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Preface
"Quarks and leptons made us. And now we study them as if the elementary particles

have a consciousness to study themselves. We are always on the journey to discover ourselves.
Who we are, what our origin is, what will we be. From one quantum state to the next ones."

Doing research as a member of ATLAS Experiment is an abandoned dream came
true by accident. When I was in high school, I naively dreamed all ambitious goals,
and one of them is to work at CERN. Until I had a mental breakdown in the middle
of my 19 during my undergraduate study. So I dropped all of those dreams. I tried
to solve the problems in my country, like destruction of environment, poverty and
disparity, injustice, and corruption as these problems directly affected my life as well.
But they were just too much for me. The academic environment was harsh as well
since I was kicked out from a class just because of wearing sandals.

So my undergraduate study stalled by a year. In that year, I stepped back to
rearrange my life goal. I alone might not be able to solve those problems, but
educating the next generations who will takeover the positions, for example, in
government, will lead to the progressive changes. But reforming the education
system requires a lot of politics, which is one of the problem sources since it is messy
to begin with. Indonesia is not ready for democracy and need a benevolent dictator
like Lee Kuan Yew. But what we got was a corrupt dictator who made all the messes
at the first place. So instead of staying inside the loop of problems, I set out my goal
to build as school using Finnish education system. And hopefully it will set as a role
model, along with raising the problem solvers.

I took interest in Papua as I did a community service there, teaching children
basic math since they did not meet the expectation of the curriculum due to the
teachers’ incompetency. Historically, Papua was not a part of Indonesia when we got
our independence. The dispute with Netherland over Papua was brought to United
Nation and ended in Act of Free Choice, where a sham referendum was conducted
by a thousand of Papuans handpicked by Indonesian military forced to choose to
join Indonesia. The human right violations still continue to this day while the world
turns blind eye on them. And despite having abundant natural resources, the native
people are the poorest of all the country. Therefore I decided to build the school there
since they need it the most.

So I set my journey to Finland to find the connections for the teacher training.
Since I am from a broken home and poor family, the only way to get there is to find
the scholarship. And after two years, finally I got it in University of Jyväskylä. I
initially interested in dark energy for my master thesis and spacetime quantization,
for example, loop quantum gravity for doctoral research. In general relativity, gravity
is not a "force" but rather a curvature in the spacetime. It is completely different
paradigm compared to quantum field theory where the force is mediated by the
exchange of force carrier particles. Perhaps the quantization of spacetime will work
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as the quantum theory of gravity since it provides a middle ground for spacetime
curvature and particle exchange interpretations.

An interesting twist of fate happened when I did not get a supervisor for those
topics and Kari J. Eskola introduced me to an ALICE Experiment member who became
my master thesis supervisor, Sami Räsänen. And so, my journey as experimental
particle physicist began. I learned ROOT from zero without any basic in programming
language with a lot of help from Oskari Saarimäki. I finished my master study and
then applied PhD positions everywhere as long as it is one of LHC experiments.

Thanks to Iwona Grabowska-Bołd for offering me the opportunity to study in
AGH and Tomasz Bołd who accepted me as his student. My coding skills improved
a lot under his guidance. I also thank Mark Sutton for his supervision during my
qualification task. Thanks also to Piotr Kotko for pointing me to the right direction in
understanding small-x physics. I would like to thanks Patrycja Potępa for being a
helpful friend.

During my study, I got opportunities to visit CERN. I took Run Control and
Trigger shifts, digging deeper into how data taking procedure in ATLAS is done as
well as witnessing how the LHC operate. The cover page on this thesis shows the
hard probe event of Pb+Pb collision during the first heavy ion run in Run 3. The
event display figure of this collision was created by Mateusz Dyndal on behalf of
ATLAS collaboration. I was there in the control room, doing shadow shift to refresh
my memory before taking the actual shifts. We got stable beam and Martin Rybar,
Aaron Angerami, and Qipeng Hu pooped champagne bottles and we all drank. And
a few moments later, we got a problem and the cheers turned down. So we stopped
the run and started again. Such an unforgettable moment in the dynamic of data
taking at the ATLAS control room. Cheers to the great people I met along the journey
and help me to improve. Let this thesis lead me to the next quantum state in the life.

Kraków
January 11, 2024



v

List of Contribution and Acknowledgement
I declare that the research carried out in this thesis is fully my work. This includes

running the analysis, modifying and extending the analysis codes, doing the studies
of the obtained observables, and presenting the results to ATLAS Collaboration.
Currently, the analysis is being reviewed by editorial board in ATLAS Collaboration
before allowed to be published.

During my study, I contributed to the development of minimum bias trigger
signature and z-finder algorithm for High Multiplicity Trigger for the Athena
framework. The details are explained in section 2.2.5. I also contributed to data
taking in ATLAS Experiment by doing Run Control shifts. The task consists of
preparing ATLAS detector and setup before stable beam, starting the run for data
taking, monitoring detectors health and responding to any issue during the run,
monitoring luminosity and changing trigger configuration, and stopping the run.

I also presented the results from ATLAS Collaboration in following conferences:
8th International Conference on Physics and Astrophysics of Quark Gluon Plasma
(ICPAQGP-2023) in Puri, India, 42nd International Conference on High Energy
Physics (ICHEP-2024) in Prague, Czech, and results of this analysis at ATLAS Poland
conferences 2023 and 2024 in Kraków.

This work was partly supported by the National Science Centre of Poland under
grant number UMO-2020/37/B/ST2/01043 and by PL-GRID infrastructure. Also,
this research project is partly supported by program „Excellence initiative – research
university” for the AGH University of Kraków.





vii

Abstract

Correlations between harmonic flow and transverse momentum in pp and p+Pb
collisions at the LHC with the ATLAS detector.

The study of the correlation between harmonic flow vn and mean transverse
momentum [pT] in proton-proton collisions at

√
s = 5.02 and 13 TeV and proton-lead

at
√

s = 5.02 TeV with the ATLAS detector has been conducted. It is performed
for charged particles with pseudorapidity range |η| < 2.5 and various transverse
momentum ranges. The measured observable is a modified form of Pearson’s
correlation coefficient (ρ

(
vn{2}2, [pT]

)
) between flow vn{2}2 and pT. The results are

presented for harmonics n = 2 and 3, and three arrangements of sub-events.
The results for pp are compared with Pythia that does not contain modeling

of QGP. It would allow us to study the non-flow contribution to the observed
correlation. The effect of QCD color reconnection parameters in Pythia on measured
correlation are shown to be significant to reproduce flow-like pattern. The Pythia
reproduces qualitatively the same trend as data but fails in describing it quantitatively,
indicating a missing physics in this generator. Comparison with EPOS which include
hydrodynamic simulation is also studied. The results for p-Pb are compared to
samples from HIJING in 1-subevent and IP-Glasma+MUSIC+UrQMD and 3+1D
hydrodynamic with Glauber initial state.

Keywords: harmonic flow, quark-gluon plasma (QGP), initial condition, modified
Pearson correlation coefficient.
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1 Introduction

All particle interactions in our universe can be simplified into four fundamental
interactions: electromagnetic interaction, weak interaction, strong interaction, and
gravitational interaction. These fundamental interactions, except the gravity which is
explained by general relativity, have their own quantum theory based on quantum
field theory [?]: quantum electrodynamics (QED) for explaining electromagnetic
interaction, quantum flavordynamics for explaining weak interaction, and quantum
chromodynamics (QCD) for explaining strong interaction. The collection of these
quantum theories crystallized into the standard model of particle physics which
unite three out of four fundamental interactions into a single Lagrangian equation
[?]. In this model, all materials we observe in our daily life, including ourselves, are
made of the same building blocks of particles: quarks and leptons, together called
fermions. As depicted in Figure 1.1 there are three generations of fermions. Quarks
initially consist of up and down quarks and leptons consist of electron and electron
neutrino. As physicists built more and more powerful particle accelerators, the next
two generations of them which have the same quantum properties but are heavier
than the first generation were discovered. The interaction between the particles in this
model is illustrated as the exchange of the force carrier particles, each corresponding
to the type of interaction: electromagnetic interaction is the exchange of photon,
strong interaction is the exchange of gluon, and weak interaction is the exchange
of W± and Z0 bosons. All particles that have mass get their masses from the Higgs
boson after the symmetry breaking in the Higgs mechanism.

Figure 1.1: The list of the elementary particles in the standard model
of particle physics. Figure from [?].
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The standard model Lagrangian before symmetry breaking can be written as

L = −1
4

FµνFµν︸ ︷︷ ︸
Gauge symmetry

+ iψ̄ /Dψ + h.c.︸ ︷︷ ︸
Fermion sector

+ψiyijψjϕ + h.c.︸ ︷︷ ︸
Yukawa term

+ |Dµϕ|2 − V(ϕ)︸ ︷︷ ︸
Higgs sector

(1.1)

with Fµν is the sum of the field strength tensor of the three interactions, ψ is the
Fermion fields, ϕ is the Higgs field, /D = γµDµ is the covariant derivative Dµ with
Dirac gamma matrices γµ, yi,j is the Yukawa coupling, V(ϕ) is the Higgs potential,
and h.c. is the Hermitian conjugate of its predecessor term.

The gauge symmetry term contains the kinetic energies of all gauge bosons and
self-interaction of weak and strong force carriers. The fermion sector contains the
kinetic energies of fermions and their interactions with another fermion mediated
by the gauge boson according to its type of interaction. The interaction terms
are written implicitly inside Dµ. These interactions arise because the Lagrangian
needs to be invariant under local gauge transformation of the symmetry groups
corresponding to their interactions: electromagnetic interaction with U(1) symmetry,
weak interaction with SU(2)L symmetry which only involves left-handed Fermions,
and strong interaction with SU(3) symmetry which only involves quarks. The fact
that the right-handed neutrino has never been observed in nuclear reactions in nature
implies that only left-handed fermions can undergo weak interaction in the standard
model. Only quarks experience strong interaction since only they have the color
charges. There are three color charges: red, blue, and green. These are quantum
numbers representing strong interaction. The naming should not be confused with
"color" from different wavelengths of photon spectra. Although it is an analogy, since
the combination of these three color charges forms color-neutral baryons, similar
to how the color spectra mix to form white light. And color-anticolor charges form
"colorless" meson like two identical waves are superimposed exactly out of phase
causing destructive interference.

The Yukawa term contains the interaction between any two Fermions and Higgs
boson. Before symmetry breaking, all particles are massless. The Yukawa term gives
the picture of how the Fermions obtain their masses from Higgs boson through
the spontaneous symmetry breaking. This term evolves into Fermions’ mass term
which can be wrapped together with kinetic energies in the Fermion sector after the
symmetry breaking. Similarly, Higgs gives W± and Z0 bosons their mases in the
Higgs sector which contains the kinetic energy of Higgs, its mass, and its interaction
with W± and Z0 bosons. Since the most dominant interaction discussed in this thesis
is the strong interaction, the details about Higgs mechanism is beyond its scope.
Interested readers can find more information in references [?] and [?].
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1.1 QCD asymptotic freedom and phase diagram

From equation (1.1), we can separate the QCD Lagrangian once the symmetry
breaking is done and the quarks gain their masses. Picking up the QCD parts from
the gauge symmetry and the Fermion sector with unfolded covariant derivative for
QCD, Dµ = ∂µ − igs Aa

µTa, the assembled Lagrangian for QCD is

LQCD = −1
4

Ga
µνGµν

a︸ ︷︷ ︸
QCD gauge

+ iψ̄qγµ∂µψq︸ ︷︷ ︸
quarks K.E.

− igsψ̄qγµ Aa
µTaψq︸ ︷︷ ︸

qq interaction

− mqψ̄qψq︸ ︷︷ ︸
q mass term

(1.2)

with Ga
µν is the gluon field strength tensor, gs is the strong coupling constant, Aa

µ is
the gluon field with color index a, and Ta are the generators of the SU(3) color group.
Local SU(3) gauge transformation needs to be invariant, resulting

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ︸ ︷︷ ︸

gluons K.E.

+ gs f abc Ab
µ Ac

ν︸ ︷︷ ︸
gg interaction

(1.3)

with f abc are the structure constants of the SU(3) color group. Alongside the gluon
kinetic term, the non-Abelian SU(3) symmetry transformation introduces an addi-
tional term for gluon-gluon interaction, which does not present in the Abelian U(1)
symmetry transformation. Another contrasting feature in QCD is its effective range.
Unlike the electromagnetic interaction which has infinite range, strong interaction
only works on a very short range. If two quarks in a hadron are separated away, it
requires energy to overcome the strong interaction. At some point, this energy will be
converted into a quark-antiquark pair between them. This pair will fill up the space
left by the initial quarks and form two different hadron. This phenomena is due to the
nature of the strong coupling constant gs which determines the strength of interaction.
This coupling constant is not really a "constant", but rather a function of momentum
transfer Q from the gluon exchange. The QCD running coupling constant αs [?] for
the lowest order is

αs(Q2) =
g2

s
4π

=
1

β0 ln(Q2/Λ2
QCD)

, (1.4)

with β0 is the coefficient of beta function for 1-loop diagram, and ΛQCD is the energy
scale limit for perturbative QCD. The value of ΛQCD depends on the renormalization
scheme. For the the modified minimal subtraction (MS) scheme [?] with 5 effective
quark flavors, the value is ΛQCD = (210 ± 14) MeV [?]. The behavior of αs is shown
in Figure 1.2.

At Q = ΛQCD, αs diverges, signaling the breakdown of perturbative methods.
Below ΛQCD, perturbative QCD is no longer effective and a non-perturbative
approach such as lattice QCD becomes necessary. This behavior of αs at low energy
explains the quark confinement as we never see any free quarks directly in daily
life. Since the strong interaction becomes very strong at low energy, the quarks form
hadrons including proton and neutron which make up the nucleus inside every
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Figure 1.2: The QCD running coupling constant value as a function of
momentum transfer Q. Figure from [?].

atom. As the energy becomes larger, αs becomes smaller, allowing for perturbative
calculations and liberating quarks from confinement. This phenomenon is known as
asymptotic freedom, and is observed in high-energy particle collisions. The quarks
break free from the colliding hadrons and create many quark-antiquark pairs as they
move apart from each other before rehadronize into free streaming particles called
jets.

Since the asymptotic freedom allows quarks to deconfine, a new state of quark
matter other than hadron may be formed. Figure 1.3 illustrates the nuclear phase
diagram. At low temperatures and low baryon densities, the quarks are in a bound

Figure 1.3: The nuclear phase diagram as a function of temperature
and baryon chemical potential. Figure from [?].

state, forming hadrons. Also at low temperatures but very high baryon chemical
potentials, hadrons are crushed until there is no boundary between them, resulting
in the formation of a color superconductor state. Such extreme condition occurs in
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the core of neutron stars. Meanwhile at very high temperatures, the quarks have
enough energy to overcome their confinement and a primordial state of matter which
existed shortly after Big Bang is recreated: the quark-gluon plasma (QGP). The lattice
QCD calculation at low baryon density shows that the transition between the states
of matter is crossover and occurs at temperature around 150 MeV [?]. The similar
condition can be recreated in the laboratory by colliding heavy ion nuclei after at
ultrarelativistic speed. The large number of colliding nucleon ensures enough entropy
for the formation and evolution of the Quark–Gluon Plasma [?]. After certain baryon
density, it is thought that the transition will reach critical point and it will not be a
smooth crossover anymore. The high temperature evaporates hadron gas into QGP in
abrupt phase transition. The search for the critical point has been conducted twice at
RHIC, Brookhaven, through the Beam Energy Scan (BES) programs [?], by colliding
heavy ions at various energy range. There is no conclusion yet about where the critical
point is. Interested reader can find further information for instance in reference [?].
So the production of QGP has been achieved so far only via the crossover mechanism.

1.2 Geometry of heavy ion collision

In heavy ion collisions, the initial state begins when the Lorenz contracted nuclei
are about to collide at ultrarelativistic speed. Upon the collisions, the events can be
classified based on how many nucleons participate in the collision. The simplest
picture of the initial state before collision can be modeled with Glauber model [?, ?].
Figure 1.4 shows the geometry of the collision in the transverse plane. The two circles

Figure 1.4: The view of mid-central heavy ions collision producing
elliptic QGP fireball. x and y are the laboratory coordinate axes. The
reaction plane coordinate is denoted as x’ and y’. The ΨR is the
reaction plane angle with respect to the laboratory frame and ϕ denotes
emission angle of a particle. Figures from [?, ?].

represent the colliding nuclei. In Glauber model, the colliding nucleons within the
overlap region between the two circles are referred to as participants. Nucleons
outside this region are called spectators since they are not involved in the collision.
The transverse distance between the centers of both nuclei, denoted as the impact
parameter b, determines how central the collision is. If b = 0, it is an ultracentral
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collision with both nuclei completely overlap with each other. Larger b means the
collision is less central with fewer participants in the collision.

However, b can not be measured directly since particle detectors only detect the
final state particles created after the collision. Nevertheless, the multiplicity of charged
particles Nch coming out from collision and the energy deposit from the spectators
along beam axis are directly related to b. These two measurable quantities can be
compared with Monte-Carlo (MC) simulation of Glauber model [?] to determine the
centrality. The details of the method for measuring the centrality can be read, for
example, in reference [?]. And finally, instead of representing centrality in terms of b,
the concept of centrality percentage is introduced. The smaller the percentage, the
more central the collision is. For example 0-1% centrality means that this interval
contains 1% of events that have the highest values of centrality estimator (multiplicity
or energy). In more central collisions a larger QGP is created, and due to the initial
geometry, the fireball is more uniform radially.

1.3 Harmonic flow

Harmonic flow analysis in heavy-ion collisions was motivated by the need to
understand the collective motion of nuclear matter produced in such collisions. The
sign of collectivity has been indicated since 1970s in central collision of various
nuclei[?] and later confirmed in 1980s [?, ?, ?]. In the early 1990s, there was increasing
evidence [?, ?, ?, ?] from experiments at facilities like the Bevalac, AGS (Alternating
Gradient Synchrotron), and SPS (Super Proton Synchrotron) that particles emitted
in heavy-ion collisions exhibited collective flow patterns, such as the sideward
deflection of nuclear matter (directed flow) and the azimuthal anisotropy in particle
emission (elliptic flow). The final state particles that are produced from the colliding
participants correlate with each other, and their correlation is influenced by the
geometry of the overlap region upon collision [?].

As elliptic and directed flows were observed, a systematic analysis tool is needed
to quantify these anisotropies and understand the collective behavior of the hot and
dense matter created in these collisions. This led to the formalization of Fourier
flow analysis, where each harmonic corresponds to different aspects of the flow and
provides insight into the dynamics of heavy-ion collisions. The analysis of flow in
relativistic nuclear collisions using Fourier expansion was proposed in 1994 [?] and
became well established in 1998 [?]. The flow of particles in QGP evolution is studied
relative to the reaction plane. This coordinate can be drawn with its x-axis, x’ in
Figure 1.4, in-line with the impact parameter but deviates by angle ΨR relative to
x-axis of the laboratory frame. The Fourier series for the harmonic flow is [?]

E
d3N
d3 p⃗

=
1

2π

d3N
pT dpT dy

(
1 + 2

∞

∑
n=1

vn cos (n[ϕ − ΨR])

)
, (1.5)



1.3. Harmonic flow 7

with E, pT, y, ϕ are energy, transverse momentum, rapidity, and azimuthal angle of
the particle according to the laboratory coordinate, and vn is the Fourier coefficient
for the n-th harmonic. For the given pT and y,

vn(pT, y) = ⟨cos (n[ϕ − ΨR])⟩ (1.6)

with the angle bracket is the average over all particles with the corresponding pT and
y. The sine terms in the expansion cancel due to the reflection symmetry with respect
to the reaction plane. The physical interpretations of this expansion is related to the
order, n, of the harmonic. For the first harmonic, v1 represents directed flow which
comes from Coulomb repulsion or attraction between the colliding nucleons [?]. For
the second harmonic, v2 represents the pressure gradient in the expanding QGP
which is well described as a nearly perfect fluid with relativistic hydrodynamics [?].
And for the third harmonic, v3 represents event-by-event fluctuation in the number
of participants due to variation in the nuclear density [?].

However, like impact parameter b, the reaction plane angle ΨR is not experimen-
tally measurable. Therefore an indirect way is needed to calculate vn. The standard
way is by using two-particle azimuthal correlation method. Since equation (1.6) can
be written in its Euler form, correlating one particle with azimuthal angle ϕ1 and
another particle with angle ϕ2 will rise ΨR out of cancellation and absorb it to vn:

⟨⟨ein(ϕ1−ϕ2)⟩⟩ = ⟨⟨ein(ϕ1−ΨR−(ϕ2−ΨR))⟩⟩
= ⟨⟨ein(ϕ1−ΨR)⟩⟨e−in(ϕ2−ΨR)⟩ − δn⟩
= ⟨vn

2 + δn⟩. (1.7)

The inner angle bracket denotes an average over all particles within an event, followed
by the outer angle bracket averaging over all events. The factorization give a rise
to non-flow correlation δn independent of the reaction plane. In this method the
non-flow contribution is assumed to be negligible.

Experimentally, the correlation is formed by pairing two particles from the same
event within certain gaps of pseudorapidity ∆η and azimuthal angle ∆ϕ. The count of
all possible combinations of pairings is the 2D correlation function S(∆ϕ, ∆η) which
is then need to be corrected since most detectors do not cover the entire spherical
geometry. The correction function B(∆ϕ, ∆η) is formed by combinatorial pairs of
particles from mixed events. The corrected correlation function is

C(∆ϕ, ∆η) =
S(∆ϕ, ∆η)

B(∆ϕ, ∆η)
. (1.8)

The 2D C(∆ϕ, ∆η) has a wavy pattern along various ∆ϕ slices as shown in Figure
1.5 (a). The distribution can be projected to ∆ϕ by summing all ∆η slices in their
respective ∆ϕ slice. The result of projection is shown in Figure 1.5 (b). The vn

coefficient can be obtained after fitting a Fourier expansion to this 1D projection of
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Figure 1.5: The harmonic flow in Pb-Pb collisions with centrality 0-5%
fitted with Fourier decomposition. Figure from [?].

the corrected correlation function. But since the ΨR is avoided, the factorization in
equation (1.7) implies the Fourier expansion should take the form [?]

dNpairs

d∆ϕ
∝ 1 + 2

∞

∑
n=1

vn,n(pa
T, pb

T) cos(n∆ϕ) (1.9)

with a and b denote two different particles from different pT ranges. vn,n(pa
T, pb

T)

should factorize into separate vn(pa
T) and vn(pa

T) according to hydrodynamics picture
of the expanding QGP:

vn,n(pa
T, pb

T) = vn(pa
T)vn(pa

T). (1.10)

However, the autocorrelations induced by resonance decays or fragmentation of jets
break the factorization since these particles’ origins are not from the main vertex of
collision. There are several ways to minimize these non-flow contribution such as
template fitting and large ∆η requirement [?, ?]. The results of vn measurements in
Pb+Pb collisions from ATLAS Experiment are shown in Figure 1.6

The same procedure is also applied in p-Pb collision [?], proton-proton (pp)
collision [?], and ultraperipheral collision (UPC) of Pb+Pb [?]. Surprisingly, the
value of v2 is not zero in such systems despite several methods for removing non-flow
effects have been applied. From Figure 1.7, the ridges along ∆ϕ are also observed in
pp and UPC. And the measured vn values in these small systems are shown in Figure
1.8. They exhibit less dynamic compared to the head-on heavy ion collision. In Figure
1.6, the value of v2 is rising from central to mid-central collisions since radial flow
(central) produces less anisotropy than elliptic flow (mid-central) as governed by the
initial asymmetry in the collision area. Compared to the small systems, this initial
geometry of the overlapping region seems to be uniform, resulting in more or less
monotonic value of v2.

In UPC events, both nuclei just pass by without any hadronic interaction. One
of the nuclei emits high energy gamma ray [?] and this gamma ray breaks the other
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Figure 1.6: The vn measurement results in Pb+Pb collisions as a
function of centrality. Figure from [?].

(a) (b)

Figure 1.7: Harmonic flow ridges observed in (a) pp 13 TeV [?], (b)
ultraperipheral Pb+Pb collision [?].

nuclei. There is a possibility that the photon fluctuates into hadronic state upon
impact and the collision is treated as meson-nucleus collision with much lower energy
compared to the initial nuclei. So the chance of QGP formation exists, provided that
the event has high-multiplicity which correspond to high initial entropy [?].

Nevertheless, there is no consensus whether or not the QGP is formed in such
small systems. Even though there is a wide consensus that v2 in heavy ion collisions
originates from the hydrodynamic expansion of QGP, these observations in small
systems spark a debate about the origin of the harmonic flow and the revolution [?]
might be underway.

The interaction resulting in flow-like observations might also occur in the initial
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Figure 1.8: The vn measurement results in UPC Pb+Pb, pp at 13 TeV,
and p-Pb at 5.03 TeV as a function of multiplicity of the reconstructed
charged particles tracks. Figure from [?].

state before or even without the formation of QGP. Therefore this research is carried
out to find the connection between vn and the initial-state phenomena. To explore
all the possibilities, the results from the experiment will be compared to simulations
with different initial state models and with or without hydrodynamic simulation.

