
J
H
E
P
0
2
(
2
0
2
5
)
0
4
3

Published for SISSA by Springer

Received: September 10, 2024
Accepted: December 18, 2024
Published: February 10, 2025

Chaos bound and its violation in black p-brane

Pinaki Dutta , Kamal L. Panigrahi and Balbeer Singh

Department of Physics, Indian Institute of Technology Kharagpur,
Kharagpur 721 302, India

E-mail: coolguddu0815@kgpian.iitkgp.ac.in, panigrahi@phy.iitkgp.ac.in,
curiosity1729@kgpian.iitkgp.ac.in

Abstract: In this work, we have extensively investigated the dynamics of circular geodesic
(chargeless massive particle) followed by the investigation of the pulsating classical string in
the p-brane background. This study is a continuation of our previous work JHEP10(2023)189,
in which we numerically identified the presence of chaos for a classical string hovering near
generic p-branes (p < 7). Here, for a particle probe, we have found evidence of chaos in the
vicinity of the horizon. Furthermore, we observed a violation of the well-known MSS bound
in specific extremal p-branes; however, no such violation is seen in the non-extremal cases.
Similar observations were made for the classical string, where the violation of the bound is
significant near the horizon. Thus, our semi-analytical arguments demonstrate that chaotic
dynamics in black p-branes exhibit the (generalized) universal bound with notable violations,
regardless of whether a particle or classical string is used as a probe.

Keywords: P-Branes, Bosonic Strings, Black Holes in String Theory, Integrable Field
Theories

ArXiv ePrint: 2408.14056v2

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2025)043

https://orcid.org/0009-0008-9762-0607
https://orcid.org/0009-0000-8419-5885
https://orcid.org/0009-0006-0132-4076
mailto:coolguddu0815@kgpian.iitkgp.ac.in
mailto:panigrahi@phy.iitkgp.ac.in
mailto:curiosity1729@kgpian.iitkgp.ac.in
https://link.springer.com/article/10.1007/JHEP10(2023)189
https://doi.org/10.48550/arXiv.2408.14056v2
https://doi.org/10.1007/JHEP02(2025)043


J
H
E
P
0
2
(
2
0
2
5
)
0
4
3

Contents

1 Introduction 1

2 Brief review: non-extremal black p-brane 3

3 Probe particle around the black p-brane 4

4 Closed string around black p-brane 9
4.1 Classical string solution and non-integrability 10
4.2 Lyapunov exponent and chaos bound 11

5 Conclusions and future directions 13

A Details of the numerics 16

B Fixed point 16

C String trajectory 18

1 Introduction

Integrability plays a pivotal role in theoretical physics. Various branches of physics share
the feature of integrability. Even though integrable models are rare to find, their importance
lies in the underlying symmetries of such models, and therefore become exactly solvable.
More specifically, Liouville integrability suggests that the motion of the dynamical system is
exactly solvable if all the submanifolds of the phase space are integrable [1–3].

In recent years, the framework of integrability has been effectively utilized within the
context of AdS/CFT correspondence [4]. A lot of progress has been made in this direction in
the last two decades, see [5–10] and the references therein. One of the important questions
concerns the criterion for integrability in the gauge field theories. To this end, one of the
celebrated approaches in this direction is to use the techniques of analytic non-integrability,
as first done in [11, 12]. Instead of claiming the infinite conserved charges and the Lax pair
connection thereof which is rather a cumbersome task to achieve [13], the idea of analytic
non-integrability lies in the fact to disprove the integrability of the σ-model in the suitable
choice of the ansatz for the string configuration of the given system. This can be done
by introducing small variations to the corresponding equation of motion known as normal
variational equations (NVE) [14, 15], which cannot be solved exactly by the method of
quadratures. To this end, the Kovacic algorithm helps to demonstrate the non-existence
of the Liouville solutions [16].

The relation between chaos and non-integrability is yet another field which has gained
much attention in recent times [17–25] and manifest the fact that chaos implies non-
integrability. The studies of the chaotic motion and non-integrability suggest expanding
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the dictionary of the AdS/CFT correspondence [26], however, the picture of the present
status of the art seems to be slightly unclear. Yet another direction worth exploration is to
look at the relation and the source of the chaos/non-integrability in view of the celebrated
Maldacena Shenker Stanford(MSS) bound [27]:

λ ≤ 2πT (1.1)

where T denotes the Hawking temperature and λ is the Lyapunov exponent. The MSS
bound was originally proposed by considering shock waves near the horizon and AdS/CFT
correspondence. However, it has been argued that the bound is universally present in the
plethora of (semi-) classical as well as quantum systems such as black holes which are
considered to be the fastest scramblers in nature [28–34]. In light of the point particle
dynamics, various studies of black holes indicate the existence of chaos [35–39]. In recent
years, the presence of chaotic motion has been attributed to the unstable equilibrium circular
orbits in the near-horizon geometry of black holes [40–48]. Such chaotic motions have been
observed for generic perturbations as well. Therefore eventually in [49], it was proposed
that there exists a universal bound for the Lyapunov exponent λ of chaotic motions induced
by black holes given by

