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Abstract: Empowering nanophotonic devices via artificial
intelligence (AI) has revolutionized both scientific research
methodologies and engineering practices, addressing crit-
ical challenges in the design and optimization of complex
systems. Traditional methods for developing nanophotonic
devices are often constrained by the high dimensional-
ity of design spaces and computational inefficiencies. This
review highlights how Al-driven techniques provide trans-
formative solutions by enabling the efficient exploration of
vast design spaces, optimizing intricate parameter systems,
and predicting the performance of advanced nanophotonic
materials and devices with high accuracy. By bridging the
gap between computational complexity and practical imple-
mentation, Al accelerates the discovery of novel nanopho-
tonic functionalities. Furthermore, we delve into emerging
domains, such as diffractive neural networks and quantum
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machine learning, emphasizing their potential to exploit
photonic properties for innovative strategies. The review
also examines AI’'s applications in advanced engineering
areas, e.g., optical image recognition, showcasing its role
in addressing complex challenges in device integration. By
facilitating the development of highly efficient, compact
optical devices, these Al-powered methodologies are paving
the way for next-generation nanophotonic systems with
enhanced functionalities and broader applications.

Keywords: metasurface; artificial intelligence; quantum
computing; machine learning; neural network

1 Introduction

Nanophotonics explores the interaction between light and
matter at the nanometer scale, a field that has experi-
enced significant growth driven by advancements in micro-
and nanotechnology. These innovations have enabled a
wide range of applications, including miniaturized optoelec-
tronic detectors and spectrometers, high-resolution imaging
systems, advanced sensing platforms, compact optical emit-
ters, structural coloration based on iridescent nanostruc-
tures, nonlinear optical phenomena, tunable photonic com-
ponents, optical holography, metasurface-enabled optically
variable devices, and technologies for quantum information
processing [1]-[5]. At the same time, light is inherently mul-
tidimensional, being characterized by its attributes, such as
wavelength, intensity, and polarization. Simultaneous anal-
ysis of these dimensions is essential for advancing optical
communication, remote sensing, and chemical and biolog-
ical characterization. Additionally, it plays a pivotal role
in driving the miniaturization of optical devices, enabling
more compact and efficient photonic technologies [6]—[13].
On the other hand, designing and optimizing nanopho-
tonic devices, however, involves solving complex multi-
parameter problems, often requiring extensive numeri-
cal explorations [13]-[23]. As data volumes and design
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complexities continue to increase, traditional methods
that rely on conventional iterations and computation-
ally intensive processes encounter fundamental limita-
tions. These challenges impede the efficient development
of next-generation nanophotonic technologies, highlighting
the need for innovative design approaches and optimization
techniques.

In parallel, artificial intelligence (AI) has emerged as
a transformative paradigm, driving advancements across
diverse fields such as healthcare, chemistry, electronics,
and manufacturing [24]-[30]. AI techniques, particularly
deep learning, have shown immense potential in acceler-
ating nanophotonics research. For example, Al can effi-
ciently optimize device configurations, predict material per-
formance, and uncover hidden physical principles that are
challenging to discern using conventional approaches [31],
[32]. Moreover, Al’s capacity to process large datasets and
handle complex calculations offers unique opportunities
to investigate the intricate interactions between light and
matter at the nanoscale [33], [34].

Interestingly, the relationship between AI and
nanophotonics is mutually reinforcing. Photonics, with
its unique wave-based properties, has been employed to
develop diffractive optical networks and other Al-inspired
architectures, significantly improving computational speed
and energy efficiency [35]. This synergy has catalyzed
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groundbreaking innovations, such as optical quantum
machine learning and multifunctional on-chip systems
based on metasurfaces, pushing the interdisciplinary
boundaries of Al for science-driven scientific advancements
[36].

This review examines the bidirectional relationship
between artificial intelligence (AI) and nanophotonics, as
illustrated in Figure 1. It highlights how Al-driven method-
ologies have revolutionized nanophotonics by optimiz-
ing device design, facilitating rapid exploration of high-
dimensional parameter spaces, and predicting the behav-
ior of complex systems with exceptional precision. Simul-
taneously, it explores how advancements in nanophoton-
ics contribute to the development of AI technologies. By
analyzing recent studies and breakthroughs, this review
provides a comprehensive overview of the transformative
interplay between these fields, paving the way for next-
generation optical devices with enhanced performance and
functionalities.

2 Fundamentals of Al
for nanophotonics

AT has become a driving force in nanophotonics research,
offering advanced tools for analyzing complex datasets,
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Figure 1: Empowering nanophotonic applications via artificial intelligence based on electronic, optical, and quantum devices. Design: adapted from
Ma et al. Advanced Materials 34.16 (2022): 2110022 [30]. Copyright 2023, Wiley. Recognition: adapted from Luo et al. Light: Science & Applications 11.1
(2022): 158 [31]. Copyright 2023, Nature. Analysis: adapted from Li et al. ACS Photonics 10.3 (2023): 780-789 [32]. Copyright 2023, American Chemical
Society. Quantum mechanics: Belis et al. Machine Learning: Science and Technology 5.3 (2024): 035010. [34]. Copyright 2024 Institute of Physics.
Optics: Lin et al. Science 361.6406 (2018): 1004-1008 [35]. Copyright 2018, American Association for the Advancement of Science. Licensed under

a Creative Commons Attribution 4.0 International License. Other parts were drawn by the authors.
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optimizing device designs, and exploring novel optical prop-
erties. Al methods, particularly machine learning (ML),
enable researchers to tackle intricate problems that would
otherwise require prohibitive computational resources.
These approaches can be broadly categorized into two pri-
mary areas: neural networks and intelligent algorithms [37].

2.1 Neural networks

Neural networks (NNs) are pivotal in advancing the field of
nanophotonics by enabling data-driven analysis, structural
optimization, and performance prediction [38]. Different
types of neural networks offer tailored solutions for a vari-
ety of nanophotonic challenges.
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2.1.1 Multilayer perceptrons (MLPs)

Multilayer perceptrons (MLPs) are fundamental feedfor-
ward neural networks suitable for tasks involving low-
dimensional or linear datasets, such as material property
prediction and basic parameter optimization. An MLP
model typically consists of three main layers: an input
layer, one or more hidden layers, and an output layer (as
depicted in Figure 2a) [39]. The input layer processes feature
extracted from the dataset, while the hidden layers perform
computations using weighted connections and nonlinear
activation functions like the Rectified Linear Unit (ReLU)
[40]. Although MLPs are well-suited for straightforward
analytical tasks, they encounter difficulties on handling data
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Figure 2: Fundamentals of AI for nanophotonics, illustrating key neural network frameworks and intelligent algorithm flowcharts. Schematics of (a)
multilayer perceptron (MLP) architecture. Adapted from Ashtiani et al. Nature 606.7914 (2022): 501-506 [39]. Copyright 2022, Nature. (b) Convolutional
neural network (CNN). Adapted from Razi et al. Materials & Design 236 (2023): 112475 [41]. Copyright 2023, Elsevier. (c) Variational autoencoder (VAE).
Adapted from Chen et al. Nature Communications 14.1 (2023): 4872 [42]. Copyright 2023, Nature. (d) Transformer model. Adapted from Gao et al.
Advanced Science (2024): 2405750 [43]. Copyright 2024, Wiley. (e) Particle swarm optimization (PSO) principle. Adapted from Yuan et al. Processes 11.1
(2022): 26 [44]. Copyright 2022, Multidisciplinary Digital Publishing Institute, and (f) PSO flow diagrams. Adapted from Liu et al. IEEE Access 9 (2021):
92941-92951 [45]. Copyright 2021, The Institute of Electrical and Electronics Engineers. (g) End-to-end inverse design algorithm. Adapted from Yin,

et al. Advanced Materials (2024): 2312303 [46]. Copyright 2021, The Institute of Electrical and Electronics Engineers.
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with high dimensionality or complexity. Figure 2a illustrates
the structure of a deep neural network, where input data
are first preprocessed through the input neurons, followed
by intermediate (hidden) layers. Finally, the classification
outcome is generated by the output neurons. Each neu-
ron calculates its output by applying a nonlinear activation
function to the weighted sum of its inputs.

2.1.2 Transformer models

The introduction of Transformer models by Vaswani et al.
in 2017 marked a significant advancement in the field of nat-
ural language processing (NLP), as these models employed
self-attention mechanisms that superseded conventional
sequence models. [47]. These mechanisms excel at captur-
ing long-range dependencies in input sequences, enhanc-
ing generative tasks like text completion and translation.
Generative Pretrained Transformer (GPT) models, derived
from this architecture, have further expanded capabili-
ties [48]. In nanophotonics, Transformer model is adapted
with dimensionality reduction techniques to address mis-
matches between input and output dimensions (Figure 2b)
[43]. The input spectrum is segmented into patches to
address the significant dimensional mismatch between the
input § and output P. Each patch undergoes convolution
for feature extraction, followed by positional encoding, pro-
ducing a sequence of vectors. These vectors are then fed
into the Transformer encoder module, which is connected
to an MLP layer; ultimately yielding the predicted metastruc-
ture parameters. The encoder module comprises L identical
layers, each containing a multi-head attention mechanism
and a feed-forward MLP. Within each attention head, the
input sequence is transformed using three learnable weight
matrices into the query, key, and value vectors (Q, K, V).
The self-attention mechanism computes attention scores as
follows [43]:

T
Attention(Q, K, V) = Softmax< QK ) v (6))

Vi

here d, is the dimension of Q and K. The dot products
of query with all the keys are normalized and weighted
using the Softmax function. These attention weights are
then applied to the values V. The outputs of all attention
heads are concatenated as [43]:

MultiHead(Q, K, V) = Concat(Head,, ... Head,, ..., Head, ) W°
2
where Z denotes the number of heads, Head, is the output
of the ith head, and WP is the projection matrix for all
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heads. The result of the multi-head attention mechanism is
subsequently passed to the MLP layer for final processing.

