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Abstract

Modern cosmological models such as ΛCDM and single-field inflation have

shown remarkable agreement with nearly all current observations. They have

lent understanding to the accelerated expansion of the Universe observed with

type Ia supernovae, match nearly perfectly to the abundance of light elements,

have accurately predicted the size of the baryon acoustic oscillations seeded

from the initial density perturbations, and have explained away the flatness,

horizon, and monopole relic problems. Yet, the challenges that remain have

grown worse with the increased accuracy of observations hinting that they will

not likely go away. What is needed now are novel cosmological probes and

new solutions to test these challenges. In this dissertation I discuss just that:

my work in advancing the use of quasars as a novel standardizable candle and

my work in modifying the period of recombination with an electron-symmetron

coupling in order to solve the Hubble tension. I also discuss my work in testing

the Weak Gravity and de Sitter Swampland Conjectures.

The dissertation is structured as follows. Part I provides a broad review

of the background knowledge that the later chapters assume where as Part II,

containing chapters 2 to 4, discusses the selected work and publications I have
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contributed to during my Ph.D. candidacy. Chapter 2 focuses on my use of

quasars as standardizable candles originally published in [1] along with a brief

discussion on ΛCDM biases towards high z probes published in [2, 3]. Follow-

ing my work in [4], chapter 3 lays down the arguments for a modified electron

mass at recombination in order to relieve the Hubble tension. As a mechanism

to drive the change in mass I propose a Yukawa coupling between the electron

and symmetron field and discuss the likely observables. And Chapter 4 dis-

cusses my contributions towards studies in both a generalization of the Weak

Gravity Conjecture and a study in how the de Sitter Swampland Conjecture can

be applied to P(X, φ) inflationary theories.
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Part I

Review



Chapter 1
The Good, the Bad, and ΛCDM

The field of cosmology has come a long way since the first cave person gazed

into the Sun. Modern advances in telescopes, interferometers, and computing

now allow us to gaze into billions of stars, stellar explosions, accreting black

holes, the first formation of nuclear hydrogen, and may be soon the gravita-

tional ripples created from the earliest moments after the big bang. As the tech-

nology evolved so did our description of the Universe. Some good ideas were

proposed, some bad ideas too, and now we have a working model, ΛCDM.

In the remaining chapters of part I I will describe in sufficient capacity the

current status of topics relevant to my work. These topics include: general rela-

tivity and the FLRW Universe, the ΛCDM model, the expanding universe at low

redshifts, and inflation. A reader well learned in cosmology and astrophysics

may skip to II where I discuss the work I have done during my Ph.D. candidacy.
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1.1 General Relativity

The history of General Relativity (GR) is likely one of great intrigue with Albert

Einstein’s seminal work in 1905 on Special Relativity eventually leading to a

very fertile year of publications in 1915 which outlined the details of GR. The

theory can be summed up very nicely with Einstein’s field equations

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν. (1.1)

The left hand side of the equation describes the geometry of a curved manifold

while the right hand side accounts for the matter1 content in a system. Together

we get the take-away idea of GR: matter causes curvature and curvature moves

matter. A full description of GR is of course beyond the scope of this thesis but I

point the interested reader to the densely written ”General Relativity” by Wald

[5], the very useful ”Problem Book in Relativity and Gravitation” by Lightman,

Press, Price and Teukolsky [6], or the coffee table book ”Gravitation” by Misner,

Thorne, and Wheeler [7]. For the purposes here, a brief overview of (1.1) and

some of its consequences should suffice.

Content warning, throughout this text, unless otherwise stated, I will be as-

suming G = c = 1 and the metric signature of choice will be (-,+,+,+).

I begin again with the left hand side of (1.1). The Rµν term in addition to its

scalar counterpart, R = Rα
α, denotes the Ricci curvature tensor and the Ricci

scalar, respectively. The tensor can be expressed as a collection of partial deriva-

tives of the metric, gµν,

Rµν = Γα
µν,α − Γα

αν,µ + (Γα
αβΓβ

µν − Γα
µβΓβ

αν) (1.2)

1Matter is used in a loose sense here. All forms of energy content is included.
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where Γσ
µν is the Christoffel symbol which GR assumes as the affine connection

given by

Γσ
µν =

1
2
(gνα,µ + gµα,ν − gµν,α)gσα. (1.3)

An very prominent prediction of GR can already be seen, but perhaps it is made

clearer if I momentarily consider Λ = 0 and rewrite left hand side of (1.1) with

the Einstein tensor, Gµν ≡ Rµν − 1
2 Rgµν, so that

Gµν = 8πG
c4 Tµν. (1.4)

Since Gµν is up to second order in partial derivatives of the metric with respect

to the spacetime coordinates then what we have is a wave equation sourced by

the stress energy tensor. So quite readily one could expect the existence of grav-

itational waves, but since the coefficient 8πGc−4 is quite small (∼ 10−43N−1)

the source would have to be immense if we have hopes of detecting the waves;

hence why LIGO, VIRGO, and eventually LISA are looking at merging binary

neutron stars and black holes.

I want to make an important aside on the Λ term or the cosmological con-

stant. It is currently not clear whether this term should be taken into account

in the field equations. Most often we consider the cosmological constant to be

the observed dark energy (thus the name ΛCDM) because it would provide an

accelerated expansion with an effective fluid equation of state (EoS) of w = −1

as is observed in low redshift observations. However, it could be that the dark

energy’s EoS evolves with redshift in such a way that it looks like a constant in

our current epoch in which case dark energy and Λ would not necessarily be

identical. The possible difference between Λ and dark energy is corroborated
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by the fact that if the cosmological constant is sourced by vacuum fluctuations

then the predicted Λ value from electroweak calculations alone differs from the

cosmologically measured value by 55 orders of magnitude [8]. But now that this

caveat has been addressed, I will take the approach that many in the field take

which is to treat the cosmological constant and dark energy as the same thing

until something better comes along with convincing evidence.

1.1.1 General Relativity on Large Scales

We can make the ansatz that our Universe at the largest scales (at least above

that which galaxy clusters form, ≳ 100Mpc) is uniform and isotropic. This idea

carries over from Copernicus’ work on the decentralization of the Earth in ce-

lestial mechanics and is suitingly referred to as the Copernican principle. Un-

der the Copernican principle we can argue that the most general metric is the

Friedman-Lemaı̂tre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)
(

dr2 + Sk(r)2 dΩ2
)

(1.5)

where a is the scale factor and k is a constant which parameterizes the intrinsic

curvature of space-time2. The function Sk(r) takes the form

Sk(r) = r sinc(r
√

k) =



√
k
−1

sin(
√

kr) k > 0

r k = 0
√

k
−1

sinh(
√

kr) k < 0

(1.6)

2The term dΩ2 ≡ sin2(ϕ)dθ2 + dϕ2 which only shows up here should not be confused with
the fractional energy density Ω to be introduced below.
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and is dependent on if the Universe is open (k > 0), flat (k = 0), or closed

(k < 0)3. Both a and k can be talked about in two ways: (i) a is dimensionless

so that k has units of [LENGTH]−2 or (ii) a has units of [LENGTH] while both

k and r are dimensionless. The difference between the two is only a matter of

convenience, and for convenience I will be using the former choice so that I

can define the scale factor today as unity giving the simple conversion between

scale factor and redshift a = (1 + z)−1.

The stress-energy tensor, or energy-momentum tensor, Tµν, can generally be

written as

Tµν = −2
∂LM

∂gµν + gµνLM (1.7)

where LM is the Lagrangian density for the matter fields which must satisfy the

continuity equation, Tα
µ;α = 0. The definition of LM will vary depending on the

system of interest. For example, the Schwarzschild black hole is a vacuum solu-

tion with a LM such that Tµν = 0 everywhere except at the singularity at which

point it is undefined. Often for cosmological purposes we consider perfect fluid

systems which on large scales works very well. In the perfect fluid case we can

write the stress-energy tensor as

Tµν = (p + ρ)UµUν + pgµν. (1.8)

The fluid’s pressure, p, and density, ρ, can always be related by p = wρ where w

is the EoS mentioned earlier. In the rest frame of the fluid (i.e. when UµUν = 1

which will be the frame we assume from now on) the stress-energy tensor takes

3Current observations put k very near to zero [9].
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the form

Tµ
ν =



−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


(1.9)

with a trace

T ≡ Tµ
µ = −ρ + 3p. (1.10)

The trace is not important here but it will briefly return later in chapter 3 when I

argue for a coupling of the matter fields to the trace of the stress-energy tensor.

Now that we have chosen a metric and a stress-energy tensor we can reduce

the Einstein field equations (1.1). The 00-component we would find gives the

first Friedmann equation

H2 ≡ ȧ2

a2 = H2
0(Ω + Ωka−2) (1.11)

where H and H0 are the Hubble parameter and the Hubble constant, respec-

tively, used as a measure of the expansion rate of the universe. I have also

defined the fractional energy density of the fluid, Ω ≡ ρ
ρc

(where ρc ≡ 3H2
0

8πG is

the critical density at which the universe would be exactly flat), and that of the

curvature, Ωk ≡ k
H2

0
. In general, Ω is a function of the scale factor such that at

a = 1 we expect (Ω + Ωk) = 1. For a composite system of n perfect fluids with

constant EoS we can express Ω as

Ω =
n

∑
i

Ωi0 a−3(1+wi). (1.12)
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wi Ωi Ωi0
radiation . . 1/3 Ωr0 a−4 Ωr0 ≈ 9 × 10−5

matter . . . . . 0 Ωm0 a−3 Ωm0 ≈ 0.3
dark energy -1 ΩΛ ΩΛ ≈ 0.7

Table 1.1: The three commonly used perfect fluid contributions to the energy
content in the Universe. The columns in order are the fluids’ EoS, scaling rela-
tions, and approximate estimates of their current densities from observations.

A non-constant EoS is not much more difficult to solve for and can be written as

Ω =
n

∑
i

Ωi0 exp
[
− 3

∫
(1 + w)a−1 da

]
. (1.13)

In most of the fluids we are interested in, a constant EoS is a sufficient assump-

tion and as such we will continue to assume the form (1.12), but many alterna-

tive models of dark energy suppose an evolving EoS so (1.13) remains relevant

in the literature. The coefficients in the series satisfy ∑n
i Ωi0 = 1− Ωk and repre-

sent the current densities of the fluids today. The standard cosmological model,

which will be discussed later, has three fluid components which I have listed in

table 1.1. Their scaling relations are quite easy to argue for based on first prin-

ciples and are sketched in figure 1.1. The matter density scales with the volume

inverse (a−3) as is usually the case for pressureless dust system. Likewise, ra-

diation scales with the volume inverse but with an additional factor due to the

radiation’s wavelength stretching with the scale factor. Dark energy’s scaling

relation is a bit of an anomaly but it can be physically argued for by considering

a scalar field with a potential energy term dominating its kinetic energy term. I

will discuss this type of fluid in more detail in section 1.4, but for now it should

suffice to say that the scaling relation of dark energy is the simplest working

relation we have to match with observation.
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Figure 1.1: The three perfect fluids making up the energy content of the Uni-
verse as a function of redshift. Based on current observations, in the present
(rightmost, z ≲ 0.3) the Universe is dark energy dominated while in the distant
past (leftmost, z ≳ 3000) the Universe was radiation dominated and in between
we had a phase of matter domination.

In addition to (1.11), the ii-component of (1.1) in combination with the 0-

component of the continuity equation, T0α
;α = 0, can be used to determine the

second Friedmann equation, a linearly independent relation dictating the be-

havior of the Hubble parameter,

Ḣ + H2 =
ä
a
= −1

2
H2

0

n

∑
i
(1 + 3wi)Ωi. (1.14)

We can now see that in general the Universe will undergo some accelerated

expansion, either positive or negative, and a constant expansion rate would re-

quire a fine tuning between the separate fluids. Furthermore, if for simplicity

we consider an effectively single fluid state with w < −1/3 then the Universe

will undergo an accelerated expansion. Thus, throughout the matter and radia-

tion dominated epochs the expansion rate was slowing until the fairly recently

onset of dark energy domination causing the expansion rate to quicken. If dark

energy proves to have a constant EoS w = −1 as it seems to have from current
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observations then our Universe will eventually evolve towards a de Sitter uni-

verse (i.e. one with only a w = −1 fluid or cosmological constant) marked by an

exponential growth in the scale factor, a ∝ exp[2H2t], similar to the inflationary

epoch of the very early Universe.

1.1.2 General Relativity at Small Scales

By small scale I of course mean in the ball park of astrophysical objects, primar-

ily stellar sized black holes (BHs) – a sufficient discovery of a quantum theory

of gravity still remains to be made4. BHs were predicted very early on after the

construction of GR and have been inferred in observations of stars orbiting mas-

sive unseen counterparts. In recent years the gravitational wave observations

from LIGO/VIRGO and the BH image from EHT have all but solidified the ex-

istence of BHs in nature. The typical story of BH formation is that a massive star

(> 3M⊙) will eventually collapse into a white-dwarf star, which might eventu-

ally collapse into a neutron star, which might eventually collapse into a BH. But

since BHs are sourced by extreme densities then we can also expect them to be

produced around the initial density perturbations in the early Universe. These

latter BHs are referred to as primordial black holes (PBHs) and have been pro-

posed as a candidate for the missing matter in the Universe (i.e. dark matter).

PBHs are no longer in strong favor for explaining the missing matter due to the

combined constraints from transient microlensing searches such as EROS and

MACHO and those from wide binary perturbations [10].

The transition from an initial state, whether a neutron star or an over dense

region in the early universe, to a BH can be a very complicated process where

4A discovery for which the discoverer will no doubtedly win a great number of many noble
awards and grants along with the highly sought after and miserable life of a celebrity.
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inflowing gas and plasma can cause large deviations from spherical symmetry.

But the final stable state of the BH we know very well since only three quanti-

ties are needed to define it: mass (M), angular momentum (J), and charge (Q).

The charge does not have to be the U(1) charge of electromagnetism but for

convenience I will speak of it as such. The most general BH solution is given by

the Kerr-Newman metric but it is much too long of a solution to put here so for

brevity I will only discuss its horizon radii:

R± = M ±
√

M2 − a2 − Q2 (1.15)

written in units where 4πϵ0 = 1 and with the angular momentum parameter

a ≡ J/M not to be confused with the scale factor5. There are three relevant

limiting cases:

Schwarzschild (Q = a = 0) The Schwarzschild solution is the most general

spherically symmetric vacuum solution of (1.1). It has a single radius of

R = 2M and it is expected that evaporative processes will drive all BHs

towards the Schwarzschild state.

Reissner-Nordström (a = 0) The Reissner-Nordström BH has two radii, R± =

M ±
√

M2 − Q2. The outer horizon, R+, is the true event horizon while

the R− is only a Cauchy horizon with the space inbetween allowing for

trapped space-like geodesics. We can imagine through some mechanism

that Q2 → M2 which would cause the two horizons to become degenerate

and form what is called an extremal BH. Extremal BHs are very interesting

5The angular momentum parameter, a, will only be used in this section. Elsewhere in the
text a can be safely assumed as the scale factor.
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in that the Hawking evaporation for a Reissner-Nordström BH goes as

T =
1

2π

√
1 − Z2

1 +
√

1 − Z2
(1.16)

which clearly goes to zero when Z ≡ Q/M → 1. Thus, if the thermo-

dynamic analogy persists then extremal BHs would be an example of an

absolute zero temperature system. If the state Q > M can be reached then

the geometry of the space no longer has an event horizon and a naked sin-

gularity is left behind. The extremal bound is discussed in greater detail

in chapter 4.2.1 where a few of these comments will be repeated for conti-

nuity purposes. In practice astrophysical charged BHs are highly unlikely

due to the net neutrality of matter but it remains a theoretically rich course

of study especially when one considers the evaporation of small BHs near

the Planck mass.

Kerr (Q = 0) The Kerr solution is the most astrophysically relevant BH and our

first one with axial symmetry. Similar to the Reissner-Nordström BH it has

two radii, R± = M ±
√

M2 − a2 and likewise it too has an extremal case at

a2 = M2 with a similar behavior for the Hawking temperature. And even

though Hawking evaporation can more readily evaporate away angular

momentum than charge it is also much easier to construct a way to spin

up a BH towards the extremal bound by accreting matter or by collapsing

a high-spin neutron star.

While other BH solutions exist (e.g. Gauss-Bonnet, dilatonic, etc.) I will leave

these for the interested reader.



13

Parameters Best Fit Definition
ωb . . . . . . . . 0.02242±0.00014 . . . . . . . . . . . . . . Ωbh2, baryon density today
ωc . . . . . . . . 0.11933±0.00091 . . . . . . Ωch2, cold dark matter density today
100θMC . . . 1.04101±0.00029 100× Monte Carlo approximation to r∗/DA

τ . . . . . . . . . 0.0561±0.0071 . . . . . . . . . . . . . Optical depth at reionization
ns . . . . . . . . 0.9665±0.0038 . . . . . . . . . Scalar spectrum power law index
ln(1010As) 3.047±0.014 . . . . . . . Primordial curvature perturbations

Table 1.2: The six free parameters used in the base ΛCDM model and their best
fit values determined by Planck 2018 TT,TE,EE+lowE+lensing+BAO [11].

1.2 ΛCDM

In the remainder of the text I will be assuming the standard ΛCDM model un-

less otherwise stated. ΛCDM is today considered the standard model of cos-

mology. It has been a very successful model with a notably small number of

free parameters (see table 1.2). There are however a number of assumptions un-

der its hood which I will take a moment to discuss along with some increasingly

relevant difficulties ΛCDM is having with observations.

1.2.1 ΛCDM Assumptions

1.2.1.1 The Copernican Principle Holds

Recall that the Copernican Principle postulates that the Universe is homoge-

neous and isotropic at the largest scales and results in our use of the FLRW

metric. The Universe of course does not satisfy the Copernican Principle at all

scales (e.g. the Milky Way galaxy has a definite preferred direction to it) nor

does there exist a first principle reason for it to, but at least at scales much larger

than ∼100Mpc it seems a reasonable assumption based on observation. How-

ever, there are some current considerations that put the isotropic assumption

under scrutiny. Particularly, a strong dipole anisotropy is expected in the cos-



14

mic microwave background (CMB) due to the Sun’s peculiar motion relative to

the CMB and has been measured by the Planck team. They have inferred the

Sun’s peculiar velocity to be (369.82 ± 0.11)km s−1 with respect to the CMB in

the direction of the constellation Leo [9]. However, bulk flow estimates have

determined a peculiar velocity in a direction in agreement with the CMB dipole

but with more than twice the amplitude [12, 13]. A number of additional anoma-

lies have also been observed along the direction of the dipole [14], bringing into

question whether the CMB dipole is fully explained by peculiar motion or if

something beyond standard cosmology is required. I will however continue to

assume the validity of the Copernican Principle and the FLRW metric.