λ ≤ κ (1.2)

where κ represents the surface gravity of the black hole. In many dual-field theories, the
bound saturates such as in the SYK model [50–52], but several works point out the violation
of the bound [41–48, 53–56]. Recently, for closed string dynamics around the AdS black hole,
the bound was generalized with the correction of the winding number n [57]

λ ≤ 2πnT (1.3)

To our current understanding, there are not many studies [58] on the interplay of the
geodesic motion and the classical string as a probe in the context of the chaotic motion and
the universal bound. In this work, we attempt to shed some light on the subtle interplay
of the two probes leading to chaos in the background geometry of the black p-brane, p < 7.
Our earlier work [25] shows that the closed winding string exhibits the chaotic motion in the
black 5-brane and 6-brane geometry. Following a similar trail, here we again consistently
truncate the two-dimensional string equations of motion for the pulsating string into the
one-dimensional system and establish the non-integrability followed by the presence of chaos,
for the suitable choice of the ansatz in such a way that one also extends the dynamics to
include the lower-dimensional branes. Our study shows that in the case of circular geodesics,
violation of the bound inequality depends primarily on the charge of the p-brane, whereas
for the pulsating string, it depends on the interplay of charge and winding number of the
string. It is to be mentioned that our analysis follows in general for all branes: 1 ≤ p ≤ 6,
however, to avoid redundancy in the numerical works, for the sake of brevity, we present
only certain branes while performing the numerical computation.

Finally, for completeness, we would like to highlight on recent notable developments in
the study of black hole chaoticity studied via string scattering amplitudes at both classical
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and quantum levels. Classical scattering of closed string configurations, analyzed using ring
strings as probes, identifies fractal unstable orbits to characterize chaotic regimes ([25, 59, 60]
and see references mentioned within). In quantum systems, chaotic Hamiltonians are explored
through random matrix theory, where the eigenvalue spacings follow Wigner-Dyson statistics.
Recent work on highly excited strings (HES) links chaos to erratic scattering amplitudes and
eigenphase spacings, motivated by black hole/string correspondence, suggesting an equivalence
between highly excited strings and semiclassical black holes at weak coupling [61–67].

The study of chaos, scrambling, and universal bounds can potentially be applied to
string-theoretic, horizon-scale microstructures known as fuzzballs, which replace black hole
solutions [68, 69]. Furthermore, the framework of random matrices and the Out-of-Time-
Order Correlator (OTOC) provides a foundation for investigating quantum chaos in fuzzball
geometries [70, 71]. In [72], massless geodesics are used to investigate chaotic scattering near
the photon sphere of fuzzball geometries, validating the MSS bound, with the notable bound
violation when the photon-sphere is close to the horizon in the extremal black hole scenario.
It would be intriguing to study chaotic scattering in specific fuzzball configurations of the
Dp-Dq brane system. However, we leave this exploration for future work.

The structure of the paper is as follows: in section 2, we briefly review the non-extremal
black p-brane. In the next section 3, we investigate the dynamics of the circular motion of
a particle in the vicinity of the p-brane and show the existence of the Lyapunov exponent,
followed by a numerical study on the universal chaos bound. In section 4.1, we bring the
closed circular string in the presence of the black p-brane and first prove the non-integrability
by showing that the corresponding NVE possesses no Liouville solution. In section 4.2,
we investigate the generalised chaos bound in the closed string dynamics and numerically
check the validation of the bound. Finally, in the last section 5, we conclude our results
with some interesting future directions.

2 Brief review: non-extremal black p-brane

Non-extremal black p-branes are the solutions of 10-dimensional low energy string theory [73,
74] and the corresponding metric (p < 7) is:

ds2 = −∆+∆−1/2
− dt2 + ∆1/2

−

p∑
i=1

dx2
i + ∆−1

+ ∆γ
−dr2 + r2∆γ+1

− dΩ2
8−p (2.1)

where ∆± = 1 − ( r±
r )7−p, γ = −1

2 − 5−p
7−p with r+ and r− representing outer horizon and

inner horizon radii respectively. The charge and mass per unit p-volume of the black brane
are respectively given by

Q = 7 − p

2 (r+r−)(7−p)/2

M = Ω8−p

2k2
10

(
(8 − p)r7−p

+ − r7−p
−

)
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where Ω8−p is the volume of unit (8 − p)- sphere and k2
10 = 8πG10. The metric (2.1) can

be re-written as

ds2 = H−1/2
(
− fdt2 +

p∑
i=1

dx2
i

)
+ H1/2

(
f−1dr2 + r2dΩ8−p

)
(2.2)

via the transformations:

r7−p = r̃7−p + r7−p
− , r̃7−p

+ = µ7−p cosh2 β, r̃7−p
− = µ7−p sinh2 β

where H = 1+( r−
r )7−p and f = 1−(µ

r )7−p. Writing F = H−1/2f , the equation (2.2) becomes:

ds2 = −F(r)dt2 + 1
F(r)dr2 + H1/2r2dΩ8−p + H−1/2

p∑
i=1

dx2
i (2.3)