1.3.1 Direct Flow Calculation

In general, the non-flow contribution in equation (1.7) is not negligible. There are
some alternatives methods proposed to avoid the non-flow contribution, for example,
by calculating flow directly from multi-particle correlations [?] or by generating
functions with numerical interpolations [?]. This research uses direct cumulants
method from the reference [?]. In this method, the cumulants are expressed in terms
of moments of the magnitude of the flow vector Qn [?] for n-harmonic, defined as

Qn ≡
M

∑
j=1

einϕj (1.11)

with M is the number of particles in the event. The single-event average two- and
four-particle azimuthal correlations are defined in the following way:

⟨2⟩ = ⟨ein(ϕ1−ϕ2)⟩ = 1
PM,2

′
∑
j,k

ein(ϕj−ϕk) (1.12)

⟨4⟩ = ⟨ein(ϕ1+ϕ2−ϕ3−ϕ4)⟩ = 1
PM,4

′
∑

j,k,l,m
ein(ϕj+ϕk−ϕl−ϕm) (1.13)

with PM,n = M!/(M − n)! is the total combination of possible particle pairs, ∑′

denotes that all indices in the sum must be different to avoid counting the same
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particle pairing with itself. Then taking the average over all events:

⟨⟨2⟩⟩ = ⟨⟨ein(ϕ1−ϕ2)⟩⟩ = ∑events(W⟨2⟩)i⟨2⟩i

∑events(W⟨2⟩)i
(1.14)

⟨⟨4⟩⟩ = ⟨⟨ein(ϕ1+ϕ2−ϕ3−ϕ4)⟩⟩ = ∑events(W⟨4⟩)i⟨4⟩i

∑events(W⟨4⟩)i
. (1.15)

Ideally, (W⟨n⟩)i = PM,n. However, the event weights (W⟨n⟩)i need to be corrected by
taking into account the detector efficiency and the rate of fake tracks reconstructed.
The harmonic flow from two- and four-particle are:

vn{2} =
√
⟨⟨2⟩⟩ (1.16)

vn{4} = 4
√

2⟨⟨2⟩⟩2 − ⟨⟨4⟩⟩ (1.17)

Looping over all possible particle pairs takes a lot of computational resource.
Instead of going through all the possible combinations of particle pairs, the method
uses reference flow |Qn|2 which can be separated into diagonal (j = k) and off-
diagonal (j ̸= k) terms. For j = k, the exponent becomes one, and the sum is M.
Therefore

|Qn|2 =
M

∑
j,k=1

ein(ϕj−ϕk) = M +
′

∑
j,k

ein(ϕj−ϕk) (1.18)

which can be solved to obtain ⟨2⟩ by substituting the exponent:

⟨2⟩ = |Qn|2 − M
PM,2

. (1.19)

This expression only needs a single loop over Qn and calculate its magnitude in
contrast to expression in equation 1.12 which requires two loops over j and k.

To reduce the loop for ⟨4⟩, it starts from the decomposition of

|Qn|4 = QnQnQ∗
nQ∗

n =
M

∑
j,k,l,m=1

ein(ϕj+ϕk−ϕl−ϕm) (1.20)

which contains terms with five different combinations. The terms where they are all
different particles is equal to the exponent of four particle correlation in equation 1.13.
The term where j = k = l = m sums up to M. The terms where only either j = k or
l = m are reduced to the exponent for three particle correlation which is denoted as

⟨3⟩2n|n,n =
1

PM,3

′
∑
j,k,l

ein(2ϕj+ϕk−ϕl), ⟨3⟩2n|n,n = ⟨3⟩∗n,n|2n. (1.21)

For the terms where either j or k is equal to one of the conjugates, the exponent is
reduced to the one in two particle correlation ⟨2⟩. The terms where j = k and l = m
give a factor of two to the n-harmonic in the exponent of ⟨2⟩. The expression of ⟨2⟩
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for 2n is denoted as

⟨2⟩2n|2n =
1

PM,2

′
∑
j,l

ei2n(ϕj−ϕl) =
|Q2n|2 − M

PM,2
(1.22)

Substituting the exponents with their corresponding particle correlations and
counting for all possible combinations, the decomposition becomes

|Qn|4 =⟨4⟩ · PM,4 +
[
⟨3⟩2n|n,n + ⟨3⟩2n|n,n

]
· PM,3

+ ⟨2⟩ · 4PM,2(M − 1) + ⟨2⟩2n|2n · PM,2 + 2PM,2 + M (1.23)

In order to solve ⟨3⟩2n|n,n + ⟨3⟩2n|n,n, decomposition of Q2nQ∗
nQ∗

n and QnQnQ∗
2n are

needed:

Q2nQ∗
nQ∗

n = ⟨3⟩2n|n,nPM,3 + ⟨2⟩ · 2PM,2 + ⟨2⟩2n|2n · PM,2 + M. (1.24)

After inserting the results for ⟨2⟩ and ⟨2⟩2n|2n, and then add it with its conjugate
QnQnQ∗

2n, the solved expression is

⟨3⟩n,n|2n + ⟨3⟩2n|n,n = 22
ℜ(Q2nQ∗

nQ∗
n)− 2|Qn|2 − |Q2n|2 + 2M

M(M − 1)(M − 2)
(1.25)

Therefore, after solving equation 1.23 with the results from two and three particle
correlations, the final expression for the four particle correlation is

⟨4⟩ = |Qn|4 + |Q2n|2 − 2ℜ(Q2nQ∗
nQ∗

n)− 4(M − 2)|Qn|2 − 2M(M − 3)
M(M − 1)(M − 2)(M − 3)

(1.26)

1.4 Relativistic hydrodynamics

Hydrodynamics provides a straightforward framework for understanding the
dynamics of many-body systems. It simplifies the description of the system
by averaging out the complex short-distance and short-time interactions among
particles. Instead of dealing with the intricacies of individual particle interactions,
hydrodynamics focuses on a few conserved charges and their currents. This reduction
in complexity is essential, especially when dealing with systems containing a large
number of particles, as it makes the analysis more manageable [?].

Despite its simplicity, the hydrodynamics simulation remains a powerful and
accurate tool for describing the bulk behavior of fluids. The fundamental equations of
hydrodynamics are rooted in conservation laws, supplemented by an equation of state.
These equations can explain a wide range of phenomena, from the aerodynamics of
airplanes to QGP expansion [?].

In the application for QGP the hydrodynamic equations are Lorentz invariant
and in the tensor form. The conservation of energy, momentum, and current are
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expressed as

∂µTµν = 0 (1.27)

∂µ Jµ
B = 0 (1.28)

with Tµν is the energy-momentum tensor and Jµ
B is the net baryon current. In ideal case

where the shear viscosity and bulk viscosity are neglected, the energy-momentum
tensor and the net baryon current are

Tµν
ideal = (ε + P)uµuν − Pgµν (1.29)

Jµ
B, ideal = ρBuµ (1.30)

where ε is the energy density, P is the pressure, gµν is the metric tensor, ρB is the
baryon density, and uµ is the four 4-vector flow velocity. The pressure P contains the
equation of state as a function of energy density and baryon density P(ε, ρB).

In the presence of shear viscosity η and bulk viscosity ζ, the energy-momentum
tensor becomes

Tµν
viscous = Tµν

ideal + Πµν (1.31)

with Πµν is the viscous part of the stress energy tensor:

Πµν = η

(
∇µuν +∇νuµ − 2

3
∆µν∇αuα

)
+ ζ∆µν∇αuα (1.32)

where ∆µν = gµν − uµuν and ∇µ = ∆µν∂ν is the local space derivative.
There are many hydronamic simulations. Some hydrodynamic simulations focus

solely on either the shear or bulk viscosity components. For instance, in the v-
USPhydro simulation [?], only the effects of bulk viscosity are accounted for. And the
longitudinal expansion is also neglected, leading to simplified 2+1D approximation
which is good enough for estimating the expansion in mid-rapidity region. This
approach allows for a specific emphasis on the impact of bulk viscosity on the
transverse evolution of the system. Some other simulations, for example, iEBE-
VISHNU [?, ?], considers both bulk and shear viscosities in 2+1D framework. The
iEBE-VISHNU has been applied to small system such as pp to determine the value of
vn from two-particle cumulant. The results are presented in Figure 1.9 and similar to
the experiments to some extent. The initial states are provided by HIJING [?, ?, ?],
super-MC [?], and TRENTo [?, ?] simulations which are based on Glauber model.

On the other hand, MUSIC hydrodynamic simulation framework [?, ?, ?, ?], a
widely used tool in relativistic heavy-ion physics, provides a comprehensive approach
by considering both shear and bulk viscosity effects simultaneously. The MUSIC
offers a sophisticated framework for studying the complex dynamics of relativistic
fluids, capturing the interplay between different dissipative mechanisms. This
comprehensive treatment enables investigation of the collective behavior of the
system under various conditions and to explore the influence of both shear and bulk
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Figure 1.9: The vn{2} in pp from iEBE-VISHNU simulations with
initial states provided by HIJING, super-MC, and TRENTo. The results
are compared to ATLAS and CMS. Figure from [?].

viscosity on observables such as flow harmonics and particle spectra. The MUSIC
also considers all spatial dimensions, leading to a more realistic 3+1D description
of the system’s evolution. With MUSIC, one can choose the initial state conditions
setup. It can be a simple Glauber model or something more advance like IP-Glasma
that utilizes color-glass condensate model.

1.5 Deep inelastic scattering

Deep inelastic scattering (DIS) experiments were carried out by colliding an
electron and a hadron. Figure 1.10 shows the kinematic of DIS. In the inital state,

Figure 1.10: Kinematics of Deep Inelastic Scattering. Figure from [?]
with some modification.

the incoming electron has the four-momentum k and the hadron’s four-momentum
is denoted by P. The squared center of mass energy of the system is s = (P + k)2.
Upon the impact, the interaction between them is electromagnetic, and the exchanged
virtual photon has four-momentum q. The transfer momentum of the collision is
defined as Q2 = −q2. After the impact, the electron bounces with angle θ and
four-momentum k′, while the hadron breaks off and the total four-momentum of all
the hadron products is denoted as X. Suppose the parton (quark or gluon) struck
by the electron bring some fraction of the hadron’s four-momentum xP with x is the
Bjorken x [?], the fraction of momentum carried by a parton in the hadron. After the
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impact, the parton receives the transfer momentum and its four-momentum becomes
xP + q. The invariant mass of the parton is

m2
p = (xP + q)2 = (xMh)

2 + 2xP · q + q2

−q2 = Q = 2xP · q + (xMh)
2 − m2

p (1.33)

with Mh is the mass of incoming hadron. At high energy, the mass terms can be
neglected since they are much smaller than the momentum of the particles, leaving

x ≡ Q2

2P · q
(1.34)

This relation shows that Bjorken x scales the transfer momentum with the energy of
collision so the value remains the same when s → ∞.

1.6 Perturbative QCD and small-x physics

A baryon contains valence quarks as the primary building blocks, exchanging
gluons which occasionally create virtual sea quarks in between. The probability
density for finding a parton inside a hadron carrying a fraction x of the hadron’s
momentum at a given energy scale Q2 is described by the Parton Distribution
Function (PDF) [?]. The PDF can be measured in DIS experiment, and the
measurement result from HERA [?] is presented on the left side of Figure 1.11. The
curves labeled xuv and xdv correspond to the weighted PDF of up and down valence
quarks, respectively. These distributions peak at intermediate x with the order of
magnitude 10−1 and decrease at both small and large x. The observed peaks are a
signature of the significant momentum carried by the valence quarks in the proton
at intermediate x. While the weighted gluon and sea quarks distribution, denoted
by xg/20 and xS/20 respectively, are increasing at small x with steeper increase on
gluons compared to sea quarks. This result suggests several dynamic approaches in
the perturbative regime, which depend on the magnitude of x as illustrated on the
right side of Figure 1.11.

The first approach is in the Bjorken limit where x is fixed as Q2 → ∞ and s → ∞.
The parton evolution is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation [?, ?, ?]

d fa(z, Q2)

d ln Q2 =
αs

2π

∫ 1

z

dz′

z′
Pa→bc(z′) fb(z′, Q2). (1.35)

The fa(z, Q2) is the parton distribution function (PDF) of a parton a carrying
momentum fraction of z from its source. The Pa→bc(z′) is the splitting function
which provides the probability of a parton a to split into b and c, with parton b carries
most of the momentum fraction z′ from a. There are four combinations of splitting
depending on the type of parton a: a quark radiates a soft gluon (the quark carries z′),
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Figure 1.11: Left: the x-evolution of the gluon, sea quark, and valence
quark distributions for Q2 = 10 GeV2 measured at HERA. Right: the
“phase–diagram” for QCD evolution. Figure from [?, ?].

a quark radiates hard gluon (the gluon carries z′), a gluon splits into more gluons, and
a gluon creates a quark-antiquark pair. Each mode has its own splitting function. The
fb(z′, Q2) is the PDF of parton b after splitting. They have probability to split again,
creating more partons in the next-to-leading order or more, until a certain energy
cut-off is reached where the perturbative process is no longer viable. The DGLAP
evolution equation is the basis for simulating parton shower, multiplied by Sudakov
form factor [?]

∆s(Q2
max, Q2) = exp

{
−
∫ Q2

max

Q2

dk2

k2

∫ zmax

zmin

dz
αs(z, k2)

2π
Pa→bc(z)

}
(1.36)

which give the probability that no emission occurs between a Q2 ≤ k2 ≤ Q2
max

interval. The probability factorizes, allowing for multiple radiations before energy
cutoff, but only one emission allowed for each Q2 interval. For example, if the
emission occurs at the scale Q2

i , there will be no emission between Q2
i ≤ k2 ≤ Q2

i−1

and Q2
i+1 ≤ k2 ≤ Q2

i with the i-th scale is lower than the previous one.
The second approach is in the Regge-Gribov limit where Q2 is fixed, and x is

small as s → ∞. The dominant partons are gluon and the evolution is described by
Balitsky-Kovchegov-Fadin-Lipatov (BFKL) equation [?, ?, ?, ?]

∂F (k, Y)
∂Y

=
αsNc

π

∫ d2q
π

k2

q2(k2 − q2)

[
F (q, Y)− 1

2
F (k, Y)

]
(1.37)

where F (q, Y) is the unintegrated gluon distribution with transverse momentum q
at rapidity Y = ln(1/x), and Nc is the number of colors. This equation describes
the evolution for a gluon with transverse momentum k to emit another gluon with
transverse momentum q. The first term corresponds to the real gluon emission in
one-step evolution, while the second term correspond to virtual gluon self-energy
corrections.

In the initial state of hadrons collision, since gluon splits into more gluons, the
nucleons are packed with plenty of gluons as they are accelerated toward high energy.
However, the size of nucleon does not grow significantly, and hence, the density of
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gluons in the nucleon becomes extremely large. At some point, the gluon density
will saturate, causing some of the gluons to recombine again. However, the BFKL
equation does not take into account the probability of recombination upon gluon
saturation. The non-linear saturation effect is needed to extend the BFKL equation,
resulting in the Balitsky-Kovchegov (BK) equation [?, ?]

∂N (r, Y)
∂Y

=
αsNc

2π

∫
d2r1 K(r, r1, r2) [N (r1, Y) +N (r2, Y)

−N (r, Y)−N (r1, Y)N (r2, Y)] (1.38)

where N (r, Y) is the dipole scattering amplitude at dipole size r = r1 + r2 and rapidity
Y, and K(r, r1, r2) is the BK kernel. Here, the first three terms on the right-hand-side
of the equation take care the splitting, while the non-linear one in the last term
represents the recombination.

The BK equation provides a framework for the color-glass condensate model
[?]. The term "color" in CGC refers to the color charge carried by gluons. The term
"glass" is used metaphorically to describe the highly dense and disordered state of
gluons within hadrons at very small momentum fractions and high energies. It draws
an analogy with the disordered structure of a glass material in condensed matter
physics. The word "condensate" refers to the fact that at very high energies and
densities, gluons behave collectively and undergo a form of condensation, similar
to how particles condense into a Bose-Einstein condensate at low temperatures. The
effective theory of CGC is described by the Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) equation [?, ?, ?, ?, ?, ?]

∂Wx[ρ]

∂ ln(x)
= −HJIMWLK

[
ρ,

δ

δρ

]
Wx[ρ] (1.39)

where Wx[ρ] is the weight functional which encodes the probability distribution of
the color charge density ρ at small x cutoff, and HJIMWLK is JIMWLK Hamiltonian
as a function of ρ and the functional derivatives δ/δρ. The JIMWLK Hamiltonian is
discussed in references [?, ?]

Shortly after the two nucleus with CGC states collide, the formation of Glasma
[?, ?, ?] occurs before the system thermalizes into QGP. The Glasma state is neither
CGC or QGP, but has properties of both. This state consists of strong color electric and
color magnetic fields, illustrated in Figure 1.12, that evolve over time as the system
expands. The Glasma is characterized by the presence of color flux tubes, which are
tubes of strong gluon fields stretched between the remnants of the colliding nuclei.
These flux tubes are thought to be responsible for the early-time dynamics and the
development of flow patterns in the QGP. The energy density, pressure, and other
properties of the Glasma serve as the initial conditions for hydrodynamic simulations
that model the subsequent evolution of the QGP, where the non-equilibrium Glasma
evolves into a locally thermalized QGP. The CGC framework needs to incorporate
the impact parameter (IP) dependence to take into account the fluctuation of the
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(a) (b)

Figure 1.12: (a) Incoming colliding sheets of colored glass. (b) The
Glasma as stretched flux tubes of color electric and color magnetic
fields after collision. Figures from [?, ?].

number of participants, and hence the full initial state model is called IP-Glasma.
The model serves as a bridge between the pre-collision CGC state, the Glasma, and
the subsequent hydrodynamic evolution of the QGP. By doing so, it helps connect
the theoretical description of the initial conditions with the final-state observables
measured in experiments.

1.7 vn-pT correlation

The study of correlation between vn and pT was first proposed by Piotr Bożek [?].
The correlation is defined as a modified Pearson correlation coefficient

ρ(vn{2}2, [pT]) =
cov(vn{2}2, [pT])√

Var(vn{2})
√

Var([pT])
. (1.40)

with vn{2} is the vn from two-particle correlation defined in equation (1.16), [pT] is
the mean pT in every event, cov(vn{2}2, [pT]) is the covariance between vn{2} and
[pT], Var(vn{2}) and Var([pT]) are the modified variances for vn{2} and [pT].

The ATLAS collaboration has done the first measurement of ρ(vn{2}2, [pT]) in
reference [?] for Pb+Pb and p-Pb collisions. Following the results from experiment,
the studies of hydrodynamic properties which give a rise to such a trend have been
conducted in references [?, ?]. The generic form of equation (1.40) is

ρn(A, B) =
cov(A, B)√

Var(A)
√

Var(B)
. (1.41)

Observable A can be the vn or an initial spatial eccentricity εn of the matter created in
the nuclear overlap zone [?] since vn ∝ εn. Observable B serves as a predictor that
influence the value of [pT]. Figure 1.13 shows that the similar trend of ρ(vn{2}2, [pT])

in heavy ions can be reproduced with predictor B chosen from initial hydrodynamic
properties such as initial energy over entropy ratio E/s, initial transverse size of the
fireball 1/R, and initial entropy per elliptic area of the overlap region S/Ae. From the
comparison with the experiment, it is concluded that the [pT] is influenced mostly by
the initial E/s, and not by the size of the fireball. The effect of E/s on [pT] is a natural
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FIG. 3. Variation of (a) ρ2 and (b) ρ3 with the number of participants in Pb + Pb collisions at
√

sNN = 5.02 TeV. As in Fig. 1, symbols are
experimental results from the ATLAS Collaboration [10]. The full line is our result using Eq. (8). The width of the line is the statistical error
evaluated through jackknife resampling. The dashed lines are obtained by replacing Ei/S with 1/R in Eq. (8), and the dotted lines by replacing
Ei/S with S/Ae.

with Ei/S from now on,7 and we assume that 〈pt 〉 = f (Ei/S),
where f (Ei/S) is some smooth function of Ei/S.

Linearizing in the fluctuations of Ei/S and 〈pt 〉 around their
mean values, 〈Ei/S〉 and 〈〈pt 〉〉, one obtains

〈pt 〉 − 〈〈pt 〉〉 = f ′(〈Ei/S〉)
(

Ei

S
−

〈
Ei

S

〉)
. (7)

Inserting Eqs. (6) and (7) into Eq. (1), one obtains:

ρn =
〈Ei

S ε2
n

〉
−

〈Ei
S

〉〈
ε2

n

〉

σEi/Sσε2
n

f ′(〈Ei/S〉)
| f ′(〈Ei/S〉)|

, (8)

where σEi/S and σε2
n

denote the standard deviations, obtained
by replacing 〈pt 〉 and vn with Ei/S and εn in Eq. (2). Re-
markably enough, the dependence on the unknown function
f (Ei/S) cancels, except for the sign of f ′(〈Ei/S〉). An impor-
tant advantage of Eq. (8) is that it allows us to evaluate ρn in
multiples of 106 of simulated initial conditions with little com-
putational effort. We have generated 20 × 106 minimum bias
Pb + Pb events using the same T R ENTo parametrization as
in Fig. 2. We sort the events into narrow 0.25% centrality
bins, and in each bin we evaluate ρn according to Eq. (8). To
evaluate Ei in each event, we assume that the entropy profile
returned by T R ENTo, s, is related to the energy density, ε,
of the event through ε ∝ s4/3. This is typically a very good
approximation at the high temperatures achieved in the initial
state of nucleus-nucleus collisions. Our result is displayed in
Fig. 3 as a full line. Note that we recombine 0.25% bins into
1% bins for sake of visualization. Our T R ENTo calculation
is in good agreement with ATLAS data (open symbols) for
both ρ2 and ρ3, and is consistent with the full hydrodynamic

7In practice, the results presented below use very narrow entropy
(centrality) bins, so that one would obtain the same results using Ei

or Ei/S. If one uses Ei/S, results are unchanged if one uses wider
centrality bins, up to 2%. A moderate variation starts to be visible if
one uses 5% bins, as with other observables [42].

calculation shown in Fig. 1, in the sense that both evaluations
slightly underestimate ρ2 while they overestimate ρ3.

Note that ρ2 and ρ3 measured by the ATLAS Collaboration
have a slight dependence on the pt cut used in the analysis
[10]. The difference between our results and experimental
data is of the same order, or smaller, than the dependence
of experimental results on the pt cuts. This feature is not
captured by our prediction, which is independent of these
cuts by construction. It would be therefore interesting to have
new measurements of ρn with a lower pt cut, of order 0.2 or
0.3 GeV/c, which is where the bulk of the produced particles
sits. This may improve agreement between our evaluations
and data. It would also be interesting to have a full, high-
statistics calculation of ρn in hydrodynamics to study the
deviations from the predictor Eq. (8), and the dependence on
the pt cut. Note that our initial-state predictor (8) might have a
broader range of applicability than hydrodynamics itself. It is
already well known that the hypothesis that vn is proportional
to εn is more general than hydrodynamics [43,44]. In the
same way, our hypothesis that 〈pt 〉 is determined by the initial
energy seems a natural consequence of conservation laws, and
might still be valid when hydrodynamics is not.

While the quantitative results shown in Fig. 3 depend on
the parametrization of the T R ENTo model, we show in
Appendix that the main qualitative features, for instance the
fact that ρn is positive in central collisions, are robust and
model independent. It is interesting though that the choice
of parameters made here, namely, p = 0, preferred from pre-
vious comparisons [18,28], and k = 2 [12], also optimizes
agreement with ρn data.

Finally, we compare with results obtained with two differ-
ent predictors of 〈pt 〉 introduced in Sec. III A: The initial size
R [20], and the entropy per unit area S/Ae [36]. We thus eval-
uate ρn by replacing Ei/S with 1/R8 or S/Ae in Eq. (8). With

8We use 1/R instead of R because the correlation between R and
〈pt 〉 is negative, as shown in Fig. 2(a).

024909-4

Figure 1.13: Variations of predictor in modified Pearson correlation
coefficient ρn for (a) n = 2 and (b) n = 3. The vn is replaced by εn,
while [pT] is replaced by either E/s, 1/R, and S/Ae. The simulation
is compared to the first results of ρ(vn{2}2, [pT]) measurement from
ATLAS experiment in Pb+Pb collisions [?]. Figure from [?].

consequence of conservation laws, and might still be valid when hydrodynamics is
not.

To test the sensitivity of ρn to the initial condition, the simulation of ρ(vn{2}2, [pT])

with IP-Glasma+MUSIC+UrQMD is compared to the results from the experiment
and ρ̂est = ρn(εn, S/Ae) without hydrodynamic simulation. Figure 1.14 shows that
the estimator ρ̂est varies greatly with different initial conditions from Glauber model
to IP-Glasma. However, the shape change is insignificant after IP-Glasma initial
condition is followed by hydrodynamic simulation. These results indicate that ρn is
more sensitive to the initial conditions than the details of hydrodynamic expansion.