1.2.1.2 General Relativity is Sufficient

Our next assumption is that GR is an accurate description of gravity. The un-

suspecting reader may find this statement exceptionally trivial due to GR’s re-

peated success in both high accuracy direct measurements and observed predic-

tions such as gravitational lensing, black holes, and gravitational waves, but the

gravitational effect of both dark matter and dark energy without a detectable

counterpart has brought some reasonable scrutiny to the theory, giving way

to other modified gravity models such as MoND, f (R) gravity, entropic gravity,

etc. (see [15] for an extensive review of modified gravity theories). The complex-

ity of modification can vary from simple modifications of GR ( f (R), Einstein-

Cartan theory,. . . ) or even more drastic overhauls. For example, MoND (Modi-

fied Newtonian Dynamics) is a more drastic deviation from GR. It is a dark mat-

ter free theory whose original aim was to explain the flattened rotation curves
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in galaxies and the baryonic Tully-Fisher relation (BTFR)6 MoND does this by

using Milgrom’s relation [16] to modify Newtonian gravity so that

|Fg| = G
mM
r2 f ( a

a0
) (1.17)

where f ( a
a0
) is an empirically determined interpolating function which at suffi-

ciently large accelerations (a ≫ a0) approaches unity in order to retain Newto-

nian gravity, but at sufficiently low accelerations f (a ≪ a0) → a/a0 and

|Fg| → G
a0

a
mM
r2 . (1.18)

The transition acceleration is found to be a0 ∼ 10−10m s−2 which due to its

numerical proximity to cH0 ≈ 6 × 10−10m s−2 has been the cause of additional

speculation. MoND has been wildly successful in reproducing both the galactic

rotation curves and the BTFR up to the scale of galactic super clusters [17], but

it still needs improvements before it can match CMB, large scale structure (LSS)

formation, and lensing events like the bullet cluster.

Einsten-Cartan (EC) gravity on the other hand is a very minor generaliza-

tion of classic GR and is in most cases observationally indistinguishable. The

key difference in EC gravity is that the affine connection is not assumed to be

symmetric or torsion-free resulting in a more general connection than that given

by the Christoffel symbols. The allowance of torsion in the manifold contributes

and additional torsion tensor, T ρ
µν , with an analogous role that the metric has

6The BTFR is an empirical relation between a galaxy’s asymptotic rotational velocity and
the galaxy’s luminous mass which goes as M ∝ Vα where α ∼ 4. Based on first principles
the asymptotic rotational velocity should be dependent on both the dark matter and luminous
mass. Baryonic feedback effects are still expected to bring ΛCDM into agreement with the BTFR
though.
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for curvature. The field equations, obtained by varying the action with respect

to the metric and now also the torsion tensor, give both (1.1) as before and

T ρ
µν + g ρ

µ T α
να − g ρ

ν T α
µα = 8πG

c4 σ
ρ

µν (1.19)

where σ
ρ

µν is the spin tensor which serves the same purpose as the stress-energy

tensor does for curvature. The importance I want to note here is that the torsion

equation, (1.19), is an algebraic combination of the torsion tensor unlike the

partial differential equations of (1.1). This means that, although curvature is

able to propagate through free space via gravitational waves, torsion has no

wave counterpart and would leave no signal in gravitational wave detectors.

Furthermore, mass is known to be the source of curvature but it is not clear

what the source of torsion is (i.e. what determines σ
ρ

µν ). A common speculation

is that the intrinsic spin of fundamental particles may act as a source, and if

this is the case then we are unlikely to observe any torsion signatures outside

of a dense, highly correlated spin system. Thus, any deviations in EC gravity

from classic GR is safely outside the reach of current observational cosmology.

Interestingly though, EC gravity naturally introduces a mechanism to avoid the

formation of singularities which is of great cosmological interest since it can

avoid the formation of BH singularities and provide a natural mechanism for a

”big bounce” cosmology instead of the big bang one. But since it is not relevant

to the interests of this text I leave it for the interested reader.

In total, alternatives to GR have not been ruled out and may likely be a better

description of gravity. But due to the success of GR, the alternatives must be

very close to the form of GR in all relevant cases making it safe to assume that

GR is sufficient.
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1.2.1.3 The Universe is Evolving from a Hot Dense State

This assumption can be solidly based on two observations: the Universe is ex-

panding and the CMB. If the Universe has been expanding monotonically for a

very long time then it is only natural to consider that the Universe was much

more dense and hot in earlier times. Today we observe the CMB which is a 2.7K

photon bath. At earlier times the photon bath was more condensed and there-

fore much hotter and if we take it far enough back we could have the photon

bath reach any temperature we can imagine up to the Planck temperature where

quantum gravity is expected to kick in or at roughly a third of the Planck tem-

perature due to the formation of BHs [18]. Considering hydrogen to be the most

abundant element in the present Universe, at some point in the past the temper-

ature would have reached the ionization temperature of hydrogen. Before this

temperature (earlier Universe) the Universe must have been opaque due to the

abundant compton scattering off of free electrons and hydrogen nuclei while af-

ter the temperature (later Universe) the Universe should be transparent allow-

ing the photons to free stream. This is our current understanding of the CMB.

The CMB photons were the last photons scattered before hydrogen nuclei could

capture the electrons hence the name: surface of last scattering. The transition

period is ironically called recombination and sits at a redshift around z ≈ 1100.

1.2.1.4 There are Five Components to the Energy Content

The base ΛCDM model considers five basic constituents to the energy content

of the Universe:

i ΩΛ, dark energy which behaves like the energy density of the vacuum,

ii Ωc, cold dark matter which is stable enough for structure formation,
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iii Ωb, baryonic matter which behaves as predicted by the standard model of

particle physics plus gravity,

iv Ωγ, CMB photons (astrophysical photons are less abundant by a factor of

200 [19]),

v Ων, neutrinos with at least one massive flavor.

As a result the Hubble parameter (1.11) can be written as

H2(z) = H2
0
[
Ωr0 a−4 + Ωm0 a−3 + ΩΛ + Ωka−2] (1.20)

where the 0-subscript denotes the value in the present epoch, Ωr0 ≡ (Ωγ0 +Ων0)

is the radiation component today, and Ωm0 ≡ (Ωb0 + Ωc0) is the matter compo-

nent today. The presence of dark energy is required due to the accelerated ex-

pansion measured in low redshift observations. Dark matter not only explains

the missing matter in galaxy rotation curves and lensing observations but also

determines the higher ℓ odd peaks in the CMB power spectrum. The require-

ment for cold dark matter allows for sufficient structure formation since if the

dark matter were too hot (i.e. too light) then large scale structures would be

more washed out than observed. The need for baryonic matter, CMB photons

and neutrinos is self explanatory.

1.2.1.5 The Universe is Spatially Flat

The base ΛCDM model also assumes that the Universe is exactly flat, Ωk = 0.

This is a pretty safe assumption for two reasons: Planck measures a spatially flat

Universe, Ωk = 0.0007 ± 0.0019 (Planck+lensing+BAO [11]) and standard infla-

tionary models generally drive the Universe exponentially towards flatness.
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1.2.1.6 The Initial Fluctuations are Random

And finally, the last assumption I will mention is that the initial density fluctua-

tions in the early universe were Gaussian, adiabatic, and nearly scale-invariant.

This assumption is primarily one of ease as there are no physical processes re-

quiring them except for standard inflation models which drive the Universe

towards such a configuration.

1.2.2 The Many Successes and Failures of ΛCDM

ΛCDM has been successful on many fronts. It predicted the right size of the

baryon acoustic oscillations (BAO) which were first observed by the Sloan Digi-

tial Sky Survey (SDSS) [20] and predicted the CMB polarization anisotropy de-

tected by DASI [21]. ΛCDM can also explain the accelerating expansion [22],

the spectrum of large scale structure [23], the abundance of light elements [24],

and the power spectrum of the CMB anisotropies [11]. But dissonance remains

in the field due to a few resilient tensions with observation.

The most striking issue is of course the cosmological constant problem marked

by the fact that the theoretically expected value for Λ from electroweak contri-

butions to the vacuum energy is 55 orders of magnitude larger than the ob-

served value [8]. Since we do not have a firm grasp on dark energy the issue

may be there or it may be that somewhere in more extensive QFT calculations a

large cancellation may occur (which would then cause a fine-tuning problem).

For the time being we have posted this problem on the cosmological refrigerator

and promised to get around to it someday after we have a better grasp on dark

energy and dark matter.

Still other tensions persist. For brevity I mention only a few of the more sig-
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nificant tension (≥ 2σ, which can often be viewed as significant in cosmology),

but I refer the reader to [25–27] for extensive reviews of further tensions and

anomalies.

Hubble Tension [> 4σ] The Planck 2018 [11] CMB observations have constrained

the spread in H0 values to a very narrow window of H0 = (67.4 ± 0.5)km

s−1Mpc−1 while the cosmic distance ladder measurements from the SH0ES

team [28] has obtained a wider but significantly different window of H0 =

(73.04± 1.04)km s−1Mpc−1. An up-to-date collection of H0 estimates from

multiple observations is shown in figure 1.2. The top section of the plot

lists the high z constraints on H0 from CMB and BBN (Big Bang Nucle-

osynthesis) observations while the remainder lists the low z observations.

Systematic errors may of course inflate the tension, but none have yet been

found that would cause a discrepancy to this degree (see [29] for a nice dis-

cussion on both low and high z systematics).

S8 Tension [2 − 3σ] The strength in matter clustering can be parameterized by

the S8 ≡ σ8
√

Ωm/0.3 parameter where σ8 is the amplitude of mass fluc-

tuations on a fiducial scale of 8h−1Mpc. If one has a good level of con-

fidence in Ωm then the tension can also be referred to as a σ8 tension.

The Planck TT,TE,EE+lowE+lensing constraints place S8 = (0.832 ± 0.013)

while weak lensing, globular clusters, galaxy cluster abundances, and red-

shift space distortions all prefer a lower value with weak lensing alone

around S8 = (0.735 ± 0.044). Physically it seems that the CMB observa-

tions are predicting more clustering than is observed.

Cosmic Dipole [2− 5σ] The tension in the cosmic dipole has already been men-

tioned in the previous section but for completeness I will briefly reiterate
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it here. A dipole anisotropy in the CMB has been measured by both the

WMAP and Planck teams in agreement with the direction of the Sun’s pe-

culiar velocity with respect to the CMB rest frame. However, bulk flow

measurements show that the dipole amplitude should be more than twice

the value measured on the CMB (i.e. we seem to be going faster than what

the dipole shows).

Cosmic Birefringence [2.4σ] Recently a non-zero birefringence has been ob-

served in the Planck 2018 CMB polarization anisotropies at the 2.4σ level.

A cosmic birefringence, if confirmed, would hint at parity violation in the

early Universe which standard ΛCDM is not yet able to explain.
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Figure 1.2: A non-exhaustive list of H0 measurements. The pink and blue bands
correspond to the H0 values from Planck 2018 [11] and the SH0ES team [28], re-
spectively. Referenced papers are listed on the side with their arχiv identifier
and correspond to [11, 30–85]. Code for the repoduction of similar plots has
been made available at http://github.com/lucavisinelli/H0TensionRealm

by the authors of [29].

http://github.com/lucavisinelli/H0TensionRealm


23

1.2.3 Alternatives to ΛCDM

The above tensions have put more interest into modified ΛCDM models. There

is a continuous flux of alternative models going in and out of favor as our cos-

mological constraints improve in accuracy and robustness. Below I describe a

few commonly discussed models including two models which took the silver

(early dark energy) and gold (meΩkΛCDM) in the H0 Olympics [86].

ΩkΛCDM This is the minimal extension to ΛCDM taken when one drops the

assumption that Ωk = 0. The Planck team has shown that in ΩkΛCDM a

small but finite Ωk = −0.044+0.018
−0.015 is preferred by the TT,TE,EE+lowE data

set and Ωk = 0.0007 ± 0.0019 is preferred by +lensing+BAO data set [11].

By itself the model does not reduce any of the tensions significantly.

waCDM Standard ΛCDM treats dark energy as a cosmological constant corre-

sponding to a constant EoS w = −1. waCDM instead considers

w = w0 + (1 − a)wa (1.21)

thus giving dark energy a phenomenologically dynamical behavior. Using

CMB, BAO, and type Ia supernovae combined, Planck 2018 finds preferred

values of w0 = −0.957 ± 0.080 and wa = −0.29+0.32
−0.26 with minor reduction

in the S8 and H0 tensions [11].

Early Dark Energy (EDE) A run of the mill EDE model is usually one with a

frozen-in scalar field (i.e. w ≈ −1) sitting high enough on its potential that

it is able to momentarily provide a significant fraction (∼ 10%) of the total

energy density prior to recombination. At this point the field unfreezes

and transitions through the potential such that w ≥ 1/3 which allows its
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energy density to decay away rapidly. A common example in the literature

uses the potential

V(Θ) = m2 f 2[1 − cos(Θ)
]n (1.22)

where Θ ≡ ϕ/ f is a re-normalized field variable ranging from −π ≤ Θ ≤

π. The freeze-in mechanism, provided by the high Hubble friction at early

times, finishes when H < m at which point the field behaves like a fluid

with EoS w = (n − 1)/(n + 1). This choice of EDE does not replace the

cosmological constant however.

meΩkΛCDM This model is similar to the ΩkΛCDM model discussed previ-

ously, however a time-dependent electron mass is added in order to mod-

ify recombination as well. The meΩkΛCDM model has been shown to re-

duce the Hubble tension to below 2σ with the combined TT,TE,EE+lowE+BAO

and Pantheon supernovae data set [87]. This is discussed in greater detail

in chapter 3.

For a more exhaustive and modern list of alternative models along with their

present standing with observations see [29, 86].

1.3 Low z Cosmology

The low redshift Universe provides a unique model independent window into

constraining cosmology. This is through the application of Hubble’s law, v =

HdL, with the luminosity distance given by dL ≡
√

4π/L. It is a bit more useful

however to expand the relation as a power series in redshift:

H0dL = z +
1
2
(1 − q0)z2 − 1

6
(1 − q0 − 3q2

0 + j0)z3 +O(z4) (1.23)
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where q0 and j0 are the current (i.e. z = 0) values of the deceleration and jerk

parameters given by

q ≡ − äa
ȧ2 =

(1 + z)
H

dH
dz

− 1 (1.24)

j ≡
...a

aH3 =
1

(1 + z)

(
− (1 + z)

dq
dz

− q + 2q2
)

. (1.25)

When assuming a particular cosmological model such as ΛCDM it will be much

more convenient to use the general relation

dL = (1 + z)
∫ z

0

cdz
H(z)

, (1.26)

since it can be easily extended to much higher redshifts, but for now I will con-

tinue to consider (1.23). For agnostic concreteness I will take the central value

for today’s rate of expansion, H0 ≈ 70km s−1Mpc−1, unless stated otherwise. A

general expression for j0 is a bit complicated but it is easy to see from (1.14) that

assuming a spatially flat cosmology (i.e. ∑n
i Ω0i = 1) then today’s value of the

deceleration parameter has a simple analytic expression:

q0 =
1
2

n

∑
i

Ω0i(1 + 3wi). (1.27)

As an exercise, if I consider a radiation dominated Universe (w = 1/3) then

{q0, j0} = {1, 1}. And if I consider a matter dominated Universe (w = 0) then

{q0, j0} = {1/2, 0}. So if we have a mixed Universe of radiation and matter7 then

q0 ∈ [1/2, 1] and j0 ∈ [0, 1].

In order to test what kind of Universe we are in we just need to measure the

luminosity distance and redshift of very distant objects. In principle the deter-
7As any sane person would prior to the 1990’s.
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mination of redshift is straight forward. If we have enough telescope time we

can do a spectrographic analysis where we sample the whole spectrum of the

object and measure how far shifted it is. Spectrographic redshifts are very accu-

rate but cannot always be done due to time constraints. Photometric redshifts,

on the other hand, can be done much faster as they are determined by compar-

ing the brightness of an object through several wide bandpass filters, and as a

result they are usually less accurate. But, due to advancements in large field

surveys such as the Sloan Digital Sky Survey (SDSS) and the Legacy Survey of

Space and Time (LSST) (soon to come online), photometric redshifts are now

quite reliable. It is however much more difficult to determine the luminosity

distance to an object. In the following sections I will discuss in detail how dL

can be measured but for the immediate discussion it should suffice for now to

say that we can determine both redshifts and luminosity distances to type Ia su-

pernovae pretty accurately. Using supernovae data from the Pantheon survey

[88] reaching up to z = 2.26, we can see that q0 ∈ [1/2, 1] is strongly disfavored

(see figure 1.3). The supernovae instead prefer a q0 < 0 which can be explained

by a Universe dominated by a fluid with w < −1/3. This was first observed by

the High-Z Supernova Search Team [22] with supernovae only extending up to

z = 0.62.
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Figure 1.3: MCMC fits of the Pantheon [88] supernovae data to (1.23). An accel-
erated expansion (q0 < 0) is favored by over 11σ while a mixture of radiation-
matter domination is disfavored by over 21σ. MB is the absolute magnitude at
peak brightness of the type Ia supernovae in the B-band which we see is de-
generate with H0. The degeneracy can be broken by anchoring the supernovae
with Cepheid variables or stars in the tip of the red giant branch and will be
discussed later.

The next relevant question is: how do we reliably measure dL without as-

suming a cosmological model for H(z)? The most basic approach is the one em-
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ployed by Edwin Hubble in his work on the expanding Universe [89]. Today we

can consider this an early example of the current cosmic distance ladder. Hubble

had used geometric distances to calibrate the luminosity of Cepheid variables

from which he was able to determine dL for more distant Cepheid variables.

