with G, this seemed

to be caused by a degeneracy associated with modeling both the zero point dependence and the

red clump luminosity calibration simultaneously with photometric information. By either fixing the

red clump absolute magnitude to a previously inferred value including an informed prior based on

a previous posterior, these models give inferred zero points consistent with the all other models.

Finally, we discuss the possibility of attributing the variations in ϖ0 across both G and sky

position to a correlation with the given extinction corrections (namely AK for most of our models).

Running the base model using Ks photometry with an additional sample cut for 0 < AK < 0.1

results in an inferred ϖ0 = −40 ± 1 µas with a corresponding MK,ref ≈ −1.611. Conversely, the

sample containing AK ≥ 0.1 returns ϖ0 = −36±2 µas with a corresponding MK,ref = −1.720. This

seems to contradict what the inferred parallax zero points with respect to G may suggest, but they

in fact support each other. Within our model, a good estimate of the parallax zero point requires:

1) A good calibration of the red clump luminosity using nearby stars, and 2) A large enough sample
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of stars far away such that ϖ0 is significant relative to the star’s parallax. We can see the effects of

removing either of these pillars in our analyses. The zero point inference split between bright/faint

stars uses all stars to calibrate the luminosity; therefore, it retains a similar MK,ref as the original

model. The parallax zero points inferred for G < 13 are generally more inconsistent because these

brighter sources tend to be closer to us; whereas, the fainter sources tend to have parallaxes that

are more significanly affected by ϖ0. Similarly, the low extinction sample above retains a consistent

luminosity calibration, but fails to estimate a consistent parallax zero point because the stars are

mostly closer to us. The high extinction sample is naively expected to provide a good ϖ0, but it fails

because it is unable to infer MK,ref well because it has few bright, nearby stars. In conclusion, in

order to use our models to obtain an estimate of the Gaia parallax zero point to both high accuracy

and precision, we require a large sample of stars that contains populations both close by (to get a

good handle on the red clump luminosity) as well as far away (more significantly affected by ϖ0).

2.5.2 Comparison to other zero point work

With the resolution of tensions between the models presented in this paper, we choose to report a

constant Gaia DR2 parallax zero point of ϖ0 = −47.97 ± 0.79 µas as inferred by our base model

with Ks photometry. This measurement can be seen in Figure 2.14 in comparison to other values

reported in the literature discussed previously. Note that Khan et al. (2019) also finds a systematic

offset in Gaia DR2 parallaxes in the range of −45 to −55 µas. Our inferred parallax zero point is

the most precise to date, and is in good agreement with most other measurements. Note that the

red clump occupies a specific space in both observed colour (1 ≲ GBP −GRP ≲ 3.5) and magnitude

(9.5 ≲ G ≲ 18), so the inferred zero point reported in this paper becomes less accurate outside

of this space. This can explain why the Gaia zero point reported by Lindegren et al. (2018) is

quite discrepant with our own, as quasars typically occupy a dimmer and bluer part of the Gaia

observation space.

Variations of the parallax zero point appear to be best described using models discussed in this pa-

per with Equation (2.27) and Equation (2.28) for G dependent fluctuations as well as Equation (2.33)

for observed colour dependent fluctuations. This is in contrast to the functional parameterizations

of the dependences reported by Leung & Bovy (2019a). The data sets in both studies occupy similar

regions of observed colour and magnitude, yet we infer variations that are much larger in amplitude.

In addition, both quadratic dependences analyzed in this paper reflect parabolas with negative cur-

vature; whereas, the parameterizations reported in Leung & Bovy (2019a) exhibit positive curvature.

We are uncertain as to why this may be the case.

Finally the variations of ϖ0 with sky position are inferred here to fluctuate between −80 µas to

−10 µas, with a typical scatter across the sky of approximately 15 µas about −40 µas. We conclude

that the Gaia parallax zero point must not vary by more than a few 10s of µas across the sky. Our

range of systematic fluctuations is similar to the ∼ 100µas peak-to-peak fluctuations reported by

Arenou et al. (2018). It is also worth noting that Khan et al. (2019) also find peak-to-peak variations

of the same order for the parallax zero point across the sky.
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Figure 2.14: A comparison of reported Gaia parallax zero point values associated with Data Release
2. These measurements include those which make use of asteroseismology, neural networks applied
to other red giants in APOGEE, eclipsing binaries, and Cepheid variables. The Zinn et al. (2019)
result is shown at νeff = 1.5 and G = 12.2. The turquoise vertical stripes indicate the 1, 2, and 3σ
regions of the Gaia DR2 parallax zero point that we report. Our measurement of the global Gaia
zero point offset is consistent with all previous determinations using stars, and it is the most precise
so far.
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2.5.3 Comparison to previous calibrations of the RC

We infer the absolute magnitude of the red clump in the 2MASS as well as Gaia photometry bands.

The inferred absolute magnitudes in Ks and G appear to be consistent with those reported by

Hall et al. (2019). We remark that, while the inferred absolute magnitude in Ks are in agreement

with that reported in Hawkins et al. (2017), the absolute magnitudes we infer in J , H, and G

are not compatible. Of course, this only applies to the estimate of the peak of the red clump

luminosity distribution or the absolute magnitude of a typical red clump star. The scatters in

absolute magnitude inferred in both this paper and in Hawkins et al. (2017) are large enough to

contain both estimates. It is possible that incomplete modeling of the red clump sub-populations as

described in §2.3.4 could contribute to such differences in red clump calibrations.

2.6 Conclusions

The advent of the Gaia mission has provided the astronomical community with an excellent op-

portunity to use ultra precision astrometry; however, a lack of understanding of the parallax zero

point has prevented us from unlocking the full potential of Gaia data. A precise measurement of the

Gaia parallax zero point requires a large data set, as well as a robust understanding of the methods

involved. We have presented several hierarchical probabilistic models using red clump stars to infer

the parallax zero point, while simultaneously calibrating an empirical parameterization for the red

clump luminosity. In doing so, we infer the Gaia DR2 parallax zero point to be ϖ0 = −48± 1 µas

using Ks photometry. Models using other 2MASS or Gaia photometry allow for consistent esti-

mates of the zero point. The use of a Student’s t-distribution appears to describe the distribution

of luminosities in our red clump sample quite well. We also report the absolute magnitude of the

red clump to be Mref = −1.622± 0.004 in Ks, Mref = 0.517± 0.004 in G, Mref = −1.019± 0.004 in

J , and Mref = −1.516 ± 0.004 in H. We find the intrinsic spread of the red clump to be ∼ 0.09 in

J , H, and Ks. The scatter in G is ∼ 0.17, and this larger value can be attributed to an incomplete

understanding of interstellar extinction. Each probabilistic model also infers the distance to every

star used as input, yielding typical distance estimates of ∼ 10%.

Additions to the base probabilistic model allow for more detailed investigation into either into

the variations of the Gaia parallax zero point or the red clump luminosity calibration. We find

that the variations in the zero point are most significant for dim sources G ≳ 16, while the zero

point offset is constant at brighter magnitudes. Note that less than 7% of our total sample lies

within G ≳ 16, so the inferred parallax systematics may not be as accurate as in brighter bins. The

dependence of the zero point on observed colour is can also be parameterized with a quadratic form.

Fluctuations of the zero point across the sky are difficult to infer, but we limit them to be less than

a few 10s of µas. We also find significant variations of the red-clump luminosity model with [α/Fe]

and in particular with different trends across low- and high-α/Fe sub-populations.

The sheer size of the red clump sample has allowed us to estimate the Gaia DR2 parallax zero

point to approximately 1.6%. This is the highest precision estimate of the parallax zero point to

date, and presents the community with a fantastic outlook for using Gaia for high-precision distance

estimates. Although it is expected to be smaller in amplitude and better understood, the parallax

zero point will still be present in future Gaia data releases. We also expect the quality of Gaia

data to be better in the future, implying that these probabilistic methods will eventually allow us
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to infer distances to stars to high enough accuracy and precision to be impactful in areas of galactic

dynamics, constructing local distance ladders, and much more.



Chapter 3

Modelling the LMC distance with

Gaia DR3

Abstract

A precise distance to the Large Magellanic Cloud (LMC) is a key component of the absolute

scale of the cosmic distance ladder. We present an independent estimate of the LMC distance at

RLMC = 48.90+0.52
−0.48 kpc using only data from Gaia’s Data Release 3. We select a sample of LMC stars

in Gaia DR3, and compare their XP spectra to bright giants nearby with high quality parallaxes.

Matching stars between samples with similar spectra allows a probabilistic model to infer the LMC

distance on the assumption that they share the same intrinsic brightness. The model works best

when a quantitative estimate for the probability that ‘matched’ stars are truly equally bright is also

provided. Our inferred LMC distance is in agreement with the value reported by Pietrzyński et al.

(2019).
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3.1 Introduction

T
he Large Magellanic Cloud (LMC) serves as an important distance calibrator used in

the ‘absolute scale’ of cosmic distance ladders, and it is the second most significant

contributor to the error budget in the local estimate of the Hubble constant H0 (Riess

et al., 2022). Pietrzyński et al. (2019) report the highest precision estimate at RLMC =

49.59 ± 0.09 (statistical) ± 0.54 (systematic) kpc. In this chapter, we independently estimate the

distance to the LMC using data from the Gaia mission’s third data release (DR3). The Gaia

mission provides high precision astrometry for its extensive catalogue, and this work is a study of

whether Gaia data can provide an alternative calibration to the absolute scale. We select a sample

of stars within the LMC through an astrometric and kinematic selection procedure in §3.2, and a

second sample of nearby, bright stars with high quality parallaxes is also selected therein. We present

a simple method for comparing the sampled spectral data between stars in Gaia DR3 to find ‘twin’

stars in §3.3. Spectroscopic twins have previously been shown to be valid for applications in the

cosmic distance ladder (Jofré et al., 2015), and they have also been used to determine the distance

to the Pleiades (Mädler et al., 2016). Our probabilistic model for the LMC distance is presented,

along with the results they produce in §3.4. We conclude with a discussion of the results in §3.5.

3.2 Data

The Gaia mission published their Data Release 3 (DR3) in 2022 (Gaia Collaboration et al., 2023).

This includes low resolution XP spectra from within their BP ∈ [330, 680] nm, as well as RP ∈
[640, 1050] nm photometry bands. The XP spectral data are available in a continuous representation

of 55 coefficients per band which are readily transformed into the conventional sampled spectra with

provided basis functions (Carrasco et al., 2021; Gaia Collaboration et al., 2023). XP sampled spectra

occupy 343 bins from 336 nm to 1020 nm, and will be used for the sources selected in this chapter.

This section describes the selection of two samples from the DR3 catalogue: one sample of

stars in the LMC, and another sample of stars with high quality parallax measurements in the

solar neighbourhood (also referred to as Milky Way or MW stars). XP sampled spectra as well

as apparent magnitudes G are used for all stars in both samples. From the MW sample, parallax

measurements ϖ as well as their associated errors σϖ are also used in the distance model for the

LMC (described later in §3.4). Note that the Gaia reported parallaxes are given in units of mas.

3.2.1 LMC sample selection

Out of the 220 million objects with XP spectra, we select a subsample of the DR3 table of stars in

the general area of the LMC using the following query to the Gaia archive1:

SELECT * FROM ga iadr3 . g a i a s ou r c e as g

WHERE 1=CONTAINS(POINT( ’ICRS ’ , g . ra , g . dec ) ,

CIRCLE( ’ICRS ’ ,81 .28 , =69 .78 ,20) )

AND g . pa r a l l a x IS NOT NULL

AND g . has xp sampled=’True ’

AND g . phot g mean mag < 20 .5

1https://gea.esac.esa.int/archive/

https://gea.esac.esa.int/archive/
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The query is adapted from Gaia Collaboration et al. (2021a), and it selects all objects that satisfy

the following conditions:

� Observed in a circle of radius 20◦ centered around the LMC position (α, δ) = (81.28◦,−69.78◦)

� Has reported XP spectra and parallax, and

� G < 20.5

The total solid angle of the circle in this query is intentionally large to include the outer regions

of the LMC, as well as the LMC-SMC bridge (Gaia Collaboration et al., 2021a). The query returns

682 209 rows, and the table can be accessed at this link2. We make further cuts to this sample

following the steps in Section 2 of Gaia Collaboration et al. (2021a). In summary, the sample is

reprojected into coordinates centered on the dynamical motions of HI gas in the LMC, and then

cuts are made based on the relative parallaxes, proper motions and their errors such that the final

sample is astrometrically and kinematically consistent with all objects being in one collective group

with some bulk motion. The steps are as follows:

1. Transform (α, δ), (µα∗, µδ) into an orthographic projection, and remove all sources with√
x2 + y2 > sin(5 deg). The dynamical center of HI gas in the LMC (αC,LMC, δC,LMC) =

(78.77◦,−69.01◦) is used here (Gaia Collaboration et al., 2021a). Note this is slightly different

from the center used in the original sample query above, as this center used in the definition

of the projection in Gaia Collaboration et al. (2018a).

x = cos δ sin(α− αC), (3.1)

y = sin δ cos δC − cos δ sin δC cos(α− αC), (3.2)

µx = µα∗ cos(α− αC)− µδ sin δ sin(α− αC), (3.3)

µy = µα∗ sin δC sin(α− αC) + µδ(cos δ cos δC + sin δ sin δC cos(α− αC)). (3.4)

2. Remove foreground stars with parallax signal-to-noise ϖ/σϖ > 5, since stars in LMC should

have poorly measured parallax.

3. For the next step, remove stars with magnitude G > 19 to select only for relatively brighter

LMC stars that should have higher quality astrometry.

4. Compute median proper motion values for the LMC (µx,med, µy,med) from (µx, µy), and com-

pute their covariance Σµx,µy
.

5. With the sample obtained at the end of Step 3, choose only stars such that µ′Σ−1µ′ < 9.21,

where µ′ = (µx − µx,med, µy − µy,med). This corresponds to retaining stars that are within a

3σ confidence region of the median proper motion of the stars that are likely to belong to the

LMC.

6. Compute new proper motions (µ̂α∗, µ̂δ) for the full sample which are conditional on the

median sample parallax ϖmed being the true parallax of each star. In other words, we shift

the observed proper motions of each star in the sample by under the assumption that they all

2https://gea.esac.esa.int/tap-server/tap/async/1664729436218O/results/result

https://gea.esac.esa.int/tap-server/tap/async/1664729436218O/results/result
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truly at the LMC distance. This can be done with errors σ and correlations ρ provided in the

Gaia data:

µ̂α∗ = µα∗ − (ϖ −ϖmed)ρµα∗ϖ
σµα∗

σϖ
, (3.5)

µ̂δ = µδ − (ϖ −ϖmed)ρµδϖ
σµδ

σϖ
. (3.6)

7. Repeat 1-4 with (µ̂α∗, µ̂δ), this time with the magnitude limit G < 20.5.

8. Make a final cut such that only stars which satisfy µ̂′Σ−1µ̂′ < 9.21 are retained.

After applying these steps, we are left with 22 004 sources out of the original 682 209 from the

query. The proper motions of the final sample are shown in Figure 3.1. The selection appears to

match the results in Gaia Collaboration et al. (2021a), and the rotation of the LMC is apparent in

the astrometric data alone.

As a consistency check, we attempt the same kinematic selection procedure on a sample of sources

in a null field. This is a field chosen such that its center (in Galactic coordinates (l, b)) is exactly

180◦ away in l from the LMC center, with all other parameters exactly the same. The ADQL query

for the null field is as follows:

SELECT * FROM ga iadr3 . g a i a s ou r c e as g

WHERE 1=CONTAINS(POINT( ’ICRS ’ , g . ra , g . dec ) ,

CIRCLE( ’ICRS ’ , 5 8 . 7 7 , 8 . 9 3 , 2 0 ) )

AND g . pa r a l l a x IS NOT NULL

AND g . has xp sampled=’True ’

AND g . phot g mean mag < 20 .5

The query returns 358 976 sources, and can be accessed here3. Applying the same astrometric

and kinematic cuts as the LMC sample reduces this sample to 248 sources. The size of the LMC

sample after cuts is approximately 100× larger than the size of the null sample after cuts, meaning

that we ought to be quite confident that the stars in the LMC sample are really in the LMC.

The final LMC sample from Gaia DR3 contains 22 004 stars, and a colour-magnitude diagram

of the sample is shown in Figure 3.2 along with a distribution of the reported parallaxes. It is

apparent that the parallax measurements of the sample are not consistent with the LMC distance

of RLMC = 49.59 kpc measured by Pietrzyński et al. (2019) even after applying the parallax zero

point offset of ϖ0 = −39 µas reported in Groenewegen (2021), so we are motivated to supplement

the data in the Gaia LMC subsample to estimate a more accurate distance to the LMC.

3.2.2 High quality parallax sample selection

We select a sample of stars with ‘high quality’ parallax measurements from the Gaia DR3 catalogue,

later referred to as the Milky Way (MW) sample. The requirement is a measured parallax signal-to-

noise ϖ/σϖ > 3. The idea is to search for twin stars with similar spectra, and therefore brightness,

so we limit the search according to the absolute magnitude limit of the LMC stars. The magnitude

cutoff for XP spectra is G < 15, which, at the distance of the LMC, corresponds to an absolute

magnitude of

3https://gea.esac.esa.int/tap-server/tap/async/1667241200177O/results/result

https://gea.esac.esa.int/tap-server/tap/async/1667241200177O/results/result


CHAPTER 3. MODELLING THE LMC DISTANCE WITH GAIA DR3 75

70 80 90
α [deg]

−74

−72

−70

−68

−66

−64

δ
[d

eg
]

1.5

1.6

1.7

1.8

1.9

2.0

2.1

µ
α
∗

[m
as

/y
r]

70 80 90
α [deg]

−74

−72

−70

−68

−66

−64

δ
[d

eg
]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

µ
δ

[m
as

/y
r]

Figure 3.1: Proper motion distribution of the LMC sample. The LMC kinematic selection produces
a clean sample whose astrometry directly reveals the bulk motion of the LMC.
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Figure 3.2: The colour-magnitude diagram of the LMC sample. The inset on the upper-right shows
the distance distribution of the sample assuming that each measured parallax is truly the inverse
distance to its source after zero point correction (Lindegren et al., 2021b). The distribution of
LMC parallax distances peaks at approximately R ∼ 30 kpc, and the median parallax distance is
R ∼ 53 kpc. We can see that the simply relying on the parallaxes in the LMC sample is not sufficient
to estimate the LMC distance to the same accuracy and precision as the value RLMC = 49.59 kpc
reported by Pietrzyński et al. (2019) is indicated by the dotted black line.
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MG = G− 5 log10(RLMC) + 5 (3.7)

≲ 20− 5 log10(50 kpc), (3.8)

where we have substituted in the apparent magnitude limit of the LMC sample G < 15, as well as

an approximate distance to the LMC of RLMC = 50 kpc. The equivalent apparent magnitude limit

of an equivalent star in the Milky Way is then

GMW = 5 log10(rMW)− 5 +MG (3.9)

≲ 5

(
log10(1/ϖ)− log10(50 kpc)

)
+ 15 (3.10)

≲ 5 log10

(
1

(50 kpc)ϖ

)
+ 15. (3.11)

Several rough approximations for both the LMC distance and the nearly star distances were

made here, and they serve only to quickly choose a subsample of the Gaia DR3 dataset that could

be treated more carefully later on in an analysis. The only additional requirement for the subsample

are the availability of XP spectra, and the final query for the high quality parallax subsample is as

follows:

SELECT * FROM ga iadr3 . g a i a s ou r c e as g

WHERE g . pa r a l l a x IS NOT NULL

AND g . pa r a l l a x / g . p a r a l l a x e r r o r > 3

AND g . has xp sampled=’True ’

AND g . phot g mean mag < 5 * l og10 (1/(50* abs ( g . pa r a l l ax ) ) ) + 15

This returns 5 632 sources, which can be accessed here4. The sample size is relatively small

compared to the LMC sample due to the restrictions that we’ve made. The search was limited

to stars that are very bright (bright enough to have observable spectra from the LMC), and the

parallax signal-to-noise requirement limits the physical search radius around the Sun to a much

smaller volume than the LMC (sufficiently bright stars are not considered if they are too distant

to have precise parallaxes). We further refine the MW sample by making an extra on the inverse

parallax, retaining only stars for which r = 1/(ϖ −ϖ0) < 5 kpc. The volume-limited MW sample

contains 2 318 stars.

3.2.3 Correcting for dust extinction

The reported G magnitudes have not been corrected for extinction (Fitzpatrick et al., 2019; Daniel-

ski et al., 2018; Gaia Collaboration et al., 2021b). All G magnitudes used in this chapter have

been approximately corrected for extinction Gcorrected = Greported − AG. The extinction in G was

approximated with reddening values E(B − V ) scaled by a factor of 2.45 (computed from Equation

4 using Table 1 both from Wang & Chen (2019)). For the LMC, this is generally

4https://gea.esac.esa.int/tap-server/tap/async/1670266319872O/results/result

https://gea.esac.esa.int/tap-server/tap/async/1670266319872O/results/result
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AG,LMC = 2.45× E(B − V )LMC, (3.12)

where E(B − V )LMC = 0.11 as reported by Imara & Blitz (2007) (see Table 2 therein). The MW

extinction is simliarly computed as

AG,MW = 2.45× E(B − V )MW, (3.13)

where each E(B−V )MW were sampled from the Combined19 dust map in the mwdust5 package (Bovy

et al., 2016) with the filter=’E(B-V)’ option. Note that leaving filter=None would otherwise

add an extra conversion factor of 0.884 defined by Schlafly & Finkbeiner (2011). The E(B − V )MW

values were sampled at the reported Gaia coordinates (α, δ) along with the inverse parallax distance

r = 1/(ϖ −ϖ0) of each star in the MW sample. As a final cut on the MW sample, we remove any

stars with E(B − V )MW > 1 to avoid any stars with extreme extinction. The final MW sample

contains 2 139 stars.

3.3 Comparing Gaia XP spectra

The Gaia XP sampled spectra are available in terms of the total observed flux Fi per pixel i in the

spectrum. An example spectrum from each of the LMC and MW samples are shown in Figure 3.3.

The observed flux of each star is dependent on the distance, so they are not readily comparable to

each other. We normalize each star’s XP flux Fi as well as their reported uncertainties σFi by the

median value of its flux F , shown for the same two stars in the middle panel of Figure 3.3:

fi =
Fi

F
, (3.14)

σfi =
σFi

F
. (3.15)

We can then compare two normalized spectra by computing the χ2 per pixel between them as

follows:

χ2
i =

(fi,LMC − fi,MW)2

σ2
fi,LMC

+ σ2
fi,MW

. (3.16)

A simple method for choosing matches with the full set of χ2
i values between the two samples is to

combine all 343 pixels into the reduced χ2 value. If we are to trust the reported uncertainties of the

Gaia XP spectra, then we expect that χ2
red ≈ 1 for two stars with truly identical spectra. Another

way to consider the spectral comparisons, is that each pixel of the χ2
i comparison for identical spectra

should follow a standard χ2 distribution. The Kolmogorov–Smirnov test (KS test) can be used in

this case to make quantitative statements about the similarity between any two spectra. The KS

test is a non-parametric statistic that compares the cumulative distribution functions (CDFs) of two

samples. In this case, we would like to compare the set of computed χ2
i from all pixels of any two

spectra to a standard χ2 distribution. The KS test returns a p-value that quantifies the probability

that every pixel of the computed χ2
i are drawn from a χ2 distribution with one degree of freedom. In

5https://github.com/jobovy/mwdust

https://github.com/jobovy/mwdust
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Figure 3.3: Top: XP sampled spectrum of a star in the LMC sample in blue, and a star in the MW
sample in orange. Middle: Both spectra normalized by their respective median flux. Bottom: The
χ2 comparison per pixel between the two spectra. The reduced χ2 between these two particular
spectra is very close to 1, indicating that these stars are strong candidates to be stellar twins.
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Figure 3.4: Distribution of the highest p-values between LMC and MW spectra for all Nmatch = 1 550
matched stars with 0.99 < χ2

red < 1.01. Also shown is the probability density function of a Beta
distribution with parameters α = 0.5 and β = 0.7. This does not exactly match the distribution of
p-values, but it captures the qualitative description that most of the matches are not likely to be
true twins, while some are.

other words, the p-value can be interpreted as the probability that the two stars have observationally

similar spectra.