2.1.3 Variational autoencoders (VAES)

Variational autoencoders (VAEs) are generative models
capable of producing new data samples resembling the
training data [42]. In nanophotonics, VAEs are particularly
effective for inverse design tasks requiring specific optical
properties. By learning data distributions, VAES generate
unconventional designs that optimize light-matter interac-
tions, light propagation control, and device performance.
For the VAE architecture, as shown in Figure 2c, only the
generation network is illustrated for simplicity, while the
elimination network can be constructed by switching low
and high frequencies. Reflection coefficients in the high-
frequency band (60—100 THz) are discretized into 668 data
points. Due to the symmetry of the elliptical pattern, only the
three coefficients (R,,, R,y R,,) are utilized, forming a 2004-
dimensional input/output vector. The network’s operation
involves reconstructing the input x as the output x/, align-
ing with the principles of autoencoders and VAEs. Labels,
discretized from 40 to 60 THz into 333 data points, transform
the unsupervised VAE model into a supervised conditional
VAE by providing a supervised training target.

2.1.4 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) excel at analyzing
spectral and microscopy images due to their advanced
image processing capabilities. By extracting spatial features
through convolutional layers, CNNs enable the identifica-
tion of nanostructure characteristics, the detection of mate-
rial defects, and the optimization of structural parameters.
A 2D-CNN model for metasurface prediction is depicted in
Figure 2d [41]. The mean-square error and accuracy are
calculated by the following expressions [41]:

N

1 a2
i=1
Number of correct predictions

4
Total number of predictions @

Accuracy =

where N is the number of data points, y; is the trained
value, and y; denotes the validated value. The CNN model’s
performance is evaluated by comparing the predicted spec-
trum against simulation results using the mean absolute
accuracy. Other networks, such as ResNet and recurrent
neural networks (RNNs), also contribute to nanophoton-
ics research, although they are not expanded upon here
[49]-[53].
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2.2 Intelligent algorithms

In addition to neural networks, traditional AI algorithms
play a crucial role in supporting nanophotonic research by
enhancing data analysis and optimization processes.

2.2.1 Classification algorithms

Classification algorithms such as Random Forests, Sup-
port Vector Machines (SVM), and K-means clustering play
essential roles in identifying and categorizing nanopho-
tonic materials and structures. For instance, SVMs classify
material phases based on spectral responses, while Random
Forests detect structural defects in nanostructures [54].

2.2.2 Filtering algorithms

Filtering algorithms are crucial for preprocessing experi-
mental data and images, removing noise, and extracting rel-
evant features. Common techniques include Kalman filters,
low-pass filters, and high-pass filters. Kalman filters cor-
rect noisy measurements, low-pass filters eliminate high-
frequency noise, and high-pass filters enhance edges in
microscopy images, revealing fine structural details [55].

2.2.3 Optimization algorithms

Optimization algorithms are indispensable for structural
design and parameter tuning. Methods such as genetic algo-
rithms, Bayesian optimization, and particle swarm opti-
mization (PSO) efficiently navigate parameter spaces in mul-
tiobjective optimization tasks. Notably, adjoint optimization
is widely used in nanophotonics and metasurface design
to optimize complex structures and meet specific optical
performance requirements, such as high-efficiency lenses,
filters, or waveguides [56], [57]. In scenarios where multiple
performance metrics need to be optimized simultaneously,
adjoint optimization significantly reduces computational
costs through its efficient gradient computation. Moreover,
the integration of adjoint optimization algorithms with arti-
ficial intelligence techniques, such as neural networks, can
further enhance the efficiency of photonic device design.
The principle and flow of PSO mimics swarm hehavior to
find optimal configurations is plotted in Figure 2e and f
[44], [45]. The process iterates through 30 generations, with
20 parameters evaluated per generation. Calculated and
optimized values are input into a fitness function. The opti-
mization concludes when either the maximum iterations
are reached or the desired average absorption is achieved.
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Otherwise, particle positions are updated based on the fit-
ness function, and the process repeats until the stopping
criterion is satisfied. These techniques enable rapid identi-
fication of designs, which meets diverse performance cri-
teria and enables on-demand design (Figure 2f) [46], [58],
[59]. In order to achieve on-demand functionality, the loss
function’s derivative with respect to the phase response of
each meta-atom at the object plane can be expressed as [46]:

o EEEm 1))

0Ppq 0@ pq
M M
y OE;
=4y Y [(E, JEL = )?ﬁe{ T }] G)
j=1 i=1
where fRe{...} denotes the real part of the value in the

bracket. Here, i, j and p, q represent the positions of each
pixel or meta-atom in the image plane and object plane,
respectively. The scattered field T, , from metasurface is
represented as A, exp(i(pp,q), where A represents the
amplitude and ¢ is the phase. The Wirtinger calculus is
applied for derivatives. Using the chain rule, the relation-
ship between the loss function and the geometric size of
the meta-atom (e.g., length Z; ;) can be built by the following
derivative [46]:

0£ _ 0% 0@, . 0L 0Ap,
oL,, O0@pq0L,, 0A,,0L,,
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3 Smart design driven by machine
learning

The integration of Al particularly machine learning (ML),
has revolutionized the exploration of complex parameter
spaces and the prediction of unknown features in nanopho-
tonics. High-effective design methods have accelerated
design processes, enabling the development of advanced
photonic devices. Yan et al. proposed the circuit-theory-
informed neural network (CTINN), which integrates equiv-
alent circuit theories into deep learning (DL) (Figure 3a)
[60]. CTINN not only predicts spectra with high accuracy
beyond the structure’s training span but also extrapolates
optical responses across extended wavelength ranges. With
its physics-guided design, CTINN demonstrates superior
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Figure 3: Smart design driven by machine learning. (a) Intelligent design of metamaterials by circuit -physics-driven deep learning. Adapted from
Yan et al. Laser & Photonics Reviews: 2400724 [60]. Copyright 2024, Wiley. (b) Forward and inverse design of manufacturable free-form dielectric
metasurfaces. Adapted from Tanrioveret et al. ACS Photonics 10.4 (2022): 875-883 [61]. Copyright 2022, American Chemical Society. (c) Schematic

drawing of MST architecture for the smart design of solar metamaterial absorbers. Adapted from Chen et al. Advanced Science 10.13 (2023): 2206718
[62]. Copyright 2023, Wiley. (d) Rapid on-demand design for molecular fingerprint sensing. Adapted from Liu et al. ACS Photonics, 2024, 11(11):
4838-4845 [63]. Copyright 2024, American Chemical Society. (e) Inverse design of transmissive metagratings based on hybrid SL and RL. Adapted from
Yeung et al. Optics Express 32.6 (2024): 9920-9930 [64]. Copyright 2024, The Optical Society of America. (f) The interconnection between two networks
(a generation network and an elimination network). Adapted from Chen et al. Nature Communications 14.1 (2023): 4872 [42]. Copyright 2023, Nature.

generalization, requiring only 10 % of the training data com-
pared to conventional models while reducing test loss by
over 50 %. However, challenges such as low manufacturing
feasibility, limited design freedom, and insufficient model
generalizability persist.

Addressing these issues, Ibrahim-Tanriover et al. pro-
posed a comprehensive framework for generative mod-
eling and inverse design of manufacturable freeform
metasurfaces (Figure 3b) [61]. Their approach incorporates

meta-atom parameters — including cross-section shape,
periodicity, refractive index, and height, into the forward
network, achieving inverse optimization under manufac-
turing constraints. DL models have also facilitated the rapid
design of high-performance broadband solar metamate-
rial absorbers (SMAs). Chen et al. developed a metama-
terial spectrum transformer (MST) network, based on a
spectrum-splitting scheme, to meet user-defined spectral
requirements with higher accuracy than traditional multi-
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layer perceptron (MLP) networks (Figure 3c) [62]. In the pro-
posed Transformer-based deep learning framework, both
forward and inverse design processes are incorporated. For
the forward design, the input comprises a vector G repre-
senting the GRI-based metamaterial, where the variables a,
b, ¢, d, e, and f denote the thicknesses of individual GRI
layers. Positional embeddings are applied to enhance the
representation of the input data. The input is then passed
through an encoder composed of multiple identical layers,
each containing two core components: multi-head atten-
tion and a position-wise feed-forward network. A fully con-
nected layer follows the transformer encoder, enabling the
generation of the predicted spectra. For the inverse design,
the input is a spectral vector S covering 500 wavelength
points within the range from 300 nm to 2,500 nm. These
spectral data are divided into 25 patches, and each patch
undergoes one-dimensional convolutional embedding. This
step transforms the spectral patches into vector represen-
tations suitable for processing by the MST model. Positional
information is incorporated into the sequence through posi-
tional embeddings to maintain the order of the spectral
data. Ultimately, the predicted structural parameters are
obtained using a Transformer Encoder, coupled with a fully
connected layer, in a manner similar to the forward design
process.