The ρ(vn{2}2, [pT]) in Pb+Pb collisions is then remeasured by ATLAS collabora-
tion in reference [?], providing better resolution in the ultracentral region along with

Figure 1.14: The simulation of ρ(vn{2}2, [pT]) with
IP-Glasma+MUSIC+UrQMD and estimator ρ̃est = ρn(εn, S/Ae)
without hydrodynamic simulation. The initial stage for ρ̂est is either
IP-Glasma or Glauber model. The simulations are compared to the
first Pb+Pb results of ρ(vn{2}2, [pT]) measurement from ATLAS
experiment in Pb+Pb collisions[?]. Figure from [?].
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the first measurement of ρ(vn{2}2, [pT]) in Xe+Xe collisions. The results are shown in
Figure 1.15 and compared with several simulations. They are Trento, v-USPhydro,
Trajectum [?], and IP-Glasma+MUSIC. The standalone Trento simulations only
uses Glauber model with reduced thickness function. Both v-USPhydro and
Trajectum use 2+1D hydrodynamic model with initial condition provided by Trento.
While IP-Glasma+MUSIC simulates initial condition with CGC evolution and 3+1D
hydrodynamic expansion later on. The IP-Glasma+MUSIC also has an option to
include the contribution from initial momentum anisotropy ϵp provided by CGC. In
general, they are in agreement with the experiment results in most central regions.
However, from mid-central to peripheral centrality, the simulations deviates from
data, signaling a missing physics. These results are obtained using three-subevent
method where the particle correlation for vn is taken from particles within 0.75 ≤
|η| ≤ 2.5 and the mean pT is calculated from the pT of particles within |η| ≤ 0.5 The
more details about subevent categories are described more in Chapter 3. Later on in
the same year, ALICE Collaboration also produced the similar results [?].

Following the studies in references [?, ?, ?, ?, ?], the ATLAS collaboration also
demonstrates that the measurement of ρ(vn{2}2, [pT]) in Pb+Pb and Xe+Xe can be
used to estimate a deformed nuclear shape. In the deformed nucleus, the radius at a
certain orientation is given by [?]

R(θ, ϕ) = R0(1 + β (cos γY2,0 + sin γY2,2)) (1.42)

Centrality [%]

0.2−

0

0.2

2ρ

020406080

020406080
 ATLAS

Pb+Pb 5.02 TeV
| < 2.5η|

Three-subevent method
-basedT EΣ

 

 

 < 2 GeV
T

0.5 < p

 < 5 GeV
T

0.5 < p

Centrality [%]

0.2−

0

0.2

2ρ

020406080

020406080
Xe+Xe 5.44 TeV

| < 2.5η|

Trento
 < 3 GeV)

T
(0.5 < pTrento+v-USPHydro 

< 2 GeV)
T

(0.5 < pTrajectum 
< 5 GeV)

T
(0.5 < pTrajectum 

 < 2 GeV)
T

 (0.5 < pp∈w/o IP-Glasma+MUSIC 
 < 2 GeV)

T
 (0.5 < pp∈w IP-Glasma+MUSIC 

Centrality [%]

0

0.05

0.1

0.15

3ρ

0204060

0204060
 ATLAS

Pb+Pb 5.02 TeV
| < 2.5η|

Combined-subevent method
-basedT EΣ

Centrality [%]

0

0.05

0.1

0.15

3ρ

0204060

0204060
Xe+Xe 5.44 TeV

| < 2.5η|

Figure 1.15: The measurement of ρ(vn{2}2, [pT]) in Pb+Pb and Xe+Xe
collisions for the second and third harmonic by ATLAS collaboration
[?]. The results are compared to several model simulations.
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where R0 is the nuclear radius while it is in spherical shape, Yl,m are spherical
harmonics, β, and γ are quadrupole deformation parameters. The parameter β

is the magnitude of the deformation, with values around 0.1–0.4 [?], while the
angle γ describes the length imbalance of the three semi-axes r1, r2, and r3 of the
ellipsoid, also known as triaxiality and ranges within 0 ≤ γ ≤ 60◦. As illustrated in
Figure 1.16, γ = 0◦, γ = 60◦, and γ = 30◦ correspond to the prolate (r1 = r2 < r3),
oblate (r1 < r2 = r3), and maximum triaxiality (2r3 = r1 + r2) cases respectively.
Typically, nuclear shapes are deduced through low-energy spectroscopic analyses,

Figure 1.16: Nuclear shape deformation and its corresponding
parameters. Figure from [?] with some modification.

which estimate the β and γ for nuclei with an even number of protons and neutrons,
like 208Pb [?]. However, determining the shape of odd-mass nuclei like 129Xe relies on
nuclear structure models calibrated to match data from even–even nuclei. With ρn

measurement and precise modeling, it becomes possible to measure the triaxiality of
odd-mass nuclei from experiment.

Figure 1.17a shows comparisons between ρ2 from experimental data within the
0–20% centrality range and the calculations from the Trento model for various γXe.
The aim was to examine how triaxiality influences these results. It is shown that ρ2

varies with different triaxiality parameter γXe since βXe ∼ 0.2 is significant in the Xe
nucleus. Nonetheless, the range of pT of particles used in the analysis impacts an
absolute value of ρn and it is not precisely described in the Trento model. To mitigate
the influence of pT-range in the experimental data, the ratios of ρ2 between Xe+Xe
and Pb+Pb for two distinct pT ranges need to be computed and the results are shown
in Figure 1.17b. The comparison between the model and data matches the best for
γ ∼ 30◦ for Xe nuclei. These results suggest that ρ(vn{2}2, [pT]) is sensitive to the
initial geometry of the colliding system.

Following the success of ρn measurement in heavy ion collisions to probe the
initial state phenomena and the early geometry before collisions, the ρ(vn{2}2, [pT])

measurement in pp is carried out for the first time by ATLAS collaboration in this
research. The ρ(vn{2}2, [pT]) measurement in p-Pb is also remeasured for the second
harmonic and is done for the third harmonic and different subevent for the first time.
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Figure 1.17: (a) ρ2 for Pb+Pb and Xe+Xe in two different pT ranges,
compared to Trento simulations. The β and γ is fixed for Pb while
γ for Xe is varied as a function of at fixed β. (b) The ratio of ρ2 in
Xe+Xe divided by ρ2 in Pb+Pb. The ratio is computed to remove the
pT dependence in experimental data. Figure from [?]

There are several predictions published already. Among of them are the references
[?], and [?]. In reference [?], the study was conducted for d+Au, p+Au, p+Pb, O+O,
Au+Au, and Pb+Pb systems. For each system, ρ(vn{2}2, [pT]) is computed from IP-
Glasma+MUSIC+UrQMD simulation. Then, it is compared to estimators ρ̂est(ε2

2, [s])
and ρ̂est(ε2

p, [s]) which correlate average initial entropy density [s] with the initial
spatial eccentricity for the second harmonic ε2 and the initial momentum anisotropy
εp respectively.

Beside ρn, Pearson coefficients [?, ?, ?]

Q(ε, V2) =
Re⟨εV∗

2 ⟩√
⟨|ε|2⟩⟨|V2|2⟩

(1.43)

are also calculated. The V2 = v2ei2ψ2 is a complex valued second order harmonic
flow from an event plane ψ2 [?]. While ε is either the complex valued initial spatial
eccentricity ε2 or the momentum anisotropy εp. For ε2, it is measured from x and y
of the participants’ origins

ε2 = ε2ei2ψ2 =
⟨x2 − y2⟩+ i⟨2xy⟩

⟨x2 + y2⟩ (1.44)

with ⟨...⟩ an average in one event weighted by energy density. While for εp, the
transverse components of energy-momentum tensor are needed to calculate [?]

εp = εpei2ψ
p
2 =

⟨Txx − Tyy⟩+ i⟨2Txy⟩
⟨Txx + Tyy⟩ . (1.45)

The results, for example, in p-Pb and d+Au are shown in Figure 1.18a. It is
shown that for lower multiplicities, ρ(vn{2}2, [pT]) is positive and closer to the
initial momentum anisotropy estimator ρ̂est(ϵp, [s]). While at higher multiplicities,
ρ(vn{2}2, [pT]) becomes negative, approaching the geometric estimator ρ̂est(ϵ2, [s]).
The study concludes that the sign change in ρ(vn{2}2, [pT]) as a function of
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both RHIC and LHC energy by theoretical calculations that
include only final state effects [65,66], including the
ones shown as symbols with dotted lines here, will not
be observed in Auþ Au collisions at RHIC energy.
Experimental confirmation of this result will be a strong
indication of an important contribution from the initial state
momentum anisotropy to the observed v2 in peripheral
events.
Conclusions.—We have demonstrated a way to experi-

mentally observe the initial momentum anisotropy from the
color glass condensate using measurements of the corre-
lation between the elliptic momentum anisotropy and the
mean transverse momentum in small systems.
The correlator ρ̂ðv22; ½pT $Þ, computed in a framework

including both final state effects and initial state momentum

anisotropies, shows a sign change as a function of multi-
plicity in 200 GeV pþ Au and dþ Au collisions at RHIC
and 5.02 TeV pþ Pb collisions at LHC. The sign change is
not present in simulations that include only geometry
driven final state effects, which demonstrates the robustness
of our conclusion. We leave a more systematic study, in
particular regarding the role of the kinematic cuts, to a
follow-up work.
We further predict that in the presence of initial state

momentum anisotropies, the correlator ρ̂ðv22; ½pT $Þ is pos-
itive for all multiplicities in 200 GeV Oþ O and Auþ Au
collisions, while it changes sign in 5.02 TeV Oþ O and
Pbþ Pb collisions. Experimental observation of these
clean qualitative signatures in peripheral heavy ion and
small system collisions will be the first evidence for the

(a) (b)

(c) (d)

FIG. 2. The correlator ρ̂ðv22; ½pt$Þ (circles) together with estimators based on the initial geometry (ρ̂estðε22; ½s$Þ, stars) and the initial
momentum anisotropy (ρ̂estðε2p; ½s$Þ, squares) in (a)

ffiffiffi
s

p
¼ 200 GeV pþ Au, (b)

ffiffiffi
s

p
¼ 5.02 TeV pþ Pb, (c)

ffiffiffi
s

p
¼ 200 GeV, and

(d)
ffiffiffi
s

p
¼ 5.02 TeV Oþ O collisions. Lower panels show the Pearson coefficients between v2 and the initial ellipticity (stars) and the

initial momentum anisotropy (squares), respectively.

PHYSICAL REVIEW LETTERS 125, 192301 (2020)

192301-4

(a) (b)

Figure 1.18: The results from (a) p-Pb and (b) d+Au from reference
[?]. The ρ(vn{2}2, [pT]) is compared to ρ̂est driven by either the initial
spatial eccentricity ε2 or the initial momentum anisotropy εp.

multiplicity indicates the origin of the elliptic flow in small systems from the initial
geometry, and the presence of initial state momentum anisotropies predicted by CGC.
To further support its conclusion, the study compares ρ(vn{2}2, [pT]) calculation
with the one that only uses the initial energy density of the IP-Glasma calculation,
and starts the hydrodynamic evolution at τ = 0.1 fm to compensate for the lack
of initial radial flow in d+Au. The result is indicated as triangles in Figure 1.18b
and there is no sign change observed. In this case, there is no initial momentum
anisotropy and the results agrees with ρ̂est(ϵ2, [s]). Moreover, the Pearson coefficients
Q(ε, V2) in the lower panel suggest that the behavior of ρ(vn{2}2, [pT]) results from
geometry primarily influencing the elliptic flow in high multiplicity events since the
Q(ε2, V2) increases as the multiplicity grows. While the initial momentum anisotropy
determines the final vn at low multiplicity as the Q(εp, V2) decreases at the high
multiplicity.

In reference [?], the origin of ρ(vn{2}2, [pT]) is explored from another perspective
with Pythia 8. This program does not include neither hydrodynamic simulation nor
gluon saturation. Pythia 8 has a build-in Angantyr [?] to simulate heavy ion collisions.
The results are shown in Figure 1.19. The ρ(vn{2}2, [pT]) calculations are done with
particles in the pT range of 0.3 < pT < 2.0 GeV and the three-subevent method exactly
like in data, and the Nch in x-axis is defined as the number of charged hadrons with
|η| < 2.5 and 0.5 < pT < 5.0 GeV. Surprisingly, the pp results can reproduce the
sign change as well even without hydrodynamic flow and gluon saturation effect.
While in p-Pb results, the sign change is not observed and the non-hydrodynamic
flow contribution from these results are compared to ρ̂est(ε2

p, [s]) calculation from
reference [?].

There is also preliminary results of ρ(vn{2}2, [pT]) measurement in pp at 13 TeV,
p-Pb at 8.16 TeV, and Pb+Pb 5.02 TeV from the CMS experiment. The preliminary
results are shown in Figure 1.20. They indicate that the sign change can be observed
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(a) (b)

Figure 1.19: Results of ρ(vn{2}2, [pT]) calculations from the particles
in the pT range of 0.3 < pT < 2.0 GeV and the three-subevent region.
The Nch in x-axis is defined as the number of charged hadrons with
|η| < 2.5 and 0.5 < pT < 5.0 GeV. (a) Pythia 8 is used to simulate
the various collision systems, with a build-in Angantyr to simulate
the heavy ion collisions. (b) The Angantyr results are compared to
ρ̂est(ε2

p, [s]) from reference [?]. Figure from [?]

in pp collision data for second harmonic and that the predictions from Pythia describe
the data at least qualitatively. For the third harmonic, no sign change is observed.
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Figure 1.20: The preliminary results from CMS experiment for (a)
cov(vn{2}2, [pT]) and (b) ρ(vn{2}2, [pT]). The cn is equivalent to vn.
Figure from [?]

1.8 Pythia

Pythia [?, ?, ?, ?, ?, ?] is a Monte Carlo event generator widely used in high-
energy physics. It is designed for simulating the parton (quark or gluon) interaction,
evolution, and hadronization process in particle collisions as well as modeling the
development of final-state particles such as resonance decay. Currently, the latest
Pythia program is the generation 8 with several versions in these series. Therefore,
the term Pythia 8 refers to any version within these series.
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In Pythia, the simulation can be set to include or exclude certain physics by turning
them on/off in the setting. The commonly used settings turned on to simulate a
complete collision process are initial-state radiation (ISR), multiparton interactions
(MPI) [?, ?, ?, ?, ?], final-state radiation (FSR), hadronization, and resonance decay.
ISR, MPI, and FSR are perturbative processes while the remaining processes are
non-perturbative as they occurred below ΛQCD scale.

The simulation starts at the moment a 2 → 2 parton scattering occurs as illustrated
in Figure 1.21. First, there is a hard process in the 2 → 2 scattering, resulting one of the

Figure 1.21: Illustration of parton scattering: (a) Two 2 → 2 processes
involving qq → qq and gg → gg. (b) A 2 → 2 process of qq → qq
followed by scattering of outgoing quark with a gluon, resulting in
multiparton scattering of 3 → 3 process. Figure from [?].

outgoing parton in the current pT scale. Chronologically in the real hadrons collision,
the ISR occurs first before MPI and FSR. However, ISR, MPI, and FSR are presented
as competing processes instead in a simplified master equation of the interleaved
evolution [?]

dP
dpT

=

(
dPMPI

dpT
+ ΣdPISR

dpT
+ ΣdPFSR

dpT

)
×

exp
(
−
∫ pTi−1

pT

(
dPMPI

dp′T
+ ΣdPISR

dp′T
+ ΣdPFSR

dp′T

)
dp′T

)
. (1.46)

The exponent factor is a Sudakov-like form factor which gives the probability
that nothing happens in between the previous pT scale and the current one. The
dPMPI/dpT, dPISR/dpT, and dPFSR/dpT are the probabilities of a parton undergoes
MPI, ISR, or FSR at the current pT scale respectively. The probabilities dPISR/dpT and
dPFSR/dpT are given by DGLAP evolution equation, while probability of MPI occurs
is

dPMPI

dpT
=

1
σnd

dσ

dpT
exp

(
−
∫ pTi−1

pT

1
σnd

dσ

dp′T
dp′T

)
(1.47)

with σnd is the non-diffractive inelastic cross section of the colliding hadrons and
dσ/dpT is calculated from the perturbative QCD 2 → 2 cross section in non-diffractive
events. There can only be one of the aforementioned processes occurs at a given pT

scale. In the case of MPI is picked, there is a second hard interaction creating two
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subsystems which can undergo ISR or FSR. While if either ISR or FSR is picked, one
of the incoming or outgoing partons splits. After one of these processes occurs, the pT

scale is reduced and the competition repeats until the cutoff limit is reached. However,
unless the rescattering is turned on in the setting, once MPI occurs, it will not be
allowed again, leaving only ISR and FSR in the pool. Currently Pythia supports up to
two parton rescattering. However, this is not well tested and the double rescattering
is not integrated with parton shower algorithm, and therefore, can not be done with
ISR or FSR turned on.

Due to the QCD confinement, the final partons at the end of shower must
recombine into hadron. The hadronisation is carried out in Pythia using Lund string
fragmentation algorithm [?]. For instance, suppose the last fragmentation in a parton
shower produces a quark-antiquark (qq̄) pair illustrated in Figure 1.22. The qq̄ are

Figure 1.22: Illustration of string model for parton fragmentation. (a)
A flux tube of quarks attracted by gluons, similar to magnetic flux
between different poles. (b) The string breaking as quarks move apart
from each other. Figure from [?].

connected by color strings (gluons) which will break and produce another qq̄ pair
as they move apart from each other. The string breaks due to the nature of strong
interaction which only work in very short distance. As the qq̄ move away from each
other, it will become harder to overcome the potential barrier from strong interaction.
As results, the qq̄ pair lose some of their energy, and when the string break, it creates
another qq̄ pair in each loose end from the energy loss. The process continue until the
quarks do not have enough energy to break the string and recombine to the nearest
other quarks. The final state hadron might be unstable and has a very short lifetime
even after prolonged by time dilation. Therefore, the resonance decay is simulated as
well.

Just before the hadronization, in the event where MPI occurs, the color
reconnection (CR) can be simulated to produce a flow-like pattern [?]. In this scheme,
partons are classified by which MPI system they belong to. With the secondary hard
interaction occurs, many colour strings will overlap in physical space which makes
them hard to distinguish. The lower pT scale of a system, the larger its spatial extent,
and therefore the more likely it overlaps with other system. The color flow of two
such systems can be fused, and if so, the partons of the lower-pT system are added
to the strings defined by the higher-pT system in such a way as to give the smallest
total string length and potential energy. The reconnection probability for merging the
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lowest-pT system with the second-lowest one is

P =
(R × p2

T0
)

(R × p2
T0
) + p2

T
(1.48)

with R is the color reconnection range parameter which serves as a scale factor and
pT0 is the energy-dependent dampening parameter. If they are not merged, the lowest
one is tested with the third-lowest one and so on. The probability of merging becomes
P(1 − P)(m−1) for the trial with the m-lowest system. Once the iteration for lowest-pT

system finishes, the same iteration is done for the second-lowest one with respect
to the ones above it, then the third-lowest, and so on. With the initial probability P,
it is easy to merge a low-pT system to another, but difficult to merge two high-pT

ones. And the subsequent probability for the system to survive becomes larger if the
previous merging fails. [?]

1.9 EPOS

The Energy-conserving quantum mechanical multiple scattering approach, based
on Parton ladders, Off-shell remnants, and Splitting of parton ladders (EPOS) [?, ?, ?,
?] is a successor of NEXUS simulation with initial condition based on the parton-based
Gribov-Regge theory [?]. There are several versions developed and currently the
latest one is EPOS 4. However in this analysis, the one that is used is the EPOS 2 [?],
and further in this thesis, the EPOS simulation refers to this version.

In EPOS, the parton ladder shown in Figure 1.23 is used to represent the initial
state radiations, the hard process, and the final state radiations. The evolution
of these partons before the collision can be represented as a ladder of successive
emissions, predominantly gluons, towards low x parton described by the DGLAP
equations. Each rung of the ladder represents a splitting of a parton into two other

Figure 1.23: Illustration of elementary interaction in the EPOS. Figure
from [?].
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partons, typically gluons. A parton from one hadron finally interacts with a parton
from another hadron in the center of Figure 1.23. The parton ladder evolves using
DGLAP equations up to a point where the gluon density becomes high enough for the
nonlinear gluon saturation effect in the CGC framework to become relevant. EPOS
then integrates the saturation effect into its parton evolution models [?].

The parton ladder may be considered as a quasi-longitudinal color field of flux
tube. The dynamics of the strings in the flux tube is governed by the Nambu-Goto
string action [?, ?, ?, ?]. The strings break following the Lund string fragmentation.
For heavy ion collisions or very high energy proton-proton scattering, the strings
will be very dense and the core-corona separation [?, ?, ?] is performed. The core
represents the dense, central region of the collision where multiple parton interactions
occur. This region is characterized by a high energy density, which can lead to the
formation of a thermalized medium. Once the core reaches a certain energy density,
it undergoes a phase transition to a QGP and the simulation of 3+1D hydrodynamic
evolution with crossover equation of state is performed. The corona, which consists
of more peripheral, less dense regions, does not thermalize and thus does not enter
the hydrodynamic evolution.

In EPOS, the crossover temperature is set at 166 MeV. Below this temperature,
hydrodynamic evolution ceases, and hadronization begins. Even after hadronization,
the system continues to develop elliptic flow through hadronic scatterings [?, ?, ?, ?, ?].
The hadronic interactions are simulated using the hadronic cascade model UrQMD
[?, ?] until the system becomes so dilute that no further interactions occur. The final
freeze-out position of particles is determined by their last interaction in the cascade
or their current position at hadronization if no hadronic interactions take place.

1.10 Research goal

The goal of this research is to measure ρ(vn{2}2, [pT]) in pp at 5.02, and compare
them with pp at 13 TeV and p-Pb at 5.02 TeV as well as the theory prediction provided
by Monte-Carlo simulations. For this purpose, Pythia and EPOS simulations are
chosen due to different physics content between them. The Pythia is well known
to reproduce flow-like pattern with color reconnection without any hydrodynamic
simulation. While the EPOS takes into account the gluon saturation effect, 3+1D
hydrodynamic simulation, and hadronic cascade. The analysis method from
references [?, ?] is repeated for the small systems in this analysis. The measurement is
done for pT intervals of 0.5 ≤ pT ≤ 2 GeV, 0.3 ≤ pT ≤ 2 GeV, and 0.3 ≤ pT ≤ 5 GeV.
The analysis has matured and is currently being reviewed by ATLAS Collaboration
to get permission for publication.
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2 Experimental Setup

2.1 CERN And LHC

CERN, initially an acronym for the French name Conseil européen pour la recherche
nucléaire (European Council for Nuclear Research), was officially founded in 1954.
However, its conceptualization traces back to 1949, driven by the vision of numerous
pioneering scientists. In the aftermath of World Wars, visionaries like Raoul Dautry,
Pierre Auger, Lew Kowarski in France, Edoardo Amaldi in Italy, and Niels Bohr in
Denmark envisioned a collaborative laboratory for scientific advancements, aiming
at fostering unity and sharing the escalating costs of nuclear research facilities [?].

Today, CERN is dedicated to the mission of conducting science for peace, uniting
people globally in the pursuit of scientific knowledge [?, ?]. It strictly adheres to non-
military purposes, keeping its scientific work open and accessible to everyone, thereby
encouraging international collaborations. With 23 member states and numerous
collaborations with non-member countries, CERN stands as a beacon of scientific
cooperation.

While CERN conducts a variety of research, its primary focus is on particle physics.
The epicenter of this exploration is the Large Hadron Collider (LHC), currently the
world’s largest particle accelerator with a circumference of 27 kilometers, as depicted
in Figure 2.1. There have been three LHC Run periods so far: Run 1 in 2009–2013,
Run 2 in 2015–2018, and Run 3 which is started in 2022 and planned to operate until
2025. Accelerating particles to several teraelectronvolts (TeV) requires a multi-step
process, involving smaller accelerators operating in conjunction with the LHC.

For heavy ions like Pb ions, the journey begins with injection from the Electron
Cyclotron Resonance (ECR) ion source into Linear Accelerator 3 (LINAC 3). The
Pb ions undergo progressive acceleration through LINAC 3, Low Energy Ion Ring
(LEIR), Proton Synchrotron (PS), and Super Proton Synchrotron (SPS) before being
injected into the LHC.

Proton beams come from different source but follow the same path from PS
onward. Before 2020, they started from LINAC 2 and Proton Synchrotron Booster
(PSB) before entering PS. After 2020, LINAC 2 is replaced by LINAC 4 which became
the source of proton beams during Run 3 onward [?].

The acceleration of particles relies on radio-frequency (RF) cavities [?]. These
cavities operate by modulating electric potential in such a way that particles remain in
tight bunches during the acceleration. Magnets guide the accelerated particles, using
dipole magnets for bending trajectory in circular motion and quadrupole magnets
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Figure 2.1: The latest CERN’s accelerators complex by 2022. LINAC
2 served as the proton beam source since 1978 until 2018 and was
replaced by LINAC 4 in 2020. Figure from [?].

for focusing. To maintain the energy efficiency of the accelerators, RF cavities and
magnets are superconducting devices. They are cooled with liquid helium to the
temperature of 1.9 K.

The magnets were designed to give a maximum energy of 7 TeV per beam, but
it was just half of that value when the Run 1 started. To increase the strength of
magnetic field, the magnets are trained by pumping electric current until they heat
up and lose superconductivity (quench) [?]. The repeated quench training allows the
magnets to accept more electric current until the desired value of magnetic field is
obtained. After more quench training, the energy that magnets can deliver rose to 4
TeV later in Run 1, 6.5 TeV in Run 2, and 6.8 TeV in Run 3.

