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Abstract: Empowering nanophotonic devices via artificial

intelligence (AI) has revolutionized both scientific research

methodologies and engineering practices, addressing crit-

ical challenges in the design and optimization of complex

systems. Traditional methods for developing nanophotonic

devices are often constrained by the high dimensional-

ity of design spaces and computational inefficiencies. This

review highlights how AI-driven techniques provide trans-

formative solutions by enabling the efficient exploration of

vast design spaces, optimizing intricate parameter systems,

and predicting the performance of advanced nanophotonic

materials and devices with high accuracy. By bridging the

gap between computational complexity and practical imple-

mentation, AI accelerates the discovery of novel nanopho-

tonic functionalities. Furthermore, we delve into emerging

domains, such as diffractive neural networks and quantum
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machine learning, emphasizing their potential to exploit

photonic properties for innovative strategies. The review

also examines AI’s applications in advanced engineering

areas, e.g., optical image recognition, showcasing its role

in addressing complex challenges in device integration. By

facilitating the development of highly efficient, compact

optical devices, these AI-poweredmethodologies are paving

the way for next-generation nanophotonic systems with

enhanced functionalities and broader applications.

Keywords:metasurface; artificial intelligence; quantum

computing; machine learning; neural network

1 Introduction

Nanophotonics explores the interaction between light and

matter at the nanometer scale, a field that has experi-

enced significant growth driven by advancements in micro-

and nanotechnology. These innovations have enabled a

wide range of applications, includingminiaturized optoelec-

tronic detectors and spectrometers, high-resolution imaging

systems, advanced sensing platforms, compact optical emit-

ters, structural coloration based on iridescent nanostruc-

tures, nonlinear optical phenomena, tunable photonic com-

ponents, optical holography, metasurface-enabled optically

variable devices, and technologies for quantum information

processing [1]–[5]. At the same time, light is inherently mul-

tidimensional, being characterized by its attributes, such as

wavelength, intensity, and polarization. Simultaneous anal-

ysis of these dimensions is essential for advancing optical

communication, remote sensing, and chemical and biolog-

ical characterization. Additionally, it plays a pivotal role

in driving the miniaturization of optical devices, enabling

more compact and efficient photonic technologies [6]–[13].

On the other hand, designing and optimizing nanopho-

tonic devices, however, involves solving complex multi-

parameter problems, often requiring extensive numeri-

cal explorations [13]–[23]. As data volumes and design
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complexities continue to increase, traditional methods

that rely on conventional iterations and computation-

ally intensive processes encounter fundamental limita-

tions. These challenges impede the efficient development

of next-generation nanophotonic technologies, highlighting

the need for innovative design approaches and optimization

techniques.

In parallel, artificial intelligence (AI) has emerged as

a transformative paradigm, driving advancements across

diverse fields such as healthcare, chemistry, electronics,

and manufacturing [24]–[30]. AI techniques, particularly

deep learning, have shown immense potential in acceler-

ating nanophotonics research. For example, AI can effi-

ciently optimize device configurations, predictmaterial per-

formance, and uncover hidden physical principles that are

challenging to discern using conventional approaches [31],

[32]. Moreover, AI’s capacity to process large datasets and

handle complex calculations offers unique opportunities

to investigate the intricate interactions between light and

matter at the nanoscale [33], [34].

Interestingly, the relationship between AI and

nanophotonics is mutually reinforcing. Photonics, with

its unique wave-based properties, has been employed to

develop diffractive optical networks and other AI-inspired

architectures, significantly improving computational speed

and energy efficiency [35]. This synergy has catalyzed

groundbreaking innovations, such as optical quantum

machine learning and multifunctional on-chip systems

based on metasurfaces, pushing the interdisciplinary

boundaries of AI for science-driven scientific advancements

[36].

This review examines the bidirectional relationship

between artificial intelligence (AI) and nanophotonics, as

illustrated in Figure 1. It highlights how AI-driven method-

ologies have revolutionized nanophotonics by optimiz-

ing device design, facilitating rapid exploration of high-

dimensional parameter spaces, and predicting the behav-

ior of complex systems with exceptional precision. Simul-

taneously, it explores how advancements in nanophoton-

ics contribute to the development of AI technologies. By

analyzing recent studies and breakthroughs, this review

provides a comprehensive overview of the transformative

interplay between these fields, paving the way for next-

generation optical devices with enhanced performance and

functionalities.

2 Fundamentals of AI

for nanophotonics

AI has become a driving force in nanophotonics research,

offering advanced tools for analyzing complex datasets,

Figure 1: Empowering nanophotonic applications via artificial intelligence based on electronic, optical, and quantum devices. Design: adapted from

Ma et al. Advanced Materials 34.16 (2022): 2110022 [30]. Copyright 2023, Wiley. Recognition: adapted from Luo et al. Light: Science & Applications 11.1

(2022): 158 [31]. Copyright 2023, Nature. Analysis: adapted from Li et al. ACS Photonics 10.3 (2023): 780–789 [32]. Copyright 2023, American Chemical

Society. Quantum mechanics: Belis et al. Machine Learning: Science and Technology 5.3 (2024): 035010. [34]. Copyright 2024 Institute of Physics.

Optics: Lin et al. Science 361.6406 (2018): 1004–1008 [35]. Copyright 2018, American Association for the Advancement of Science. Licensed under

a Creative Commons Attribution 4.0 International License. Other parts were drawn by the authors.
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optimizing device designs, and exploring novel optical prop-

erties. AI methods, particularly machine learning (ML),

enable researchers to tackle intricate problems that would

otherwise require prohibitive computational resources.

These approaches can be broadly categorized into two pri-

mary areas: neural networks and intelligent algorithms [37].

2.1 Neural networks

Neural networks (NNs) are pivotal in advancing the field of

nanophotonics by enabling data-driven analysis, structural

optimization, and performance prediction [38]. Different

types of neural networks offer tailored solutions for a vari-

ety of nanophotonic challenges.