The details of these measurements I will go into shortly. The typical cosmic dis-

tance ladder today does something similar but then uses the Cepheid variables

to calibrate type Ia supernovae (SNIa) which are then used to measure dL. In

total this forms a three rung distance ladder. The purpose of calibrating SNIa to

Cepheid variables which are in turn calibrated with geometric distances is im-

portant in order to reduce the degeneracy between the brightness of the object

and H0. This degeneracy can clearly be seen in the uncalibrated SNIa of figure

1.3. The simplicity of the cosmic distance ladder has made it a key tool in mea-

suring the expansion of the Universe, but as is clear for anyone who has climbed

a ladder, any small wiggle at the base of the ladder can cause great concern at

the top. That is to say, any small error in the geometric-Cepheid calibration

could cause significant systematic error in the high redshift SNIa. However, al-

ternative ladders have been constructed using the tip of the red giant branch

(TRGB) in place of Cepheid variables providing an independent calibration for

the type Ia supernovae. Since both ladders are in agreement (see figure 1.2) it

is less likely that systematic errors in either Cepheids or TRGB calibrations are

playing a significant role.

The Hubble diagram is another tool for measuring the expansion rate. It is

almost identical to the cosmic distance ladder except that it does not require

the anchoring to lower redshift objects. In general Hubble diagrams can be ap-

plied to a wider class of objects since there is no prerequisite for using classes of

objects with coincident positions like in the calibration of SNIa with Cepheids.
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Without the anchoring to lower redshift objects, a Hubble diagram is insensitive

to H0, but can still be useful in probing the evolution of the expansion rate.

In the next few sections I will break the distance ladder into two parts: geo-

metric distances and standard candles. The latter part will cover the physics of

Cepheid variables, TRGBs, and SNIa

1.3.1 Geometric distances

The most natural method for measuring distances is through parallax which

which measures the difference between images of a single object taken at two

different viewing angles. For instance, the binocular vision found in many

predatory animals provides an ability to gauge the distance to an object. This is

due to the coordination of the two spatially separated eyes focusing on the same

point in space and providing two different viewing angles. The average sepa-

ration between a human’s eyes for example can provide an accurate distance

gauge up to a few hundred meters. The relation between the object’s distance,

d, and the viewing angle, θ, when the object is much further than the separation

of detectors, R, (e.g. when an object is much farther than the separation of a

human’s eyes) goes as

d =
R
θ

. (1.28)

Thus, measuring greater distances can be done by increasing the separation dis-

tance or by decreasing the viewing angle (i.e. increasing the telescope resolu-

tion). As long as the angular position of the object we want to look at does not

change significantly within one Earth year then the maximum we can increase

R within reason is up to the orbital radius of Earth around the Sun. This is illus-

trated in figure 1.4) where an image of the object is taken at least twice per year
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Figure 1.4: Parallax measurements to gauge the distance to astronomical objects.
Over a six month interval of the Earth’s orbit around the Sun the viewing angle
is maximized giving the best measure of parallax. But still, as we can see by
comparing the apparent differences in position between the yellow and red stars
to that of the blue star, eventually the parallax effect will be below the resolution
of our telescopes.

when the object-Earth-Sun system forms a right triangle. The Gaia satellite, our

most accurate parallax survey to date, was designed to take an average of 14 im-

ages of each observed object per year. At this point, getting more distant paral-

lax measurements is just a game of minimizing θ. For Gaia DR2 [90] the angular

resolution for parallax measurements was near the 0.1 milli-arcseconds which

corresponds to a maximum measured distance on the order a few kilo-parsecs.

The Gaia DR3 release has fractionally better resolution. Much farther geomet-

ric distances can be made in specialized cases such as the precise distance to

NGC 4258 using water masers. But since the majority of geometric distances

are done through parallax measurements I will not spend time discussing these

other cases.

If we take H0 ≈ 2.3 × 10−7kpc−1 (c ≡ 1) and q0 to be of order unity then to

get q0 to within 10% accuracy we would need an angular resolution of about

10 nano-arcseconds. Since Gaia DR2 can only measure parallax to within 0.1

milli-arcseconds q0 is still out of range for parallax measurements and will be

for quite some time. Furthermore, at a few kilo-parsecs two issues arise for
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determining q0:

• peculiar redshift dominates so the measured z would not correspond to

what we assume in (1.23),

• any objects within a few kilo-parsecs would be gravitationally bound to

the Milky Way galaxy making them insensitive to the expansion rate.

For these reasons we require a higher redshift probe in order to test cosmology.

1.3.2 Standard Candles

Historically, standard candles were exactly that: a candle made of a particu-

lar wax and wick that could produce a standard brightness to compare other

candles to – similar in principle to the standard meter and kilogram. A more

modern example would be a 60W light bulb attached to a 12V battery since the

luminosity of all such systems would be identical to within manufacturing er-

rors. The importance of standard candles in distance measurements is that, due

to the radiation flux dropping off as r−2, by comparing the dimness of a remote

standard candle to how bright it should be you would be able to determine

its distance. And like the geometric distance determinations, standard candle

distances can be made independent of a cosmological model.

As a short aside I must first introduce the magnitude scale that is flagrantly

used in astronomy and here. The magnitude scale is a logarithmic parametriza-

tion of flux. For historical reasons the scale is defined as

m − M ≡ −2.5 log F/F0 = 5
(

log(dL)− 1) (1.29)

where m is the apparent magnitude (i.e. observed brightness), M is the abso-
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lute magnitude (i.e. how bright the object would be if measured at a fiducial

distance of 10pc), F is the observed flux, and F0 is likewise the flux that would

be measured at a distance of 10pc from the object. In this form it is assumed

that dL is measured in parsecs. As we can see from (1.29), brighter objects have

more negative magnitudes. For example, the Sun has an apparent magnitude in

the optical band of -26.74 when viewed from Earth’s orbit, but has an absolute

magnitude of +4.83 at 10pc 8. We can compare this to the optical band appar-

ent and absolute magnitudes of Betelgeuse determined to be +0.5 [91] and -5.85

[92], respectively. So Betelgeuse is much brighter than the Sun but due to our

proximity to the Sun we observe the Sun to be much brighter. One additional

notation we wish to make is the distance modulus, µ ≡ m − M, which is not a

particularly enlightening notation but it is commonly used in the literature that

I will be referring to.

However, there are very few classes of astronomical objects so consistent in

form that they could be considered a standard candle (with the possible excep-

tion of TRGBs). Instead standardizable candles are commonly used. These are

types of objects which may not be consistent in brightness but has been shown

to have a reliably predictable brightness based on the measurement of another

physical parameter. Currently we have three main standard/standardizable

candles: Cepheid variables, TRGBs, SNIa.

1.3.2.1 Cepheid Variables

Our working model for Cepheid variables is that they are very regular, non-

variable, yellow giants with an outer layer of singly ionized helium, He+. Ra-

diation pressure from the star pushes the He+ layer outwards while simulta-

8https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html
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neously ionizing it into He++. Since He+ is more opague than He++, the ion-

ization effectively reduces the radiation pressure allowing helium to both fall

back towards the star and to cool back down below the ionization temperature

to reform He+. The process forms a closed loop and is able to repeat itself many

times. Meanwhile, a distant observer sees a yellow giant star with a periodic

brightening (He++ phase) and dimming (He+ phase). Figure 1.5 shows the

i-band light curve of a Cepheid variable located in the Milky Way. Since the

radiation pressure is the driving force in this process, the period of oscillations

can be directly tied to the brightness of the star; thus, measuring a Cepheid vari-

able’s period one can directly determine its brightness. The authors of [94] used

parallax measurements to calibrate the period-magnitude relation in the V-band

and obtained

⟨MV⟩ = −2.81 log(P)− 1.43. (1.30)

For example, if we ignore the difference in bands, the Cepheid in figure 1.5 has

a period of roughly P ≈ 8.75days with a mean magnitude of 13.9 which would

give an absolute magnitude of ⟨MV⟩ ≈ −4. Using (1.29), luminosity distance

to the Cepheid is then dL ≈ 39kpc, within the Milky Way disk as expected.

Additional color corrections can make for a more accurate distance but for a

back-of-the-envelope calculation this is not bad.

The most distant Cepheid variable detected so far is in the M100 galaxy at a

distance of dL ≈ 16.8Mpc, but even at this distance, q0 is still below our sensi-

tivity.
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Figure 1.5: The i-band light curve (with errorbars) of a Cepheid variable located
in the Milky Way disk (taken from the OGLE III survey [93]). The periodicity of
the magnitude is quite apparent.

1.3.2.2 Tip of the Red Giant Branch

TRGBs were first proposed for distance measurements in 1983 [95] and can

be considered a true standard candle. The TRGB is formed by the transition

of red giant stars from the red giant branch into the horizontal branch of the

Hertzsprung-Russell (HR) diagram. The evolution starts with an old red giant

which has converted most of its core’s hydrogen into helium. Not yet having

the necessary temperature to ignite helium fusion the star compresses and be-

gins fusing hydrogen layers surrounding the inert helium core causing the star

to brighten and climb the red giant branch. If the star is ≲ 2M⊙ the helium core

will first reach the electron degeneracy pressure and then continue heating up to

the temperature necessary to fuse helium into carbon – growing more luminous

along the way. In this case, the entire degenerate helium core will almost simul-

taneously undergo helium fusion causing a bright so-called helium-flash before

quickly descending into the dimmer horizontal branch9. What this means ob-

servationally is that if we were to make an HR diagram of the stellar population

9In more massive red giants (≳ 2M⊙) the helium fusion temperature will be reached be-
fore electron degeneracy pressure causing the star to gradually transition over to the horizontal
branch.
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in a galaxy and focus on the red giant branch then we would see a large pop-

ulation of red giant stars climbing the red giant branch up to a hard cutoff in

luminosity before descending into the horizontal branch – the hard cutoff be-

ing those stars just before their helium-flash. As was discussed in [95] and later

works, this luminosity peak in the HR diagram forms well defined standard

candle. Figures 8 and 11 of [96] provide very nice examples of this section of the

HR diagram for both the large and small Magellanic clouds, respectively.

Furthermore, the TRGB luminosity reaches an I-band magnitude of approx-

imately -4 putting its use as a distance indicator in the same redshift range as

Cepheid variables.

1.3.2.3 Type Ia Supernovae

SNIa are formed by inordinately bright stellar explosions which quickly climb

up to a peak brightness of MB ≈ −19 and decays away over the following

couple of months. They are bright enough to outshine their host galaxy and

common enough that we would expect on average one to occur in the Milky

Way alone every 50 years10. The true nature of the mechanism behind SNIa is a

bit of a mystery except that we are pretty certain a compact object is at the core

[97]. As such I will discuss the most likely scenario considered by the supernova

community.

The progenitor of a SNIa is expected to be a binary system containing either

two carbon-oxygen white dwarfs (WDs) or a single WD with a main sequence

companion star. In either case, the primary WD will accrete matter from its

companion. The accretion process increases the primary WD’s mass towards

10The last SNIa observed in the Milky Way was SN1604 in the year 1604. The Milky Way is
long over due for a SNIa explosion and many a astronomy students have prolonged their Ph.D.
thesis in hopes that one will go off in time.
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the Chandrasekhar limit of 1.4M⊙ after which the outward electron degeneracy

pressure is not enough and gravitational collapse will drive the WD to form a

neutron star. But at a mass of approximately 1.37M⊙ carbon burning is ignited

and a deflagration front pushes its way through the outer layers (not necessarily

in a spherically symmetric manner). Meanwhile, the core continues to heat but,

since the WD does not have the ability to regulate heat, a runaway thermonu-

clear reaction occurs causing a release of ∼ 1051ergs or 1 f oe11. Surprisingly, it is

not the explosion itself that forms the prototypical light curve of a SNIa but in-

stead the radioactive decay of elements produced in the explosion (mostly those

in the Fe-group [98]).

The consistency in the amount of nuclear energy produced in the explosion

causes the brightness of the decay to be nearly uniform enough to consider SNIa

as standard candles but variations occur requiring some phenomenological cor-

rections. The most significant correction was noted by Mark Phillips [99] and

relates the peak brightness of the light curve, MB, to the decrease in magnitude

over the following 15 days, ∆m15 (see figure 1.6). Both the choice in using the

B-band and 15 days were due to these providing the lowest dispersion. Today

the dispersion in the relation is found to be ∼ 0.1dex [100].

Due to their brightness, SNIa can be observed at great distances. The Pan-

theon survey [88] uses SNIa up to z = 2.26 which is more than enough to start

probing q0. Already at z ≈ 0.4 the Supernova Search Team [22] was able to

detect the accelerated expansion with q0 < 0.

At present the population of SNIa with science worthy light curves is not

expected to reach far past z = 2. There is no reason not to expect SNIa at much

larger distances, even up to z ≈ 12 when the first stars began forming, but

11A common notation in supernova literature. Fifty One Ergs (foe).
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Figure 1.6: Left: The light curve of SN2021pit from the SWIFT survey showing
how ∆m15 is defined. We can estimate a ∆m15 ≈ 1 and MB ≈ −18.75. Right:
Modified plot from Philips’ original paper [99] showing the tight relation be-
tween peak brightness and ∆m15. SN2021pit falls very close to the best fit line
given our rough estimates.

observationally they will not provide a statistically relevant source above z =

2 for a long time. As a result, cosmology beyond this would require a much

brighter class of objects.

1.4 An Introduction in Inflation

The ΛCDM model has tested successful against data all the way back to the syn-

thesis of light elements during the BBN when the Universe was only 10−2s old.

The model can also give convincing description to the very early Universe back

when the Universe was only 10−34s old. There are however some problems

ΛCDM cannot address. For example, the entire CMB, including sections that

hold polar opposite positions in the sky, is a nearly perfect thermalized system

to 1 part in 105. This is made even more impressive by the fact that the parti-

cle horizon at recombination makes up ∼ 1 deg on the CMB map. No causal

process (like Compton or Thompson scattering) could have brought all of these

remote regions of space into thermal equilibrium. The inflationary model how-
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ever provides a simple physical mechanism for which thermal equilibrium is a

natural byproduct. Inflation is expected to describe the very early phase of the

Universe, t < 10−34s, and requires a vacuum energy dominated phase in the

form of a scalar field called the inflaton field. The Lagrangian of the inflaton

must be chosen such that its EoS is w < −1/3 to drive an accelerated expansion

phase, but usually the simple picture is discussed in terms of the field having

w = −1 so that Ωin f is constant and (1.14) reduces to an exponential growth in

the scale factor, a ∝ exp[2H2t]. Meanwhile, the horizon size, ∝ H−1, remains

constant. Thus, much of the Universe could have been causally connected and

in thermal equilibrium before inflation then inflation kicks in and everything is

expanded out beyond the horizon which breaks their causal connection. With

the same mechanism inflation can also explain the flatness and monopole relic

problems but I leave this for the interested reader (see [101] for a nice discussion

on these problems).

The trick is then to construct an inflaton field such that the necessary expan-

sion can occur but also naturally drops off to give way to ΛCDM. I will describe

two well known inflationary models that can do just this: standard inflation and

k-inflation.

1.4.1 Standard Inflation

Consider the universe to be dominated by a spatially uniform scalar field, ϕ, in

a potential, V(ϕ), giving

L =
1
2

ϕ̇2 − V(ϕ). (1.31)

For reasons that will be described in a moment, our choice of potential is one

that has a nearly flat plateau which then quickly drops into a potential well.
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The placement of the well determines the energy we want inflation to stop so

since ΛCDM works up to 10−34s, corresponding to an energy scale of 1014GeV,

I can center the potential well at ϕ ≈ 1014GeV (see figure 1.7 for a schematic

of the potential). To leading order, as long as the slow-roll conditions (to be

discussed) are met then the inflationary mechanism is insensitive to finer details

in the potential. The equation of motion (EoM) for the field can be obtained by

varying the action with respect to ϕ:

ϕ̈ + 3Hϕ̇ + V′(ϕ) = 0, (1.32)

with the prime notation noting derivatives with respect to ϕ. This just describes

a damped driven oscillator with the Hubble parameter serving as the damping

coefficient (Hubble friction) and the field gradient as the driving force. An addi-

tional damping term, Γϕ̇, can also be put in by hand in order to account for the

condensation of ϕ-particles that can then decay into other fields coupled to ϕ

thereby reducing the energy stored in the vacuum. This will lead to the neces-

sary reheating process that will give us back a hot early universe after the super

cooling from the exponential expansion. Its neglect however will not change

the following discussion so we drop the term for simplicity.

The energy-momentum tensor for a simple scalar field is just

Tµν = ∂µϕ∂νϕ −Lgµν, (1.33)

which when compared to (1.8) readily gives the EoS for the field

w ≡ p
ρ
=

1
2 ϕ̇2 − V(ϕ)
1
2 ϕ̇2 + V(ϕ)

. (1.34)
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Figure 1.7: A schematic of a common inflationary potential. The plateau to the
left helps to ensure a slow-roll regime and an accelerated expansion. Then a
quick drop into a potential well, resulting in oscillations about the minimum,
leads to the necessary reheating process.

Given that H is very large in the early Universe the Hubble friction slows the

motion of the field so that ϕ̇ ≈ 0 and w ≈ −1 providing an exponential-like

growth in the scale factor. It is useful at this point to introduce the first slow-roll

parameter

ϵ ≡ − Ḣ
H2 < 1 (1.35)

which corresponds to a w < −1/3 in (1.14); thus, the first slow roll condition

ensures an accelerated expansion. We can also pose the first slow roll condition

in terms of the logarithmic gradient of the potential:

ϵV =
M2

Pl
2

V2
,ϕ

V2 . (1.36)

In the single field inflationary model we have ϵ = ϵV , but this is not a general

equivalence and the two definitions can differ based on our choice of model.

The next thing to ensure is that the slow-roll regime lasts long enough. We

can do this by requiring ϕ̈ ≪ Hϕ̇ which is equivalent to the Hubble friction

dominating the motion of the scalar field. This introduces our second slow roll
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parameter:

η ≡ ϵ̇

Hϵ
(1.37)

with the constraint |η| ≪ 1. This can also be viewed as requiring the growth in

ϵ during a Hubble time to be small. In the case ϵ ≪ 1 we can reduce η to

η =
ϕ̈

Hϕ̇
(1.38)

showing that if we are slowly rolling then an η ≪ 1 will ensure that we remain

that way for many Hubble times. A host of additional parameters are used in

the inflation literature. Some differ by mere convention while others involve

more subtle arguments. For now, my choice of definitions for ϵ, ϵV , and η will

suffice.

