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As far as the laws of mathematics refer to reality, they are not certain, and as far

as they are certain, they do not refer to reality.

~ Albert Einstein ~






Abstract

In this thesis, we discuss the nature of periodic points of discrete integrable sys-
tems. We consider, in particular, integrable rational maps and/or algebraic difference

equations(ADE), whose behavior we can decide precisely for all initial conditions.

It was shown, in the last ten years, that periodic points of such a system form
an algebraic variety different for each period if the system has a sufficient number of
invariants. Since every variety is determined only by information of the invariants it

is called an invariant variety of periodic points(IVPP).

It was also suggested that the existence of an IVPP might be sufficient to char-
acterize integrability of rational maps. This is because we can prove that the coex-
istence of an IVPP and a discrete set of periodic points of any period is forbidden
in one map. Thus an IVPP guarantees non existence of the Julia set, a fractal set of

unstable periodic points which characterizes non-integrability of the system.

Having studied the properties of IVPPs in many discrete maps we encountered
various interesting phenomena common in such systems. For example, the algebraic
varieties associated with IVPPs of different periods intersect each other. The inter-
sections form a variety which is singular because every point of the variety is occupied
by points of different periods simultaneously. The main purpose of this thesis is to

explore where and how the intersections of IVPPs can take place.

First by studying the periodicity conditions for the maps in detail we will arrive
at a proposition that the intersections are possible only on the singularities of the
maps. In the case of rational maps the zero set of denominators form a variety of
singular points(SP), while the points satisfying 0/0 form a variety of indeterminate

points(IDP). In the ADE case the IDPs can be determined from the implicit function



theorem. Many integrable maps are investigated by means of computer algebra to

confirm our proposition.

Based on this observation we have found the following phenomena in this work.

e Let us consider a d-dimensional map with p invariants. After elimination of p
variables by using all the invariants, we obtain ADE for (d —p) variables whose
coefficients are parameterized by the invariants. If we fix the parameters such
that the invariants specify the IVPP of period n, the ADE becomes a recurrence
equation of period n. Namely, all solutions of this ADE are n periodic for any

initial point.

e On the other hand if we parameterize the SP of a rational map by the invariants,
any point on the SP must be mapped, after n steps, to the IVPP of period n.
In other words, the singular points of the map are the source of IVPPs. This
fact enables us to derive IVPPs of all periods iteratively. Moreover we will
show that this phenomenon can be associated with a “projective resolution” of

“triangulated category”.

e Finally we investigate how the transition takes place between an integrable map
and a non-integrable map. To this end we introduce an arbitrary parameter a
to an integrable map, such that the map becomes integrable at a = 0. When «a
is finite the repelling periodic points of the map form the Julia set. As a varies
the value continuously every point of the Julia set moves along an algebraic
curve. We see that some of them approach IVPPs in the a = 0 limit but a large
part of them approach the singular points of the integrable map, so that the
points become singular loci of the algebraic curves which are highly degenerate

for each period.
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Chapter 1

Introduction

As an introduction to this thesis, we would like to explain first the motivation to
study discrete integrable systems. Then we review briefly the basic ideas on discrete
dynamical systems. The summary of the results of this thesis is presented in the last

part of this chapter.

1.1 Motivation

We want to understand physical phenomena in general. The most of phenomena
appear in a sequence of transition of one physical state into another. We can say we
understand the phenomena if we can describe it by means of mathematical formulas

and if we can predict the behavior of the sequence for all initial conditions.

If we use the terms of the category theory[1] this process of understanding phys-

2

ical phenomena is nothing but a “natural transformation (&) ” of “a category of

physical states (PS)” with “endofunctor of transitions (End(PS))” to “a category of
mathematical objects (MQ)” with “endofunctor of transformations (End(MQO))”.

Z . PS with End(PS) — MO with End(MO,).