2.1.1 Multilayer perceptrons (MLPs)

Multilayer perceptrons (MLPs) are fundamental feedfor-

ward neural networks suitable for tasks involving low-

dimensional or linear datasets, such as material property

prediction and basic parameter optimization. An MLP

model typically consists of three main layers: an input

layer, one or more hidden layers, and an output layer (as

depicted in Figure 2a) [39]. The input layer processes feature

extracted from the dataset, while the hidden layers perform

computations using weighted connections and nonlinear

activation functions like the Rectified Linear Unit (ReLU)

[40]. Although MLPs are well-suited for straightforward

analytical tasks, they encounter difficulties onhandling data

Figure 2: Fundamentals of AI for nanophotonics, illustrating key neural network frameworks and intelligent algorithm flowcharts. Schematics of (a)

multilayer perceptron (MLP) architecture. Adapted from Ashtiani et al. Nature 606.7914 (2022): 501–506 [39]. Copyright 2022, Nature. (b) Convolutional

neural network (CNN). Adapted from Razi et al. Materials & Design 236 (2023): 112475 [41]. Copyright 2023, Elsevier. (c) Variational autoencoder (VAE).

Adapted from Chen et al. Nature Communications 14.1 (2023): 4872 [42]. Copyright 2023, Nature. (d) Transformer model. Adapted from Gao et al.

Advanced Science (2024): 2405750 [43]. Copyright 2024, Wiley. (e) Particle swarm optimization (PSO) principle. Adapted from Yuan et al. Processes 11.1

(2022): 26 [44]. Copyright 2022, Multidisciplinary Digital Publishing Institute, and (f) PSO flow diagrams. Adapted from Liu et al. IEEE Access 9 (2021):

92941–92951 [45]. Copyright 2021, The Institute of Electrical and Electronics Engineers. (g) End-to-end inverse design algorithm. Adapted from Yin,

et al. Advanced Materials (2024): 2312303 [46]. Copyright 2021, The Institute of Electrical and Electronics Engineers.
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withhigh dimensionality or complexity. Figure 2a illustrates

the structure of a deep neural network, where input data

are first preprocessed through the input neurons, followed

by intermediate (hidden) layers. Finally, the classification

outcome is generated by the output neurons. Each neu-

ron calculates its output by applying a nonlinear activation

function to the weighted sum of its inputs.

2.1.2 Transformer models

The introduction of Transformer models by Vaswani et al.

in 2017marked a significant advancement in the field of nat-

ural language processing (NLP), as these models employed

self-attention mechanisms that superseded conventional

sequence models. [47]. These mechanisms excel at captur-

ing long-range dependencies in input sequences, enhanc-

ing generative tasks like text completion and translation.

Generative Pretrained Transformer (GPT) models, derived

from this architecture, have further expanded capabili-

ties [48]. In nanophotonics, Transformer model is adapted

with dimensionality reduction techniques to address mis-

matches between input and output dimensions (Figure 2b)

[43]. The input spectrum is segmented into patches to

address the significant dimensional mismatch between the

input S and output P. Each patch undergoes convolution

for feature extraction, followed by positional encoding, pro-

ducing a sequence of vectors. These vectors are then fed

into the Transformer encoder module, which is connected

to anMLP layer, ultimately yielding the predictedmetastruc-

ture parameters. The encoder module comprises L identical

layers, each containing a multi-head attention mechanism

and a feed-forward MLP. Within each attention head, the

input sequence is transformed using three learnable weight

matrices into the query, key, and value vectors (Q, K, V).

The self-attention mechanism computes attention scores as

follows [43]:

Attention(Q,K,V) = Softmax

(
QKT√
dk

)
V (1)

here dk is the dimension of Q and K. The dot products

of query with all the keys are normalized and weighted

using the Softmax function. These attention weights are

then applied to the values V . The outputs of all attention

heads are concatenated as [43]:

MultiHead(Q,K,V) = Concat
(
Head1,…Headi,… ,HeadZ

)
WO

(2)

where Z denotes the number of heads, Headi is the output

of the ith head, and WO is the projection matrix for all

heads. The result of the multi-head attention mechanism is

subsequently passed to the MLP layer for final processing.

2.1.3 Variational autoencoders (VAEs)

Variational autoencoders (VAEs) are generative models

capable of producing new data samples resembling the

training data [42]. In nanophotonics, VAEs are particularly

effective for inverse design tasks requiring specific optical

properties. By learning data distributions, VAEs generate

unconventional designs that optimize light–matter interac-

tions, light propagation control, and device performance.

For the VAE architecture, as shown in Figure 2c, only the

generation network is illustrated for simplicity, while the

elimination network can be constructed by switching low

and high frequencies. Reflection coefficients in the high-

frequency band (60–100 THz) are discretized into 668 data

points. Due to the symmetry of the elliptical pattern, only the

three coefficients (Rxx , Rxy, Ryy) are utilized, forming a 2004-

dimensional input/output vector. The network’s operation

involves reconstructing the input x as the output x′, align-

ing with the principles of autoencoders and VAEs. Labels,

discretized from40 to 60 THz into 333 data points, transform

the unsupervised VAE model into a supervised conditional

VAE by providing a supervised training target.

2.1.4 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) excel at analyzing

spectral and microscopy images due to their advanced

image processing capabilities. By extracting spatial features

through convolutional layers, CNNs enable the identifica-

tion of nanostructure characteristics, the detection of mate-

rial defects, and the optimization of structural parameters.