I have so far been careless with my use of time. After all, everything so far

in this section must have occurred within a time span of ∼ 10−34s. That’s about

100million times faster than it takes light to cross the length scale of a quark. So,

in usual inflationary style, we instead use the number of e-folds, N, to measure

how long the slow-roll process has occurred. We define the number of e-folds

as

N ≡ ln
( a

ai

)
(1.39)

where ai is the scale factor at the beginning of inflation. To estimate the number

of e-folds necessary we can consider the largest perturbation modes re-entering

our horizon today, k0 ≈ a0H0. Inflation must have lasted long enough to push

these modes out of the horizon, and, since the horizon has been expanding since

the end of inflation, the extent to which these modes were pushed out can be de-

termined by how much the horizon had to expand to get them back in. That is
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to say, the number of e-folds should be approximately given by how much our

horizon has expanded since inflation. For a quick back of the envelope calcu-

lation we can take the ratio of the temperature at reheating, TRH ≈ 1010GeV, to

that of the 2.7K CMB temperature today (T0 ≈ 10−13GeV):

N ≈ ln
(TRH

T0

)
≈ 52. (1.40)

The generally quoted number is nearer to 60 with a rough range of N ∈ [50, 70].

1.4.2 k-inflation

An alternative to the standard inflationary model was proposed in [102] where

both the slow roll and accelerated expansion conditions sought after by stan-

dard inflation could still be met in the absence of a potential energy term if one

considers non-standard kinetic terms. To see this we consider the Lagrangian

density

L = P(X, φ) (1.41)

where X ≡ −(∂φ)2/2 is the canonical kinetic term. For concreteness, perhaps

P(X, φ) admits the expansion

P(X, φ) =
1
2

C1(φ)X +
1
4

C2(φ)X2 (1.42)

where it is assumed that C2(φ) > 0∀φ in order to ensure a positive energy

density while C1(φ) is free to vary between positive and negative values. The

important note here is that there is no potential term in the Lagrangian. In the

same manner as was done for the standard inflationary model, the EoS for the
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Figure 1.8: Equation of state parameter for a P(X, φ) theory with respect to the
ratio of the expansion coefficients. In the limit X → 0 the field behaves like
a free scalar field and as X → ∞ the field behaves like radiation (w → 1/3).
But for intermediate X the EoS can be sufficiently negative to drive accelerated
expansion.

field can then be written as

w =
P
ρ
=

C1(φ)X + C2(φ)X2

C1(φ)X + 3C2(φ)X2 =
C1(φ)/C2 + X

C1(φ)/C2 + 3X
(1.43)

which can take on sufficiently negative values for C1(φ) < 0, providing an ac-

celerated expansion without a potential energy term. Figure 1.8 shows the EoS

where it is clear that for reasonable values of X a w < −1/3 can be reached.

The Friedmann equations for the general P(X, φ) theory can be written as

H2 =
1

3M2
Pl
(2XPX − P), (1.44)

ä
a
= − 1

3M2
Pl
(XPX + P). (1.45)

For brevety we have dropped the comma notation for derivatives so that PX ≡
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∂P/∂X, PXX ≡ ∂2P/∂X2, and so on. The EoM for the field is then

φ̈ + 3H φ̇ + φ̇
ṖX

PX
−

Pφ

PX
= 0 (1.46)

in which we have gained an additional friction term driven by the time varia-

tions in our C1,2(φ) coefficients. Likewise, the first slow roll parameter is found

to be

ϵ =
3
2

(
1 +

P
2XPX − P

)
, (1.47)

which, if the slow-roll condition is applied, ϵ < 1, corresponds to

P < −XPX. (1.48)

The second slow roll parameter, η, is defined as before, but it is useful at this

point to also introduce the parameter

κ̃ ≡ ṖX

HPX
(1.49)

which quantifies the deviation from the canonical kinetic term. For instance, if κ̃

is small then the deviation from P(X, ϕ) = X would have to be a slowly varying

function of time and can be ignored. I can then rewrite the EoM in terms of the

slow roll parameters

φ̈ =
1
2
(η − 2ϵ − κ̃)H φ̇. (1.50)
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Chapter 2
Quasar Standard Candles

In this chapter I discuss my work in using quasars as distance indicators [1]

and collaborative work done on apparent biases in the ΛCDM model for high

redshift probes [2, 3].

2.0.1 Quasar Introduction

Quasars (QSOs) are known for two basic characteristics: they are highly variable

in luminosity (see figure 2.1) and their spectrums are highly redshifted com-

pared to how bright they are observed. When QSOs were first observed it was

expected that their redshifts were either gravitational or due to peculiar motion

because if the redshift were due to cosmological expansion then QSOs would

have to be exceedingly bright for us to see them at the observed magnitudes

(their absolute magnitudes would be in the range of -23 to -30 compared to the

integrated magnitude of galaxy M87 which is only -22). In the case of gravita-

tional redshift the emitting source is located in a deep gravitational well with

the amount of redshift depending on how far into the well the source is. But

with gravitational redshift we expect the emission lines to be broadened since
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Figure 2.1: The light curve of QSO 9.5484.258 measured by the MACHO project.
Due to the expansion of the universe relativistic time dilation occurs causing the
observed variations to be longer by a factor of (1 + z)−1. For this QSO, z = 2.32
making the actual variation timescales more than three times shorter than is
shown.

not all emitting regions will be at the same gravitational potential therefore giv-

ing slightly different redshifts. Broad emission lines can be observed in some

QSO emissions but they do not comprise the bulk of the observed redshift so

gravitational redshift cannot be the explanation. For peculiar redshift the pre-

vailing idea was that QSOs may be a normal astronomical object such as a star

that has been ejected at high velocity from a host galaxy. In this way the object

can be close (i.e. lower luminosity) but with a highly shifted spectrum due to

its motion. But the continued absence of any highly blueshifted QSOs rules out

peculiar redshift based on the Copernican Principle. It was eventually shown

in [103] that some QSOs were gravitationaly bound in galaxy clusters of equal

redshifts; thus, if the redshifts of the galaxies were cosmological in origin then

so too must the redshifts of QSOs.

The variability of QSOs however is something we still know very little about.

In fact, many features of QSOs are poorly understood. So like the discussion on
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SNIa, I will proceed with out best working model.

As we understand it today, QSOs are a subclass of active galactic nuclei

(AGN). AGNs are thought to be galaxies still in the youth of their formation

where the central super massive black hole (SMBH, thought to be at the center

of nearly all galaxies) is still accreting large volumes of matter via an accretion

disk. We believe our own Milky Way galaxy is even expected to have had an

AGN phase a long time ago before our SMBH, Sgr A*, used up most of its ac-

creting material and went dormant.

The AGN classification covers a wide and complicated array of astronomi-

cal objects from Seyfert galaxies to blazars (see figure 2.2). When a very ener-

getic AGN is viewed at an angle not dominated by the jet a QSO is observed.

The radiation from a QSO comes primarily from the super-heating of the accre-

tion disk which emits mostly in the X-ray and UV spectrum. For non-rotating

SMBHs the matter-to-radiation conversion in the super-heating of the accre-

tion disk is about eight times more efficient than the p-p nuclear fusion process

found in the Sun, while rapidly rotating SMBHs can reach up to about 45 times

more efficient [104] which has earned QSOs the title for the most efficient engine

in the known Universe. The aging process of QSOs is still poorly understood

so it is unclear how long the birth or death of a QSO takes or what a dimming

QSO looks like. This could potentially be an issue when trying to use QSOs as

standard candles unlike SNIa. Since SNIa are short lived we are in principle

able to observe their full lifetime. QSOs on the other hand have extremely long

lifetimes (orders of magnitude longer than the lifetime of any research grant) so

it is at the moment not possible to tell where a QSO is in its lifetime. This am-

biguity could cause some selection bias since, if we consider all QSOs to have

formed around the same time, QSOs at higher redshift will be younger while
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Figure 2.2: A cartoon of the unified picture of AGNs. In reality the division
lines are not so clean cut. Previously thought to be distinct, all of these objects
listed around the circumference are now understood to be different sublclasses
of AGNs. Apparent dividing lines seem to follow energetics, presence of a jet,
and viewing angle. Normally the jets are produced in an antipodal set but, for
the representation of radio-quiet AGNs which have not been observed with jets,
the lower jet has been left off.

lower redshift QSOs will be older and they do not necessarily have to behave

the same.

Regardless of how little we understand about QSOs, they would make very

useful distance indicators. They have been observed at redshifts ranging from

z ≈ 0.04 (Mrk 231) up to z ≈ 7.6 (J0313-1806) with a population density peaking

around z ≈ 2 [105]. Their long lifetimes make repeated observations possible

and they make up close to a tenth of the galaxies observed by the Sload Digital



50

Sky Survey (SDSS). For these reasons there have been many attempts at using

QSOs as distance indicators through reverberation mapping [106, 107], a nonlin-

ear relation between LX and LUV [108–112], the virial luminosity from emission

line widths [113], metallicity [114], and X-ray variance variability [115]. The

method I discuss is one that I discovered in [1] which uses a phenomenologi-

cal relation between the rate of short timescale variations (i.e. the slope of fluc-

tuations) in QSO light curves and their luminosities. Since the origin of QSO

variability remains poorly understood the physical nature of the relation is a

mystery; although, a simple motivation may be made by analogy. In general,

thermal fluctuations grow with temperature so one would expect the variance

in a QSO light curve to have some correlation with its luminosity as observed by

[115], but the variance is dominated by the randomness of the fluctuations. But

how quickly the accreting fluid can increase and decrease in temperature is only

dependent on the characteristics of the fluid and the heat source. Assuming the

makeup of the accretion disk is pretty uniform across QSOs then it is reasonable

to consider that the slopes of short timescale variations is tied to the luminosity.

2.0.2 Quasar Sample

The analysis outlined later in section 2.0.3 requires high cadence light curves.

That is to say, photometric measurements of the QSO must have been made

more than once per month in order to optimize our analysis. This requirement

constrains our use of available data sets since most prior QSO studies sample

much less regularly. However, the high cadence light curves from microlensing

projects (MACHO, OGLE, etc.) and strong lensing time delay projects (COS-

MOGRAIL) can in principle be repurposed for our analysis.
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Thanks to the efforts of Geha et. al. in [116] 59 quasars from the MACHO

project have been confirmed and made available for public use.1 Assuming the

microlensing events are infrequent enough then one can easily avoid them or

subtract them out of the light curves. None of the 59 light curves show obvi-

ous signs of microlensing events, but quasar 42.860.123 has a significantly low

sampling and will be neglected in this work. The OGLE project on the other

hand has observed over 700 quasars (see [117]) – the light curves of which are

expected to be in the coming OGLE IV release but are not yet available at the

writing of this article.

The multiply lensed quasars from the COSMOGRAIL collaboration have the

potential to be highly beneficial to our analysis since their time delays effectively

extend a quasar’s observation time which gives better statistics to our analysis.

Also, the overlapping regions between two matched light curves could reduce

the uncertainty in the quasar’s intrinsic variations. Having said that, the pur-

poses of the time delay measurements are concerned only with matching the

light curves from one quasar at a time and do not require a universal calibra-

tion among different quasars. The calibrations are instead done with respect to

stable stars within a small viewing angle of each strongly lensed quasar thereby

making their apparent magnitudes shifted by some undetermined value unique

to each quasar. One could in principle recalibrate these light curves using the

calibrations given by the COSMOGRAIL team; however, the additional effect

of the lens is not very well understood and can cause an uncertain amount of

brightening in the individual images. These effects would require further study

before the light curves can be significantly considered towards our purposes.

Focusing now on the 58 remaining quasars from the MACHO project, the

1http://www.astro.yale.edu/mgeha/MACHO/

http://www.astro.yale.edu/mgeha/MACHO/
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apparent magnitudes are supplied in both the v- and r-bands. We make the

usual conversion to absolute magnitudes,

M = m − 5(log dL − 1)− K(z) (2.1)

which is similar to equation 1.29 with the addition of the K-correction, K(z). The

K-correction is an approximate correction for the apparent shift of the spectral

energy distribution across the narrow band filters used in observations. For ex-

ample, if the quasar’s flux varies over its spectrum as f ∼ νδ then two identical

quasars at different redshifts (but measured with the same filter) would display

different absolute magnitudes. In magnitude form the K-correction goes as

K(z) = −2.5(1 + δ) log(1 + z) (2.2)

with the canonical spectral index δ = −0.5 being taken (see [118]). For proof of

concept dL has been calculated from the redshift of each quasar using a standard

cosmology with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7. This makes our present work

model dependent, but using a larger collection of quasars at small redshift or

ones with relative distances determined through cross-calibrations with SNIa

would allow us to avoid this model dependence in future work.

On average the MACHO quasars are sampled with more regularity in the v-

band. We therefore commit our analysis only to the well sampled v-band, but in

principle the finding method is independent of wavelength and may very well

show less dispersion in another well sampled band. It should also be noted

that the MACHO quasars were selected based off of their variability so the be-

low arguments may hold only for highly variable quasars. Quasars from other
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surveys may clarify this.

2.0.3 Finding Method & Analysis

Our intention is to simply measure the average absolute slope of the increases

and decreases in flux making up the QSO variability. The previous work of

[119] had hand selected approximately linear segments spanning ∼90 days in

the QSOs’ rest frames and made linear fits to each. While this was sufficient for

their purposes we require a less subjective analysis and one that can be extended

to large data sets. A popular idea would be to train a supervised neural network

to select the linear behaviors from noisy signals, but since we are constrained

on data we are not yet able to obtain a large enough training set. I have instead

constructed a more elementary approach.

Searching for linear trends in noisy and intrinsically variable data is a tricky

task. It is likely that two individuals would agree on the general location of a

linear segment in a varying data set but not so much on the beginning and end-

points of the linear segment. Take figure 2.3 for instance where we represent a

light curve segment with a simple sine wave shown in black dots2. We want to

measure the slope of the rising segment which we have highlighted with a box

in the leftmost plot. To measure the slope of this segment one would naturally

truncate the beginning and end of the curve until a roughly linear segment is

obtained and then fit to a straight line (i.e. look at only a small window around

the center of the interested region). If the truncation is not enough, resulting in

contributions from data near the turning points of the curve, then the slope is

2Keep in mind as we go through these arguments that the actual data will have noise and a
less defined pattern such that some very obvious and simple alternative solutions can become
quite complicated.
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Figure 2.3: Illustration of the finding method using linear (center) and quadratic
(right) fits. The intended slope is boxed in the leftmost figure. The thick bands
in the right two figures represent fits to subsections of the curve while the lines
of the same color are the slopes that are being taken from the fits. The blue line
best approximates the intended slope.

skewed off of the expected value (in this case to lower values). See footnote 2

for issues with truncating too much. In order to side step these issues we have

segmented the data into subsections. The right two plots of figure 2.3 shows

segments spanning half the length of the total curve: the faint red bands en-

compass the first half of the curve, the faint green bands encompass the last half

of the curve, and the faint blue bands cover the middle half of the curve, par-

tially overlapping the previous two halves. Further segmentation of the curve

is done with five segments each spanning a third of the curve’s full length and

again with seven segments each spanning a fourth of the full length and so on

until we reach a minimum window length which we set by hand. Figure 2.3

only shows the first iteration of segmentations for clarity.

In the linear fits plot of figure 2.3 the three faint bands are the linear best fits

for their corresponding segments while the darker lines of the same color are the

slopes of the corresponding fit at the middle point of the segment. For the linear

fit method, these two are degenerate in slope values. The blue segment does
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pretty good at approximating the slope value we had intended, although it is a

little underestimated due to the points at its extremes. The χ2/DoF of the blue

fit would therefore be close to unity. The red and green segments on the other

hand significantly underestimate the intended slope but likewise have a poor

χ2/DoF. By taking the most common slope from the weighted population of fits

(including fits from smaller segments), with weights determined by the χ2/DoF

values, we are able to obtain a reasonable estimate for the intended slope. Due

to the simplicity of our example all slopes will be an underestimated, but the

presence of noise in actual light curves allows for overestimations as well.

The quadratic fits plot of figure 2.3 uses quadratic functions to fit the seg-

ments of the curve instead of linear functions as one can see from the faint

bands. The blue band is identical in both plots as expected but the red and green

bands clearly fit their curve segments much better than the linear fits had. If we

evaluate the slope of the quadratic fits at the middle point of the individual seg-

ments then we will obtain the same result as what the linear fitting method gave

but with worse discrimination due to better overall χ2/DoF values for each fit.

So instead we evaluate the slope of the quadratic fit at a point midway between

the minimum of the fit and the maximum of the fit, hence the shifts of the red

and green lines. This gives an overall better estimate of the slope in the rising

(or falling) sections of the curves as we can see from the near alignments of the

red, blue, and green lines along the rising section in the curve.

While the use of linear fits has a wide spread of slope values it also has

good discriminatory power through its weighting with the goodness-of-fit val-

ues. Using quadratic fits can get a narrower spread around the intended slope

but is not able to weight the slopes as well due to the overall better goodness-of-

fit values of the quadratic function. Both methods are sufficient for the analysis
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Figure 2.4: We consider an example data set, A, stretching uniformly over the
range [0,1]. If we consider a minimum window size of wmin = 0.5 (left most)
then features in the middle of the data set will be given more significance as
highlighted by the central peak. But decreasing the wmin (middle and right
most) spreads the weighting more evenly across the data set.

but in practice the quadratic fitting method performs marginally better. There-

fore, in the remaining sections we will assume the use of the quadratic method.

One may note that this method samples the slopes of the inner regions of the

curve more than the outer regions (i.e. the blue regions in figure 2.3 overlaps

with the inner halves of the red and green regions, effectively weighting them

twice as much as the outer regions). This persists as the segmentation goes to

smaller window sizes but, as shown in figure 2.4, as long as the length of the

curve is much larger than the minimum window size then the effect is negligi-

ble.