-1 -



A “transition” .7 € End(PS) induces a transition of physical states X to X z[1] :=
T (X) for any X € Ob(PS). A “transformation” P(7) € End(MQO) that de-
scribes the transition .7 induces a transformation of mathematical objects Z2(X) to

P (X)pn)|1l] = P(T)(P(X)). Therefore,
Transition : 7 : X — X7[1] = Transformation : 2(.7) : (X)) = P(X)»[1].
In general, a transition .7 € End(PS) is iterated as

X7[2) = T (X7[1]) = TP(X) = T 0 T(X),

because a transition is given by the low of physics. Therefore a transformation

P(T) € End(MO) is also iterated.

From this correspondence, we see that the pair ({93(9 )(t)} rez ,M(’)) is the
“discrete dynamical system” [2], which describes physical phenomena. Therefore the
understanding physical phenomena amounts to understanding the “discrete dynami-
cal system” ({33(5)(“}

dynamical systems.

rez MO). This explains the reason why we study discrete

In order to understand physical phenomena it is important to know if we can
predict behavior of the sequence of transition of the states. In the side of mathematics
it amounts to discriminating integrable systems from non-integrable ones. For this
purpose we study, in this thesis, discrete integrable systems, such as rational maps|[3]
and algebraic dynamical equations(ADE)[4][5] ! .

In the recent works[7][8][9] it was found that integrable rational maps are char-
acterized by the existence of algebraic varieties of periodic points different for each
period, if there exist a sufficient number of invariants. Such a variety is called an

invariant variety of periodic points(IVPP), since it is determined by only information

!An ADE is also called an algebraic relation in [6].
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of the invariants. We are interested in finding necessary and sufficient conditions for
a discrete system being integrable. For this purpose it will be worthwhile to clarify

the role of the IVPPs in integrable systems.

Finally we would like to mention that, although we use many mathematical tools
throughout this work, our main concern is on physical phenomena. Since we en-
counter many new phenomena, which have never been formulated before in math-
ematics, we are forced to introduce many conjectures or ansatzes to explain the
phenomena. A large part of arguments owe to the observation by using computer
algebra 2 . In fact the computer algebra was used not only to confirm all propositions

and conjectures, but also to find new phenomena.

1.2 What is the Dynamical System and Integra-
bility?

In this section, we are going to make our question more precise. We must specify
what is meant by “understanding a discrete dynamical system”. The mathematical
physics has an answer to this question, 7.e., “It is to determine whether the system

is integrable or non integrable”.

We shall give, in the following subsections, “definitions” of discrete dynamical

systems, discrete maps and discrete integrable systems, which we adopt in this work.

1.2.1 Dynamical System and Map

First we give a definition of a dynamical system over C|[2][10].

2We used Maple throughout this work.



A d dimensional dynamical system over C is a pair ({F (t)} reh Cd> such that
F® . c? - ¢,
FO .=idpa, FYoF® = pU+) V¢ ¢ e A
and the “set of time” A is a commutative monoid.

If the set of time A is R, then the dynamical system <{F ) } teRog (Cd) is called
“continuum dynamical system”, and if the set of time A is Z~, then the dynamical
system ({F (t)} teZng ,(Cd> is called “discrete dynamical system”. In addition, if a
map F' is invertible, then the time set of discrete dynamical system Z>( can extend

to Z.

Hence the discrete dynamical system ({F (t)} teTog ,Cd> is given by iterations of
the map F. In this thesis, we denote the process that carries a point ' € C? to

! = F(x') € C! by a map F,

F:xt— 2t

' = F(z!™) = F o F(x?)

Figure 1.1: Time evolutions by iteration of the map F'



1.2.2 Difference Equation

In addition, a physical phenomenon is described by means of “equations of mo-
tion” either differential or difference equations|2|[11], dependent on a continuum or
a discrete dynamical system, respectively. So we give a definition of the difference

equation which describes a discrete dynamical system.