A 2D-CNN model for metasurface prediction is depicted in

Figure 2d [41]. The mean-square error and accuracy are

calculated by the following expressions [41]:

MES = 1

N

N∑
i=1

(
yi − ŷi

)2
(3)

Accuracy = Number of correct predictions

Total number of predictions
(4)

where N is the number of data points, yi is the trained

value, and ŷi denotes the validated value. The CNN model’s

performance is evaluated by comparing the predicted spec-

trum against simulation results using the mean absolute

accuracy. Other networks, such as ResNet and recurrent

neural networks (RNNs), also contribute to nanophoton-

ics research, although they are not expanded upon here

[49]–[53].
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2.2 Intelligent algorithms

In addition to neural networks, traditional AI algorithms

play a crucial role in supporting nanophotonic research by

enhancing data analysis and optimization processes.

2.2.1 Classification algorithms

Classification algorithms such as Random Forests, Sup-

port Vector Machines (SVM), and K-means clustering play

essential roles in identifying and categorizing nanopho-

tonic materials and structures. For instance, SVMs classify

material phases based on spectral responses, while Random

Forests detect structural defects in nanostructures [54].

2.2.2 Filtering algorithms

Filtering algorithms are crucial for preprocessing experi-

mental data and images, removing noise, and extracting rel-

evant features. Common techniques include Kalman filters,

low-pass filters, and high-pass filters. Kalman filters cor-

rect noisy measurements, low-pass filters eliminate high-

frequency noise, and high-pass filters enhance edges in

microscopy images, revealing fine structural details [55].

2.2.3 Optimization algorithms

Optimization algorithms are indispensable for structural

design and parameter tuning. Methods such as genetic algo-

rithms, Bayesian optimization, and particle swarm opti-

mization (PSO) efficiently navigate parameter spaces inmul-

tiobjective optimization tasks. Notably, adjoint optimization

is widely used in nanophotonics and metasurface design

to optimize complex structures and meet specific optical

performance requirements, such as high-efficiency lenses,

filters, or waveguides [56], [57]. In scenarios where multiple

performance metrics need to be optimized simultaneously,

adjoint optimization significantly reduces computational

costs through its efficient gradient computation. Moreover,

the integration of adjoint optimization algorithms with arti-

ficial intelligence techniques, such as neural networks, can

further enhance the efficiency of photonic device design.

The principle and flow of PSO mimics swarm behavior to

find optimal configurations is plotted in Figure 2e and f

[44], [45]. The process iterates through 30 generations, with

20 parameters evaluated per generation. Calculated and

optimized values are input into a fitness function. The opti-

mization concludes when either the maximum iterations

are reached or the desired average absorption is achieved.

Otherwise, particle positions are updated based on the fit-

ness function, and the process repeats until the stopping

criterion is satisfied. These techniques enable rapid identi-

fication of designs, which meets diverse performance cri-

teria and enables on-demand design (Figure 2f) [46], [58],

[59]. In order to achieve on-demand functionality, the loss

function’s derivative with respect to the phase response of

eachmeta-atom at the object plane can be expressed as [46]:

𝜕L
𝜕𝜑 p,q

=
𝜕

(
M∑
j=1

M∑
i=1

(
Ei jE

∗
i, j
− Ii, j

)2)

𝜕𝜑 p,q

= 4

M∑
j=1

M∑
i=1

[(
Ei, jE

∗
i, j
− Ii, j

)
Re

{
E∗
i, j

𝜕Ei, j

𝜕𝜑 p,q

}]
(5)

where Re{…} denotes the real part of the value in the

bracket. Here, i, j and p, q represent the positions of each

pixel or meta-atom in the image plane and object plane,

respectively. The scattered field T p,q from metasurface is

represented as Ap,q exp
(
i𝜑 p,q

)
, where A represents the

amplitude and 𝜑 is the phase. The Wirtinger calculus is

applied for derivatives. Using the chain rule, the relation-

ship between the loss function and the geometric size of

the meta-atom (e.g., length Li, j) can be built by the following

derivative [46]:

𝜕L
𝜕Lp,q

= 𝜕L
𝜕𝜑 p,q

𝜕𝜑 p,q

𝜕Lp,q

+ 𝜕L
𝜕Ap,q

𝜕Ap,q

𝜕Lp,q

= 4Re

{
M∑
j=1

M∑
i=1

[(
Ei, jE

∗
i, j
− Ii, j

)
E∗
i, j
Hi, j, p,q

]

×
𝜕Tp,q

𝜕Lp,q

}
(6)

3 Smart design driven by machine

learning

The integration of AI, particularly machine learning (ML),

has revolutionized the exploration of complex parameter

spaces and the prediction of unknown features in nanopho-

tonics. High-effective design methods have accelerated

design processes, enabling the development of advanced

photonic devices. Yan et al. proposed the circuit-theory-

informed neural network (CTINN), which integrates equiv-

alent circuit theories into deep learning (DL) (Figure 3a)

[60]. CTINN not only predicts spectra with high accuracy

beyond the structure’s training span but also extrapolates

optical responses across extended wavelength ranges. With

its physics-guided design, CTINN demonstrates superior
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Figure 3: Smart design driven by machine learning. (a) Intelligent design of metamaterials by circuit -physics-driven deep learning. Adapted from

Yan et al. Laser & Photonics Reviews: 2400724 [60]. Copyright 2024, Wiley. (b) Forward and inverse design of manufacturable free-form dielectric

metasurfaces. Adapted from Tanrioveret et al. ACS Photonics 10.4 (2022): 875–883 [61]. Copyright 2022, American Chemical Society. (c) Schematic

drawing of MST architecture for the smart design of solar metamaterial absorbers. Adapted from Chen et al. Advanced Science 10.13 (2023): 2206718

[62]. Copyright 2023, Wiley. (d) Rapid on-demand design for molecular fingerprint sensing. Adapted from Liu et al. ACS Photonics, 2024, 11(11):

4838–4845 [63]. Copyright 2024, American Chemical Society. (e) Inverse design of transmissive metagratings based on hybrid SL and RL. Adapted from

Yeung et al. Optics Express 32.6 (2024): 9920–9930 [64]. Copyright 2024, The Optical Society of America. (f) The interconnection between two networks

(a generation network and an elimination network). Adapted from Chen et al. Nature Communications 14.1 (2023): 4872 [42]. Copyright 2023, Nature.

generalization, requiring only 10 %of the training data com-

pared to conventional models while reducing test loss by

over 50 %. However, challenges such as low manufacturing

feasibility, limited design freedom, and insufficient model

generalizability persist.