The extremal black brane solutions can be obtained by setting r+ = r− in the equation (2.1).
Also, with the analytic continuation of time co-ordinate, we obtain the inverse tempera-
ture [75, 76]

1
T

= 4πµ cosh β

7 − p

or
1
T

= 2π

 2r+
7 − p

[
1 −

(
r−
r+

)7−p
] −5+p

2(7−p)


and therefore the expression for surface gravity is given by

κ = (7 − p)
2r+

(
1 −

(
r−
r+

)7−p
)− p−5

2(7−p)

(2.4)

3 Probe particle around the black p-brane

In the literature, various techniques exist to determine the Lyapunov exponent, such as those
presented in [43, 77, 78]. Using the Lagrangian framework, Lyapunov exponents can be
determined for particle motion. The particle’s equations of motion are written as:

dyi

dt
= Fi(xj). (3.1)

When linearizing these equations around a particular orbit:

dδyi(t)
dt

= Kijδyj(t), (3.2)

where Kij is the Jacobian matrix defined as

Kij = ∂Fi

∂yj
, (3.3)

the solution can be expressed as

δyi(t) = Lijδyi(0), (3.4)
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where Lij(t) is the evolution matrix satisfying L̇ij(t) = KilLlj and Lij(0) = δij . The
Lyapunov exponent measures the average exponential rate at which two nearby trajectories
in a dynamical system diverge. It indicates the typical rate at which nearby orbits in the
phase space either contract or expand. The principal Lyapunov exponent is determined by
the eigenvalues of the matrix Lij , and is given by:

λ = lim
t−→∞

1
t
log

(
Lij(t)
Lij(0)

)
. (3.5)

Typically, the eigenvalues of the Jacobi matrix yield the Lyapunov exponent. A positive
Lyapunov exponent indicates the presence of chaos in the system.

In this section, we consider the circular motion of chargeless but massive particle around
the black brane. We restrict ourselves to the equatorial orbit (ϕ1 = π

2 ) circulating in the
black p-brane with xi = const and ϕ2 ≡ φ, ϕ3 = ϕ4 = . . . ϕ8−p = const, thereby reducing
the Lagrangian to [79]

2L = −∆+∆−1/2
− ṫ2 + ∆−1

+ ∆γ
−ṙ2 + r2∆γ+1

− φ̇2 (3.6)

where the dot represents the derivative with respect to proper time.
Since the Lagrangian (3.6) is independent of the t, φ therefore the corresponding

generalised momenta pt and pφ

pt = ∂L
∂ṫ

≡ E, pφ = ∂L
∂φ̇

≡ l (3.7)

are conserved which are given by

E = −∆+∆−1/2
− ṫ (3.8)

l = r2∆γ+1
− φ̇ (3.9)

and the generalised momentum along r-coordinate is given by pr = ∆−1
+ ∆γ

−ṙ. We shall use
the pφ and l interchangeably meaning the same thing.

Therefore the Hamiltonian becomes

2H = 2
(
ptṫ + pφ+̇prṙ − L

)
(3.10)

2H = −∆+∆−1/2
− ṫ2 + ∆−1

+ ∆γ
−ṙ2 + r2∆γ+1

− φ̇2 (3.11)

2H = − p2
t

∆+∆−1/2
−

+
p2

φ

r2∆γ+1
−

+ p2
r

∆−1
+ ∆γ

−
(3.12)

From the Hamiltonian, the equations of motion are obtained as

ṫ = −pt

√
∆−

∆+
(3.13)

ṗt = 0 (3.14)

ṙ = pr∆+∆−γ
− (3.15)
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ṗr = 1
2

(
γ∆+p2

r∆−γ−1
− ∆′

− − p2
r∆−γ

− ∆′
+ + p2

t ∆′
−

2
√

∆−∆+
−
√

∆−p2
t ∆′

+
∆2

+

+
2p2

ϕ∆−γ−1
−

r3 −
(−γ − 1)p2

ϕ∆−γ−2
− ∆′

−

r2

)
(3.16)

φ̇ = pφ
∆−1−γ

−
r2 (3.17)

ṗφ = 0 (3.18)

where ′ represents the derivative with respect to r. Next, we define

F1 ≡ ṙ

ṫ
= −

∆2
+∆−γ− 1

2
− pr

pt
(3.19)

F2 ≡ ṗr

ṫ
= −

∆+∆−γ− 3
2

− p2
φ

r3pt
−

(γ + 1)∆+∆−γ− 5
2

− ∆′
−p2

φ

2r2pt
+ ∆+∆−γ− 1

2
− ∆′

+p2
r

2pt

−
γ∆2

+∆−γ− 3
2

− ∆′
−p2

r

2pt
+ ∆′

+pt

2∆+
−

∆′
−pt

4∆−
(3.20)

Using the normalization condition for the four-velocity of a massive particle, gµν ẋµẋν = −1,
we obtain

∆−γ−1
− p2

φ

r2 + ∆+∆−γ
− p2

r −
√

∆−p2
t

∆+
= −1 (3.21)

We substitute this expression into the F1 and F2 to eliminate pt, we get

F1 = −
∆3/2

+ r∆
1
4−

γ
2

− pr√
∆−r2 (∆γ

− + ∆+p2
r

)
+ p2

φ

(3.22)