Running LHC for operational data taking starts when LHC is about to start the
beam injection, and stops when the beam is dumped. The process of beam injection
from SPS to LHC takes a few hours. During the injection, the beams circulate inside
the LHC at 450 GeV, equivalent to the energy of the SPS. The LHC filling scheme
follows a bunch pattern with some time interval between them that depends on
how much the luminosity is expected to be delivered to each experiments. Once the
injection finish, the magnets are ramped up with electric currents to reach the flat-top
energy. The beams are then squeezed by the focusing magnets. The smaller beam
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diameter maximizes the chance of the collision. Close to the physics interactions
points, the special magnets adjust the beams so they point to each other and collide.
And finally, stable beams are declared and the experiments start taking data. After
several hours, the luminosity drops as the number of particles in bunches decreases
after collision. The data taking lasts until the luminosity is too low to maintain enough
collision or the beams are dumped prematurely due to a technical problem. The run
cycle repeats after the beam dump.

There are eight interaction points (IP) in LHC where the beams can be collided,
but currently only four of them are used for experiments. The IP1 for the ATLAS
experiment [?]. The IP2 for the ALICE experiment [?]. The IP5 for the CMS experiment
[?]. And the IP8 for the LHCb experiment [?]. One of the most notable achievements
in the history of the LHC came in July 2012 when both ATLAS and CMS collaborations
independently announced the discovery of a new particle consistent with the long-
sought Higgs boson [?, ?]. This discovery confirmed the existence of the last missing
piece of the Standard Model of particle physics.

2.2 ATLAS Experiment

The experimental data in this research were collected using the ATLAS detector.
The concept for the ATLAS experiment emerged in the mid-1990s when the LHC
was in the planning stages. The collaboration formed to design and propose a
general-purpose detector capable of exploring a wide range of physics phenomena.
The installation of ATLAS components inside the IP1 underground cavern began
in 2003, and over the next several years, the experiment underwent a thorough
commissioning process to ensure that all its subsystems were working correctly and
efficiently. The ATLAS detector as shown in Figure 2.2 can be grouped into three
sectors: the Inner Detector (ID), Calorimeters, and Muon Spectrometer.

Over the years, ATLAS has undergone several upgrades to improve various
components. The upgrades were carried out mostly during Long Shutdown (LS)
periods while LHC is not operating. During the LS1 (2013 - 2015), a major addition to
the ATLAS detector components was Insertable B-Layer (IBL) which was installed
into pixel detector [?]. During LS2 (2018-2022), more detector components such as
new small wheel (NSW), new muon chambers, and ATLAS Forward Proton (AFP)
spectrometer were added to ATLAS detector system [?]. The upgrade of Trigger and
Data Acquisition System (TDAQ) and hardware upgrade of the existing detector,
Liquid Argon Calorimeter (LAr), were also done in this period as preparation for
high-luminosity era of LHC. In the upcoming LS3 (2026-2028), the ID system is
planned to be replaced by a new all-silicon inner tracker (ITk) as LHC upgrades the
machine luminosity further by a factor of 5 to 7.5 [?]. However, since the analysis is
done using the data collected during Run 2, the detector configuration discussed in
this section only includes Run 2 setup.
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Figure 2.2: The view inside of ATLAS detector. Figure from [?].

The ATLAS experiment uses the following global coordinate systems. The z-axis
is inline with the beam line and the center of the detector geometry is defined as the
origin of the coordinate system. The positive x-axis is directed towards the centre of
the LHC ring and while the positive y-axis extends upward. The azimuthal angle
ϕ is in x-y plane starting from the x-axis with range 0 ≤ ϕ ≤ 2π. The polar angle θ

ranges from 0 ≤ θ ≤ π with zero starts from positive z-axis. The particle momentum
vector is often expressed using its transverse momentum pT, pseudorapidity η, and
azimuthal angle ϕ. The η is related with the θ in by

η = − ln
[

tan
θ

2

]
, θ = 2 arctan

(
e−η
)

. (2.1)

and pT is the momentum projection on the x-y plane:

pT =
√

p2
x + p2

y (2.2)

Radius R in x-y plane starts from the z-axis outward.

2.2.1 Inner Detector

The Inner Detector [?, ?] consists of the Pixel Detector, the Semiconductor Tracker
(SCT), and the Transition Radiation Tracker (TRT). Each of them consists of the barrel
layers enclosed with end-caps parts on both sides. Figure 2.3 shows the schematic
view of the barrel layers from the innermost to the outermost. The barrels cover the
entire azimuthal angle.

Closer to interaction point where the radiation dose is higher, the silicon detector
type is chosen since it can resist the radiation damage for many years. The innermost
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Figure 2.3: A schematic view of ATLAS Inner Detector barrel layers.
Figure from [?].

layer is the Insertable B-Layer (IBL) [?] that was added to enhance primary vertex
resolution and improve secondary vertex resolution needed for b-quark jets tagging.
There are four layers of barrel Pixel Detector including IBL and three end-caps
in both sides in total. The pixel barrel covers |η| < 1.5 and the end-caps cover
1.5 ≤ |η| ≤ 2.5. The very high-granularity of Pixel Detector is necessary due to a
high density of particles close to the interaction point. The Pixel Detector provides
intrinsic resolutions of about 10 µm × 60 µm in the IBL, and 10 µm × 115 µm in the
other layers [?].

The Pixel Detector consists of modules containing pixel sensors that are made of
high-purity n-type silicon sensors [?]. When charged particles hit the detector and
pass through it, they ionize the silicon material in the pixels. This ionization generates
electron-hole pairs within the silicon. The electrons drift towards the electrodes. The
read-out system registers the hit if the electric current passes the threshold.

After Pixel Detector layers, there is SCT which has four barrel layers and nine
end-cap discs on each side, covering |η| ≤ 2.5. The SCT is divided into many
modules, each containing p-in-n silicon strip sensors [?]. The SCT operates with
a principle similar to the Pixel Detector since both of them are based on silicon
detectors. The silicon micro-strip sensors are positioned parallel to the beam pipe
in the barrel region and radially on the SCT disks. These sensors are glued back-
to-back in the module with stereo angle of 40 mrad as illustrated in Figure 2.4.
Thanks to that, the information from the pair of modules allows for reconstruction
of z coordinate of the hit. The small angle reduces the probability of unrelated
hits combinations to be considered as a genuine track. The SCT provides intrinsic
resolution of 17 µm × 580 µm [?].

And finally, the outermost layers of the inner detector is covered by TRT [?, ?]. The
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Figure 2.4: An illustration of an SCT module in barrel layers. The
stereo angle is purposefully exaggerated for illustration.

TRT provides intrinsic resolution of 130 µm in R-ϕ and no z measurement. Unlike the
other inner detectors, the TRT, as it is named, utilizes a different detection principle
called transition radiation [?, ?] to track charged particles. It consists of straw tubes
array containing a gas mixture of 70% Xe, 27% CO2, and 3% O2, and an internal
matrix of polypropylene fibers.

The straw tube were constructed from two layers of conductively-coated
polyimide film. Figure 2.5 shows the cut-away view of the outermost part of a
straw tube. The straw anodes are 31µm-diameter gold-plated tungsten wires at

Figure 2.5: A schematic view of the outermost part of a straw tube.
Figure from [?].

ground voltage located along the center of the tube. And the straw cathodes are
operated at high voltage, surrounding the inner wall of the tube. The layout of the
straw tubes was designed to optimize the probability of the detection of transition
radiation as well as to maximize the number of hits along a track [?].

When a charged particle passes through the boundary between two materials
with different dielectric properties, such as between the gas-filled straw tube and
polypropylene fiber, it emits transition radiation. This radiation consists of photons
with energies in the X-ray to ultraviolet range. The intensity of the radiation is
proportional to the Lorentz factor γ =

√
1 − v2/c2 of the traversing particle (up

to saturation) [?]. The photons ionize the gas atoms in the straw tube, producing
electron-ion pairs. As the charged particle traverses the gas-filled straw tube, it ionizes
the gas atoms along its path, creating additional electron-ion pairs. The electric field
within the straw tube causes the free electrons to drift towards the anode wire. By
measuring the arrival times of the signals at the anode wires of the straw tubes and
combining this information with the known geometry of the detector, the TRT can
reconstruct the hits left by the charged particle as it passes through the detector.
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The TRT also provides information about the energy deposition pattern and
the number of transition radiation photons emitted by the charged particle. This
information can be used to distinguish between different types of particles. For
example, suppose there are an electron and a heavy baryon passing the TRT with
same energy. Due to the mass-energy relation E = γmc2, the electron has larger γ

than the heavy baryon to compensate its smaller mass. And therefore, the electron
emits more transition radiations that distinguish it from heavier particles with the
same energy.

All ID components work together to track the charged particles by providing the
hit locations in each layer. The Pixel Detector provides the 3D spatial coordinate of
hits. And so does the SCT but with lower resolution of z. The TRT provides 2D radial
coordinate in R-ϕ plane. These hit points can be reconstructed into the trajectory
of charged particles by the tracking algorithm. The reconstructed charged particles
tracks converge into a primary vertex where a collision occurs, or secondary vertices
where resonance decays takes place.

2.2.2 Calorimeters

Calorimeters absorb most of the outgoing particles and therefore placed after ID
layers. The calorimeter system measures the energy of the particles. It can detect both
charged and neutral particles, except muon and neutrino. There are electromagnetic
calorimeter and hadronic calorimeter consecutively from inside to outside as shown
in Figure 2.6.

The electromagnetic calorimeter measures the energy of electrons and photons.
For this purpose, liquid-argon (LAr) detector [?] is used. It consists of liquid-argon
as the active material and lead for its absorber material. The electromagnetic
calorimeters cover |η| < 1.475 and the entire ϕ for barrel and 1.475 < |η| < 3.2
for end-caps (EMEC). When an electron hits the lead, it releases some of its energy
by radiating bremsstrahlung photons. The high-energy photons undergo pair
production inside lead nuclei, creating electron-positron pairs. And if their energy
is still high enough, these pairs can produce additional bremsstrahlung photons.
This process repeats, creating a cascade of particle showers, until the electrons’
energy is sufficiently low and the last photons no longer have enough energy for
pair production. The shower particles ionize liquid-argon which creates signal
proportional to the energy loss from shower. Then the measured shower energy
is summed up to determine the energy of the primary electron or photon.

The hadronic calorimeter measures hadron energy and uses both LAr detector
and Tile calorimeter [?]. As shown in Figure 2.7, the LAr detector is used in hadronic
end-cap (HEC) and forward calorimeter (FCAL), covering 1.5 < |η| < 3.2 and
3.1 < |η| < 4.9 respectively. While the Tile calorimeter is used in the barrel part and
the extended barrel, covering |η| < 1.0 and 0.8 < |η| < 1.7 respectively and the entire
ϕ. For the absorber material, instead of lead, the HEC uses copper and the FCAL



36 Chapter 2. Experimental Setup

Figure 2.6: A diagram of particle paths in the detector. Electron and
photon are creating a cascade of particle shower as they pass the
electromagnetic calorimeter. And so do hadrons in the hadronic
calorimeter. Muon is not detected in calorimeter but in Muon
Spectrometer instead, while neutrino is undetected. But the presence
of the neutrino is confirmed by the missing transverse energy ET
measured in a fully reconstructed event. Figure from [?].

Figure 2.7: A schematic view of the calorimeter system. Figure from
[?].
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uses both copper and tungsten. The particle shower produced from the interaction
between a hadron and the absorber also involves strong interaction.

The Tile calorimeter consists of steel as the absorber, scintillating tiles [?] as the
active material, and photomultiplier tubes (PMT) as the read-out. When an incoming
hadron from interaction point hits the steel plate, it produces a hadronic shower
which then hit the active material. The scintillating tiles are plastic scintillators which
emit photons when they interact with the hadronic shower. The emitted photons is
detected by PMT and their quantity is amplified for read-out.

2.2.3 Muon Spectrometer

Muon is about 207 times heavier than electrons. Because of its greater mass, it is
less susceptible to acceleration while traversing electron clouds and electric field. It
does not interact strongly with nuclei as well. These allow muon to penetrate both ID
and calorimeters without undergoing significant energy loss from bremsstrahlung
or scattering. Therefore, the Muon Spectrometer (MS) [?] is placed on the outermost
layers in ATLAS, providing the measurement of muons tracking. The MS is immersed
in the toroidal magnetic field and thus also provides momentum measurement. As
illustrated in Figure 2.8, the MS consists of Monitored Drift Tube (MDT) chambers,
Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC), and Thin Gap
Chambers (TGC). These components are gas ionization detectors, each with different
structure and gas mixture filling.

Figure 2.8: A schematic view of the muon spectrometer. Figure from
[?].

The MDT chambers are based on wire chamber detector and cover a range of
|η| < 2.7. They typically consist of three to eight layers of aluminum tubes filled
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with 93% Ar and 7% CO2 gas mixture. The CSC are a type of multiwire proportional
chambers (MWPC), covering 2.0 < |η| < 2.7. The gas mixture is chosen to be 80%
Ar and 20% CO2. The composition containing hydrogen atom is avoided in the gas
mixture to reduce the sensitivity to neutron since CSC are placed in the innermost
end-caps of the spectrometer.

The RPC cover the barrel region in |η| < 1.05. The gas mixture for RPC is 94.7%
C2H2F4, 5% Iso-C4H10, and 0.3% SF6. While the TGC are similar to MWPC, positioned
in the end-caps between 1.05 < |η| < 2.4 with gas mixture of 55% CO2 and 45%
n-pentane. Both RPC and TGC also serve as the trigger for muon, selecting event
to record when certain momentum threshold is passed and filtering muon from
background particles.

2.2.4 Forward detectors

In the forward region away from interaction point, there are LUCID (LUminosity
measurement using Cerenkov Integrating Detector), Zero-Degree Calorimeters (ZDC),
and ALFA (Absolute Luminosity For ATLAS) [?]. LUCID was installed 17 m away
from interaction point while the other two is farther away offsite ATLAS main
detectors The ZDC is placed in the TAN (Target Absorber Neutral), located between
the beam-pipes right after the split, 140 m away from the interaction point. While
ALFA is located inside Roman pots at a distance of approximately 240 m from the
interaction point.

The main purpose of LUCID is to detect inelastic pp scattering in the forward
direction, allowing real-time monitoring of instantaneous luminosity L, as well as the
overall beam conditions. This enables the measurement of integrated luminosity,

Lint =
∫

L dt (2.3)

over period of time t. The integrated luminosity is proportional to the the number of
inelastic event

Nevent = Lint σinelastic (2.4)

with σinelastic cross section for inelastic scaterring. LUCID consists of a series of
Cherenkov tubes filled with a gas that emits light when traversed by charged particles.
These tubes are arranged in a cylindrical geometry around the beam pipe. Cherenkov
radiation is emitted when a charged particle passes through a dielectric medium at
a speed greater than the phase velocity of light in that medium [?]. The Cherenkov
light produced in the tubes is detected by PMTs, converting light into an electrical
signal which can then be measured and analyzed.

The ZDC are used only during heavy ion run. The purpose of ZDC is to detect
forward neutrons with |η| > 8.3 in heavy-ion collisions. Therefore, ZDC can be used
to determine the centrality of such collisions by measuring the number of spectator
neutrons. Moreover, the ZDC also provide an additional minimum-bias trigger
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for ATLAS. There are four ZDC modules installed on both sides. One of them is
electromagnetic module and the other three are hadronic modules. The working
principle of ZDC is similar to other calorimeters in general, with absorber and active
materials.

The purpose of ALFA is to measure absolute luminosity from elastic scattering
with very small angles at about 3 µrad or less. Normally, the beams of particles
in the accelerator spread out more than this tiny angle. So, to make these precise
measurements, a special beam conditions where the beams do not diverge as much.
The beams need to have high β∗ and reduced beam emittance to make it more focus
and tighter. The detectors are then housed in movable Roman pots [?]. These pots
can get as close as 1 millimeter to the beam. They can only move from above and
below because of space constraints with the beam pipes. There are two sets of these
pots placed each side, and each set has two stations 4 meters apart.

2.2.5 Trigger And Data Acquisition

Not all particle collisions yield events of interest. For instance, when searching
for events where electrons are produced in electroweak processes, it is necessary to
isolate those events from unrelated background events. In environments with high
background activity created in collisions of hadrons, the trigger system is responsible
for filtering out the background events and selecting the appropriate events for
specific physics analyses. Also, due the limitation in data storage capacity, the trigger
system becomes crucial in selecting only the important physics events to store.

The ATLAS trigger system [?, ?] consists of two stage trigger system: Level-1 (L1)
trigger implemented in the hardware, and High Level Trigger (HLT) as a collection of
software selection algorithms. Figure 2.9 shows the flow chart of the trigger and data
collection system during the LHC Run 2. The trigger starts when there are signals
received in the front ends (FE) of calorimeters and muon detectors. While the data
is buffering in FE, the L1 takes a simplified data sample from FE. L1 Calo registers
the event when there are electrons, photons, taus, jets, or any energy deposit passes
a certain threshold in calorimeters. While L1 Muon registers the event when there
are signals in muon detectors. Both, calorimeter and muon trigger systems identify
trigger objects (TOBs) that are combined in decision making process. The TOBs are
handled further by both Central Trigger Processor (CTP) directly, and intermediate L1
Topological Processor (L1Topo) [?, ?]. The L1Topo is used for computation of complex
kinematic properties of the event such as angular separation, missing transverse
energy, invariant mass, and hardness of interaction. The event is processed in L1Topo
within 200 ns and then the output is transferred to CTP. The decision to accept or
reject the event is made in the CTP. The entire selection process in L1 takes 2.5 µs.
Once accepted, the data from FE are transferred to read-out driver (ROD) in read-out
system (ROS) where they await the decision of the next stage of the trigger system.

The output of L1 trigger that becomes input for HLT are Regions of Interest (RoIs)
which contain the geometrical positions (η, ϕ) of the reconstructed objects of interest.
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Figure 2.9: A flow chart of the ATLAS trigger system in Run 2. The
Fast Tracker (FTK) was not implemented. Figure from [?].

In L1 Calo, the sliding window algorithm will select the region where there are
local maxima of energy deposit. For example, in dijet event shown in Figure 2.10,
there are two jet cones marked as red and green. The jet cones give a rise to energy

Figure 2.10: A dijet event collected by the end of April 2012. The event
is viewed from R-ϕ plane (left), z (mid), and unfolded sum of energy
(right). The region of interests where the jets deposit are marked by
green and red shades in the calorimeter clusters and circle in unfolded
towers. Figure from [?].

towers, signaling the hard collision has occurred which is illustrated in the unfolded
histogram on the right. The L1 Calo then selects the RoI within these cones. While in
L1 Muon, the RoIs constructions are done by finding coincidence of signals among
detector layers, and then matching them to lookup table of the muon momentum
prepared beforehand from MC simulation and calibration to obtain a crude muon
momentum estimate. The RoIs are then counted and delivered to CTP. The CTP
makes 512 decisions based on criteria applied on them. Only one positive decision is
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needed to pass the event to HLT. For example, L1 calo works out RoI with energy 50
GeV at ∆η1 ×∆ϕ1, and another of 20 GeV at ∆η2 ×∆ϕ2. Then, if there is a requirement
"pass event if there is at least one RoI of 80 GeV", and another "pass if there are two
RoIs above 20 GeV", the event is passed by the second condition.

The L1 trigger output rate is about 100 kHz out of ∼40 MHz of LHC bunch
crossing rate, meaning that around 1 in 400 events is selected. These events are then
filtered again in the HLT with output rate slightly above 1 kHz. The processing time
in HLT is around 200 ms.

In HLT, the online (real-time) reconstruction of an event need to pass selections of
gradually increased strictness. First, the RoI information are unpacked to generate the
initial seeding of the HLT algorithms. These algorithms cooperate to independently
select from about 1000 trigger chains to cover broad range of physics analyses. For
example, if L1 trigger detect a particle that potentially can be an electron, this
information is forwarded to several electron trigger chains to examine further if
it is really an electron. In a multi-step procedure, a positive decision leads to the
next, more precise selection step unless the decision is to reject the hypothesis. If the
HLT decision is negative for all selection chains, the event is rejected and the data
buffering in ROS is cleared. Upon positive evaluation of at least one HLT trigger
chain, the event is recorded. The selection process at the HLT utilizes about 2-5% of
detector data. [?]

There are many data streams which are categorized based on the characteristic of
the events. Each of them has specific trigger requirements. For example, minimum
bias stream where the events are selected using triggers with minimal selection
criteria to capture a broad and unbiased sample. This is achieved using triggers like
the Minimum Bias Trigger Scintillators, which detect particles produced in collisions
with as little bias as possible. Another one is hard probe streams which capture the
hard interactions producing high energy jets. Examples of streams that are used
exclusively in heavy ion run are central and UPC streams which collect central and
ultra-peripheral events respectively.

The stored event is completely reconstructed again offline in order to obtain
detailed physics information about the event. For this purpose, Athena framework
[?, ?] has been developed. The results of the offline reconstruction are saved into
Analysis Object Data (AOD) file for physics analyses. During my study, I also
contributed to the development of minimum bias trigger signature1 responsible for
recording inclusive and unbiased sample of elementary collisions. In particular, I
have extended functionality of monitoring histograms to cover also minimum bias
signatures that allowed to verify the performance of minimum bias triggers relying
on charged particles tracking. I have also developed a z-finder algorithm for High
Multiplicity Trigger in the Athena framework.

1The term "signature" is used in the ATLAS experiment for a group of chains aiming at recording
similar classes of events.
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Minimum Bias Trigger Scintilator

The minimum bias trigger scintillators (MBTS) [?] is the primary trigger for
selecting events from low luminosity run with bias as small as possible. During LS1,
it was replaced with a new one due the radiation damage and positioned slightly
different than in Run 1. Since Run 2, they are positioned in front of the liquid-argon
end-cap calorimeter cryostats at z = ±3.56 m. The MBTS are segmented into two
rings in 2.08 < |η| < 2.76 and 2.76 < |η| < 3.86. The inner ring consists of eight
azimuthal sectors, while the outer ring comprises four azimuthal sectors, and thus 12
sectors per side in total. [?]

MBTS provides fast signals used in the L1 trigger for the initial selection of
minimum bias events. At the HLT, minimum bias algorithm uses the signals from the
MBTS as part of its input. The algorithm applies criteria such as the multiplicity of
hits in the MBTS, the energy deposited, and the timing information to distinguish
between real collisions and background noise or pile-up events. The algorithm can
also apply more complex criteria, such as requiring a certain spatial distribution of
hits in the MBTS or combining MBTS information with data from other detectors like
the Inner Detector or calorimeters to improve event selection both online and offline.

In preparation of offline reconstruction for Run 3, ATLAS offline software
framework and HLT software underwent a major migration to adapt better to
new HLT farm hardware. The change also concerned the minimum bias trigger.
My contribution to this upgrade was addition and adaptation of monitoring of
performance of tracking algorithms used in minimum bias trigger. For that purpose,
monitoring codes operating online were adjusted to provide useful information on
overall Inner Detector tracking that is watched by data quality experts during data
taking. The examples of monitoring histograms for pT, ϕ, and η of the tracks are
shown in Figure 2.11.
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Figure 2.11: The examples of monitoring histograms showing the
distribution of pT, ϕ, and η of the tracks.

High-Multiplicity Tracks Trigger

The High-Multiplicity Tracks (HMT) trigger is used to select events that produce
high number of particles. In Run 2, it is designed to activate when a certain
threshold of number of hits in SCT, that is proportional to tracks multiplicty, are
achieved However, in conditions with several collision vertices, counting SCT hits
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(a)

y

x

(b)

Figure 2.12: Illustration of pileup in (a) z, (b) R-ϕ plane.

can not distinguish high multiplicity event from event with several vertices of lower
multiplicities. For that purpose, an algorithm that would provide a better estimate
of number of tracks from a vertex is needed. The algorithm needs to be much faster
than the tracking algorithm.

After further development from my contribution for Run 3, the HMT trigger can
also find the z coordinate of vertices in the events with certain multiplicity threshold
without utilizing full track reconstruction. Figure 2.12 illustrates the transverse
and longitudinal view of an event with pileup. The charged particles form helical
track due to the bending from magnetic field perpendicular to the transverse plane.
The longitudinal projections of these tracks are straight trajectories which can be
extrapolated to the beamline. Each projection must have at least triplet hits in the
Pixel barrel layers with an angle in transverse plane ∆ϕ between the first hit and
the third hit. These projections converge to certain points along the z with some
uncertainty dz. Some projections converge far away from the others, pointing to
secondary collisions called pileup which increase the number of interaction per bunch
crossing µ.

In the algorithm, the position of triplet hits extrapolation to z-axis are counted
as shown in Figure 2.13. The z positions of vertices stands as the peaks among the
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Figure 2.13: The counting of tracks between different z-finder
configuration. Figure from [?].

background noise. The algorithm performance is controlled by two parameters:



44 Chapter 2. Experimental Setup

the bin width of the projection ∆z which corresponds to resolution of z, and the
maximum ∆ϕ of triplet. The defaults of the algorithm inherited from Run 2 were
set to ∆z = 0.2 mm and ∆ϕ = 0.2 rad which were then optimized. By increasing ∆z,
the resolution is reduced and might result in merging the primary interaction with
pileup if it is too big. However, the peak is much lower and obscured if ∆z is too
small as the tracks are distributed over more bins. Increasing ∆ϕ limit increases the
pT acceptance for low momentum tracks as the magnetic field bends them harder.
However, it also increases the chance of wrong triplet hits combination, resulting in
fake tracks. Therefore, the balance of ∆z and ∆ϕ limit are needed.

