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1 Введение
Хорошо известно, в системах киральных фермионных частиц могут проявляться
транспортные эффекты, тесно связанные с аномалиями в квантовой теории поля
(КТП). Эти киральные эффекты могут существенно влиять на динамику различ-
ных систем: от кварк-глюонной плазмы (КГП) в экспериментах по столкновению
тяжелых ионов до Вейлевских и Дираковских полуметаллов, и поэтому они до сих
пор привлекают значительное внимание в литературе, см., например, обзоры [1, 2].
Недавно было замечено, что некоторые киральные эффекты можно обобщить на
системы фотонов и других безмассовых частиц (или квазичастиц) со спином s > 1
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см. работы [3, 4]. В частности, было показано, что во вращающемся фотонном газе
проявляется киральный вихревой эффект (CVE) для фотонов - разделение кру-
говых поляризаций вдоль угловой скорости вращения [4, 5, 6, 7]. Это приводит к
генерации плотности тока магнитной спиральности, что в свою очередь связано с
поправками в фермионный CVE [8, 9] и, кроме того, может влиять на динамику
микроскопических и макроскопических спиральностей в киральных средах, приво-
дя к новому классу нестабильностей [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Киральные эффекты во внешних электромагнитных полях можно явно связать с
аксиальной аномалией. Вопрос микроскопического происхождения киральных вих-
ревых эффектов, особенно температурной части, более сложный, и все еще активно
обсуждается, см. обзоры [1, 2] и ссылки в них. Действительно, вихревые эффекты
проявляются даже в отсутствие электромагнитных полей, когда аксиальная анома-
лия выключена. Более того, температурная часть CVE в фермионном аксиальном
токе остается даже в пределе нулевого заряда фермионов по электромагнитным
полям. В литературе существуют точки зрения, что эта часть вихревого эффек-
та происходит из смешанной гравитационной аномалиии [23, 24] или глобальной
гравитационной аномалии [8, 9], но окончательного согласия по этим гипотезам
не достигнуто [4, 7, 25, 26, 27]. Тем не менее, если связь между термальной ча-
стью CVE и смешанной гравитационной аномалии существует [4, 28], то можно
ожидать, что и фотонный CVE следует из аксиальной аномалии для фотонов в
гравитационном поле [29, 30, 31, 32].
Одним из подходов, который позволяет связать CVE для разных спинов, является
киральная кинетическая теория (CKT). В этом подходе аномальный киральный
транспорт фермионов происходит из топологической фазы Берри, которая также
связана с аномалией [33]. CKT может быть получена в рамках разных методов:
из классического действия [33, 34, 35, 36, 37, 38, 39, 40], из worldline формализма
[41, 42, 43], и с помощью функции Вигнера [36, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].
В этой работе мы продолжаем исследование вихревых эффектов в формализме
функции Вигнера. Несмотря на активную деятельность в этой области, основное
внимание в литературе в рамках этого подхода уделяется фермионным степеням
свободы. Эта работа стремится заполнить этот пробел. После общего обзора ки-
ральной кинетической теории в секции 2 и построения функции Вигнера для фер-
мионов в секции 3 мы обращаемся к выводу функции Вигнера для вращающегося
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фотонного газа в секции 4. В отличие от типичного подхода, состоящего в по-
строении калибровочно-инвариантной функции Вигнера, построенной из тензоров
напряженности, мы работаем с более простой “наивной” функцией Вигнера, и по-
лучаем ее для определенного класса калибровок, параметризованного единичным
вектором nµ. Оказывается, что в нашем подходе этот вектор естественным образом
играет роль фрейм-вектора в CKT [38, 39]. Для того, чтобы полностью фиксиро-
вать все свободные члены, мы используем, кроме уравнений движения, требование
калибровочной инвариантности и явные результаты для конкретных наблюдаемых
в КТП.
В качестве приложения построенного формализма мы вычисляем отклик на вра-
щение для так называемых токов суперзилчей - бесконечного набора объектов, ко-
торые в контексте кирального транспорта в фотонном газе стали обсуждаться со-
всем недавно [28, 55], и которые предлагаются в качестве локальной калибровочно-
инвариантной альтернативы обычному току спиральностиKµ = εµναβAνFαβ. Заряд
этих токов считает спиральность фотонов, взвешенную с какой-то степенью энер-
гии, и в свободной теории сохраняется. Мы покажем, что в происхождение вихре-
вого эффекта в этих токах (ZVE) в CKT обязано фазе Берри в полной аналогией
с CVE. Это позволяет сделать предположение, что если CVE связан с гравитаци-
онной аномалией, то аналогичная связь должна иметь место и для ZVE, то есть,
сохранение суперзилча должно аномально нарушаться во внешнем гравитацион-
ном поле. Наконец, возможность обобщения CKT на системы частиц произволь-
ного спина указывает, что аналогичные токи можно построить, например, и для
фермионов. Мы предлагаем вариант построения фермионных зилчей и с помощью
функции Вигнера вычисляем вихревой отклик и для них, тем самым указывая на
новый класс киральных эффектов. Все эти объекты могут оказаться полезны в
изучении нестабильностей в киральной плазме и вкладов как фермионных, так и
калибровочных полей в спиновую поляризацию адронов. Мы также надеемся, что
дальнейшее изучение этих объектов поможет прояснить связь вихревых эффектов
с аномалиями.
По результатам работы готовятся две публикации.
Везде далее мы используем “преимущественно-отрицательную” сигнатуру метрики
и нормировку ε0123 = −ε0123 = 1 для символа Леви-Чивиты.