After comparing each star in the LMC sample (NLMC = 22 004) to every star in the MW sample

(NMW = 2 139), there are a total of Nmatch = 1 550 stars in the LMC sample with at least one

spectral comparison to the MW sample such that 0.99 < χ2
red < 1.01. This is the set of ‘matched’

stars that we use in the following section. In the case of LMC stars with more than one spectral

comparison satisfying 0.99 < χ2
red < 1.01, the MW star with the highest p-value is chosen as the

‘matched’ star.

3.4 LMC distance model

If we are truly able to find twin stars between the LMC and MW samples, then the distance to the

LMC can be modelled by calibrating the absolute magnitudes of each pair of matched stars, and

comparing with the apparent magnitude G of each LMC star. For each pair of matched stars, the

absolute magnitude MG is

MG = G− 5 log10(r) + 5, (3.17)

where r is the distance to the star in parsecs. Alternatively, one may choose to rearrange Equa-

tion (3.17) to solve for the distance r to the star:
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Figure 3.5: Computed parallax zero points for the set of MW stars that are spectrally matched to
at least one LMC star. A vertical black line indicates the approximate value ϖ0 = −39µas reported
by Groenewegen (2021). The constant parallax zero point they report is not representative of the
distribution of computed parallax zero points we compute for the nearby sample of matched MW
stars.

r = 10
G−MG+5

5 . (3.18)

If a star in the LMC sample is matched to a star in the MW sample, then we may choose to

substitute Equation (3.17) for the MW star into Equation (3.18) for a representation of the distance

to the LMC star:

rLMC = 10
GLMC−GMW+5 log10 rMW

5 . (3.19)

The distance to the MW star may be modelled with respect its observed parallax ϖ. Each Gaia

parallax can be modelled being drawn from a Gaussian distribution centered on the true parallax

ϖ′ with reported uncertainty σϖ:

p(ϖ|ϖ′, σϖ) ∼ N (ϖ′, σϖ), (3.20)

where the true parallax of the MW star is dependent on its distance rMW and its parallax zero point

ϖ0. We perform two inferences with each of our models. The first inferences use parallax zero points

ϖ0 computed from the gaiadr3 zeropoint6 package provided by the Gaia collaboration (Lindegren

et al., 2021b). The second inferences assume a constant ϖ0 = −39 µas as reported in Groenewegen

(2021) as a test of the sensitivity of our results to the parallax zero point. A visual comparison

between the computed and constant zero point values is shown in Figure 3.5. The true parallax of

the MW star can be expressed as

ϖ′ =
1

rMW
+ϖ0. (3.21)

6https://pypi.org/project/gaiadr3-zeropoint/

https://pypi.org/project/gaiadr3-zeropoint/
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The true distance to each MW star is unknown, so we may choose to model it as a free parameter,

with the exponentially decreasing volume density prior with scale distance L (Bailer-Jones, 2015):

p(r|L) = r2

2L3
exp(−r/L). (3.22)

Returning to Equation (3.19), the distance to each LMC star can be modelled as being drawn

from a Gaussian distribution centered on the true distance RLMC with some uncertainty σR:

p(rLMC|RLMC, σR) ∼ N (RLMC, σR). (3.23)

The estimated distance to each LMC star is dependent on the apparent magnitudes of both stars,

and the distance to the MW star. The uncertainty in Gaia magnitudes at G = 17 is σG = 1mmag

(Gaia Collaboration et al., 2021b). As seen in Figure 3.2, the LMC stars all haveG < 15, so we choose

σG,LMC = 1mmag as a conservative upper limit on the uncertainty in GLMC. The stars in the MW

sample have magnitudes GMW < 13, which correspond to reported uncertainty σG,MW = 0.3mmag

(Gaia Collaboration et al., 2021b). The distance to the MW star is modelled as a free parameter,

so its uncertainty is not immediately clear. In our model, the distance to the MW star is dependent

on its parallax, so we may choose to model the uncertainty in the distance to the MW star as being

dependent on the uncertainty in its parallax (refer to Equation (3.21)). This will make up the bulk

of the contribution to σR. Propagating uncertainties through Equation (3.19) yields the following

expression for the uncertainty in the distance to each LMC star:

σR = log(10)× 10
GLMC−GMW+5 log10 r′

5 ×
√

σ2
G,LMC + σ2

G,MW

25
+

r′2σ2
ϖ

(log 10)2
, (3.24)

where r′ = 1/(ϖ−ϖ0) is computed once using the MW parallax in each match. For all spectral pairs

with 0.99 < χ2
red < 1.01, the median value of σR computed with Equation (3.24) is approximately 3

kpc, and the distribution of Rs and σRs computed with Equation (3.19)-(3.24) is shown in Figure 3.6.

A posterior distribution for the distance to the LMC can be expressed by combining the parallax

likelihood (Equation (3.20)), the LMC likelihood (Equation (3.23)), and the MW prior (Equa-

tion (3.22)):

p(RLMC|GLMC, GMW, ϖ) ∝ N (ϖ|ϖ′, σϖ)N (rLMC|RLMC, σR)p(rMW|L). (3.25)

A probabilistic graphical model depicting Equation (3.25) along with the dependencies between its

observables and parameters is shown in Figure 3.7.

As was in Chapter 2, the distance calibration means that there is a free parameter rMW for every

pair of stars in the data in addition to the global parameters. This motivates the use of Stan once

again to sample our parameter space. The only restriction on the parameters (rMW, L, and RLMC)

beyond the previously described priors are that they be strictly positive. The results after running

four chains for 2000 samples each, and discarding the first half of each chain are shown in Figure 3.8.

The LMC distance inferred by the base model with computed parallax zero points provided by

the Gaia collaboration is RLMC = 48.84 ± 0.10 kpc, which is in agreement with the value RLMC =

49.59±0.09 (statistical)±0.54 (systematic) kpc reported by Pietrzyński et al. (2019). Meanwhile, the

value inferred with the base model and a constant parallax zero point is RLMC = 47.07± 0.10 kpc,
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Figure 3.6: Distribution of naive LMC distances R computed with Equation (3.19) assuming the
inverse parallax distance of the matched MW star is correct. The distribution of σR computed
with Equation (3.24) is also shown. An example error bar indicates the approximate observational
uncertainty predicted for a typical pair of matched stars using Equation (3.24), which is the median
value of the orange histogram. The median R is already in agreement with value reported by
Pietrzyński et al. (2019).
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Figure 3.7: Probabilistic graphic model of the LMC distance model described in this chapter. Ob-
served quantities (data) are depicted with double circles. Model parameters are depicted with single
circles. Certain priors and likelihoods are depicted with solid points. The mixture model exten-
sion is depicted in blue, with the mixture parameter f being either a global parameter or a unique
parameter for each pair of matched stars. In the latter model, it is also possible for f to be an
observable in the model rather than a free parameter. The absolute magnitude of each matched star
MG is depicted with a dotted circle to indicate its influence while not being an explicit parameter
in the model.
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Figure 3.8: Posterior samples for the base LMC distance model. The inferred parameters exhibit a
strong dependence on the parallax zero point.

which is in significant disagreement (∼ 4.5σ) with the literature value. It is, however, slightly more

accurate than simply relying on the reported parallaxes of the LMC sample (refer to Figure 3.2).

Regardless of the parallax zero point, both distances are inferred to much higher precision than

the uncertainties reported by Pietrzyński et al. (2019). This may be attributed in part to our

determination of the LMC distance uncertainty in Equation (3.24), which is purely a statement

about the uncertainty of the photometry and astrometry used in the model. The base model operates

under the rigid assumption that the pairs of matched stars are truly twin stars that can be calibrated

to have identical intrinsic brightnesses. It may at first seem reasonable that 1 550 of the stars in

the full LMC sample of 22 004 stars, or approximately 7% of the LMC sample, were matched.

Conversely, there were only 2 139 stars in the MW to compare to in the first place, and it seems

far-fetched to think that approximately 72% of nearby bright stars have spectrally identical stars in

the LMC.

The model can be more flexible to the outliers present in the data if it can allow for the possibility

that the matched stars are not truly identical. One way to do this is to introduce an additional

uncertainty term σ̃R to Equation (3.24) as a free parameter in the model, which would grow if the

model prefers a solution in which there are more discrepancies between ‘matched’ stars. Another

way to add flexibility to the model so that it is robust to outliers in the data is to replace the LMC

distance likelihood (Equation (3.23)) with a mixture model:

p(rLMC|RLMC, σR) ∼ fN (rLMC|RLMC, σR) + (1− f)p(rLMC|LLMC), (3.26)

where p(rLMC|LLMC) follows the same distance prior described in Equation (3.22). This second

distribution serves as an outlier distribution of LMC ‘distances’ from poor matches, rather than a

separate estimate of RLMC. The mixture parameter f may be a global parameter. If f is a global

parameter and f → 1, then the model is confident that most stellar matches are between true stellar
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Figure 3.9: Posterior samples for the LMC distance model with a free global mixture parameter f .
All distance parameters are presented in units of kpc, and vertical lines indicate the median and
68% confidence intervals. The LMC distance is unconstrained with a free global mixture parameter,
and its sampled posterior distribution simply follows its prior.

twins in the LMC and Mw sample. Conversely, if f → 0, then the model predicts that most of the

‘matched’ pairs of stars are not true twins. As a global parameter, this would be a statement about

the set of ‘matched’ stars as a whole. The mixture parameter must be bounded between 0 and 1,

so it is modelled as a free parameter following the Beta distribution:

p(f) ∼ B(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
fα−1(1− f)β−1. (3.27)

There is no parameterization of the Beta distribution that fully matches the distribution of

p-values that we have obtained, but we see in Figure 3.4 that α = 0.5 and β = 0.7 follows a

similar shape. Most of the ‘matches’ should have low confidence, and we would hope that at least

a few of them are true matches. It is not necessary for the prior distribution to exactly match the

distribution of p-values, since the posterior distribution ought to be dominated by the likelihoods

of the data. Applying the matches to a mixture model with a global mixture fraction f as a free

parameter gives no constraints for RLMC. This is best seen when adding a prior distribution such

that RLMC ∼ N (50 kpc, 10 kpc), which yields the results shown in Figure 3.9.

Allowing for a global mixture fraction as a free parameter causes the LMC distance model

to prefer a scenario where none of the ‘matched’ LMC stars are truly comparable to their MW
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Figure 3.10: Posterior samples for the LMC distance model with a free mixture parameter f for each
‘matched’ pair of LMC and MW stars. All distance parameters are presented in units of kpc, and
vertical lines indicate the median and 68% confidence intervals. The LMC distance is constrained
with individual mixture parameters, with a larger scatter in the sampled posterior as desired.

counterpart (f → 0). This leaves RLMC mostly unconstrained, as can be seen by its marginalized

sampled posterior essentially following the prior distribution that we’ve set. One may choose instead

to use mixture fractions f ′ that are unique to each pair of matched stars, which would be a statement

about the true similarity between each individual pair of stars. In this case, we have the opportunity

to use the mixture parameter f ′ either as a free parameter or as an observable. Figure 3.10 shows the

model with individual mixture fractions as free parameters, which no longer requires an additional

prior to constrain RLMC. The inferred LMC distance with official Gaia parallax zero points is

similar to base model, but with a wider statistical scatter as desired: RLMC = 48.90+0.52
−0.48 kpc. In

contrast, the inference with constant parallax zero point returns RLMC = 56.52+0.62
−0.66, which also has

a wider uncertainty but is now in much larger disagreement (∼ 8σ) with the Pietrzyński et al. (2019)

measurement.

Rather than allowing the mixture fraction in Equation (3.26) to be a free parameter, it is possible

to set them as observables. We have previously computed p-values in §3.3 which can be interpreted

as the probability that the χ2
i comparison at each pixel was drawn from the χ2 distribution. The

p-values are therefore a statement about the similarity between the two spectra, and using them as

the mixture fraction f in Equation (3.26) yields the sampled posterior distribution in Figure 3.11.

This model does not an additional prior distribution on RLMC.

The inferred distance to the LMC with p-values is RLMC = 54.55+0.64
−0.78 kpc with computed parallax

zero points, and RLMC = 52.73+0.92
−0.97 kpc with the constant ϖ0. These are in 5.2σ disagreement and

∼ 2.8σ tension with the Pietrzyński et al. (2019) value, respectively. A potential source of error is
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Figure 3.11: Posterior samples for the LMC distance model using each ‘matched’ pair’s p-value as the
mixture fraction. All distance parameters are presented in units of kpc, and vertical lines indicate
the median and 68% confidence intervals. There is a large shift in the estimated LMC distance when
using the p-values as the mixture fraction.
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Table 3.1: Summary of inferred parameters from the LMC distance model. Median values are listed
with 68% confidence intervals.

Zero point Model RLMC [kpc] LMW [kpc] LLMC [kpc]

Lindegren et al. (2021b) Base 48.84+0.10
−0.10 1.16+0.02

−0.02 –

Lindegren et al. (2021b) Global f a51.20+8.69
−8.72 0.81+0.01

−0.01 18.07+0.27
−0.26

Lindegren et al. (2021b) Indiv. f 48.90+0.52
−0.48 0.81+0.01

−0.01 18.37+0.32
−0.31

Lindegren et al. (2021b) p-values 54.55+0.64
−0.78 0.81+0.01

−0.01 17.77+0.33
−0.32

Groenewegen (2021) Base 47.07+0.10
−0.10 2.01+0.03

−0.03 –

Groenewegen (2021) Global f a50.53+9.29
−9.52 1.08+0.02

−0.02 16.62+0.24
−0.25

Groenewegen (2021) Indiv. f 56.52+0.62
−0.66 1.08+0.02

−0.02 16.06+0.26
−0.25

Groenewegen (2021) p-values 52.73+0.64
−0.78 1.09+0.02

−0.02 16.06+0.30
−0.29

a Unconstrained; follows prior distribution.

the fact that the χ2
i computed between pixels are not completely independent of each other. There

is an avenue for improvement if the KS test can be altered to either account for the covariances

between nearby pixels in spectra, or if there is another distribution that can describe the statistics

of the spectral comparisons. Alternatively, one could work with the Gaia collaboration’s continuous

representation of the XP spectra, which consist of 110 coefficients for each spectrum with respect to

a set of basis functions that can recreate the observed spectrum. The coefficients are reported with

uncertainties, so it is possible to compute a set of independent χ2
i between two spectra by comparing

their coefficients. We leave this study for future work, and report our result using the individual

mixture fractions as free parameters in Equation (3.26) which gives us RLMC = 48.90+0.52
−0.48 kpc.

3.5 Discussion and Conclusions

In this chapter, we:

� Selected a (LMC) sample of 22 004 stars in the Large Magellanic Cloud from the Gaia DR3

catalogue with reported XP spectra.

� Selected a (MW) sample of 2 139 stars in the solar neighbourhood from theGaia DR3 catalogue

with reported XP spectra, high quality parallax measurements, and low levels of expected dust

extinction.

� Selected a set of 1 550 pairs of stars from the LMC and MW samples with similar spectra.

These were used as candidate ‘twin’ stars to calibrate the absolute magnitudes of the LMC

stars with MW parallaxes.

� Developed a probabilistic model to estimate the distance to the LMC by calibrating the abso-

lute magnitudes of the LMC stars with MW parallaxes.

� Inferred the distance to the LMC to be RLMC = 48.90+0.52
−0.48 kpc, which is in agreement with

the Pietrzyński et al. (2019) value of RLMC = 49.59±0.09 (statistical)±0.54 (systematic) kpc.

� Demonstrated that a careful treatment of the Gaia parallax zero point is necessary for a robust

inference of the LMC distance (see Table 3.1).
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This chapter provides an optimistic outlook for future Gaia data releases. The model constructed

in this chapter uses only Gaia photometry and parallaxes, along with some extinction corrections

for nearby stars with dust maps accumulated by Bovy et al. (2016). The set of candidate twin

stars between the LMC and the solar neighbourhood relies solely on low-resolution XP spectra.

Future Gaia data will feature fainter magnitude limits, higher resolution spectra, and more precise

parallaxes. This will likely increase the sizes of both the MW and LMC samples, as well as improve

the spectral comparisons detailed in §3.3. There is also opportunity to use the Gaia collaboration’s

continuous representation of XP spectra for improved comparisons with more accurate p-values. A

mostly independent measurement of the distance to the LMC using Gaia data would be a significant

contribution to the absolute scale of the cosmic distance ladder, either further solidifying the Hubble

tension or providing some relief.



Chapter 4

Crosstalk simulations for cosmic

microwave background

observations

Adapted from a report by the Canadian LiteBIRD team: Dobbs, Matt, Hložek, Renée, Smecher,

Graeme, Chan, Victor C., Montgomery, Joshua, Nerval, Simran, & Scott, Douglas. The report

was a funded Science Maturation Study of the LiteBIRD mission submitted to the Canadian Space

Agency in 2019. The contents of this chapter contain original work by Chan, Victor C.

Abstract

Upcoming observations of the cosmic microwave background (CMB) face increasingly stringent

requirements in order to probe extremely faint signals. The push to higher sensitivity has renewed

the community’s drive to understand instrument systematics. Crosstalk is a phenomenon in which

detectors can become correlated and observe signals intended for other detectors, and it can oc-

cur from overlapping detector beams (optical crosstalk) or electrical leakage (electrical crosstalk).

We characterize here the effects of electrical crosstalk by through simulations of realistic CMB ob-

servations. The simulations work by imitating the scanning motions of an experiment, and we

modify them to mix detector timestreams through a predetermined crosstalk matrix. The mixed

timestreams are then combined into an ‘observed’ CMB map, and we conclude that the effects of

unmitigated crosstalk on CMB power spectra are at the level of a few percent at large angular scales

for a LiteBIRD-like experiment. We also find that the readout ordering of the detectors (which

controls which pairs of detectors crosstalk) has a non-trivial effect on the observed CMB power

spectra.

90
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4.1 Introduction

O
bservations of the cosmic microwave background are becoming increasingly sensitive,

and it is more important than ever to understand the systematic effects present in

our data. An example of such a systematic is detector crosstalk. Crosstalk is a

phenomenon where detectors can become correlated and ‘see’ the same signals as

other detectors, either through overlapping beams (optical crosstalk) or through voltage leaks during

electrical readout (electrical crosstalk). Crosstalk has been well known and studied in the design

and analysis of previous experiments, and it was considered to be a low level systematic effect

as recently as SPTpol (Henning et al., 2018). Upcoming experiments are facing more stringent

requirements in order to probe extremely faint signals in the CMB, such as the tensor-to-scalar ratio

r (LiteBIRD Collaboration et al., 2023), and the community is motivated to better understand the

effects of crosstalk as a potential obstacle when upgrading existing experiments such as SPT-3G

(Montgomery et al., 2022), or building new experiments such as LiteBIRD. This chapter describes

work that we performed to characterize realistic effects of electrical detector crosstalk on observations

of CMB polarization for the planned LiteBIRD mission (LiteBIRD Collaboration et al., 2023). This

work involved a thorough understanding of the entire CMB observation pipeline in order to simulate

the process. The contents of this chapter were included in report by the Canadian LiteBIRD team

(PI: Dobbs) as part of a funded Science Maturation Study of the LiteBIRD mission for the Canadian

Space Agency1. We characterize the general effects of crosstalk on CMB observables with a simple

toy model in §4.2. We then describe our implementation of crosstalk into a suite of CMB observation

simulations in §4.3, and present the effects of crosstalk propagated into CMB angular power spectra

in §4.4. We conclude with a discussion of our results in §4.5.

4.2 Effects of crosstalk on detector timestreams

The effects of detector crosstalk on observed timestreams is similar whether it is optical or electrical.

For a given detector i in a set of Ndet detectors, the total observed timestream that it observes di(t)

at a given time t can be modelled as a combination of the sky signal si(t) that it observes, detector

white noise ni(t), and crosstalk modulated by a matrix of crosstalk amplitudes Wij :

di(t) =

Ndet∑

j=1

Wij

(
sj(t) + nj(t)

)
. (4.1)

The crosstalk matrix Wij is dependent on the detector properties, and a comprehensive study

on the simulations and measurement of detector-to-detector electrical crosstalk amplitudes can be

found in Montgomery et al. (2022). For the purposes of this work, we assume that the crosstalk

matrix is known. We also assume that the diagonal of the crosstalk matrix is strictly one (Wii =

1); i.e., an individual detector may not crosstalk with itself. In principle, full knowledge of the

crosstalk matrix allows one to invert Equation (4.1) to solve for detector timestreams such that

di = si + ni; however, this operation is only as precise as our understanding of the crosstalk matrix

itself. Uncertainties in the crosstalk matrix propagate through into the recovered timestreams, and

leave residual crosstalk. In this chapter, we simulate the effects of detector crosstalk under the

1Private report
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Figure 4.1: Average pointing-corrected TODs for a two detector instrument sharing several crosstalk
configurations. A sinusoidal feature represents large angular scale features, while a point source
near the sinusoidal minimum represents small angular scale anisotropies. Large-scale features are
generally enhanced or suppressed by detector crosstalk, while small-scale features generate phantom
signals.

assumption of perfect knowledge of the crosstalk matrix without applying the inverse operation, and

study the upper limits on the impact of crosstalk on CMB observables.

We begin with a cartoon example of two detectors which are scanning a smooth ‘sky signal’

modelled by a sinusoid. If these detectors are pointed 10◦ away from each other along the scanning

direction, then their Time Ordered Data (TODs) will be offset by toff = 10◦/ω, where ω is the scan

speed of the instrument. Detector orientations are typically dependent on the configuration of the

instrument’s focal plane, and pointing corrections to the TODs are usually done in the mapmaking

stage of a CMB data processing pipeline (Keihänen et al., 2005). Figure 4.1 shows averaged pointing-

corrected TODs for our two detectors in several overexaggerated crosstalk configurations.

We see that the true sky signal is captured by the pointing-corrected TOD in a configuration

with no crosstalk. Figure 4.1 demonstrates that features in the sky signal with angular sizes greater

than the separation of the detectors are amplified (in the case of positive crosstalk) or suppressed

(in the case of negative crosstalk). In contrast, features with angular sizes smaller than the detec-

tor separation generate phantom signals reminiscent of multiple images generated by gravitational

lensing. The amplitude of the phantom signals of any small scale features is proportional to the

magnitude of the crosstalk, and the locations of the phantom images are proportional to the angular

separation of the detectors.

The crosstalk configurations presented in Figure 4.1 are quite exaggerated, but they illustrate

the need for TODs to be renormalized if we wish to recover a higher fidelity sky signal. Fig-

ure 4.2 demonstrates two possible choices in renormalization. If one chooses to renormalize TODs
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by calibrating to the amplitude of a well-understood point source, then extra features generated by

crosstalk at both large and small angular scales are somewhat less pronounced. One may instead

choose to renormalize TODs by scaling by the overall RMS, or variance, of the crosstalked TODs.

Both choices are agnostic to the underlying crosstalk configuration, but the latter choice is more

effective at recovering the true large angular scale features in the sky signal. The drawback of this

choice is that it may greatly amplify the phantom signals generated by crosstalk from small angu-

lar scale features in the sky signal. This can translate to excess power in a CMB power spectrum

generated at multipoles smaller than the detector separation.

In summary, our toy model has provided us with the following insight:

1. CMB anisotropies of larger angular scales than the detector separation are amplified or sup-

pressed depending on the sign of the crosstalk between each detector.

2. CMB anisotropies of smaller angular scales than the detector separation generate phantom

signals that are proportional to the magnitude of the crosstalk and the angular separation of

the detectors. Consequently, crosstalk can generate small scale power similar to gravitational

lensing.

3. Renormalizing TODs can be done such that large scale features are prioritized over small scale

features, but the reverse may not be as simple.

4.3 Simulations of detector crosstalk in CMB observations

A more detailed analysis of the impact of crosstalk on CMB observables requires a more realistic sim-

ulation of an experiment. In this section, we describe a procedure for simulating CMB observations

using the Time Ordered Astrophysics Scalable Tools, or TOAST,2 package (Kisner et al., 2023).

There was no implementation for simulating crosstalk at the time this work was conducted, so we

introduced modifications to the package which ultimately became the basis for the current imple-

mentation of crosstalk in TOAST. The inputs for a given TOAST simulation are a CMB map, and a set

of parameters describing the experiment configuration. We generated a lensed input CMB map for

the simulations in this chapter with the Python Sky Model’s3 (or PySM) c1 model (Thorne et al.,

2017) which uses power spectra generated with the Code for Anisotropies in the Microwave

Background4, or CAMB (Lewis & Challinor, 2011). The experiment parameters are listed in Ta-

ble 4.1, and they reflect the proposed LiteBIRD satellite mission (LiteBIRD Collaboration et al.,

2023) parameters at the time this work was conducted5. Additional focal plane parameters such

as detector pointing and polarization sensitivity orientations were also chosen from the proposed

LiteBIRD configuration at the time.