To find the optimal values, the correlations between the number of charged
particles trajectories with triplet hits in pixel barrel Ntriplet and the number fully
offline-reconstructed charged particles tracks Ntracks for ∆z and ∆ϕ are studied. The
study is done by plotting the number of event with Ntriplet and Ntracks as the axes
into a 2D histogram. Then, the profile histogram is created by taking the mean value
of triplet hits trajectories in each reconstructed tracks bin, which marked by black
diamond in Figure 2.14a. Several configurations of ∆z and ∆ϕ were explored and the
best results with linear correlations are shown in Figure 2.14b.
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Figure 2.14: (a) Correlation between the number of charged par-
ticles trajectories with triplet hits in pixel barrel and the number
offline-reconstructed charged particles tracks. The profile histogram
is marked by black diamond which is the mean value of triplet
hits trajectories in each reconstructed tracks bin. (b) Several profile
histograms for different ∆z and ∆ϕ configurations.

Figure 2.15 shows the efficiency of HMT trigger as a function of Ntracks for ∆z =

3.5 mm and ∆ϕ = 0.5 rad configuration. The activation threshold increases with
increasing Ntriplet requirement which is proportional to Ntracks. And therefore, it
works as intended to trigger high multiplicity events. However, it is insensitive to
pileup as the activation thresholds remain the same for different pileup levels and my
contribution stopped here. To suppress the pileup, a certain cut on Ntriplet was added
to the trigger so that lower peaks on z like in Figure 2.13 are excluded. Later on, a cut
above some value of all energy sum in calorimeters is also added to the requirement.
[?] The HMT trigger began to run online in at the start of Run 3 and its efficiency is
shown in Figure 2.16.
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Figure 2.15: HMT efficiency as a function of (a) number of trajectories
with triplet hits Ntriplet, (b) number of vertices. Figure from [?].
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3 Analysis Method

The analysis comprises of several steps. They are described in the order in which
they need to be performed.

3.1 Track weights extraction

The performance of detector, in general, is not perfect. For this purpose, a data
sample from a Monte Carlo (MC) simulation is needed. The sample for pp is generated
with Pythia 8 for both 5.02 and 13 TeV, while for p-Pb, the sample is generated with
HIJING. These samples serve as the truth references since the actual number of
particles produced in each event are known upon the event generation. Then, the MC
samples undergo the detector simulation which includes the event selections by the
trigger systems and the track reconstruction. These simulation and reconstruction
were setup so to mimic the conditions during the data taking. The output is then
compared to the truth reference to determine the efficiency and fake rate.

The efficiency and fake rate are evaluated as a function of pT, η, and Ntracks. The
efficiency ϵ is defined as

ϵ(pT, η, Ntracks) =
Nrec

match(pT, η, Ntracks)

Ntruth(pT, η, Ntracks)
. (3.1)

where Nrec
match(pT, η, ntrack) is the number of reconstructed tracks passing the selection

requirements and match to the truth tracks, and Ntruth(pT, η, Ntracks) is the total
number of stable charged particles generated from MC. While the fake rate f is
defined as

f (pT, η, Ntracks) =
Nrec

not−match(pT, η, Ntracks)

Nrec
ch (pT, η, Ntracks)

. (3.2)

where Nrec
not−match(pT, η, Ntracks) is the number of reconstructed tracks passing the

selection requirements but do not match to the truth tracks, and Nrec
ch (pT, η, Ntracks) is

the total number of reconstructed tracks of the particles.
In this analysis, the information is kept in 3D histograms as a function of Ntracks,

η, and pT that are accessed during the analysis loops over tracks. In practice, no
evolution with Ntracks was observed besides from small statistical fluctuations and
therefore only one bin of Ntracks is used. Figures 3.1 and 3.2 show the efficiency and
fake rate as a function of η and pT made by projecting its 3D histogram into 1D
histograms.
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Figure 3.1: The efficiency (black dots) and fake rate (red stars) as a
function of η for pp and p-Pb collisions. The MC sample for pp is
generated from Pythia 8. While for p-Pb, the MC sample is from
HIJING.

The efficiency drops at lower pT since the soft tracks, mostly pions, are more
likely to undergo hadronic absorption or significant scattering, making them
unreconstructable. More fakes are also produced at low pT since multiple scattering
causes the low pT particles to deviate from a straight path, making it difficult to
accurately reconstruct their tracks. The drop of efficiency and increase of fake rate
also occur at larger values of |η| due to the transition from barrel to end-caps and
larger amount of inactive detector material at large η.
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Figure 3.2: The efficiency (black dots) and fake rate (red stars) as a
function of pT for pp and p-Pb collisions.

From the efficiency and the fake rate, the weight for correcting the count of particle
tracks can be calculated with relation

w(pT, η, Ntracks) =
1 − f (pT, η, Ntracks)

ϵ(pT, η, Ntracks)
, (3.3)

which is then used to scale up the number of tracks in the analysis. Therefore, each
track is treated as if there would be w times more of the same track. Figure 3.3 shows
the closure of the pT and η spectra between the reconstructed tracks before and after
correction, and the truth reference. It is clear that the count of reconstructed tracks
after correction by w factor is in agreement with the truth.
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Figure 3.3: The closure of the efficiency and fakes correction as a
function of pT and η within 0.1 < pT < 10 GeV.

3.2 q-bias correction

The ATLAS tracker covers full azimuthal angle. But in reality, not all of
numerous detector modules perform equally or are functioning in any given time.
Malfunctioning module would result in nonuniform detector response and thus
result biased measurement of particle abundances as a function of azimuthal angle.
A way to compensate for such effect is to utilize the fact that the particle distribution
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as a function of ϕ, dN/dϕ, should be uniform when it is averaged over many events.
With uniform dN/dϕ, the q-vectors (equation (1.11)) averaged over events should
vanish. Thus, the residual values of, q-vectors are used as estimators of bias due to
the detector nonuniformity. In this procedure, first, the real and imaginary parts of
the q vectors for n = 2, 3, 4, 6 for different pT and η ranges are calculated and each
of them are plotted as a function of the number of reconstructed track Ntracks. The
example of such distributions is shown in Figure 3.4. The trend over Ntracks is very
mild. Therefore a single average value is used to describe the bias. To calculate
the average, a fitting of polynomial of degree zero (horizontal straight line) is used
with the range spanning in 20 ≤ Ntracks ≤ 150, giving a parameter constant that
can be used as the average value. This set of average values are then saved in a
separate q-bias calibration file and used to subtract q vectors in every event in the
main analysis pass. The sum of the q vectors for all event will be around zero after the
correction. More detailed example of for q-vectors before and after q-bias correction
for various pT and η ranges and different harmonics can be seen in Appendix C.
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Figure 3.4: Example of q-bias correction for the real part of the second
harmonic q-vector. Before correction, the values are non-zero due to
detector non-uniformities. After the correction, the values are mostly
canceled out.

3.3 Extraction of observables

The study is conducted using the modified Pearson’s correlation coefficient
ρ(vn{2}2, [pT]). The same method from reference [?, ?] for calculating the correlations
is repeated for pp and p-Pb in pT ranges of 0.3 ≤ pT ≤ 2 GeV, 0.5 ≤ pT ≤ 2 GeV, and
0.3 ≤ pT ≤ 5 GeV. The modified Pearson’s correlation coefficient is defined as:

ρ(vn{2}2, [pT]) =
cov(vn{2}2, [pT])√
Var
(
vn{2}2

)
dyn

√
ck

. (3.4)
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It is obtained from covariance between vn and [pT], dynamical variance of vn{2}, and
the ck. The mean pT in each event is

[pT] =
∑i wi pT,i

∑i wi
(3.5)

where wi are weights correction for the detector efficiency and fake rates of charged
particle track reconstruction defined in equation (3.3), and pT,i is the transverse
momentum of the i-th particle. The ⟨[pT]⟩ is defined as an average of [pT] over the
total number of a given class of events. The covariance is equal to

cov(vn{2}2, [pT]) =

〈
∑j ̸=i ∑k ̸=i, ̸=j e−in(ϕi−ϕj)(pT,k − ⟨[pT]⟩)

∑i ∑j ̸=i ∑k ̸=i, ̸=j wi, wjwk

〉
(3.6)

where ϕi,j are azimuthal angles of each particle, and the bracket ⟨⟩ is an average over
the events. The summations are done is such a way so that the particle i ̸= j, j ̸= k,
and k ̸= i to avoid self correlation from pairing the same particle.

The ck is the variance of pT averaged over all events in the given class

ck =

〈
1

∑i ∑j ̸=i wiwj
∑

i
∑
j ̸=i

wiwj(pT,i − ⟨[pT]⟩)(pT,j − ⟨[pT]⟩)
〉

(3.7)

with [pT] is the mean pT in each event and ⟨[pT]⟩ is the average of [pT] over all events.
wi,j is the number of particle in the event where the i, j-th particle came from. For the
same reason, the summations in ck is modified in such a way so that particle i ̸= j.

The dynamical variance Var
(
vn{2}2)

dyn is

Var
(
vn{2}2)

dyn = vn{2}4 − vn{4}4 (3.8)

with vn{2} and vn{4} are two- and four-particle flow coefficients obtained from direct
calculation of multiparticle cumulants mentioned earlier in Section 1.3.1. Adjusting
the symbols and notation to match reference [?],

⟨⟨2⟩⟩ = ⟨corrn{2}⟩ & ⟨⟨4⟩⟩ = ⟨corrn{4}⟩. (3.9)

Therefore Var
(
vn{2}2)

dyn can be written as

Var
(
vn{2}2)

dyn = ⟨⟨4⟩⟩ − ⟨⟨2⟩⟩2 = ⟨corrn{4}⟩ − ⟨corrn{2}⟩2 (3.10)

The analysis is carried out using various subevent methods. As illustrated in
Figure 3.5, the three sub-events, A, B, C are established to be regions of −2.5 <

η < −0.75, |η| < 0.5 and 0.75 < η < 2.5 respectively. The idea is to reduce the
contribution from short-range correlation induced by jets. In 1-subevent approach,
the calculation for vn and [pT] are done using all particles within the range |η| < 2.5.
The 2-subevent method uses vn from particles in sub-events A & C and the [pT] from
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Figure 3.5: Definition of the sub-events in ATLAS.

particle in either sub-event A or C. Therefore non-hydrodynamic flow from jets in
sub-event B will not contribute to the vn correlations. The 3 sub-event measurement
was already performed in [?] for Pb+Pb and second harmonic p+Pb. In 3-subevent,
vn is calculated from the particles in sub-events A & C and the [pT] from the particles
in sub-event B. This way, the jets in sub-events A & C will not contribute to [pT] and
the jets in sub-event B will not participate in the vn calculation.

Following the choice of the normalization from reference[?], the normalization
of the covariance is done with the same ck and Var

(
vn{2}2)

dyn regardless of the
subevent of the covariance. The ck uses pT of the particles within |η| < 2.5. And
the Var

(
vn{2}2)

dyn in equation (3.8) is modified using the combination of one- and
two-subevent to reduce the non-flow effect and can be written as

Var
(
vn{2}2)

dyn = vn{2}4
2sub − vn{4}4

1sub

= ⟨corrn{4}⟩1sub − 2⟨corrn{2}⟩2
1sub + ⟨corrn{2}⟩2

2sub. (3.11)

The definitions of the variables used in ρ(vn{2}2, [pT]) involve double or triple
loops over the particles in the event and can take a lot of computing resources. To
reduce the CPU consumption, the formulas containing more than one summation
index can be simplified into one summation and thus only need single loop. An
example of the derivation is demonstrated in Appendix A for the ck. The formulas
for cov(vn{2}2, [pT]) are also shown there. The full derivations for each subevent can
be found in Appendix B.

In the analysis procedure, first the [pT] is obtained as a function of Ntracks.
Figure 3.6 shows an example of the [pT] obtained from pp data. Separation of this
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Figure 3.6: The example of [pT] evolution with the charged tracks
multiplicity in pp at centre of mass energy of 5.02 TeV.
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analysis step allowed to study carefully event selection with respect to biases due
to trigger as discussed in 4.2. The [pT] as function of Ntracks are then saved in a
separate file. This file is then accessed when quantities that require [pT] such as
cov(vn{2}2, [pT]) an ck are calculated.

3.4 Ntracks to Nch conversion

The output of the analysis results is a function of multiplicity of the reconstructed
charged particle tracks Ntracks with pT > 0.3 GeV and 0.75 < |η| < 2.5| and satisfy
the HILoose selection criteria which is discussed later in section 4.3. To facilitate
comparisons with models at the final step, the Ntracks is converted to number of
charged particles Nch which is Ntracks in |η| < 2.5| and 0.5 < pT < 5 GeV corrected
by tracking performance discussed in section 3.1). This is done by mapping Ntracks

and Nch in a finely binned 2D histogram and taking the average of Nch in a given
Ntracks bin. The result is the averaged Nch as a function of Ntracks shown in Figure 3.7.
Since their correlation is linear, a linear function with parameters m and n
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Figure 3.7: The ⟨Nch⟩ as a function of Ntracks in pp and p-Pb, and their
fitting to the linear functions.

⟨Nch⟩ = mNtracks + n (3.12)

is fitted from Ntracks 20 to 200 for pp and 20 to 300 for p+Pb. The obtained fitting
parameters are listed in table 3.1. It can be seen from parameter m that Nch is around
30% higher than Ntracks for all collision systems. Therefore, the data points will be
shifted along the x-axis after the results are converted from Ntracks to Nch.

Data n m
pp 5.02 TeV 0.143±0.002 1.31217±0.00006

p+Pb 5.02 TeV 0.1532±0.0002 1.328740±0.000004
pp 13 TeV 0.1527±0.0004 1.31313±0.00001

Table 3.1: List of fitting parameter for different data sample.

All observable quantities, except ρ(vn{2}2, [pT]) and Var
(
vn{2}2)

dyn, are calcu-
lated in narrow Ntracks bins of width 1. Then the bins are merged into wider bins.
Then ρ(vn{2}2, [pT]) and Var

(
vn{2}2)

dyn are calculated from the results in wider bin.
In the last stage, everything is calibrated according to the ⟨Nch⟩ function to express
the quantities as a function of Nch.
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3.5 Summary of analysis steps

To summarize, the analysis is carried out following these steps:

1. Calculate efficiency and fake rates of the track reconstruction.

2. Calculate the q-bias and check if the sum of the q vectors for all events are
around zero after correction.

3. Calculate ⟨[pT]⟩ with weighted tracks using the output in step 1. This calculation
proved that the analysis is sensitive to the trigger selection which is discussed
in section 4.2.

4. Using results obtained from the earlier steps, calculate ck, cov(vn{2}2, [pT]),
⟨corrn{2}⟩, and ⟨corrn{4}⟩.

5. Using the variables obtained in the previous step, rebin them and calculate
Var
(
vn{2}2)

dyn and ρ(vn{2}2, [pT]).

6. Bootstrap procedure is used to obtain estimates of statistical uncertainties
ck, cov(vn{2}2, [pT]), ⟨corrn{2}⟩, and ⟨corrn{4}⟩ which are used to calculate
Var
(
vn{2}2)

dyn and ρ(vn{2}2, [pT]). This is discussed in 5.1.

7. Convert Ntracks to Nch.

8. To check the systematic uncertainties, the analysis is repeated without bootstrap
procedure and can use the same input produced from point 1 & 2, except
for different track selection and another method for correcting the detector
geometry. The bootstrap procedure and systematic uncertainties are discussed
in Chapter 5.2.

For the comparison with the theories, several MC simulations are also analyzed.
The MC data follows the same procedure. For the truth data, step 2 is skipped because
it does not simulate the detector geometry. In contrast, for the MC data undergoing
detector simulation, all steps are performed. To ensure the measured observables
are accurately corrected for detector geometry, efficiency, and fake rates, the MC
data with detector simulation is compared with the truth data. This comparison is
discussed in detail in section 5.3.
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4.1 Dataset

4.1.1 Experimental data

The analysis uses data from pp collisions collected in 2015 and 2017, as well as
p-Pb collisions collected in 2016. For pp, there are two center of mass energies used,
5.02 TeV and 13 TeV. While for p-Pb, there is only 5.02 TeV. The data from each year
consists of several runs. Each run have a run number assigned for bookkeeping. The
detector configurations might change in different run. Some parts of detector module
might be excluded if they have an issue, or included back after they are fixed, or
calibrated differently. The analysis depends solely on the tracking and relies on the
detector azimuthal uniformity upon its collections. Therefore, the q-bias might be
different from one run to another as the geometry coverage might change. Some runs
have similar q-bias because their detector configurations are the same, and therefore
can be grouped together to use the common q-bias correction. Table 4.1 lists runs
used for the analysis. In 13 TeV pp data, the separate corrections are done individually
for each run. While in p-Pb, only one set of q-bias correction is used because they all
are similar. In total, there are 34 millions events in pp data from all runs in 5.02 TeV,
190 millions in 13 TeV, and 231 millions in p+Pb 5.02 TeV.

Each runs has different level of pileup related to the luminosity delivered by LHC.
The average number of collisions occurring in a single bunch crossing µ is given by

µ =
Lσ

f
(4.1)

where L is the instantaneous luminosity, σ is the cross-section for inelastic collisions,
and f is the LHC revolution frequency of the bunch. Higher µ means higher number
of pileup event as more interactions occurred close to each other in the same bunch
crossing. Run number 340973 is the 5.02 TeV pp run with very low µ ∼ 0.1 and
other runs have higher µ ∼ 2. The 13 TeV data has been collected at slightly higher
instantaneous luminosity with µ ∼ 2.

The particles involved in the correlation should come from the same source
of primary vertex. While the pileup inclusion gives unnecessary fluctuation from
uncorrelated particles from different vertices. Figure 4.1 shows the shape of number
of event distribution as a function of Ntracks. The shapes of the Ntracks with different
average pileup, in this case, for run number 340849 and 340925, are significantly
different. However, the shapes of the distributions become similar after the pileup
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Beams Energy Year Run number q-bias group

pp

5.02 TeV 2017

340644

Group 1

340683
340849
340850
340925
340718
341027
340697
340814

Group 2340910
341184
341123

Individual

340973

13 TeV

2015

267358
267359
267360
267385
267599
267367

2017

329542
330857
330875
331020
341294
341312
341419
341534
341615
341649

p-Pb 5.02 TeV 2016

312649

Group 3

312796
312837
312937
312945
312968
314199

Table 4.1: List of data used for the analysis.

events are filtered out. Therefore, only events with one reconstructed vertex are used
in the analysis.

Due the nature of harmonic flow calculation which requires pairing of particles,
some events, especially at low multiplicity, may not be able to produce results since
particles might not get their pairs due to some kinematic range requirements. For
example, let say an event produce five particles and only one of them is within
0.3 ≤ pT ≤ 2 GeV and |η| ≤ 2.5. This particle will not have a pair and the event
must be rejected. Figure 4.2 shows the ratio of rejected events from the analysis.
The problem aggravates if a narrower interval of particle momenta is used or more
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Figure 4.1: The comparison of Ntracks spectra shapes between inclusive
pileup and one-vertex per event in two different runs of different
pileup level.

sub-events are used in the calculations. For instance, in |η| < 2.5 (one-subevent),
for all events with Ntracks >20, it is possible to perform a valid calculation. But for
0.75 < |η| < 2.5 (two-subevent), around 1% of the events with Ntracks = 20 are
rejected for higher pT ranges. Taking into account all the methods and pT intervals,
the analysis does not use the events with Ntracks <20.
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Figure 4.2: Ratio of rejected events due to flow calculation over the
total events after single vertex requirement and trigger selection.

4.1.2 Simulation data

MC samples with detector simulation and track reconstruction are used to study
tracking performance. The MC sample used to extract tracking performance for pp at
5.02 TeV and 13 TeV is Pythia 8 with Monash tuning and color reconnection setting
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turned on. The number of events is 800 thousands in 5 TeV and 13 TeV sample. The
sample for 13 TeV was simulated with conditions that on average describe the 2015,
2017, and 2018 experimental data, however with less precision as compared to 5 TeV
data. For p+Pb, the sample was generated from HIJING and there are 4.8 millions
events.

The results obtained in the analysis of experimental data are compared to
predictions from MC simulation at truth level. The MC data for this purpose do not
undergo detector simulation and track reconstruction. Around 50 millions events
were generated for 5.02 TeV pp data, and 100 millions for 13 TeV. The results for pp
are compared to Pythia 8 with the same setting as in tracking performance study, and
to EPOS which include gluon saturation effect and hydrodynamic simulation. For
p-Pb, the result for 1-subevent method is compared to the same HIJING sample used
for the correction of tracking performance.

4.2 Trigger selection

The triggers used in this analysis are MinBias triggers. The main trigger is
HLT_mb_sptrk. In addition to the main trigger, several other triggers are also used
for pp 13 TeV and p-Pb 5.02 Tev data. They are listed in table 4.2.

pp 5.02 TeV pp 13 TeV p-Pb 5.02 TeV
HLT_mb_sptrk HLT_mb_sptrk HLT_mb_sptrk

HLT_noalg_mb_L1MBTS_1 HLT_noalg_mb_L1MBTS_1

HLT_noalg_mb_L1MBTS_1_1 HLT_noalg_mb_L1MBTS_1_1

HLT_mb_mbts_L1MBTS_1

HLT_noalg_mb_L1ZDC_A

HLT_noalg_mb_L1ZDC_C

HLT_mb_sptrk_L1MBTS_1

Table 4.2: List of triggers used for the analysis.

The names of all the triggers start with "HLT" because they need to pass the
HLT, followed by "mb" which specifies the data stream for minimum bias events.
Some triggers are labeled "noalg" which means that HLT does not apply any further
algorithms beyond the initial selection by the Level-1. The term "sptrk" stands for
space points (sp) and single reconstructed tracks (trk) requirements respectively. The
space points correspond to the detector signals left by charged particles after hit.
For mb_sptrk, it requires at least two reconstructed space-points in the Pixel system
and three in the SCT, along with at least one reconstructed track with pT > 200 MeV.
It is designed to activate for events with at least one track and reject events with
random noise from the detector which typically having only a few space-points. The
seed for initial activation of the mb_sptrk trigger is based on a random selection of
bunch crossings that contain colliding bunches. The term "L1MBTS" stands for Level-1
Minimum Bias Trigger Scintilator. The MBTS triggers require a certain multiplicity
threshold in their counters. L1MBTS_1 requires the events to have at least one of the
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MBTS counters on any side activated. While for L1MBTS_1_1, the events must have at
least one counter in both sides activated [?].

In p-Pb, the collision is asymmetric. The Pb nuclei break apart and most of the
remnants scatter into forward direction along z-axis. The luminosity in p-Pb collisions
is also lower so the random Level-1 trigger is inefficient. Therefore the ZDC is used
for the Level-1 trigger in addition to the aforementioned triggers for pp. The term
"L1ZDC" stands for Level-1 Zero Degree Calorimeter signal above the single neutron
threshold. "L1ZDC_A" and "L1ZDC_C" mean that the event must have a signal in ZDC
side A and C respectively.

The MinBias triggers begins run out of statistic for high multiplicity events with
Ntracks > 100. Therefore High Multiplicity Triggers (HMT) were investigated to
increase the number of these events. The HMT seed activate when an event has a
certain number of space-points and multiplicity threshold. These triggers also require
L1 seed of total energy (TE) in calorimeter. For example, sp1200_trk80_hmt_L1TE20
requires at least 1200 reconstructed space-points in the SCT, 80 reconstructed tracks
with pT > 400 MeV, and a total energy of 20 GeV in calorimeter. However, the
TE requirement biased HMT towards events that have higher number of high pT

particles. Overall, a higher value of [pT] is obtained for events triggered with HMT
for low Ntracks and compared to events collected with MinBias trigger (sptrk) as
shown in 4.3. For that reason these triggers were tried to be used only for Ntracks well
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Figure 4.3: The mean pT of tracks of |η| ≤ 0.5 and pT range pT 0.3 <
pT < 2 GeV as a function of Ntracks from pp events at 5.02 TeV selected
by various triggers.

above their turn on threshold. For instance, the trigger designed to collect events
with Ntracks > 40 was used only when Ntracks > 80. Even though the discontinuities in
[pT] as a function of Ntracks were largely suppressed, the ck still increased noticeably
for HMT triggered events. This is because the requirement of large L1 calorimeter
energy biases the events to have higher [pT] but also to prefers the events that have
tail of high momentum particles. The [pT] distribution at fixed Ntracks for MinBias
and HMT triggered events is shown in Figure 4.4. Given the aforementioned biases
and that the focus of this analysis is at lower multiplicities, the HMT triggers were
not used for the events selection.
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Figure 4.4: The [pT] spectra for HMT and MinBias. The HMT has a tail
towards higher [pT]

4.3 Track selection

From all the reconstructed tracks, only a fraction that satisfies stringent quality
selection is used. These tracks, in comparison to all other reconstructed tracks have
reduced fake rate and only slightly smaller efficiency. It is necessary for the starting
points of tracks to be as close as possible to the primary vertex if they come from
that source. However, the helical extrapolation upon track reconstruction can not
locate exactly the starting point of each track, especially when there is no intersection
between tracks. Therefore, the tracking quantities such as d0 and z0, which are
measured relative to the primary vertex as illustrated in Figure 4.5, are taken into
account. The d0 is the transverse impact parameter. It is the shortest distance between

Primary 
vertex

Helical
track Transverse

projection
P

Longitudinal
projection

Figure 4.5: The helical track relative to detector center and primary
vertex. The closest point between the track and primary vertex is
marked as P.
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the track of particle and the primary vertex in the plane perpendicular to the beam
axis. While z0 is the longitudinal impact parameter. It represents the distance of
closest approach of the particle track to the primary vertex along the beam axis. For
tracks with small θ, z0 can be large while d0 is small. To accommodate these tracks,
the quantity z0 sin(θ) is chosen instead to compensate large z0.