2 Киральная кинетическая теория
Прежде чем переходить к формализму функции Вигнера, обратимся к традицион-
ной ковариантной формулировке киральной кинетической теории, которая может
быть найдена в [39], и кратко обсудим вопросы, связанные с лоренц-инвариантностью
этой теории. В [39] рассматривается фермионный случай, но он может быть пря-
мо обобщен на общий случай безмассовых частиц с произвольным (ненулевым)
спином [3].
Для безмассовых частиц разложение полного углового момента на орбитальную и
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спиновую часть

Jµν = xµpν − xνpµ + Σµν (1)

становится плохо определенным из-за свободы в определении спиновой части Σµν .
Для того, чтобы зафиксировать эту неопределенность, мы можем завести фрейм-
вектор nµ, такой, что n2 = 1 и (n · p) 6= 0, и потребовать, чтобы выполнялось
условие

pµΣµν = nµΣµν = 0 (2)

так что спин тензор Σµν имеет только пространственные компоненты в системе
покоя n. Это условие полностью фиксирует Σµν в виде:

Σµν = Σµν
n = λ ~

εµνρσpρnσ
p · n

, (3)

где λ - спиральность частицы (±1 для фотонов и ±1
2
для фермионов). Здесь и

везде далее мы будем сохранять степени ~, участвующие в квази-классическом
разложении, но положим c = kB = 1.
Физические величины не должны зависеть от выбора системы отсчета, которая
определеяется фрейм-вектором nµ. Это приводит к тому, что при смене nµ необхо-
димо менять определение координаты x для того, чтобы полный угловой момент
оставался неизменным. Этот эффект известен как сайд-джамп [56, 38, 57, 39] –
дополнительный сдвиг координат порядка O(~) безмассовой частицы при смене
системы отсчета. В свою очередь, такой сдвиг приводит к тому, что функция рас-
пределения f перестает быть лоренц-скаляром и начинает зависеть от системы
отсчета, так что наивное определение плотности тока pµf перестает быть лоренц-
вектором, и его необходимо модифицировать компенсирующей добавкой того же
порядка O(~). Как было предложено в работе [39], модифицированный ток выгля-
дит как:

jµ = pµf + Σµν
n ∂νf (4)

В равновесии система частиц описывается функцией линейной комбинации инте-
гралов движения f(g), где g = βµp

µ + 1
2
Sµνn Ωµν в декартовых координатах. Здесь

βµ - это температурный 4-вектор, удовлетворяющий T 2βµβµ = 1 и фиксирующий
определение 4-скорости элемента системы uµ = Tβµ, а Ωµν = 1

2
(∂µβν − ∂νβµ) - это

термальный тензор завихренности, см. [39]. Такой равновесный ток действительно
оказывается n-независимым и, используя тождество Шутена, в ведущем порядке
по ~ мы получаем

jµ = pµf(βνp
ν)− 1

2
λ ~ εµνρσpνΩρσf

′(β · p) +O
(
~2
)
, (5)
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где функция распределения для газа частиц в зависимости от статистики есть

f(β · p) = θ(β · p)fB,F (β · p) + θ(−β · p)fB,F (−β · p) (6)

Для вычисления ожидания какой-либо физической величины в кинетической тео-
рии мы должны вычислить интеграл по фазовому пространству одночастичной
плотности этой величины

O(x) =
∑
λ

∫
d4p

(2π)3
δ(p2) o(x, p) . (7)

Плотность o(x, p), вообще говоря, для каждой величины должна подбираться от-
дельно.

3 Функция Вигнера для фермионов
Формализм функции Вигнера для построения квантовой кинетической теории в
последнее время привлекает большое внимание, см. работы [36, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54]. Подход с функцией Вигнера позволяет описывать системы
вне равновесия и особенно удобен для изучения спиновой поляризации в системах
с вращением и внешними электромагнитными полями. Недавно появились рабо-
ты, в которых предложено описание и во внешних гравитационных полях [50]. В
этой секции, следуя классическим работам, указанным выше, мы кратко изложим
общие принципы формализма на примере фермионной функции Вигнера, выпи-
шем ее общий вид в порядке O(~) и применим для вычисления нового вихревого
эффекта в токах фермионного зилча.