The original TOAST pipeline is illustrated in Figure 4.3, and it follows these steps:

1. A data object containing all the experiment (in this case a satellite) parameters is created.

Refer to Table 4.1 for the parameters used in this chapter.

2https://github.com/hpc4cmb/toast
3https://github.com/bthorne93/PySM_public
4https://camb.info/
5From the LiteBIRD Concept Design (internal document)

https://github.com/hpc4cmb/toast
https://github.com/bthorne93/PySM_public
https://camb.info/
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Figure 4.2: Average pointing-corrected TODs for a two detector instrument sharing several crosstalk
configurations. TODs have been renormalized by calibrating a point source to an expected amplitude
(top) and scaling by the amplitude of the TODs’ total variance (bottom). Scaling with respect to
the total variance of the TODs is more effective at recovering the true large-scale features in the
sky signal, but it may greatly amplify the phantom signals generated by crosstalk from small-scale
features in the sky signal.
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Ndet 36

Duration of observation 90 days

Observing frequency 140 GHz

Detector sample rate 22 Hz

Satellite spin period 10 min

Initial spin angle 30◦

Satellite precession period 10 min

Initial precession angle 65◦

Half wave plate rotation frequency 88 rpm

Detector beam size 23.7 arcmin

fknee 50 mHz

α 1

NETarray 2.1 µK/
√
s

fmin 0 Hz

Output map NSIDE 1024

Table 4.1: Parameters used to simulate LiteBIRD-like satellite observations in TOAST.

Input map
•  CMB, Foregrounds, etc.

Satellite parameters
•  Scan strategy
•  Detector properties
•  Polarization Modulation

• Half Wave Plate
•  Crosstalk matrix

Regular TOAST pipeline (simplified)

Simulate Satellite → Signal TODs

Generate/Add Noise TODs

Mapmaking
Mix detector TODs 

with crosstalk matrix

Figure 4.3: Flowchart of the TOAST pipeline and its inputs/parameters. Modifications to include
crosstalk in the simulations are highlighted in red.
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2. Sky signal TODs are generated by simulating the satellite’s scanning pattern over the input

CMB map. Detector orientations on the focal plane are used to determine which sky pixels

are observed by each detector at a given time.

3. Individual detector noise TODs are generated with the noise parameters in the experiment

data object. These are then added onto the sky signal TODs for each detector.

4. The full set of detector TODs is transformed into map space using the MADAM mapmaker

(Keihänen et al., 2005). The result is a set of CMB temperature and polarization maps as

they would have been observed by the satellite.

The full flow of the TOAST simulation procedure is, of course, more complicated, but these are the

most relevant steps for the crosstalk implementation. The implementation of crosstalk to TOAST as

indicated in Figure 4.3, occurs just before Step 4. Each detector TOD in the simulation contributes

some crosstalk to every other detector in the simulation according to Equation (4.1). Two example

crosstalk matrices are shown in Figure 4.4, generated by Montgomery et al. (2022). They show

that realistic electrical crosstalk levels between detectors are strongest for those closest to each

other in frequency scheduling, and additional contributions quickly drop off for detectors farther

apart in frequency space. The sign and amplitudes of these crosstalk weights are dependent on the

design of the detector readout electronics, as well as choices in the spacing between detectors in

the frequency multiplexing. A logarithmic frequency spacing is currently used at the South Pole

Telescope (Montgomery et al., 2022), and a linear frequency spacing was recommended for the

LiteBIRD mission at the time this work was conducted due to the overall lower crosstalk levels. As

a final note, all simulations in this chapter were generated with the same random seed to ensure

reproducibility, as well as genuine comparisons between crosstalk configurations.

4.4 Impact of detector crosstalk on CMB power spectra

The impact of detector crosstalk on CMB observables may not be readily apparent at the map

level; however, the effects are clear in comparisons of CMB power spectra. Figure 4.5 shows TT

power spectra for simulations following the procedure outlined in §4.3 using the parameters listed in

Table 4.1, along with the application of the first 36× 36 entries of the crosstalk matrix with linear

frequency spacing in Figure 4.4.

The fractional comparisons in the bottom panel of Figure 4.5 validate our conclusions from

§4.2. The introduction of crosstalk generally produces a constant offset in the observed CMB power

at large angular scales (ℓ ≲ 500), and the magnitude of the offset is dependent on the crosstalk

configuration. This change is at the level of less than a few percent, and as discussed in §4.2, they

can be mitigated with a proper TOD renormalization strategy (which has not been applied here).

There is also an ℓ-dependent increase in the observed CMB temperature power at small angular

scales (ℓ ≳ 500) that is reminiscent of the effects of weak gravitational lensing at small scales. As

a reminder, these simulations did not carry out the step in which the crosstalk matrix is typically

inverted to recover the true detector TODs. The effects of crosstalk in Figure 4.5 serve as an upper

limit on the worst-case scenario for crosstalk systematics on realistic CMB observations.

The crosstalk matrices in Figure 4.4 indicate that detectors experience the strongest crosstalk

from neighbouring detectors in the frequency schedule. It is then worth considering which detectors
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Figure 4.4: Two examples of realistic electrical crosstalk matrices with linear spacing in the fre-
quency scheduling (top) and logarithmic spacing in the frequency scheduling (bottom). These
representative crosstalk configurations were simulated by Montgomery et al. (2022).
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Figure 4.5: Power spectra of CMB simulations with crosstalk compared to a realization without
crosstalk. The fractional difference compared to version without crosstalk is shown in the bottom
panel, where a constant offset at multiples ℓ ≲ 500 can be held to less than a few percent.
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Readout bias frequency

det0    det1    det2    det3    det4    det5   ...

0/1 2/3 4/5 ...

LiteBIRD LFT Focal Plane @ 140GHz

deg
Wired to readout electronics

det det det det

Figure 4.6: Illustration of a proposed LiteBIRD focal plane configuration. An example of a simple
choice in detector readout ordering is also shown.

are allowed to crosstalk to each other the most. In other words, one has the freedom to decide which

detectors crosstalk to each other when designing an instrument. A straightforward configuration

can be to simply order detectors as they are structured physically on the focal plane, as illustrated

in an example with a proposed LiteBIRD focal plane in Figure 4.6. In this scenario, a given detector

experiences the strongest crosstalk with a detector observing the perpendicular polarization at the

same part of the sky, as well as another detector pointed slightly away. The simulated CMB power

spectra shown in Figure 4.5 follow this readout configuration.

There are many choices for mapping the detectors from the physical focal plane layout onto the

readout frequency schedule. A few simpler choices are shown in Figure 4.7 to illustrate the impact

of the readout order. A simpler crosstalk matrix is used here with consistent crosstalk amplitudes

such that the strongest crosstalk is −0.1% for the nearest neighbouring detectors in the frequency

schedule, and exponentially decaying amplitudes for detectors farther away in the frequency schedule.

The fractional changes in the observed CMB power spectra are shown for each readout config-

uration in Figure 4.7. In every scenario, the TT power experiences a similar decrement of low-ℓ

power due to negative crosstalk seen previously. The effects of different crosstalk readout ordering

on the EE and BB power are less clear, but both polarization power spectra appear to experience

the same changes. This is likely due to the fact that detectors are crosstalking linear polarization

information, which is then converted to EE or BB power at a later stage. It appears that the choice

of readout ordering can be a bit nuanced when optimizing for lower effects on observed polarization

power spectra, and the random ordering of detectors in Figure 4.7 has the best performance.
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Figure 4.7: A comparison of various crosstalk configurations based on readout ordering and their
fractional effects on simulated CMB power spectra. The most significant crosstalk amplitude between
pairs of detectors is −0.1%, and the matrix entries are shown on a logarithmic scale for better
visibility. Fractional change in observed power spectra compared to a crosstalk free simulation are
shown below each matrix for multipoles 2 < ℓ < 200. EE spectra are shown as dashed lines, BB
spectra are shown as dotted lines, and TT spectra are shown as dot-dashed lines. The EE and BB
spectra overlap in every scenario. Changing the readout ordering of detectors can have a non-trivial
impact on the observed CMB power spectra.
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4.5 Discussion and Conclusions

This chapter is summarized by the following key points:

1. Detector crosstalk generally amplify or suppress CMB power consistently at large angular

scales, and generate power at small angular scales. The effects at large angular scales can be

mitigated by renormalizing detector TODs by the total RMS or variance of the expected sky

signal.

2. We created an implementation of crosstalk in TOAST which has since been used as the basis

for a module of the package.

3. Full simulations of the CMB observation procedure with realistic crosstalk matrices show that

the effects of unprocessed crosstalk on CMB power spectra will be, at worst, on the level of a

few percent at large angular scales for a LiteBIRD-like experiment.

4. The ordering of detectors in the frequency schedule can have a non-trivial impact on CMB

observables, and a random ordering of detectors appears to be a good choice for minimizing

the effects of crosstalk on observed polarization EE and BB power spectra. This investigation

in particular was continued by graduate student Kolen Cheung at the University of Califor-

nia, Berkeley, and his findings are summarized in an unpublished (at the time of writing)

presentation6.

6https://ickc.github.io/LiteBIRD-R9X4K4CNHPSE2CWBH3AFAXV64BO5WACYPSBJ6CDOG0SW/crosstalk/

intermediate-summary-2/

https://ickc.github.io/LiteBIRD-R9X4K4CNHPSE2CWBH3AFAXV64BO5WACYPSBJ6CDOG0SW/crosstalk/intermediate-summary-2/
https://ickc.github.io/LiteBIRD-R9X4K4CNHPSE2CWBH3AFAXV64BO5WACYPSBJ6CDOG0SW/crosstalk/intermediate-summary-2/


Chapter 5

The Small Correlated Against

Large Estimator for CMB lensing

Originally submitted and accepted for publication in Phys. Rev. D. Pre-print available as: “The

Small-Correlated-Against-Large-Estimator (SCALE) for the Lensing of the Cosmic Microwave Back-

ground” Chan, Victor C., Hložek, Renée, Meyers, Joel, & van Engelen, Alexander 2023, arXiv e-

prints, arXiv:2302.13350, doi: 10.48550/arXiv.2302.13350. The text from the accepted manuscript

has been adapted for this dissertation with some minor clarifications, and a majority of the intro-

duction has been moved to Chapter 1 (see §1.2.4). The original appendix of the accepted manuscript

is presented in Appendix B.

Abstract

Weak gravitational lensing of the cosmic microwave background (CMB) carries imprints of the

physics operating at redshifts much lower than that of recombination and serves as an important

probe of cosmological structure formation, dark matter physics, and the mass of neutrinos. Re-

construction of the CMB lensing deflection field through use of quadratic estimators has proven

successful with existing data but is known to be suboptimal on small angular scales (ℓ > 3000)

for experiments with low noise levels. Future experiments will provide better observations in this

regime, but these techniques will remain statistically limited by their approximations. We show

that correlations between fluctuations of the large-scale temperature gradient power of the CMB

sourced by ℓ < 2000, and fluctuations to the local small-scale temperature power reveal a lensing

signal which is prominent in even the real-space pixel statistics across a CMB temperature map. We

present the development of the Small Correlated Against Large Estimator (SCALE), a novel estima-

tor for the CMB lensing spectrum which offers promising complementary analysis alongside other

reconstruction techniques in this regime. The SCALE method computes correlations between both

the large/small-scale temperature gradient power in harmonic space, and it is able to quantitatively

recover unbiased statistics of the CMB lensing field without the need for map-level reconstruction.

SCALE can outperform quadratic estimator signal-to-noise by a factor of up to 1.5 in current and

upcoming experiments for CMB lensing power spectra Cϕϕ
6000<L<8000.
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5.1 Introduction

G
ravitational lensing of the cosmic microwave background (CMB) are the dominant

signal in the observed CMB at small angular scales. Our goal in this chapter is to devise

a simple estimator that can leverage the low-noise and high-resolution maps expected

from future CMB surveys to measure the small-scale lensing power spectrum. We

present the Small Correlated Against Large Estimator (SCALE), a new method of obtaining the

small-scale lensing power constructed from the cross-correlation between maps of the local large-

scale and small-scale temperature power. It was previously shown in Ref. Zaldarriaga (2000) how

cross-correlating the large scale temperature gradient with the small-scale temperature power can

be used to estimate the lensing power. We discuss some key differences between SCALE and the

method used in Ref. Zaldarriaga (2000) in §5.4. This estimator is complementary to reconstruction

techniques aimed at estimating a map of the lensing potential. It is similar in spirit to the maximum

likelihood, maximum a posteriori, Gradient Inversion, and Bayesian techniques (Hirata & Seljak,

2003b; Carron & Lewis, 2017; Hadzhiyska et al., 2019; Millea et al., 2020) in that it aims to make

optimal use of lensing information at small-scales of a CMB temperature map. In contrast to

the QE method, SCALE is designed to work on small angular scales, which leverages the ongoing

improvements to detectors and telescopes in the coming decade (Abazajian et al., 2016; Ade et al.,

2019; Hanany et al., 2019; Abazajian et al., 2019; Sehgal et al., 2019). SCALE specifically aims to

avoid the extra variance incurred by QE techniques due to cosmic variance of the large-scale CMB

temperature gradient, while also circumventing the highly correlated nature of QE errors at small

angular scales. In contrast to the gradient inversion method described above, the SCALE pipeline

consists of high-pass and low-pass filtered maps which are squared and then cross-correlated to

estimate the lensing power spectrum directly, rather than a map of the lensing potential.

We start with a brief review of CMB lensing in §5.2 and develop a simple test in real space

to illustrate the principles of our proposed method in §5.3. We further develop this method, and

present the SCALE procedure in §5.4. After introducing our data simulations in §5.5, we present

our results in §5.6 and conclude in 5.7.

5.2 Review of CMB lensing

In the absence of foregrounds and noise, the observed CMB temperature field T̃ at a particular line of

sight n̂ is the unlensed temperature T at a lensing deflection angle d(n̂) away from the line of sight.

The lensing deflection angle d = ∇ϕ is the gradient of the lensing potential ϕ when working within

the Born approximation. We denote a gradient across the sky (i.e. along the plane perpendicular

to the line of sight) with ∇. The lensed temperature is

T̃ (n̂) = T (n̂+∇ϕ(n̂)) = T (n̂) +∇ϕ(n̂) ·∇T (n̂) + . . . . (5.1)

The lensing potential is directly related to the lensing convergence κ = −∇2ϕ/2, with power spectra

related by Cκκ
L = (L(L+ 1))2Cϕϕ

L /4. In our conventions, the Fourier transform of the temperature

gradient is

∇T (n̂) = i

∫
d2ℓ

2π
ℓT (ℓ)eiℓ·n̂ . (5.2)
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Figure 5.1: Top: The input power spectrum for simulated raw CMB maps is shown in solid pur-
ple. The resulting lensed CMB power spectrum after applying a lensing field corresponding to the
spectrum below is shown in solid teal. Noise spectra corresponding to different experiments are
shown in black, and the lensed/unlensed spectra combined with configuration-D (defined below, in
Table 5.2) noise are shown in their respective colours and dense dotted lines. Bottom: The input
lensing convergence power spectrum for simulated lensing potential fields. Also shown is the opti-

mal reconstruction noise N
(0)
L for the Hu, DeDeo & Vale TT (HDV, Hu et al. (2007)) and iterative

Hu & Okamoto EB quadratic estimators (HuOk, Hu & Okamoto (2002); Okamoto & Hu (2003))
computed with noise from configuration-D.
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Note that the majority of the CMB temperature gradient comes from modes with ℓ ≲ 2000 (Hu

et al., 2007). Taking Equation (5.1) into Fourier space, we apply Equation (5.2) in combination with

the convolution theorem to get

T̃ (ℓ) =

∫
dn̂T̃ (n̂)e−iℓ·n̂

= T (ℓ)−
∫

d2ℓ′

2π
ℓ′ · (ℓ− ℓ′)ϕ(ℓ− ℓ′)T (ℓ′) +O(ϕ2) (5.3)

In Equation (5.3), we see that at first order in ϕ the lensed temperature field T̃ is a convolution

between the lensing potential field ϕ and the original unlensed temperature field T . Taking the

two-point auto-correlation of the temperature field (e.g., steps (4.7) - (4.11) in Lewis & Challinor

(2006)) yields the lensed power spectrum:

C̃TT
ℓ ≈

(
1−

∫
d2ℓ′

(2π)2
Cϕϕ

ℓ′ (ℓ · ℓ′)2
)
CTT

ℓ

+

∫
d2ℓ′

(2π)2
[ℓ′ · (ℓ− ℓ′)]2CTT

ℓ′ Cϕϕ
|ℓ−ℓ′| . (5.4)

Note that the first term is a cross-term between the zeroth and second order terms of Equation (5.3),

and the second term is a product of the first order term with itself. Similar to Equation (5.3),

it expresses that the lensed CMB temperature power contains a convolution between the lensing

potential power and the original CMB temperature power. The effects of weak gravitational lensing

on the CMB do not add or remove from the total CMB temperature variance
∫
dℓℓCTT

ℓ /2π across

the sky. Instead, lensing serves to redistribute power CTT
ℓ between angular modes ℓ in a way

that “smooths out” the peaks and troughs in the observed power spectrum (as can be seen in

Figure 5.1); the power redistributed to scales ℓ ≳ 4000 dominates the signal compared to the

unlensed temperature modes which are suppressed by diffusion damping. Traditional estimators

of the lensing potential take advantage of the correlations between angular modes that have been

introduced, and they work to reconstruct the lensing potential field through measurement of these

off-diagonal couplings. We can make approximations to simplify Equation (5.4) in the small-scale

limit ℓ ≫ 2000. The CMB temperature gradient variance, which we denote ⟨|∇TL|2⟩, is made up

of an integral over the larger scale modes CTT
ℓ≲2000 of the original CMB temperature field, given by∫

dℓℓ2CTT
ℓ /2π. This background temperature gradient is approximately constant at small scales,

which can be enforced with ℓ′ ≪ ℓ in Equation (5.4). One can apply these approximations to arrive

at a simplified representation of the lensed CMB temperature power on small scales (e.g., §4.1.3 of

Lewis & Challinor (2006)):

C̃TT
ℓ≫2000 ≈ ℓ2Cϕϕ

ℓ

∫
dℓ′

ℓ′
ℓ′4CTT

ℓ′

4π
+ CTT

ℓ,r

=
1

2
⟨|∇TL|2⟩ℓ2Cϕϕ

ℓ + CTT
ℓ,r . (5.5)

Here, we define CTT
ℓ,r which represents all remaining contributions to the observed temperature

power which are not expected to strongly correlate with the large-scale gradient of the CMB tem-

perature field. This includes the first term of Equation (5.4) which contains a small amount of

the unlensed CMB temperature power suppressed by diffusion damping crossed with a second-order
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lensing contribution. We may also include contributions from instrument noise, foregrounds, and

other secondaries in CTT
ℓ,r .

A straightforward method to estimate the small-scale lensing power is to simply divide the

observed excess small-scale temperature power by the average unlensed temperature gradient power

on large scales. That is, we can rework Equation (5.5) and estimate the small scale lensing power

spectrum as

Cϕϕ
ℓ ≈

C̃TT
ℓ − CTT

ℓ,r

ℓ2
(
1
2 ⟨|∇T |2⟩

) , (5.6)

for ℓ ≫ 2000. The motivation for our SCALE technique is that we can do better than Equation (5.6),

even without reconstructing a map of the lensing field. In any given patch of sky, the large-scale tem-

perature gradient power around the line-of-sight n̂ will deviate from the sky average due to random

fluctuations. As a consequence, the local small-scale temperature power that results from lensing

will also deviate from the sky average. By correlating the spatial variations in the locally measured

large-scale temperature gradient power with the spatial variations in the small-scale temperature

power, we can construct an improved estimate of the small-scale lensing power. Furthermore, varia-

tions in the observed small-scale temperature power that are due to sources other than lensing (such

as non-stationary noise or astrophysical foregrounds), are not expected to correlate with variations

in the large-scale temperature gradient power since these effects result from survey choices or local

physics unrelated to the long wavelength fluctuations responsible for the large-scale temperature

gradients.

In summary, we propose a new lensing estimator with a similar form to Equation (5.6). The key

difference is allowing the local small-scale lensed temperature power to fluctuate according to the

steepness of the background temperature gradient in the same part of the sky:

C̃TT,local
ℓ≫2000 (n̂) ≈ 1

2
|∇TL(n̂)|2 ℓ2Cϕϕ

ℓ + CTT
ℓ,r . (5.7)

Equation (5.6) is recovered by taking the sky average of this version. We consider combina-

tions of CMB temperature maps because temperature-based lensing reconstruction out-performs

polarization-based estimators on small angular scales, due to the fact that polarization maps be-

come dominated by noise at these angular scales (see Figure 5.1). The lensing estimator we propose

shares some similarities with techniques used to measure the kinetic Sunyaev-Zel’dovich (kSZ) effect

through variations in small-scale temperature power (Smith & Ferraro, 2017).

In the following section, we present a simple proof-of-concept that takes advantage of the lo-

cal map-space correlations between the small-scale temperature power and the square

of the observed temperature gradient amplitude in order to tease out the statistics of the

underlying lensing potential field.

5.3 Introductory concepts in Real Space

Before describing the harmonic-space implementation of SCALE in this work, we start with an

illustrative real-space description of the concept to provide the intuition and motivation for the

techniques we develop in the following section. We introduce the notationX(n̂) along with shorthand

X to indicate the local average of a quantity X near a line-of-sight n̂.
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The total observed small-scale CMB power along a given line of sight T 2
S(n̂) is given by the 2-

dimensional (2D) angular integral over Equation (5.7). We also specify the large-scale temperature

gradient amplitude |∇TL(n̂)| to still be approximately constant near each single line of sight while

allowing for the small fluctuations between different lines of sight as described in the previous

section. Since we do not expect the lensing potential field to strongly correlate with the remaining

contributions to the small-scale temperature power, we generally expect

T 2
S(n̂) ≃ a1|∇TL(n̂)|

2
+ a0, (5.8)

where we have the following contributions:

1. A term containing the lensing contribution which scales with the amplitude of the large-scale

CMB temperature gradient |∇TL(n̂)|
2
, and

2. a term containing all remaining contributions which do not scale with the CMB temperature

gradient.

Equation (5.8) motivates a simple, map-space approach to gather local statistics for T 2
S(n̂) and

|∇TL(n̂)|
2
and to take advantage of their correlations to bring out the lensing signal. The expectation

is that a1 → 0 in a CMB temperature map without lensing, and a1 should increase with a stronger

lensing signal (i.e., a1 ∝ Cϕϕ
L , c.f., 5.7.). Contributions to the temperature map such as noise and

foregrounds that do not come from lensing should directly contribute to a0, but not a1 because they

are not expected to correlate with the large-scale CMB temperature gradient. We should therefore

be able to infer the small-scale lensing power from the measured value of a1.

5.3.1 Map reduction to local patches

Of the two observable quantities in Equation (5.8), we begin with measuring background temperature

gradient ∇TL as well as the small-scale temperature TS from a single input CMB temperature map.

Local statistics of |∇TL|
2
and T 2

S then need to be gathered in small cutouts of the observed field.

To ensure that we are only including the smooth component of the temperature gradient, we

filter the maps in Fourier space. We compute maps of the observed CMB temperature gradient

using

∇TL(ℓ) = iℓT (ℓ). (5.9)

We apply a low-pass top hat filter before returning the map to pixel space: ∇TL(ℓ > ℓ∇T ) = 0.

It is not immediately obvious what scale ℓ∇T should be used in the low-pass filter. Enough

modes should be included such that the resulting ∇TL maps contain enough information about the

background temperature gradient, and ℓ∇T should be small enough such that there are no direct

correlations from similar shared modes between ∇TL and the small scale temperature T (ℓ ≫ 2000).

The large-scale CMB temperature gradient ∇TL| that we are looking for is mostly constituted by

modes ℓ ≲ 2000, so we consider a low-pass cutoff at ℓ∇T = 3000. It is important to keep in mind

that pixels near the boundary of the ∇TL map may be unusable if the original T map does not have

the appropriate repeating boundary conditions.