Liu et al. introduced a bidirectional neural network for
customizing inverted all-dielectric metagratings, applied to
trace THz fingerprint sensing [63]. As shown in Figure 3d,
their forward network employs a divide-and-conquer strat-
egy, using multiple subnetworks for segmental spectral
prediction. This approach significantly enhances predic-
tion accuracy compared to traditional methods. Beyond
purely data-driven approaches, physics-informed Al models
are gaining prominence. To enhance design performance,
Yeung et al. combined reinforcement learning (RL) with
supervised learning (SL) to optimize nanophotonic struc-
tures (Figure 3e) [64]. Using a convolutional neural network
(CNN) for the initial inverse design of a silicon-on-insulator
metagrating, they refined device performance through an
RL process. This hybrid approach overcomes the limita-
tions of individual DL methods, offering a more practical
and efficient solution for nanophotonic design. In addition
to forward and inverse designs, innovative methods like
spectra-to-spectra design are being explored. Chen et al.
proposed a generation-elimination framework for inferring
optical responses from existing spectral data (Figure 3f) [42].
The generative network produces a wide range of candidate
solutions, while the elimination network identifies the opti-
mal designs. This framework, comprising an encoder, latent
space, and decoder, is extendable to other photonic design
fields, offering a robust tool for tackling complex challenges.
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4 Diffractive optical networks

Deep learning has significantly enhanced the ability to
leverage computers for complex reasoning tasks. Tradi-
tional deep learning methods rely on multilayer artifi-
cial neural networks (ANNS) to learn data representations
and abstract features, with successful applications across
various domains, including language translation, speech
recognition, medical image analysis, and image classifica-
tion. However, their dependence on electronic computation
imposes limitations regarding both speed and energy effi-
ciency [65]. These limitations have prompted researchers to
explore novel computational paradigms, such as all-optical
machine learning frameworks like the diffractive deep neu-
ral network (D2NN), to bypass the bottlenecks of electronic
computation and enable faster, more energy-efficient pro-
cessing [66]. The D2NN framework represents an innovative
all-optical approach to deep learning, as shown in Figure 4a.
It leverages a multilayer architecture of diffractive surfaces
that collectively function as a physical neural network, per-
forming computations through optical interactions rather
than digital operations [67]-[70]. Utilizing principles of opti-
cal diffraction, the D2NN is capable of executing complex
tasks at the speed of light without the need for active elec-
trical components. Key distinctions between the D2NN and

a conventional neural network:

(1) Framework: The D2NN processes data via coher-
ent light waves, handling complex-valued inputs and
incorporating multiplicative biases. The network’s
weights are defined by free-space diffraction, with sec-
ondary wave interference modulated in phase and/or
amplitude by each preceding layer.

(2) Speed: The D2NN performs its learned functions at
light speed, using optical diffraction and passive com-
ponents, whereas conventional neural networks are
limited by slower electronic computation.

(3) Energy Efficiency: Since the D2NN operates through
passive optical layers, it requires no additional power
for computation, achieving high energy efficiency.

The optical layout of the metasurface-enabled D2NN is
illustrated in Figure 4b, where light carrying informa-
tion about the object is polarized in either the x- or y-
direction to differentiate object types [31]. The hidden layers
of the metasurface-enabled D2NN consist of polarization-
multiplexed metasurfaces acting as neurons, manipulating
the phase of incoming light based on its polarization. These
metasurfaces direct the diffracted light to specific regions on
a complementary metal-oxide-semiconductor (CMOS) chip,
which serves as the network’s output layer. The training
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Figure 4: Working principle of diffractive optical networks. (a) Comparison between a D2NN and a conventional neural network. Adapted from

Lin et al. Science 361.6406 (2018): 1004-1008 [35]. Copyright 2018, American Association for the Advancement of Science. (b) Optical layout of
polarization-dependent object classification for the metasurface-enabled D2NN concept. Adapted from Luo et al. Light: Science & Applications 11.1
(2022): 158 [31]. Copyright 2022, Nature. (c) Schematic and framework of the full-Fourier-component optical neural meta-transformer. Adapted from
Luo et al. Laser & Photonics Reviews 17.12 (2023): 2300272 [71]. Copyright 2023, Wiley. (d) Meta-units with arbitrary and independent control of
amplitude and phase for D2NN. Adapted from Luo et al. Laser & Photonics Reviews 17.12 (2023): 2300272 [71]. Copyright 2023, Wiley.

follows principles similar to conventional electronic neu-
ral networks, with input, hidden, and output layers. Using
deep learning and error backpropagation, the phase distri-
butions within each metasurface layer are iteratively opti-
mized, converging the light energy from different chan-
nels onto distinct detection regions on the CMOS, each rep-
resenting a classification [72]-[76]. This approach enables
the metasurface-enabled D2NN to classify objects by their
polarization-dependent optical signatures, allowing simul-
taneous recognition of diverse object types.

Figure 4c explains the principles of the D2NN, which
is comprised of an input layer, one or more hidden trans-
mission layers, and an output layer. Every point in the
hidden layers represents a frequency and field-controlled
(FFC) meta-neuron capable of modulating optical signals.
Light entering the system is polarized along the x- or y-
axis, providing distinct paths for information propagation

based on polarization states. The training flow of the FFC
optical neural meta-transformer uses the ReLU function to
constrain neuron amplitude values and the sigmoid func-
tion to control phase values, with components labeled as CF
(complex field), FP (free-space propagation), and BP (back-
propagation) [77]-[80]. Key processes include element-wise
multiplication, cross-entropy error (CEE), and mean square
error (MSE), all used to optimize neuron response for effec-
tive optical processing. Figure 4d illustrates the geometry
and functional modulation of TiO, meta-atoms. Meta-atoms’
physical picture can be manipulated by using the opti-
cal rotation effect to adjust the amplitude, with the help
of an auxiliary polarizer acting as an isolator, and using
the phase delay of birefringent structures to regulate the
phase. We can employ a symmetric, unitary Jones matrix
to represent the transmission matrix of the nanopillar
(711,
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here (4, A,) and (¢,, ¢,) are the outgoing amplitude and
phase along the x-axis and the orthogonal y-axis at 6 =
0, respectively. After introducing the basic principles of
D2NN, we next review their various disruptive applications
in nanophotonics.

Traditional digital electronic computing platforms can-
not perform true complex-valued representations and oper-
ations [81]-[83]. Zhang et al. implemented a true complex-
valued D2NN on a single optical neural chip (ONC), as
shown in Figure 5a [84]. They benchmarked the perfor-
mance of their complex-valued ONC across four different
scenarios: a basic Boolean task, classifying species in an
iris dataset, classification of a nonlinear dataset (circles
and spirals), and handwriting recognition, showcasing the
potential for on-chip computing. Nevertheless, multiplexed
information processing is not feasible with current diffrac-
tive neural network devices, similar to conventional neu-
ral networks [85]-[87]. Furthermore, they typically have
bulky light sources and detectors that do not allow them
to combine the advantages of all-optical computation with
sophisticated image sensor chips for optical wavelength-
band image processing. Luo et al. demonstrated a polarized
multiplexed metasurface-based all-optical neural network
to accomplish a variety of recognition tasks, including the
identification of fashion items and handwritten numerals,
as shown in Figure 5b [31]. A CMOS imaging sensor is inte-
grated with the physical network, facilitating the portability
and miniaturization of an integrated sensing and computer
chip. The illumination source for previous diffraction meth-
ods was monochromatic coherent light. In addition, Luo
et al. reported the design of a broadband diffractive opti-
cal neural network capable of processing continuous wave-
lengths produced by temporally incoherent broadband light
sources, performing specific tasks obtained through deep
learning in a full-optics manner (Figure 5c) [88]. The results
presented demonstrate that the D2NN framework is adapt-
able to broadband sources and capable of processing opti-
cal waves across a continuous and wide frequency range.
Additionally, the computational power of D2NN tasked with
machine learning can be substantially enhanced through
multi-wavelength operation, made possible by the broad-
band diffractive network approach. The design methodol-
ogy outlined here is not confined to THz wavelengths but
can be extended to other regions of the electromagnetic
spectrum, including the visible range. This advancement

%sin 20(A e — A, el?)
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marks an important step in broadening the potential appli-
cations of diffractive optical neural networks, especially
in scenarios where broadband functionality is crucial. Bai
et al. introduced a pyramid diffractive network architecture
that is specifically designed for unidirectional image magni-
fication and demagnification in Figure 5d [89]. By restricting
its possible solution space to a predefined bounded region
based on the behavior of ray optics, the pyramid diffractive
network architecture learns image scaling operations in one
direction more efficiently than traditional uniform-sized
D2NN designs. In comparison to standard D2NN models,
this enables the pyramid diffractive network architecture to
converge to a more optimal solution with fewer diffractive
degrees of freedom.

However, the majority of reported all-optical D2NNs
concentrate on tasks like object recognition and image clas-
sification that are absent of interaction with the environ-
ment. In contrast, networks with the ability to make deci-
sions and take control have not yet been developed. How-
ever, the ultimate objective of Al is to directly emulate
the decision-making and control processes of the human
brain from high-dimensional sensory input. Qin et al. have
developed all-optical D2NNs that mimic human-like con-
trol and decision-making abilities through deep reinforce-
ment learning. Employing a residual design, these networks
enable the discovery of optimal control policies through
interaction with the environment and are easily scalable to
existing optical devices (Figure 5d). Three distinct types of
classic games including car racing, super Mario Bros., and
tic-tac-toe were used to confirm their superior performance
[90]. This innovation marks a step toward integrating intelli-
gent decision-making into optical systems, bridging the gap
between sensing and autonomous control.

The nonlinear activation layer in neural networks
breaks the linear transformation relationship between data
across multiple layers, enabling the network to learn more
complex patterns. To achieve faster processing speeds and
lower energy consumption, D2NNs have garnered signif-
icant attention in recent years, leading to the develop-
ment of various optical nonlinear activation devices. The
introduction of optical nonlinearity in D2NNs or optical
computing can be achieved through several approaches:
the first approach involves using materials with intrin-
sic nonlinear properties; the second relies on the nonlin-
ear relationship between system input and output; and
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Figure 5: Various applications of diffractive optical networks. (a) Chip packaging and a false-color micrograph of the D2NN with integrated heaters.
Adapted from Zhang et al. Nature Communications 12.1(2021): 457 [84]. Copyright, 2021, Nature. (b) Architecture of the metasurface-enabled D2NN.
The meta-units of the multiple networks are trained separately to achieve multiplexed phase distributions, optimized using an error backpropagation
algorithm executed on a computer. Adapted from Luo et al. Light: Science & Applications 11.1(2022): 158 [31]. Copyright 2023, Nature. (c) Optimized
and learned thickness profiles of three diffractive layers along with the corresponding simulated (red) and experimentally measured (dashed blue)
spectral responses. Adapted from Luo et al. Light: Science & Applications 8.1 (2019): 112 [88]. Copyright, 2019, Springer Nature. (d) Pyramid diffractive
optical networks for unidirectional image magnification. The diffractive network enhances images in the forward networks and effectively blocks

in the inverse networks. Adapted from Bai et al. Light: Science & Applications 13.1 (2024): 178 [89]. Copyright, 2024, Nature. (e) The sequential control
of the all-optical D2NNs in playing the classic tic-tac-toe games. Adapted from Qiu et al. Advanced Photonics Nexus 3.4 (2024): 046003 [90].
Copyright 2022, Society of Photo-Optical Instrumentation Engineers.

the third leverages higher-order optical nonlinear effects revolutionize computational paradigms across nanopho-

[91], [92]. Despite these advancements, several challenges tonics and beyond.
remain. Current D2NN devices often rely on monochromatic
light sources and bulky setups, limiting their scalability . .