3.1 Определение и общие уравнения

Функция Вигнера была предложена впервые в 1932 году как квантовый аналог
функции распределения, позволяющий вычислять средние операторов как инте-
грал по фазовому пространству от величины, ставящейся в соответствие этому опе-
ратору. В отличие от классической функции распределения, функция Вигнера не
везде положительно определена и может сильно осцилировать, особенно вне массо-
вой поверхности, поэтому интерпретация ее в качестве настоящего распределения
вероятности невозможна, и она скорее представляет инструмент для вычисления
статистических данных для различных квантовых систем. Отчасти поэтому суще-
ствуют различные определения функции Вигнера как для нерелятивистских, так
и для релятивистских систем. Мы будем придерживаться уже ставшего стандарт-
ным подхода, полное педагогическое изложение которого можно найти в учебниках
[58, 59].
Определим сначала ковариантный оператор Вигнера:
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Ŵ (x, p) =

∫
d4y

(2π~)4
e−

ipy
~ ψ̄

(
x+

1

2
y

)
⊗ ψ

(
x− 1

2
y

)
(8)

и ковариантную функцию Вигнера как его квантово-статистическое среднее:

W (x, p) = 〈: Ŵ (x, p) :〉 = Tr
{
ρ : Ŵ (x, p) :

}
(9)

где ρ - матрица плотности системы, определяющая ее состояние.W (x, p) - матрица
в спинорных индексах, явная запись дает:

Ŵab(x, p) =

∫
d4y

(2π~)4
e−

ipy
~ ψ̄b

(
x+

1

2
y

)
ψa

(
x− 1

2
y

)
(10)

Отметим, что в случае рассмотрения фермионов во внешнем или динамическом
электромагнитном поле определение (9) небходимо модифицировать, вставив меж-
ду полевыми операторами калибровочный линк [44, 46, 50]. В этой работе мы
рассматриваем вихревые эффекты, поэтому этот случай опускаем. Отметим так-
же отдельно, что в определении (9), вообще говоря, есть свобода рассматривать
нормально-упорядоченную функцию Вигнера или нет. На протяжении всей рабо-
ты мы будем рассматривать нормально упорядоченный вариант, если это не будет
оговорено отдельно.
Функция (9) позволяет вычислить ожидание любого одночастичного оператора
как интеграл по фазовому пространству (оговоримся, что это утверждение бук-
вально верно для невзаимодействующих динамически полей). Так, например, для
ожидания векторного тока имеем:

〈:Jµ(x) :〉 = 〈: ψ̄(x)γµψ :〉 =

∫
δ4p tr γµW (x, p) (11)

где tr обозначает след по спинорным и по внутренним индексам, если они есть.
Полезно для практических вычислений также иметь в виду формулу обращения

ψ̄ (x)⊗ ψ (y) =

∫
d4p e−

ip(x−y)
~ Ŵ

(
x+ y

2
, p

)
(12)

Отметим также, что можно рассматривать и многочастичные функции Вигнера и
строить аналог цепочки уравнений Боголюбова [58]. Мы этот сюжет рассматривать
не будем.
Полевые операторы в представлении Гейзенберга удовлетворяют уравнению Ди-
рака: {

i~γµ∂µψ(x) = 0

i~ψ̄(x)γµ
←−
∂ µ = 0

(13)
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Соответствующие уравнения на функцию Вигнера:{
γµ
(
pµ + i~

2
∂µ
)
W (x, p) = 0

W (x, p)γµ
(
pµ − i~

2

←−
∂ µ

)
= 0

(14)

Для их решения разложим сначала функцию Вигнера по базису алгебры Клиф-
форда:

W (x, p) =
1

4

(
F + iγ5P + γµVµ + γ5γ

µAµ +
1

2
σµνSµν

)
(15)

где σµν = i
2

[γµγν ] и γ5 = − i
4!
εµναβγ

µγνγαγβ. Коэффициенты разложения определя-
ются формулами

F = trW P = −itr γ5W Sµν = trσµνW

V µ = tr γµW Aµ = tr γµγ5W
(16)

Отметим, что из (11) следует, что V µ есть не что иное, как плотность векторного
тока. Аналогично Aµ - плотность аксиального тока. Удобно от этих функций пе-
рейти к линейным комбинациям, определяющим отдельно токи правых и левых
частиц:

Rµ =
1

2
(V µ + Aµ) Lµ =

1

2
(V µ − Aµ) (17)

В терминах этих функций уравнения (14) переписываются в виде трех систем урав-
нений

pµF − 1
2
~∂νSνµ = 0 pµP + 1

4
εµναβ~∂νSαβ = 0

~∂µF + 2pνSνµ = 0 ~∂µP − εµναβpνSαβ = 0

pµR
µ = pµL

µ = ∂µR
µ = ∂µL

µ = 0

1
2
~∂[µRν] − εµναβpαRβ = 0

1
2
~∂[µLν] + εµναβp

αLβ = 0

(18)

где антисимметризация индексов определена как a[µbν] = aµbν − aνbµ. Можно за-
метить, что уравнения на Rµ и Lµ отделяются от остальных. Таким образом, если
нас интересуют отклики в токах, мы можем рассматривать их отдельно. Реше-
ние этих уравнений проводится порядок за порядком по ~, разложение по которой
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естественным образом совпадает с разложением по градиентам. Для случая фер-
мионов это было сделано уже неоднократно и мы сразу приводим общее решение
для Rµ [44, 46]:

Rµ = 4πδ(p2) (pµ + ~Σµν
n ∂ν) f +O(~2) (19)

где Σµν
n – спин-тензор, определенный в (3) c λ = +1

2
. Обратим внимание, что это вы-

ражение совпадает с выражением для плотности тока частиц определенной поля-
ризации в фазовом пространстве (4). Используя уравнение ∂µRµ = 0 мы получаем
аналог уравнения Лиувилля для функции f :

δ(p2) pµ∂µf = 0 (20)

В равновесии f записывается в общем виде как функция f(g) линейной комби-
нации интегралов движения - числа частиц, импульса, углового момента: g =
α(x) + βµ(x)pµ + ~γµν(x)Σµν

n . Уравнение (20), которое должно выполняться при
произвольных светоподобных pµ, позволяет ограничить параметры α, βµ, γµν усло-
виями:

∂µα = 0

pµpν∂µβν = 0

γµν = 1
4
∂⊥[µβν]

(21)

где знаком ⊥ обозначена ортогональная проекция на вектор nµ, определяющий
Σn. Мы выбираем времениподобное βµ и через него определяем 4-скорость среды:
βµ = βuµ, u2 = 1, β = 1

T
. Второе из уравнений (21) говорит, что в равновесии

∂µβν + ∂νβµ = ϕ(x)gµν (22)

где ϕ - скорость расширения фермионного газа ϕ = 1
2
∂µβ

µ. Обратим внимание, что
для постоянного T она всегда равна нулю, поскольку из уравнения (22) мы имели
бы aµ = ϕ

T
βµ, а значит, aµuµ = ϕ = 0. Тот факт, что безмассовый фермионный газ

может равновесно расширяться, является следствием конформной инвариантности
теории.
Параметр α играет роль химического потенциала: α = βµ, и мы видим, что в
равновесии он должен быть константой, что является естественным требованием в
отсутствие внешних полей. Уравнения (21) таким образом позволяют фиксировать
аргумент функции распределения как:

g = βµp
µ − βµ+

~
2

Σµν
n Ωµν (23)

Саму форму функции f необходимо фиксировать каким-то независимым спосо-
бом, например, вычислением в равновесной теории поля, которое дает выражение,
совпадающее с (6).
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3.2 Приложение: вихревой эффект для фермионного зилча

Прежде чем переходить к вычислению фермионного зилча, обсудим сначала их
определение и свойства [60, 61]. Фотонный зилч впервые был введен в работе [60]
как нековариантный объект вида:

JZ =
1

2

(
E × Ė + B × Ḃ

)
, Z =

1

2

(
B · Ė −E · Ḃ

)
, (24)

который сохраняется в свободной теории Максвелла

∂0Z + ∇ · JZ = 0 . (25)

Нормировка выбрана таким образом, что соответствующий заряд Z в квантован-
ной теории считает разницу между право- и левополяризованными фотонами, взве-
шенную с квадратом их энергии [28]. Можно заметить, что на самом деле ток и
заряд зилча являются компонентами тензора

Z(3)
µνρ =

1

2

(
F̃ λ
µ ∂ρFλν − F λ

µ ∂ρF̃λν

)
, (26)

где F̃ µν = 1
2
εµνρσFρσ и уравнение (25) переписывается как ∂µZ

(3)
µ00 = 0. Как было

показано в [61], можно пойти дальше и построить бесконечную башню тензорных
токов, добавляя в определение выше производные. Общее определение зилча тогда
дается формулой

Z(s)
α1...αs

=
1

2

(
F̃ λ
α1
∂α2 ..∂αs−1Fλαs − F λ

α1
∂α2 ...∂αs−1F̃λαs

)
(27)

и удовлетворяет ∂α1Z
(s)
α1...αs = 0. Заметим, что на самом деле тензорная структура

позволяет строить разные сохраняющиейся “токи”, отвечающие одному и тому же
заряду.
В цилиндре, вращающемся с угловой скоростью Ω, в равновесии с фотонным тер-
мальным излучением, эти токи имеют ненулевое ожидание [28] и представляют
собой калибровочно-инвариантную меру поляризационного транспорта

Z(3)i
00 =

8π2T 4

45
Ωi . (28)

В этой работе мы будем работать с токами, обладающим более высокой симметри-
ей. Прямая проверка показывает, что симметризованный по всем индексам тензор
зилча тоже сохраняется в свободной теории, см. [55]. Таким образом, мы опреде-
ляем зилч как

Z̄(s)
α1..αs

= F̃λ{α1

↔
∂α2 ...

↔
∂αs−1F

λ
αs} , (29)

где симметризация индексов определена как A{a1...as} = 1
s!

∑
Aπ(a1...as) с суммой по

всем перестановкам π, и
↔
∂ = 1

2

(→
∂−

←
∂
)
. Отметим, что нетривиальные зилчи должны

быть тензорами нечетного ранга, s = 2k + 1 где k ∈ Z.
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В качестве фермионного объекта, который был бы аналогичен по свойствам фо-
тонному зилчу, мы выбираем следующий тензор:

Zα1..αs = ψ̄γ5γ{α1

↔
∂α2 ..