The main track selection in this analysis is HILOOSE. The following list is the
criteria for HILOOSE track selections:

• Minimum pT: 100 MeV

• Maximum |η|: 2.5

• Maximum d0: 1.5 mm

• Maximum z0 sin(θ): 1.5 mm

• An innermost layer hit is required if expected, otherwise, a next-to-innermost
layer hit is required if it is expected.

• Minimum pixel hits: 1

• for 0 < pT < 300 MeV, SCT hits ≥ 2

• for 300 < pT < 400 MeV, SCT hits ≥ 4

• for pT > 400 MeV, SCT hits ≥ 6

In addition, HITIGHT selection is also used to estimate the systematic uncertain-
ties. The criteria for HITIGHT selection are listed below:

• Minimum pT: 100 MeV

• Maximum |η|: 2.5

• Maximum d0: 1 mm

• Maximum z0 sin(θ): 1 mm

• An innermost layer hit is required if expected, otherwise, a next-to-innermost
layer hit is required if it is expected.

• Minimum pixel hits: 2

• Maximum chi squared per degree of freedom: 6

• for 0 < pT < 300 MeV, SCT hits ≥ 4

• for 300 < pT < 400 MeV, SCT hits ≥ 6

• for pT > 400 MeV, SCT hits ≥ 8
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In order to assure that the performance obtained in MC data is applicable to
experimental data, the per-track quantities used in the selections are compared
between MC and experimental data. The distributions for HILoose selected tracks
are shown in Figure 4.6, 4.7, and 4.8. The comparison was done for a fraction of
one year data and concentrates on low pT part of the spectra that is most relevant in
this analysis. A very good agreement was observed for 5.02 TeV pp and p-Pb data.
For 13 TeV data, the agreement is slightly worse. However the differences in tails
of the distributions due to minor missmodeling of the efficiency are covered by the
systematics related to the efficiency.
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Figure 4.6: Comparison of track related quantities between the pp data
at 5.02 TeV (points) and the MC (filled). It is show independently for
low 0.3 < pT < 0.5 GeV on the left and higher 2 < pT < 3 GeV on in
the left and right columns respectively. From the top the η, transverse
impact parameter d0, number of SCT hits, and z-vertices z0 are shown.
The Ntracks is normalized to unity.
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Figure 4.7: Comparison of track related quantities between the pp data
at 13 TeV (points) and the MC (filled). It is show independently for
low 0.3 < pT < 0.5 GeV on the left and higher 2 < pT < 3 GeV on in
the left and right columns respectively. From the top the η, transverse
impact parameter d0, number of SCT hits, and z-vertices z0 are shown.
The Ntracks is normalized to unity.
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Figure 4.8: Comparison of track related quantities between the p-Pb
data at 5.02 TeV (points) and the MC (filled). It is show independently
for low 0.3 < pT < 0.5 GeV on the left and higher 2 < pT < 3 GeV on in
the left and right columns respectively. From the top the η, transverse
impact parameter d0, number of SCT hits, and z-vertices z0 are shown.
The Ntracks is normalized to unity.
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5 Measurement Uncertainties

The measurement uncertainties consist of the statistical and systematic uncertain-
ties. The following sections explain the sampling method to determine the statistical
uncertainty and the sources of the systematic uncertainties.

5.1 Statistical uncertainties

As previously done in references [?, ?] for Pb+Pb and Xe+Xe, the bootstrap method
[?, ?] is used for estimation of statistical uncertainty. The idea of the method is to
construct alternative samples of the events, obtain result using these samples, and
use the variance of these results as an estimate of statistical uncertainty. One way
of proceeding is to divide the original sample into sub-samples, however in such
case sub-samples are less populated and are more susceptible to large statistical
fluctuations. In this analysis alternative samples of the same size as the original one
are obtained by selecting each event 0, 1, 2, 3, ..., k times according to the Poisson
distribution

P(k) =
λke−λ

k!
(5.1)

with a mean value λ of 1. When the weight is equal to 0 the event is discarded,
if the weight is equal to 1 it is analyzed once, if 2 it is analysed twice and so on.
The same weight is applied to each observable in the event. This method can be
justified when the number of events in a given event class is large enough (more
than 50 entries [?]). The sampling of the Poisson weight is repeated 50 times so that
each measured point is effectively estimated 50 times. The results from samples
are then used to estimate standard deviation of the measurement for statistical
uncertainties of cov(vn{2}2, [pT]), ck, ⟨corrn{2}⟩, and ⟨corrn{4}⟩ which are used
to construct Var

(
vn{2}2)

dyn and ρ(vn{2}2, [pT]).
The statistical uncertainties of Var

(
vn{2}2)

dyn and ρ(vn{2}2, [pT]) are calculated
using the error propagation formula to the second order

∆ f (x1, x2, ..., xn) =

√
Σn

i=1

(
∂ f
∂xi

∆xi

)2

+ 2
(

∂ f
∂x1

∂ f
∂x2

∆x1∆x2r1,2 +
∂ f
∂x1

∂ f
∂x3

∆x1∆x3r1,3 + ...
)

(5.2)
with ∆xi is the statistical uncertainties of variable xi, and ri,j is the correlation factor
between variable xi and xj. Given that variables used to construct the ρ(vn{2}2, [pT])

are using the same particles,the statistical uncertainties might be correlated, resulting
in non-zero ri,j.



66 Chapter 5. Measurement Uncertainties

In order to estimate that correlation, the following procedure was used: For
each measurement point, a mean value µ and standard deviation σ of all bootstrap
results are calculated.Then, the statistical deviations, d = (m − µ)/σ, where m is the
measurement obtained in one bootstrap iteration, are calculated. The correlation
between these deviations are checked by plotting them in 2D histogram shown in
Figure 5.1. The only significant correlations ri,j are observed between between 1-
and 2-subevents ⟨corrn{2}⟩ and between 1-subevent ⟨corrn{2}⟩ and ⟨corrn{4}⟩ with
the value around 0.5 for both of them. This leads to two mixed terms that are not
vanishing in estimation of uncertainty for the Var

(
vn{2}2)

dyn. These correlations
are taken into account in obtaining uncertainties for Var

(
vn{2}2)

dyn but contribute
only at the sub-percent level to the total uncertainty and can be neglected because
they are scaled by generally small values of the uncertainties themselves. All other
correlations were found to be marginally small.

4− 3− 2− 1− 0 1 2 3 4

σ/1sub
2cov

4−

3−

2−

1−

0

1

2

3

4σ/b kc

0

5

10

15

20

25

30

35

40

45

4− 3− 2− 1− 0 1 2 3 4

σ/ 1sub
2cov

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{2

}
2

co
rr

0

5

10

15

20

25

30

4− 3− 2− 1− 0 1 2 3 4

σ/ 1sub
2cov

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{4

}
2

co
rr

0

5

10

15

20

25

30

35

40

4− 3− 2− 1− 0 1 2 3 4

σ/1sub{2}2corr

4−

3−

2−

1−

0

1

2

3

4σ/
2s

ub
{2

}
2

co
rr

0

5

10

15

20

25

30

35

40

4− 3− 2− 1− 0 1 2 3 4

σ/1sub{2}2corr

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{4

}
2

co
rr

0

5

10

15

20

25

30

35

4− 3− 2− 1− 0 1 2 3 4

σ/2sub{2}2corr

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{4

}
2

co
rr

0

5

10

15

20

25

30

4− 3− 2− 1− 0 1 2 3 4

σ/1sub{2}3corr

4−

3−

2−

1−

0

1

2

3

4σ/
2s

ub
{2

}
3

co
rr

0

5

10

15

20

25

30

35

40

45

4− 3− 2− 1− 0 1 2 3 4

σ/1sub{2}3corr

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{4

}
3

co
rr

0

5

10

15

20

25

30

4− 3− 2− 1− 0 1 2 3 4

σ/2sub{2}3corr

4−

3−

2−

1−

0

1

2

3

4σ/
1s

ub
{4

}
3

co
rr

0

5

10

15

20

25

30

35

Figure 5.1: Correlations between statistical uncertainties of variables
used for ρ(vn{2}2, [pT]). There are significant correlations between 1-
and 2-subevents ⟨corrn{2}⟩ and between 1-subevent ⟨corrn{2}⟩ and
⟨corrn{4}⟩.
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5.2 Systematic uncertainties

The estimation of systematic analysis is a challenging process in which an impact
of potentially not well understood/modelled experimental quantity may affect the
measurement. The sources of systematic uncertainties in this analysis are listed below.

• Track selection variation:
As mentioned in section 4.3, the main results are calculated using tracks passing
HILOOSE criteria which is optimised for efficiency. The HITIGHT track quality
selections, optimised for purity, are used for systematic uncertainty related to
possibly incorrect modeling of efficiency and fake track rates.

• The detector material uncertainty modeled with track momentum dependent
efficiency variation:
The tracking efficiency from subsection 3.1 is taken into account by variating
the efficiency 5% up and down according to the formerly used formula [?, ?].

ϵ±(pT) = ϵ(pT) + 0.06 · ϵ(pT)− ϵ(plow
T )

ϵ(phigh
T )− ϵ(plow

T )
∓ 0.03 (5.3)

• Methods to remove residual detector azimuthal nonuniformities:
To compare the methods for correcting the detector geometry, the analysis
is repeated with ϕ-flattening procedure instead of q-bias correction. This
method applies a phi dependent track weight by multiplication to flatten the ϕ

distribution in narrow η slices of width 0.1 so that the uniformity of the detector
response is recovered. The details are discussed in Appendix C.

Some systematic also can affect the q-bias correction. Examples of q-bias correction
for different systematic variations in figure 5.2 show that the HITIGHT need to use its
own q-bias while the tracking efficiency can use the same q-bias result from HILOOSE.
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Figure 5.2: The q-bias comparison between different systematic
variations.

To obtain the systematic uncertainties, the analysis is run again for each
uncertainty source. After the results are rebinned, the value in each bin of the
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observables obtained from each source are then subtracted from the baseline value.
As mentioned in the previous chapters, the baseline of the observables are measured
from HILOOSE with q-bias corrected flow vectors. The difference between these
two values are set as the initial systematic uncertainties. Examples of the differences
between the baseline measurement and the systematic variations are presented in
Figure 5.3. The full set of systematic uncertainties plots are attached in Appendix D.
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Figure 5.3: Difference between each systematic variation and baseline
measurement ∆source in pp at 5.02 TeV and 13 TeV, and p-Pb at 5.02 TeV
for range 0.3 ≤ pT ≤ 2 for several quantities as denoted by y-axis
label. Statistical uncertainty for baseline measurement is shown as a
black line.

For most of the cases systematic uncertainties are comparable or smaller to the
statistical ones. However, the contribution from tight track selection and flattening
uncertainties are fluctuating over significantly from bin to bin. Therefore, the average
over the entire range of Ntracks is calculated and set for every bin.

The final value for the systematic uncertainties is

∆total =

√
⟨∆tight⟩2 +

( |∆e f f .up|+ |∆e f f .down|
2

)2

+ ⟨∆ f lat⟩2. (5.4)
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with ⟨...⟩ is the average over the number of non-zero bins within the entire multiplicity
range.

5.3 Closure test

The performance and detector related corrections can potentially bias the analysis
results. The tracking inefficiency is corrected using Eq.(3.3) and weights w in Eq.(3.5)-
(3.7). The q-bias correction is utilized to remove detector non-uniformities. An
impact of these corrections can be understood by checking the differences between
results obtained with the truth reference and the reconstructed tracks from MC data
undergoing detector simulation. The same Pythia sample that is used to determine
efficiency and fake rate is reused for this comparison.

The example results of the comparison are shown in Figure 5.4. Within the
statistical precision, the closure is observed between the truth reference and the
reconstructed tracks.

20 30 40 50 60 70 80

trkN

0

0.0005

0.001

0.0015

0.002

0.0025

]
2

[G
e
V

kc

= 5.02 TeVsPhytia 8, 

All
Detector simulation

2 GeV≤
T

p≤0.5 

2 GeV≤
T

p≤0.3 

1 GeV≤
T

p≤0.3 

Truth

20 30 40 50 60 70 80

trkN

0

0.1

0.2

0.3

0.4

0.5

0.6

3−10×

 [G
eV

]
Tp

, 2
2

2v
C

ov

 = 5.02 TeVsPhytia 8, 
1 subevent
Detector simulation

 2 GeV≤ 
T

 p≤0.5 
 2 GeV≤ 

T
 p≤0.3 

 1 GeV≤ 
T

 p≤0.3 

Truth

 

 

 

ATLAS Internal

Figure 5.4: The comparison between the truth and its detector
simulation. Form left to right ck, and 1-subevent cov(v2{2}2, [pT]).
Only statistical uncertainties are shown.

5.4 Summary

For ck, ⟨corrn{2}⟩, ⟨corrn{4}⟩, and cov(vn{2}2, [pT]), the statistical errors are
taken directly from bootstrap method. In 1-subevent, the statistical uncertainties
are small, mostly less than 1%. However, in 2- and 3-subevent, the statistical
uncertainties become large. Some of them, for example ⟨corr3{2}⟩ in 2-subevent,
have statistical uncertainties larger than their baseline values and crossing zero. For
Var
(
vn{2}2)

dyn and ρ(vn{2}2, [pT]), the statistical uncertainties are derived from the
error propagation relation in equation (5.2). Since both of them involve 2-subevent
⟨corrn{2}⟩, the large statistical uncertainties from this variable are propagated even
in 1-subevent ρ(vn{2}2, [pT]).

For the systematic uncertainties, the variation of tight track selection, tracking
efficiency, and flatenning of the residual detector azimuthal nonuniformities are taken
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into account. The largest contribution comes from tight track selections, although the
efficiency variations also might result in significant uncertainties in several bins of
Ntracks. Similar to statistical uncertainties, the systematic uncertainties for 2- and 3-
subevent are larger than the ones in 1-subevent. And difference between the baseline
and its various systematic variations is more significant in the third harmonics. The
final values for the systematic uncertainties are calculated using equation (5.4).
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6 Results

The intermediate results are [pT], ck, ⟨corrn{2}⟩, ⟨corrn{4}⟩, and Var
(
vn{2}2)

dyn
presented in sections 6.1 and 6.2. These results are used to normalize cov(vn{2}2, [pT])

presented in section 6.3 to obtain the main results: the correlation coefficient
ρ(vn{2}2, [pT]) which is presented in section 6.4. The comparison between collision
systems and energy is presented in section 6.5. The results from experimental data
are compared to MC simulations and presented in section 6.6.

6.1 Mean pT and variance ck

Figure 6.1 shows the [pT] trend as a function of Ntracks for three pT intervals in
pp at 5.02 and 13 TeV, and in p-Pb at 5.02 TeV. Above Ntracks of about 5 a steady rise
is observed in all systems. As could be expected, the order of [pT] values directly
reflect the ranges in pT interval. The 13 TeV pp data spans slightly further in Ntracks

compared to pp at 5.02 TeV since higher energy gives a rise to more fragmentation
which increases the number of events with higher multiplicity. The higher collision
energy also rises the hardness of interaction, resulting in slightly higher [pT] with the
same pT range compared to the lower energy. As the multiplicity range accessible for
p-Pb is much higher the results are presented up to Nch about 400 charged particles.
The events with high multiplicities are more abundant compared to those in pp and
therefore a significantly better precision is obtained in the same multiplicity bins.
However, the other observables for p-Pb are presented with the same binning and
range as in pp to accommodate the comparison between systems.
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Figure 6.1: Comparison [pT] in various pT ranges as denoted in the
legend for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV.

Figure 6.2 shows the ck as a function of Nch for pp collisions at 5.02 and 13 TeV and
for p-Pb at 5.02 TeV. A fall with rising multiplicity that was observed in Pb+Pb and
p-Pb [?] is reproduced for p-Pb and also observed in pp. The ck, which is a measure
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of fluctuations, is largest for widest range of momentum. The upper pT limit mostly
drives the magnitude of it. The study of pT fluctuation in heavy ion collisions have
been done in references [?, ?] to measure the effective temperature of QGP and the
speed of sound in QGP. The [pT] presented in reference [?] is rising as a function
of centrality, which is also observed in Figure 6.1. The observable similar to ck in
reference [?] is k2, which is ck normalized by [pT]. The same falling trend over Nch is
also observed in k2 but steeper than ck in Figure 6.2.
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Figure 6.2: Comparison of ck in various pT ranges as denoted in the
legend for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV.

6.2 The particle correlation and dynamic variance of vn

Figures 6.3 and 6.4 show the two- and four-particle correlations used to obtain
Var
(
vn{2}2)

dyn using equation (3.11) as a function Nch for the second and the third
harmonics. From left to right, the figures show the measurements for pp at 5.02 and
13 TeV, and in p-Pb at 5.02 TeV. The magnitude is sensitive to the choice of both upper
and lower limits of momentum range, with more significant impact when lower limit
is changed. The issue discussed in section 4.1 appears in four-particle correlation
for pp 13 TeV and p-Pb 5.02 TeV at the lowest Nch in the pT range 0.5 ≤ pT ≤ 2 GeV.
The average value of Nch in the first point of pp 13 TeV is shifted to the right toward
Nch ∼ 30, signaling very low number of pairs at low multiplicity events. While in
p-Pb 5.02 TeV, the first point is missing, which means that not enough particles to pair
after the cut in kinematic ranges.

In the second harmonic, similar values and trends are observed for 5.02 and 13
TeV pp data since they have similar initial spatial eccentricity. The same ordering of
different pT ranges is observed in the correlations, except for the third harmonic of
two-particle 2-subevents correlations. The trend is falling with increasing multiplicity,
except for the 2-subevents ⟨corrn{2}⟩ correlations.

In 5.02 TeV pp, the fluctuation appears in 2 subevent ⟨corrn{2}⟩ at high Nch due
to the lack of statistics. The magnitudes of correlations in the third harmonic are
smaller as compared to the second harmonic. Meanwhile in p-Pb, the two-particle
2-subevents correlation is rising with multiplicity both for harmonic n = 2, 3. The
2-subevents ⟨corr3{2}⟩ in p-Pb shows a unique feature where the both points of pT
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Figure 6.3: Correlations used to construct Var
(
v2{2}2)

dyn as a function
of Nch for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV, in various pT
ranges as indicated in the legend.

ranges with the same low pT limit meet at the highest Nch while points with the same
upper pT limit meet at lowest Nch. However, this feature is not observed in pp.

The measurements of dynamical variances Var
(
vn{2}2)

dyn are shown in Fig-
ures 6.5 and 6.6. Some significant fluctuations are the result of subtracting a very
similar values and a sizeable fluctuations of 2-subevents 2-particle correlation.
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Figure 6.4: Correlations used to construct Var
(
v2{2}2)

dyn as a function
of Nch for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV, in various pT
ranges as indicated in the legend.
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Figure 6.5: Dynamical variance Var
(
v2{2}2)

dyn as a function of Nch

for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV, in various pT ranges as
indicated in the legend
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Figure 6.6: Dynamical variance Var
(
v3{2}2)

dyn as a function of Nch

for pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV, in various pT ranges as
indicated in the legend.
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6.3 Covariance of mean pT and vn

Figures 6.7 show cov(vn{2}2, [pT]) as a function of Nch for the second and the
third harmonics, comparing different subevent categories for pT range 0.3 ≤ pT ≤ 2
GeV. The trends tend to converge at high multiplicity between different subevent
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Figure 6.7: Comparison of cov(vn{2}2, [pT]) in various sub-events for
each pT range, from left to right columns for pp collisions at 5.02 and
13 TeV, and for p-Pb at 5.02 TeV respectively. The top rows is for n = 2,
and the bottom row is for n = 3.

methods. A steeper falling trend as Nch increase on 1-subevent cov(vn{2}2, [pT]) in
comparison to 2- and 3-subevents methods is a result of a short range correlations
which is reduced significantly in two and three subevents. These falling trends
are from the non-flow and they are eliminated in two and three subevents and the
Nch dependence becomes weaker. The sign change begins to appear in 2-subevents
cov(v2{2}2, [pT]) of pp and p-Pb at 5.02 TeV, starting from positive value at the smallest
Nch, crossing zero around Nch ∼50, and becomes negative at high Nch. While the
cov(v2{2}2, [pT]) in pp 13 TeV is simply reduced in magnitude without sign change.
The 3-subevent cov(v2{2}2, [pT]) in pp 5.02 TeV also undergoes the sign change but
fluctuates significantly in the last three bins. While in pp 13 TeV and p-Pb 5.02 TeV,
the 3-subevent cov(v2{2}2, [pT]) is negative for this particular pT range. For the
third harmonic, the 1-subevent cov(v3{2}2, [pT]) has the same trend as in the second
harmonic, while the 2- and 3-subevents cov(v3{2}2, [pT]) start at negative and rise to
around zero with increasing Nch.

Figures 6.8 and 6.9 show cov(vn{2}2, [pT]) as a function Nch comparing different
pT ranges for the second and the third harmonics respectively. The trends tend to
converge when moving to higher multiplicity between different pT ranges as well.
The ordering based on pT limit is visible in 1-subevent for all systems and harmonic
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Figure 6.8: Comparison of cov(v2{2}2, [pT]) in various pT ranges for
1-, 2-, and 3-subevents methods respectively from top to bottom rows,
and from left to right columns for pp collisions at 5.02 and 13 TeV, and
for p-Pb at 5.02 TeV respectively.

n = 2, 3, especially the gap between two different upper pT limits at 2 and 5 GeV. The
higher pT limit allows the inclusion of harder particles produced in jet fragmentation,
contributing to both correlation and mean pT. However, the pT ordering diminishes
significantly in 2-subevent cov(v2{2}2, [pT]) and becomes obscure in three subevents
as the short range correlations are reduced significantly. The two and three subevents
reduce the non-flow contribution significantly but also affect severely the statistical
precision. As a result, fluctuations in all measurements begin to appear for two
subevent and become very significant in three subevent. In the three subevent pp at
5.02 TeV, the sign change of covariances are observed in all pT ranges before the big
fluctuations appears at Nch around 60. However, the uncertainties are large enough
to cross zero. While in pp 13 TeV, the three subevent covariance with the highest pT

range fluctuates around zero while the covariances with lower pT ranges are negative.
The similar negative covariances are also observed in p-Pb 5.02 TeV for the same
lower pT ranges while the highest pT range covariance undergoes a smooth transition
from positive to negative with increasing Nch.

For the third harmonic, the one subevent covariances in all systems have the same
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Figure 6.9: Comparison of cov(v3{2}2, [pT]) in various pT ranges for
1-, 2-, and 3-subevents methods respectively from top to bottom rows,
and from left to right columns for pp collisions at 5.02 and 13 TeV, and
for p-Pb at 5.02 TeV respectively

falling trend as in the second harmonic. However, the trends become very different
in two subevent covariances. The order of pT limit is reversed in p-Pb 5.02 TeV with
covariances start at negative in the low Nch and grow close to zero with increasing
Nch. The same trend is observed in pp 13 TeV, but the order of pT limit is obscure
for pT ranges with upper limit 2 GeV. While in pp 5.02 TeV, the trends rise up to Nch

∼45 and fall up to Nch ∼60 followed by fluctuations. In three subevent, the order of
pT limit disappear and the covariances for all pT ranges blend together. Overall, the
3-subevents method decreases the value of covariances. However, the fluctuations
around zero in pp 13 TeV becomes large in 3-subevent cov(v3{2}2, [pT]).

6.4 Correlation coefficient ρ(vn{2}2, [pT])

Figures 6.10 show ρ(vn{2}2, [pT]) as a function of Nch for the second and the
third harmonics, comparing different subevent categories for pT range 0.3 ≤ pT ≤ 2
GeV. The correlation coefficient ρ inherits most of the qualitative features from their
respective covariance. The 2- and 3-subevents methods reduce significantly the short
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Figure 6.10: Comparison of ρ(vn{2}2, [pT]) in various sub-events for
each pT range, from left to right columns for pp collisions at 5.02 and
13 TeV, and for p-Pb at 5.02 TeV respectively. The top rows is for n = 2,
and the bottom row is for n = 3.

range correlations compared to 1-subevent method, resulting in lower values of
ρ(vn{2}2, [pT]).

Figures 6.11 and 6.12 shows ρ(vn{2}2, [pT]) as a function Nch comparing different
pT ranges for the second and the third harmonics respectively. Some values and
uncertainties are beyond |ρn| ≤ 1 which are not relevant, therefore the y-axis is set
to -1 to 1 for the plots containing these values, while the others are zoomed to their
magnitude ranges. All 1-subevent results are positive in all systems and n = 2, 3.
In contrast to the 1-subevent cov(v2{2}2, [pT]), the ρ(v2{2}2, [pT]) for pT ranges with
upper limit 2 GeV converge in low Nch while their covariances converge at high Nch

instead. The order is also reversed for covariance with upper limit pT at 2 GeV. The
order of pT ranges remains the same for two and three subevents in pp 13 TeV and
p-Pb 5.02 TeV. While in pp 5.02 TeV, the order becomes blurred for lower pT ranges in
two subevent and indistinguishable in three subevent.