F2 = 1
4
√

∆+r2
√

∆−r2 (∆γ
− + ∆+p2

r

)
+ p2

φ

[
∆− γ

2 −
7
4

−

(
− 4∆−∆+p2

φ

− ∆+r∆′
−

(
(2γ + 3)p2

φ + ∆−r2
(
∆γ

− + (2γ + 1)∆+p2
r

))
+ 2∆−r∆′

+

(
∆−r2

(
∆γ

− + 2∆+p2
r

)
+ p2

φ

) )]
(3.23)

Next we calculate the elements of Jacobian matrix Kij in the phase space (r, pr) defined as:

K11 = ∂F1
∂r

, K12 = ∂F1
∂pr

, K21 = ∂F2
∂r

, K22 = ∂F2
∂pr

Using the condition pr = ṗr = 0, we get the radial equilibrium orbit r = r0 and thereof
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l 5 10 20 30 40 50
r0 1.2873 1.2793 1.2772 1.2769 1.2768 1.2767

Table 1. Positions of the circular orbits of the particle near 3-black brane at different values of l

when Q = 2.3. The event (outer) horizon is located at r+ = 1.05038.

(a)

Q=0.3

Q=1.0

Q=1.7

2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

l

κ
2
-
λ
2

(b)

Figure 1. Plots showing κ2 − λ2 as a function of l for different Q. (a) p = 3(left panel) and (b)
p = 4(right panel).

calculating the eigenvalues of Kij , we obtain the following Lyapunov exponent

λ2 = − 1

16r2
(
p2

φ + r2∆γ+1
−

)2

[
∆−γ− 5

2
−

(
(8γ2 + 14γ + 30)∆2

+r4∆γ+1
− ∆′

−
2p2

φ

− 8∆+r3∆γ+2
− p2

φ

[
(γ + 2)r∆′

+∆′
− − (4γ + 5)∆+∆′

− + (γ + 2)∆+r∆′′
−
]

+ 8r2∆γ+3
− p2

φ

[
6∆2

+ − r2∆′
+

2 + 2∆+r
(
r∆′′

+ − ∆′
+
)]

+ (2γ + 3)(2γ + 7)∆2
+r2∆′

−
2p4

φ + 4∆2
−p4

φ{8∆2
+ − r2∆′

+
2

+ 2∆+r
(
r∆′′

+ − 2∆′
+
)
} − 4(2γ + 3)∆+∆−rp4

φ

[
∆′

−
(
r∆′

+ − 2∆+
)

+ ∆+r∆′′
−
]

− 4∆+r6∆2γ+3
−

(
∆′

−∆′
+ + ∆+∆′′

−
)
− 4r6∆2γ+4

−

(
∆′

+
2 − 2∆+∆′′

+

)
+ 5∆2

+r6∆2γ+2
− ∆′

−
2
)]

(3.24)

Note that the expression of the Lyapunov exponent involves both the charge of the p-brane
and the angular momentum of the particle. The numerical values of r0 are obtained by
equating pr = F2 = 0. Table 1 shows the values of the r0 at specific parameters, without
loss of generality for p = 3. The table shows that r0 decreases slightly with the increase
of l. For more details on the numerics, see appendix. Note that we cannot arbitrarily
take any large value of l as this may give rise to the complex root of the equation F2 = 0,
which is true irrespective of p.

Since the chaos bound can be rewritten as λ2−κ2 ≤ 0, therefore the sign of κ2−λ2 would
decide the fate of the violation of the bound. With all the necessary ingredients, we now study
the effect of l and Q on the behaviour of κ2 −λ2. We highlight the key observations as follows:
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Q=0.2

Q=0.8

Q=1.3

10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

l

κ
2
-
λ
2

(a)

Q=0.2

Q=0.5

Q=0.8

10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

l

κ
2
-
λ
2

(b)

Figure 2. Plots showing κ2 − λ2 as a function of l for different Q. (a) p = 5(left panel) and (b)
p = 6(right panel).

p=3

p=4

p=5

2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

l

κ
2
-
λ
2

Figure 3. Plot showing κ2 − λ2 as a function of l corresponding to extremal p-brane.

• On keeping Q fixed, the value of κ2 − λ2 at first decreases with the increase of l and
effectively remains constant at large l. Since, κ2 − λ2 > 0 for all l, we conclude there is
no violation of bound (figure 1, figure 2)

• The variation of charge (or Hawking temperature) of the p-brane brings interesting
features to the Lyapunov exponent. For p = 3, 4 and 5 brane, the quantity κ2 − λ2

seems to decrease with the increase of charge at a fixed angular momentum l. Note that
for p =3 and Q = 2.3, κ2 − λ2 approaches the horizontal line (κ2 = λ2) thus saturating
the bound (figure 1(a)). However, for p = 6, quantity κ2 − λ2 increases with charge
and the corresponding curve moves away from the horizontal line (figure 2(b)). This
could be due to the increase of charge, the Hawking temperature decreases for p = 3, 4,
5 but increases for p = 6.