Addressing these issues, Ibrahim-Tanriover et al. pro-

posed a comprehensive framework for generative mod-

eling and inverse design of manufacturable freeform

metasurfaces (Figure 3b) [61]. Their approach incorporates

meta-atom parameters – including cross-section shape,

periodicity, refractive index, and height, into the forward

network, achieving inverse optimization under manufac-

turing constraints. DLmodels have also facilitated the rapid

design of high-performance broadband solar metamate-

rial absorbers (SMAs). Chen et al. developed a metama-

terial spectrum transformer (MST) network, based on a

spectrum-splitting scheme, to meet user-defined spectral

requirements with higher accuracy than traditional multi-
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layer perceptron (MLP) networks (Figure 3c) [62]. In the pro-

posed Transformer-based deep learning framework, both

forward and inverse design processes are incorporated. For

the forward design, the input comprises a vector G repre-

senting the GRI-based metamaterial, where the variables a,

b, c, d, e, and f denote the thicknesses of individual GRI

layers. Positional embeddings are applied to enhance the

representation of the input data. The input is then passed

through an encoder composed of multiple identical layers,

each containing two core components: multi-head atten-

tion and a position-wise feed-forward network. A fully con-

nected layer follows the transformer encoder, enabling the

generation of the predicted spectra. For the inverse design,

the input is a spectral vector S covering 500 wavelength

points within the range from 300 nm to 2,500 nm. These

spectral data are divided into 25 patches, and each patch

undergoes one-dimensional convolutional embedding. This

step transforms the spectral patches into vector represen-

tations suitable for processing by the MST model. Positional

information is incorporated into the sequence through posi-

tional embeddings to maintain the order of the spectral

data. Ultimately, the predicted structural parameters are

obtained using a Transformer Encoder, coupled with a fully

connected layer, in a manner similar to the forward design

process.

Liu et al. introduced a bidirectional neural network for

customizing inverted all-dielectric metagratings, applied to

trace THz fingerprint sensing [63]. As shown in Figure 3d,

their forward network employs a divide-and-conquer strat-

egy, using multiple subnetworks for segmental spectral

prediction. This approach significantly enhances predic-

tion accuracy compared to traditional methods. Beyond

purely data-driven approaches, physics-informedAImodels

are gaining prominence. To enhance design performance,

Yeung et al. combined reinforcement learning (RL) with

supervised learning (SL) to optimize nanophotonic struc-

tures (Figure 3e) [64]. Using a convolutional neural network

(CNN) for the initial inverse design of a silicon-on-insulator

metagrating, they refined device performance through an

RL process. This hybrid approach overcomes the limita-

tions of individual DL methods, offering a more practical

and efficient solution for nanophotonic design. In addition

to forward and inverse designs, innovative methods like

spectra-to-spectra design are being explored. Chen et al.

proposed a generation-elimination framework for inferring

optical responses fromexisting spectral data (Figure 3f) [42].

The generative network produces awide range of candidate

solutions, while the elimination network identifies the opti-

mal designs. This framework, comprising an encoder, latent

space, and decoder, is extendable to other photonic design

fields, offering a robust tool for tackling complex challenges.

4 Diffractive optical networks

Deep learning has significantly enhanced the ability to

leverage computers for complex reasoning tasks. Tradi-

tional deep learning methods rely on multilayer artifi-

cial neural networks (ANNs) to learn data representations

and abstract features, with successful applications across

various domains, including language translation, speech

recognition, medical image analysis, and image classifica-

tion. However, their dependence on electronic computation

imposes limitations regarding both speed and energy effi-

ciency [65]. These limitations have prompted researchers to

explore novel computational paradigms, such as all-optical

machine learning frameworks like the diffractive deep neu-

ral network (D2NN), to bypass the bottlenecks of electronic

computation and enable faster, more energy-efficient pro-

cessing [66]. The D2NN framework represents an innovative

all-optical approach to deep learning, as shown in Figure 4a.

It leverages a multilayer architecture of diffractive surfaces

that collectively function as a physical neural network, per-

forming computations through optical interactions rather

than digital operations [67]–[70]. Utilizing principles of opti-

cal diffraction, the D2NN is capable of executing complex

tasks at the speed of light without the need for active elec-

trical components. Key distinctions between the D2NN and

a conventional neural network:

(1) Framework: The D2NN processes data via coher-

ent light waves, handling complex-valued inputs and

incorporating multiplicative biases. The network’s

weights are defined by free-space diffraction, with sec-

ondary wave interference modulated in phase and/or

amplitude by each preceding layer.

(2) Speed: The D2NN performs its learned functions at

light speed, using optical diffraction and passive com-

ponents, whereas conventional neural networks are

limited by slower electronic computation.

(3) Energy Efficiency: Since the D2NN operates through

passive optical layers, it requires no additional power

for computation, achieving high energy efficiency.