In pp 5.02 TeV, the 2-subevents cov(v2{2}2, [pT]) undergoes sign change, falling
from positive at low Nch to negative at high Nch. The same happen in p-Pb, except for
the highest pT range. While in pp 13 TeV, the lower pT ranges cross zero at high Nch

mostly by statistical uncertainties.
In three subevent cov(v2{2}2, [pT]), the falling trend is observed in all systems.

However, the fluctuations take over the trend at high Nch in pp. In p-Pb 5.02 TeV, only
the highest pT range shows the sign change. While in pp 13 TeV, all points for the
most narrow pT range are negative with a few error bars cross zero.

For the third harmonic, the 1-subevent covariance, within large statistical
uncertainties, is considered independent of Nch. The trend in 2-subevents method
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Figure 6.11: Comparison of ρ(v2{2}2, [pT]) in various pT ranges for
1-, 2-, and 3-subevents methods respectively from top to bottom rows,
and from left to right columns for pp collisions at 5.02 and 13 TeV, and
for p-Pb at 5.02 TeV respectively.

is rising from low Nch, and falling at high Nch. A clear pattern of sign change is
only observed in low pT ranges pp 5.02 TeV. Without uncertainties, the 3-subevents
cov(v3{2}2, [pT]) has similar trend as in 2-subevents method, exept in pp 13 TeV
which is dominated by fluctuations for all pT ranges.However, due to uncertainties,
mainly statistical, the ρ(v3{2}2, [pT]) trends are less pronounced. Therefore for
2- and 3-subevent methods are considered consistent with zero even though the
covariances suggest that a sign change might occur with non-monotonic evolution at
low multiplicities.

Figure 6.13 shows the results from Pb+Pb and Xe+Xe from previous analysis [?].
The trends keep rising in more central collisions for the second and third harmonic.
The 1-subevent method is referred as standard. There is no distinction between the
different subevent methods, except those in peripheral. Since the Nch in central
collisions is around several thousands, the relevant parts to compare with the small
systems are the peripheral events. The HIJING simulation is used to estimate the
non-flow contribution in the peripheral region. It shows the similar falling trend in
one and two subevents, while the three subevents starts from negative value. In the
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Figure 6.12: Comparison of ρ(v3{2}2, [pT]) in various pT ranges for
1-, 2-, and 3-subevents methods respectively from top to bottom rows,
and from left to right columns for pp collisions at 5.02 and 13 TeV, and
for p-Pb at 5.02 TeV respectively

end, they converge at semi-central collision at zero since HIJING does not simulate
hydrodynamic. This trend suggests that at small systems and peripheral events, the
correlation is dominated by non-hydrodynamic flow.
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Figure 6.13: ρ(vn{2}2, [pT]) in Pb+Pb and Xe+Xe. HIJING is used to
estimate the non-flow contribution in the peripheral collisions. Figure
from [?].

6.5 Comparison between collision systems and energy

Figure 6.14, 6.15, 6.16, 6.17, and , 6.18 show the comparison of the measured
variables between pp at 5.02 and 13 TeV, and p-Pb at 5.02 TeV. The results for ck

are mostly in agreement with each other within the uncertainties at pT ranges below
2 GeV. However, the differences appear for higher pT range. The higher collision
energy gives a rise to the production of harder particles in pp 13 TeV, resulting the
gap between pp data with different center of mass energy in low Nch. However, they
begin to converge at higher Nch since the impact of jets in this pT range are smeared
out in high-multiplicity events as there are more soft particles. Meanwhile the ck in
p-Pb 5.02 TeV at the lowest multiplicity events is close to pp 5.02 TeV since the most
peripheral events are similar to single nucleon-nucleon collisions at the same energy.
The slight difference comes from the multiplicity produced from the remnants of
nuclei. The gap between pp and p-Pb at 5.02 develops further at high Nch as more
nucleons are involved in the central collision, giving a rise to much more multiplicity
of softer particles. Therefore, the agreement is gone in higher pT limit.

For the dynamical variances Var
(
vn{2}2)

dyn, the agreement is observed in both
pp results with different energy. However, the difference is observed between pp and
p-Pb due to the difference between the initial spatial geometry of the collisions, with
p-Pb yields systematically lower values.
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Figure 6.14: The comparison of ck and Var
(
vn{2}2)

dyn between
different collision systems and energy.

For the cov(vn{2}2, [pT]), the gaps appear between pp and p-Pb in 1-subevent and
they become closer to each other in 2- and 3-subevents as the covariances move closer
to zero.

For ρ(v2{2}2, [pT]), all systems start with similar values at low Nch, especially in pT

range with lower limit 0.3 GeV, and then diverge at high Nch. While in ρ(v3{2}2, [pT]),
within the large uncertainties, the agreement is observed in all systems.
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Figure 6.15: The comparison cov(v2{2}2, [pT]) between different
collision systems and energy.
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Figure 6.16: The comparison cov(v3{2}2, [pT]) between different
collision systems and energy.
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Figure 6.17: The comparison ρ(v2{2}2, [pT]) between different colli-
sion systems and energy.
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Figure 6.18: The comparison ρ(v3{2}2, [pT]) between different colli-
sion systems and energy.
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6.6 Comparison to models

The high multiplicity events in pp are simulated by Pythia 8 with Monash tune
and EPOS. Then, the analysis are performed on them to compare their results with
the results from experimental data. In Pythia the correlation would not arise from any
collective dynamics and will be fully determined by the non-flow effects. Meanwhile
in EPOS, the simulation includes the collective effects, gluon saturation, and hadronic
cascade as well.

Figure 6.19 shows the comparison of ck in different pT ranges. Both Pythia 8
and EPOS manage to produce the same trend as in experimental data. However,
Pythia 8 overestimate ck at pT ranges with upper cut of 2 GeV. While for the pT range
0.3 ≤ pT ≤ 5 GeV, the results intersect with experiment at Nch ∼ 30 before falling
below it at higher Nch. For EPOS, the results are lower than the experiment in all pT

ranges.
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Figure 6.19: Comparison of ck between pp and MC in various pT
ranges.

Figure 6.20 shows the comparison of Var
(
vn{2}2)

dyn in different pT ranges.
For the second harmonic, Pythia 8 manages to produce the same trend without
any hydrodynamic simulation. However, the predicted values are below those of
experimental data While in EPOS, the physics that are not included in Pythia 8
certainly boost the results up, but overestimate the values. For the third harmonic,
both Pythia 8 and EPOS are in agreement with each other, but the values are lower
than from the experiment. These results suggest that the pp collisions have higher
triangular flow which translates to more dynamic in the initial state fluctuation of the
interacting partons.

Figure 6.21 shows the comparison of cov(vn{2}2, [pT]) in different pT ranges. In
1-subvent method, both EPOS and Pythia 8 produce lower values than the experiment,
with Pythia 8 is closer to the results from experiment at the lowest Nch. These results
in the 1-subevent covariance suggest a missing dynamics in simulations. However,
in 2- and 3-subevents methods, they are in agreement with the measurement. Since
these results match with Pythia 8, it is deduced that the 2- and 3-subevent methods
contain mostly the residual non-flow contribution that arises from parton evolutions.
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Figure 6.20: Comparison of Var
(
vn{2}2)

dyn between pp and MC for
various pT ranges.

Figure 6.22 shows the comparison of ρ(vn{2}2, [pT]) in different pT ranges. In
the second harmonic, the EPOS overestimates Var

(
vn{2}2)

dyn and underestimates
ck, while Pythia 8 does the opposite. Since the denominator is the square root of
multiplication between Var

(
vn{2}2)

dyn and ck, the normalization produce the balance
and the results are in agreement with experiment in 2- and 3-subevents method. The
gaps in 1-subevent method are inherited from the results in cov(vn{2}2, [pT]). For
Pythia 8, the gaps become less significant in low Nch after normalization. While
for EPOS, the differences are still significant. In the third harmonic, for 1-subevent
method, Pythia 8 agrees with the data while EPOS deviates at mid Nch. For 2- and
3-subevents methods, the agreements are observed between the models and data as
the short range correlation are reduced.

In Pythia, the impact of color reconnection and resonance decay to the correlation
were tested. Figure 6.23 shows several observables contribute to ρ(vn{2}2, [pT]) are
compared when the color reconnection or resonance decay is turned off. Turning off
the resonance decay setting in Pythia has a miniscule impact to the correlation, while
color reconnection has a significant impact when it is turned off. Furthermore, the
color reconnection range parameter R is varied by 0 (turned off), 0.75, 1.8 (default),
and 10. The probability of merging a parton branch with low pT system increases with
increasing R. The results for ck, cov(vn{2}2, [pT]), and ρ(vn{2}2, [pT]) are compared
with data in Figures 6.24, 6.25, and 6.26. The ordering in ck appears to follow the
sequence of R from the lowest to the highest. At pT ranges 0.3 ≤ pT ≤ 2 and
0.5 ≤ pT ≤ 2, the data favors R ≤ 0.75 since the systems with low pT are less likely
merged in these low pT ranges. However, in pT range 0.3 ≤ pT ≤ 5, the merging is
favored by data.
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In the covariance, for the second harmonic, the ordering flips in each pT range
for 1- and 2-subevents results. While in 3-subevents results, the ordering remains
the same across different pT ranges. For the third harmonic, the ordering is clear and
remains the same in each pT ranges for 1-subevent results. However, the boundaries
of the ordering become unclear progressively from 2-subevents to 3-subevents results.

In ρ(v2{2}2, [pT]), the ordering of R is the reverse of the ordering in ck. For
1-subevent, the data favors 0.75 ≤ R ≤ 1.8. While in 2- and 3-subevents, the default
R matches the most with data. In ρ(v3{2}2, [pT]), the impact of color reconnection is
less significant since it happens right before hadronization while the source of the
third harmonic is the initial state fluctuation of the participating partons.

For p-Pb, the result for 1-subevent method is compared to HIJING sample, while
the 3-subevent method is compared to the results from IP-Glasma+MUSIC+UrQMD
from the authors of reference [?] as shown in Figure 6.27. Both simulations are
able to reproduce the same trend and values close to the results from experiment.
Since HIJING is able to produce the similar results without hydrodynamics stage,
the comparison suggests that the correlations arise mostly from non-flow parton
interactions. Further additional physics in IP-Glasma+MUSIC+UrQMD, mainly the
consideration of initial geometry and momentum anisotropy, improve the prediction,
bringing them closer to experimental results. The result in 3-subevents method is
also compared to the model from reference [?]. In this model, the initial state is
using Glauber model simulated by GLISSANDO [?] and the 3+1D hydrodynamics
simulation is modeled in reference [?]. The η range for particles entering [pT] is
|η| < 0.2, while the one for vn{2} is 1.75 < |η| < 2.5. Two scenarios for entropy
deposition in the transverse plane are examined: the standard Glauber model, where
entropy is placed at the locations of the participant nucleons, and the compact source
model, where entropy is deposited between the two colliding nucleons. In the 0-20%
centrality range, the r.m.s. radius of the fireball in the first scenario is roughly 1.5
fm, whereas in the second scenario, it is significantly smaller at about 0.9 fm. The
second scenario where the source of entropy is located in the center-of-mass between
of colliding nucleon is favored by experimental result.
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Figure 6.21: Comparison of cov(vn{2}2, [pT]) between pp data and
MC for in 1-,2-,3-subevents and different pT ranges.
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Figure 6.22: Comparison of ρ(vn{2}2, [pT]) between pp data and MC
for in 1-,2-,3-subevents and different pT ranges.
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Figure 6.23: The Pythia 8 results when the color reconnection (top
rows) or the resonance decay (bottom rows) settings is turned off.
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Figure 6.24: Comparison of ck between pp and Pythia 8 with variation
of color reconnection range parameters in various pT ranges.
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Figure 6.25: The cov(vn{2}2, [pT]) and ρ(vn{2}2, [pT]) from Pythia 8
with variation of color reconnection range parameters, presented in
1-,2-,3-subevent and different same pT ranges.
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Figure 6.26: The cov(vn{2}2, [pT]) and ρ(vn{2}2, [pT]) from Pythia 8
with variation of color reconnection range parameters, presented in
1-,2-,3-subevent and different same pT ranges.
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Figure 6.27: The comparison of ρ(vn{2}2, [pT]) in p-Pb 5.02 TeV. 1-
subevent results are compared to HIJING while 3-subevents results
are compared to IP-Glasma+MUSIC+UrQMD and Glauber+(3+1)D
hydrodynamics from the authors of the models [?][?].
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7 Conclusion

The correlation coefficient ρ(vn{2}2, [pT]) has been measured in pp at
√

s = 5.02
TeV, 13 TeV and

√
sNN = 5.02 TeV in p-Pb. It has been obtained from various

pT intervals using 1-,2-, and 3-subevents methods that provide different degree of
suppression of short range and non-flow correlations. In 1-subevent method, high
positive values of coefficients for second and third harmonics were observed. The
correlation obtained with 2- and 3-subevents methods are weaker.

The ρ constituents, covariance and normalising dynamical vn variance and ck are
also presented. They exhibit the features consistent with the earlier measurement in
Pb-Pb and p-Pb [?, ?] for the same multiplicity range.

Within the uncertainties, results obtained for
√

s = 13 TeV are mostly compatible
with those of pp at 5.02 TeV. The ρ(vn{2}2, [pT]) obtained at pp

√
s = 5.02 TeV are

also compared to measurement in p-Pb obtained at the same energy per nucleon. For
the second harmonic, the correlation coefficients show a difference between pp and
p-Pb at high Nch which can be attributed to the difference in the initial geometry of
collision. For the third harmonic, the correlation coefficients are found compatible
with each other.

The results for pp are compared to Pythia 8 and EPOS. Pythia 8 does not contain
any collective effect, while EPOS contains both collective effect, gluon saturation, and
hadronic cascade which contribute to the value of vn. The results in 1-subevent show
some differences between data and MC simulations, suggesting different scheme
of short-range correlation in pp data than in these MC simulations. Both Pythia 8
and EPOS results are able to reproduce overall decrease of ρ(vn{2}2, [pT]) correlation
coefficient calculated with 2- and 3-subevents. The comparisons suggest that the
color reconnection from multi parton interactions dominate the ρ(vn{2}2, [pT]) in pp.
The color reconnection range parameter is constant throughout the simulation, while
the experimental data favor different parameter for different kinematic ranges and
multiplicity.

Comparison of p-Pb results to models was also performed with HIJING for 1-
subevent method and IP-Glasma+MUSIC+UrQMD from reference [?] for 3-subevent
methods, and a qualitative agreements were observed. HIJING manages to produce
the same trend without hydrodynamics and CGC. The consideration of initial spatial
geometry and momentum anisotropy in IP-Glasma+MUSIC+UrQMD improves the
agreement with the data. The comparison with the result from reference [?] suggest
that the source of entropy is located in the center-of-mass between of colliding
nucleon.
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These measurements will provide insights for the continued development of
theoretical models and Monte Carlo simulations. Any discrepancy identified in the
comparisons leads to further improvements of the accuracy and predictive power of
the models. This process will enhance our understanding of the underlying physics
and ensure better alignment between simulations and real-world observations.
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A Single loop formula derivations

The definition of the ck

cevent
k =

1
ΣiΣj ̸=iwiwj

ΣiΣj ̸=iwiwj(pT,i − ⟨[pT]⟩)(pT,j − ⟨[pT]⟩) (A.1)

involves two double loops and thus can be computationally intensive for large Ntracks.
It is however straightforward to find a single loop formulation as follows. For
denominator:

ΣiΣj ̸=iwiwj = ΣiΣjwiwj − ΣiΣj=iwiwj

= ΣiwiΣjwj − Σiw2
i

= (Σiwi)
2 − Σiw2

i

(A.2)

The numerator

ΣiΣj ̸=iwiwj(pT,i − ⟨[pT]⟩)(pT,j − ⟨[pT]⟩) = ΣiΣjwiwj(pT,i − ⟨[pT]⟩)(pT,j − ⟨[pT]⟩)− Σiw2
i (pT,i − ⟨[pT]⟩)2

= Σiwi(pT,i − ⟨[pT]⟩)Σjwj(pT,j − ⟨[pT]⟩)
− ⟨[pT]⟩2Σiw2

i − Σiw2
i p2

T,i + 2⟨[pT]⟩Σiw2
i pT,i

= (Σiwi pT,i)
2 + (⟨[pT]⟩2Σiwi)

2 − 2⟨[pT]⟩Σiwi pT,i

− ⟨[pT]⟩2Σiw2
i − Σiw2

i p2
T,i + 2⟨[pT]⟩Σiw2

i pT,i

(A.3)

The number of iterations for event with 50 tracks is thus reduced from 50 × 49
iterations to only 4 × 50.

A similar derivation is used in covariances and since there are three sums involved
there, the performance gain is more significant.
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B Derivation of direct flow
calculation

The following sections are the derivation of the covariance, Var
(
vn{2}2)

dyn and
ck terms in ρ(vn{2}2, [pT]) which have been done previously by the analysis team of
reference [?]. First, we define the following quantities:

Qnk =∑
i

wk
i einϕi (B.1)

Smk =(∑
i

wk
i )

m (B.2)

Onk =∑
i

wk
i einϕi pi (B.3)

Pmk =∑
i

wk
i pm

i (B.4)

⟨p⟩ = 1
Nev

∑
evts

∑i wi pi

∑i wi
(B.5)

p̄i =pi − ⟨p⟩ (B.6)

Ōnk =∑
i

wk
i einϕi p̄i = Onk − Qnk⟨p⟩ (B.7)

P̄mk =∑
i

wk
i p̄m

i (B.8)

Note P0k ≡ S1k, and there is the following simple relation that are handy for our
purpose later:

P̄1k = P1k − S1k⟨p⟩ (B.9)

P̄2k = P2k − 2P1k⟨p⟩+ S1k⟨p⟩2

P̄3k = P3k − 3P2k⟨p⟩+ 3P1k⟨p⟩2 − S1k⟨p⟩3 (B.10)
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B.1 Formula for Covariance

B.1.1 Standard (all-event) method

Let us derive the formula for the covariance in case of 1 subevent. Now the three
particle correlation of the cov(vn22, [pT]) is given as:

cov(vn22, [pT]) =
∑i ∑′

j ∑′
h wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)

∑i ∑′
j ∑′

h wiwjwh
(B.11)

First lets expand the denominator:

D = ∑
i

∑
j

∑
h

wiwjwh − 3 ∑
i

′
∑

j
w2

i wj − ∑
i

w3
i

= S31 − 3[∑
i

∑
j

w2
i wj − ∑

i
w3

i ]− S13

= S31 − 3S12S11 + 3S13 − S13

= S31 − 3S12S11 + 2S13

Next lets expand the numerator:

N =∑
i

∑
j

∑
h

wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)− ∑
i

′
∑
h

w2
i wh(ph − ⟨p⟩)

− 2 ∑
i

′
∑

j
w2

i wjein(ϕi−ϕj)(pi − ⟨p⟩)− ∑
i

w3
i (pi − ⟨p⟩)

=|Qn1|2P11 − |Qn1|2S11⟨p⟩ − {∑
i

∑
h

w2
i wh(ph − ⟨p⟩)− ∑

i
w3

i (pi − ⟨p⟩)}

− 2{∑
i

∑
j

w2
i wjein(ϕi−ϕj)(pi − ⟨p⟩)− ∑

i
w3

i (pi − ⟨p⟩)} − P13 + S13⟨p⟩

=|Qn1|2P11 − |Qn1|2S11⟨p⟩ − S12P11 + S12S11⟨p⟩+ P13 − S13⟨p⟩
− 2ℜ(On2Q∗

n1) + 2ℜ(Qn2Q∗
n1)⟨p⟩+ 2P13 − 2S13⟨p⟩ − P13 + S13⟨p⟩

=|Qn1|2P11 − S12P11 − 2ℜ(On2Q∗
n1) + 2P13

− ⟨p⟩{|Qn1|2S11 − S12S11 − 2ℜ(Qn2Q∗
n1) + 2S13}

So the covariance for the standard method becomes:

Cov[FSE] =
|Qn1|2P11 − S12P11 − 2ℜ(On2Q∗

n1) + 2P13

S31 − 3S12S11 + 2S13
(B.12)

− ⟨p⟩ |Qn1|2S11 − S12S11 − 2ℜ(Qn2Q∗
n1) + 2S13

S31 − 3S12S11 + 2S13
(B.13)

or in terms of p̄:

Cov[FSE] =
|Qn1|2P̄11 − S12P̄11 − 2ℜ(Ōn2Q∗

n1) + 2P̄13

S31 − 3S12S11 + 2S13
(B.14)
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B.1.2 Two-subevent

The three particle correlation of the cov(vn22, [pT]) is given as:

cov(vn22, [pT]) =
∑i ∑j ∑′

h wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)
∑i ∑j ∑′

h wiwjwh
(B.15)

In 2-subevent case the particle i and j belong to two different subevents - A and C
and are never the same.
The expansion of denominator:

D = ∑
i

∑
j

∑
h

wiwjwh − ∑
i

∑
j

w2
i wj − ∑

i
∑

j
wiw2

j

= SA11SC11S11 − SA12SC11 − SA11SC12

The expansion of numerator:

N =∑
i

∑
j

∑
h

wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)− ∑
i

∑
j

w2
i wjein(ϕi−ϕj)(pi − ⟨p⟩)− ∑

i
∑

j
wiw2

j ein(ϕi−ϕj)(pj − ⟨p⟩)

=ℜ(QAn1Q∗
Cn1)P11 −ℜ(QAn1Q∗

Cn1)S11⟨p⟩ − ℜ(OAn2Q∗
Cn1) + ⟨p⟩ℜ(QAn2Q∗

Cn1)

−ℜ(QAn1O∗
Cn2) + ⟨p⟩ℜ(QAn1Q∗

Cn2)

=ℜ(QAn1Q∗
Cn1)P11 −ℜ(OAn2Q∗

Cn1)−ℜ(QAn1O∗
Cn2)

− ⟨p⟩{ℜ(QAn1Q∗
Cn1)S11 −ℜ(QAn2Q∗

Cn1)−ℜ(QAn1Q∗
Cn2)}

So the covariance for the 2-subevent becomes:

Cov[2SE] =
ℜ(QAn1Q∗

Cn1)P11 −ℜ(OAn2Q∗
Cn1)−ℜ(QAn1O∗

Cn2)

SA11SC11S11 − SA12SC11 − SA11SC12
(B.16)

− ⟨p⟩ℜ(QAn1Q∗
Cn1)S11 −ℜ(QAn2Q∗

Cn1)−ℜ(QAn1Q∗
Cn2)

SA11SC11S11 − SA12SC11 − SA11SC12
(B.17)

or in terms of p̄:

Cov[2SE] =
ℜ(QAn1Q∗

Cn1)P̄11 −ℜ(ŌAn2Q∗
Cn1)−ℜ(QAn1Ō∗

Cn2)

SA11SC11S11 − SA12SC11 − SA11SC12
(B.18)

B.1.3 Three-subevent

The three particle correlation of the cov(vn22, [pT]) is given as:

cov(vn22, [pT]) =
∑i ∑j ∑h wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)

∑i ∑j ∑h wiwjwh
(B.19)

In three-subevent case the particle i and j belong to two different subevents - A and C
and particle h is from the subevent B. The i,j, and h particle are never the same.
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The expansion of denominator:

D = ∑
i

∑
j

∑
h

wiwjwh

= SA11SC11SB11

The expansion of numerator:

N =∑
i

∑
j

∑
h

wiwjwhein(ϕi−ϕj)(ph − ⟨p⟩)

=ℜ(QAn1Q∗
Cn1)PB11 −ℜ(QAn1Q∗

Cn1)SB11⟨p⟩

So the covariance for the three-subevent becomes:

Cov[3SE] =
ℜ(QAn1Q∗

Cn1)PB11 − ⟨p⟩ℜ(QAn1Q∗
Cn1)SB11

SA11SC11SB11
(B.20)

or in terms of p̄:

Cov[3SE] =
ℜ(QAn1Q∗

Cn1)P̄B11

SA11SC11SB11
(B.21)

B.2 Formula for ck

B.2.1 Standard

Let us derive the formula for the ck in case of 1 subevent. The two particle
correlation is given as:

ck =
∑i ∑′

j wiwj(pi − ⟨p⟩)(pj − ⟨p⟩)
∑i ∑′

j wiwj
(B.22)

The expansion of the denominator:

D =∑
i

∑
j

wiwj − ∑
i

w2
i

=S21 − S12

The expansion of numerator:

N =∑
i

∑
j

wiwj(pi − ⟨p⟩)(pj − ⟨p⟩)− ∑
i

w2
i (pi − ⟨p⟩)2

=∑
i

∑
j

wiwj{pi pj − ⟨p⟩pi − ⟨p⟩pj + ⟨p⟩2} − ∑
i

w2
i {p2

i + ⟨p⟩2 − 2pi⟨p⟩}

=P2
11 − 2⟨p⟩P11S11 + ⟨p⟩2S21 − P22 − ⟨p⟩2S12 + 2⟨p⟩P12

=P2
11 − P22 − 2⟨p⟩(P11S11 − P12) + ⟨p⟩2(S21 − S12)



B.3. Formula for Var
(
vn{2}2)

dyn 105

So the ck is:

ck =
P2

11 − P22 − 2⟨p⟩(P11S11 − P12) + ⟨p⟩2(S21 − S12)

S21 − S12
(B.23)

or in terms of p̄ (We should simply use this form since we can use Eq. (B.10)):

ck =
P̄2

11 − P̄22

S21 − S12
(B.24)

B.2.2 Two-subevent

The two particle correlation is given as:

ck =
∑i ∑j wiwj(pi − ⟨p⟩A)(pj − ⟨p⟩C)

∑i ∑j wiwj
(B.25)

In 2-subevent case the particle i and j belong to two different subevents - A and C
and are never the same.
The expansion of the denominator:

D =∑
i

∑
j

wiwj

=SA11 ∗ SC11

The expansion of numerator:

N =∑
i

∑
j

wiwj(pi − ⟨p⟩A)(pj − ⟨p⟩C)

=∑
i

∑
j

wiwj{pi pj − ⟨p⟩C pi − ⟨p⟩A pj + ⟨p⟩A⟨p⟩C}

=PA11PC11 − ⟨p⟩CPA11SA11 − ⟨p⟩APC11SC11 + ⟨p⟩A⟨p⟩CSA11SC11

So the ck is:

ck =
PA11PC11 − ⟨p⟩CPA11SA11 − ⟨p⟩APC11SC11 + ⟨p⟩A⟨p⟩CSA11SC11

SA11 ∗ SC11
(B.26)

or in terms of p̄:

ck =
P̄A11 ∗ P̄C11

SA11 ∗ SC11
(B.27)

B.3 Formula for Var
(
vn{2}2

)
dyn

The variance of vn{2}2 is given by:

Var(vn22) = ⟨4⟩ − ⟨2⟩2 (B.28)
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where ⟨2⟩ is the 2-particle correlation and ⟨4⟩ is the 4-particle correlation in an event.