5 Optical quantum computing

and practicality for integrated applications. Future develop-

ments in broadband diffractive optical networks and mul- Classical computers, while highly versatile and efficient

tiplexed meta-devices are expected to address these con-
straints, enabling more versatile and compact designs. By
combining the inherent speed and efficiency of optics with
advanced learning algorithms, D2NNs hold the potential to

in general-purpose tasks, face fundamental limitations in
addressing problems of exponential complexity. Challenges
such as combinatorial optimization, large-scale quan-
tum system simulations, and integer factorization expose
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inefficiencies inherent to classical architectures [93], [94].
Additionally, their reliance on the von Neumann architec-
ture introduces bottlenecks in data transfer and parallelism,
while constraints in energy consumption and heat dissipa-
tion become more pronounced as transistor miniaturization
approaches physical limits. Classical systems also lack the
inherent randomness necessary for cryptographic security
and struggle to model nonlinear or highly complex systems,
underscoring the need for alternative paradigms like quan-
tum computing.

Optical quantum computing (0QC) offers a promising
solution by leveraging photons as quantum information
carriers (qubits). Photons exhibit unique properties such
as high speed, low interaction with the environment, and
immunity to decoherence, making them ideal for robust
quantum operations. Qubits can exist in superpositions of
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quantum states, with polarizations (horizontal, vertical, or
arbitrary) commonly representing the logical states |0) and
|1), as illustrated in Figure 6a [95]. This enables quantum
parallelism, allowing photons to process multiple states
simultaneously. OQC further supports diverse degrees of
freedom for qubit encoding, including polarization, spa-
tial paths, and time bins, providing flexibility and robust-
ness in quantum operations. To elucidate the differences
between classical and quantum machine learning (QML),
Figure 6b compares their operational models [96]. In QML,
data points {xi} (denoted as A, B, etc.) are embedded into
high-dimensional quantum Hilbert spaces. Kernel func-
tions, represented by arrows, measure similarities hetween
data points, while the geometric differences g reflect vari-
ations in these measures between classical and quantum
models. The effective dimensionality d of datasets in the
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Figure 6: Optical quantum computing. (a) Single-photon qubits use horizontal photons for logical “0” and vertical photons for logical “1,” with states
plotted on a Bloch sphere, controlled by birefringent wave plates, and converted between polarization and path encoding using a polarization beam
splitter. Adapted from O’brieny et al. Science 318.5856 (2007): 1567-1570 [95]. Copyright 2007, American Association for the Advancement of Science.
(b) Cartoon of the geometry (kernel function) defined by classical and quantum ML models. Adapted from Huang et al. Nature Communications 12.1
(2021): 2631 [96]. Copyright 2021, Nature. (c) A standard feedforward neural network with input, hidden, and output layers is an example of a QNN
framework. Another alternative QNN strategy is to maintain the qubits fixed without replacing or discarding them, and QCNNs measure and discard
qubits as the algorithm runs. Adapted from De Leon et al. Science 372.6539 (2021): eabb2823 [97]. Copyright, 2021, American Association

for the Advancement of Science. (d) Paradigms of tasks that quantum machine learning can perform. Adapted from Cerezo, Marco, et al. Nature
Computational Science 2.9 (2022): 567-576 [93]. Copyright 2022, Nature.
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quantum space illustrates the enhanced capacity of QML
for complex data analysis. Additionally, Figure 6c highlights
three distinct architectures of quantum neural networks
(QNNs) [97]. The first model represents a dissipative QNN,
which extends the concept of classical feedforward net-
works; in this setup, each node is associated with a qubit,
and unitary operations connect qubits, with qubits being
discarded after propagating information to the subsequent
layer. The second model illustrates a conventional QNN,
in which quantum data states traverse a quantum circuit
without adding or discarding qubits in successive layers.
Finally, the third model shows a convolutional QNN, where
qubits are measured at each layer to reduce the data’s
dimensionality while preserving its essential features. To
date, QML encompasses a diverse range of tasks, as illus-
trated in Figure 6d [93]. These include classical applications,
quantum-inspired algorithms, and quantum-specific opti-
mizations. Quantum machine learning, for instance, can be
used for quantum tasks like optimizing quantum experi-
ments or finding quantum algorithms. QNNs can process
both classical and quantum data. When using quantum-
inspired techniques, even classical tasks can be catego-
rized as QML. This perspective focuses primarily on QNNs,
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quantum kernels, and quantum deep learning, which con-
stitute foundational areas within this rapidly evolving field.
Despite significant advancements, O’Brien notes that sub-
stantial challenges must still be overcome to realize a large-
scale optical quantum computer [95].

6 Advanced engineering
applications

The integration of artificial intelligence (AI) into advanced
engineering applications has become increasingly essential
in the era of the Internet of Things (IoT) [98]-[108]. For the
perception and identification of objects, infrared machine
vision systems are crucial. In human vision, the retina’s pho-
toreceptors (rods and cones) initially convert external stim-
uli into graded potentials, as depicted in Figure 7a. These
graded potentials are then encoded into spike trains by
ganglion cells, reflecting the inherent stochasticity of sen-
sory transduction. Wang et al. applied spiking neural net-
works (SNNs) to encode and classify perceived images [109].
In their approach, mid-infrared (mid-IR) digit images are
transformed into spike trains via rate encoding, which are
subsequently processed by a trained fully connected SNN
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Figure 7: Artificial intelligence enabling advanced environmental interactive applications. (a) Schematic of the human visual system and the proposed
2D mid-IR optoelectronic retina. Adapted from Wang et al. Nature Communications 14.1 (2023): 1938 [109]. Copyright 2023, Nature. (b) Schematic of
the modified ResNet-18 model and predicted results. Adapted from Fan et al. Nature (2024): 1-7 [110]. Copyright 2024, Nature. (c) Display of the self-
adaptive cloak response to random backgrounds for a normal incident wave at 8.4 GHz. Adapted from Qian et al. Nature Photonics 14.6 (2020):
383-390 [111]. Copyright 2020, Nature. (d) Principles and prospects for single-pixel imaging. Adapted from Zhan et al. Optics Letters 47.11 (2022):

2838-2841[112]. Copyright 2022, The Optical Society of America.
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for digit classification. The predicted digit is determined
by the output neuron that exhibits the highest spike rate.
Simultaneous analysis of light’s intensity, polarization, and
spectrum plays a pivotal role in applications like remote
sensing, device miniaturization, chemical and biological
characterization, optical communication, and astronomical
observation. As shown in Figure 7b, Fan et al. demonstrated
an advanced high-dimensional photodetection system capa-
ble of simultaneously characterizing wavelength and polar-
ization information [110]. Their approach uses a single-shot
measurement technique that combines a dispersive system
to map spectral and polarization data with a deep neural
network for decoding. This method delivers performance
comparable to traditional polarimeters and spectrometers,
enhancing the system’s efficiency in capturing complex opti-
cal data.

In the field of adaptive optics, the concept of an opti-
mal invisibility cloak is particularly intriguing. An ideal
cloak should dynamically adjust its internal configuration in
response to external stimuli or changes in the surrounding
environment, much like the adaptability of a chameleon.
Intelligent, self-adaptive cloaks have high potential for real-
time applications involving moving objects or complex,
nonstationary environments. To address this, researchers
have proposed an intelligent invisibility cloak powered by
DL and realized using a tunable metasurface (Figure 7c)
[111]. In this system, each metasurface element is indepen-
dently controlled by a direct-current bias voltage applied
to varactor diodes operating at microwave frequencies. A
pretrained artificial neural network (ANN) computes and
adjusts the bias voltages in milliseconds, allowing the cloak
to autonomously adapt to dynamic incident waves and envi-
ronmental changes.

Nowadays, high-level semantic sensing has been
achieved using single-pixel sensing combined with an
end-to-end neural network for joint optimization. However,
this method can be computationally intensive, especially
when sampling rates vary [112]. In reference [113], Zhan
etal. present a weighted optimization approach for
adaptive sampling single-pixel sensing [112]. This technique
requires only a single network training session to handle
dynamic sampling rates. A weighting scheme is introduced
during the encoding process, which iteratively updates
modulation patterns and their corresponding weights.
The most effective modulation patterns, identified by the
highest weights, are used for light modulation, significantly
improving the efficiency of sensing in experimental
applications [114].

To increase our comprehension of both physiologi-
cal and pathological biological processes, we must be able
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to identify and track biomolecules [115], [116]. It can be
difficult to detect more than one or two target analytes,
though, especially for processes where the net refractive
index doesn’t vary much. This is where Al excels. John-
Herpin et al. designed a D2NN that effectively differenti-
ates between various molecular components, as shown in
Figure 8a [117]. Large volumes of spectrotemporal data can
be collected using the optofluidic method’s real-time format,
which makes it quicker to construct a D2NN that can reliably
distinguish between all significant classes of biomolecules
[118], [119]. In Figure 8b, Li et al. demonstrated the poten-
tial of metasurface-integrated systems to simplify liquid
chemical identification by leveraging unique vortex beam
patterns and Al-powered classification, effectively bypass-
ing bulky and complex spectrometric tools [120]. Figure 8c
highlights the efficacy of the multi-task learning deep neu-
ral network (MTL-DNN) in detecting multiple orbital angu-
lar momentum (OAM) states and their power spectra [121].
A shared encoder and two task-specific heads make up
the MTL-DNN architecture, which is used to classify OAM
modes and regression of their power spectra. Speckle pat-
terns generated by the disordered nematic liquid crystal
(NLC) medium serve as inputs to the network. The con-
fusion matrix demonstrates 100 % accuracy in identifying
20 distinct OAM states, encompassing various combina-
tions of topological charges and power levels. These results
demonstrate that the MTL-DNN achieves highly accurate
recognition of various OAM states and their power spec-
tra, underscoring the system’s capability for precise, high-
dimensional light field sensing, and paving the way for
advanced optical applications.