We define the variational rate, sF, as the most common slope returned by

the above method where the subscript denotes whether the curve is from an

absolute light curve, sF, or an apparent light curve, s f . The method allows for

an almost completely objective determination of sF with dependence on only

two subjective parameters. The first of these parameters is the choice of the

minimum window size, wmin, the segmentation process will go down to. Tak-
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ing wmin too large makes us insensitive to short timescale variations in addition

to the unequal sampling shown in figure 2.4. In an ideal case, the smaller the

wmin value the better since all timescales would be sampled evenly. However,

the smallest timescales will be dominated by noise which will skew our results,

usually towards higher slope values. In order to curb this issue we have made

visual inspections of the multiply lensed quasars from the COSMOGRAIL col-

laboration. The overlapping regions of their matched light curves show that

variations occurring at timescales greater than about 40 days are nearly identical

in both images. Since the images have a time-delay between them, the matched

variations correspond to observations taken at two different times. Therefore,

the variations at timescales greater than 40 days are unlikely to be due to local

noise. With this we take wmin = 40days in the quasar’s rest frame. This argu-

ment does not necessarily rule out local noise from the >40 day long variations

in the MACHO light curves used here nor does it rule out non-noise dominated

variations at shorter time scales – it just gives a standard to improve from. The

second parameter we must set by hand is the lower cutoff for the sampling fre-

quency (i.e. the lowest average density of data points we are willing to consider

in a light curve segment). For accurate fits at all timescales we require the sam-

pling frequency to be at least greater than 2/wmin. Little dependence is seen in

varying this value within reason though, but applying this cutoff avoids large

unsampled gaps (usually between observing seasons) from skewing sF towards

lower values.

Figure 2.5 shows the light curve of quasar 9.5484.258 with the finding method

applied to it. The slopes from the quadratic fits method are superimposed over

the light curve showing a dense network of lines which map out the general

behavior of the light curve. Figure 2.6 shows the corresponding weighted pop-
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Figure 2.5: The fitted light curve of quasar 9.5484.258 from the MACHO project
(centered at the origin). The slopes (measured using the quadratic fits method)
are shown overlaying the sections of the light curve they correspond to. The fits
range from half of the observation period down to ≈ 40 days. The error bars on
the data is suppressed for clarity.
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Figure 2.6: The population of log |sF| for quasar 9.5484.258 weighted by the
χ2/DoF of the corresponding fits. For this particular quasar, the expected vari-
ational rate would be log |sF| = 8.10.

ulation of measured slopes which for 9.5484.258 has log |sF| = 8.10 or |sF| =

1.26 × 108 units/day as determined by the mode of a skewed normal fit to the

histogram (figure 2.7 shows the weighted population of 16 other randomly se-

lected quasars for reference).

Applying this analysis to each of the quasars individually we have found

(see figure 2.8) that the variational rate has a nonlinear relation with the mean
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Figure 2.7: A larger display of the weighted sF populations in the MACHO data
set. The MACHO ID, redshift, and number of observations are given for each
quasar.

absolute magnitude,

log |sF| − log(1 + z) = α⟨M⟩+ β (2.3)

where the log(1 + z) term is introduced to cancel out the z dependence of the

time derivatives in

sF = dF
dtqso

= (1 + z) dF
dtobs

.

Using a least squared fit gives α = −0.2920± 0.0101 and β = −0.36± 0.25. With

no selection criteria made except for the two parameters already discussed we

obtain a dispersion of 0.16dex without any significant dependence on z as can

be seen in figure 2.9. If we make a very rough cut by considering only those



60

5.0

5.5

6.0

6.5

7.0

7.5
lo

g|
s F

|
lo

g(
1

+
z)

2826242220
M

0.5

0.0

0.5

Re
s.

Figure 2.8: The v-band variational rate against the mean absolute magnitude
in the quasars’ rest frames shows a strong correlation with 0.16dex dispersion.
Red points correspond to quasars with high sampling (N≥500). Error bars are
barely visible and are determined by the uncertainty in the peak position of the
quasar’s fitted histogram.

light curves with ≥500 observations over the ∼3000 day observational period

then we can reduce our dispersion down to 0.11dex though we also reduce the

number of light curves to 31. Those 31 quasars are highlighted in red in rele-

vant figures. We note however the bruteness of this cut since it does not take

into account the uniformity of the ≥500 observations. Furthermore, the model

assumption used to calculate the MACHO quasars’ dL values may contribute

towards a higher dispersion. It is possible that relieving the model dependence

could reduce the dispersion.

For clarity, the dispersion estimates discussed here have been calculated us-
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Figure 2.9: Residuals of the sF vs. ⟨M⟩ show no clear dependence on redshift.

ing (2.4) where fit
(
⟨M⟩

)
refers to the right-hand side of (2.3).

d =

√√√√∑N
i

(
fit
(
⟨M⟩i

)
− (log |sF|i − log(1 + zi))

)2

N − 1
. (2.4)

2.0.4 Luminosity Distance

We now derive the luminosity distance from our fitted sF vs. ⟨M⟩ relation, (2.3).

The variational rate of the absolute light curve, sF, can be related to that in the

apparent light curve, s f =
d f

dtobs
, through

log |sF| = log |s f |+ log(1 + z) + 2(log dL − 1) + 2
5 K(z). (2.5)

Using (2.1) and (2.5) in (2.3) allows one to obtain

log dL = (2 + 5α)−1[α⟨m⟩+ β − log |s f |]− 1
5 K(z) + 1 (2.6)

showing that in practice one can calculate the luminosity distance from the ap-

parent light curves.
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In a demonstration of the work to come we have constructed a Hubble di-

agram for a sample of quasars from the Sloan Digital Sky Survey (SDSS) as-

sembled by MacLeod et. al., [120]3. That is to say, we will now calculate ⟨m⟩

and s f from a different set of quasar light curves and predict a cosmology from

them. The full sample contains 9258 light curves all of which have a sampling

frequency far below the minimum requirements we have discussed in previous

sections. In addition, the SDSS observations were made in the u-, g-, r-, i-, and

z-bands as opposed to the v-band which we have used to calibrate the sF vs.

⟨M⟩ relation. But, in order to show what future work is needed, we have im-

posed a rough cut of >100 observations over the survey’s ∼10 year observing

period. This reduces the number of light curves to 304 but allows the fitting

algorithms to be applied without technical issues. Figure 2.10 show the fitted

apparent light curve and resulting weighted s f population of the best sampled

quasar of the SDSS dataset. Notice the poor sampling of the quasar compared

to the MACHO quasars and also the difference in time scales.

Figure 2.11 shows the Hubble diagram corresponding to the i-band SDSS

sample with the distance modulus, DM, defined as

DM = 5(log dL − 1) (2.7)

and errors given as

d(DM) =
5
√
(2⟨m⟩ − β + log |s f |)2dα2 + (2 + 5α)2(dβ2 + d(log |s f |)2)

(2 + 5α)2 . (2.8)

The uncertainty in ⟨m⟩ is neglected here. The black points correspond to the

3We have only made use of the southern sample which can be found here: http://faculty.
washington.edu/ivezic/macleod/qso_dr7/index.html

http://faculty.washington.edu/ivezic/macleod/qso_dr7/index.html
http://faculty.washington.edu/ivezic/macleod/qso_dr7/index.html
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Figure 2.10: Left: The fitted light curve of quasar 1365809 from the SDSS dataset
(the best sampled quasar in the set). Right: The corresponding weighted s f
population. To ensure the same dynamics are being compared for all quasars in
the observer’s frame, the minimum window size of the finding method is taken
to be (1 + z)×40days.

individual quasars which have been binned by redshift shown in red. We note

that these distance moduli are calculated without any assumptions on the cos-

mology with the exception of the model dependencies used to calibrate α and β.

It should also be noted that even though the SDSS light curves are significantly

under sampled, the individual light curves typically have short, densely sam-

pled observing periods which are sufficient for our finding method. The short

observing periods provide us with a rough estimate of the average slope but

lack the statistics that longer observations can produce, hence the large disper-

sion. Sufficiently sampled light curves should give the same overall behavior

with less dispersion.

We wish to highlight that even with the exceedingly poor sampling of the

SDSS dataset the general behavior still follows the ΛCDM model with good ac-

curacy. This should not be misinterpreted as a demonstration that ΛCDM holds
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Figure 2.11: Hubble diagram of the 304 quasars from the SDSS sample (black
points) and their binned values (red points, binned by redshift). SNIa from
the Pantheon survey [88] (magenta points), have been added for comparison.
The black dashed line corresponds to the ΛCDM distance modulus with Planck
2018 [11] best fit parameters. The quasars closely follow the ΛCDM model,
accurately demonstrating our current model dependence.

up to z ≈ 4 nor should it be taken as a disagreement with [109–112]. Since

the fitting parameters α and β were calibrated using a ΛCDM cosmology, our

agreement with ΛCDM only shows the effectiveness of our analysis. Assuming

a different model for the MACHO calibration would have resulted in different

fitting parameters and the SDSS Hubble diagram following the distance mod-

ulus determined by that model. Given a large enough sample of light curves,

it should be possible to use the low redshift quasars in the sample to calibrate

α and β with minimal model dependence while using the high redshift quasars

for cosmological parameter estimations. But obtaining relative distances to well

sampled quasars through their proximity to SNIa would be the ideal calibration

of α and β. So far no such relative distances have been noted.

We would like to further note that the binned SDSS Hubble diagram of Fig.

8 does not match exactly with the Planck 2018 Pl18 best fit values (dashed line)

but instead falls short at high redshift values (z > 0.75). This difference may

likely be due to the poor sampling of the SDSS quasars, choice of binning, or,
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more interestingly, differences in the redshift distributions between the MA-

CHO sample used for calibration and the SDSS sample. The MACHO sample

has an effective redshift of ze f f = 1.1 while the SDSS sample is slightly higher

at ze f f = 1.6. This may be an indication of disagreement between Hubble dia-

grams at high-redshift and a flat ΛCDM cosmology. We will however consider

this possibility in future work.

2.0.5 Damped Random Walk

We now comment on our agreements with findings made using synthetic quasar

light curves. Damped random walks (DRWs), or biased random walks, have

proven effective towards modeling quasar light curves in the optical band (see

[121, 122]). duck DRWs perform a random walk over short time scales, ∆t ≪ τ,

but have a restoring term such that the walk leads back to the same place over

larger time scales, ∆t ∼ τ. The process, excluding the overall magnitude, takes

just two parameters: τ, the relaxation time which controls the strength of the

restoring term, and SF∞, the structure function at infinite time scales (not to be

confused with sF) which controls the variability at times ∆t ≪ τ. A DRW can

be generated as a solution to the differential equation

τdF(t) = −F(t)dt + SF∞ϵ(t)
√

2τdt + ⟨F⟩dt (2.9)

where F(t) is the flux in our example and ϵ(t) is a white noise function with

zero mean and unit variance. We instead resort to the Python module astroML

(ref. [123]) which contains a DRW generating function built in.

We have generated 100 DRW light curves spanning an observation period

of three years each. Applying the same analysis discussed in section 2.0.3 we
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find for the sF vs. ⟨M⟩ relation in the DRW light curves an αDRW ≈ −2
5 with

negligible deviations as we vary τ and SF∞. No constant values of τ and SF∞

were found that would allow αDRW ≈ −0.3 as one would hope in order to have

agreement with the MACHO light curves.

However, in studying the r- and b-band light curves of 100 actual quasars (55

of which were from the MACHO survey) in the context of DRWs the authors of

[121, 122] have found relations between the mean luminosity and separately

SF∞ and τ. Other relations were also discussed but are not of interest here. The

authors of [122] have parameterized these relations as

log SF∞ = A + C(Mi + 23) (2.10)

and

log τ = A′ + C′(Mi + 23) (2.11)

where Mi is the i-band mean magnitude and {A, C, A′, C′} are best fit param-

eters given in Table 1 of [122]. Logarithmic dependencies on wavelength and

black hole mass have been excluded for the present work. Now generating

1000 DRW light curves, using (2.10) and (2.11) our analysis finds an sF vs. ⟨M⟩

relation with αDRW = −0.2813 ± 0.0012 and a dispersion of 0.095dex (see fig-

ure 2.12). Assuming deviations due to varying band usage to be small, it would

seem as though our α = −0.2929 ± 0.0098 from the MACHO light curves is in

agreement with the findings of [122].

Furthermore, in section 2.0.4 the luminosity distance was derived in terms of

our fitting parameters from which we see that an α = −2
5 value would not allow

the determination of dL from the apparent light curves. It would then seem that
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Figure 2.12: Same as figure 2.8 but over the 1000 synthetic DRW light curves.
For simplicity the synthetic quasars were assumed at a redshift of z = 0.

the unexpected relations between (SF∞, τ) and mean luminosity that enables us

to determine the luminosity distance.

One point of interest is that the use of the SF∞(Mi) and τ(Mi) relations

causes a slightly higher dispersion for low luminosity quasars (below M > −20

in the simulations of figure 2.12). It is unclear if this is a feature of quasars or an

artifact of the fitted SF∞(Mi) and τ(Mi) relations as the range of luminosities it

is outside of that probed by the MACHO sample.

2.0.6 Summary

We have shown that the variability in the apparent light curves of quasars can be

used to determine their luminosity distance making it possible to join quasars to

the cosmic distance ladder. This is through an observed dispersion of 0.15dex
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in the sF vs. ⟨M⟩ relation from quasars spanning a large range of luminosi-

ties. With further studies and cleaner data sets we may be able to reduce the

dispersion even further. That being said, if the modeling of quasar light curves

through DRWs is effective for all intents and purposes, the dispersion of 0.095dex

in figure 2.12 may be a lower cutoff to the accuracy of this method.

Figure 2.8 and the resulting fit, (2.3), show that the variations are systemati-

cally more rapid for brighter quasars in agreement with [121, 122]. This would

seem to disfavor the starburst model as the cause of the variations. The star-

burst model, in assuming the variations are due to supernovae in the environ-

ment of the quasar, would not naturally explain the increasing variational rate

of brighter quasars, but perhaps the accretion instability model could still work.

As discussed in [121], the short time scale variations in the optical bands are

likely due to local irregularities in the accretion disk from turbulence and other

effects.

The form of (2.6) is similar to equation (7) in [112]. We mention this only to

clarify the advantages and limitations of our method. Since log dL goes as (2 +

5α)−1 or 0.5(1 − γ)−1 in [112] then for our method to be on par with previous

works we would need a dispersion below the (2+5α)
2(1−γ)

0.2dex level. That is to

say, taking α ≈ −0.3 and γ ≈ 0.6, we should have a dispersion of 0.13dex or

lower if we wish to improve the use of quasars as standard candles. Using all 58

MACHO quasars does not quite satisfy this with a dispersion of 0.15dex. Just

using the better sampled quasars (N≥500) does however with a dispersion of

0.11dex The obvious drawback to our method in comparison to that in [112]

is the observational effort required to produce the needed light curves. But

there have been many such observations already made by the microlensing and

strong lensing communities that could relieve this issue. A dedicated survey
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would however be ideal in reducing the dispersion.

At this point we have shown that our method can be applied with great

success. In follow up efforts we will extend the analyses to a larger number of

low-z quasar light curves in order to ensure the statistical relevance of the sF vs.

⟨M⟩ relation and to relieve our current model dependence.

2.0.7 Precautions for high redshift probes

The redshift range 2 ≲ z ≲ 1100 is the current playground for observational

constraints on cosmology. However we must be cautious as we add probes in

this range due to subtle biases in the flat ΛCDM model that if left unchecked

will likely cause spurious deviations from both baseline high z and low z obser-

vations.

The analytic argument is fairly straightforward. Given that the Hubble pa-

rameter in the late universe can be written as

H(z) ≈ H100

√
ωΛ + ωm(1 + z)3, (2.12)

where ωi ≡ Ωih2, we can see that at very low redshifts H(z) is sensitive to

both ωΛ and ωm, but at higher redshifts the sensitivity to ωΛ quickly drops

off. Therefore, any dispersion in higher redshift probes effectively washes out

any inference of dark energy at lower redshifts. And with the added flatness

constraint from Planck 2018 [11] intertwining ωΛ and ωm through

ωΛ = h2 − ωm (2.13)

the insensitivity to ωΛ at high redshift bleeds into the predictions of Ωm0 and h
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through non-Gaussian tails which favor higher values of Ωm0 and lower values

of h.

To illustrate this more clearly let us consider the H(z) error forecasts, σHs/Hs,

provided by the Dark Energy Spectroscopic Instrument (DESI) [124]. In figure

2.13 we have projected the forecasts onto a flat ΛCDM background with Planck

2018 [11] best fit parameters. The projections are used to construct 105 mock

samples each with dispersions set by the forecasted errors in the relevant red-

shift ranges. Breaking each mock sample up into redshift bins, we are able to

see some particularly troublesome effects. Using a maximum likelihood fitting

algorithm, the fitted ωΛ values in each redshift bin (left of figure 2.13) have

an approximately normal distribution around their central value as one would

expect (the tight constraints from [11] make the spread in ωm negligible). Like-

wise, we see a normal distribution around the true values for Ωm0 and h when

the full redshift range is taken into account. But while the low redshift bins re-

main sensitive to the true values, non-Gaussian tails form in the higher redshift

bins. By reducing the forecasted errors (i.e. the dispersion in the fitted samples)

the formation of non-Gaussian tails can be pushed to higher redshift bins.

The formation of the non-Gaussian tails can be easily understood through

error propagation. A converged maximum likelihood fitting method will obtain

approximately normal distributions for the coefficients in the fitting function

much like what is seen for ωΛ in figure 2.14. However, the spreads in ωΛ and

ωm, which we represent as dωΛ and dωm, respectively, is translated into dΩm0

and dh through the relations

dh =
dωΛ

2
√

ωΛ + ωm
(2.14)
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Figure 2.13: Projected uncertainties from the DESI Bright Galaxy Survey (red),
DESI (green), and Ly-α forest quasar surveys (blue). The underlying model
parameters assume the fiducial values Ωm0 = 0.3153, ΩΛ = 0.6847, and
h = 0.6736.

dΩm0 = − dωΛ

ωΛ + ωm
+

ωΛ(dωΛ + dωm)

(ωΛ + ωm)2 ≈ − ωm dωΛ

(ωΛ + ωm)2 (2.15)

where in the last line we use the fact that the spread in ωm is negligible due

to the [11] constraints. Clearly, if both ωΛ and ωm are Gaussian then h and

Ωm0 are non-Gaussian with the non-Gaussianities in Ωm0 growing faster than

in h. We demonstrate this in figure 2.15 where we have assumed Gaussian dis-

tributions for both ωΛ and ωm with equal spread (solid) and with ωΛ having

a four times larger spread (dashed). Therefore, an increase in dωΛ, which is

expected as we look at higher redshift probes with less sensitivity to the dark

energy epoch, generally produces non-Gaussian distributions in (h,Ωm0) in a

flat ΛCDM model.