The optical layout of the metasurface-enabled D2NN is

illustrated in Figure 4b, where light carrying informa-

tion about the object is polarized in either the x- or y-

direction to differentiate object types [31]. The hidden layers

of the metasurface-enabled D2NN consist of polarization-

multiplexed metasurfaces acting as neurons, manipulating

the phase of incoming light based on its polarization. These

metasurfaces direct the diffracted light to specific regions on

a complementary metal-oxide-semiconductor (CMOS) chip,

which serves as the network’s output layer. The training



436 — W. Chen et al.: Empowering nanophotonic applications

Figure 4: Working principle of diffractive optical networks. (a) Comparison between a D2NN and a conventional neural network. Adapted from

Lin et al. Science 361.6406 (2018): 1004–1008 [35]. Copyright 2018, American Association for the Advancement of Science. (b) Optical layout of

polarization-dependent object classification for the metasurface-enabled D2NN concept. Adapted from Luo et al. Light: Science & Applications 11.1

(2022): 158 [31]. Copyright 2022, Nature. (c) Schematic and framework of the full-Fourier-component optical neural meta-transformer. Adapted from

Luo et al. Laser & Photonics Reviews 17.12 (2023): 2300272 [71]. Copyright 2023, Wiley. (d) Meta-units with arbitrary and independent control of

amplitude and phase for D2NN. Adapted from Luo et al. Laser & Photonics Reviews 17.12 (2023): 2300272 [71]. Copyright 2023, Wiley.

follows principles similar to conventional electronic neu-

ral networks, with input, hidden, and output layers. Using

deep learning and error backpropagation, the phase distri-

butions within each metasurface layer are iteratively opti-

mized, converging the light energy from different chan-

nels onto distinct detection regions on the CMOS, each rep-

resenting a classification [72]–[76]. This approach enables

the metasurface-enabled D2NN to classify objects by their

polarization-dependent optical signatures, allowing simul-

taneous recognition of diverse object types.

Figure 4c explains the principles of the D2NN, which

is comprised of an input layer, one or more hidden trans-

mission layers, and an output layer. Every point in the

hidden layers represents a frequency and field-controlled

(FFC) meta-neuron capable of modulating optical signals.

Light entering the system is polarized along the x- or y-

axis, providing distinct paths for information propagation

based on polarization states. The training flow of the FFC

optical neural meta-transformer uses the ReLU function to

constrain neuron amplitude values and the sigmoid func-

tion to control phase values, with components labeled as CF

(complex field), FP (free-space propagation), and BP (back-

propagation) [77]–[80]. Key processes include element-wise

multiplication, cross-entropy error (CEE), and mean square

error (MSE), all used to optimize neuron response for effec-

tive optical processing. Figure 4d illustrates the geometry

and functionalmodulation of TiO2 meta-atoms.Meta-atoms’

physical picture can be manipulated by using the opti-

cal rotation effect to adjust the amplitude, with the help

of an auxiliary polarizer acting as an isolator, and using

the phase delay of birefringent structures to regulate the

phase. We can employ a symmetric, unitary Jones matrix

to represent the transmission matrix of the nanopillar

[71],
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here (Ax , Ay) and (𝜑x , 𝜑y) are the outgoing amplitude and

phase along the x-axis and the orthogonal y-axis at 𝜃 =
0, respectively. After introducing the basic principles of

D2NN, we next review their various disruptive applications

in nanophotonics.

Traditional digital electronic computing platforms can-

not perform true complex-valued representations and oper-

ations [81]–[83]. Zhang et al. implemented a true complex-

valued D2NN on a single optical neural chip (ONC), as

shown in Figure 5a [84]. They benchmarked the perfor-

mance of their complex-valued ONC across four different

scenarios: a basic Boolean task, classifying species in an

iris dataset, classification of a nonlinear dataset (circles

and spirals), and handwriting recognition, showcasing the

potential for on-chip computing. Nevertheless, multiplexed

information processing is not feasible with current diffrac-

tive neural network devices, similar to conventional neu-

ral networks [85]–[87]. Furthermore, they typically have

bulky light sources and detectors that do not allow them

to combine the advantages of all-optical computation with

sophisticated image sensor chips for optical wavelength-

band image processing. Luo et al. demonstrated a polarized

multiplexed metasurface-based all-optical neural network

to accomplish a variety of recognition tasks, including the

identification of fashion items and handwritten numerals,

as shown in Figure 5b [31]. A CMOS imaging sensor is inte-

grated with the physical network, facilitating the portability

and miniaturization of an integrated sensing and computer

chip. The illumination source for previous diffractionmeth-

ods was monochromatic coherent light. In addition, Luo

et al. reported the design of a broadband diffractive opti-

cal neural network capable of processing continuous wave-

lengths produced by temporally incoherent broadband light

sources, performing specific tasks obtained through deep

learning in a full-optics manner (Figure 5c) [88]. The results

presented demonstrate that the D2NN framework is adapt-

able to broadband sources and capable of processing opti-

cal waves across a continuous and wide frequency range.

Additionally, the computational power of D2NN tasked with

machine learning can be substantially enhanced through

multi-wavelength operation, made possible by the broad-

band diffractive network approach. The design methodol-

ogy outlined here is not confined to THz wavelengths but

can be extended to other regions of the electromagnetic

spectrum, including the visible range. This advancement

marks an important step in broadening the potential appli-

cations of diffractive optical neural networks, especially

in scenarios where broadband functionality is crucial. Bai

et al. introduced a pyramid diffractive network architecture

that is specifically designed for unidirectional imagemagni-

fication and demagnification in Figure 5d [89]. By restricting

its possible solution space to a predefined bounded region

based on the behavior of ray optics, the pyramid diffractive

network architecture learns image scaling operations in one

direction more efficiently than traditional uniform-sized

D2NN designs. In comparison to standard D2NN models,

this enables the pyramid diffractive network architecture to

converge to a more optimal solution with fewer diffractive

degrees of freedom.

However, the majority of reported all-optical D2NNs

concentrate on tasks like object recognition and image clas-

sification that are absent of interaction with the environ-

ment. In contrast, networks with the ability to make deci-

sions and take control have not yet been developed. How-

ever, the ultimate objective of AI is to directly emulate

the decision-making and control processes of the human

brain from high-dimensional sensory input. Qin et al. have

developed all-optical D2NNs that mimic human-like con-

trol and decision-making abilities through deep reinforce-

ment learning. Employing a residual design, these networks

enable the discovery of optimal control policies through

interaction with the environment and are easily scalable to

existing optical devices (Figure 5d). Three distinct types of

classic games including car racing, super Mario Bros., and

tic-tac-toe were used to confirm their superior performance

[90]. This innovationmarks a step toward integrating intelli-

gent decision-making into optical systems, bridging the gap

between sensing and autonomous control.