Notably, the black-box problem of neural networks has
been a concern [122]. Gao et al. introduced the Metaformer
model, emphasizing explainability in deep learning for
metasurface sensor design by addressing the “black-box”
limitations of conventional models [43]. This was achieved
through spectral position encoding, preserving positional
and spectral relationships by embedding critical patch
information, as shown by cosine similarity analysis. Gao
et al. further addressed this issue by introducing inter-
pretable transformer networks. As shown in Figure 8d, the
multi-head attention mechanism allows each head to focus
on specific spectral features, such as Q-BIC resonance peaks
or off-resonance regions [123]-[125]. Early network layers
capture local features, while deeper layers integrate global
patterns. This hierarchical learning enables the model to
accurately predict high-Q spectral peaks and identify subtle
interactions between resonance and off-resonance regions.
Attention heatmaps illustrate how different layers and
heads shift focus between local and global spectral details,



442 =— . Chen et al.: Empowering nanophotonic applications

(a) ’ 8

— S
1000 ~_ 75
Wan 2000~
ber. (c,n_,’suoo

5
s /
37
Sl
‘Absorbance (mOD)

3

—Meiittin

—Nucleotides

1

Sucrose Lipids.
Il —

1
1

02 04 06 08

2

Regression signal (a. u.)
Regression signal (a. u.)
02 04 06 08

Regression signal (a. u.)

0 50 100_150 200 250 300
Time (min)

3 B 50 100 150 200 250 300 350
Time (min) Time (min)

DE GRUYTER

CHO C;HO CHO C;HO GHO CHy,0 C,HO0S

s e

alcohol sulfoxide

2 hidden layers
20 nodes each

1089 input nodes Output weights

Training / testing data

Nucleotides

——
IR e N,
ERNNLES

g

Sucrose

Lipids.

Melittin

Experiment data

b

Regression 50%
k 30% ]
2

Classification

| M 6 3|

o 2

MTL-DNN model

ERl
/g ¢ | — Nucleotides
IsE £ \ Sucrose
8 ? \ Lipids
0 5 ;0‘5 \ Melittin
¥ r5s £
{) <z N mw  SwmRE
760 Bop——tou_ N =
1‘4; — /é":\g@‘(\ 50 100 T|50 - 200 250 300
faven %0 ) ) ime (min)
MG (o000 vm’:i‘;‘g‘:ﬁj&f& Dlmecﬂon of melittin I:'Rmse with buffer

Position of embedding
Cosine similarity
Cosine similarity

Mean attention distance

388888388

g

N 100 037 100 037
Positon of embedding Posiion of spectum patch g Networkdept Layeny. -

o o

O "= Input
-Prpoudldbd

Predicted multiple-OAN
& 3

N
3

Spectrum

ralaal

5 3 5 5 -1
Topological charge

W
B Jl\ I

Spectrum

% 5 10 15
Input multiple-OAM

20

Layer 1: Head 5
Q-BIC 1 Q-BIC 2

o
—

QBIC 1
Attention weight

Spectrum

QBIC2

Spectrum

‘Spectrum

Figure 8: Artificial intelligence enabling advanced sensing applications. (a) A deep neural network to discriminate between different molecular
components effectively. Adapted from John-Herpin et al. Advanced Materials 33.14 (2021): 2006054 [117]. Copyright 2021, Wiley. (b) Schematic of the
in situ liquid identification process relying on metasurface-based vision intelligence. Adapted from Li et al. ACS Photonics 10.3 (2023): 780-789 [32].
Copyright 2023, American Chemical Society. (c) Intelligent multiple-OAM states sensing. Adapted from Zhu et al. PhotoniX 4.1 (2023): 26 [121].
Copyright 2023, Nature. (d) A framework for physically interpretable deep learning networks for bio-sensing. Adapted from Gao et al. Advanced

Science (2024): 2405750 [43]. Copyright 2024, Wiley.

highlighting the model’s ability to capture critical physi-
cal features essential for precise metasensor design pre-
dictions. In addition, some advanced applications, such as
optical logic operations and imaging capabilities, have also
attracted extensive attention [126], [127].

7 Insight and outlook

The integration of artificial intelligence in nanophotonics
marks a significant leap forward in both fields, creating a
synergy that leverages the strengths of each [58], [128]-[134].
Al-powered approaches have demonstrated remarkable
capabilities in optimizing nanophotonic device designs, pre-
dicting complex behaviors, and accelerating the discov-
ery of novel structures and configurations. These advance-
ments are not only pushing the boundaries of what is pos-
sible in nanophotonics but are also facilitating the emer-
gence of practical applications across diverse areas, like
high-resolution imaging, advanced sensing, and quantum

information processing. Looking ahead, the continuous evo-
lution of AI technologies will further enhance our ability
to solve intricate problems in nanophotonics. The develop-
ment of more sophisticated AI models, along with improve-
ments in computational power and data availability, will
enable even more precise and efficient design processes.
Additionally, the reciprocal influence of nanophotonics on
Al through innovations like optical computing and diffrac-
tive neural networks, promises to drive advancements in
computational speed and energy efficiency.

However, despite these achievements, there are notable
challenges that must be addressed. One major issue lies in
the generation of large-scale, high-quality datasets essen-
tial for training AI models. Collecting and curating these
datasets is often labor-intensive, particularly for highly spe-
cialized domains like nanophotonics, where experimental
data can be scarce or expensive to obtain. Additionally,
while Al models excel at specific tasks, their generalizability
across diverse scenarios remains limited. This issue is com-
pounded by the lack of interpretability in many machine
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Table 1: Comparison between smart designs with Al and traditional
designs.

Smart designs Traditional
with AI designs
Design speed High Low
Innovation ability High Low
Design cycle Short Long
Optimization difficulty Low High
Degree of individuation High Ordinary
Accuracy High Relatively low
Data dependency High Weak
Interpretability Relatively weak Strong
Manufacturing constraint High Relatively low

learning algorithms, which can hinder their adoption in
fields requiring high levels of reliability and interpretabil-
ity. Another significant challenge is the computational cost
associated with training sophisticated AI models, especially
those incorporating physics-informed constraints or oper-
ating at high-dimensional parameter spaces. The energy
consumption of such models presents sustainability con-
cerns, which are particularly relevant in the era of green
technology.

Future research will likely focus on the integration of
AT with novel nanophotonic technologies, including meta-
surfaces, plasmonics, and quantum dots, exploring new
paradigms for light manipulation and interaction at the
nanoscale [135]-[147]. Moreover, interdisciplinary collabo-
rations will be crucial in addressing the remaining chal-
lenges and exploiting the full potential of Al in nanopho-
tonics [148]-[152]. Ultimately, the convergence of AI and
nanophotonics will lead to the creation of next-generation
optical devices with enhanced functionalities and unprece-
dented performance, transforming industries and opening
up new frontiers in science and engineering [153]-[156].
This dynamic interplay between AI and nanophotonics
holds the promise of a future where intelligent, efficient,
and highly integrated optical systems become a cornerstone
of technological advancement (Table 1).

Research funding: ZD would like to acknowledge the fund-
ing support from The National Research Foundation (NRF),
Singapore via Grant No. NRF-CRP30-2023-0003, the fund-
ing support from the Agency for Science, Technology and
Research (A*STAR) under its Career Development Award
(Project No. €210112019), MTC IRG (Project No. M21K2c0116
and M22K2c0088), and the Quantum Engineering Program
2.0 (Award No. NRF2021-QEP2-03-P09). JZ would like to
acknowledge the funding support from NSFC (62175205),

W. Chen et al.: Empowering nanophotonic applications = 443

NSAF (U2130112), Natural Science Foundation of Fujian
Province (2024]J02005), the Youth Talent Support Program
of Fujian Province (Eyas Plan of Fujian Province) [2022],
and Shenzhen Science and Technology Development Funds
(Grant No. JCYJ20220530143015035). In addition, WC would
like to acknowledge the funding supporting from the China
Scholarship Council Scholarship (CSC NO. 202306310153).
Author contributions: ZD and JZ conceived the review
paper concept, organized the paper sections, and supervised
the project. WC, SY, and YY created the figures. WC, YG, and
SY wrote the manuscript. WC and SY contributed equally to
this work. All authors have accepted responsibility for the
entire content of this manuscript and approved its submis-
sion.

Conflict of interest: The authors declare no conflict of
interest.

Data availability: Data sharing is not applicable to this arti-
cle as no datasets were generated or analyzed during the
current study.

References

[11 S.Liu, etal., “Nanopatterning technologies of 2D materials for
integrated electronic and optoelectronic devices,” Adv. Mater.,
vol. 34, no. 52, p. 2200734, 2022.

L. Jiang, et al., “In-plane coherent control of plasmon resonances

for plasmonic switching and encoding,” Light: Sci. Appl., vol. 8,

no.1, p. 21, 2019.

[3] J. Ho, et al., “Miniaturizing color-sensitive photodetectors via
hybrid nanoantennas toward submicrometer dimensions,” Sci.
Adv., vol. 8, no. 47, p. eadd3868, 2022.

[4] M. Keyl, “Fundamentals of quantum information theory,” Phys.

Rep., vol. 369, no. 5, pp. 431—548, 2002.

E. Csényi, et al., “Engineering and controlling perovskite

emissions via optical quasi-bound-states-in-the-continuum,” Adv.

Funct. Mater., vol. 34, no. 2, p. 2309539, 2024.

Z.Wang, et al., “Plasmonic metasurface enhanced by nanobumps

for label-free biosensing of lung tumor markers in serum,”

Talanta, vol. 264, p. 124731, 2023.