In order to pick out only the small scale lensing power contributions which we wish to correlate

with the background temperature gradient, the original CMB temperature map also needs to be



CHAPTER 5. THE SMALL CORRELATED AGAINST LARGE ESTIMATOR FOR CMB LENSING 108

Figure 5.2: Schematic of a procedure to reduce a CMB temperature map to local, real-space statis-
tics which can then be correlated to infer lensing effects. Maps in the original resolution are denoted
in green borders, and the light brown borders indicate a degraded resolution after computing rele-
vant statistics within local patches of width 40′. Note that the patches shown here are for visual
presentation, and they are larger than those chosen later on.
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filtered, this time with a high-pass window (ℓmin < ℓ < ℓmax) for the scales relevant to the analysis.

A variety of choices for ℓmin and ℓmax can be made as long as scales are in a regime where lensing

is dominant (ℓ ≫ 2000), and we require ℓmin > ℓ∇T to ensure that any correlations between the

large-scale gradient and small-scale power fields is strictly from lensing. The choice in ℓmin and ℓmax

affect the expected a1 and a0 in Equation (5.8) through the angular integral for the total CMB

temperature power.

We then split both filtered maps into patches in order to estimate the quantities |∇TL|
2
and T 2

S

along different lines of sight n̂. The required patch size is also not obvious, but needs to be small

such that the assumption of |∇TL|
2
being constant within a patch is reasonable. In considering the

characteristic angular scale θ ∼ 2π/ℓ for ℓ = 2000, the patches should be ≲ 10′ wide. The patches

also need to be large enough such that there are sufficient pixels of the map within each patch to

make good estimates of |∇TL|
2
and T 2

S . This is also dependent on the resolution of the original

map, which will be discussed further in § 5.5. For the example shown here, we choose a patch size

of 10′ × 10′, which is 20× 20 pixels in our simulated maps with resolution 0.5′.

The quantity |∇TL(n̂)|
2
can now be computed for every patch across the map. For each of the

two perpendicular directions on the map x̂ and ŷ, we first compute the average gradient across each

patch ∇TL(n̂) = ∇xTLx̂+∇yTLŷ. We can then readily compute |∇TL(n̂)|
2
= (∇xTL)

2 + (∇yTL)
2

for each patch.

5.3.2 Lensing from patch statistics

The remaining quantity to compute within each patch is T 2
S(n̂). We compute the auto-variance of

the high-pass filtered TS map within each patch. The |∇TL|
2
and T 2

S from each patch, in principle,

provides a very noisy and approximate estimate of the overall small-scale lensing power present in

the map, following a distribution about Equation (5.8). By combining the statistics of many noisy

patches across the map, there is opportunity to more rigorously quantify the slope in Equation (5.8),

and relate it to the 2D-angular integral of Equation (5.5) in the appropriate space of chosen ℓ∇T ,

ℓmin, and ℓmax.

The outputs of this real-space procedure applied to both a lensed and unlensed realization of the

CMB temperature are shown in Figure 5.3 to illustrate the relationship between them. A positive

correlation between T 2
S and |∇TL|

2
can be clearly seen in the ensemble of lensed patches, while

no significant correlation is seen in the sample of unlensed patches. Two example patches are also

highlighted in Figure 5.3, and the corresponding cutouts of the lensed CMB temperature filtered

to the relevant scales of the small-scale temperature and the large-scale gradient are shown. The

cutouts show that, even upon visual inspection, typical areas on the lensed CMB with a steep

background temperature gradient usually have a higher small scale temperature power than typical

areas with a relatively weak background temperature gradient.

We briefly consider quantifying the slope of the real-space lensing correlations in Appendix A.

There are several challenges that must be overcome in order to use this real-space method as a

reliable estimator of CMB lensing. First, it is important to note that the strictly positive nature of

the auto-variance forces the observed distribution of T 2
S(n̂) across the map to be positively skewed.

It is also non-trivial to determine a choice in patch size that optimally includes as many pixels

per patch while keeping the large-scale gradient and lensing statistics consistent within each patch.

In fact, we show in §5.4 and Figure 5.5 that there is no single patch size which can be chosen to
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Figure 5.3: Main: Local small scale (6000 < ℓ < 8000) temperature variance T 2
S vs. average large

scale (ℓ < 3000) temperature gradient amplitude squared |∇TL|
2
for lensed (teal) and unlensed

(purple) realizations are shown here as faint, small points. A low-variance/small-gradient patch
from the lensed realization (orange x), and a high-variance/large-gradient patch from the lensed
realization (maroon +) are highlighted. The larger points are centered on the medians within bins

of |∇TL|
2
containing an equal number of patches, with error bars corresponding to 68% quantiles.

The lines of best fit through the binned points are also shown. Left : 10′ × 10′ cutouts of the lensed
CMB temperature map filtered for small scales (6000 < ℓ < 8000) corresponding to the highlighted
patches. Bottom: 10′ × 10′ cutouts of the lensed CMB temperature map filtered for large scales
(ℓ < 3000) corresponding to the highlighted patches. The average gradient direction and relative
amplitudes across each patch are shown with the overlaid arrows. Gravitational lensing adds a strong
correlation between the local large-scale temperature gradient and the small-scale temperature power
that is clear from just map-space statistics.
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effectively capture all the correlations between the large and small scale temperature fluctuations.

These factors, combined with the fact that the temperatures observed in neighbouring real-space

pixels across each patch are highly correlated, suggest that the expected distribution of observed

T 2
S(n̂) about Equation (5.8) is non-trivial. One option to make this distribution better behaved is

to compute the covariance of two observations of the same CMB temperature field. By splitting

up time-ordered CMB observations into two or more maps of the same area of sky, one can take

advantage of the fact that the maps contain the same CMB realization (which should contain the

same lensing information and correlations) and different noise realizations (which should not co-vary

across maps).

One more challenge with quantifying this method is the loss of information coming from the local

large-scale gradient direction when computing |∇TL(n̂)|
2
. One may choose to construct individual

filters for each real-space patch and its observed gradient direction in order to focus on the expected

lensing signal(s). Directional filtering is motivated by the fact that lensing induces small-scale tem-

perature gradient fluctuations proportional to the local large-scale gradient amplitude and direction.

One such example is choosing a filter fℓ = cosα = ∇̂ · ℓ̂ in addition to the high-pass filter for the

small-scale temperature. In practice, this means that the small-scale temperature patches must each

be filtered separately and uniquely based on the observed gradient direction in each patch ∇̂TL(n̂).

This approach once again faces the previous challenge of the large-scale temperature gradient fluctu-

ations not being fully represented within a single patch size. We find that applying such a filter also

introduces edge-effects along the borders of each patch, which alters information from an already

limited set of pixels within each patch. For these reasons, we choose to present Figure 5.3 without

additional gradient information in the filtering of the small-scale temperature field.

While we limit our current presentation of this real-space procedure to a qualitative analysis,

it provides significant intuition and motivation for the development of SCALE. Figure 5.3 demon-

strates that the small-scale CMB temperature fluctuations are intricately tied to the statistics of

the underlying lensing field as well as the large-scale temperature fluctuations of the CMB itself. In

other words, information about the lensing field naturally comes out when correlating small-scale

CMB temperature fluctuations to large-scale CMB temperature fluctuations. While the observed

CMB temperature field is expected to be contaminated by foregrounds and noise, we do not expect

such contributions to be strongly correlated between small and large scales. These properties of

a lack of noise correlation and the direct lensing correlation between the large-scale gradient and

small-scale temperature are central to SCALE. This estimator overcomes the weaknesses of the real-

space method, and we will show that it provides a quantitative estimate of the underlying small-scale

lensing statistics in the following section.

5.4 The SCALE Method

The small-scale lensing signal is reflected in CMB temperature maps through local correlations

between the small-scale temperature power fluctuations and the large-scale temperature power fluc-

tuations across the sky. For a given map of the observed CMB temperature field T (ℓ), we begin by

constructing the fields containing the relevant information at small, and large scales. Here, we will

sketch the procedure of forming the optimal direct estimate of the lens-induced correlation between

small-scale gradient power and large-scale gradient power, in a way that minimizes the variance of
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Figure 5.4: A comparison of a CMB temperature realization before and after lensing in the absence
of noise and foregrounds. The same area of sky is shown for all panels, including a visualization
of the λ and ς maps derived from each version. Panels on the same row are shown with the same
colormap and limits. A grid with 20′ spacing is overlaid, which illustrates patches twice the width
of the chosen patches for the real-space proof of concept. The λ field is largely untouched by the
effects of lensing, and lensing generates features in the ς field that are visibly correlated with the λ
field.

Figure 5.5: A visualization of several Ľ bands of width ∆Ľ = 300 centered at the Ľ labelled
highlights the correlations between λ and ς induced by lensing. The same lensed CMB realization
from Figure 5.4 is shown, with the same colormaps and limits for λ and ς. SCALE quantifies the
correlations between the top and bottom panels in its estimates of the underlying lensing statistics.
A grid with 20′ spacing is overlaid, which illustrates patches twice the width of the chosen patches
for the real-space proof of concept. The correlations between λ and ς exist across many angular
scales.



CHAPTER 5. THE SMALL CORRELATED AGAINST LARGE ESTIMATOR FOR CMB LENSING 113

the result. The full details of the derivation are presented in Appendix B.

We begin by constructing large-scale temperature gradient fields for two perpendicular directions

on the map, ∇TL(ℓ), by applying the top hat filter Wλ(ℓ) combined with a Wiener filter to the

original temperature field,

Wλ(ℓ) =




1, ℓ2,min ≤ |ℓ| < ℓ2,max

0, else ,
(5.10)

∇TL(ℓ) =
i ℓWλ(ℓ)C

TT
ℓ T (ℓ)

CTT,obs
ℓ

. (5.11)

Note that a fiducial temperature power spectrum CTT
ℓ is required for the Wiener filter in this step.

It is not imperative that the assumed model exactly matches the underlying cosmology, as the results

are not sensitive to this choice. The observed CMB temperature power spectrum, CTT,obs
ℓ , of the

map is also required for our filters. We construct a field containing the large scale temperature power

fluctuations after returning each gradient component to real space, squaring each component, and

then adding them together:

λ(n̂) =
(
∇xTL(n̂)

)2
+
(
∇yTL(n̂)

)2
. (5.12)

Similarly, we construct small-scale temperature gradient fields in two perpendicular directions

on the map, ∇TS(ℓ), by applying a top hat filter Wς(ℓ) combined with an inverse-variance filter to

the observed temperature field,

Wς(ℓ) =




1, ℓ1,min ≤ |ℓ| < ℓ1,max

0, else ,
(5.13)

∇TS(ℓ) =
i ℓWς(ℓ)T (ℓ)

CTT,obs
ℓ

. (5.14)

We construct a field containing the small-scale temperature power fluctuations after returning each

gradient component to real space, squaring each component, and then adding them together:

ς(n̂) =
(
∇xTS(n̂)

)2
+
(
∇yTS(n̂)

)2
. (5.15)

The field ς strictly contains the small-scale temperature power fluctuations at the scales allowed

by the filter Wς(ℓ). We expect this field to correlate with the large-scale temperature power fluc-

tuations captured by the field λ. Such correlations are only expected as a result of lensing on the

original CMB temperature field because the filters are chosen to have disjoint support in ℓ. As a

result the cross-spectrum between each field, Cςλ
Ľ
, is a four-point function that estimates the power

of the lensing potential Cϕϕ
L . Each mode Ľ of the cross-spectrum represents a particular scale over

which the fields λ and ς correlate. This is illustrated in Figures 5.4 and 5.5. The λ fields look

visually similar between unlensed and lensed realizations of the CMB, but in the absence of noise,



CHAPTER 5. THE SMALL CORRELATED AGAINST LARGE ESTIMATOR FOR CMB LENSING 114

(1)
Low-pass
Gradient
Wiener Filter

(3)
High-pass
Gradient

Inv.Var. Filter

Sum of
squared components

(2) (4)

Cross-spectrum
(5)

Normalize with AĽ
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Figure 5.6: Schematic of the steps taken in SCALE pipeline.
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the ς fields show much stronger fluctuations in the lensed realization (unlensed small scale power

is suppressed by diffusion damping). Fluctuations in the lensed ς field visibly correlate with the λ

field. Further filtering the λ and ς fields illustrates the Ľ modes probed by the cross-spectrum, and

the lensing-induced correlation between λ and ς becomes striking.

Figure 5.5 also visualizes how the real-space method from Section 5.3 was combining the infor-

mation from many modes of Ľ ≳ 500 within each patch, and was including information from modes

Ľ ≲ 500 when performing the fit with many patches.

The introduction of noise (and foregrounds) adds power to both λ and ς fields, and it can become

the dominant source of power in the ς field. Noise contributions to λ and ς are not expected to

correlate with each other, meaning the cross-spectrum Cςλ
Ľ

is expected to be largely insensitive to

noise (though noise will contribute to its variance).

For the SCALE cross-spectrum to be an unbiased estimate of the lensing power, it needs to be

normalized to take into account the filtering that was applied, as well as the expected action of

lensing on the fields:

ΨĽ = AĽC
ςλ
Ľ

. (5.16)

The normalization AĽ is computed as a double integral of both the observed temperature power

spectrum CTT,obs
ℓ , and the fiducial temperature power spectrum CTT

ℓ used in the Wiener filter above:

AĽ =

[
2

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)

×
(
ℓ1 · (ℓ1 − Ľ)

) 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2) (ℓ2 · (ℓ2 − ℓ1))

×
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

) (
ℓ2 · (ℓ2 − Ľ)

)

×
(
CTT

ℓ2

)2

CTT,obs
ℓ2

(
CTT

|Ľ−ℓ2|

)2

CTT,obs

|Ľ−ℓ2|

]−1

, (5.17)

The bounds of each integral correspond to the scales allowed by the small-scale window function

Wς , and the large-scale window function Wλ. See Appendix B for the steps leading to the definition

of AĽ in Equation (B.24). The expected value of ⟨ΨĽ⟩ can be similarly computed with the lensing
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power Cϕϕ
ℓ :

⟨ΨĽ⟩ = 2AĽ

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)

×
(
ℓ1 · (ℓ1 − Ľ)

) 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2) (ℓ2 · (ℓ2 − ℓ1))

×
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

) (
ℓ2 · (ℓ2 − Ľ)

)

×
(
CTT

ℓ2

)2

CTT,obs
ℓ2

(
CTT

|Ľ−ℓ2|

)2

CTT,obs

|Ľ−ℓ2|

Cϕϕ
|ℓ1−ℓ2| . (5.18)

Note that unlike for, e.g., the QE estimator, with the SCALE estimator we do not directly recover

the signal of immediate interest (namely, Cϕϕ
ℓ in this case). This means that non-trivial physical

changes to Cϕϕ
ℓ , such as from extensions to the cosmological model, would appear in the ΨĽ statistic

in the SCALE estimator only indirectly, via this integral relation. Nevertheless, we will show below

that the expected ΨĽ is readily computed for any cosmological model, and shows excellent agreement

with simulated reconstructions.

The expected noise variance of ΨĽ, i.e., the variance in the absence of any lensing, is NĽ ≈ 4AĽ,

and the expected minimum uncertainty on an estimated Ψ̂Ľ in the limit of low covariance between

Ľ modes is

∆Ψ̂Ľ =

√
Ψ2

Ľ
+ 4AĽ

fsky∆Ľ(2Ľ+ 1)
. (5.19)

The details of AĽ, ⟨ΨĽ⟩ and its expected variances are derived in Appendix B leading up to Equa-

tion (B.25). We also demonstrate that the inverse-variance and Wiener filters are the optimal filters

to minimize the noise variance NĽ of the SCALE estimator. Note that in this procedure we corre-

late the small-scale gradient power with the large-scale gradient power; whereas, in Figure 5.3 we

demonstrate that the small-scale temperature power is strongly correlated to the large-scale gradient

through lensing. The use of small-scale gradient power is motivated by the discussion at the end of

§5.3, where we argue that lensing imparts a directional perturbation to the small-scale temperature

field which is correlated with the large-scale temperature gradient in both amplitude and direction.

We further find that if we follow the optimization steps with the small-scale and large-scale temper-

atures (rather than their gradients) in Appendix B, we inevitably conclude that the optimal filters

would include factors of ℓ for each field which imply the two gradient powers are being correlated.

The general flow of the SCALE pipeline is illustrated in Figure 5.6, and summarized here begin-

ning with a temperature map T (n̂):

1. Transform T (n̂) into harmonic space T (ℓ), apply the operations described by Equation (5.11),

and return ∇TL to map space.

2. Compute λ(n̂) using Equation (5.12).

3. Apply the operations described by Equation (5.14) to T (ℓ), and return ∇TS to map space.
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4. Compute ς(n̂) using Equation (5.15).

5. Compute the cross-spectrum Cλς
Ľ
.

6. Apply the normalization ΨĽ = AĽC
λς
Ľ
.

The end result ΨĽ is a set of separate estimates of the lensing power spectrum Cϕϕ
ℓ weighted by the

normalization AĽ along a range of scales set by Wς(ℓ) and Wλ(ℓ). We note that the nature of our

effectively four-point correlator is reminiscent of the trispectrum calculations for N
(1)
L (Kesden et al.,

2003) which are typically discarded in CMB lensing power spectrum analyses. This provides a hint

that the non-Gaussian signatures of CMB lensing are being considered as part of the SCALE signal.

This is further shown by Ref. Zaldarriaga (2000), wherein they derive the lensing signal present in

the three- and four-point functions of the small scale CMB temperature field. The cross-spectrum

between large- and small-scales is particularly shown to extract information from the connected

four-point function corresponding to two large-ℓ and two low-ℓ modes (see Eq. (37)-(42) and Figure

9a therein). A lensing estimator featuring the cross-spectrum between the large-scale temperature

gradient and the small-scale temperature power is also presented in Ref. Zaldarriaga (2000), and

some key differences in SCALE are the usage of small-scale gradient power, the inclusion of the

optimal filters, as well as the normalization AĽ to correct for bias. We show below that our method

allows us to extract lensing information from the cross-spectrum out to higher Ľ. Finally, it is

shown in Ref. Zaldarriaga (2000) that the cross-spectrum between large- and small-scale tempera-

ture can be treated as approximately Gaussian, meaning that Eq. (5.19) should accurately predict

SCALE uncertainties. We also note that the SCALE procedure draws parallels with the estimator

constructed in Smith & Ferraro (2017), wherein the locally measured small-scale (ℓ ≳ 3000) temper-

ature power varies across the sky due to the patchiness of the kinetic Sunyaev-Zel’dovich effect. The

main difference is that here we correlate the fluctuations in power between large and small scales,

whereas the kSZ estimator of Smith & Ferraro (2017) studies the angular power spectrum of the

locally measured small-scale temperature power.

5.5 Simulated observables

We test SCALE on simulated CMB maps to determine the robustness of the method. The input

power spectra for the simulated maps (shown in Figure 5.1) in all of our analyses were generated with

CAMB1 (Lewis et al., 2000; Howlett et al., 2012) and the parameters listed in Table 5.1. We choose

parameters to approximately match results from the Planck results (Planck Collaboration et al.,

2020b), as well as accuracy factors suggested by McCarthy et al. (2022). We generate all simulated

raw CMB maps using the rand map method from pixell2 at a resolution of 0.5’. Simulated maps

are generally 10◦× 10◦ and centered at the equator. These smaller maps are well within the flat-sky

approximation and can be quickly simulated in large quantities. The rand map method imposes

repeating boundary conditions in each realization, so the filtering steps do not generate any edge

effects. When gathering power spectrum and/or cross-spectrum statistics, we choose bins of ∆ℓ,

∆L and ∆Ľ that are integer multiples of the fundamental mode ℓfun = 36 for our maps. This is to

ensure that we gather values at bin widths which are commensurate with both the grids in which

1https://camb.info/
2https://github.com/simonsobs/pixell

https://camb.info/
https://github.com/simonsobs/pixell
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Parameter Value

H0 67.5 km/s

ombh2 0.022

omch2 0.122

tau 0.06

As 2e-9

ns 0.965

r 0

lmax 20000

lens potential accuracy 8

Table 5.1: The set of non-default arguments given to CAMB when simulating power spectra chosen to
approximately match results from Planck Collaboration et al. (2020b). Lensing accuracy parameters
were chosen as suggested by McCarthy et al. (2022).

Config. w [µK-arcmin] b [arcmin] Analogous Exp.

A 10.5 1.3 ACT (Aiola et al., 2020)

B 6.3 1.4 SO (Ade et al., 2019)

C 1.5 1.4 CMB-S4 (Abazajian et al., 2016)

D 1.0 1.0 Comparison with (Hadzhiyska et al., 2019)

E 0.5 0.25 CMB-HD (Sehgal et al., 2019)

Table 5.2: The set of simulated noise configurations chosen to be representative of existing or
upcoming experiments from ACT (Configuration A, Aiola et al. (2020)) to CMB-HD (Configuration
E, Sehgal et al. (2019))

the realizations themselves were generated and in which the correlation statistics are evaluated. We

apply lensing to the raw CMB maps using pixell’s lensing package, and a lens potential field

corresponding to the Cκκ
L spectrum shown in Figure 5.1.

For every CMB map, we generate noise realizations with experiment-relevant values listed in

Table 5.2. Configuration A represents a Stage III-like survey like ACT and SPT, while Configura-

tion B is illustrative of the Simons Observatory (SO; Ade et al. 2019). Configuration C gives noise

and beam corresponding to CMB Stage IV-like properties (Abazajian et al., 2016), and Configu-

ration D shows a slightly more futuristic experiment corresponding with some tests made for the

gradient inversion estimator in Hadzhiyska et al. (2019). Configuration E represents a low-noise,

high-resolution experiment like the proposed CMB-HD (Sehgal et al., 2019). We also briefly consider

tests in the noise-free limit.

We consider a range of current to future experiments, and we present a particular focus of

results for Configuration D. We generally choose a window function for Wς(ℓ) to include modes

ℓ1 ∈ [6000, 8000] (unless otherwise shown) for a balance between being in a regime where the lensing

signal is expected to be high, and noise is not too dominant (refer to Figure 5.1). This reasoning is

demonstrated against several choices of ℓ1 windows in §5.6, but we expect the SCALE methodology

to be effective as long as ℓ1 satisfies our small-scale approximations (i.e., ℓ1 ≫ 2000). We also

generally choose Wλ(ℓ) to include modes ℓ2 ∈ [0, 3000] to ensure that λ maps include most of the

information about the large-scale temperature gradient power.

We later compare the results of our SCALE lensing method to those of the Hu, DeDeo & Vale
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(HDV, Hu et al. (2007)) quadratic estimator with the TT fields. We choose to compare with a

quadratic estimator since it provides well-understood and established benchmark. We choose the

HDV quadratic estimator in particular due to its behaviour in the small-scale regime. Small angular

scale (ℓ ≳ 2000) contributions to the gradient power are removed in the HDV implementation to

avoid a bias introduced by higher order cross-terms between the temperature gradient and the lensing

convergence in this regime; this is less of a concern with the original Hu & Okamoto estimators

applied at larger angular scales (refer to Figure 5.1 and Hu et al. (2007)). The HDV quadratic

estimator and its principles have also been applied in studies of cluster lensing including some using

Planck (Raghunathan et al., 2018), SPT data (Baxter et al., 2018), ACT data (Madhavacheril

et al., 2020b), as well as forecasts of lensing results with the proposed CMB-HD experiment (Han &

Sehgal, 2022). We perform reconstructions of the lensing convergence field κ̂ with the HDV method

for a subset of simulated lensed CMB maps, along with computations of the optimal noise N
(0)
L and

realization dependent noise N̂
(0)
L using the symlens3 package. In particular, we choose xmask with

ℓmin = 2 and ℓmax = 3000, ymask with ℓmin = 2 and ℓmax = 10000, and kmask with Lmin = 100

and Lmax = 10000. The first two masks are applied to each version of the temperature field of

the TT quadratic estimator, and the final mask is applied to the reconstructed convergence field.

We apply our method to 100 000 realizations for each suite of tests to obtain stable statistics of

the SCALE output. In particular, we found that we need at least 100 000 simulations to reach

a converged inverse covariance matrix that we use later to compute signal-to-noise. We apply

the HDV quadratic estimator on a subset containing 10 000 of the full set of realizations when

making comparisons, choosing a smaller sample size because it is computationally more intensive

to run quadratic estimators. We also found that the inverse covariance matrix for the HDV output

converges with a sample size of 10 000. Each set of simulations applying the SCALE procedure

shares the following general flow:

1. Generate primordial CMB temperature power spectrum CTT
ℓ , lensing power spectrum Cϕϕ

L ,

and lensed CMB temperature power spectrum C̃TT
ℓ with CAMB.