The nonlinear activation layer in neural networks

breaks the linear transformation relationship between data

across multiple layers, enabling the network to learn more

complex patterns. To achieve faster processing speeds and

lower energy consumption, D2NNs have garnered signif-

icant attention in recent years, leading to the develop-

ment of various optical nonlinear activation devices. The

introduction of optical nonlinearity in D2NNs or optical

computing can be achieved through several approaches:

the first approach involves using materials with intrin-

sic nonlinear properties; the second relies on the nonlin-

ear relationship between system input and output; and



438 — W. Chen et al.: Empowering nanophotonic applications

Figure 5: Various applications of diffractive optical networks. (a) Chip packaging and a false-color micrograph of the D2NN with integrated heaters.

Adapted from Zhang et al. Nature Communications 12.1 (2021): 457 [84]. Copyright, 2021, Nature. (b) Architecture of the metasurface-enabled D2NN.

The meta-units of the multiple networks are trained separately to achieve multiplexed phase distributions, optimized using an error backpropagation

algorithm executed on a computer. Adapted from Luo et al. Light: Science & Applications 11.1 (2022): 158 [31]. Copyright 2023, Nature. (c) Optimized

and learned thickness profiles of three diffractive layers along with the corresponding simulated (red) and experimentally measured (dashed blue)

spectral responses. Adapted from Luo et al. Light: Science & Applications 8.1 (2019): 112 [88]. Copyright, 2019, Springer Nature. (d) Pyramid diffractive

optical networks for unidirectional image magnification. The diffractive network enhances images in the forward networks and effectively blocks

in the inverse networks. Adapted from Bai et al. Light: Science & Applications 13.1 (2024): 178 [89]. Copyright, 2024, Nature. (e) The sequential control

of the all-optical D2NNs in playing the classic tic-tac-toe games. Adapted from Qiu et al. Advanced Photonics Nexus 3.4 (2024): 046003 [90].

Copyright 2022, Society of Photo-Optical Instrumentation Engineers.

the third leverages higher-order optical nonlinear effects

[91], [92]. Despite these advancements, several challenges

remain. Current D2NNdevices often rely onmonochromatic

light sources and bulky setups, limiting their scalability

and practicality for integrated applications. Future develop-

ments in broadband diffractive optical networks and mul-

tiplexed meta-devices are expected to address these con-

straints, enabling more versatile and compact designs. By

combining the inherent speed and efficiency of optics with

advanced learning algorithms, D2NNs hold the potential to

revolutionize computational paradigms across nanopho-

tonics and beyond.

5 Optical quantum computing

Classical computers, while highly versatile and efficient

in general-purpose tasks, face fundamental limitations in

addressing problems of exponential complexity. Challenges

such as combinatorial optimization, large-scale quan-

tum system simulations, and integer factorization expose
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inefficiencies inherent to classical architectures [93], [94].

Additionally, their reliance on the von Neumann architec-

ture introduces bottlenecks in data transfer and parallelism,

while constraints in energy consumption and heat dissipa-

tion becomemore pronounced as transistorminiaturization

approaches physical limits. Classical systems also lack the

inherent randomness necessary for cryptographic security

and struggle to model nonlinear or highly complex systems,

underscoring the need for alternative paradigms like quan-

tum computing.

Optical quantum computing (OQC) offers a promising

solution by leveraging photons as quantum information

carriers (qubits). Photons exhibit unique properties such

as high speed, low interaction with the environment, and

immunity to decoherence, making them ideal for robust

quantum operations. Qubits can exist in superpositions of

quantum states, with polarizations (horizontal, vertical, or

arbitrary) commonly representing the logical states |0⟩ and|1⟩, as illustrated in Figure 6a [95]. This enables quantum

parallelism, allowing photons to process multiple states

simultaneously. OQC further supports diverse degrees of

freedom for qubit encoding, including polarization, spa-

tial paths, and time bins, providing flexibility and robust-

ness in quantum operations. To elucidate the differences

between classical and quantum machine learning (QML),

Figure 6b compares their operational models [96]. In QML,

data points {xi} (denoted as A, B, etc.) are embedded into

high-dimensional quantum Hilbert spaces. Kernel func-

tions, represented by arrows, measure similarities between

data points, while the geometric differences g reflect vari-

ations in these measures between classical and quantum

models. The effective dimensionality d of datasets in the

Figure 6: Optical quantum computing. (a) Single-photon qubits use horizontal photons for logical “0” and vertical photons for logical “1,” with states

plotted on a Bloch sphere, controlled by birefringent wave plates, and converted between polarization and path encoding using a polarization beam

splitter. Adapted from O’brieny et al. Science 318.5856 (2007): 1567–1570 [95]. Copyright 2007, American Association for the Advancement of Science.

(b) Cartoon of the geometry (kernel function) defined by classical and quantum ML models. Adapted from Huang et al. Nature Communications 12.1

(2021): 2631 [96]. Copyright 2021, Nature. (c) A standard feedforward neural network with input, hidden, and output layers is an example of a QNN

framework. Another alternative QNN strategy is to maintain the qubits fixed without replacing or discarding them, and QCNNs measure and discard

qubits as the algorithm runs. Adapted from De Leon et al. Science 372.6539 (2021): eabb2823 [97]. Copyright, 2021, American Association

for the Advancement of Science. (d) Paradigms of tasks that quantum machine learning can perform. Adapted from Cerezo, Marco, et al. Nature

Computational Science 2.9 (2022): 567–576 [93]. Copyright 2022, Nature.
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quantum space illustrates the enhanced capacity of QML

for complex data analysis. Additionally, Figure 6c highlights

three distinct architectures of quantum neural networks

(QNNs) [97]. The first model represents a dissipative QNN,

which extends the concept of classical feedforward net-

works; in this setup, each node is associated with a qubit,

and unitary operations connect qubits, with qubits being

discarded after propagating information to the subsequent

layer. The second model illustrates a conventional QNN,

in which quantum data states traverse a quantum circuit

without adding or discarding qubits in successive layers.