X. Liu, et al., “Enhancing THz fingerprint detection on the planar

surface of an inverted dielectric metagrating,” Photonics Res.,

vol. 10, no. 12, pp. 2836 —2845, 2022.

S.Zhang, et al., “Reversible electrical switching of nanostructural

color pixels,” Nanophotonics, vol. 12, no. 8, pp. 1387—1395,

2023.

Z.Dong, et al., “Silicon nanoantenna mix arrays for a trifecta of

quantum emitter enhancements,” Nano Lett., vol. 21, no. 11,

pp. 4853—4860, 2021.

[10] Y. Cao, et al., “Quantum chemistry in the age of quantum

computing,” Chem. Rev., vol. 119, no. 19, pp. 10856 —10915, 2019.
[11] D. Gromyko, et al., “Unidirectional chiral emission via twisted
bi-layer metasurfaces,” Nat. Commun., vol. 15, no. 1, p. 9804, 2024.

[12] X.Liu, etal., “Reconfigurable high-Q terahertz filtering of
VO,-based metamaterials using optical tunneling,” Results Phys.,
vol. 39, p. 105740, 2022.

[2

—

[5

—

[6

—

[7

—

[8

—

[9

—



444

(3]

4]

(3]

)

(7

[18]

(9]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31

[32]

=== \W. Chen et al.: Empowering nanophotonic applications

H. Cai, et al., “Charge-depletion-enhanced WSe, quantum
emitters on gold nanogap arrays with near-unity quantum
efficiency,” Nat. Photonics, vol. 18, p. 842, 2024.

J. Liu, et al., “Numerical study on extinction performance of Ag
nanoparticles @ SiO? ellipsoid,” /. Mater. Res. Technol., vol. 9, no. 3,
pp. 6723—-6732, 2020.

Z.Dong, et al., “Second-harmonic generation from sub-5 nm gaps
by directed self-assembly of nanoparticles onto template-stripped
gold substrates,” Nano Lett., vol. 15, no. 9, pp. 5976 —5981, 2015.
B. Xiong, et al., “Breaking the limitation of polarization
multiplexing in optical metasurfaces with engineered noise,”
Science, vol. 379, no. 6629, pp. 294—299, 2023.

J. Shen, et al., “Customized high-sensitivity plasmonic
metasensing towards immunodetection of single
bio-nanoparticles,” IEEE |. Sel. Top. Quantum Electron., vol. 29,

no. 4, pp. 1—38, 2023.

M. Jalali, et al., “Stacking of colors in exfoliable plasmonic
superlattices,” Nanoscale, vol. 8, no. 42, pp. 18228 —18234, 2016.
Y. Liu, et al., “Structural color three-dimensional printing by
shrinking photonic crystals,” Nat. Commun., vol. 10, no. 1, p. 4340,
2019.

W.-Z. Ma, et al., “VO2-based thermally tunable emitter and
preliminary design of switching for mid-infrared atmospheric
windows,” Results Phys., vol. 31, p. 105055, 2021.

0. A. M. Abdelraouf, et al., “Multistate tuning of third harmonic
generation in fano-resonant hybrid dielectric metasurfaces,” Adv.
Funct. Mater., vol. 31, no. 48, p. 2104627, 2021.

Z.Dong, et al., “Printing beyond sRGB color gamut by mimicking
silicon nanostructures in free-space,” Nano Lett., vol. 17, no. 12,
pp. 7620—-7628, 2017.

S. D. Rezaei, et al., “Tri-functional metasurface enhanced with a
physically unclonable function,” Mater. Today, vol. 62, pp. 51—61,
2023.

W. Ma, et al., “Deep learning for the design of photonic
structures,” Nat. Photonics, vol. 15, no. 2, pp. 77—90, 2021.

H. Wang, et al., “Scientific discovery in the age of artificial
intelligence,” Nature, vol. 620, no. 7972, pp. 47—60, 2023.

S. Noy and W. Zhang, “Experimental evidence on the productivity
effects of generative artificial intelligence,” Science, vol. 381,

no. 6654, pp. 187—192, 2023.

M. Krenn, et al., “On scientific understanding with artificial
intelligence,” Nat. Rev. Phys., vol. 4, no. 12, pp. 761—769, 2022.

B. Haibe-Kains, et al., “Transparency and reproducibility in
artificial intelligence,” Nature, vol. 586, no. 7829, pp. E14—E16,
2020.

M. Moor, et al., “Foundation models for generalist medical
artificial intelligence,” Nature, vol. 616, no. 7956, pp. 259—265,
2023.

W. Ma, et al., “Pushing the limits of functionality-multiplexing
capability in metasurface design based on statistical machine
learning,” Adv. Mater., vol. 34, no. 16, p. 2110022, 2022.

X. Luo, et al., “Metasurface-enabled on-chip multiplexed
diffractive neural networks in the visible,” Light: Sci. Appl., vol. 11,
no. 1, p. 158, 2022.

H. Li, et al., “Metasurface-incorporated optofluidic refractive
index sensing for identification of liquid chemicals through vision
intelligence,” ACS Photonics, vol. 10, no. 3, pp. 780—789,

2023.

[33]

34]

[35]

[36]

[37]

[38]

[39]

DE GRUYTER

H. Li, et al., “Metasurface optical diffraction neural network and
its applications (invited),” Laser Optoelectron. Prog., vol. 61, no. 19,
p. 1913016, 2024.

V. Belis, et al., “Guided quantum compression for high
dimensional data classification,” Mach. Learn. Sci. Technol., vol. 5,
no. 3, p. 035010, 2024.

X. Lin, et al., “All-optical machine learning using diffractive deep
neural networks,” Science, vol. 361, no. 6406, pp. 1004—1008,
2018.

S. Bartolucci, et al., “Fusion-based quantum computation,” Nat.
Commun., vol. 14, no. 1, p. 912, 2023.

W. Chen, et al., “Recent progress in metasurfaces: an introductory
note from fundamentals and design methods to applications,”
World Sci. Ann. Rev. Funct. Mater., vol. 2, p. 2430002, 2024.

Z.Ding, et al., “Machine learning in prediction of MXenes-based
metasurface absorber for maximizing solar spectral absorption,”
Sol. Energy Mater. Sol. Cells, vol. 262, p. 112563, 2023.

F. Ashtiani, A. ). Geers, and F. Aflatouni, “An on-chip photonic
deep neural network for image classification,” Nature, vol. 606,
no. 7914, pp. 501—-506, 2022.

[40] J. Xiong, et al., “Real-time on-demand design of circuit-analog

[41]

plasmonic stack metamaterials by divide-and-conquer deep
learning,” Laser Photonics Rev., vol. 17, no. 3, p. 2100738,

2023.

A. Razi, A. Safdar, and R. Irfan, “Enhancing tandem solar cell’s
efficiency through convolutional neural network-based
optimization of metasurfaces,” Mater. Des., vol. 236, p. 112475,
2023.

[42] . Chen, et al., “Correlating metasurface spectra with a

[43]

[44]

generation-elimination framework,” Nat. Commun., vol. 14, no. 1,
p. 4872, 2023.

Y. Gao, et al., “Meta-attention deep learning for smart
development of metasurface sensors,” Adv. Sci., vol. 11, no. 42, p.
2405750, 2024.

Q. Yuan, R. Sun, and X. Du, “Path planning of mobile robots based
on an improved particle swarm optimization algorithm,”
Processes, vol. 11, no. 1, p. 26, 2022.

[45] J.Liu, et al., “A metamaterial absorber based on particle swarm

[46]

[47]

[48]

[49]

[50]

[51]

[52]

optimization suitable for earth’s atmospheric transparency
window,” IEEE Access, vol. 9, pp. 92941—92951, 2021.

Y.Yin, et al., “Multi-dimensional multiplexed metasurface
holography by inverse design,” Adv. Mater., vol. 36, no. 21, p.
2312303, 2024.

A. Vaswani, “Attention is all you need,” in Adv. Neural Inf. Process.
Syst., Long Beach, CA, USA, NIPS, 2017.

T. Ma, H. Wang, and L. Jay Guo, “OptoGPT: a foundation model for
inverse design in optical multilayer thin film structures,”
Opto-Electron. Adv., vol. 7, no. 7, p. 240062, 2024.

S. Sarkar, “Data driven inverse design of optical metamaterials,”
Diss, Carnegie Mellon University, 2024.

D. Lu, et al., “Can large language models learn the physics of
metamaterials? An empirical study with ChatGPT,” arXiv preprint
arXiv:2404.15458, 2024.

E. Tezsezen, D. Yigci, A. Ahmadpour, and S. Tasoglu, “Al-based
metamaterial design,” ACS Appl. Mater. Interfaces, vol. 16, no. 23, p.
29547,2024.

Z.Ding, et al., “Inverse design of twisted bilayer graphene
metasurface for terahertz absorption broadening based on



DE GRUYTER

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

71

artificial neural network,” Opt Laser. Technol., vol. 176, p. 110891,
2024.

Z.Ding, et al., “Deep learning based inverse design of
metasurface absorber for maximizing solar spectral absorption,”
Sol. Energy, vol. 271, p. 112449, 2024.

L. Zhilyaev, et al., “Hybrid machine-learning and finite-element
design for flexible metamaterial wings,” Mater. Des., vol. 218,

p. 110709, 2022.

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics:
merging photonics and artificial intelligence at the nanoscale,”
Nanophotonics, vol. 8, no. 3, pp. 339—366, 2019.

L. Dong, et al., “Inverse design of sub-diffraction focusing
metalens by adjoint-based topology optimization,” New /. Phys.,
vol. 25, no. 10, p. 103026, 2023.

M. Mansouree, et al., “Large-scale parametrized metasurface
design using adjoint optimization,” ACS Photonics, vol. 8, no. 2,
pp. 455—463, 2021.

Y. Xu, et al., “Physics-informed inverse design of programmable
metasurfaces,” Adv. Sci., vol. 11, no. 41, p. 2406878, 2024.