Next, we investigate the chaos bound in the extremal limit (figure 3). For our choice of
parameters, this corresponds to Q = 2.5 (p = 3), Q = 2 (p = 4), Q = 1.5 (p = 5) and
Q = 1 (p = 6). For the p = 3 and p = 4 brane, we see a clear violation of the bound as
κ2 − λ2 < 0 and we do not observe significant variations with l. However, for p = 5 brane,
all the points lie above κ2 = λ2 thus satisfying the strict inequality. We have not shown
the p = 6 case as the extremal 6-brane corresponds to T → ∞. Also, we have found that
the equilibrium position, r0 ≫ r+ for any l which eventually leads to λ = 0. Thus, in this
case the bound is trivially followed.
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Finally, from the eq. (2.4) and (3.24), it is easy to verify that the bound saturates at
the (outer) horizon: λ = κ, a common feature observed in many spherically symmetric
and static backgrounds [44, 49].

4 Closed string around black p-brane

The dynamics of a closed circular string in an arbitrary curved background can be described
using the Polyakov action given as,

S = − 1
2πα′

∫
dσdτ

√
−ggαβGµν(∂αXµ∂βXν) (4.1)

where α′ = l2s (ls represents the string length). Xµ represents the target space co-ordinates,
Gµν is the target space metric and gαβ is the worldsheet metric. We choose the conformal
gauge (gαβ = ηαβ) which leads to vanishing of energy-momentum tensor Tαβ = 0. Using
this condition, we find

Gµν∂τ Xµ∂σXν = 0 (4.2)

Gµν

(
∂τ Xµ∂τ Xν + ∂σXµ∂σXν

)
= 0 (4.3)

The target space metric Gµν is given by equation (2.1).
Now we consider the following closed string ansatz for generic p-brane:

t = t(τ) , r = r(τ) , ϕ1 = ϕ1(τ) , ϕ2 = nσ , ϕ3 = . . . = ϕ8−p = constant (4.4)

where n denotes the winding number of the string along ϕ2 direction. We assume the spatial
coordinates xi are constant.

The corresponding Lagrangian and Hamiltonian are given by

L = − 1
2πα′

(
∆+∆−1/2

− ṫ2 − ∆−1
+ ∆γ

−ṙ2 − r2∆γ+1
− (ϕ̇2

1 − n2 sin2 ϕ1)) (4.5)

H = πα′

2

∆+∆−γ
− p2

r +
pϕ2

1

r2∆γ+1
−

− p2
t

∆+∆−1/2
−

+ 1
2πα′n

2∆γ+1
− r2 sin2 ϕ1 (4.6)

The equations of motion can be worked out as follows:

ṗt = 0 (4.7)

ṫ = −πα′∆1/2
− ∆−1

+ pt (4.8)

ṗr = πα′

2
∂

∂r

(
−p2

r∆−γ
− ∆+ + p2

t ∆1/2
− ∆−1

+ − pϕ2
1

1
r2∆γ+1

−

)
− n2

2πα′
∂

∂r
(r2∆γ+1

− sin2 ϕ1
)

(4.9)

ṙ = πα′∆+∆−γ
− pr (4.10)

ṗϕ1 = − n2

πα′ r
2∆γ+1

− sin ϕ1 cos ϕ1 (4.11)

ϕ̇1 = πα′ pϕ1

r2∆γ+1
−

(4.12)
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Since, t is a cyclic coordinate, pt = E (constant of motion). The conformal gauge
constraint gives H = 0. The Hamiltonian has some interesting features. The Hamiltonian (4.6)
can be seen as the sum of the kinetic energy term and the effective potential term (for r

and ϕ). If we consider the radial motion of the system, it possesses the effective attractive
potential which has the divergence at the horizon whereas the ϕ- dependent part contains
two repulsive terms. The string exhibits different modes as a function of r for specific values
of p [26, 59, 60]. For the sake of completeness, we have also analysed the fixed points of
our system which are provided in the appendix.

4.1 Classical string solution and non-integrability

To study the non-integrability in the p-brane it is convenient to use the metric (2.3). This
gives the following Lagrangian

L = − 1
2πα′

(
F ṫ2 − ṙ2

F
− r2√H(ϕ̇1

2 − n2 sin2 ϕ1)
)

(4.13)

The corresponding Hamiltonian is given by

H = − p2
t

2F + p2
rF
2 +

p2
ϕ1

2r2
√

H
+ n2r2√H sin2 ϕ1

2 (4.14)

with the equations of motion

F ṫ = E = constant (4.15)

r̈F − 1
2F

′ṙ2 + F2F ′

2 ṫ2 −F2
(
ϕ̇2

1 − n2 sin2 ϕ1
)(

r
√

H + r2H ′

4
√

H

)
= 0 (4.16)

ϕ̈1 +
(2

r
+ H ′

2H

)
ṙϕ̇1 + n2 sin 2ϕ1

2 = 0 (4.17)

Now, corresponding to the closed string in the background, we consider an invariant plane
solution (r, pr, ϕ1, pϕ1) = (r, E