The presence of these non-Gaussian tails will pull the best fit Ωm0 (h) to
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Figure 2.14: Left: Distribution of fitted ωΛ values from the binned mock DESI
samples. Note that the ωΛ values are approximately normally distributed for
all redshift bins. The leftward pileup in the [2.550,3.550) bin is an artifact due
to the spread growing larger than the allowed parameter ranges: h ∈ [0.2, 1.2]
and Ωm0 ∈ [0, 5]. Right: Corresponding distributions in (h,Ωm0) with vertical
lines designating the true values. Clearly, the full redshift range (bottom) is able
to accurately capture the true values along with the low redshift bins (z < 1.6).
However, non-Gaussian tales form in the higher redshift bins.

higher (lower) values than is the true value. These effects have recently been

observed in the Pantheon+ analysis (see figure 16 in [100]) and also in cosmic

chronometers and BAO [3]. Thus, in going forward with dispersive high red-

shift probes it is important that we take this into account when making cosmo-



73

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04 0.05

dh
d m0

Figure 2.15: Solid: Spreads in h and Ωm0 assuming Gaussian distributions in ωΛ
and ωm with a fiducial 0.01 variance. Dashed: Similarly but with ωΛ now having
0.04 variance – a trend we would expect when moving towards higher redshift
probes.

logical claims since an error like this would cause an apparent reduction in the

Hubble tension. We can avoid dominating non-Gaussian tails in probes with

sufficiently low dispersion (on par if not lower than the dispersion found in

SNIa) or in probes that can be connected back to the dark energy epoch like

what is typically done with standardizable candles and the cosmic distance lad-

der.



Chapter 3
Modified recombination and the

Hubble tension

This chapter follows a mechanism I proposed to naturally source a modified

recombination as a means of solving the Hubble tension [4].

3.1 Current state of the Hubble tension

The tension in the measured values of H0 between early and late time obser-

vations is now at 5σ with the latest analysis by the SH0ES team [28]. A great

number of attempts have been made towards solving the tension and bringing

the two families of observations into agreement.

Systematic errors should of course be everyone’s initial suspect for the cause

of the tension. Focusing on the Planck 2018 [11] and the SH0ES 2021 [28] results

there are some hints towards systematic errors. The strongest hint in Planck is

the AL > 1 anomaly. AL is a phenomenological parameter used to rescale the

lensing amplitude in the CMB power spectrum to match theory with observa-
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tion. But with the cosmological parameters determined in a model, the lensing

amplitude can be very accurately determined [125]; so one would expect if both

data and the model are sufficient then no rescaling would be necessary, corre-

sponding to AL = 1. Planck however requires

AL = 1.243 ± 0.096 (68% CL, TT+lowE) (3.1)

AL = 1.180 ± 0.065 (68% CL, TT,TE,EE+lowE), (3.2)

over 2.5σ deviation from AL = 1. In order to explain an AL > 1 we would need

to invoke either modified gravity [126], a closed universe [127], or a running

in the spectral index [128] all of which are either in strong disagreement with

other observations or would require an overhaul in the standard ΛCDM model.

More room for systematic errors can be found in the cosmic distance ladder of

SH0ES and related works. The most obvious area of concern is in the anchor-

ing of the local Cepheids, which if incorrect can shift the expected H0 value

obtained by SNe by a significant amount. However, independent calibrations

have been performed with TRGBs and MIRAS as SNe anchors with similar re-

sults; thus reducing the likelihood that systematics in the Cepheid calibration is

to blame. Additional systematic errors may lay in our very phenomenological

understanding of SNe. [129–131] have discussed differences in the light curves

of low and high z SNe, but [132] has shown that taking these effects into account

contributes an additional H0 uncertainty of 0.14km s−1 Mpc−1 which does not

make up a significant contribution to the tension. Many other cross calibrations

have been performed (see figure 1.2) and all within reasonable agreement with

the SH0ES results making systematics in the cosmic distance ladder either in-

creasingly unlikely or increasingly subtle.
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In the absence of sufficient systematic errors there have been many attempts

at expanding the theoretical models to explain the tension. Some attempts are

minor deviations from ΛCDM such as early dark energy (EDE) models which

allow dark energy to make up a significant fraction of the energy density in

the early Universe. Other attempts like modified gravity models consider more

fundamental changes to cosmology. The review papers [29, 86] outline a great

number of the leading attempts at solving the Hubble tension, but we focus on

a particularly promising one which uses a dynamic electron mass, me, to modify

the recombination history.

3.2 Why modify recombination?

The Planck 2018 team [11] has very accurately measured the angular scale of the

first peak in the CMB power spectrum to be

100θ∗ = 1.04097 ± 0.00046 (68% CL, TT+lowE) (3.3)

100θ∗ = 1.04109 ± 0.00030 (68% CL, TT,TE,EE+lowE). (3.4)

Since this is just an angle on the sky there is no model dependence in this value.

We can however calculate the expected θ∗ from a model given that

θ∗ =
r∗

(1 + z∗)DA(z∗)
=

∫ z∗
0 cs(1 + z)−1H−1dz

(1 + z∗)
∫ z∗

0 H−1dz
(3.5)

where r∗ is the radius of the comoving sound horizon at recombination, DA(z∗)

is the angular diameter distance to recombination taken to be in flat space, and
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the acoustic sound horizon at recombination is given by

c−1
s =

√
3 +

9ωb
4ωγ

(1 + z∗) (3.6)

where ωγ ≡ Ωγh2 (for radiation), ωb ≡ Ωbh2 (for baryonic matter), and, soon

to be introduced, ωm ≡ Ωmh2 (for baryonic + cold dark matter, Ωc). If one

now wishes to allow for an increase in a cosmological parameter such as h ≡
H0

100km/s/Mpc then the rule of the game is to mirror the increase with a change in

other parameters such that r∗ and (1+ z∗)DA(z∗) remain unchanged, or at least

their ratio remains unchanged. For our purposes, we can get a better grasp of

the problem after evaluating the integrals in (3.5). Parsing out the important

parts of the integral we find that we can keep the numerator and denominator

of (3.5) separately unchanged if we keep the two values

4ωγ

3ωb
(1 + z∗),

(1 + z∗)
ωm

√
ωm

(1 + z∗)
+ ωγ (3.7)

unchanged. Given that ωm = ωc + ωb we assume any changes in ωb are shared

with ωm, i.e. ∆ωm = ∆ωb. It is clear then that both terms remain unaffected if

∆ωm = 2ωm
∆h
h = ∆z∗. That is to say, the CMB estimate of H0 can be raised

if we consider also consider an increase in z∗. This procedure is what we will

mean by modified recombination even though other aspects of recombination

can also be modified such as its effective width.

Possibly the most straightforward way to allow for a higher z∗ is to consider

either a larger fine-structure constant, αEM, or a larger electron mass, me, in

the early universe enabling recombination to occur at a higher temperature and

therefore a higher redshift. Both have been extensively studied (see [133–141])



78

with similar affects on cosmological fitting parameters. However, as discussed

in [142], it is unlikely that a simple variation in αEM will play a significant role in

the H0-tension while changes in me remain a viable solution. And even though

the concept of varying fundamental constants has been around at least since the

1980s [143], to seriously consider a varying me as a possible solution to the H0-

tension then a convincing mechanism must be provided that would naturally

enable me to differ between the early and late universe.

We consider the existence of the symmetron field, a scalar-tensor theory

with a symmetry breaking potential and a universal coupling to the trace of the

stress-energy tensor (see section 3.3 for detailed discussion on the symmetron

model). We propose a Yukawa interaction between the electron and symmetron

such that the screening mechanism has indirect control over the mass of the

electron in addition to the strength of fifth force interactions. Just like the Higgs

coupling to the electron, the symmetron coupling would naturally give a mass

contribution to the electron proportional to the symmetron’s vacuum expecta-

tion value (VEV)1, ν. However, unlike the Higgs coupling, the symmetron’s

VEV depends on the background matter density of its environment. In regions

of high density ν = 0, while in low density regions it pulls off towards a finite

value. With the Yukawa coupling, the electron mass would have an additional

contribution which varies with the density of its environment. Therefore, an

electron in a high density region (i.e. in the early universe) would have a dif-

ferent mass than one in a low density region (i.e. in low redshift interstellar gas

clouds). This would enable a difference in me between recombination and the

observed value today in Earth based measurements. In general a Yukawa inter-

action of this sort should be shared by other Standard Model particles but for

1Similar principles have been previously discussed in [144] and more recently in [145].
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simplicity we focus only on the electron interaction.

The prospects of this mechanism are quite intriguing. It was studied in [87]

that a varying electron mass by itself could reduce the tension from 4.7σ to 3σ

in flat ΛCDM (using Planck 2018 TT,TE,EE+lowE in combination with Pantheon

SNe [88] and BAO [146–148]) and in an ΩkΛCDM model the tension can be re-

duced below 2σ. Even more intriguing though is the pairing of the work here

with that in [149] which considers the effect of screened fifth forces on the cos-

mic distance ladder (the symmetron being one of the studied screening mech-

anisms). The authors show that if the local Cepheids callibrated with parallax

measurements are more screened than the distant Cepheids used to anchor SNe

then H0 would be biased towards higher values2. In total, accounting for sym-

metron fifth forces may decrease the local estimates of H0 while accounting for

the electron-symmetron coupling may increase the CMB estimated value, re-

lieving the tension two-fold.

Section 3.3 introduces the basics of the symmetron field and some of the

current bounds on its parameters while section 3.5 discusses the details of the

coupling necessary for shifting H0 towards higher values. In section 3.6 we

explore some possible observables of the coupling and we conclude in section

3.7.

3.3 Symmetron Field

Fifth force interactions are generally expected to accompany scalar theories. In

most cosmological applications of scalar fields these fifth forces will need grav-

2The effect on the independent TRGB and MIRAS calibrations still need to be studied how-
ever.
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itational strength interactions in order to have noticeable effects in their range

of applications which, if unchecked, will cause apparent deviations from GR.

But since stringent solar system tests are still in complete agreement with GR,

these scalar fields must come with a mechanism of screening fifth force inter-

actions at least at the length scale of the solar system. The Vainshtein [150]

and chameleon [151] are two examples of screening mechanisms. Vainshtein

screening uses non-linear scalar field fluctuations in curved space to suppress

the canonically normalized kinetic term resulting in heavily damped fifth force

interactions. Chameleon screening on the other hand uses an effective scalar

field mass which scales with the background energy density so that in regions

of high density (such as inside of a galaxy) the mass is high which drives the

fifth force range below observational precision. We however consider a third

screening mechanism, the symmetron, which is very similar in structure to the

chameleon field but differs enough to be of interest. The symmetron field was

originally introduced in [152] and discussed at length in [153]. And although it

is beyond the interests of this chapter, [154] discusses possible UV completeness

which will be touched upon in chapter 4.

In its original formulation the symmetron assumes a general scalar-tensor

theory,

S =
∫

d4x
√
−g

[1
2

M2
PlR − 1

2
gµν∂µϕ∂νϕ − V(ϕ)

]
+

∫
d4x

√
−g̃Lm(ψ, g̃) (3.8)

where the matter fields, ψ, contribute in the last term and have a minimal cou-

pling to the Jordan frame metric,

g̃µν = A2(ϕ)gµν. (3.9)
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The resulting equation of motion for the field ϕ is then

□ϕ = V,ϕ − A3(ϕ)A,ϕ(ϕ)T̃ (3.10)

where T̃ is the trace of the stress energy tensor in the Jordan frame for the matter

fields. Generality is broken when we choose the forms

V = −1
2

µ2ϕ2 +
1
4

λϕ4 (3.11)

and

A = 1 +
1
2

( ϕ

M

)2
+O

( ϕ

M

)4
(3.12)

with µ and M as two mass scales, λ as a dimensionless coupling constant, and

the assumption that in all points of interest ϕ ≪ M such that the power series

expansion in (3.12) remains valid. The above two choices are the simplest func-

tions satisfying the required Z2 symmetry but other choices may also have been

made. For example, these forms are not suitable for a symmetron dark energy

model given constraints from tests of gravity, but [153] explores more general

forms of V(ϕ) and A(ϕ) that may be able to. We are not interested in dark en-

ergy here so the forms (3.11) and (3.12) will suffice. However, in the appendix

we discuss a slight modification to both V(ϕ) and A(ϕ) that would have simi-

lar, but separately interesting, effects to those discussed in the main body of this

text.

Noting that A3(ϕ)T̃ = A3(ϕ)(1 − 3w)ρ̃ = (1 − 3w)ρ we do not expect cou-

pling to the radiation sector of ψ. The only contributions will be from matter

(both baryonic and dark matter, w = 0) and dark energy (w = −1), but in our

interested density range we will only consider the matter contribution. A cou-
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pling to radiation may also be considered given the arguments in [155] though

these too will be ignored for simplicity. Using (3.11) and (3.12) in (3.10) gives

□ϕ = V,ϕ + A,ϕρ ≡ Ve f f ,ϕ (3.13)

where we have defined an effective potential which to leading order in ϕ/M is

Ve f f =
1
2

( ρ

M2 − µ2
)

ϕ2 +
1
4

λϕ4 (3.14)

For convenience, we define the parameter Σ with dimension [mass]−1 as

Σ2 ≡ 8πG
3H2

0
M2 (3.15)

which allows us to express the density in terms of the background fractional

matter density of the universe, Ω,

Ve f f =
1
2

( Ω
Σ2 − µ2

)
ϕ2 +

1
4

λϕ4 (3.16)

Thus, when Ω ≥ µ2Σ2 the quadratic term is positive so that the VEV ν = 0.

However, when Ω < µ2Σ2 symmetry breaking occurs which pushes ν to a finite

value. In total,

ν =


0 Ω ≥ µ2Σ2,√

µ2Σ2−Ω
λΣ2 Ω < µ2Σ2.

(3.17)

The potential in these two regimes of Ω is sketched in figure 3.1 with arbitrary

units. The transition rate between the solid and dashed curves is dependent on

the growth/decay rate of Ω. In considering the symmetron near galaxies this

transition is dominated by spatial growth of Ω as one looks from the outside
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Figure 3.1: The symmetron potential in arbitrary units. The solid, dotted, and
dashed curves show the potential when Ω ≫ µ2Σ2, Ω = µ2Σ2, and Ω ≪ µ2Σ2,
respectively.

towards the inside of a galaxy. In these interests we write Ω = Ω(r) and we

consider for simplicity that the matter density of a galaxy is described by an

NFW profile.3 But when considering the symmetron through cosmic history the

transition would be more sensitive to redshift which we will write as Ω = Ω(z).

This is important to note since we are comparing me during recombination to the

value measured in our solar system which is suspended in a local over-density

(i.e. the Milky Way galaxy).

3.4 Parameter Constraints

[152] has considered symmetry breaking in the symmetron field to occur in re-

cent cosmological history such that unscreened long range interactions of grav-

itational strength could serve as an effective dark energy. This is not our interest

here. Instead, we emphasize a difference in VEV between the densities present

3One can of course more accurately consider a baryonic disk structure embedded in a dark
matter NFW profile. This will not affect the arguments in this paper, but it may loosen the
parameter constraints marginally due to localized over-densities.
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at recombination and today’s local value,

Ωrec = Ωm0(1 + z∗)3 ≈ 4 × 108 (3.18)

ΩMW ≈ 8 × 104 (3.19)

where an NFW fit to the Milky Way was used to calculate ΩMW . This translates

to µ2Σ2 being greater than at least one of the above densities. Since the Milky

Way on average has a lower density out of the two we impose

µ2Σ2 > ΩMW . (3.20)

Otherwise, if Ωrec and ΩMW were both greater than µ2Σ2 then symmetry break-

ing would occur only in the intergalactic space of the late universe. With the dis-

cussion below in section 3.5 this corresponds to the symmetron-electron Yukawa

coupling having no significant effect on the predicted value of H0 which is of no

interest here (though the regime could still be of general cosmological interest).

On the other hand, if µ2Σ2 is much larger than Ωrec then symmetry breaking

would occur much too early so that the VEV values between recombination and

the Milky Way would be nearly indistinguishable and any effect on H0 would be

negligible. That is to say, for the symmetron to cause a significant enough mass

difference between recombination and the measured value we must require

µ2Σ2 ̸≫ Ωrec. (3.21)

Figure 3.2 shows both Ω(z) and Ω(r). The interesting range of µ2Σ2 values

lies in the darker green band, between recombination (z = 1100) and the radial

position of the solar system inside the Milky Way (r ≈ 8.3kpc). The shape of
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Figure 3.2: Cosmological matter density versus redshift (solid curve) and the
Milky Way matter density versus radius (dashed curve) modeled using an NFW
profile with fitting parameters taken from [156]. The solid arrow marks recom-
bination while the dashed arrow marks the radial position of the solar system
in the Milky Way. The green band highlights the expected values of µ2Σ2 that
would allow for a symmetron induced shift in the electron mass in accordance
with the H0-tension. The behavior of the potential before, at, and after symme-
try breaking is shown in insets.

Ve f f overlays the corresponding density ranges.

[152] further discusses local tests of gravity in order to constrain the param-

eter space and avoid apparent deviations from GR in the solar system. Since

there have been no such deviations reported as of yet, the resulting constraints

are still of interest here. Particularly, we will take

M ≪ MPl. (3.22)

Referring back to (3.20), this results in

µ2 ≫ H2
0 . (3.23)

Since the mass of small fluctuations around ν goes as m0 =
√

2µ ≫ H0 the
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range of fifth force interactions would fall well inside the Hubble radius and

may have a role in structure formation.

Laboratory tests have also placed bounds on the symmetron’s parameter

space (see [157, 158] for discussions). One could use these to constrain λ given

the above constraints on µ and M; however, since we are not interested in a

dark energy symmetron, the parameter space of interest here is far removed

from those probed by laboratory tests. The parameter λ remains to be bounded.