L. Jin, et al., “Dielectric multi-momentum meta-transformer in the
visible,” Nat. Commun., vol. 10, no. 1, p. 4789, 2019.

Y. Yan, et al., “Highly intelligent forward design of metamaterials
empowered by circuit-physics-driven deep learning,” Laser
Photonics Rev., p. 2400724, 2023, https://doi.org/10.1002/Ipor
.202370036.

L. Tanriover, et al., “Deep generative modeling and inverse design
of manufacturable free-form dielectric metasurfaces,” ACS
Photonics, vol. 10, no. 4, pp. 875—883, 2022.

W. Chen, et al., “Broadband solar metamaterial absorbers
empowered by transformer-based deep learning,” Adv. Sci.,

vol. 10, no. 13, p. 2206718, 2023.

X. Liu, et al., “Rapid on-demand design of inverted all-dielectric
metagratings for trace terahertz molecular fingerprint sensing by
deep learning,” ACS Photonics, vol. 11, no. 11, p. 4838, 2024.

C. Yeung, et al., “Hybrid supervised and reinforcement learning
for the design and optimization of nanophotonic structures,” Opt.
Express, vol. 32, no. 6, pp. 9920—9930, 2024.

R. G. Dreslinski, et al., “Near-threshold computing: reclaiming
moore’s law through energy efficient integrated circuits,” Proc.
IEEE, vol. 98, no. 2, pp. 253—266, 2010.

Z. Huang, et al., “All-optical signal processing of vortex beams
with diffractive deep neural networks,” Phys. Rev. Appl., vol. 15,
no. 1, p. 014037, 2021.

R. Chen, et al., “Physics-aware machine learning and adversarial
attack in complex-valued reconfigurable diffractive all-optical
neural network,” Laser Photonics Rev., vol. 16, no. 12, p. 22003438,
2022.

M. S. S. Rahman, et al., “Ensemble learning of diffractive optical
networks,” Light: Sci. Appl., vol. 10, no. 1, p. 14, 2021.

M. S. Sakib Rahman and A. Ozcan, “Computer-free, all-optical
reconstruction of holograms using diffractive networks,” ACS
Photonics, vol. 8, no. 11, pp. 3375—3384, 2021.

C. Liu, et al., “A programmable diffractive deep neural network
based on a digital-coding metasurface array,” Nat. Electron., vol. 5,
no. 2, pp. 113—122, 2022.

X. Luo, et al., “Full-Fourier-component tailorable optical neural
meta-transformer,” Laser Photonics Rev., vol. 17, no. 12, p. 2300272,
2023.

W. Chen et al.: Empowering nanophotonic applications = 445

[72] Z.Ding, et al., “Artificial neural network-based inverse design of
metasurface absorber with tunable absorption window,” Mater.
Des., vol. 234, p. 112331, 2023.

[73] T.Wang, et al., “Image sensing with multilayer nonlinear optical
neural networks,” Nat. Photonics, vol. 17, no. 5, pp. 408 —415, 2023.

[74] S. Lee, C. Park, and J. Rho, “Mapping information and light: trends
of Al-enabled metaphotonics,” Curr. Opin. Solid State Mater. Sci.,
vol. 29, p. 101144, 2024.

[75] ). Hu, et al., “Diffractive optical computing in free space,” Nat.
Commun., vol. 15, no. 1, p. 1525, 2024.

[76] S.N.Khonina, et al., “A perspective on the artificial intelligence’s
transformative role in advancing diffractive optics,” Iscience,
vol. 27, no. 7, 2024, https://doi.org/10.1016/j.isci.2024.110270.

[77] G. Lu, et al., “Metasurface-based diffractive optical networks with
dual-channel complex amplitude modulation,” /. Lightwave
Technol., vol. 42, no. 20, p. 7282, 2024.

[78] H.Chen, et al., “Diffractive deep neural networks: theories,
optimization, and applications,” Appl. Phys. Rev., vol. 11, no. 2,
2024, https://doi.org/10.1063/5.0191977.

[791 M. Pfluger, et al., “Experimental reservoir computing with
diffractively coupled VCSELs,” Opt. Lett., vol. 49, no. 9,
pp. 2285—2288, 2024.

[80] W. Lai, et al., “Optically tunable ultrafast broadband terahertz
polarimetric device using nonvolatile phase-change material,”
Laser Photonics Rev., vol. 18, no. 8, p. 2301265, 2024.

[81] S. Pai, et al., “Experimentally realized in situ backpropagation for
deep learning in photonic neural networks,” Science, vol. 380,
no. 6643, pp. 398 —404, 2023.

[82] Y. Bai, et al., “Photonic multiplexing techniques for neuromorphic
computing,” Nanophotonics, vol. 12, no. 5, pp. 795—817,

2023.

[83] G. Mourgias-Alexandris, et al., “Noise-resilient and high-speed
deep learning with coherent silicon photonics,” Nat. Commun.,
vol. 13, no. 1, p. 5572, 2022.

[84] H.Zhang, et al., “An optical neural chip for implementing
complex-valued neural network,” Nat. Commun., vol. 12, no. 1,

p. 457, 2021.

[85] T.Badloe, S. Lee, and J. Rho, “Computation at the speed of light:
metamaterials for all-optical calculations and neural networks,”
Adv. Photonics, vol. 4, no. 6, p. 064002, 2022.

[86] T.Yan,etal., “All-optical graph representation learning using
integrated diffractive photonic computing units,” Sci. Adv., vol. 8,
no. 24, p. eabn7630, 2022.

[87] N. L. Kazanskiy, M. A. Butt, and S. N. Khonina, “Optical computing:
status and perspectives,” Nanomaterials, vol. 12, no. 13, p. 2171,
2022.

[88] Y. Luo, et al., “Design of task-specific optical systems using
broadband diffractive neural networks,” Light: Sci. Appl., vol. 8,
no. 1, p. 112, 2019.

[89] B. Bai, et al., “Pyramid diffractive optical networks for
unidirectional image magnification and demagnification,” Light:
Sci. Appl., vol. 13, no. 1, p. 178, 2024.

[90] ). Qiu, et al., “Decision-making and control with diffractive optical
networks,” Adv. Photonics Nexus, vol. 3, no. 4, p. 046003,

2024.

[91] Z.Yang, et al., “MXene-based broadband ultrafast nonlinear
activator for optical computing,” Adv. Opt. Mater., vol. 10, no. 17,
p. 2200714, 2022.


https://doi.org/10.1002/lpor.202370036
https://doi.org/10.1002/lpor.202370036
https://doi.org/10.1016/j.isci.2024.110270
https://doi.org/10.1063/5.0191977

446

= \W. Chen et al.: Empowering nanophotonic applications

[92] ). Feldmann, et al., “All-optical spiking neurosynaptic networks

[93]

[94]

with self-learning capabilities,” Nature, vol. 569, no. 7755,

pp. 208214, 2019.

M. Cerezo, et al., “Challenges and opportunities in quantum
machine learning,” Nat. Comput. Sci., vol. 2, no. 9, pp. 567 —576,
2022.

S. Kim, et al., “High-performance transparent radiative cooler
designed by quantum computing,” ACS Energy Lett., vol. 7, no. 12,
pp. 4134—4141, 2022.

[95] J. L. O’brien, “Optical quantum computing,” Science, vol. 318,

[96]

[97]

[98]

[99]

[100]

no. 5856, pp. 1567—1570, 2007.

H.-Y. Huang, et al., “Power of data in quantum machine learning,”
Nat. Commun., vol. 12, no. 1, p. 2631, 2021.

L. De, et al., “Materials challenges and opportunities for quantum
computing hardware,” Science, vol. 372, no. 6539, p. eabb2823,
2021.

W. Ma, et al., “Deep learning empowering design for selective
solar absorber,” Nanophotonics, vol. 12, no. 18, pp. 3589—3601,
2023.

G. Wetzstein, et al., “Inference in artificial intelligence with deep
optics and photonics,” Nature, vol. 588, no. 7836, pp. 39—47,
2020.

L. G. Wright, et al., “Deep physical neural networks trained with
backpropagation,” Nature, vol. 601, no. 7894, pp. 549 —555,

2022.

[101] J. Feldmann, et al., “Parallel convolutional processing using an

[102]

[103]

[104]

[105]

[106]

integrated photonic tensor core,” Nature, vol. 589, no. 7840,

pp. 52—58, 2021.

M. Nakajima, K. Tanaka, and T. Hashimoto, “Scalable reservoir
computing on coherent linear photonic processor,” Commun.
Phys.,vol. 4, no. 1, p. 20, 2021.

E. P. Shapera and A. Schleife, “Discovery of new plasmonic metals
via high-throughput machine learning,” Adv. Opt. Mater., vol. 10,
no. 18, p. 2200158, 2022.

P. Roy Chowdhury, et al., “Machine learning designed and
experimentally confirmed enhanced reflectance in aperiodic
multilayer structures,” Adv. Opt. Mater., vol. 12, no. 4, p. 2300610,
2024.

Z. Cheng, et al., “Automatic screen-out of Ir (III) complex emitters
by combined machine learning and computational analysis,” Adv.
Opt. Mater., vol. 11, no. 18, p. 2301093, 2023.

S. So, et al., “Deep learning enabled inverse design in
nanophotonics,” Nanophotonics, vol. 9, no. 5, pp. 1041—1057,
2020.

[107] J. Park, et al., “Free-form optimization of nanophotonic devices:

[108]

[109]

[110]

[111]

from classical methods to deep learning,” Nanophotonics, vol. 11,
no. 9, pp. 1809—1845, 2022.

L. Gao, et al., “Computational spectrometers enabled by
nanophotonics and deep learning,” Nanophotonics, vol. 11, no. 11,
pp. 2507—-2529, 2022.

F. Wang, et al., “A two-dimensional mid-infrared optoelectronic
retina enabling simultaneous perception and encoding,” Nat.
Commun., vol. 14, no. 1, p. 1938, 2023.