2. Generate NTT
ℓ according to one of the experiment configurations in Table 5.2.

3. Compute AĽ and ⟨ΨĽ⟩ with the above power spectra. AĽ are different for lensed/unlensed

maps, and ⟨ΨĽ⟩ = 0 for unlensed maps.

4. For each of 100 000 sims:

(a) Generate realization of CMB temperature T with CTT
ℓ , and lensing field ϕ with Cϕϕ

L .

(b) Apply lensing to the CMB temperature field to get the lensed temperature field T̃ . (Not

done in the null test.)

(c) Generate noise field N with NTT
ℓ , and add to T̃ . (Add to T in the null test with no

lensing.)

(d) Follow the steps in Figure 5.6 to estimate Ψ̂Ľ for this given realization.

The next three steps are unnecessary for SCALE, but are performed for 10 000 iterations if we

wish to compare SCALE with the HDV quadratic estimator.

3https://github.com/simonsobs/symlens

https://github.com/simonsobs/symlens
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Symbol Description

T CMB temperature field

T̃ Lensed CMB temperature field

TL Large-scale temperature field

TS Small-scale temperature field

λ Large-scale temperature gradient power field

ς Small-scale temperature gradient power field

ϕ CMB lensing potential field

κ CMB lensing convergence field

ℓ CMB multipole

L Lensing field multipole

Ľ SCALE cross spectrum multipole

ℓ1 Small-scale filter multipole

ℓ2 Large-scale filter multipole

n̂ Line-of-sight direction

CXY
ℓ Cross (or auto) spectrum of fields X and Y

NXX
ℓ Noise spectrum of XX

ΨĽ Normalized SCALE cross spectrum

∆ΨĽ Minimum expected SCALE uncertainty

AĽ SCALE normalization

X Vector quantity X

∇X Gradient of field X

X Average of quantity X (possibly around n̂)

∆X Size/width of bin for quantity X

X̂ Estimated quantity or reconstructed field X

⟨X⟩ Expected value of quantity X

Table 5.3: Summary of notation relevant to the SCALE method for quick reference. Symbols
appearing first take precedence in the case of apparent conflict.

(e) Reconstruct the lensing convergence field κ̂ with the HDV quadratic estimator described

above.

(f) Estimate the lensing power spectrum Ĉκκ
L with the reconstructed κ̂ field.

(g) Compute the realization-dependent reconstruction noise N̂
(0)
L .

We provide a summary of all our SCALE-relevant notation in Table 5.3 for quick reference.

The summary statistics for SCALE Ψ̂Ľ and the HDV quadratic estimator Ĉκκ
L − N̂

(0)
L over 100 000

simulations are collected and presented in the following section. We make our code publicly available4

along with example scripts and an example tutorial notebook.

5.6 Results

The SCALE estimator is exceptional at detecting the presence of small-scale lensing in CMB tem-

perature maps. We illustrate this in Figure 5.7, which shows the summary statistics of recovered

4https://github.com/victorcchan/cmbpix

https://github.com/victorcchan/cmbpix
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Ľ

=
A
Ľ
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Figure 5.7: Comparison of expected and recovered ΨĽ band-powers with ∆Ľ = 72 from 100 000

simulations of 100 sq.deg. temperature maps in noise configuration D. Estimates of recovered Ψ̂Ľ

are the median and 68% scatter of the band-power at each bin. The procedure we have outlined in
§5.4 accurately recovers the expected lensing signal predicted by Equation (5.18), and the recovered
‘signal’ from unlensed realizations are consistent with zero.

Ψ̂Ľ from 100 000 simulations of 10◦×10◦ lensed and unlensed CMB temperature maps in the exper-

iment D noise configuration. The combination of all bins in Figure 5.7 corresponds to a detection

of lensing in 100 sq.deg. maps over the null test with an approximate SNR of 9. We also show

the expected theoretical ⟨ΨĽ⟩ computed with Equation (5.18). The vertical extent of the error bars

represents the 68% width of the distribution (centered at the median within the Ľ bin) of estimated

Ψ̂Ľ band-powers, and they describe the statistical scatter of estimated band-powers for a given CMB

realization of similar total area. The scatter of these band powers is comparable to, but slightly in

excess of, the minimal expectation ∆ΨĽ given by Equation (5.19). Even with relatively small maps

of the CMB temperature, the SCALE estimator is able to make a clear distinction of whether or

not lensing is present in maps generated with the parameters described in §5.5 and Figure 5.1.

In principle, the SCALE method can be applied to any ℓ1 regime so long as the small-scale lensing

approximations are appropriate. Figure 5.8 shows comparisons between expected ⟨ΨĽ⟩ computed

with Equation (5.18) and Equation (5.19) and recovered Ψ̂Ľ band-power statistics from simulations

for different shifts in the small-scale ℓ1 window while keeping ∆ℓ1 = 2000. This roughly corresponds

to shifting (in the same direction) which CTT
ℓ , NTT

ℓ and Cκκ
L modes contribute to ΨĽ. The expected

and recovered band-powers agree to the same extent as the results from Figure 5.7. The recovered

band-powers begin to exhibit a positive bias as the ℓ1 window is shifted towards lower ℓ, which can

be explained by a departure from the small-scale lensing approximations made in §5.2. In particular,

the Taylor series expansion in Equation (5.1) becomes inaccurate at scales ℓ ∼ 2000 because of the

similarity of scales with the average deflection angle (Lewis & Challinor, 2006). Higher accuracy
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Ľ

0 500 1000 1500 2000
Ľ
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Figure 5.8: Top: Comparisons of expected ΨĽ and spread from theory (solid lines with dotted error-
bars) and median recovered ΨĽ and 68% spread from simulation (points with capped error-bars)
when shifting the centre of the ℓ1 window which defines the small-scale filter while keeping the width
of the filter constant at ∆ℓ1 = 2000. Error-bars shown are reduced by a factor of 2 for improved
visual comparison. Bottom: The bias of the recovered ΨĽ when compared to the expected ΨĽ shown
as a percentage of the total signal. At fixed window width, increasing the central ℓ1 reduces the
strength of the recovered signal.
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Figure 5.9: As a Complement to Figure 5.8, the comparisons of expected ΨĽ and spread from theory
(solid lines with dotted error-bars) and median recovered ΨĽ and 68% spread from simulation (points
with capped error-bars) when altering the size of the small-scale filter window ∆ℓ1 used to compute
the signal, this time keeping the centre of the ℓ1 window at ℓ1 = 7000. For a fixed central ℓ1,
reducing the width of the ℓ−window merely increases the error bar on the recovered signal.
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in this regime would require consideration of higher-order terms of the expansion. The overall

amplitude of each ΨĽ curve decreases as the ℓ1 window shifts to higher ℓ, which reflects the shape

of the Cκκ
L lensing power spectrum in Figure 5.1. The statistical spread of ΨĽ band-powers grows

as the ℓ1 window is shifted to higher ℓ because of increased contributions from experiment noise

NTT
ℓ at high ℓ (see Figure 5.1). The default 6000 < ℓ1 < 8000 window presented in Figure 5.7

offers a balance between satisfying the small-scale lensing approximations while not appearing to be

statistically dominated by experiment noise.

Mathematically, Equation (5.17) and Equation (5.18) are constructed such that the SCALE

output is a normalized estimate of the average lensing power within and slightly around the small-

scale ℓ1 window. The ℓ1 window width determines how many Cκκ
L modes contribute to what we

consider signal, but the amplitude of ΨĽ centered at the same ℓ1 should not change significantly

after normalization with AĽ. Similarly, we add more contributions from NTT
ℓ modes, but they are

not expected to strongly correlate between large/small-scales. The overall effect of widening the ℓ1

window is to use the increased presence of lensing signal to reduce statistical scatter of recovered

ΨĽ band-powers. Figure 5.9 illustrates this quite well by comparing ΨĽ after narrowing or widening

∆ℓ1 while keeping the window centered at ℓ1 = 7000. The overall amplitude of the normalized ΨĽ

curves appears mostly unchanged, and a wider window does indeed result in tighter distributions of

recovered ΨĽ band-powers. The changes we do see in the amplitude of ΨĽ are set by the shape of

the underlying lensing power spectrum (i.e., the slope of Cκκ
L is slightly steeper on one side of the

bin center when compared to the other).

While the goal of conventional methods is to reconstruct the underlying lensing field, the SCALE

method’s output ΨĽ is an indirect estimate of the statistics of the lensing field. Figure 5.5 illustrates

the space of Ľ modes in which the small-scale temperature power fluctuations correlate with those

on the large-scales. These Ľ modes are not equivalent to the space of L modes describing the

lensing field itself. As shown in Equation (5.18), each band-power of ΨĽ contains information

from a wide range of lensing field statistic modes Cκκ
L . Figure 5.10 shows the covariance between

estimated ∆Ľ = 72 band-powers using SCALE on 100 000 simulations with noise configuration D, as

well as the covariance between estimated ∆L = 100 band-powers of noise-subtracted lensing power

spectra Ĉϕϕ
L − N̂

(0),ϕϕ
L from 10 000 reconstructions using the HDV quadratic estimator on a subset

of simulations.

Each set of recovered Ψ̂Ľ band-powers appears to contain correlations induced by lensing that

have weak correlations between low Ľ modes, and those at higher Ľ modes appear mostly indepen-

dent from other modes. This is in contrast to the estimated band-powers of the quadratic estimator,

which have relatively strong correlations between all bands.

Each covariance matrix C allows us to compute a signal-to-noise ratio

SNR =
√
aTC−1a (5.20)

using either a = ⟨ΨĽ⟩ for SCALE or a = Cϕϕ
L for the quadratic estimator. Using covariance

matrices for SCALE and HDV QE outputs of 100 000 and 10 000 simulations respectively with the

noise configurations in Table 5.2, we compute the expected signal-to-noise ratios and compare them

in Figure 5.11 as well as Table 5.4. We scale the covariance matrices used to compute each of these

signal-to-noise values by a factor of map-area ratios from 100 sq.deg. to 20 000 sq.deg.

The results from the quadratic estimator directly retrieve information from modes of the lensing
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Figure 5.10: Top: Correlation matrix of the SCALE estimator output ΨĽ over 100 000 simulations
in noise configuration D. The typical variance at a Ľ bin of width ∆Ľ = 72 is of order ∼ (10−25)2.
Bottom: Correlation matrix of the HDV quadratic estimator reconstructed noise subtracted lensing

potential power spectra Ĉϕϕ
L − N̂

(0),ϕϕ
L for a subset containing 10 000 of the above simulations. The

typical variance at a L bin of width ∆L = 100 is of order ∼ (10−25)2.
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Figure 5.11: Comparison of the values of the signal-to-noise ratio (SNR, Equation (5.20)) across
noise configurations between the SCALE estimator for a small-scale window Wς(6000 < ℓ < 8000)
and the HDV quadratic estimator applied to 6000 < L < 8000. SCALE bars indicate the median
and 68% range of the bootstrap distribution for SNRs computed 1000 times with a set of 100 000
simulations. HDV bars indicate the median and 68% range of the bootstrap distribution for SNRs
computed 1000 times with a set of 10 000 simulations. Each realization has a map area of 100 sq.deg.,
and SNR values are scaled up to 20 000 sq.deg.

Config. HDV QE S/N SCALE S/N

A 2.9 2.1

B 6.8 5.0

C 55.1+4.7
−4.2 67.6+0.4

−0.4

D 87.3+4.5
−4.2 127.0+2.1

−1.9

E 135.7+3.0
−3.0 154.0+2.2

−2.0

Noise-free 152.2+2.9
−3.1 153.6+2.4

−2.5

Table 5.4: Computed signal-to-noise ratio (SNR, Equation (5.20)) across noise configurations be-
tween the SCALE estimator for a small-scale window Wς(6000 < ℓ < 8000) and the HDV quadratic
estimator applied to 6000 < L < 8000. Values are the median and 68% range of the bootstrap
distribution for SNRs computed 1000 times with a set of 100 000 simulations for SCALE and 10 000
simulations for the HDV QE. No uncertainty is shown if the 68% range of the bootstrap distribution
is smaller than the significant figures provided. Each realization has a map area of 100 sq.deg., and
SNR values are scaled up to 20 000 sq.deg.
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field between 6000 < L < 8000 along with some covariance from modes outside of this band; however,

we note that we have neglected to consider the effect of subtracting the higher order N
(1)
L bias in

this simple calculation as is typically done in QE analyses. The same modes of the lensing field are

the main contribution to the SCALE results with the 6000 < ℓ1 < 8000 window due to our choice

of Wς(ℓ), but the set of ΨĽs includes contributions from modes of the lensing field outside of this

band as shown in Equation (5.18).

The reverse is also true: lensing modes within 6000 < L < 8000 would also contribute to a lesser

extent in other implementations of SCALE with a different choice in ℓ1 range. These modes would

make up a small part of the SCALE signal if we choose instead to filter for Wς(8000 < ℓ < 10000)

rather than the filter choice we make in this paper for Wς(6000 < ℓ < 8000). These contributions to

the SCALE estimator from modes outside the filtered band make a direct comparison between both

SCALE and other approaches difficult, as it is non-trivial to restrict SCALE to include information

only from a certain subset of L modes from the lensing field.

Finally, we consider in a simple example the SCALE method’s ability to discriminate between

cosmological models that predict changes in the shape/amplitude of the matter power spectrum

P (k), and by extension, the lensing power Cϕϕ
L or Cκκ

L by adjusting the total sum of neutrino masses∑
mν . A higher neutrino mass produces effects similar to warm or fuzzy dark matter, suppressing

structure formation at small scales, but one key feature is that the lensing power Cκκ
L is suppressed

similarly at high L. Figure 5.12 compares a couple of models with neutrino mass heavier than our

fiducial model. We see that the fractional changes in Cκκ
L do not contain much shape information,

but in principle, different choices small-scale windows can elucidate potential shape information.

We place approximate fractional error bands of ∆L = 2000 for SCALE and the HDV QE on the

assumption that the SNR values for noise configuration D can be taken at face value. In other

words, each fractional error band shown in Figure 5.12 is calculated as 1/SNR, centered on the

fiducial curve.

While Figure 5.12 is not meant to be a forecast of either SCALE or QE performance, it provides

some insight into the distinguishing power of each method. We note that the SCALE estimator

exists in a separate space of Ľ modes that are each an estimate of a weighted sum of Cϕϕ
L (and by

extension Cκκ
L ) as prescribed by Equation (5.18). We leave full parameter constraints and a more

thorough comparison between methods for future work.

5.7 Discussion & Conclusion

In this paper, we:

� showed that fluctuations in the local small-scale (ℓ ≫ 3000) CMB temperature power are intri-

cately tied to the variations in the local large-scale temperature gradient through correlations

induced by lensing.

� confirmed that this correlation is readily detectable in the pixel-space statistics of a lensed

CMB temperature map, and there is no discernable correlation in a CMB temperature map

without lensing (see Figure 5.3).

� visualized correlations between a cross spectrum of large/small-scale CMB temperature power

in Figure 5.5.
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Figure 5.12: Comparison of SCALE vs HDV QE fractional error bands alongside fractional changes
in the lensing convergence power Cκκ

L with neutrino mass. Note that
∑

mν = 0.06 eV is the fiducial
model used in our previous analyses. Different SCALE windows can be used to distinguish between
cosmological models, and potentially modifications to the shape of Cκκ

L .

� created the Small Correlated Against Large Estimator (SCALE) which efficiently applies vari-

ous filters to pick out the relevant small/large-scale in a CMB temperature map, and computes

their cross spectrum (Figure 5.6).

� demonstrated that the SCALE method effectively recovers the expected statistics of underlying

lensing fields, which matches well with insignificant bias against analytic forms (Figure 5.7).

� tested the properties of the SCALE estimator against different choices of filtering scales (Fig-

ures 5.8-5.9).

� determined that the SCALE method can outperform (by a factor of up to 1.5 in signal-to-noise)

estimates of the CMB lensing power spectrum Cϕϕ
L through reconstruction with quadratic

estimators in noise configurations similar to future experiments.

We find that significant lensing signals at modes L > 3000 can be recovered by exploiting the

dependence of the CMB temperature power at similar scales ℓ > 3000 on fluctuations of the CMB

temperature gradient (Equation (5.1), illustrated by Figure 5.5). A key advantage of this method is

the expectation that any noise, foregrounds, and other CMB secondaries present in observations of

the CMB temperature are not expected to correlate with the CMB gradient fluctuations themselves.

Foregrounds in particular are known to be a nuisance at all angular scales (e.g., van Engelen et al.

(2014); Osborne et al. (2014)), but there have been significant advancements in foreground cleaning

techniques in tandem with multi-frequency observations from space experiments such as Planck. We

expect foregrounds to be well controlled at angular scales relevant to the construction of the large-

scale λ maps (Madhavacheril & Hill, 2018; Beck et al., 2020; Abylkairov et al., 2021; Darwish et al.,
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2021a). We expect the effects of foregrounds and foreground cleaning to change the noise structure

in the small-scale ς maps, but these contributions should not correlate with λ if the foregrounds

have been cleaned properly at large angular scales. We do expect the need to account for masking

in the normalization AĽ and expected value ⟨ΨĽ⟩. This would look similar to an additional factor

in the filtering, but it would be a convolution because the mask is applied in real space. We may

expect a mask to induce spurious correlations between λ and ς at Ľ relevant to the scale of mask

apodization (Ľ ∼ 200 for an apodization scale of 1◦), but we do not expect this to be the case for all

Ľ because such a mask would have support in harmonic space only at the largest scales. At relevant

small scales, telescope systematic effects such as the differential and boresight pointing become more

important and need to be modelled correctly to remain below a level of 1σ (Mirmelstein et al., 2021).

We first demonstrated the correlation between large/small-scales in the CMB temperature field

with real-space statistics to detect the presence of lensing in a small temperature map covering 100

square degrees. The SCALE procedure builds on the intuitions of the real-space method from §5.3,

and it can successfully quantify the correlations induced by lensing in line with expectations.

A simple comparison of signal-to-noise for configurations similar to present and future experi-

ments reveals that the SCALE method demonstrates a marked improvement over the effectiveness

of traditional quadratic estimators at low noise levels in the small-scale regime. We do not expect

that SCALE will serve as a replacement for existing lensing reconstruction techniques. Map-level

reconstruction is useful for delensing and cross-correlation studies, and there are existing reconstruc-

tion techniques that are optimal across a wide range of angular scales. SCALE provides the most

benefit in the small-scale and low noise lensing regime, so the most precise lensing measurements are

likely to come from a combination of different techniques applied to different scales. This could be

achieved, for example, by utilizing an estimate of the lensing map from a quadratic estimator, using

the estimated lensing map to delens the CMB temperature, and then applying SCALE to estimate

the power spectrum of the low noise, small-scale lensing modes that remain in the delensed map.

We wish to highlight the simplicity of the SCALE pipeline’s steps, which allows it to be quickly

applied to any given CMB temperature map. This is in contrast to the maximum likelihood and

maximum a posteriori methods which have been shown to be optimal, but they are computationally

expensive to perform. These methods, in addition to the Bayesian and Gradient Inversion methods,

reconstruct the underlying lensing field ϕ, which can then be cross-analyzed with other observations

such as galaxy clusters. SCALE does not reconstruct a map of the lensing field, but it is a simple

and fast method of effectively recovering the statistics of the underlying lensing field to levels of

accuracy and precision beyond what is capable with QE techniques.

The SCALE method presents an optimistic outlook for the future of CMB lensing science, pro-

viding a fresh opportunity to make high-quality estimates of lensing statistics using a relatively

straightforward procedure in a regime that has historically been limited in CMB-only techniques

due to limits in techniques and observational noise. The small-scale regime is particularly exciting

because the lensing statistics here are sensitive to a wide-range of dark matter and gravitational

clustering phenomena.



Chapter 6

Applications of SCALE in

cosmological parameter estimation

Abstract

The Small Correlated Against Large Estimator (SCALE) for small-scale lensing of the cosmic

microwave background (CMB) is a novel method for measuring the amplitude of CMB lensing

power without the need for reconstruction of the lensing field. In our previous study, we showed

that the SCALE method can outperform existing reconstruction methods to detect the presence

of lensing at small scales (ℓ ≫ 3000). We continue here with a procedure to include information

from SCALE in cosmological parameter estimation. We construct a set of emulators to quickly

map cosmological parameters to desired CMB observables such as TT power spectra, and SCALE

cross spectra. The emulators can provide predictions that are precise to ∼ 0.01% and ∼ 2-5%

(per mode), respectively. We also outline a method to apply SCALE to full-sky maps of the CMB

temperature field, and construct a likelihood for the application of SCALE in parameter estimation.

The TT power spectrum as the lone CMB observable, in addition to a Planck prior on τ and BAO

information on the total matter density Ωm, is insufficient for constraining parameters that are

sensitive to the small-scale lensing amplitude such as the neutrino mass mν . We show that adding

SCALE to such an analysis can improve constraints enough to measure the minimum neutrino mass

to at least 2.4σ significance in the scenario of minimal mass, and higher significance for higher mass.

A cosmic variance limit measurement of τ improves the TT + SCALE detection of mν to 4σ.

129
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6.1 Introduction

D
etections of small-scale lensing in the cosmic microwave background lean in favour

towards the Small Correlated Against Large Estimator (SCALE) rather than stan-

dard quadratic estimators (QE) in terms of the expected signal-to-noise in upcoming

experiments, as we showed in the previous chapter. In this chapter, we build on the

SCALE method established in Chapter 5, and study its constraining power when applied to re-

alistic cosmological parameter estimation. Sampling cosmological parameters quickly requires fast

predictions of theoretical spectra to compare to within the likelihood, so we construct emulators and

present their performance in §6.2. We then present our suite of simulations for the lensed cosmic

microwave background in §6.3. We construct a simple likelihood for applying CMB temperature

power spectra in parameter estimation, and then extend the model to include SCALE cross spectra

in §6.4, and discuss some results in §6.5. Finally, we discuss the results and conclude in §6.6.

6.2 Emulation of CMB and SCALE spectra

We begin this chapter with the development of a set of emulators to quickly predict theoretical

CMB lensed TT power spectra as well as analytical SCALE products AĽ and ΨĽ. The posterior

sampling process typically requires upwards of O(103 to 104) steps per chain in order to reasonably

explore a hyperspace of several cosmological parameters, and that necessitates a quick mapping

between the parameters and observables. We find in this section that the CMB angular power

spectra can be computed reasonably fast enough with existing software, but SCALE observables

require a significant speedup over conventional numerical integration methods. We show that neural

network (NN) emulators can predict SCALE observables at the speed required for quick posterior

sampling without a significant penalty in terms of accuracy. The emulators can also be trained to

predict lensed CMB TT power spectra more quickly than Boltzmann codes, while retaining high

accuracy. All computation speeds reported in this chapter are timed with a Ryzen 9 5900X CPU

with 12 physical cores and 24 logical cores.

6.2.1 Timing of calculations without emulators

Given a set of cosmological parameters, there are now Boltzmann codes that quickly and accurately

compute primary CMB power spectra Cℓ, lensing power spectra Cϕϕ
L , and lensed CMB power spectra

C̃ℓ (CAMB1, Lewis & Challinor 2011; CLASS2, Blas et al. 2011). We opt to use CAMB in this work to

keep consistency with Chapter 5, but the applications should be comparable to outputs from CLASS.

Consider computing example power spectra in CAMB with lens potential accuracy=8 as the only

non-default parameter to ensure lensing accuracy at high-ℓ (McCarthy et al., 2022). CAMB is able

to compute and return the power spectra in O(1 s), with some mild dependence on the requested

lmax. This is fast enough to be used in parameter estimation, but it is possible to speed up the

process further by using an emulator. This is especially true if one is interested in running modified

versions such as axionCAMB3 which take extra computational steps to include non-standard physics

which could affect the small-scale lensing power spectrum (Grin et al., 2022).