↔
∂αs}ψ (30)

Как и фотонный зилч, этот объект считает разницу правых и левых фермионов,
взвешенную с s − 1 степенями энергии. Нетрудно видеть, что на уравнениях дви-
жения свободной теории этот ток сохраняется:

∂µZµα2..αs
= 0 (31)

Нас интересует вихревой эффект в этом токе. В терминах функции Вигнера тензор
(30) записывается в виде

〈:Zα1..αs(x) :〉 =

= (−1)
s−1
2

~2n
∫

d4p
(2π)4

p{α1 ..pαs−1trγαs}γ5W (x, p)

= (−1)
s−1
2

~2n
∫

d4p
(2π)4

p{α1 ..pαs−1
(
Rαs}(x, p)− Lαs}(x, p)

)
(32)

Для четных s это ожидание равно нулю. Если s = 2n + 1, то, используя (19), для
случая однородно вращающегося газа имеем на оси вращения:

〈:Z i0..0(x = 0):〉 = −2(−1)n

~2n−1 π
∫

d4p
(2π)4

δ(p2)p2n
0 ε

iασρpαΩσρf
′(β · p− βµ)

− 4n(−1)n

~2n−1(2n+1)
π
∫

d4p
(2π)4

δ(p2)p2n−1
0 piε0ασρpαΩσρf

′(β · p− βµ)

= −4(−1)n(2n+3)π
3~2n−1(2n+1)

Ωi

T

∫
d4p

(2π)4
δ(p2)p2n+1

0 f ′(β · p− βµ)

(33)

Полный ответ включает в себя функцию полилогарифма и при необходимости
может быть получен из формулы выше. Мы приводим чуть более наглядный ре-
зультат для случаев µ = 0:

〈:Z i0..0(x = 0):〉 = (−1)n

3π2~2n−1 ΩiT 2n+2
(
1− 1

2n+1

) (2n+3)!
2n+1

ζ(2n+ 2) (34)

И случая T = 0:

〈:Z i0..0(x = 0):〉 = (−1)n

6π2~2n−1
2n+3
2n+1

Ωiµ2n+2 (35)

Если положить s = 1, то есть n = 0, мы восстанавливаем обычные выражения для
фермионного CVE.
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4 Функция Вигнера для фотонов
Недавние работы, связанные с применением формализма функции Вигнера каса-
ются преимущественно фермионных степеней свободы. В этой секции мы развива-
ем ранние работы [62, 63] и строим функцию Вигнера для вращающегося фотон-
ного газа. Построенная функция Вигнера дает возможность получать плотности
физических величин, соответствующих одночастичным операторам, в CKT.
Определим сначала калибровочно-зависимую функцию Вигнера для абелевого ка-
либровочного поля:

W µν(x, p) =

∫
d4y

(2π~)4
e−

i
~p·y〈: Aµ

(
x+

y

2

)
Aν
(
x− y

2

)
:〉 , (36)

Если можно пренебречь взаимодействиями, то уравнения на эту функцию, следу-
ющие из уравнение движения на свободные поля, в калибровке Лоренца выглядят
следующим образом:

(
p2 − ~2

4
∂2

)
W µν(x, p) = 0, (37)

~ p · ∂W µν(x, p) = 0 . (38)

Калибровочное условие ∂µAµ = 0 дополнительно дает уравнения:

(
pα − i

~
2
∂α

)
Wαµ(x, p) =

(
pα + i

~
2
∂α

)
W µα(x, p) = 0 (39)

Кроме того, мы фиксируем остаточную калибровочную свободу условием:

nαW
αµ(x, p) = nαW

µα(x, p) = 0 , (40)

где n – времениподобный единичный вектор: n2 = 1, a priori не имеющим ни-
чего общего с вектором, фиксирующим систему отсчета в (3). Заметим, что для
свободных электромагнитных полей Лоренцево калибровочное условие полностью
совместимо с кулоновским условием, а вектор nµ классифицирует семейство таких
калибровок.
Эти уравнения, как обычно, изучаются порядок за порядком по ∂ или, что экви-
валентно, по ~, и мы ищем решение в виде:

W µν = W (0)µν + ~W (1)µν + . . . . (41)
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4.1 Нулевой порядок

В ведущем порядке уравнения движения принимают вид:

p2W (0)µν(x, p) = 0

p · ∂W (0)µν(x, p) = 0 .
(42)

Калибровочные условия сводятся к требованиям:

pαW
(0)αµ(x, p) = pαW

(0)µα(x, p) = 0

nαW
αµ(x, p) = nαW

µα(x, p) = 0 .
(43)

Как и в фермионном случае, нам необходимо сначала фиксировать форму общего
скалярного множителя, который играет роль функции распределения, и не фик-
сируется однозначно уравнениями движения и калибровочными условиями. Мы
опять используем анзац, мотивированный вычислением в термальной теории поля
для (36) в случае статичного однородного газа:

W (0)µν(x, p) = P µν
n F (x, p)δ(p2), (44)

где P µν
n = −gµν + pµnν+pνnµ

p·n − pµpν

(p·n)2
– калибровочный проектор. Неопределенная

функция F (x, p) удовлетворяет уравнению Лиувилля p · ∂F (x, p) = 0. Отметим,
что в общем случае W (0)µν не обязана быть симметричным тензором, но антисим-
метричные вклады исчезают в однородном пределе.