A d dimensional “first order” difference equation F over C is defined as,

F(zt, ™) =0, 'z eC? tezZ i=1,....d
We can get a map F : @' — x'*! by solving® the difference equation F' for the

variable o1,

We give a small remark about the reason that our object is a “first order” dif-
ference equation. It is because we can always rewrite a d dimensional N-th order
difference equation to a d + (N — 1)d dimensional first order difference equation by

=gt i=1,....dT=1,...,N—1.

adding (N — 1)d variables a3, ;|\ v 1) 7 = 7;

1.2.3 Time Evolution of Difference Equation

The time evolution of the difference equations Fis given by elimination of the variable

2! from the set of difference equations,
Fi(z!, ™) =0, F™ 2" =0, i=1,...,d,
from which we get a new set of difference equations F®)

E(Q)(mta mt+2) = 07 wtv mt+2 € (Cd7 1= 17 ) d.

In this manner, we can decide the time evolution of the difference equation F at any

time.

3Tt does not mean to solve the difference equation.
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1.3 Integrability of Dynamical System

In this section we discuss the notion of integrability.

1.3.1 Integrability of a Map and Difference Equation

If the map F and the difference equation F can give “solutions” x [x%] for “any”

initial point x° € C,
T [:co] ct [:1:0] . x¥ [zco} eC? tez,
then F'is called an integrable map, and F an integrable difference equation.

This definition is like “solvability”. However, in general, integrability and solv-
ability are not the same. Therefore we should decide our position about the meaning
of integrability, among many possible candidates. In this thesis, we choose a posi-
tion as follows. If a map has “soliton solutions” the map is called a soliton equation.
There have been known many soliton equations which are integrable in the sense
that all solutions can be obtained, by means of the inverse scattering method, for
any initial conditions. In particular, according to the Sato theory[12] of the KP
hierarchy[13], infinitely many soliton equations can be derived from a single discrete
equation called the Hirota-Miwa equation(HM eq.)[14][15], whose solutions are asso-
ciated with the points of the universal Grassmannian. Therefore, we consider, in this
thesis, about maps which are given mainly by the HM eq., when we must consider

them explicitly.

The meaning of this definition is that we can find a point x'[x"] that is given
for any t of the map F and difference equation F starting from any initial point
2. An integrable system is understandable, because we know all behavior of it

for an arbitrary initial point. On the other hand, a non integrable system is not

-6 —



understandable, because there exist some orbits which we have no way to predict the

behavior before we calculate it explicitly.

If a map is described by a rational function, it is called a rational map|3], while
a difference equation described by a polynomial is called an algebraic difference
equation(ADE)[4][5]. These are the main systems we study in this thesis. Therefore

we do not distinguish words between map and difference equation.

1.3.2 Integrability v.s. Invariants

In this subsection we introduce the notion of invariants. An invariant H(x) € C of

a map and a difference equation is defined when H(x) satisfies

H(z') = H(z" (z")).

Here we should remark about the relation between our definition of integrability
and the invariants. It is often said that maps and difference equations are integrable
when they have enough number of “invariants”. This is, however, incorrect, because

we can give infinite number of exceptions of this definition.

The reason of this error might come from the comparison with the well known
Liouville-Arnold theorem[16] for a continuous Hamiltonian dynamical system[17]
which is integrable when it has enough number of independent invariants. When

the time evolution is discrete, the theorem does not work anymore.

We would like to emphasize that integrability of a general dynamical system
is not determined by the number of invariants. For example, the following two 2

dimensional rational maps

1 — ot 1—at
Lt ot t+1 41y t 2 .t 1
FQdMab-($17$2)'—>(x1 ) )— Ty D) t )

-7 -



and

Foaiog - (:v'i,xé) = (95§+1>$§+1)

I
/;
B3
o
&

N
o
|
S

S,
N

| —
S
N———

have an invariant

Now we restrict the maps Foqmsp and Fhaeg on the level set {x € C* | H(x) = h }
that is a surface on a constant parameter h € C of the invariant H(x"). These maps
become 1 dimensional maps on the level set, because the number of independent
variables of d dimensional map with p invariants is d — p. After the elimination of

T using the invariant and y := x1, we see that Fyqnsp, becomes the Mobius map[18]

t
y' —h
(Foamsn)n : y' V= y'th = 1——yt’

that is known integrable, and Fiqiog becomes the logistic map|[19]
(Faatog)n = y' =y = hy' (1 — "),
that is known non integrable. Because of this reason the number of invariants is not

a proper quantity to define integrability.