B.3.1 Standard

Two-particle correlation:

⟨2⟩ = ∑i ∑′
j wiwjein(ϕi−ϕj)

∑i ∑′
j wiwj

(B.29)

=
∑i ∑j wiwjein(ϕi−ϕj) − ∑i w2

i

∑i ∑j wiwj − ∑i w2
i

(B.30)

=
|Q11|2 − S12

S21 − S12
(B.31)

Four-particle correlation:

⟨4⟩ = ∑i ∑′
j ∑′

h ∑′
l wiwjwhwlein(ϕi+ϕj−ϕh−ϕl)

∑i ∑′
j ∑′

h ∑′
l wiwjwhwl

(B.32)

The denominator can be expanded as:

D = ∑
i

′
∑

j

′
∑
h

′
∑

l
wiwjwhwl

= ∑
i

∑
j

∑
h

∑
l

wiwjwhwl − 6 ∑
i

′
∑

j

′
∑
h

w2
i wjwh − 4 ∑

i

′
∑

j
w3

i wj − 3 ∑
i

′
∑

j
w2

i w2
j − ∑

i
w4

i

= S41 − 6(S12S11S11 − 2 ∑
i

′
∑

j
w3

i wj − ∑
i

′
∑

j
w2

i w2
j − S14)− 4(S13S11 − S14)− 3(S22 − S14)− S14

= S41 − 4S13S11 − 3S22 − 6S21S12 + 12S14 + 12 ∑
i

′
∑

j
w3

i wj + 6 ∑
i

′
∑

j
w2

i w2
j

= S41 − 4S13S11 − 3S22 − 6S21S12 + 12S14 + 12(S13S11 − S14) + 6(S22 − S14)

= S41 + 8S13S11 + 3S22 − 6S21S12 − 6S14
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The numerator can be expanded as:

N = ∑
i

′
∑

j

′
∑
h

′
∑

l
wiwjwhwlein(ϕi+ϕj−ϕh−ϕl)

= ∑
i

∑
j

∑
h

∑
l

wiwjwhwlein(ϕi+ϕj−ϕh−ϕl) − 4 ∑
i

′
∑

j

′
∑
h

w2
i wjwhein(ϕj−ϕh)

− 2 ∑
i

′
∑

j

′
∑
h

w2
i wjwhein(2ϕi−ϕj−ϕh) − 4 ∑

i

′
∑

j
w3

i wjein(ϕi−ϕj)

− ∑
i

′
∑

j
w2

i w2
j ei2n(ϕi−ϕj) − 2 ∑

i

′
∑

j
w2

i w2
j − ∑

i
w4

i

= |Q11|4 − S14

− 4(S12|Q11|2 − 2 ∑
i

′
∑

j
w3

i wjein(ϕi−ϕj) − ∑
i

′
∑

j
w2

i w2
j − S14)

− 2(Q22Q∗
11Q∗

11 − 2 ∑
i

′
∑

j
w3

i wjein(ϕi−ϕj) − ∑
i

′
∑

j
w2

i w2
j ei2n(ϕi−ϕj) − S14)

− 4(Q13Q∗
11 − S14)− (|Q22|2 − S14)− 2(S22 − S14)

= |Q11|4 − |Q22|2 − 2Q22Q∗
11Q∗

11 − 4Q13Q∗
11 − 4S12|Q11|2 − 2S22 + 12S14

+ 12 ∑
i

′
∑

j
w3

i wjein(ϕi−ϕj) + 2 ∑
i

′
∑

j
w2

i w2
j ei2n(ϕi−ϕj) + 4 ∑

i

′
∑

j
w2

i w2
j

= |Q11|4 − |Q22|2 − 2Q22Q∗
11Q∗

11 − 4Q13Q∗
11 − 4S12|Q11|2 − 2S22 + 12S14

+ 12(Q13Q∗
11 − S14) + 2(|Q22|2 − S14) + 4(S22 − S14)

= |Q11|4 + |Q22|2 − 2Q22Q∗
11Q∗

11 + 8Q13Q∗
11 − 4S12|Q11|2 + 2S22 − 6S14

So the final form of ⟨4⟩ is:

⟨4⟩ = |Q11|4 + |Q22|2 − 2ℜ(Q22Q∗
11Q∗

11) + 8ℜ(Q13Q∗
11)− 4S12|Q11|2 + 2S22 − 6S14

S41 + 8S13S11 + 3S22 − 6S21S12 − 6S14

(B.33)

B.3.2 Two-subevent

Two-particle correlation:

⟨2⟩a|c =
∑i ∑j wiwjein(ϕi−ϕj)

∑i ∑j wiwj
(B.34)

=
ℜ(QA11Q∗

C11)

SA11SC11
(B.35)
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Particle i is from subevent A and particle j is from subevent C. Four-particle
correlation:

⟨4⟩aa|cc =
∑i ∑′

j ∑h ∑′
l wiwjwhwlein(ϕi+ϕj−ϕh−ϕl)

∑i ∑′
j ∑h ∑′

l wiwjwhwl
(B.36)

Particle i and j are from subevent A and particle h and l are from subevent C. The
denominator can be expanded as:

D = ∑
i

′
∑

j
∑
h

′
∑

l
wiwjwhwl

= ∑
i

∑
j

∑
h

∑
l

wiwjwhwl − ∑
i

∑
h

′
∑

l
w2

i whwl − ∑
i

′
∑

j
∑
h

wiwjw2
h − ∑

i
∑
h

w2
i w2

h

= SA21SC21 − (SA12SC21 − SA12SC12)− (SA21SC12 − SA12SC12)− SA12SC12

= SA21SC21 − SA12SC21 − SA21SC12 + SA12SC12

= (SA21 − SA12)(SC21 − SC12)

The numerator can be expanded as:

N = ∑
i

′
∑

j
∑
h

′
∑

l
wiwjwhwlein(ϕi+ϕj−ϕh−ϕl)

= ∑
i

∑
j

∑
h

∑
l

wiwjwhwlein(ϕi+ϕj−ϕh−ϕl)

− ∑
i

∑
h

′
∑

l
w2

i wjwhein(2ϕi−ϕh−ϕl)

− ∑
i

′
∑

j
∑
h

wiwjw2
hein(ϕi+ϕj−2ϕh)

− ∑
i

∑
h

w2
i w2

hein2(ϕi−ϕh)

= |QA11Q∗
C11|2 − (QA22Q∗

C11Q∗
C11 − QA22Q∗

C22)

− (QA11QA11Q∗
C22 − QA22Q∗

C22)− QA22Q∗
C22

= |QA11Q∗
C11|2 − QA22Q∗

C11Q∗
C11 − QA11QA11Q∗

C22 + QA22Q∗
C22

= (Q2
A11 − QA22)(Q2

C11 − QC22)
∗

So the final form of ⟨4⟩aa|cc is:

⟨4⟩aa|cc =
ℜ(Q2

A11 − QA22)ℜ(Q∗2
C11 − Q∗

C22)

(SA21 − SA12)(SC21 − SC12)
(B.37)
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B.4 Formulae using q-vectors

Recall the definitions:

Qnk =∑
i

wk
i einϕi (B.38)

Smk =(∑
i

wk
i )

m (B.39)

Onk =∑
i

wk
i einϕi pi (B.40)

Pmk =∑
i

wk
i pm

i (B.41)

⟨p⟩ = 1
Nev

∑
evts

∑i wi pi

∑i wi
(B.42)

Lets define some normalized quantities:

q̂nk = Qnk/S1k (B.43)

ônk = Onk/S1k (B.44)

p̂nk = Pmk/S1k (B.45)

τk =
∑i wk+1

i
(∑i wi)k+1 (B.46)

=
S1,k+1

Sk+1,1
(B.47)

1. FSE 2-particle correlation:

⟨2⟩ = |Q11|2 − S12

S21 − S12
(B.48)

=
|q̂11|2 − S12/S21

1 − S12/S21
(B.49)

=
|q̂11|2 − τ1

1 − τ1
(B.50)

2. 2-SE 2-particle correlation:

⟨2⟩a|c =
ℜ(QA11Q∗

C11)

SA11SC11
(B.51)

= ℜ(q̂A11q̂∗C11) (B.52)
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3. FSE 4-particle correlation:

⟨4⟩ = |Q11|4 + |Q22|2 − 2ℜ(Q22Q∗
11Q∗

11) + 8ℜ(Q13Q∗
11)− 4S12|Q11|2 + 2S22 − 6S14

S41 + 8S13S11 + 3S22 − 6S21S12 − 6S14

(B.53)

=
|q̂11|4 + τ2

1 |q̂22|2 − 2τ1q̂22q̂∗11q̂∗11 + 8τ2q̂13q̂∗11 − 4τ1|q̂11|2 + 2τ2
1 − 6τ3

1 + 8τ2 + 3τ2
1 − 6τ1 − 6τ3

(B.54)

=
|q̂11|4 + τ2

1 (2 + |q̂22|2)− 2τ1(q̂22q̂∗11q̂∗11 + 2|q̂11|2) + 8τ2q̂13q̂∗11 − 6τ3

1 − 6τ1 + 8τ2 + 3τ2
1 − 6τ3

(B.55)

4. 2-SE 4-particle correlation:

⟨4⟩aa|cc =
ℜ(Q2

A11 − QA22)ℜ(Q∗2
C11 − Q∗

C22)

(SA21 − SA12)(SC21 − SC12)
(B.56)

=
ℜ(q̂2

A11 − τA1q̂A22)ℜ(q̂∗2
C11 − τC1q̂∗C22)

(1 − τA1)(1 − τC1)
(B.57)

5. 3-SE Covariance:

Cov[3SE] =
ℜ(QAn1Q∗

Cn1)PB11 − ⟨p⟩ℜ(QAn1Q∗
Cn1)SB11

SA11SC11SB11
(B.58)

= ℜ(q̂An1q̂∗Cn1) p̂B11 − ⟨p⟩ℜ(q̂An1q̂∗Cn1) (B.59)

= ℜ(q̂An1q̂∗Cn1)( p̂B11 − ⟨p⟩) (B.60)

6. FSE Covariance:

Cov[FSE] =
|Qn1|2P11 − S12P11 − 2ℜ(On2Q∗

n1) + 2P13

S31 − 3S12S11 + 2S13
(B.61)

− ⟨p⟩ |Qn1|2S11 − S12S11 − 2ℜ(Qn2Q∗
n1) + 2S13

S31 − 3S12S11 + 2S13
(B.62)

=
|q̂n1|2 p̂11 − τ1 p̂11 − 2τ1ℜ(ôn2q̂∗n1) + 2τ2 p̂13

1 − 3τ1 + 2τ2
(B.63)

− ⟨p⟩ |q̂n1|2 − τ1 − 2τ1ℜ(q̂n2q̂∗n1) + 2τ2

1 − 3τ1 + 2τ2
(B.64)

=
|q̂n1|2( p̂11 − ⟨p⟩)− τ1( p̂11 − ⟨p⟩)− 2τ1(ℜ(ôn2q̂∗n1)− ⟨p⟩ℜ(q̂n2q̂∗n1)) + 2τ2( p̂13 − ⟨p⟩)

1 − 3τ1 + 2τ2

(B.65)
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7. 2-SE Covariance:

Cov[2SE] =
ℜ(QAn1Q∗

Cn1)P11 −ℜ(OAn2Q∗
Cn1)−ℜ(QAn1O∗

Cn2)

SA11SC11S11 − SA12SC11 − SA11SC12
(B.66)

− ⟨p⟩ℜ(QAn1Q∗
Cn1)S11 −ℜ(QAn2Q∗

Cn1)−ℜ(QAn1Q∗
Cn2)

SA11SC11S11 − SA12SC11 − SA11SC12
(B.67)

=
ℜ(q̂An1q̂∗Cn1) p̂11 − τA1(SA11/S11)ℜ(ôAn2q̂∗Cn1)− τC1(SC11/S11)ℜ(q̂An1ô∗Cn2)

1 − τA1(SA11/S11)− τC1(SC11/S11)

(B.68)

− ⟨p⟩ℜ(q̂An1q̂∗Cn1)− τA1(SA11/S11)ℜ(q̂An2q̂∗Cn1)− τC1(SC11/S11)ℜ(q̂An1q̂∗Cn2)

1 − τA1(SA11/S11)− τC1(SC11/S11)

(B.69)

=
ℜ(q̂An1q̂∗Cn1) p̂11 − τA1αAℜ(ôAn2q̂∗Cn1)− τC1αCℜ(q̂An1ô∗Cn2)

1 − τA1αA − τC1αC
(B.70)

− ⟨p⟩ℜ(q̂An1q̂∗Cn1)− τA1αAℜ(q̂An2q̂∗Cn1)− τC1αCℜ(q̂An1q̂∗Cn2)

1 − τA1αA − τC1αC
(B.71)

= ℜ(q̂An1q̂∗Cn1)( p̂11 − ⟨p⟩)− τA1αA(ℜ(ôAn2q̂∗Cn1)− ⟨p⟩ℜ(q̂An2q̂∗Cn1))

(B.72)

{−τC1αC(ℜ(q̂An1ô∗Cn2)− ⟨p⟩ℜ(q̂An1q̂∗Cn2))}/{1 − τA1αA − τC1αC}
(B.73)

where αA = SA11/S11 and αC = SC11/S11.
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C Correction for detector azimuthal
non-uniformities

Two data-driven method are used in order to correct for detector azimuthal
non-uniformities. In one approach the average complex ⟨qn⟩ vectors are obtained for
each of the sub-event and kinematic region. These values are then used to correct the
qn in every formula involving it. For example qn = ∑ wk exp(−inϕk) is replaced by

∑ wk[exp(−inϕk)− ⟨qn⟩]. The ⟨qn⟩ biases were obtained as a function of Ntracks but
since no obvious trends were observed an average over whole range of the Ntracks,
obtained via fitting a constant, was used. An example of biases for a pT interval and
3 sub-events used in the analysis is show in Fig. C.1. As a closure test the ⟨qn⟩ is
obtained after correcting each qn vector. The ⟨qn⟩(Ntracks) is shown in Fig. C.2 for the
same pT interval and the same 3 sub-events. Figures C.3 and C.4 show the sets of
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Figure C.1: Comparison of ⟨qn⟩(Ntracks) for three sub-events, A - left,
all - center, and C on the right. Fitted constant function are the mean
values of q-biases used in the analysis.
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Figure C.2: Comparison of ⟨qn⟩(Ntracks) for three sub-events, A - left,
all - center, and C on the right after the mean ⟨qn⟩ correction.
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real and imaginary parts of the q-vectors samples for different pT and η ranges before
and after the corrections are applied.

Another method to correct azimuthal bias is to apply the weight to each
track so that the weighted distribution in ϕ is exactly uniform. In this ap-
proach weights are obtained for ranges of track kinematics: ∆pT × ∆η × ∆ϕ =

[(0.2, 0.5), (0.5, 0.8), (0.8, 1.0), (1.0, 1.5), (1.5, 3.0), (3.0, 5.0)]GeV × 0.1 × 2π/64. They
are chosen so that overall normalization in ∆η slices remains unchanged and therefore
is equal to w(pT, η, ϕ) = Ntracks(pT, η)/[Ntracks(pT, η, ϕ) ∗ 64]. For low momentum
tracks the weight can be different for positively and negatively charged tracks and
thus the procedure depends on the charge as well. Example map of flattening weights
and Ntracks(η, ϕ) before and after correction are show in Fig. C.5.

As a result of flattening the ⟨qn⟩ biases should disappear. That is indeed the case
as illustrated in Fig. C.6. (To be compared to the biases shown in Fig.C.1.)
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Figure C.3: Real part of q2 for p+Pb 5.02 TeV before correction.
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Figure C.4: Real part of q2 for p+Pb 5.02 TeV after correction.



Appendix C. Correction for detector azimuthal non-uniformities 117

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_2_5_pos_looseetaphi_map

10000

20000

30000

40000

50000

60000
InternalATLAS  < 0.5 GeV

T
loose track sel, e+, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_2_5_pos_looseetaphi_map_weights

0.7

0.8

0.9

1

1.1

1.2

1.3
InternalATLAS  < 0.5 GeV

T
loose track sel, e+, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_2_5_pos_looseetaphi_map_weighted

10000

20000

30000

40000

50000

60000
InternalATLAS  < 0.5 GeV

T
loose track sel, e+, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_2_5_neg_looseetaphi_map

10000

20000

30000

40000

50000

60000
InternalATLAS  < 0.5 GeV

T
loose track sel, e-, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6
φ

pt_2_5_neg_looseetaphi_map_weights

0.7

0.8

0.9

1

1.1

1.2

1.3
InternalATLAS  < 0.5 GeV

T
loose track sel, e-, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_2_5_neg_looseetaphi_map_weighted

10000

20000

30000

40000

50000

60000
InternalATLAS  < 0.5 GeV

T
loose track sel, e-, 0.2 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_5_8_neg_looseetaphi_map

10000

15000

20000

25000

30000

InternalATLAS  < 0.8 GeV
T

loose track sel, e-, 0.5 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6

φ

pt_5_8_neg_looseetaphi_map_weights

0.7

0.8

0.9

1

1.1

1.2

1.3
InternalATLAS  < 0.8 GeV

T
loose track sel, e-, 0.5 < p

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0

1

2

3

4

5

6
φ

pt_5_8_neg_looseetaphi_map_weighted

10000

15000

20000

25000

30000

InternalATLAS  < 0.8 GeV
T

loose track sel, e-, 0.5 < p

Figure C.5: Ntracks(η, ϕ) before (left) and after (right) the flattening
procedure. In the middle the weight w(η, ϕ) are shown. The top row
distributions for positively, the middle for negatively charged particles
of 0.2 < pT < 0.5 GeV and the bottom row for negatively charged tracks
of slightly higher pT range 0.5-0.8 GeV.
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Figure C.6: The ⟨qn⟩(Ntracks) obtained after applying flattening
procedure for three sub-events, A - left, all - center, and C on the
right.
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D Systematic uncertainties figures

The differences between the baseline measurement and the systematic variations,
and the value of statistical uncertainties (black lines) are presented in the following
sections from Figure D.1-D.43.
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Figure D.1: The [pT] of different systematic uncertainties sources and
baseline measurement ∆source in various pT ranges.
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Figure D.2: Difference of ck in pp 5.02 TeV between different systematic
uncertainties sources and baseline measurement ∆source in various pT
ranges, statistical uncertainty for baseline measurement is shown as a
black line.
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Figure D.3: Difference of ck in pp 13 TeV between different systematic
uncertainties sources and baseline measurement ∆source in various pT
ranges, statistical uncertainty for baseline measurement is shown as a
black line.
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Figure D.4: Difference of ck in p+Pb 5.02 TeV between different
systematic uncertainties sources and baseline measurement ∆source
in various pT ranges, statistical uncertainty for baseline measurement
is shown as a black line.
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Figure D.5: Difference of 1-sub-event Var
(
v2{2}2)

dyn in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.6: Difference of Var
(
v2{2}2)

dyn in pp 13 TeV between differ-
ent systematic uncertainties sources and baseline measurement ∆source
in various pT ranges, statistical uncertainty for baseline measurement
is shown as a black line.
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Figure D.7: Difference of Var
(
v2{2}2)

dyn in p+Pb 5.02 TeV between
different systematic uncertainties sources and baseline measurement
∆source in various pT ranges, statistical uncertainty for baseline
measurement is shown as a black line.
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Figure D.8: Difference of 1-sub-event cov(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.9: Difference of 1-sub-event cov(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.10: Difference of 1-sub-event cov(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.11: Difference of 2-sub-event cov(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.12: Difference of 2-sub-event cov(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.13: Difference of 2-sub-event cov(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.14: Difference of 3-sub-event cov(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.15: Difference of 3-sub-event cov(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.16: Difference of 3-sub-event cov(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.17: Difference of 1-sub-event ρ(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.18: Difference of 1-sub-event ρ(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.

20 30 40 50 60 70 80 90 100 110

trkN

0.025−

0.02−

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

0.02

Tp
, 2

2
2v

 ρ∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 2 GeV≤ 
T

 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

0.05−

0.04−

0.03−

0.02−

0.01−

0

Tp
, 2

2
2v

 ρ∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 5 GeV≤ 
T

 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

0.12−

0.1−

0.08−

0.06−

0.04−

0.02−

0

0.02

Tp
, 2

2
2v

 ρ∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 2 GeV≤ 
T

 p≤0.5 

Figure D.19: Difference of 1-sub-event ρ(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.

20 30 40 50 60 70 80 90 100 110

trkN

0.2−

0.15−

0.1−

0.05−

0

0.05

0.1

Tp
, 2

2
2v

 ρ∆

2 subevents
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs, pp
 2 GeV≤ 

T
 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

0.15−

0.1−

0.05−

0

0.05

0.1

0.15Tp
, 2

2
2v

 ρ∆

2 subevents
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs, pp
 5 GeV≤ 

T
 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

0.3−

0.25−

0.2−

0.15−

0.1−

0.05−

0

0.05

0.1

Tp
, 2

2
2v

 ρ∆

2 subevents
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs, pp
 2 GeV≤ 

T
 p≤0.5 

Figure D.20: Difference of 2-sub-event ρ(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.21: Difference of 2-sub-event ρ(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.22: Difference of 2-sub-event ρ(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.23: Difference of 3-sub-event ρ(v2{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.24: Difference of 3-sub-event ρ(v2{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.25: Difference of 3-sub-event ρ(v2{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.26: Difference of Var
(
v3{2}2)

dyn in pp 5.02 TeV between
different systematic uncertainties sources and baseline measurement
∆source in various pT ranges, statistical uncertainty for baseline
measurement is shown as a black line.
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Figure D.27: Difference of Var
(
v3{2}2)

dyn in pp 13 TeV between
different systematic uncertainties sources and baseline measurement
∆source in various pT ranges, statistical uncertainty for baseline
measurement is shown as a black line.
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Figure D.28: Difference of Var
(
v3{2}2)

dyn in p+Pb 5.02 TeV between
different systematic uncertainties sources and baseline measurement
∆source in various pT ranges, statistical uncertainty for baseline
measurement is shown as a black line.
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Figure D.29: Difference of 1-sub-event cov(v3{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.30: Difference of 1-sub-event cov(v3{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.

20 30 40 50 60 70 80 90 100 110

trkN

0

0.5

1

1.5

2

6−10×

 [G
eV

]
Tp

, 2
2

3v
C

ov
∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 2 GeV≤ 
T

 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

2−

1−

0

1

2

3
6−10×

 [G
eV

]
Tp

, 2
2

3v
C

ov
∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 5 GeV≤ 
T

 p≤0.3 

20 30 40 50 60 70 80 90 100 110

trkN

2−

1.5−

1−

0.5−

0

0.5

6−10×

 [G
eV

]
Tp

, 2
2

3v
C

ov
∆

1 subevent
Default
HITight
Eff. up
Eff. down
Flattening

 = 5.02 TeVs+Pb, p

 2 GeV≤ 
T

 p≤0.5 

Figure D.31: Difference of 1-sub-event cov(v3{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.32: Difference of 2-sub-event cov(v3{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.33: Difference of 2-sub-event cov(v3{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.34: Difference of 2-sub-event cov(v3{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.35: Difference of 3-sub-event cov(v3{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.36: Difference of 3-sub-event cov(v3{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.37: Difference of 3-sub-event cov(v3{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.38: Difference of 1-sub-event ρ(v3{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.39: Difference of 1-sub-event ρ(v3{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.40: Difference of 1-sub-event ρ(v3{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.41: Difference of 3-sub-event ρ(v3{2}2, [pT]) in pp 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.42: Difference of 3-sub-event ρ(v3{2}2, [pT]) in pp 13
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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Figure D.43: Difference of 3-sub-event ρ(v3{2}2, [pT]) in p+Pb 5.02
TeV between different systematic uncertainties sources and baseline
measurement ∆source in various pT ranges, statistical uncertainty for
baseline measurement is shown as a black line.
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