F(r) , Nπ, 0) where N ∈ Z and r ≡ r0 + Eτ with r0=constant.
It is an easy exercise to verify that this plane satisfies the constraint (4.3). (Here we have
only taken the positive solution corresponding to the ṙ2 = E2 since the r(τ) is chosen to be
non-negative with the arbitrary choice of E). We expand the equation of motion for ϕ1 using

ϕ1(τ) = Nπ + η(τ), |η| ≪ 1

then up to the first order in η, the corresponding NVE is obtained as follows:

η̈ +
(

2
r

+ H ′(r)
2H(r)

)
Eη̇ + n2η = 0 (4.18)

The non-integrability would be determined by the existence of the Liouville solution on
applying the Kovacic algorithm.1 The Kovacic algorithm fails; therefore, the above NVE
does not possess the Liouville solution. However, integrability is restored for particle motion
(n = 0) where the NVE admits the Liouviilian solution which is expected for the particle
scenario as shown earlier in [25, 80]. Thus, the closed string breaks the integrability structure
even in the non-extremal black p-brane. In the next section, we will gather sufficient evidence
for the chaos in the p-brane followed by the numerical investigation of the chaos bound.

1We have used Maple in-built function kovacicsols.
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p-values r(0) pr(0) E Q λ Mode
3 10 0.02 5 2.2 0.0231 Capture

10 0.02 2 2.2 0.0008 Escape
4 12 0.02 2 1.7 0.0153 Capture

12 0.04 1 1.7 0.0007 Escape
5 12 0.1 2 1.2 0.0272 Capture

12 0.1 1 1.2 0.0008 Escape
6 13 0 2 0.7 0.086 Capture

13 0.4 1 0.7 0.0009 Escape

Table 2. The table represents the different dynamics of the string at various parameters for n=1
along with the value of the largest Lyapunov exponent λ.

(a) (b)

Figure 4. Largest Lyapunov Exponent: (a) p = 3, r(0) = 15, E = 4, pr(0) = 0,ϕ1(0) = 0, Q = 0.5
and (b) p = 4, r(0) = 15, E = 5, pr(0) = 1, ϕ1(0) = 0, Q = 0.01.

4.2 Lyapunov exponent and chaos bound

To observe the existence of chaos, we compute the Lyapunov exponent for different p-
values. The initial conditions and the control parameters are chosen in such a way that the
string quickly escapes from the horizon. In this scenario, we observe that the maximum
or Largest Lyapunov Exponent (LLE) are 0.00143, 0.001, 0.00103 and 0.0011 for p =3,4,5
and 6 (figure 4(a),(b), 5(a),(b)) respectively. The plots show that the dynamical system
exhibits chaos even for generic p-values, p < 7. Next, we choose the initial conditions and
the control parameters in such a way that the string does not fly away from the horizon
during the evolution. Details on the different string trajectories are provided in the appendix.
The corresponding maximum Lyapunov exponents are 0.0099, 0.0116, 0.0183, 0.0218 in
figure 6(a),(b), 7(a),(b) respectively. This shows that the chaotic behaviour is much more
prominent in the latter scenario. Note that in these cases the string shows oscillations in
the beginning and eventually gets captured in the horizon. This variation of LLE between
two scenarios reflects the dependency of LLE on r(0), T and n. The nature of the string
dynamics corresponding to different parameters is listed in table 2.

Next, we determine whether the aforementioned generalised MSS inequality remains
valid in the black p-brane background. We plot the ratio λ

2πnT at different initial conditions

– 11 –
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(a) (b)

Figure 5. Largest Lyapunov Exponent: (a) p = 5, r(0) = 15, E = 5, pr(0) = 1,ϕ1(0) = 0, Q = 1 and
(b) p = 6, r(0) = 15, E = 5, pr(0) = 2, ϕ1(0) = 0, Q = 0.01.

(a) (b)

Figure 6. Largest Lyapunov Exponent: (a) p = 3, r(0) = 16, E = 5, pr(0) = 0,ϕ1(0) = 0, Q = 1 and
(b) p = 4, r(0) = 18, E = 5, pr(0) = 0.03, ϕ1(0) = 0, Q = 1.

(a) (b)

Figure 7. Largest Lyapunov Exponent: (a) p = 5, r(0) = 20, E = 5, pr(0) = 0.17,ϕ1(0) = 0, Q = 1
and (b) p = 6, r(0) = 20, E = 5, pr(0) = 1, ϕ1(0) = 0, Q = 0.3.
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n=1
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n=3
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Q

λ

2
π
n
T

(a)

Q=0.5

Q=1.5

Q=2.3

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r0

λ

2
π
nT

(b)

Figure 8. Characteristics of p = 3. Plots showing the behaviour of λ
2nπT for (a) variation of charge

Q over the range [0,2.5] with r(0) = 4.5 and different values of n = 1, 2, 3 and (b) variation of the r(0)
with different Q = 0.5, 1.5, 2.3 and n = 1. For both plots, E = 3.5, pr(0) = 0, ϕ1(0) = 0.

r(0) ≡ r0 and at different charges Q in figure 8–11. The various observations are summed
up as follows:

• In most cases, every p-brane satisfies the generalised inequality, but in a few cases,
especially when the string is initially close to the horizon, we might observe the bound
violation. However, as we move away from the horizon of the black brane, the inequality
gets stronger with smaller values of the Lyapunov exponent, figure 8–11 (right panel).
Thus, the influence of charge is negligible when the string is initially far away from the
horizon. Similar observations have been confirmed earlier in the works [25].