Y. Fan, et al., “Dispersion-assisted high-dimensional
photodetector,” Nature, vol. 630, pp. 77—83, 2024.

C. Qian, et al., “Deep-learning-enabled self-adaptive microwave
cloak without human intervention,” Nat. Photonics, vol. 14, no. 6,
pp. 383—390, 2020.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

DE GRUYTER

X. Zhan, et al., “Weighted sampling-adaptive single-pixel
sensing,” Opt. Lett., vol. 47, no. 11, pp. 2838 —2841, 2022.

X. Zhan, et al., “Ultrahigh-security single-pixel semantic
encryption,” Opt. Lett., vol. 47, no. 23, pp. 6169—6172,

2022.

X. Zhan, et al., “Global-optimal semi-supervised learning for
single-pixel image-free sensing,” Opt. Lett., vol. 49, no. 3,

pp. 682—685, 2024.

X. Lin, et al., “Advances in exosome plasmonic sensing: device
integration strategies and Al-aided diagnosis,” Biosens.
Bioelectron., vol. 266, p. 116718, 2024.

H. Li, et al., “Flat telescope based on an all-dielectric metasurface
doublet enabling polarization-controllable enhanced beam
steering,” Nanophotonics, vol. 11, no. 2, pp. 405—413, 2022.

A. John-Herpin, et al., “Infrared metasurface augmented by deep
learning for monitoring dynamics between all major classes of
biomolecules,” Adv. Mater., vol. 33, no. 14, p. 2006054, 2021.

H. Li, et al., “Spectrometer-less refractive index sensor based on
the spatial weighted variance of metasurface-generated vortex
beams,” Appl. Phys. Lett., vol. 123, no. 23, 2023, https://doi.org/10
.1063/5.0181269.

M. Ghodrati and A. Uniyal, “Exploring metasurface-based
biosensor: new frontiers in sensitivity and versatility for
biomedical applications,” Plasmonics, pp. 1—20, 2024, https://doi
.0rg/10.1007/511468-024-02640-7.

Y. Fu, et al., “Unleashing the potential: Al empowered advanced
metasurface research,” Nanophotonics, vol. 13, no. 8,

pp. 12391278, 2024.

S.-K. Zhu, et al., “Harnessing disordered photonics via multi-task
learning towards intelligent four-dimensional light field sensors,”
PhotoniX, vol. 4, no. 1, p. 26, 2023.

C. Li, et al., “Metasurface-based structured light sensing without
triangulation,” Adv. Opt. Mater., vol. 12, no. 7, p. 2302126,

2024.

Y. Chen, et al., “Observation of intrinsic chiral bound states in the
continuum,” Nature, vol. 613, no. 7944, pp. 474—478, 2023.

X. Zhang, et al., “Chiral emission from resonant metasurfaces,”
Science, vol. 377, no. 6611, pp. 1215—1218, 2022.

A. Tittl, et al., “Imaging-based molecular barcoding with pixelated
dielectric metasurfaces,” Science, vol. 360, no. 6393,

pp. 1105—1109, 2018.

X. Ding, et al., “Metasurface-based optical logic operators driven
by diffractive neural networks,” Adv. Mater., vol. 36, no. 9,

p. 2308993, 2024.

X. Wang, et al., “Advances in information processing and
biological imaging using flat optics,” Nat. Rev. Electr. Eng., vol. 1,
pp. 391—411, 2024. https://doi.org/10.1038/544287-024-00057-2.
X. Liu, et al., “Edge enhanced depth perception with binocular
meta-lens,” Opto-Electron. Sci., p. 230033, 2024. https://doi.org/10
.29026/0es.2024.230033.

X. Liu, et al., “Stereo vision meta-lens-assisted driving vision,” ACS
Photonics, vol. 11, no. 7, p. 2546, 2024.

S. Wang, et al., “Innovative design of metamaterial perfect
absorbers via residual fully connected neural network modeling,”
Opt. Commun., vol. 545, p. 129732, 2023.

R. Jia, et al., “Dewdrop metasurfaces and dynamic control based
on condensation and evaporation,” Adv. Sci., vol. 11, no. 39,

p. 2404010, 2024.


https://doi.org/10.1063/5.0181269
https://doi.org/10.1063/5.0181269
https://doi.org/10.1007/s11468-024-02640-7
https://doi.org/10.1007/s11468-024-02640-7
https://doi.org/10.1038/s44287-024-00057-2
https://doi.org/10.29026/oes.2024.230033
https://doi.org/10.29026/oes.2024.230033

DE GRUYTER

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

W. Su, et al., “Machine learning-enabled design of metasurface
based near-perfect daytime radiative cooler,” Sol. Energy Mater.
Sol. Cells, vol. 260, p. 112488, 2023.

J. Ko, et al., “Metasurface-embedded contact lenses for
holographic light projection,” Adv. Sci., vol. 11, no. 38, p. 2407045,
2024.

X. Yuan, et al., “Multitask learning deep neural networks enable
embedded design of active metamaterials,” ACS Appl. Mater.
Interfaces, vol. 16, no. 20, p. 26500, 2024.

M. K. Chen, et al., “A meta-device for intelligent depth
perception,” Adv. Mater., vol. 35, no. 34, p. 2107465, 2023.

J. H. Han, “Efficient inverse design of optical multilayer nano-thin
films using neural network principles: backpropagation and
gradient descent,” Nanoscale, vol. 16, no. 36, pp. 17165—17175,
2024.

Z.Dong, et al., “Nanoscale mapping of optically inaccessible
bound-states-in-the-continuum,” Light: Sci. Appl., vol. 11, no. 1,

p. 20, 2022.

X. Liu, et al., “Meta-Lens particle image velocimetry,” Adv. Mater.,
vol. 36, no. 17, p. 2310134, 2024.

A. Khaireh-Walieh, D. Langevin, P. Bennet, O. Teytaud, A. Moreau,
and P. R. Wiecha, “A newcomer’s guide to deep learning for
inverse design in nano-photonics,” Nanophotonics, vol. 12, no. 24,
pp. 4387—4414, 2023.

S. D. Rezaei, et al., “Nanophotonic structural colors,” ACS
Photonics, vol. 8, no. 1, pp. 18 —33, 2021.

Z.Dong, et al., “Schrédinger’s red pixel by
quasi-bound-states-in-the-continuum,” Sci. Adv., vol. 8, no. 8,

p. eabm4512, 2022.

C.Jung, et al., “Metasurface-driven optically variable devices,”
Chem. Rev., vol. 121, no. 21, pp. 13013—13050, 2021.

Z.Wang, et al., “Selectively plasmon-enhanced second-harmonic
generation from monolayer tungsten diselenide on flexible
substrates,” ACS Nano, vol. 12, no. 2, pp. 1859—1867, 2018.

K. Huang, et al., “Silicon multi-meta-holograms for the broadband
visible light,” Laser Photonics Rev., vol. 10, no. 3, pp. 500—509,
2016.

W. Chen et al.: Empowering nanophotonic applications = 447

[145] Y. Xie, et al., “Dual-degree-of-freedom multiplexed metasensor
based on quasi-BICs for boosting broadband trace isomer
detection by THz molecular fingerprint,” IEEE J. Sel. Top. Quantum
Electron., vol. 29, no. 5, pp. 1—10, 2023.

[146] H.Zhong, et al., “Toroidal dipole bound states in the continuum in
asymmetric dimer metasurfaces,” Appl. Phys. Rev., vol. 11, no. 3, p.
031404, 2024.

[147] F.Li, et al., “Affinity exploration of SARS-CoV-2 RBD variants to
mAb-functionalized plasmonic metasurfaces for label-free
immunoassay boosting,” ACS Nano, vol. 17, no. 4, pp. 3383 —-3393,
2023.

[148] B.Liu, et al., “Metalenses phase characterization by multi-distance
phase retrieval,” Light: Sci. Appl., vol. 13, no. 1, p. 182, 2024.

[149] S.S.Kruk, et al., “Asymmetric parametric generation of images
with nonlinear dielectric metasurfaces,” Nat. Photonics, vol. 16,
no. 8, pp. 561—565, 2022.

[150] L. Lu, et al., “Reversible tuning of Mie resonances in the visible
spectrum,” ACS Nano, vol. 15, no. 12, pp. 19722 —19732, 2021.

[151] W. Chen, et al., “All-dielectric SERS metasurface with strong
coupling quasi-BIC energized by transformer-based deep
learning,” Adv. Opt. Mater., vol. 12, no. 4, p. 2301697,

2024.

[152] Z.Wanag, et al., “Giant photoluminescence enhancement in
tungsten-diselenide—gold plasmonic hybrid structures,” Nat.
Commun., vol. 7, no. 1, p. 11283, 2016.

[153] L.Jiang, et al., “Probing vertical and horizontal plasmonic
resonant states in the photoluminescence of gold nanodisks,”
ACS Photonics, vol. 2, no. 8, pp. 12171223, 2015.

[154] D.Hasan and C. Lee, “Hybrid metamaterial absorber platform for
sensing of CO, gas at Mid-IR,” Adv. Sci., vol. 5, no. 5, p. 1700581,
2018.

[155] X. Liu, et al., “Anisotropic honeycomb stack metamaterials of
graphene for ultrawideband terahertz absorption,”
Nanophotonics, vol. 12, no. 23, pp. 4319—4328, 2023.

[156] J. G. Fujimoto, “Optical coherence tomography for ultrahigh
resolution in vivo imaging,” Nat. Biotechnol., vol. 21, no. 11,
pp. 1361—1367, 2003.



	1 Introduction
	2  Fundamentals of AI for nanophotonics
	2.1 Neural networks
	2.1.1  Multilayer perceptrons (MLPs)
	2.1.2  Transformer models
	2.1.3  Variational autoencoders (VAEs)
	2.1.4  Convolutional neural networks (CNNs)

	2.2 Intelligent algorithms
	2.2.1  Classification algorithms
	2.2.2  Filtering algorithms
	2.2.3  Optimization algorithms


	3 Smart design driven by machine learning
	4 Diffractive optical networks
	5 Optical quantum computing
	6 Advanced engineering applications
	7 Insight and outlook


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