Finally, the third model shows a convolutional QNN, where

qubits are measured at each layer to reduce the data’s

dimensionality while preserving its essential features. To

date, QML encompasses a diverse range of tasks, as illus-

trated in Figure 6d [93]. These include classical applications,

quantum-inspired algorithms, and quantum-specific opti-

mizations. Quantum machine learning, for instance, can be

used for quantum tasks like optimizing quantum experi-

ments or finding quantum algorithms. QNNs can process

both classical and quantum data. When using quantum-

inspired techniques, even classical tasks can be catego-

rized as QML. This perspective focuses primarily on QNNs,

quantum kernels, and quantum deep learning, which con-

stitute foundational areas within this rapidly evolving field.

Despite significant advancements, O’Brien notes that sub-

stantial challenges must still be overcome to realize a large-

scale optical quantum computer [95].

6 Advanced engineering

applications

The integration of artificial intelligence (AI) into advanced

engineering applications has become increasingly essential

in the era of the Internet of Things (IoT) [98]–[108]. For the

perception and identification of objects, infrared machine

vision systems are crucial. In humanvision, the retina’s pho-

toreceptors (rods and cones) initially convert external stim-

uli into graded potentials, as depicted in Figure 7a. These

graded potentials are then encoded into spike trains by

ganglion cells, reflecting the inherent stochasticity of sen-

sory transduction. Wang et al. applied spiking neural net-

works (SNNs) to encode and classify perceived images [109].

In their approach, mid-infrared (mid-IR) digit images are

transformed into spike trains via rate encoding, which are

subsequently processed by a trained fully connected SNN

Figure 7: Artificial intelligence enabling advanced environmental interactive applications. (a) Schematic of the human visual system and the proposed

2D mid-IR optoelectronic retina. Adapted from Wang et al. Nature Communications 14.1 (2023): 1938 [109]. Copyright 2023, Nature. (b) Schematic of

the modified ResNet-18 model and predicted results. Adapted from Fan et al. Nature (2024): 1–7 [110]. Copyright 2024, Nature. (c) Display of the self-

adaptive cloak response to random backgrounds for a normal incident wave at 8.4 GHz. Adapted from Qian et al. Nature Photonics 14.6 (2020):

383–390 [111]. Copyright 2020, Nature. (d) Principles and prospects for single-pixel imaging. Adapted from Zhan et al. Optics Letters 47.11 (2022):

2838–2841 [112]. Copyright 2022, The Optical Society of America.
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for digit classification. The predicted digit is determined

by the output neuron that exhibits the highest spike rate.

Simultaneous analysis of light’s intensity, polarization, and

spectrum plays a pivotal role in applications like remote

sensing, device miniaturization, chemical and biological

characterization, optical communication, and astronomical

observation. As shown in Figure 7b, Fan et al. demonstrated

an advanced high-dimensional photodetection system capa-

ble of simultaneously characterizing wavelength and polar-

ization information [110]. Their approach uses a single-shot

measurement technique that combines a dispersive system

to map spectral and polarization data with a deep neural

network for decoding. This method delivers performance

comparable to traditional polarimeters and spectrometers,

enhancing the system’s efficiency in capturing complex opti-

cal data.

In the field of adaptive optics, the concept of an opti-

mal invisibility cloak is particularly intriguing. An ideal

cloak should dynamically adjust its internal configuration in

response to external stimuli or changes in the surrounding

environment, much like the adaptability of a chameleon.

Intelligent, self-adaptive cloaks have high potential for real-

time applications involving moving objects or complex,

nonstationary environments. To address this, researchers

have proposed an intelligent invisibility cloak powered by

DL and realized using a tunable metasurface (Figure 7c)

[111]. In this system, each metasurface element is indepen-

dently controlled by a direct-current bias voltage applied

to varactor diodes operating at microwave frequencies. A

pretrained artificial neural network (ANN) computes and

adjusts the bias voltages in milliseconds, allowing the cloak

to autonomously adapt to dynamic incidentwaves and envi-

ronmental changes.

Nowadays, high-level semantic sensing has been

achieved using single-pixel sensing combined with an

end-to-end neural network for joint optimization. However,

this method can be computationally intensive, especially

when sampling rates vary [112]. In reference [113], Zhan

et al. present a weighted optimization approach for

adaptive sampling single-pixel sensing [112]. This technique

requires only a single network training session to handle

dynamic sampling rates. A weighting scheme is introduced

during the encoding process, which iteratively updates

modulation patterns and their corresponding weights.

The most effective modulation patterns, identified by the

highest weights, are used for light modulation, significantly

improving the efficiency of sensing in experimental

applications [114].

To increase our comprehension of both physiologi-

cal and pathological biological processes, we must be able

to identify and track biomolecules [115], [116]. It can be

difficult to detect more than one or two target analytes,

though, especially for processes where the net refractive

index doesn’t vary much. This is where AI excels. John-

Herpin et al. designed a D2NN that effectively differenti-

ates between various molecular components, as shown in

Figure 8a [117]. Large volumes of spectrotemporal data can

be collected using the optofluidicmethod’s real-time format,

whichmakes it quicker to construct a D2NN that can reliably

distinguish between all significant classes of biomolecules

[118], [119]. In Figure 8b, Li et al. demonstrated the poten-

tial of metasurface-integrated systems to simplify liquid

chemical identification by leveraging unique vortex beam

patterns and AI-powered classification, effectively bypass-

ing bulky and complex spectrometric tools [120]. Figure 8c

highlights the efficacy of the multi-task learning deep neu-

ral network (MTL-DNN) in detecting multiple orbital angu-

lar momentum (OAM) states and their power spectra [121].