• The effect of charge and the winding number on chaotic dynamics is complex, especially
in the near-horizon scenarios. The quantity λ

2πnT changes non-monotonically as a
function of Q and n. However, as we scan over Q, the bound violation is significant
for n = 1 (figure 10(a), 11(a)). This is not be true for p = 3 and p = 4 (figure 8(a),
figure 9(a)) where the quantity λ

2πnT crosses unity as we reach closer to the extremal
value of Q.

Lastly, we discuss the bound on extremal p brane. Note that for the extremal p=3 and p=4,
2πT → 0 and we have numerically tested (not shown) that λ ∼ 10−3 for large r(0) and λ ≈ 1
for 2.85 r+ < r(0) < 3.20 r+.2 This also demonstrates the bound violation is much more
significant when the string is initially close to the horizon. Similarly, for the extremal 5-brane
(2πT → finite), the quantity λ

2πnT decreases with the increase of r(0) again justifying the
bound violation in the near horizon scenario (figure 12). However, for the extremal p=6 brane
(2πT → ∞), λ

2πnT → 0 which trivially shows no signature of bound violation. Thus, both
circular geodesics and closed string satisfy the MSS inequality in the case of extremal 6-brane.

5 Conclusions and future directions

In this work, we have investigated the chaotic responses of time-like circular geodesics as
well as a closed pulsating string around black p-brane and checked the universality of the

2Due to the numerical stiffness of the system, we cannot approach the horizon r+ exactly.
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n=1
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(a)
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Figure 9. Characteristics of p = 4. Plots showing the behaviour of λ
2nπT for (a) variation of charge

Q over the range [0,2] and r(0) = 3.5 with different n = 1, 2, 3 and (b) variation of r(0) with different
Q = 0.5, 1, 1.5 and n = 1. For both the plots, E = 5.2, pr(0) = 0, ϕ1(0) = 0.
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Figure 10. Characteristics of p = 5. Plots showing the behaviour of λ
2nπT for (a) variation of Q over

[0,1.5] and r(0) = 4.5 with different n = 1, 2, 3 and (b) over r(0) with different Q = 0.5, 0.75, 1 and
n = 1. For both the plots, E = 2.3, pr(0) = 0.01, ϕ1(0) = 0.
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Figure 11. Characteristics of p = 6. Plots showing the behaviour of λ
2nπT for (a) range of Q over

[0,1] and r(0) = 5 with different n = 1, 2, 3 and (b) for variation of r(0) with different Q = 0.3, 0.5, 0.65
and and n = 1. For both the plots, E = 2.3, pr(0) = 0.01, ϕ1(0) = 0.
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Figure 12. Characteristics of extremal p = 5 brane. Plots showing the variation of λ
2nπT for different

r(0). The other parameters are the same as in figure 10(b).

p → 3 4 5 6
extremal % % ✓ ✓

non-extremal ✓ ✓ ✓ ✓

Table 3. Table for circular geodesics in the vicinity of the horizon. The symbol ✓(%) represents the
non-violation (violation) of the bound.

chaos bound. Related to the universal bound, we conclude our results in table 3 and 4. For
the case of circular geodesics, in the vicinity of the horizon, we find that the LLE is almost
insensitive to the variations in angular momentum but sensitive to the charge of the black
brane. In the non-extremal p-brane, the bound is satisfied. However, we observe bound
violation in the extremal limit (p = 3 and p = 4) whereas, p = 5, 6 brane does not show any
bound violation even in the extremal limit. In the case of a closed string, irrespective of p,
the chaotic behaviour is noticeable when the string starts in the vicinity of the horizon. In
this scenario, the inequality (1.3) gets violated even for a higher winding number (n > 1)
by appropriately modulating the parameters. However, if the string starts far from the
horizon, LLE → 0 implies negligible chaos. Moreover, for the extremal p = 3,4 and 5 brane,
we observe bound violation depending on the initial location of the string and once again,
no violation is observed for the extremal p = 6 brane. The presence of chaos implies the
analytical non-integrability of the closed string around the p-brane whereas one recovers
the integrability for point particle scenario (n=0). Also, our studies can be attributed to
the different scattering modes through the lens of the chaotic scattering amplitude [25, 59]
at the classical level. It would be interesting to explore the quantum chaos present in the
system [81]. Furthermore, through black hole/string correspondence, the chaos in string
scattering could enhance our understanding of the quantum chaotic nature of black holes.

In future, we would like to address the following points
(1) The full analytical reasoning behind the violation of chaos bound for pulsating string

is unknown to us and therefore in future it would be interesting to analyse this in more detail.
(2) The numerical evidence proposed in this work induces further analysis of the con-

trasting behaviour on the equivalence of the particle-string system proposed in [82].
(3) It has been argued that the celebrated MSS bound can be extended even for asymp-
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p → 3 4 5 6
extremal near-horizon % % % ✓

away from hori-
zon

✓ ✓ ✓ ✓

non-extremal near-horizon % % % %

away from hori-
zon

✓ ✓ ✓ ✓

Table 4. Table for pulsating string. The symbol ✓(%) represents the non-violation (violation) of
the bound.

totically flat-spacetime [83]. Our work suggests something similar to this direction. In future,
it would be interesting to explore this speculation with more rigour.