4.2 Первый порядок

В первом порядке по ~ уравнения движения выглядят следующим образом:

p2W (1)µν(x, p) = 0

p · ∂W (1)µν(x, p) = 0,
(45)

Калибровочные условия на W (1)µν дополнительно дают:

pαW
(1)αµ(x, p)− i

2
∂αW

(0)αµ(x, p) = 0, (46)

pαW
(1)µα(x, p) +

i

2
∂αW

(0)µα(x, p) = 0, (47)

nαW
(1)αµ(x, p) = nαW

(1)µα(x, p) = 0. (48)

Для построения общего вида W (1)µν разложим сначала ее на симметричную и ан-
тисимметричную части W (1) = W

(1)
S + W

(1)
A . В терминах этих частей лоренцево

калибровочное условие записывается как:
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pαW
(1)αµ
S = 0 , pαW

(1)αµ
A =

i

2
P µα
n ∂αF (x, p)δ(p2) . (49)

Здесь надо сделать определенную оговорку. Мы видим, что уравнения на симмет-
ричную часть не отличаются от уравнений для W (0). В частности, вклад от W (1)

S

можно интерпретировать как приходящий из модификации аргумента функции
F (x, p) в W (0), членами O(~), не зависящими от поляризации. Этот аргумент и
явная проверка в конкретных вычислениях в следующих подсекциях показыва-
ют, что симметричная часть W (1) не дает вкладов в поляризационный транспорт.
Таким образом, мы фокусируемся на определении W (1)µν

A . Без ограничения общно-
сти мы можем параметризовать антисимметричную часть Вигнеровской функции,
удовлетворяющей уравнениям (48) как

W
(1)µν
A = εµνρσ nρHσ(x, p)δ(p2) , (50)

где Hµ – это произвольная функция, удовлетворяющая условию H ·n = 0. Подста-
новка (50) в (49) дает:

εµνρσ pνnρHσ(x, p)δ(p2) = − i
2
P µα
n ∂αF (x, p)δ(p2) (51)

В общем случае можем представить решение этого уравнения в виде:

Hµ(x, p) = − i
2
εµνρσ

pνnρ

(p · n)2
∂σF (x, p)− i p̃µ

(p · n)2
U(x, p) , (52)

где мы определили p̃µ = pµ − nµ(p · n) – ортогональную проекцию pµ на nµ, а U
представляет собой однородную часть решения. В уравнении выше мы дополни-
тельно использовали уравнение Лиувилля p · ∂F (x, p) = 0. Таким образом, общее
решение для W (1)

A записывается в виде:

W
(1)µν
A = − i

2

p̃[µP
ν]α
n

(p · n)2
∂αF (x, p)δ(p2) + iεµνρσ

pρnσ
p · n

U(x, p)δ(p2) , (53)

Как будет видно дальше, функция U уже дает вклад в поляризационный транс-
порт, и поэтому ее необходимо фиксировать. С другой стороны, все уравнения, с
помощью которых это можно было бы сделать, нами уже использованы. Оказыва-
ется, однако, что эту проблему можно частично решить, потребовав явно калиб-
ровочной независимости для функции Вигнера, определенной для тензора напря-
женности калибровочного поля:

Y µνρσ(x, p) = ~2

∫
d4y

(2π~)4
e−

i
~p·y〈: F µν

(
x+

y

2

)
F ρσ

(
x− y

2

)
:〉 (54)
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которая удовлетворяет уравнениям(
p− i

2
~∂
)
µ
Y µνρσ(x, p) = 0(

p+ i
2
~∂
)
ρ
Y µνρσ(x, p) = 0 .

(55)

Обратим внимание, что мы перемасштабировали Y µνρσ на ~2, чтобы связать гра-
диентное разложение с квазиклассическим. Вклад нулевого порядка в Y µνρσ прямо
следует из (44) и определяется явно калибровочно-инвариантным выражением

Y (0)µνρσ(x, p) = −p[µgν][σpρ]F (x, p)δ(p2) . (56)

В первом порядке мы раскладываем Y µνρσ на два слагаемых, симметричное и ан-
тисимметричное по отношению к перестановке индексов µν ↔ ρσ. Точно так же,
как в случае с W (1)

S , мы никак не ограничиваем Y
(1)
S , поскольку эта часть не да-

ет вклада в поляризационный транспорт, и фокусируемся на антисимметричной
части

Y
(1)µνρσ
A (x, p) = p[µW

(1)ν][σ
A pρ] +

i

2
∂[ρW (0)σ][νpµ] − i

2
∂[µW (0)ν][σpρ] . (57)