1https://camb.info/
2https://github.com/lesgourg/class_public
3https://github.com/dgrin1/axionCAMB

https://camb.info/
https://github.com/lesgourg/class_public
https://github.com/dgrin1/axionCAMB
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A stronger motivation for the construction of emulators for theoretical spectra comes from the

application of SCALE in a likelihood. The analytic forms for SCALE products were presented in

Chapter 5, and are repeated here:

AĽ =

[
2

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)
(
ℓ1 · (ℓ1 − Ľ)

) 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2) (ℓ2 · (ℓ2 − ℓ1))
(
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) (
ℓ2 · (ℓ2 − Ľ)

)

×
(
CTT

ℓ2
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ℓ2

(
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]−1

, (6.1)

⟨ΨĽ⟩ = 2AĽ

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)
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) 1
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) (
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×
(
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(
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)2

CTT,obs

|Ľ−ℓ2|

Cϕϕ
|ℓ1−ℓ2| , (6.2)

where AĽ is the normalization for a cross spectrum Cλς
Ľ

between large-scale gradient power λ and

small-scale gradient power ς such that ΨĽ = AĽC
λς
Ľ
. This integral is constructed in a 4-dimensional

Fourier space, and an implementation where the integrals are numerically computed with the mid-

point rule is provided in our publicly available package cmbpix4. Consider an example computation

of analytic SCALE AĽ and ΨĽ for all modes 2 < Ľ < 2000 such that the width of the small-

scale window is ℓ1,max − ℓ1,min = 2000, the large scale window is 0 < ℓ2 < 3000, and evaluated

with a Riemann sum on 2-dimensional grids of ∆ℓ1 = 75 and ∆ℓ2 = 100. This takes O(104 s) or

O(10min) to compute. The computational accuracy and speed of Equation (6.1)-(6.2) is dependent

on the resolution of the grid(s) on which it is evaluated. Regardless, numerically integrating the

analytic SCALE products with the mid-point rule is slow enough that one would desire considerable

speedups. A first approach to speeding up the evaluation of Equation (6.1)-(6.2) is to consider

Monte Carlo (MC) integration. We find that a Monte Carlo integration offers a good balance of

speed and accuracy, and is implemented in cmbpix. One drawback with Monte Carlo integration

is its non-deterministic nature, and there is some level of inherent inaccuracy dependent on the

number of samples with which the integral is evaluated. Figure 6.1 shows that the accuracy of the

MC integration is approximately ∼ 1% scatter when evaluated with Nsamples ∼ O(105) samples.

This is the accuracy for the evaluation at one Ľ mode, and when we bin SCALE data into bands

with width ∆Ľ = 71, we expect the scatter to be reduced by a factor of
√
∆Ľ ≈ 8.4. Evaluating

AĽ and ΨĽ in the same configuration as above with Nsamples = 2× 105 in the MC integration takes

O(10 s). This is a significant speed-up, but it is still too slow to be used in parameter estimation.

4https://github.com/victorcchan/cmbpix

https://github.com/victorcchan/cmbpix
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Figure 6.1: A comparison of the accuracy of the Monte Carlo integration of Equation (6.2) at
Ľ = 100, 6000 < ℓ1 < 8000, and 0 < ℓ2 < 3000 for different choices in sample size. Evaluating with
Nsamples ∼ O(105) yields approximately ∼ 1% scatter, which is the sample size we use to compute
the training set for our emulators. A vertical line indicates the expected value computed with the
mid-point rule. We choose to use Nsamples = 20000 to compute the SCALE cross spectra in the
training set for our emulator.
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Table 6.1: The set of cosmological parameters and their prior ranges used to generate training data
for the NN emulators. The ΛCDM parameters are chosen to be centered on the Planck 2018 best-fit
cosmology (Planck Collaboration et al., 2020a) with ±4.5σ on either side. Note that the emulators
are trained on Ωb, Ωc, and ln(1010As).

Parameter Prior range

h [0.6793, 0.6979]

Ωbh
2 [0.021695, 0.023045]

Ωch
2 [0.1146, 0.1254]

τ [0.02155, 0.08725]

As [1.965, 2.235]× 10−9

ns [0.946, 0.9838]

mν [0, 0.18] eV

∆ℓ1
a[800, 3200]

ℓ1
a[6200, 9800]

aUsed only for SCALE emulators.

6.2.2 Construction of emulators

We construct a set of emulators for the theoretical CMB lensed TT power spectra C̃TT
ℓ , and SCALE

spectra ΨĽ. The emulators are created in the COMSOPOWER5 framework (Spurio Mancini et al.,

2022), which is a Python package for the construction of emulators for cosmological observables.

It is based on TensorFlow6 (Abadi et al., 2015), and it provides a structure for training and using

neural network (NN) emulators.

Training data

The training data span a set ofNtrain = 8192 cosmological parameter samples from a Latin hypercube

for a uniform prior in the ranges set by Table 6.1.

We compute the lensed CMB TT power spectrum out to lmax=20000 with CAMB for all Ntrain =

8192 sets of parameters in the training range, remembering to set lens potential accuracy=8 for

high-ℓ accuracy (McCarthy et al., 2022). We also compute the SCALE observable for each set of

parameters with the Monte Carlo integration in cmbpix. In practice, the only SCALE observable

that needs to be predicted as a function of cosmological parameters is the un-normalized cross

spectrum Cλς
Ľ

which can be computed with Equation (6.2) excluding the AĽ factor. This is because

the construction of the SCALE data vector ΨĽ depends on a set of optimal filters that are applied

directly to a CMB temperature field (further discussed in §6.3). The expected value expressed in

Equation (6.2) and the normalization AĽ of Equation (6.1) assume a choice of fiducial cosmological

parameters in the filtering scheme. We assume a set of fiducial parameters listed in Table 6.2 in

the filtering when computing the set of training cross spectra Cλς
Ľ
. In summary, the training set of

SCALE observables Cλς
Ľ

is computed with Equation (6.2) without the AĽ factor, where the unlensed

TT power CTT
ℓ and total TT power CTT,obs

ℓ = C̃TT
ℓ + NTT

ℓ are dependent on only the fiducial

model described in Table 6.2. The only dependence of the SCALE observables on the cosmological

parameters is through the lensing power spectrum Cϕϕ
L . We additionally add a dependence of

5https://github.com/alessiospuriomancini/cosmopower
6https://www.tensorflow.org/

https://github.com/alessiospuriomancini/cosmopower
https://www.tensorflow.org/
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Table 6.2: The set of cosmological parameters chosen to be the fiducial model.

Parameter Value

h 0.675

Ωbh
2 0.022

Ωch
2 0.122

τ 0.06

As 2.1× 10−9

ns 0.965

mν 0.06 eV

w a1µK-arcmin

σb
a1 arcmin

aExperiment noise chosen to match the analysis of Configuration D in Chapter 5.

Table 6.3: The set of neural network specifications for the emulators.

Parameter Argument

hidden layers [512, 512, 512, 512]

validation split 0.125

learning rates [10−2, 10−3, 10−4, 10−5, 10−6]

batch sizes [1024, 1024, 1024, 1024, 1024]

gradient accumulation steps [1, 1, 1, 1, 1]

patience values [100, 100, 100, 100, 100]

max epochs [1000, 1000, 1000, 1000, 1000]

SCALE observables on the small-scale filter width ∆ℓ1 and center ℓ1, which is equivalent to altering

the limits of the ℓ1 integral in Equation (6.2). This allows for some flexibility when applying the

likelihood for SCALE data vectors constructed from the same map(s), but with different ranges of

small-scale filtering.

Emulator structure

Each of the emulators we construct contain 4 hidden layers, each with 512 nodes. The input layer

contains the 7 cosmological parameters in Table 6.1 for the C̃TT
ℓ emulator, and a set of 3000 nodes

for C̃TT
ℓ between 2 < ℓ < 3002 as outputs. Similarly, the SCALE emulator takes all 9 parameters

of Table 6.1, and outputs to 2000 nodes for Cλς
Ľ

between 2 < Ľ < 2002. We note here that

the input parameters for the emulators are converted such that they are trained on Ωb, Ωc, and

ln(1010As). Both emulators are trained with a cooling schedule such that the learning rate steps

through [10−2, 10−3, 10−4, 10−5, 10−6]. The emulators are trained with a batch size of 1024, and the

training skipped ahead to the next learning rate (or ended at the final stage) when the validation

loss does not improve for 100 epochs. The emulators are trained with 87.5% of the full training set

Ntrain = 8192, with the remaining 1024 reserved for validation. The training is performed on a single

NVIDIA GeForce RTX 3080 GPU with 10 GB of memory. The TT emulator takes approximately

4min to train, and the SCALE emulator takes approximately 1min 30 s to train. Each emulator

only needs to be trained once, and the trained model can be saved and loaded for future use.
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Figure 6.2: The validation of the C̃TT
ℓ emulator. The % error represented here is computed as the

difference between the emulator prediction and the CAMB output divided by the CAMB output. The
black markers indicate the median error across realizations of the predicted spectra for the validation
set at each ℓ mode, and the extent of the error bars indicates the 68-percentile scatter centered on
the median. There is a scatter of ∼ 0.1% per mode for the C̃TT

ℓ emulator, which goes down with
binning. The right panel depicts the distribution of median errors (black markers) for each ℓ mode.
It is centered at 2× 10−4% with a width of 6× 10−4%, indicating a lack of significant bias from the
emulator.

Emulator performance

We find that both emulators perform much quicker than their original counterparts, providing pre-

dictions of their respective observables in O(10−3 s). Figure 6.2 shows that the lensed CMB TT

emulator is extremely accurate, with a prediction error of ∼ 0.1% per ℓ mode. Similarly, Figure 6.3

shows that the SCALE emulator predicts the cross spectra Cλς
Ľ

with an error of ∼ 2-5% per Ľ mode.

We attribute the lower precision of the SCALE emulator to the inherent scatter of the input cross

spectra computed with Monte Carlo integration. The emulators are expected to perform well when

predicting functions that are smooth, as is the case for the TT power spectra (Spurio Mancini et al.,

2022). The SCALE cross spectra are expected to be smooth, but the natural scatter associated

with the MC integration adds some level of fuzziness relative to the number of samples used in the

computation (refer to Figure 6.1). The scatter from the SCALE emulator is at approximately the

same level as the precision of the MC integration itself (∼ 1%), and we show later that binning the

cross spectrum into band-powers reduces the scatter. Finally, both emulators exhibit an insignificant

bias in their predictions, as the prediction errors effectively scatter around zero. A summary of the

speedup provided by the emulators is provided in Table 6.4.
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Figure 6.3: The validation of the SCALE Cλς
Ľ

emulator. The error represented here is computed
as the difference between the emulator prediction and the cmbpix output divided by the cmbpix

output. The black markers indicate the median error across realizations of the predicted spectra for
the validation set at each Ľ mode, and the extent of the error bars indicates the 68-percentile scatter
centered on the median. There is an expected scatter of ∼ 2-5% per mode for the Cλς

Ľ
emulator,

which goes down with binning. The right panel depicts the distribution of median errors (black
markers) for each Ľ mode. It is centered at −0.05% with a width of 0.13%, indicating a lack of
significant bias from the emulator.

Table 6.4: A comparison of computation speed for theoretical CMB lensed power spectra and SCALE
cross spectra. The emulators provide significant speedup for both observables.

Computation Time to evaluate [O(s)]

C̃TT
2<ℓ<5k (CAMB) 1

C̃TT
2<ℓ<5k (Emulator) 10−3

Ψ2<Ľ<2k (cmbpix mid-point) 104

Ψ2<Ľ<2k (cmbpix Monte Carlo) 10

Cλς
2<Ľ<2k

(Emulator) 10−3
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6.3 Simulations

We compute a suite of full-sky simulations of the lensed CMB temperature field with the lenspyx7

package, which wraps around methods from DUCC8 (Distinctly Useful Code Collection) which allow

for efficient and accurate lensing and de-lensing operations with spherical harmonics transforms

(Reinecke et al., 2023). A notebook with instructions to simulate the lensed CMB temperature

and polarization is provided in the lenspyx repository. We choose to simulate maps with HEALPix

resolution NSIDE=8192, as the lenspyx accuracy is good out to ℓ ≈ 2× NSIDE. The simulations are

constructed with the same fiducial cosmological parameters as shown in Table 6.2, and the general

procedure (all methods are called from lenspyx unless otherwise stated) is as follows:

1. Compute the unlensed CMB TT power spectrum CTT
ℓ and lensing potential power spectrum

Cϕϕ
L with CAMB out to lmax=20000 with lens potential accuracy=8.

2. Generate spherical harmonic coefficients aℓm for both an unlensed temperature T using CTT
ℓ

and lensing potential ϕ field using Cϕϕ
L with synalm.

3. Transform the lensing potential field into a spin-1 deflection field d with lenspyx’s almxfl

method.

4. Compute the lensed temperature field T̃ using the unlensed temperature T and deflection

d coefficients with alm2lenmap. This returns a lensed temperature field T̃ in map-space at

NSIDE=8192.

5. Generate spherical harmonic coefficients aℓm for a noise temperature field N with synalm

(noise parameters also in Table 6.2), convert to map-space with alm2map, and add to the

lensed temperature field Tobs = T̃ +N .

6. Convert the observed temperature field Tobs to spherical harmonic coefficients aℓm using

map2alm, and compute the total observed TT power spectrum C̃TT,obs
ℓ with alm2cl, which is

saved.

7. Apply a low-pass filter such that 0 < ℓ2 < 3000 along with a Wiener filter to the observed

temperature field Tobs (shown below as Equation (6.3)) with almxfl. The product is a set of

spherical harmonic coefficients, that when converted to map space with a spin-1 inverse trans-

form alm2map spin, produces the two large-scale gradient components [∇θTL,∇ϕTL/ sin θ]

that make up the λ = (∇θTL)
2 + (∇ϕTL/ sin θ)

2 map of large-scale temperature gradient

power required for one half of SCALE. Note that the filter is constructed with the theoretical

spectra from Step 1 using CAMB, and follow the fiducial cosmology in Table 6.2.

Wλ(ℓ) =





√
ℓ(ℓ+ 1)

CTT
ℓ

C̃TT
ℓ +NTT

ℓ

, ℓ < 3000

0 , ℓ ≥ 3000
. (6.3)

8. Convert the λ map into spherical harmonic space with map2alm.

7https://github.com/carronj/lenspyx
8https://gitlab.mpcdf.mpg.de/mtr/ducc

https://github.com/carronj/lenspyx
https://gitlab.mpcdf.mpg.de/mtr/ducc
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Table 6.5: Binning scheme for the CMB TT power spectra C̃TT,obs
ℓ .

Multipole range Bin width ∆ℓ Number of band-powers

2 ≤ ℓ ≤ 31 1 30

32 ≤ ℓ ≤ 361 11 30

362 ≤ ℓ ≤ 1471 37 30

1472 ≤ ℓ ≤ 2986 101 15

9. Apply a high-pass filter such that ℓ1,min < ℓ1 < ℓ1,max along with an inverse variance filter

to the observed temperature field Tobs (shown below as Equation (6.4)) with almxfl. The

product is a set of spherical harmonic coefficients, that when converted to map space with

a spin-1 inverse transform alm2map spin, produces the two small-scale gradient components

[∇θTS ,∇ϕTS/ sin θ] that make up the ς = (∇θTS)
2+(∇ϕTS/ sin θ)

2 map of small-scale temper-

ature gradient power required for the other half of SCALE. Note that the filter is constructed

with the theoretical spectra from Step 1 using CAMB, and follow the fiducial cosmology in

Table 6.2.

Wς(ℓ) =





√
ℓ(ℓ+ 1) 1

C̃TT
ℓ +NTT

ℓ

, ℓ1,min < ℓ1 < ℓ1,max

0 , else
. (6.4)

10. Convert the ς map into spherical harmonic space with map2alm.

11. Compute the cross spectrum Cλς
Ľ

between λ and ς with alm2cl, which is saved.

We repeat the above procedure for 400 simulations, and produce a set of 400 observed TT power

spectra C̃TT,obs
ℓ and SCALE cross spectra Cλς

Ľ
. We show in §6.4 that, in principle, Steps 9–11 may

be repeated for the same realization with various choices in the small-scale ℓ1,min < ℓ1 < ℓ1,max

filter limits, and included in the same likelihood. For the purposes of this study, we limit ourselves

to just one version of SCALE such that 8 000 < ℓ1 < 10 000. We choose this range to ensure

that we are comfortably within the small-scale approximations with which SCALE is constructed

while also including a healthy amount of small-scale modes. While we save the full spectra for

both observables at every mode from ℓ ≥ 2 up to lmax=20000, we compute band-powers of each

spectrum to reduce the noise of each individual entry in the data vector, as well as to reduce the

dimensionality of the data vector. We choose to bin the TT power spectra into 105 band-powers

following the prescription outlined in Table 6.5, and the SCALE cross spectra are binned into band-

powers of equal width ∆Ľ = 71 out to Ľmax ≈ 2 000. The SCALE cross spectra were normalized by

AĽ computed with Equation (6.1) before binning using the fiducial cosmology, as its purpose is to

debias the cross spectrum with respect to the filters which assumed the fiducial model.

The covariance matrices for the 400 binned TT power spectra and SCALE cross spectra are shown

in Figure 6.4 and Figure 6.5 respectively. A remarkable feature of Figure 6.4 is an apparent lack of

contrast at the high-ℓ limit of the covariance. This can likely be explained by the change in binning

structure at ℓ ≈ 1500, where the noise is artificially reduced from the bin being approximately three

times wider. We find that the SCALE observables, in particular, exhibit very low levels of covariance

between band-powers, as we found with the flat-sky simulations in Chapter 5. The highest levels

of SCALE variance are towards the edges of the Ľ range, which we attribute to cosmic variance

at low Ľ, and noise at higher Ľ. The covariances between band-powers will be necessary in our
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Figure 6.4: Covariance matrix between band-powers of simulated CMB temperature power spectra
C̃TT,obs

ℓ . The covariance is computed from 400 simulations, and the band-powers are binned accord-
ing to the prescription in Table 6.5. Contrast becomes low at high-ℓ due to the large bin width.
This is the covariance used in our likelihood with TT band-powers.

Figure 6.5: Covariance between band-powers of simulated SCALE cross spectra Cλς
Ľ
. The covariance

is computed from 400 simulations, and the band-powers are binned with width ∆Ľ = 71. cross
spectra were normalized by with AĽ computed with Equation (6.1) with the fiducial cosmology in
Table 6.2.
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Figure 6.6: Correlation matrix between CMB temperature and SCALE band-powers. The correla-
tion is computed from 400 simulations, and the band-powers are binned according to the prescription
in Table 6.5 for C̃TT,obs

ℓ and with width ∆Ľ = 71 for ΨĽ. The covariance matrix is used in our
likelihood combining TT band-powers with SCALE band-powers.

likelihood described in §6.4. The correlation matrix (covariance divided by the outer product of the

square-root of its diagonal) between the band-powers of all observables is shown in Figure 6.6. We

find low levels of correlation generally across all observed band-powers.

Finally, we present a visualization of one realization of the simulated observables in Figure 6.7

in comparison with the theoretical values at the fiducial cosmology. Our choice in binning allows

for accurate characterization of approximately the first 5 peaks, as well as the first 4 troughs of the

TT power spectra. The normalized SCALE spectrum is relatively featureless, so a simple binning

prescription allows for accurate characterization of the overall lensing amplitude within by the range

of the small-scale ℓ1 filter.

6.4 Constructing a Likelihood with SCALE

All the components required for probabilistic sampling of parameters are now in place. We consider

a model fit for a ΛCDM cosmology with the addition of one neutrino mass eigenstate parameterized

with mν . The general suppression of small-scale lensing due to the massive neutrino offers a simple

test of SCALE’s constraining power. Our vector of parameters is θ = {mν , Ωc, Ωb, ln(10
10As), ns,

h, τ}. There is an implicitly constrained parameter ΩΛ such that Ωc + Ωb + Ων + ΩΛ = 1. Our

data vector d⃗ = {C̃TT,obs
ℓ , ΨĽ} consists of a set of TT and SCALE band-powers, and we have

constructed emulators in §6.2 to predict the theoretical expected values of the observables given a

set of cosmological parameters: t⃗(θ). We would like to remind the reader that the simulations and

emulators return the un-normalized SCALE cross spectrum Cλς
Ľ
, and that we must first normalize

them ΨĽ = AĽC
λς
Ľ

using Equation (6.1) with the fiducial cosmology in the filtering before binning.
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Figure 6.7: Top: A comparison between the theoretical TT power spectrum (with added noise NTT
ℓ )

from CAMB with an observed power spectrum from one realization. The band-powers are binned with
the prescription in Table 6.5 are overlaid with error-bars corresponding to the diagonal of Figure 6.4.
Bottom: A comparison between the theoretical SCALE observable ΨĽ from cmbpix with an observed
cross spectrum from one realization. Both are normalized with AĽ following the fiducial model in
Table 6.2. The band-powers binned with width ∆Ľ = 71 are overlaid with error-bars corresponding
to the diagonal of Figure 6.5. The theory spectrum has also been binned to reduce the scatter from
the Monte Carlo integration for visual presentation. Both binning schemes accurately reflect the
overall shape of their respective spectra while reducing the noise of each individual entry in the data
vector.
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Finally, we have empirical estimates of the covariance between all band-powers of the data vector

from our set of simulations in §6.3: C. This allows us to construct a multivariate normal log-

likelihood pl(d⃗|θ) = ln(p(d⃗|θ)) for the data vector d⃗ given a set of parameters θ:

pl(d⃗|θ) ∼ Nl(d⃗|⃗t(θ), Ĉ−1) ∼ −1

2
(d⃗− t⃗(θ))T Ĉ−1(d⃗− t⃗(θ)) . (6.5)

Note that the covariance C is constructed with Nsims = 400 realizations of the data vector, so the

unbiased estimator for the inverse covariance must include the Hartlap factor (Hartlap et al., 2007):

Ĉ−1 =
Nsims − P − 2

Nsims − 1
C−1 , (6.6)

where P is the number of band-powers included in the data vector. For an analysis with only TT

band-powers PTT = 105, and including SCALE increases it to PTT+SCALE = 133. It is recommended

that there is a minimum of realizations Nsims ≳ 2P , which we have satisfied (Hartlap et al., 2007).

We set broad, uniform priors pUni(θ) for every parameter in θ following Table 6.1 except for τ ,

for which we impose a Gaussian prior about the fiducial value (Table 6.2):

p(τ) ∼ N (0.06, στ ) , (6.7)

where we choose either στ = 0.007 set by the value reported by Planck 2018 (Planck Collaboration

et al., 2020a), or στ = 0.002 set by the cosmic variance limit (LiteBIRD Collaboration et al., 2023).

We also include an additional likelihood which include forecasted constraints from Baryon Acoustic

Oscillation (BAO) information from the Dark Energy Spectroscopic Instrument (DESI, Font-Ribera

et al. (2014)), which mainly constrains the matter density Ωm. We follow the steps in Appendix

V of Allison et al. (2015) to construct a Fisher matrix F for BAO observables and the covariances

between our other parameters, including mν , Ωc, Ωb, and ln(1010As). The BAO log-likelihood is

constructed as follows:

pl,BAO(θ|F) ∼ −1

2
(θ − θfid)

TF(θ − θfid) , (6.8)

where θfid contains the fiducial parameters from Table 6.2. Our final posterior is then expressed by

the following:

p(θ|d⃗) ∼ N (d⃗|⃗t(θ), Ĉ−1)N (τ |0.06, στ )pBAO(θ|F)pUni(θ) . (6.9)

In principle, the data vector d⃗, covariance matrix C, and theory vector constructed from em-

ulators t⃗(θ) can contain any combination of TT and SCALE band-powers as long as all three are

constructed consistently. We present in §6.5 results from only TT band-powers as well as results

from a combination of TT and SCALE band-powers. As mentioned in §6.3, we only consider one

version of SCALE with ℓ1,min = 8000 and ℓ1,max = 10000. We expect that including multiple ver-

sions of SCALE with different ℓ1,min and ℓ1,max in a single fit could allow for constraints on models

which change the shape of the lensing potential power spectrum Cϕϕ
L , which is an exciting direction

for future study. Our model including a massive neutrino simply shifts the amplitude of the lensing

potential power in the small-scale regime that we consider, so a single SCALE estimator is sufficient

for the purposes of this study.

We construct and sample our probabilistic model with the Python implementation of Markov
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Chain Monte Carlo (MCMC) techniques in emcee9 (Foreman-Mackey et al., 2013). We choose to

use emcee rather than more commonly-used software designed specifically for cosmology such as

CosmoMC10 (Lewis & Bridle, 2002) or cobaya11 (Torrado & Lewis, 2019, 2021) because it offers a

simple way to construct log-probabilities with the added flexibility of allowing for the use of black-box

functions in the model. The latter point is essential in order to use the emulators constructed in §6.2

at each step of the chain. We use 14 walkers, or chains, with 10 000 steps each. The first 1 000 steps

are discarded as burn-in steps that have yet to converge, and we further thin the chains by a factor of

50 to reduce the auto-correlation between samples. We find that the chains converge (satisfying the

Gelman-Rubin ratio requirement R < 1.1) after approximately 1 000 steps post-burn-in and before

thinning. The results of each model are presented in §6.5.