A shared encoder and two task-specific heads make up

the MTL-DNN architecture, which is used to classify OAM

modes and regression of their power spectra. Speckle pat-

terns generated by the disordered nematic liquid crystal

(NLC) medium serve as inputs to the network. The con-

fusion matrix demonstrates 100 % accuracy in identifying

20 distinct OAM states, encompassing various combina-

tions of topological charges and power levels. These results

demonstrate that the MTL-DNN achieves highly accurate

recognition of various OAM states and their power spec-

tra, underscoring the system’s capability for precise, high-

dimensional light field sensing, and paving the way for

advanced optical applications.

Notably, the black-box problem of neural networks has

been a concern [122]. Gao et al. introduced the Metaformer

model, emphasizing explainability in deep learning for

metasurface sensor design by addressing the “black-box”

limitations of conventional models [43]. This was achieved

through spectral position encoding, preserving positional

and spectral relationships by embedding critical patch

information, as shown by cosine similarity analysis. Gao

et al. further addressed this issue by introducing inter-

pretable transformer networks. As shown in Figure 8d, the

multi-head attention mechanism allows each head to focus

on specific spectral features, such as Q-BIC resonance peaks

or off-resonance regions [123]–[125]. Early network layers

capture local features, while deeper layers integrate global

patterns. This hierarchical learning enables the model to

accurately predict high-Q spectral peaks and identify subtle

interactions between resonance and off-resonance regions.

Attention heatmaps illustrate how different layers and

heads shift focus between local and global spectral details,
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Figure 8: Artificial intelligence enabling advanced sensing applications. (a) A deep neural network to discriminate between different molecular

components effectively. Adapted from John-Herpin et al. Advanced Materials 33.14 (2021): 2006054 [117]. Copyright 2021, Wiley. (b) Schematic of the

in situ liquid identification process relying on metasurface-based vision intelligence. Adapted from Li et al. ACS Photonics 10.3 (2023): 780–789 [32].

Copyright 2023, American Chemical Society. (c) Intelligent multiple-OAM states sensing. Adapted from Zhu et al. PhotoniX 4.1 (2023): 26 [121].

Copyright 2023, Nature. (d) A framework for physically interpretable deep learning networks for bio-sensing. Adapted from Gao et al. Advanced

Science (2024): 2405750 [43]. Copyright 2024, Wiley.

highlighting the model’s ability to capture critical physi-

cal features essential for precise metasensor design pre-

dictions. In addition, some advanced applications, such as

optical logic operations and imaging capabilities, have also

attracted extensive attention [126], [127].

7 Insight and outlook

The integration of artificial intelligence in nanophotonics

marks a significant leap forward in both fields, creating a

synergy that leverages the strengths of each [58], [128]–[134].

AI-powered approaches have demonstrated remarkable

capabilities in optimizing nanophotonic device designs, pre-

dicting complex behaviors, and accelerating the discov-

ery of novel structures and configurations. These advance-

ments are not only pushing the boundaries of what is pos-

sible in nanophotonics but are also facilitating the emer-

gence of practical applications across diverse areas, like

high-resolution imaging, advanced sensing, and quantum

information processing. Looking ahead, the continuous evo-

lution of AI technologies will further enhance our ability

to solve intricate problems in nanophotonics. The develop-

ment of more sophisticated AI models, along with improve-

ments in computational power and data availability, will

enable even more precise and efficient design processes.

Additionally, the reciprocal influence of nanophotonics on

AI, through innovations like optical computing and diffrac-

tive neural networks, promises to drive advancements in

computational speed and energy efficiency.

However, despite these achievements, there are notable

challenges that must be addressed. One major issue lies in

the generation of large-scale, high-quality datasets essen-

tial for training AI models. Collecting and curating these

datasets is often labor-intensive, particularly for highly spe-

cialized domains like nanophotonics, where experimental

data can be scarce or expensive to obtain. Additionally,

while AImodels excel at specific tasks, their generalizability

across diverse scenarios remains limited. This issue is com-

pounded by the lack of interpretability in many machine
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Table 1: Comparison between smart designs with AI and traditional

designs.

Smart designs

with AI

Traditional

designs

Design speed High Low

Innovation ability High Low

Design cycle Short Long

Optimization difficulty Low High

Degree of individuation High Ordinary

Accuracy High Relatively low

Data dependency High Weak

Interpretability Relatively weak Strong

Manufacturing constraint High Relatively low

learning algorithms, which can hinder their adoption in

fields requiring high levels of reliability and interpretabil-

ity. Another significant challenge is the computational cost

associated with training sophisticated AI models, especially

those incorporating physics-informed constraints or oper-

ating at high-dimensional parameter spaces. The energy

consumption of such models presents sustainability con-

cerns, which are particularly relevant in the era of green

technology.

Future research will likely focus on the integration of

AI with novel nanophotonic technologies, including meta-

surfaces, plasmonics, and quantum dots, exploring new

paradigms for light manipulation and interaction at the

nanoscale [135]–[147]. Moreover, interdisciplinary collabo-

rations will be crucial in addressing the remaining chal-

lenges and exploiting the full potential of AI in nanopho-

tonics [148]–[152]. Ultimately, the convergence of AI and

nanophotonics will lead to the creation of next-generation

optical devices with enhanced functionalities and unprece-

dented performance, transforming industries and opening

up new frontiers in science and engineering [153]–[156].

This dynamic interplay between AI and nanophotonics

holds the promise of a future where intelligent, efficient,

and highly integrated optical systems become a cornerstone

of technological advancement (Table 1).
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