подставляя калибровочно-зависимые функции (44) и (53) в (57) получаем:

Y
(1)µνρσ
A (x, p) = − i

2

(
p[µgν][σ∂ρ] − p[ρgσ][ν∂µ]

)
F (x, p)δ(p2)

+i

(
p[µnν]p[σ∂ρ]

p · n
− p[ρnσ]p[ν∂µ]

p · n

)
F (x, p)δ(p2)

+ip[µεν]λγ[σpρ]pλnγ
p · n

U(x, p)δ(p2) . (58)

Вторая и третья строчка в выражении выше явно зависят от калибровки через n,
и, потенциально, через функцию U(x, p). Тут уместно повторить рассуждения про
общий вид равновесной функции распределения F (x, p), которые были приведены
в предыдущей секции. В этой секции мы будем писать F = F (β · p), имея в виду,
что добавки в аргумент порядка O(~), зависят они от полризации или нет, зашиты
в определение W (1). Опять же, на уравнениях движения βµ(x), как и в фермион-
ном случае, удовлетворяет конформному уравнению Киллинга ∂µβν +∂νβµ = gµν φ,
где φ - произвольная скалярная функция, исчезающая при T = const. После неко-
торых вычислений можно видеть, что требование калибровочной инвариантности
фиксирует

U =
1

2
εµνρσ

pρnσ
p · n

ΩµνF
′(β · p) + U0 , (59)
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где U0 есть n-независимая часть U . В итоге для калибровочно-инвариантной функ-
ции Вигнера имеем:

Y
(1)µνρσ
A (x, p) = − i

2

(
p[µgν][σ∂ρ] − p[ρgσ][ν∂µ]

)
F (β · p)δ(p2)

+ip[µΩν][σpρ]F ′(β · p)δ(p2) + iεµνλ[σpρ]pλU0(x, p)δ(p2) , (60)

Таким образом, мы фиксировали всю антисимметричную часть функции Вигне-
ра с точностью до функции U0. Для того, чтобы прояснить физический смысл
разных частей этой функции, мы можем вычислить с помощью нее какую-нибудь
физическую величину. Этим мы и займемся в следующей секции.

4.3 Приложение: фотонный зилч

Используя построенную функцию Вигнера, мы можем вычислить ведущий вклад
в ток фотонного зилча (29), ожидание которого записывается в виде:〈

: Z̄
(s)
α1..αs :

〉
=

= 2 (−1)
s+1
2

~s−1

∫
d4p

[
p{α2 ..pαs

] (
pα1}U + εα1}µνσ

pµnν

p·n ∂
σF (β · p)

)
δ(p2) .

(61)

Это выражение уже позволяет провести некоторые рассуждение о физическом
смысле U . Прежде всего заметим, что форма фиксированной части U позволя-
ет нам идентифицировать в уравнении выше фазовую плотность для тока зилча в
кинетической теории в форме

z(s,λ)
α1..αs

= λ(−1)
s+1
2 p{α1pα2 ...jαs} , (62)

Если мы идентифицируем разность токов поляризаций в виде

1

2(2π)3~
(
jλ=+
α − jλ=−

α

)
= pαU + εαµνσ

pµnν

p · n
∂σF (β · p) +O(~2) (63)

где функция F выбрана как

F (β · p) =
1

(2π)3
[θ(β · p)fB(β · p) + θ(−β · p)fB(−β · p)] . (64)

Отметим отдельно, что в случае калибровочного поля, по-видимому, фиксация
разницы этих токов - лучшее, что можно сделать, поскольку из-за калибровоч-
ной свободы ток самих частиц определен плохо. Тем не менее, этого достаточно
в нашей задаче - сравнивая формулы (4) из кинтеории и (59), мы видим, что мы
должны положить U0 = 0 для корректного воспроизведения CKT. Независимая
проверка этого выбора может быть проведена путем подсчета известного объекта,
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вычисленного в КТП. Таким объектом может быть оригинальный зилч (26). При
U0 = 0 мы получаем 〈

: Z
(3)3

00 :
〉 ∣∣∣∣

r→0

=

= − 2
~2
∫
d4p p{0

(
p3}U + ε3}µνσ

pµnν

p·n ∂
σF (β · p)

)
p0 δ(p

2) = 8π2T 4

45~2 Ω,

(65)

в лабораторной системе отсчета. Этот результат в точности совпадает с результа-
том, полученным в работе [28]. Наконец, выбор U0 = 0 подтверждается прямым
вычислением в теории поля для произвольного s, см. [64].
С физической точки зрения U , таким образом, представляет собой разность функ-
ций распределения f± для разных поляризаций в первом порядке по градиентам.
Замечательно, что параметр nµ, фиксирующий калибровочную свободу, естествен-
ным образом играет роль фрейм-вектора для спина фотонов, что помогает понять
физический смысл фрейм-вектора в формализме функции Вигнера и для безмас-
совых частиц других спинов.
Мы также можем вычислить и ожидание обычного тока спиральностиKµ. Исполь-
зуя (53) находим:

〈:Ki :〉
∣∣∣∣
r→0

=
[
−2
∫
d4p

(
2piU + εiνρσ

pνnρ

p·n ∂
σF (β · p)

)
δ(p2)

]
(66)

где мы выбрали конкретный nµ = (1, 0, 0, 0). Отметим, что структура выражения
выше отличаеся от структуры обычной плотности тока в CKT, который появляется
в токах зилча, что указывает на явную калибровочную зависимость результата.
Мы оставляем дальнейшее изучение калибровочной зависимости фотонного CVE
и ее отношение к поправкам в фермионный CVE на будущее.
Наконец, для того, чтобы прояснить физический смысл U0, мы можем обратиться
к плотности заряда для зилча в статическом фотонном газе в равновесии. Сохра-
нение спиральности позволяет ввести аналог кирального химического потенциала
в функцию распределения, то есть, из fB(g) сделать fB(gλ), где gλ = β(ω − λµλ).
Вычисление в термальной теории поля дает:

〈
: Z̄

(s)
0..0 :

〉
=

(−1)
s+1
2

~s

∫
d3k

(2π)3
ωs−1 [fB(g+)− fB(g−)] , (67)

Сравнивая это выражение с (61) в случае µλ � T , мы можем отождествить U0 =
−(βµλ/~)F ′(β · p), то есть, U0 отражает эффект введения кирального химического
потенциала для фотонов. Таким образом, наша постановка задачи с U0 = 0 соот-
ветствует фотонному газу с нулевой плотностью спиральности и заряда зилча в
равновесии.
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5 Заключение
В этой работе мы построили функцию Вигнера для вращающегося газа безмассо-
вых частиц с разным спином. В секции 3 мы, следуя классическим работам, постро-
или функцию Вигнера для безмассового фермионного поля и увидели, что из этого
формализма мы можем построить киральную кинетическую теорию, описанную в
секции 2. В качестве немедленного приложения с помощью этой функции мы вы-
числили отклик в токах фермионного зилча на вращение - фермионный ZVE, тем
самым расширив класс киральных эффектов. Отметим, что в подходе киральной
кинетической теории эти эффекты, как и обычный CVE, можно связать с топо-
логической фазой Берри. В секции 4 мы распространили этот метод на системы
абелевых калибровочных полей. По сравнению с имеющимися работами [62, 63], в
которых основное внимание сразу уделяется калибровочно-инвариантной функции
Вигнера (54), с технической точки зрения более сложному объекту, мы предлагаем
более простой подход и строим явный вид обычной функции Вигнера в конкрет-
ном классе калибровок, параметризованной вектором nµ, см. формулы (44) и (53).
Требование калибровочной инвариантности (54) при этом оказывается необходи-
мым для частичной фиксации свободных членов в (53). Вычисление конкретных
наблюдаемых помогает прояснить физический смысл оставшихся свободных чле-
нов и фиксировать и их тоже. С помощью фиксированной функции Вигнера мы
вычислили отклик на вращение для токов фотоного зилча и для тока конкретного
спина получили результат, согласующийся с [28].
Общее происхождение ZVE и CVE как для фермионов, так и для фотонов может
углубить понимание связи между вихревыми откликами в киральных средах и
аномалиями в микроскопических теориях, описывающих эти среды. В самом деле,
если термальная часть фотонного или фермионного CVE связана с соответствую-
щей смешанной гравитационной аномалией (или глобальной гравитационной ано-
малией), то аналогичная связь ожидается и в случае токов зилча, что указывало
бы на новый класс аномалий.
Замечательно, что промежуточное выражение, связывающее плотности фотонного
тока для разных спиральностей (63), полученное в этом формализме, показыва-
ет, что вектор nµ, фиксирующий калибровку, играет роль фрейм-вектора в CKT,
необходимого для фиксации определения спинового тензора. Этого можно было
ожидать, поскольку полный угловой момент фотона не может быть калибровочно-
инвариантным способом разложен на орбитальную и спиновую часть.
Поляризационный транспорт калибровочных полей представляет особенный инте-
рес в связи с экспериментами по измерениям поляризации адронов в нецентраль-
ных столкновениях тяжелых ионов на ускорителях RHIC и LHC [65, 66]. Поляриза-
ция конечных состояний в этих экспериментах определяется спиновой полризацией
кварков и глюонов в КГП, которая, в свою очередь, должна быть связана с транс-
портом спиральности и киральными эффектами. Тем не менее, глюонный вклад
в спиновую поляризацию среды до сих пор мало изучен в литературе, поскольку
большинство моделей фокусируются на поляризации кварков или работают сра-
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зу со спиновой поляризацией адронов без уточнения информации о происхожде-
нии начальных условий при “вымерзании” КГП [67, 68, 69, 70, 71, 72, 73, 74, 75].
Полученные нами эффекты могут помочь изучить глюонные вклады в спиновую
поляризацию КГП и требуют дальнейшего изучения.
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