A Details of the numerics

For all the calculations presented in the paper, we set G10 = 1, M = 5π2

16 , 2π
3 , 3π

8 , and 1
2 for p

= 3,4,5 and 6 respectively. With this, the charge and mass corresponding to black 3-brane
satisfy the inequality Q ≤ 8

π2 M . The Hawking temperature is given by the relation

β = 1
T

= πr+

[
1 −

(
r−
r+

)4
]− 1

4

Similarly, for p = 4, we find Q ≤ 3
π M and the associated Hawking temperature is

β = 1
T

= 4πr+
3

[
1 −

(
r−
r+

)3
]− 1

6

For the p = 5 and p = 6, the corresponding inequalities are

Q ≤ 4M/π, Q ≤ 2M

respectively. Note that at the extremal limit, T = 0 for both p = 3 and p = 4, T = finite
for p = 5 and T → ∞ for p = 6.

Solving a nonlinear system of differential equations requires reliable numerical methods
to control the error propagation. In this paper, we use the Projection method of NDSolve
routine of Mathematica to solve the equations of motion. The constraint |H| < δ (error
tolerance) has been checked at every integration step with δ ∼ 10−6. We perform the
calculation of Lyapunov exponents using the variational algorithm described in [84].

B Fixed point

To analyze the large-time behaviour of a trajectory, it is helpful to study the possible invariant
sets of the phase space of the dynamical system. The invariant set possesses the characteristic
that any trajectory in phase space originating from a point within it will remain confined
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(a) (b)

Figure 13. String trajectory near p =3 brane. (a) r(0) = 100. (b) r(0) = 1.2rh, 1.3rh, 1.4rh. For
both the plots, we set E = 5, Pr(0) = 0, ϕ1 = 0 and rh = 1.

(a) (b)

Figure 14. String trajectory near p =4 brane. (a) r(0) = 100. (b) r(0) = 1.2rh, 1.3rh, 1.4rh. For
both the plots, we set E = 5, Pr(0) = 0 and ϕ1 = 0 and rh = 1.

to it indefinitely. In this section, we obtain the fixed point corresponding to the system of
equations (4.7)–(4.12). To do so, we set these equations equal to zero (ṙ = 0, ṗr = 0, ϕ̇ =
0, ṗϕ1 = 0), which provides the solution: (r∗ = rsol, p∗ = 0, ϕ∗ = (2N − 1)π

2 , 0) where rsol

is the solution of the equation:

(γ + 1)
(
−n2

)
r2∆γ

−∆′
+(r) − n2r2∆γ+1

− ∆′
−(r)

∆+
− 2n2r∆γ+1

− + E2∆′
+(r)

2
√

∆−∆+
= 0 (B.1)

This also satisfies the Hamiltonian constraint H = 0. For a specific choice of parameters,
for instance: p = 3, Q = 2.0, n = 1, E = 5.2, we get r∗ = 1.66435. The corresponding
Jacobian matrix at this fixed point has the eigenvalue {−3.37057, 3.37057, 1,−1}, which
shows that there is no attractor in our system as all the eigenvalues do not have negative
real parts. Similarly, there is no repellor in the system as all the eigenvalues are not positive.
Moreover, on increasing n, the threshold energy value for a specific set of parameters changes
and generally increases. Similar behaviour has been observed for all p < 7.

However, if we consider the large r limit in the system of equations (4.7)–(4.12), there
exists another fixed point (r∗ = ∞, p∗r = 0, ϕ∗

1 = Nπ, p∗ϕ1
= arbitrary). The invariant set

of the trajectories which are escaping to infinity has a measure of zero.
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C String trajectory

In this section, we provide the string trajectory (p=3 and p=4) by numerically solving the
coupled equations of motion (4.7)–(4.12). Without loss of generality, we assume Q = 0. First,
we consider the neutral 3-brane with different initial locations of the string — far from the
horizon, and near the horizon. We consider the scenario when the string initially is far from
the horizon (r(0) = 100). For pr(0) = 0, we observe the capture of the string with any value
of E (figure 13(a)). This is due to the dominance of the attractive potential (- E2

2∆+∆−1/2
−

) term.
At sufficiently high E, the string is always likely to get captured. Note that the capture
time decreases with E. The string dynamics becomes even more complex when it is placed
initially close to the horizon. When r(0)=1.2rh, 1.3rh and pr(0) = 0, it gets quickly captured
in the brane (figure 13(b)). However, the string escapes to infinity for r(0) = 1.4rh. Next,
we repeat the same exercise in p = 4 brane. Our numerical analysis reveals similar features
in the string dynamics irrespective of the initial location of the string (figure 14). However,
the capture of the strings occurs quicker than the corresponding p = 3 brane.
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