6.5 Results

The results for model fits using the realization of observables presented in Figure 6.7 are summarized

in Table 6.6 and Figure 6.8-6.9. We find that the size of the 68% confidence region for the best fit

results do not change appreciably if we choose a different realization for the data vector. The center

of the best fit can vary slightly between realizations, but the change is generally well within the

68% range. The model presented in this work allows the TT band-powers, combined with the BAO

likelihood and τ prior, to constrain most of the parameters θ to high precision in the presence of

noise levels similar to a futuristic S4 experiment. The exception is mν , for which the TT only model

with a Planck 2018 prior on τ is not able to detect (1.7σ). The constraint value we present is a

signal-to-noise of the fiducial value mν = 0.06 eV divided by half the size of the 68% confidence limit.

We also see in Figure 6.9 that the marginalized posterior for mν using only the TT band-powers as

observables causes the distribution to hit the edge of the prior at 0 eV. We conclude that the TT

band-powers alone cannot provide a significant detection of mν without additional information from

lensing.

The addition of SCALE into the data vector affects the parameters most sensitive to lensing (see

Figure 6.8): mν , Ωc, and Ωb. We see that the addition of SCALE alters the degeneracies between

these parameters to become more constraining. Perhaps the most salient effect from adding SCALE

is the added ability to provide evidence for non-zero mν at 2.4σ. This has yet to be achieved with

cosmological evidence. The effect is more prominent if we swap the τ prior to the cosmic variance

limit στ = 0.002 (see Table 6.6), which is forecasted to be achievable with upcoming data from

the LiteBIRD satellite mission (LiteBIRD Collaboration et al., 2023) or the CLASS ground-based

survey (Essinger-Hileman et al., 2014). In this case the detection jumps from 2.2σ with only TT

observables to 4σ with the inclusion of SCALE. We have thus demonstrated that the addition of

small-scale lensing information with SCALE into a cosmological model fit provides extra constraining

power on parameters which alter the lensing amplitude at ℓ ≫ 3000.

6.6 Discussion and Conclusions

In this chapter, we:

9https://github.com/dfm/emcee
10https://github.com/cmbant/CosmoMC
11https://github.com/CobayaSampler/cobaya

https://github.com/dfm/emcee
https://github.com/cmbant/CosmoMC
https://github.com/CobayaSampler/cobaya
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Figure 6.8: The sampled posterior distribution of the probabilistic model described in Equation (6.9)
using the TT band powers along with Planck 2018 τ prior στ = 0.007 and BAO likelihood is shown
in pink. The resulting sampled posterior distribution with the addition of SCALE is shown in green.
The fiducial values are indicated with black lines. The addition of SCALE observables makes the
difference in a detection of the minimum neutrino massmν . We also see that the covariances between
matter clustering related parameters mν , Ωc and Ωb tighten up with the addition of SCALE.
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Table 6.6: Summary of cosmological parameter constraints from the observed TT power spectrum
and SCALE cross spectrum, along with τ and BAO priors. Fiducial values from Table 6.2 are also
included. Columns marked with P use the Planck 2018 τ prior στ = 0.007 (Planck Collaboration
et al., 2020a), and columns marked with CV use the cosmic variance limit τ prior στ = 0.002
(LiteBIRD Collaboration et al., 2023). Reported values are the median and 68% confidence interval
of the marginalized posterior distribution of each parameter. The median values of the fit can
slightly shift around the fiducial values depending on the realization, but in general the shifts are
comfortably within the 68% confidence intervals. The widths of the 68% confidence regions do not
change between realizations.

Parameter Fiducial TTP TT + SCALEP TTCV TT + SCALECV

mν [eV] 0.06 0.057+0.035
−0.033 0.058+0.025

−0.024 0.065+0.027
−0.027 0.068+0.014

−0.015

Ωc 0.2678 0.2686+0.0019
−0.0017 0.2685+0.0016

−0.0016 0.2687+0.0018
−0.0018 0.2683+0.0016

−0.0015

Ωb 0.04829 0.04823+0.0003
−0.0003 0.04821+0.0002

−0.0002 0.04828+0.0003
−0.0003 0.04823+0.0002

−0.0002

ln(1010As) 3.045 3.0440+0.012
−0.011 3.038+0.013

−0.012 3.044+0.004
−0.004 3.044+0.004

−0.004

ns 0.965 0.966+0.002
−0.002 0.967+0.002

−0.002 0.966+0.002
−0.002 0.967+0.002

−0.002

h 0.675 0.674+0.002
−0.002 0.674+0.002

−0.002 0.674+0.002
−0.002 0.674+0.002

−0.002

τ 0.06 0.057+0.006
−0.006 0.056+0.007

−0.006 0.060+0.002
−0.002 0.060+0.002

−0.002

Figure 6.9: The 1-dimensional marginalized posterior formν with (green) and without (pink) SCALE
(same chains as Figure 6.8). The median of each result is indicated with solid vertical lines of their
respective colours, and dashed lines indicate their 68% confidence intervals. A vertical black line
indicates the fiducial value at mν = 0.06 eV. The Planck 2018 τ prior στ = 0.007 is used here in
addition to the TT band-powers and BAO likelihood. The addition of SCALE not only tightens the
distribution around the predicted neutrino mass mν , but it also prevents its samples from hitting
the ‘wall’ of the prior at mν = 0 eV.
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� Constructed neural network emulators for the lensed TT power spectrum and the SCALE cross

spectrum, which provide quick mapping from cosmological parameters to expected observables

at ∼ 0.01% and ∼ 2-5% precision per mode respectively (Figure 6.2-6.3 and Table 6.4).

� Presented a procedure to simulate a large sample of high-resolution (NSIDE=8192), full-sky sim-

ulations of the lensed CMB with the lenspyx package. We also present a procedure to compute

SCALE observables from these full-sky HEALPix representations, and SCALE observables from

this procedure match well with the flat-sky results in Chapter 5.

� Developed a likelihood which includes SCALE in parameter estimation using CMB observables

for a standard ΛCDM model with the addition of a massive neutrino mν .

� Demonstrated that SCALE can directly provide constraining information in the estimation of

parameters, such asmν , which affect the amplitude of small-scale lensing beyond measurements

of the lensed CMB power spectrum.

Some avenues for additional study include:

� Including multiple versions of SCALE with different ℓ1 filters in a single fit to constrain models

which change the shape of the lensing potential power spectrum Cϕϕ
L .

� Comparing the SCALE method with other methods which use small-scale lensing information,

such as the TT quadratic estimator (QE; Hu & Okamoto 2002; Hu et al. 2007). An additional

comparison with combined CMB + QE + SCALE observables can show whether or not SCALE

provides extra lensing information over quadratic estimator techniques.

– We expect similar constraints on mν can be obtained with the standard QE along with

the same TT band-powers, τ prior, and BAO information. We discussed in Chapter 5

the advantages SCALE over the QE, including its higher signal-to-noise detection of the

lensing at similar small-scale regimes.

– Addition of the QE observables (band-powers of Cϕϕ
L ) to the likelihood is straightforward,

and the emulators constructed in §6.2 can be applied to predict the Cϕϕ
L band-powers

similar to C̃TT
ℓ .

� Investigating the effects of foreground contamination on the small-scale statistics used in

SCALE. Our extension of SCALE to the full-sky in §6.3 can allow for analysis with the WebSky

CMB mock simulations (Stein et al., 2020), which include simulations of foreground contam-

ination from realistic dark matter halos generated with the mass-Peak Patch method (Stein

et al., 2019).

� Investigating the effects of masking in flat-sky observations in the cross spectrum of SCALE

intermediate products λ and ς. A common mask applied to a CMB temperature mask carries

through into the construction of λ and ς, so a proper treatment of masking is required to

ensure that the cross spectrum is not biased in the application of SCALE in ground-based

observations.

We have shown that the addition of SCALE into a cosmological model fit can provide significant

evidence for non-zero mν with a Stage IV-like experiment, which bodes well for the application of
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SCALE in future data. The effect of massive neutrinos on the lensing power spectrum is a nearly

scale-independent decrease in amplitude at high-ℓ, so including one version of SCALE with a single

small-scale filter ℓ1 is sufficient for a detection. We expect that including multiple versions of SCALE

with different ℓ1 filters would allow for constraints on models which change the shape of the lensing

potential power spectrum Cϕϕ
L , which we leave for future study. This opens a wide window of

opportunity for SCALE to provide constraints on exotic forms of dark matter or clustering models

which are predicted to have non-trivial effects on the shape of the lensing potential power spectrum.



Chapter 7

Conclusions

P
hysical phenomena observed at early- and late-times appear to conflict with ΛCDM

when one begins to scrutinize the model’s predictions, and this thesis represents a

collection of studies to further our understanding of some of these inconsistencies.

We cover a range of cosmic scales spanning almost the entire history of the Universe,

from the local distance ladder to the cosmic microwave background. We began in Chapter 1 with an

introduction into modern cosmological principles. This led into a discussion of the cosmic microwave

background, which began with a history of its observations. We then described the physical processes

that generate the signals within it, with a particular focus on the signatures left behind by the

effects of gravitational lensing. Finally, we outlined a general procedure for observing the cosmic

microwave background from detectors all to way to the inference of cosmological parameters from

power spectra. We continued with a discussion on cosmic distance measures and their importance in

the determination of the Hubble constant. This culminated in our presentation of the key issues in the

field which motivate the work in this dissertation, followed by some key statistical and computational

techniques that we employed. The key issues we address in this thesis include the Hubble tension,

the clustering of matter at small-scales, and the potential detection of primordial gravitational waves

in the CMB polarization signal.

In Chapter 2, we presented a hierarchical Bayesian model for simultaneously calibrating a lumi-

nosity model for red clump stars and estimating the parallax zero point systematic in Gaia Data

Release 2. We inferred the Gaia DR2 parallax zero point to be ϖ0 = −48± 1µas, which is the most

precise determination for DR2. We also studied extensions to our model to characterize separate

luminosity models for subpopulations of red clump stars of different metallicities. We also included

several additions to the probabilistic model to determine the parallax zero point’s variations with

observed magnitude, observed colour, and sky position. This work helped to further understand the

systematics present in Gaia astrometry, and the subsequent release of Gaia Early Data Release 3

included a software to compute unique parallax zero points for each source in the catalogue based

on their observed magnitude, observed colour sky position, and calibration coefficient.

Chapter 3 follows in the steps of verifying cosmic measures of distance with Gaia data by con-

structing a model for the distance to the Large Magellanic Cloud. We used the low-resolution XP

spectral data in Gaia Data Release 3 to select a sample of bright stars in the LMC with similar

spectra to stars nearby with high quality Gaia parallaxes. We were able to infer the LMC distance
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to be RLMC = 48.90+0.52
−0.48 kpc, which is in agreement with the value reported by Pietrzyński et al.

(2019), but we also show that the LMC distance inferred by our models is sensitive to the parallax

zero point systematics. This study shows that the high precision and extensive size of the Gaia

dataset can be exploited to independently solidify uncertainties for geometric distance anchors in

the local distance ladder, and future data releases will only improve the precision of Gaia distances.

Chapter 4 sees a shift in focus towards observations of the cosmic microwave background. We

present a study into the effects of detector crosstalk systematics on forecasted observables for a

LiteBIRD-like experiment. We implemented a crosstalk model into the TOAST software, which sim-

ulates the scanning motions of a CMB satellite experiment to generate TODs and then reproject

them into ‘observed’ CMB maps of temperature and polarization. Our crosstalk model mixes de-

tector TODs in TOAST according to a pre-defined crosstalk matrix that represents realistic electrical

crosstalk. This study showed that the effects of unmitigated electrical crosstalk can bias observed

EE and BB power spectra at large angular scales (ℓ ≲ 100) in a LiteBIRD-like experiment by at

most a few percent. We also showed that the effects have non-trivial dependence on the ordering

of the detectors from the focal plane to the readout electronics. The results of this study will help

to inform the design and construction of the electronic readout system for the proposed LiteBIRD

mission.

Chapter 5 continues studies of the CMB, but shifts the focus once again to the effects of grav-

itational lensing at small angular scales (ℓ > 3000). We presented the development of the Small

Correlated Against Large Estimator, which takes advantages of the correlations between the large-

scale CMB temperature gradient power, and the small-scale CMB gradient power generated by

gravitational lensing. We showed that the SCALE method can recover the lensing statistics in well-

controlled maps of simulated CMB temperature data to better precision than traditional quadratic

estimator techniques. This study establishes a solid foundation for this novel technique, which will

continue to perform existing methods as CMB experiments become increasingly sensitive to the

effects of small-scale lensing.

In Chapter 6, we proceeded to apply the SCALE procedure to a realistic parameter estima-

tion pipeline. We constructed and trained emulators that significantly speed up the prediction of

CMB TT power spectra, and SCALE cross-spectra from cosmological parameters at a given step

in sampling space. We constructed a likelihood for CMB TT power spectra, and combined it with

a Planck 2018 prior for τ and a forecasted BAO likelihood for mν , Ωc, Ωb, and As to show that

the minimum neutrino mass mν = 0.06 eV is not detected at high significance with only CMB data

with CMB-S4-like noise levels. We demonstrate that the inclusion of SCALE in the CMB likelihood

adds enough information for a 2.4σ detection of the minimum neutrino mass in the same conditions,

increasing to a 4σ detection with a cosmic variance limit measurement of τ . This study provides an

example of how to include SCALE products in cosmological parameter estimation, and it also shows

that SCALE observables are sensitive to parameters that limit their effects to the small-scale regime

of the lensing potential power spectrum Cϕϕ
L . This opens up the possibility of including multiple

versions of SCALE at different multipole ranges to constrain models that affect the shape of Cϕϕ
L at

small-scales.



Appendix A

Map-based lensing estimator

M
ap space statistics of the large-scale CMB temperature gradient and the small-scale

CMB temperature power are strongly correlated through the effects of gravitational

lensing. We show this in Chapter 5, specifically in §5.3. We present here a prescription

to quantify the correlations in real space as well as a discussion on the challenges that

it offers. The gradient operator ∇n̂ contains two components: ∇x and ∇y. The directions x and

y generally describe two orthogonal directions on the plane of the sky. These may be the map

coordinate directions in a flat-sky representation. For a full-sky map, it is convenient to use the

polar angle θ and the azimuthal angle ϕ:

∇x =
∂

∂θ
, and (A.1)

∇y =
1

sin θ

∂

∂ϕ
. (A.2)

Beginning with Equation (1.26) in the limit of small scales where T ≈ 0 due to diffusion damping,

the small-scale temperature power that we expect to observe in a given patch of sky is:

T S(n̂) ≈ ∇n̂ϕ ·∇n̂T (A.3)

⟨T 2⟩S ≈ ⟨(∇n̂ϕ ·∇n̂T )
2⟩

≈ ⟨|∇n̂ϕ|2⟩⟨|∇n̂T |2⟩⟨cos2 ξ⟩

≈ 1

2
⟨|∇n̂ϕ|2⟩⟨|∇n̂T |2⟩ . (A.4)

In the second step, we expand the dot product using the geometric definition of the dot product, and

the separation angle between∇n̂ϕ and∇n̂T in the plane of the sky is ξ. The third step is taken under

the assumption that both the lensing deflection field, and the temperature gradient are isotropic and

independent from one another. The expression we end up with is similar to the small-scale lensing

temperature power approximated in Lewis & Challinor (2006, §4.1.3, Equation (4.16)-(4.17))

CTT
ℓ ≈ ℓ2Cϕϕ

ℓ RT , where (A.5)
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RT ≡ 1

2
⟨|∇n̂T |2⟩ =

1

4π

∫
dℓ

ℓ
ℓ4CTT

ℓ . (A.6)

We can see from the above steps that if one collects statistics of the small-scale temperature

power ⟨T 2⟩Spatch as well as the average background temperature gradient ⟨|∇n̂T |2⟩ locally on the

sky in small patches (refer back to Figure 5.3), then we roughly expect them to be correlated to

each other through Equation (A.4). We can do better by directly computing the two-dimensional

integral for the total observed temperature at small-scales between ℓmin and ℓmax:

⟨T 2⟩Spatch =
1

(2π)2

∫ ℓmax

ℓmin

d2ℓCTT
ℓ,S . (A.7)

Let us first construct a version of Equation (A.5) while preserving the direction of the gradient

rather than simply taking its amplitude. On the flat sky, the 2D Fourier representation (FT ) of a

scalar field is

T (x) ∼
∫

d2ℓT (ℓ)e−iℓ·x , (A.8)

and the corresponding representation of its gradient is

∇n̂T (x) ∼ −i

∫
d2ℓT (x)ℓe−iℓ·x . (A.9)

We start from Equation A.3, keeping in mind that the CMB temperature gradient gets the lion’s

share of its contributions from multipoles ℓ ≲ 2000 (Lewis & Challinor, 2006; Hu et al., 2007). We

also include contributions T S
0 (ℓ) from the relatively low amplitude contribution from the primary

CMB, noise, and foregrounds that do not correlate directly with ∇n̂T
L. Locally (on a small patch

of sky located at position x), its 2D Fourier representation on the flat sky is

T̃ S(ℓ) = −i∇n̂T
L · ℓϕ(ℓ) + T S

0 (ℓ) , (A.10)

Note that Equation (A.10) without T S
0 (ℓ) is exactly the estimator constructed by Hadzhiyska et al.

(2019). The small-scale CMB power is ⟨TT ∗⟩. We continue under the assumption that the two

terms in Equation (A.10) do not correlate with each other. We can then write the small-scale CMB

power as:

CTT
ℓ,S = (∇n̂T

L · ℓ)2Cϕϕ
ℓ + CTT

ℓ,0 . (A.11)

Our integral from Equation (A.7) then becomes

⟨T 2⟩Spatch =
1

(2π)2

∫ ℓmax

ℓmin

d2ℓCTT
ℓ (A.12)

=
1

(2π)2

∫ ℓmax

ℓmin

d2ℓ
[
(∇n̂T

L · ℓ)2Cϕϕ
ℓ + CTT

ℓ,0

]
(A.13)

=
1

(2π)2

[
|∇n̂T

L|2
∫ ℓmax

ℓmin

d2ℓ( ˆ∇TL · ℓ̂)2ℓ2Cϕϕ
ℓ +

∫ ℓmax

ℓmin

d2ℓCTT
ℓ,0

]
. (A.14)
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Figure A.1: Illustrating our change of angular coordinates.

Within a specific patch, we chose in §5.3 to make the assumption that ∇n̂T
L is constant; there-

fore, we treat |∇n̂T
L| and ˆ∇TL as constant here. We now continue by expanding d2ℓ = ℓdθdℓ. We

also replace ( ˆ∇TL · ℓ̂)2 = cos2 α, where α is the angle between ˆ∇TL and ℓ̂.

⟨T 2⟩Spatch =
|∇n̂T

L|2
(2π)2

∫ ℓmax

ℓmin

cos2 αℓ3Cϕϕ
ℓ dθdℓ+

1

(2π)2

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dθdℓ . (A.15)

Here, we remind ourselves that θ describes the direction of ℓ, or more specifically, the angle between

ℓ and an arbitrary axis (like the x axis). We have the freedom to choose this arbitrary axis, so we

can simply change our coordinates to θ = α + β → α = θ − β, where β is the angle between ˆ∇TL

and the arbitrary axis x. There are many angles and directions here, so Figure A.1 may help with

visualizing this. Since β is constant within each patch, this change of coordinates is straightforward

to apply; i.e. dα = dθ. Evaluating the integral is also simple because Cϕϕ
ℓ is independent of our

choice of coordinate system and any of the angles we are working with.

⟨T 2⟩Spatch =
|∇n̂T

L|2
(2π)2

∫ 2π

0

cos2 αdα

∫ ℓmax

ℓmin

ℓ3Cϕϕ
ℓ dℓ+

1

(2π)2

∫ 2π

0

dθ

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dℓ (A.16)

=
|∇n̂T

L|2
4π

∫ ℓmax

ℓmin

ℓ3Cϕϕ
ℓ dℓ+

1

2π

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dℓ . (A.17)

This allows us to directly compute an expected value for the slope in Figure 5.3 along with an

expression for the residual power which does not correlate with the CMB gradient (i.e. the y-

intercept).

Consider the application of an additional filter fℓ to the small scale CMB temperature. We

motivate this in Chapter 5 to include additional information from the lensing operation that is

neglected when the gradient amplitude is taken in Equation (A.13)-(A.14). In this section, we
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Figure A.2: Left : A patch of a CMB temperature field with a top hat filter applied such that only
modes 6000 < ℓ < 8000 are included. Right : The same patch with an additional filter defined with
respect to the average CMB temperature gradient direction within the patch: fℓ = (∇̂T · ℓ̂). The
features in the patch are exaggerated along the direction of the gradient.

compare the above derivation to one with an additional filter fℓ = (∇̂T · ℓ̂) = cosα for each patch.

This has the effect of exaggerating the small-scale temperature signal along the direction of the

background gradient (see Figure A.2), which are the features we expect to see from lensing. For

each patch with the filter fℓ = cosα:

⟨T 2⟩Spatch =
1

(2π)2

∫ ℓmax

ℓmin

d2ℓf2
ℓ C

TT
ℓ (A.18)

=
|∇n̂T

L|2
(2π)2

∫ ℓmax

ℓmin

d2ℓ( ˆ∇TL · ℓ̂)4ℓ2Cϕϕ
ℓ +

1

(2π)2

∫ ℓmax

ℓmin

d2ℓ( ˆ∇TL · ℓ̂)2CTT
ℓ,0 (A.19)

=
|∇n̂T

L|2
(2π)2

∫ 2π

0

cos4 αdα

∫ ℓmax

ℓmin

ℓ3Cϕϕ
ℓ dℓ+

1

(2π)2

∫ 2π

0

cos2 αdα

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dℓ (A.20)

=
3|∇n̂T

L|2
16π

∫ ℓmax

ℓmin

ℓ3Cϕϕ
ℓ dℓ+

1

4π

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dℓ . (A.21)

We expect to see a factor of 3/4 suppression in the estimated slope in a filtered, lensed CMB

map, as well as a factor of 1/2 in the estimated residual power in the y-intercept. Similarly, if we

instead choose fℓ = cos2 α, then we expect to find a factor of 5/8 suppression of the estimated slope,

and a factor of 3/8 in the estimated residual power in the y-intercept:

⟨T 2⟩Spatch =
5|∇n̂T

L|2
32π

∫ ℓmax

ℓmin

ℓ3Cϕϕ
ℓ dℓ+

3

16π

∫ ℓmax

ℓmin

ℓCTT
ℓ,0 dℓ . (A.22)

For an example simulation of size 10◦×10◦ with a resolution of pixels with side-length 0.5 arcmin,

we find the distribution of patch statistics shown in Figure A.3. For a quick first try at building a

model to describe the distribution of patches relative to a line in ⟨T 2⟩Spatch vs |∇n̂T
L|2 space, we may

choose to approximate (rather poorly) the errors associated with estimating the ⟨T 2⟩Spatch in each

patch as Gaussian using the distribution of patches itself. Figure A.3 shows the errors in ⟨T 2⟩Spatch
taken to be the spread in the distribution of ⟨T 2⟩Spatch across 20 bins in |∇n̂T

L|2 such that each bin
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Figure A.3: Blue: The distribution of estimated patch statistics for an example simulation filtered
for ℓmin = 6000 and ℓmax = 8000, and using fℓ = cosα. The errors in ⟨T 2⟩Spatch (labelled as σ2

T on

the y-axis) are taken to be the spread in the distribution of ⟨T 2⟩Spatch across 20 bins in |∇n̂T
L|2

such that each bin has an equal number of points. Orange: The line of best fit given by scipy’s
curve fit function. Each individual patch provides a poor estimate of the lensing correlations,
but the collection of patches across a map allows for a statistically significant detection of lensing
through the fit of the slope.
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Figure A.4: Blue: The distribution of estimated ⟨T 2⟩Spatch for an example simulation filtered for
ℓmin = 6000 and ℓmax = 8000, and using the directional filter fℓ = cosα. Patches were each
constructed with 40× 40 pixels of resolution 0.5′. Orange: The best fit probability density function
for a Pearson Type III distribution. The best fit parameter relevant to the number of independent
samples used to estimate ⟨T 2⟩Spatch is approximately N = 14.

has an equal number of points. Note that we have included the filter fℓ = cosα here.