3.5 Coupling to the Electron

We now consider a Yukawa interaction between the symmetron and the elec-

tron. This contributes an interaction term to the Lagrangian of the form

Lint = −gs ēeϕ (3.24)

where gs is the coupling strength between the electron and symmetron. If we

take the mass contributions of the Higgs and symmetron fields to be ηH and ηs,

respectively, then at all times the electron mass should be4

me = ηH + ηs. (3.25)

4It should be noted that there are currently no constraints on gH . The proposed Future Cir-
cular Collider (FCC-ee) may have the ability to probe the low luminosity H → e+e− process,
possibly limiting additional components to the electron mass, as disscussed in [159].
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The ηH term will take its constant canonical form, ηH = gHνH√
2

, while

ηs =
gsν√

2
=


0 Ω ≥ µ2Σ2,

gs

√
µ2Σ2−Ω

2λΣ2 Ω < µ2Σ2.
(3.26)

We note that since we have coupled matter to the Jordan frame metric in (3.9) the

fermion mass term becomes L f erm. = mψ A(ϕ)ψ̄ψ and (3.25) would have an ad-

ditional contribution proportional to meν
2/M2. But as long as |gs| ≫ 10−84/

√
λ

then we can safely take ηs as the dominant contribution and treat (3.25) as the

electron mass in the symmetron coupled state. And although we do not apply

the constraint here, if for instance one were to apply gravitational strength fifth

force interactions as was done in [153] then we must require |gs| ≫ 5 × 10−23.

In addition, including the interaction term (3.24), back reaction effects must be

taken into account for the shape of Ve f f . Since the interaction adds a term linear

in ϕ to Ve f f then the VEV will be shifted away from zero during the unbroken

symmetry phase by an amount which varies with the electron density. There

will also be a tilt in the symmetry broken phase creating a false vacuum. Over-

all these inclusions do not change the essence of our mechanism so we proceed

by ignoring the back reactions and push their discussion to appendix B.

It was shown in [142] that the H0-tension can be alleviated to within 2.8σ in

the ΛCDM model with an electron mass at recombination given by

me,rec = γme,MW (3.27)

where me,MW is the measured electron mass of 0.51MeV. The fitted parameter γ

varied depending on the data sets involved but in all cases it fell in the range
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1 < γ < 1.02. [87] considered the range, 0.95 < γ < 1.05, in there fitting with

an ΩkΛCDM model, and have likewise found γ > 1 allows for a higher H0. In

either case, we note that γ deviates from unity by a small amount (< 10%) and

to alleviate the H0-tension we impose γ > 1.

For concreteness we will consider Ωrec ≥ µ2Σ2 > ΩMW which we emphasize

by the darker horizontal green band in figure 3.2. With this choice, prior to and

during recombination ν = 0 and the electron mass is solely dependent on its

Higgs field interaction, i.e. me,rec = ηH. But in lower densities like the immediate

vicinity of the solar system the electron would have an additional mass term

such that the measured electron mass is me,MW = ηH + ηs. Combining equations

(3.25), (3.26), and (3.27) we find

ηs = gs

√
µ2Σ2 − ΩMW

λΣ2 = −γ−1
γ ηH. (3.28)

With γ > 1 the coupling constant would have to be negative, gs < 0, meaning

that the symmetron coupling reduces the electron mass.

3.6 Cosmological and Astrophysical Side Effects

An environment dependent electron mass should come with a number of ob-

servable effects. For instance, the Rydberg formula for atomic transitions in hy-

drogen gives the absorption/emission frequencies proportional to the electron

mass,

f = meα
2
EM(n−2

1 − n−2
2 ). (3.29)
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If the symmetron coupling to the electron is actually at play then we would ex-

pect the spectrums from intergalactic hydrogen clouds to be shifted compared

to hydrogen clouds near the cores of galactic halos. Given that me increases

with density, lower density regions should be more redshifted than higher den-

sity regions. In general these shifts would be difficult to disentangle from cos-

mological redshifts unless precise distance measurements to the gas clouds are

known independent of redshift observations. However, one could in principle

see this effect as a systematic redshift in the 21cm line as one goes from the inner

to the outer edges of a galaxy. The effect would be independent of the galaxy’s

rotation, instead following the density profile of the galaxy, and would also be

independent of the cosmic distance making it distinguishable from cosmologi-

cal redshift. Such a study would have a strong declaration on the validity of this

mechanism.

Another interesting observable is in the progression of the electron mass

through cosmological history. Particularly, as the cosmological matter density

drops off as (1 + z)3 during the symmetry broken phase, the contribution to me

given by 3.26 would go as (1 + z)1.5. Assuming the density of intergalactic gas

clouds to be lower than the symmetry breaking value, µ2Σ2, then the Lyman-α

forest would have an additional redshift evolution in wavelength proportional

to (1 + z)−1.5. Current Lyman-α surveys may then be used to place constraints

on the fitting parameter λ.

3.7 Summary

We have discussed a simple mechanism that would enable the electron mass

to vary between recombination and today’s measured value. The density de-
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pendent VEV of the symmetron field coupled to the electron serves as a control

on the electron mass and shifts it to a lower value today assuming a coupling

constant gs < 0. The higher electron mass at recombination allows for recombi-

nation to occur at a higher temperature, increasing z∗ and allowing H0 to take

higher values than currently estimated by Planck.

The parameter space of this model is still fairly open which makes confir-

mation, and more importantly invalidation, difficult. However, we noted that a

predicted deviation proportional to (1+ z)−1.5 should be expected in the evolu-

tion of the Lyman-α forest along with a redshift profile across a galaxy following

the galaxy’s density profile. Both of these signals can be studied using existing

data to constrain the parameter space. Given the simplicity of this solution and

its application towards the prominent discussions of the H0-tension it would

serve well to explore this mechanism in greater detail.



Chapter 4
Swampland Conjectures

I now turn the last of our discussion towards the swampland and its conjectures.

There are a growing many swampland conjectures in the field today. I will only

focus on the two that I have published work on: the Weak Gravity Conjecture

and the de Sitter Swampland Conjecture. My contributions in the latter work

were secondary to Wei-Chen Lin who has used the work as a central point in

his dissertation. So to avoid significant reiteration, I will speak only on the main

points of the work and refer the reader to the original text, [160], for full details.

4.1 Introduction to the Swampland

Effective field theory (EFT) is an extremely useful tool in a physicist’s arsenal,

serving as an approximation of some underlying, more complicated physics

which we do not quite understand fundamentally. As such, an EFT can only

be valid within some range of length scales taken to be much higher than those

of the actual physical phenomena. For example, it is very common to use an

EFT approach to detail a dynamical dark energy model with the assumption



92

that some unknown physical interactions are governing dark energy at scales

much smaller than galaxies. The symmetron discussed in chapter 3 is one such

example of an EFT with a cutoff scale M ≪ MPl. Even GR can be discussed as

an EFT description of quantum gravity.

The downside of EFTs is that more than one can sufficiently describe a set of

observations within respective energy scales. For instance, both the chameleon

and symmetron fields can be used to describe dark energy even though they

differ at more fundamental levels. There may in fact be a great number of fun-

damentally different EFTs that are all able to satisfy the same set of observa-

tions. So, in order to parse the more-likely-correct EFTs from the others, we can

require that an EFT must be compatible with the theories that are expected to

explain the smallest scales1, otherwise called the UV limit. Any EFT found to be

compatible with the UV limit is considered UV-complete. Thus, we define the

swampland as the set of all low-energy EFTs found to be UV-incomplete while

the landscape is defined as the complementary set. Our Universe, described by

the SU(3)⊗SU(2)⊗U(1) Standard Model, may be just one of many possibilities

in the landscape (see figure 4.1 for an illustration of our place in field space).

Checking the UV-completeness of every EFT is clearly impractical. Instead,

it is far easier to construct simple conjectures which are argued for from the UV

limit (i.e. expectations from quantum gravity) but can be broadly applied at the

EFT level so that any EFT caught violating the conjectures is easily thrown into

the swampland and conditionally forgotten.

1For the purpose of this discussion I will broadly consider string theory as a proper descrip-
tion of the smallest scales.
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Figure 4.1: Illustration of the low-energy EFTs describing our Universe (yellow),
not describing our Universe but still compatible with quantum gravity (green),
and all those incompatible with quantum gravity (red).

4.2 Weak Gravity Conjecture

4.2.1 The Original Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC), originally proposed in [161], poses that

any possible U(1) gauge field (e.g. electromagnetism) must have at least one

charged particle with charge-to-mass ratio of

q
m

≥ 1 (4.1)

in properly chosen units2. A small handful of simple, back-of-the-envelope ar-

guments were originally given for its necessity, but of particular interest here

is the argument based on BH evaporation and stable remnants. In short, the

argument goes as follows. A BH with mass M can have any U(1) charge Q as

long as Q ≤ M for reasons discussed earlier in chapter 1.1.2. We can imagine

2All Standard Model particles with U(1) charge satisfy this by many orders of magnitude.
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that the BH then Hawking evaporates away its mass3 until it reaches the ex-

tremal bound, M = Q. If the U(1) field has no particles with q ≥ m then the

evaporation process cannot proceed past this state and the BH then constitutes

a zero-temperature stable remnant. We are thus faced with the formation of

a large number of stable remnant states with charge anywhere between 0 and

Q. As a result, any thermodynamic system with U(1) gauge field interactions

and sufficient energy would be infinitely biased towards the production of these

zero-temperature remnants. This scenario is not favored for many reasons, not

the least of which would be an overclosure of the early universe and a distortion

of BBN predictions due to an early production of zero-temperature BHs with a

dust equation of state, w = 0 [162]. Therefore, the conjecture (4.1) is required in

order for the extremal BH states to be unstable against further decay processes.

See figure 4.2 for a cartoon representation of the argument.

From an astrophysical point-of-view, the formation of extremal BHs are ex-

ceedingly unlikely due to the net neutral charge of large systems. However,

taking the T.H. White approach of ”everything which is not forbidden is com-

pulsory,” the possibility of these zero-temperature stable remnants is enough to

cause great concern.

With the need for the WGC now being well argued for it still remains to be

shown if the conjecture can be proven from first principle arguments. There

have been attempts though with [163] being quite notable in its employment of

BH thermodynamical arguments. A proof of the WGC is not the intent here.

Over the next few sections I will instead extend the WGC’s BH arguments with

a completely general relativistic approach and show that the WGC continues to

3We usually imagine BHs evaporate down to the Planck mass after which it is unclear what
happens since quantum gravity takes over.
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Figure 4.2: The black hole A undergoes evaporative processes until it reaches
the extremal state B. The only way for B to evaporate further without forming a
naked singularity is by the emission of particles (empty circle) with q ≥ m.

hold as long as the corresponding BH mass is understood to be the ADM mass.

This discussion closely follows my original work in [164].

4.2.2 Generalizing the Weak Gravity Conjecture

The Reissner-Nordström (RN) BH is a vacuum solution to a spacetime geometry

containing a central mass, M, and a U(1) gauge charge, Q. The RN metric can

be expressed as

ds2 = − f (r)dt2 + f−1(r)dr2 + r2dΩ2. (4.2)
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where dΩ2 ≡ sin2 ϕdθ2 + dϕ2 and

f (r) ≡
(

1 − 2M
r

+
Q2

r2

)
(4.3)

which we see takes the Schwarzschild form in the limit Q → 0. Finding the

resulting horizon is as simple as solving f (R) = 0, but due to quadratic depen-

dence of the charge term gives two real horizon radii,

R± = M ±
√

M2 − Q2. (4.4)

Only in this chapter have we used mPl = 1 such that Q and M are of the same

dimension. On the other hand, taking Q > M results in the geometry of the RN

solution no longer housing an event horizon, signaled here by the radii taking

complex values. Without the event horizon the BH singularity is left bare in

apparent violation of the cosmic censorship conjecture (CCC).

It is evident then, if the CCC is not to be violated, that the BH evaporation

process should not be able to continue past the extremal bound. This is no issue

for Hawking evaporation since the Hawking temperature for a RN BH goes as

T =
1

2π

√
1 − Z2

1 +
√

1 − Z2
(4.5)

where for convenience I have defined Z ≡ Q/M and similarly I define for later

use z ≡ q/m. Clearly, as the BH approaches the extremal bound, Z → 1, the

temperature approaches absolute zero, T → 0. Other decay channels such as

the Schwinger effect would in principle continue to enable further decay for

sufficiently large electric fields, but this too will slow to a halt for extremal BHs

on the order of the Planck mass.
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In [165] a similar BH is considered and is allowed to completely decay away

into a final state of n = Q/q particles. From energy conservation we then re-

quire M ≥ nm, or more succinctly

z ≥ Z (4.6)

which reduces to the WGC in the extremal limit. [165] further argues that it is

not sufficient for just one particle in the spectrum to satisfy (4.6) but that some

weighted average of the available species must4. We take a similar stance in

section 4.2.2.1. But while [165] concerns the charge-to-mass ratio of the entire

final state, we break up the final state into thin charged shells and show that

each shell, when emitted, must satisfy the bound as well.

It is worth noting that, including higher order derivative terms in the RN

solution, the extremal bound could become a mass dependent function, pulling

away from Q = M at small masses [166]. Depending on the signs of the cor-

rections, which remain to be proven, the lower mass extremal bound will either

be pushed into the Q < M or Q > M space. Some physical arguments have

been made ([167–171]) calling for the extremal bound to be pushed towards the

Q > M space which would conveniently allow for small, over-charged BHs

themselves to satisfy the WGC. For convenience we will ignore these correc-

tions.
4One could consider this as the ”weaker” gravity conjecture (WerGC) in analogy to the equiv-

alence principles. The ”weakest” gravity conjecture (WestGC) would then be the proposal that
all particles in the U(1) spectrum would have to satisfy z ≥ 1. In this case the Standard Model
would be in violation of the newly minted WestGC due to the photon.
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4.2.2.1 Shell Emission

Consider again a BH of mass and charge (M, Q) satisfying Z ≤ 1 decaying to

a state (M′, Q′) satisfying Z′ ≤ 1. We take this to be done by the emission of

a charged, thin, mass shell of rest mass m and charge q. We could imagine the

mass shell to be the dominant s-wave of a scalar field (see [172]), or as a locus of

U(1) charged particles – since the WGC is a general result it should bound these

decay modes as well. In the case of the locus of particles, assuming the shell to

be a uniform distribution of identical particles, the charge-to-mass ratio of the

shell will be the same as the individual particles making up the shell.

In order to satisfy charge conservation the charge of the BH before and after

decay should be related by

Q = Q′ + q. (4.7)

For the derivation of the mass relation, we refer to Fig. 4.3 notation purposes. In

the moments after the decay process, the BH is enveloped by a then mass shell

which divides the space into two: inside the shell (region I) and outside (region

II). The presence of the mass shell causes a discontinuity in the extrinsic curva-

ture tensor, Kij, between regions I and II. The discontinuity at the shell, denoted

by the square brackets, can be expressed as (see [6] or [173] for derivation)

[K j
i ] = 8πσ

(
ujui +

1
2

δ
j
i

)
(4.8)

where σ is the mass density of the shell such that 4πR2σ = m, the ADM rest

mass of the shell, and u is the 4-velocity of the shell. Considering the shell to
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Figure 4.3: A BH decays through the emission of an outward moving thin,
charged mass shell. The shell divides the space into two regions, interior (I)
and exterior (II).

only have radial motion (i.e. gθθuθuθ = 0), we find that

[Kθθ] = 4πgθθσ = 4πR2σ = m. (4.9)

We have implicitly assumed a dust equation of state for the shell in (4.8) so we

cannot naively take the limit m → 0. Furthermore, we note that q contributes

to the discontinuity (4.9) only through its energy content which is already taken

into account in m (see [174]).

The discontinuity in the extrinsic curvature can also be directly obtained by

taking the difference between the extrinsic curvature tensor inside and outside

the shell,

[K j
i ] = K j

i
(I I) − K j

i
(I). (4.10)

We express the RN metrics inside and outside the shell5 as

ds2
I = − f I(r)dt2

I + f−1
I (r)dr2 + r2dΩ2, (4.11)

ds2
I I = − f I I(r)dt2

I I + f−1
I I (r)dr2 + r2dΩ2 (4.12)

5Notice, [175] has shown that the time coordinates in the two regions must differ in order for
the two regions to match at the boundary.
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where

f I(r) ≡
(

1 − 2M′

r
+

Q′2

r2

)
, (4.13)

f I I(r) ≡
(

1 − 2M
r

+
Q2

r2

)
. (4.14)

Calculating the extrinsic curvature tensor in both regions we obtain

[Kθθ ] = −R
(√

f I I(R) + v2 −
√

f I(R) + v2
)
= m. (4.15)

where ur = v is the radial speed in the rest frame of the shell and R is the radial

size of the mass shell centered on M′. Solving (4.15) for M′ we can get

M′ = M +
q2 − m2 − 2qQ

2R
− m

√
f I I(R) + v2. (4.16)

Notice that M, M′, and m are the constant ADM masses. So if we let R → ∞

then we find

M′ = M − m
√

1 + v2
∞, (4.17)

which one might have guessed allowing for the possibility that m still has some

kinetic energy far removed from the BH. In order for the BH to eventually decay

away we must impose Z ≥ Z′, which combined with (4.7) and (4.17) and taking

v∞ = 0 we find

z ≥ Z (4.18)

in agreement with (4.6). This reduces to the original WGC in the extremal limit

but generalizes the argument to non-extremal BHs. In addition, the condi-

tion for complete evaporation of non-extremal BHs is relaxed in comparison
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Figure 4.4: The shaded region marks those charge-to-mass ratios of a shell that
would allow for a BH of (M, Q) to evaporate away from extremality. Dashed
lines mark the q = m and Q = M bounds.

to WGC. That is to say, states with q/m ≤ 1 can also reduce the Q/M ratio of a

BH.

As an important consequence, the condition in Eq. (4.18) also allows us to

directly relate the particle content of the theory with the spectrum of BH states.

We show this in Fig. 4.4.

Admittedly, going from (4.16) to (4.17) we assumed the shell to be able to

escape from the BH which is not generally guaranteed. To be more precise we

can require

M +
q2 − m2 − 2qQ

2R
− m

√
f I I(R) + v2 ≤ M − m

which is equivalent to M′ ≤ M−m. If we consider the most extreme case where

the shell originates from the horizon of the original BH, R = M +
√

M2 − Q2,
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then solving for v gives

v ≥ 1 + (z2 − 1)
m
2R

− z
Q
R

(4.19)

where z is defined in the same way as in (4.6). Thus, for the shell to escape to

infinity we would require

2zQ ≥ (z2 − 1)m (4.20)

or equivalently

2qQ + m2 ≥ q2 (4.21)

which is trivially satisfied since q ≤ Q. That is to say, charged shells are gen-

erally able to escape the near-horizon region of a BH, and as long as the shell’s

charge-to-mass ratio is at least that of the original BH’s then it will allow the BH

to recede from extremality.