We may use the distribution of patches along with a Gaussian likelihood to determine the best

fit line for Equation (A.21). This likelihood would be:

p
(
⟨T 2⟩Spatch, |∇n̂T

L|2
∣∣m, b

)
∝ exp

(−χ2

2

)
, (A.23)

where χ2 is the chi-squared value for the distribution of patches with Gaussian errors described above

relative to the line with intercept b and slopem computed with Equation (A.17) at the same |∇n̂T
L|2,

(A.21) or (A.22). In this case, we used the filter fℓ = cosα, so our best fit line corresponds to

Equation (A.21). Application of the Gaussian likelihood to fit for the best fit parameters is equivalent

to using scipy’s curve fit routine, which we see the result for in Figure A.3. The Gaussian

likelihood effortlessly returns a fit, but it does not well represent the distribution of ⟨T 2⟩Spatch from

the data. Figure A.4 shows the 1D distribution of estimated σ2
T in each patch, which has a significant

positive skew.

Because we are using ∼ 402 pixels to estimate the small scale temperature variance within

each patch, the estimated sample variance that we actually get should follow a Pearson Type III

distribution1:

p
(
⟨T 2⟩Spatch

∣∣N,S2
)
=

(
N
2S2

)(N−1)/2

Γ
(
N−1
2

) (
⟨T 2⟩Spatch

)(N−3)/2
e−N⟨T 2⟩Spatch/(2

2), (A.24)

where S2 is taken to be Equation A.21 evaluated at the |∇n̂T
L|2 associated with the ⟨T 2⟩Spatch of each

1https://mathworld.wolfram.com/SampleVarianceDistribution.html

https://mathworld.wolfram.com/SampleVarianceDistribution.html
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Figure A.5: The 3D-likelihood of the real-space estimator model using the Pearson Type III dis-
tribution on a single 10◦ × 10◦ simulation of the lensed CMB. Patches were each constructed with
40× 40 pixels of resolution 0.5′. Red: The 1σ, 2σ, and 3σ contours for the model assuming a Gaus-
sian likelihood. Orange: The 1σ, 2σ, and 3σ contours for this Pearson Type III likelihood. We see
a significant effect in shifting the best fit slope and intercept parameters when accounting for the
fact that individual pixels within a patch of sky are not fully independent from one another.

patch. Here, N represents the number of independent samples used to estimate the sample variance.

Naively, we would simply use N ≈ 402, but it is important to remember that the neighbouring

pixels are highly correlated for CMB observations. In practice, the true value of N should be much

smaller, as shown in Figure A.4, where the best fit Pearson type III distribution for the sample of

estimated ⟨T 2⟩Spatch of all patches has N ≈ 14.

The full likelihood should then be the result of Equation A.24 evaluated using the ⟨T 2⟩Spatch and

their associated |∇n̂T
L|2 for all patches. As there are a large number of patches within the sample,

this computation is likely to overflow, so the most practical way of computing the likelihood is as a

sum in log-likelihood space:

log
(
p
(
⟨T 2⟩Spatch, |∇n̂T

L|2
∣∣m, b

))
∝
∑

log
(
p
(
⟨T 2⟩Spatch

∣∣N,S2
))

. (A.25)

We present the results of the fit with the Pearson type III likelihood in Figure A.5. The recovered

intercept with the Pearson type III likelihood are approximately 5σ away from the best fit from the
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Table A.1: Comparison of parameter signal-to-noise for different choices of directional filtering in the
real-space lensing estimator. Values are averaged over 10 realizations of 10◦×10◦ CMB observations
with patches of size 20′ × 20′. We find that the filter fℓ = cosα performs best at recovering the
lensing signal contained within the slope of the ⟨T 2⟩Spatch and |∇n̂T

L|2 correlations in real-space.

Filter fℓ Slope SNR Intercept SNR

None 4.8 19.7

cosα 5.8 15.6

cos2 α 5.6 13.8

Figure A.6: A comparison of the accuracy of the estimated line parameters for 10 different realiza-
tions of simulated CMB observations at 0.5′ resolution with different choices of patch sizes used to
compute input statistics. The filter fℓ = cosα is used here, and horizontal lines indicate the slope
and intercept predicted by Equation (A.21). Patch sizes indicated are the side length in number of
pixels. We see that the patch size must be fine-tuned to mitigate potential biases in the estimated
slope which contains the lensing signals.

Gaussian likelihood. There is less of a dramatic shift for the slope, but we see the importance of

accounting for the pixel-to-pixel correlations in our model. We summarize the signal-to-noise of

estimated slope and intercepts for each choice in directional filtering in Table A.1. We see that the

filter fℓ = cosα performs best at distinguishing a non-zero lensing signal.

We finally shift our focus to some of the drawbacks of our real-space lensing estimator. These

were mainly discussed at the end of §5.3 in Chapter 5. In summary, we argue that there is no single

choice in patch size that can achieve both of the following:

� Contain a constant background temperature gradient within the patch, and

� Contain a sufficient number of pixels with which to estimate the small-scale temperature

variance.

We show this in Figure A.6, where we compare the statistics of the estimated line parameters against

the values predicted by Equation (A.21). We find that one must fine-tune the choice in patch size

in order to mitigate potential biases in the estimated parameters from the model fit. Moreover, we

find that these choices are specific to the map resolution. These are the obstacles that we overcome

in the implementation of the Small Correlated Against Large Estimator in Chapter 5 (§5.4).
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Derivation of SCALE

Originally included in an Appendix of the manuscript accepted for publication in Phys. Rev. D.

Pre-print available as: “The Small-Correlated-Against-Large-Estimator (SCALE) for the Lensing of

the Cosmic Microwave Background” Chan, Victor C., Hložek, Renée, Meyers, Joel, & van Engelen,

Alexander 2023, arXiv e-prints, arXiv:2302.13350, doi: 10.48550/arXiv.2302.13350. This section

was written by Meyers, Joel and gives context to the analytical side of the methods presented in

Chapters 5-6.

W
e wish to construct an estimator of the small scale lensing power. We will construct

the estimator using the cross correlation between a field constructed from the square

of small-scale temperature fluctuations and a field constructed from the square of

large-scale temperature fluctuations. In the very small-scale regime, where the effects

of lensing dominate the temperature power spectrum, the temperature power is proportional to

the product of the large-scale temperature gradient power and the small-scale lensing deflection

power. The motivation of the estimator that we construct here is that the small-scale lensing-

induced temperature power is non-Gaussian; the locally measured small-scale temperature power is

correlated with variations in the large-scale temperature gradient, and the relation between the two

is proportional to the small-scale lensing power.

Let us first define a field ς defined by the locally measured small-scale temperature gradient

power

ς(Ľ) =

∫
d2ℓ1
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

)
T (ℓ1)T (Ľ− ℓ1) , (B.1)

where g is a filter applied to the small-scale temperature fluctuations, to be determined in what

follows. We will expand the small-scale temperature fluctuations to first order in the lensing gradient

T̃ (ℓ) =

∫
d2ℓ2
2π

(ℓ2 · (ℓ2 − ℓ))T (ℓ2)ϕ(ℓ− ℓ2) , (B.2)

where we have dropped the unlensed small-scale temperature, since it is assumed to be negligible
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compared to the lensing contribution on very small scales. Inserting this into ς gives

ς(Ľ) =

∫
d2ℓ1
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
2π

∫
d2ℓ3
2π

(ℓ2 · (ℓ2 − ℓ1))
(
ℓ3 · (ℓ3 − Ľ+ ℓ1)

)

× T (ℓ2)T (ℓ3)ϕ(ℓ1 − ℓ2)ϕ(Ľ− ℓ1 − ℓ3) . (B.3)

We will be interested in an estimate of the small-scale lensing power, rather than the realization of

the lensing potential, so we will take an average over lensing realizations

ς(Ľ) =

∫
d2ℓ1
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

)

×
∫

d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)
T (ℓ2)T (Ľ− ℓ2)C

ϕϕ
|ℓ1−ℓ2| . (B.4)

The local large-scale temperature gradient power can be expressed in harmonic space as

λ(Ľ) =

∫
d2ℓ3
2π

h(ℓ3, Ľ)
(
ℓ3 · (ℓ3 − Ľ)

)
T (ℓ3)T (Ľ− ℓ3) , (B.5)

where h is a filter applied to the large-scale temperature fluctuations. On large angular scales,

lensing is only a small correction, and so we work to zeroth order in the lensing potential for the

temperature fluctuations appearing in λ.

Our aim is to isolate the small scale lensing power by analyzing correlations between the ς and

λ fields. The product of ς and λ is

ς(Ľ)λ(Ľ′) =

∫
d2ℓ1
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

)
T (ℓ1)T (Ľ− ℓ1)

×
∫

d2ℓ3
2π

h(ℓ3, Ľ
′)
(
ℓ3 · (ℓ3 − Ľ′)

)
T (ℓ3)T (Ľ

′ − ℓ3) . (B.6)

The cross-spectrum of ς and λ is given for Ľ ̸= 0 by

〈
ς(Ľ)λ(Ľ′)

〉
=

∫
d2ℓ1
2π

∫
d2ℓ3
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

)
h(ℓ3, Ľ

′)
(
ℓ3 · (ℓ3 − Ľ′)

)

×
〈
T (ℓ1)T (Ľ− ℓ1)T (ℓ3)T (Ľ

′ − ℓ3)
〉
. (B.7)

Choosing disjoint ranges of multipoles for the small-scale and large-scale temperature fluctuations

means that the disconnected part of the temperature four-point function vanishes for Ľ ̸= 0. The

signal of interest is the one which is first order in the lensing power spectrum, whose dominant

contribution comes from the terms of first order in the lensing potential in the gradient expansion
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of the small-scale temperature fluctuations

〈
ς(Ľ)λ(Ľ′)

〉
=

∫
d2ℓ1
2π

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)
Cϕϕ

|ℓ1−ℓ2|

×
∫

d2ℓ3
2π

h(ℓ3, Ľ)
(
ℓ3 · (ℓ3 − Ľ)

) 〈
T (ℓ2)T (Ľ− ℓ2)T (ℓ3)T (Ľ− ℓ3)

〉
δ(Ľ+ Ľ′)

=

∫
d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)
Cϕϕ

|ℓ1−ℓ2|

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|δ(Ľ+ Ľ′)

=Cλς
Ľ
δ(Ľ+ Ľ′) . (B.8)

We wish to use this cross-spectrum to obtain an unbiased estimate of the integrated small-scale

lensing power. We define a quantity

ΨĽ ≡ AĽ

〈
ς(Ľ)λ(−Ľ)

〉
, (B.9)

with AĽ defined such that ΨĽ is a weighted-average of the small-scale lensing power

AĽ =

[∫
d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|

]−1

. (B.10)

Let us briefly change to a full-sky notation which makes the calculation of the variance more

transparent. We wish to estimate the small-scale lensing power from the cross-spectrum of the ς

and λ fields

AĽ

〈
ςĽM̌λĽ′−M̌ ′

〉
≡ ΨĽδĽĽ′δM̌M̌ ′ . (B.11)

An estimator for ΨĽ can be constructed as

Ψ̂Ľ ≡ AĽ

1

2Ľ+ 1

∑

M̌

ςĽM̌λĽ−M̌ , (B.12)

such that in an isotropic universe

〈
Ψ̂Ľ

〉
= AĽ

1

2Ľ+ 1

∑

M̌

〈
ςĽM̌λĽ−M̌

〉
= ΨĽ . (B.13)
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The variance of this estimator can then be computed to be

〈(
Ψ̂Ľ −ΨĽ

)2〉
=A2

Ľ

1

(2Ľ+ 1)2

∑

M̌M̌ ′

〈
ςĽM̌λĽ−M̌ ςĽM̌ ′λĽ−M̌ ′

〉
−Ψ2

Ľ

=A2
Ľ

1

(2Ľ+ 1)2

[
∑

M̌

〈
ςĽM̌λĽ−M̌

〉



2

+
∑

M̌

(〈
ςĽM̌λĽ−M̌

〉)2

+
∑

M̌

〈
ςĽM̌ ςĽ−M̌

〉 〈
λĽM̌λĽ−M̌

〉
]
−Ψ2

Ľ

=
1

2Ľ+ 1

[
Ψ2

Ľ
+NĽ

]
, (B.14)

where we have defined

NĽ ≡ A2
Ľ

〈
ςĽM̌ ςĽ−M̌

〉 〈
λĽM̌λĽ−M̌

〉
. (B.15)

Next, we need to choose the filters g and h to minimize the variance of our small-scale lensing

estimate. Returning to the flat-sky approximation, the noise variance can be expressed as

NĽ =A2
Ľ

∫
d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
g(−ℓ1,−Ľ) + g(ℓ1 − Ľ,−Ľ)

) (
ℓ1 · (ℓ1 − Ľ)

)2
CTT,obs

ℓ1
CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

h(ℓ2, Ľ)
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)2
CTT,obs

ℓ2
CTT,obs

|Ľ−ℓ2|
. (B.16)

Differentiating with respect to the choice of g filter we find

∂NĽ

∂g(ℓ′, Ľ)
=

2A2
Ľ

(2π)2
(
g(−ℓ′,−Ľ) + g(ℓ′ − Ľ,−Ľ)

) (
ℓ′ · (ℓ′ − Ľ)

)2
CTT,obs

ℓ′ CTT,obs

|Ľ−ℓ′|

×
∫

d2ℓ2
(2π)2

h(ℓ2, Ľ)
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)2
CTT,obs

ℓ2
CTT,obs

|Ľ−ℓ2|

−
2A3

Ľ

(2π2)

(
ℓ′ · (ℓ′ − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ′))
(
(Ľ− ℓ2) · (ℓ′ − ℓ2)

)

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|

×
∫

d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
g(−ℓ1,−Ľ) + g(ℓ1 − Ľ,−Ľ)

) (
ℓ1 · (ℓ1 − Ľ)

)2
CTT,obs

ℓ1
CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ3
(2π)2

h(ℓ3, Ľ)
(
h(−ℓ3,−Ľ) + h(ℓ3 − Ľ,−Ľ)

) (
ℓ3 · (ℓ3 − Ľ)

)2
CTT,obs

ℓ3
CTT,obs

|Ľ−ℓ3|
.

(B.17)
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Setting this equal to zero and rearranging, we find

0 =
(
g(−ℓ′,−Ľ) + g(ℓ′ − Ľ,−Ľ)

) (
ℓ′ · (ℓ′ − Ľ)

)2
CTT,obs

ℓ′ CTT,obs

|Ľ−ℓ′|

×
∫

d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|

−
(
ℓ′ · (ℓ′ − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ′))
(
(Ľ− ℓ2) · (ℓ′ − ℓ2)

)

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|

×
∫

d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
g(−ℓ1,−Ľ) + g(ℓ1 − Ľ,−Ľ)

) (
ℓ1 · (ℓ1 − Ľ)

)2
CTT,obs

ℓ1
CTT,obs

|Ľ−ℓ1|
(B.18)

A similar procedure for the derivative with respect to the h filter gives

0 =
(
h(−ℓ′,−Ľ) + h(ℓ′ − Ľ,−Ľ)

) (
ℓ′ · (ℓ′ − Ľ)

)2
CTT,obs

ℓ′ CTT,obs

|Ľ−ℓ′|

×
∫

d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

) ∫ d2ℓ2
(2π)2

(ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

)

×
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)
CTT

ℓ2 CTT
|Ľ−ℓ2|

−
(
ℓ′ · (ℓ′ − Ľ)

)
CTT

ℓ′ CTT
|Ľ−ℓ′|

×
∫

d2ℓ1
(2π)2

g(ℓ1, Ľ)
(
ℓ1 · (ℓ1 − Ľ)

)
(ℓ′ · (ℓ′ − ℓ1))

(
(Ľ− ℓ′) · (ℓ1 − ℓ′)

)

×
∫

d2ℓ2
(2π)2

h(ℓ2, Ľ)
(
h(−ℓ2,−Ľ) + h(ℓ2 − Ľ,−Ľ)

) (
ℓ2 · (ℓ2 − Ľ)

)2
CTT,obs

ℓ2
CTT,obs

|Ľ−ℓ2|
(B.19)

These equations are difficult to solve in general, but if we restrict attention to cases where ς

includes only temperature fluctuations on scales much smaller than fluctuations appearing in λ and

also much smaller than scales defined by Ľ, then one can see that an approximate solution is provided

by

g(ℓ, Ľ) = Wς(ℓ)
1

CTT,obs
ℓ

Wς(Ľ− ℓ)
1

CTT,obs

|Ľ−ℓ|

, (B.20)

h(ℓ, Ľ) = Wλ(ℓ)
CTT

ℓ

CTT,obs
ℓ

Wλ(Ľ− ℓ)
CTT

|Ľ−ℓ|

CTT,obs

|Ľ−ℓ|

, (B.21)

where Wς and Wλ are window functions that restrict the temperature fluctuations to the appropriate

scales,

Wς(ℓ) =




1, ℓ1,min ≤ |ℓ| < ℓ1,max

0, else ,
(B.22)

Wλ(ℓ) =




1, ℓ2,min ≤ |ℓ| < ℓ2,max

0, else .
(B.23)
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Using this choice of filters gives

AĽ =


2
∫

d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)
(
ℓ1 · (ℓ1 − Ľ)

) 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2) (ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

) (
ℓ2 · (ℓ2 − Ľ)

)

×
(
CTT

ℓ2

)2

CTT,obs
ℓ2

(
CTT

|Ľ−ℓ2|

)2

CTT,obs

|Ľ−ℓ2|




−1

, (B.24)

and the expected value of Ψ̂Ľ is

〈
Ψ̂Ľ

〉
=2AĽ

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)
(
ℓ1 · (ℓ1 − Ľ)

) 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2) (ℓ2 · (ℓ2 − ℓ1))
(
(Ľ− ℓ2) · (ℓ1 − ℓ2)

) (
ℓ2 · (ℓ2 − Ľ)

)

×
(
CTT

ℓ2

)2

CTT,obs
ℓ2

(
CTT

|Ľ−ℓ2|

)2

CTT,obs

|Ľ−ℓ2|

Cϕϕ
|ℓ1−ℓ2| , (B.25)

The noise variance of Ψ̂Ľ is

NĽ =4A2
Ľ

∫
d2ℓ1
(2π)2

Wς(ℓ1)Wς(Ľ− ℓ1)
(
ℓ1 · (ℓ1 − Ľ)

)2 1

CTT,obs
ℓ1

1

CTT,obs

|Ľ−ℓ1|

×
∫

d2ℓ2
(2π)2

Wλ(ℓ2)Wλ(Ľ− ℓ2)
(
ℓ2 · (ℓ2 − Ľ)

)2
(
CTT

ℓ2

)2

CTT,obs
ℓ2

(
CTT

|Ľ−ℓ2|

)2

CTT,obs

|Ľ−ℓ2|

≃4AĽ , (B.26)

where in the last line, we used the same approximations as in deriving the g and h filters.



List of Acronyms

2MASS Two Micron All Sky Survey

ACT Atacama Cosmology Telescope

APOGEE Apache Point Observatory Galactic Evolution Experiment

BAO Baryon Acoustic Oscillations

BOOMERanG Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics

BOSS Baryon Oscillation Spectroscopic Survey

CAMB Code for Anisotropies in the Microwave Background

CCD Charge-Coupled Device

CDM Cold Dark Matter

CHIME Canadian Hydrogen Intensity Mapping Experiment

CIB Cosmic Infrared Background

CLASS Cosmic Linear Anisotropy Solving System, or

CLASS Cosmology Large Angular Scale Surveyor

CMB Cosmic Microwave Background

CMB-HD The Cosmic Microwave Background in High Definition

CMB-S4 Cosmic Microwave Background-Stage IV

CSA Canadian Space Agency

COBE Cosmic Background Explorer

DES Dark Energy Survey

DESI Dark Energy Spectroscopic Instrument

DM Dark Matter or Dispersion Measure

DR Data Release

DR2 (Gaia) Data Release 2

DR3 (Gaia) Data Release 3

DMR Differential Microwave Radiometer

DUCC Distinctly Useful Code Collection

eBOSS Extended Baryon Oscillation Spectroscopic Survey

EDR3 (Gaia) Early Data Release 3

164



APPENDIX B. DERIVATION OF SCALE 165

fDM fuzzy Dark Matter

FIRAS Far-InfraRed Absolute Spectrophotometer

FLRW Friedmann-Lemâıtre-Robertson-Walker

fMUX Frequency Multiplexing

FOV Field of View

FRB Fast Radio Burst

FWHM Full Width at Half Maximum

GI Gradient Inversion

GW Gravitational Wave

HDM Hot Dark Matter

HDV Hu, DeDeo, and Vale (Quadratic Estimator)

HuOk Hu and Okamoto (Quadratic Estimator)

HEALPix Hierarchical Equal Area isoLatitude Pixelization

HFT High Frequency Telescope

HMC Hamiltonian Monte Carlo

IGM Intergalactic Medium

JAXA Japan Aerospace Exploration Agency

JWST James Webb Space Telescope

kSZ Kinetic Sunyaev-Zel’dovich

ΛCDM Lambda Cold Dark Matter

LFT Low Frequency Telescope

LiteBIRD Lite satellite for the studies of B-mode polarization and Inflation from cosmic back-

ground Radiation Detection

LMC Large Magellanic Cloud

LSS Large Scale Structure

LSST Large Synoptic Survey Telescope (now Vera C. Rubin Observatory)

MC Monte Carlo

MCMC Markov chain Monte Carlo

MFT Medium Frequency Telescope

MKIDs Microwave Kinetic Inductance Detectors

MW Milky Way

NET Noise Equivalent Temperature

NN Neural Network

PL Period–Luminosity (relation)
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PSD Power Spectral Density

QE Quadratic Estimator

RC Red Clump (star)

RJCE Rayleigh-Jeans Colour Excess

SCALE Small Correlated Against Large Estimator

SDSS Sloan Digital Sky Survey

SH0ES Supernova H0 for the Equation of State

SNIa Type Ia Supernova

SNR Signal-to-Noise Ratio

SO Simons Observatory

SPT South Pole Telescope

SZ Sunyaev-Zel’dovich

TES Transition Edge Sensor

TESS Transiting Exoplanet Survey Satellite

tSZ Thermal Sunyaev-Zel’dovich

TOAST Time Ordered Astrophysics Scalable Tools

TOD Time Ordered Data

TRGB Tip of the Red Giant Branch

VLBI Very Long Baseline Interferometry

VRO Vera C. Rubin Observatory (formerly Large Synoptic Survey Telescope)

WDM Warm Dark Matter

WMAP Wilkinson Microwave Anisotropy Probe
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Gil-Maŕın, H., Noreña, J., Verde, L., et al. 2015, MNRAS, 451, 539, doi: 10.1093/mnras/stv961

Gilman, D., Birrer, S., & Treu, T. 2020, A&A, 642, A194, doi: 10.1051/0004-6361/202038829

Givans, J. J., Font-Ribera, A., Slosar, A., et al. 2022, J. Cosmology Astropart. Phys., 2022, 070,

doi: 10.1088/1475-7516/2022/09/070

Gluscevic, V., et al. 2019, Bull. Am. Astron. Soc., 51, 134. https://arxiv.org/abs/1903.05140
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Lokken, M., Hložek, R., van Engelen, A., et al. 2022, ApJ, 933, 134, doi: 10.3847/1538-4357/

ac7043

Lovell, M. R., Frenk, C. S., Eke, V. R., et al. 2014, MNRAS, 439, 300, doi: 10.1093/mnras/stt2431

Ludlow, A. D., Navarro, J. F., Boylan-Kolchin, M., et al. 2013, MNRAS, 432, 1103, doi: 10.1093/

mnras/stt526

Madhavacheril, M. S., & Hill, J. C. 2018, Phys. Rev. D, 98, 023534, doi: 10.1103/PhysRevD.98.

023534

Madhavacheril, M. S., Hill, J. C., Næss, S., et al. 2020a, Phys. Rev. D, 102, 023534, doi: 10.1103/

PhysRevD.102.023534

Madhavacheril, M. S., Sifón, C., Battaglia, N., et al. 2020b, ApJ, 903, L13, doi: 10.3847/2041-8213/

abbccb

Madhavacheril, M. S., Qu, F. J., Sherwin, B. D., et al. 2023, arXiv e-prints, arXiv:2304.05203,

doi: 10.48550/arXiv.2304.05203
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Petersen, M. S., & Peñarrubia, J. 2020, MNRAS, 494, L11, doi: 10.1093/mnrasl/slaa029

Piccirilli, G., Migliaccio, M., Branchini, E., & Dolfi, A. 2022, arXiv e-prints, arXiv:2208.07774,

doi: 10.48550/arXiv.2208.07774
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