4.2.2.2 Summary

In principle, if we require that BHs are allowed to evaporate completely without

crossing the extremal bound we can connect the charge-to-mass ratio of the RN

BH and the particle content in a theory. Formerly, the WGC and its extensions

have shown that at least one far removed particle – or a combination of far

removed particles – available in a U(1) spectrum must satisfy q/m ≥ 1. Here we

have used the outflow of a charged thin shell to show that the WGC continues

to hold as the shell escapes the near horizon geometry and thereby we have tied

the WGC explicitly to BHs. This agreement has come at the requirement that

the shell have at least the necessary escape velocity from the BH which in the

extremal limit is found to be zero for a shell with q/m ≥ 1 (see equation (4.19)).
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We also wish to note that our main result,

q
m

≥ Q
M

, (4.22)

directly connects a general charged BH and particle spectra for a particular U(1).

One could perhaps conjectured or guessed this very relationship, however here

we obtained it by solving an exact general relativistic problem. As an interesting

consequence of (4.22)), particles with q/m ≤ 1 can also reduce Q/M ratio of a

BH with Q < M.

In addition, in some cases, the relation can apply to the creation of BHs in

addition to their evaporation. For example, we can consider a U(1) with only

one particle species. If the species had q/m < 1 it would apparently violate

the original WGC, but not our relation Eq. (4.22)). In such a theory, BHs would

stay safely away from the extremal bound since collapse and/or accretion of

particles with q/m < 1 could produce only BHs with strictly Q < M. As a

richer particle spectrum is considered a wider variety of BHs can be produced.

Furthermore, while we are in agreement with previous results, knowing that

a shell of particles emitted from an extremal BH must also satisfy q/m ≥ 1

could allow us to use the production rates of particles to further constrain the

necessary charge-to-mass ratio needed in a theory. For instance, if two charged

species (i = 1, 2) exist in a U(1) then the shell will consist of some percentage of

i = 1 particles and i = 2 particles with their contribution depending on their

production rate. So if species 1 has q1/m1 ≪ 1 but a very high production rate

at the extremal bound compared to species 2, that is to say ⟨N1⟩ ≫ ⟨N2⟩, then

species 2 would not only need q2/m2 ≥ 1 but instead q2/m2 ≫ 1. This could

in turn further narrow down the allowed particle content in the theory. This
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idea follows the work done in [176] for the electron-positron pair production

through the Schwinger effect.

4.3 A P(X, φ) Inflationary Theory in Light of the de

Sitter Swampland Conjectures

In chapter 1.4 I discussed both the standard inflationary model with a potential

V(ϕ) and k-inflation or a P(X, φ) model. I also discussed how both models can

sufficiently source the expansion necessary to solve the horizon problem along

with the flatness and magnetic monopole problems as long as the slow roll con-

ditions, (1.35) and (1.37), were satisfied. However, as I will introduce in the next

section, the de Sitter Swampland Conjecture (dSSC) is in severe tension with

the slow roll paradigm of standard single field inflationary models due to the

dSSC’s bounds on the gradient of the potential. The dSSC thus provides strong

constraints in the formulation of other potential driven inflationary models. But

it is not clear how the dSSC is applied to P(X, φ) models which does not require

a defined potential. There are attempts at generalizing the dSSC (see [177, 178])

in order to include P(X, φ) theories, but we instead take a new approach con-

sidered in [178–180] which embeds the P(X, φ) theory into a curved two-field

space metric.

4.3.1 The de Sitter Swampland Conjecture

Observations from both low and high redshifts (e.g. accelerated expansion and

ΩΛ ≈ 0.7, respectively) provide significant evidence that our Universe has a

de Sitter (dS) vacuum (Λ > 0). If the Universe continues to agree with the
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ΛCDM model then it will eventually evolve into a dS one in the distant future.

Moreover, the inflationary period of the very early Universe must have also

been very similar to a dS universe. We would then expect that a dS vacuum can

be constructed from string theory, but so far none have been shown rigorously

without objection [181–183]. Given the difficulty of constructing dS vacua from

string theory, the possibility that string theory is not compatible with dS vacua

has begun to be considered in the form of the dSSC.

Now, a dS vacuum can be produced in two ways: (i) it could be that we have

a scalar field potential, V, with the scalar field resting in a local minimum, (ii) or

a scalar field slowly rolling down a sufficiently flat potential (like that discussed

in section 1.4). In order to keep from forming a dS vacuum we can argue that

ϵV ≡ M2
Pl

V2
,ϕ

V2 ≥ c ∼ O(1) (4.23)

thus making it so that neither a potential minimum nor a sufficiently flat poten-

tial can form a positive cosmological constant. The original proposal of the dSSC

[184] argues for a bound of c <
√

2 in order to still have an accelerated Universe

while [185] finds c ≲ 0.6 is required for quintessence models. The bound is

in clear tension with a slowly rolling single-field inflationary field which satis-

fies (1.36), but potentially more complicated realizations of inflation may still

be consistent with the dSSC. Multi-field inflation, which is detailed in the next

section, provides a clean way around violating the dSSC but it is unclear how

P(X, φ) models are affected. It is possible however to embed a P(X, φ) model

into a multi-field model as its low energy effective description. From this point

of view, we have shown that the dSSC can place useful constraints on P(X, φ)

models.
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4.3.2 Multi-field Inflation

Standard inflation uses the simplest single-field scenario and has been success-

ful at explaining observations in doing so. But there are no reasons why we

should expect there to be only one scalar field; it may be the case that there are

many scalar fields forming a complex field space through which the trajectory of

the inflaton can still satisfy the slow roll conditions and produce the necessary

exponential-like expansion in the very early Universe.

Let us consider the two fields ϕ = {φ, χ} described by the non-linear sigma

model

S =
∫

dx4√−g
[MPl

2
R − 1

2
GI J(ϕ)∂

µϕI∂µϕJ − V(ϕ)
]

(4.24)

where GI J is the field metric with {I, J} indexing the fields. Per the usual, the

first Friedman equation becomes

H2 =
1

3M2
Pl

(1
2

Φ̇2 + V
)

(4.25)

where we have defined Φ̇ =
√

GI J ϕ̇I ϕ̇J . By introducing the notation VI ≡

∂V/∂ϕI along with the covariant time derivative, Dt AI ≡ ȦI + ΓI
JKϕ̇J AK, we

can express the EoM for the fields as

Dtϕ̇
I + 3Hϕ̇I + GI JVJ = 0. (4.26)

Thus, the first slow roll parameter for the multifield case can be expressed as

ϵ =
Φ̇2

2H2M2
Pl

(4.27)

with the form of the second slow roll parameter following suit.
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The field space metric may in general be non-trivial so it is easier to discuss

the trajectory of the inflaton through the use of the tangent field vector,

T I =
ϕ̇I

Φ̇
(4.28)

which describes the field components tangent to the field’s trajectory and, con-

versely, the normal field vector,

N I = − DtT I

|DtT|
≡ −DtT I

Ω
(4.29)

where we introduce the turning rate, Ω ≡ |DtT|, characterizing how windy the

trajectory is through field space. We can project the EoM into the tangent and

normal fields, respectively, so that

Φ̈ + 3HΦ̇ + VT = 0, (4.30)

Ω =
VN

Φ̇
(4.31)

where VT ≡ T IVI and VN ≡ N IVI describe the change in potential along the tra-

jectory’s tangent and normal directions. Thus, the trajectory through field space

is then controlled by both the shape of the potential and the field space metric

allowing for a sufficiently slowly rolling trajectory through a steep potential.

This is easiest to see quantitatively with the first potential slow roll parameter,

ϵV ≡
M2

Pl
2

V IVI

V2 =
ϵ

(3 − ϵ)2

[(
3 − ϵ +

η

2

)2
+

Ω2

H2

]
. (4.32)

Assuming η ≪ ϵ ≪ 1, to leading order in slow roll parameters this can be
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reduced to

ϵV ≈ ϵ
(

1 +
Ω2

9H2

)
. (4.33)

Thus, if the turning rate is large in a Hubble time then we can have an ϵV ≳ 1

satisfying the dSSC while ϵ ≲ 1 satisfying slow-roll inflation.

Before proceeding with the embedding of a P(X, φ) model into a multi-field

space it is worth noting again that single-field inflation is quite successful. So if

there are instead many fields sourcing inflation then the field space metric must

conspire to give a trajectory that is effectively described by a single field. In

the two-field case, the effective mass of the isocurvature perturbations can be

written as

M2
e f f = V;NN + ϵH2M2

PlR f s − Ω2 (4.34)

where V;NN ≡ N I N JV;I J is the normal projection of the covariant Hessian of

the potential while R f s is the Ricci scalar for the field space. If the effective

mass of the isocurvature modes is very large compared to the Hubble param-

eter, Me f f ≫ H, then the isocurvature modes can be integrated out to give an

effective single-field model with a reduced speed of sound

c2
s =

(
1 +

4Ω2

M2
e f f

)−1
. (4.35)

This argument only holds at the perturbation level, but in the case of the gelaton

model [186] and other related models [187] taking Me f f → ∞ allows the isocur-

vature modes to be integrated out at the full action level making the effective

single-field behaviour a general feature of the model.
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4.3.3 Embedding a P(X, φ) Theory into a Multi-Field Model

The embedding process begins by considering a two-field space containing the

inflaton field, φ, satisfying a P(X, φ) theory and an auxiliary field, χ,

S =
∫

dx4√−g
[M2

Pl
2

R + P(X, φ)− 1
2Λ6 (∂χ)2 + (X − χ)Pχ

]
. (4.36)

This action can be viewed as a non-linear sigma model with a field space metric

GI J = diag(Λ−6, Pχ) (4.37)

and a potential

V(ϕ) = −P + χPχ. (4.38)

As such, the EoM for the auxiliary field can be found to be

Λ−6□χ + Pχχ(X − χ) = 0 (4.39)

where in the case that Λ → ∞ the auxiliary field approaches χ = X (provided

that Pχχ ̸= 0) leaving the low energy theory as an effective P(X, φ) model. Using

the previously defined functions, in the large Λ limit, the turning rate to leading

order can be written as

Ω2 ≈ Λ6 φ̇2P2
χχ

4Pχ
. (4.40)

Likewise the tangent and normal vector directions take the form (we have cho-

sen the field index ordering {χ, φ})

T I ≈ 1√
Pχ

( χ̇

φ̇
, 1
)

, (4.41)
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N I ≈ Λ3(−1, Λ−6 χ̇

Pχ φ̇
), (4.42)

respectively. The effective mass of the isocurvature modes can then be express

as

M2
e f f ≈ Λ6 Pχχ

4

(
4 +

(2χ − φ̇2)Pχχ

Pχ

)
(4.43)

showing that taking the Λ → ∞ limit would enable the isocurvature modes to

be integrated out and the two-field model to behave as a single-field model. In

actuality, for the isocurvature modes to be integrated out we just need Me f f ≫

H. At the same time, Me f f should have an upper cutoff as well, let us say

Me f f < E. It has been argued in [188] that to avoid strong couplings in the

P(X, φ) theory an upper energy scale cutoff should be considered near

E4 ≈ 16π2M2
Pl|Ḣ| c5

s
1 − c2

s
. (4.44)

From the lower and upper bounds, we see that our embedding scheme remains

valid only in the mass range

XPX

M2
Plϵ

≪ M2
e f f < 4π

√
XPX

c5
s

1 − c2
s

(4.45)

or in terms of Λ,
2X2

M2
Plϵ

c2
s

1 − c2
s
≪ Λ6 <

4
√

2πX√
PXX

c7/2
s

1 − c2
s

. (4.46)

In total, the lower limit ensures our ability to integrate out the auxiliary field

while the upper limit avoids strong couplings in the P(X, φ) theory. A simple

result can be seen from these bounds. By comparing the much larger upper
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bound to the smaller lower bound, consistency dictates that

H ≪ 4πc5/2
s√

1 − c2
s

√
ϵMPl. (4.47)

Alternatively, using (1.50) the lower bound can also be written in terms of the

slow roll parameters,

Λ6 ≫ 4X2

ϵM2
Pl
(η − 2ϵ − κ̃)2 (4.48)

With the caveat of the mass range argued for we can now move on to the

potential slow roll parameter for a P(X, φ) model. In the embedding scheme

we can use the multi-field definition of ϵV given by 4.32 which to leading order

in Λ and with ϵ, η ≪ 1 gives

ϵV <
√
(1 − c2

s )csϵ
3/2 πMPl

9H
. (4.49)

From this relation, the dSSC can be satisfied in a P(X, φ) theory as long as the

Hubble paramter satisfies

H <
√
(1 − c2

s )csϵ
3/2 πMPl

9
. (4.50)

Therefore, in order for the embedding to work the P(X, φ) theory must satisfy

(4.47) while also satisfying (4.50) for the purpose of the dSSC.

4.3.4 Conclusion

We have examined a general embedding of a single-field P(X, φ) inflationairy

theory into a two-field theory with a non-trivial field space metric. The em-

bedding treats the single-field theory as the low energy limit (i.e. Λ → ∞) of
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the two-field theory where the heavy field responsible for production of isocur-

vature modes can be integrated out at the full action level. This is done by

considering the action

S =
∫

dx4√−g
[M2

Pl
2

R + P(X, φ)− 1
2Λ6 (∂χ)2 + (X − χ)Pχ

]
(4.51)

where φ is the inflaton field, X is its canonical kinetic term, and χ is the aux-

iliary field. It is easy to see that in the limit Λ → ∞ the auxiliary field tends

towards χ = X and the single-field P(X, φ) theory is retained. This limit does

not hold exactly due to strong couplings in the P(X, φ) model at very high Λ

so the embedding is not perfect. The true range of Λ is instead given by (4.46).

Calculations at next to leading order in Λ are given in the original text [160].

Using the upper bound on Λ we find that ϵV cannot be arbitrarily large in

this model and must satisfy

ϵV <
√
(1 − c2

s )csϵ
3/2 πMPl

9H
(4.52)

or, if we take ϵV ∼ O(1) then the dSSC applies an upper bound on the inflation-

ary energy for this type of model given by

H <
√
(1 − c2

s )csϵ
3/2 πMPl

9
(4.53)

which can be compared a similar bound imposed in k-inflation models from the

trans-Planckian censorship conjecture [189].



Appendix A
The symmetron in rewind

In chapter 3 we discuss an electron mass difference between recombination and

today sourced by a Yukawa coupling with the symmetron field. Choosing the

forms (3.11) and (3.12) would make the electron mass at recombination approx-

imately the bare mass (i.e. contributions only from the Higgs field) while the

value measured today is in combination with the effect from a non-zero sym-

metron VEV. However, we could also consider minimal changes to (3.11) and

(3.12):

V(ϕ) =
(
− 1

2
µ2ϕ2 +

1
4

λϕ4
)
→

(
+

1
2

µ2ϕ2 +
1
4

λϕ4
)

, (A.1)

A(ϕ) =
(

1 +
ϕ2

2M2

)
→

(
1 − ϕ2

2M2

)
(A.2)

which together give a slightly modified Ve f f ,

Ve f f =
1
2

(
µ2 − ω

Σ2

)
ϕ2 +

1
4

λϕ4. (A.3)

Now, with the changes, the symmetron is in a broken symmetry phase in the

early with a non-zero VEV and then when Ω = µ2Σ2 the field undergoes a
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symmetry restoration. Therefore, the contribution to the electron mass is now

in the early universe and nearly absent today. Taking ΩMW < µ2Σ2 ≤ Ωrec

and gs > 0 one can reproduce a larger electron mass at recombination than is

measured today just like what was argued in chapter 3.

There is no obvious advantage to this approach over what was discussed

in chapter 3 besides one’s possible preference. However, besides possibly the

effect on theoretical quark stars, this alternative approach would not display

any of the astrophysical effects discussed in section 3.6 due to the VEV being

zero in most of the considered systems.



Appendix B
Back reactions from

symmetron-electron coupling

The discussion in chapter 3 ignores the effect of the additional Yukawa coupling

on Ve f f . This was done for the sake of simplicity, but now we explore these

effects by adding the Yukawa term, (3.24), to the effective potential,

Ve f f =
1
2

( Ω
Σ2 − µ2

)
ϕ2 +

1
4

λϕ4 + gs
M2Ωe

meΣ2 ϕ (B.1)

where Ωe is the fractional electron density which we take to be roughly Ωe ≈

10−3Ω. The VEV can then be calculated from

ν3 +
(Ω − µ2Σ2)

λΣ2

( gsM2

103me
+ ν

)
= 0. (B.2)

In the early universe where Ω ≫ µ2Σ2 (and therefore Ω ≫ λΣ2) the VEV rests

at

ν ≈ − gsM2

103me
(B.3)
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and only deviates drastically from this near the transition point, Ω ≈ µ2Σ2.

On the other hand, when Ω ≪ µ2Σ2 the VEV is displaced to some finite value

(the details of which are not important here) but now with sign(ν) = sign(gs).

Therefore, the actual mechanism is messier than what was discussed in chapter

3 but remains the same in principle since there remains a difference in the VEV

during recombination and today.

With the exception of its affect on parameter estimations, the only phys-

ical effects of interest that the back reaction term causes would be in the de-

creased formation of domain walls. Without the back reaction term, the field

has equal probability of rolling towards ±ν assuming the field is initially at rest

at ϕ = 0 (see 3.1). This would cause a high frequency of domain walls form-

ing between states of +ν and −ν. But with the back reaction term, the field

at symmetry breaking is already pulled towards one of the VEVs (the true vac-

uum) while the secondary VEV (false vacuum) is formed at a higher energy (see

B.1). Domain walls in this case only form when the field ϕ tunnels through the

potential barrier and are therefore less likely to occur.
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Figure B.1: The symmetron potential in arbitrary units including back reaction
from the Yukawa coupling (assuming gs < 0). Identical to figure 3.1, the solid,
dotted, and dashed curves show the potential when Ω ≫ µ2Σ2, Ω = µ2Σ2, and
Ω ≪ µ2Σ2, respectively. For clarity, if tracking Ve f f through cosmic time one
would see a gradual transition from the solid curve, to the dotted, and ending
with the dashed.



Bibliography

[1] R. Solomon and D. Stojkovic, “Variability in quasar light curves: using
quasars as standard candles,” JCAP 04, no.04, 060 (2022) doi:10.1088/1475-
7516/2022/04/060 [arXiv:2110.03671 [astro-ph.CO]].
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