1.3.3 Non Integrable System and Julia Set

In general, a non integrable discrete system F' has a chaos. In particular, a non

integrable system has (non trivial) Julia set J(F)[10].

In one dimensional case the Julia set J(F') is a boundary of a set of convergent

points K (F') that is called filled Julia set. It has some properties as follows

o J(F)=J(F®), teN,



Therefore the Julia set J(F) is an invariant of the map F.

A K((Faamsb)n) is {1} for any h € C, therefore the Mobius map has no Julia set.
And we present a filled Julia set of the (Fhaiog)n at h = 3.3 in Figure 1.2.

"logistic.dat”  +

Figure 1.2: Filled Julia set of the (Fhaiog)n b = 3.3

In this thesis, we discuss higher dimensional maps, in which the precise definition
of the Julia set has not been known yet. Hence, we assume that a non integrable

discrete system has the Julia set, given by the closure of unstable periodic points.

1.3.4 Integrability Test and Singularity Confinement(SC)

In this subsection, we discuss about the integrability test of a discrete dynamical
system. The singularity confinement(SC)[20][21][22][23] was a candidate of the inte-
grability test of a discrete dynamical system analogous to the Painlevé test[24] 4 for

second order differential equations.

The SC for a rational map F' is defined by the following conditions:

41t is not proved yet. Recently, it is found[25] that the Painlevé 6, for example has chaotic orbits.
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e An initial point ° is chosen at a zero of one of denominators D;,?i € {1,...,d}.

Then x° goes to infinity by the map F.

a2’ e {xeC’|Dix)=0, Yie{l,... d} = Fx") = oc.

e The point ° returns to a finite point after finite steps N,. € N of the map F.

x’ = - — FW)(£0) < o0,
Since the SC has counter examples[26], it is not a sufficient of integrability test.

However it seems an important nature of discrete integrable systems.

Although there are many other useful methods to judge integrability, such as
algebraic entropy[26], Liapnov numbers[27], and so on, we do not discuss them in

this thesis, because we do not use numerical calculation.

1.3.5 Continuous and Ultradiscrete Limits

We have so far discussed discrete integrable systems described by a “discrete time”
and “continuous dependent variables”. But a large part of physical phenomena are
dynamical systems of continuous time. As far as integrability is concerned, however,
the gap between discrete and continuous time is not big. Almost every discrete
integrable system can be transferred to a continuum integrable system. It will be
achieved in the ¢ = 0 limit of the following procedure

FE+1) = e f(t) — f(t+e) = et f(t) = f(t) +e%f(t) T

without losing integrability[28].

Another possible limit of the discrete integrable system is called an ultradiscrete

system that is described by “discrete time and discrete dependent variables” [2][28].

— 10 —



The procedure of ultradiscritization is defined by taking the ¢ = 0 limit of the

following scheme:

X/ v/ Z/e

r+y=2z < max(X,Y)=27 (e—+0), xz=e" y=e'z2=¢e etc.

Many discrete integrable maps have been shown to remain integrable after this

procedure|2].

1.4 Behavior of Periodic Points

We are interested in the behavior of periodic points of a rational map or an ADE. In
fact we are going to show that periodic points characterize an integrable system. On
the other hand the Julia set, which was introduced in §1.2.7, can be also defined as
“the closure of the set of repelling periodic points”[10]. In other words, an analysis
of periodic points should provide a key to discriminate integrable systems from non

integrable ones.
In this section, we assume that the map F'is d dimensional rational map or ADE

with p invariants H (z') € (C[z!])? ° .

1.4.1 Fixed Points and Periodic Points
If a point € C? satisfies the condition,
x=F(x) = [F—id](x)=0,

the point € C? is called a fixed point of the map F. The fixed points of F™ are
called n periodic points of the map F, if they are not periodic points of divisors of

n.

SHere C[z!] is a polynomial ring for the variable z![29].

- 11 —



mt+2

Figure 1.3: Points of period 3 of the map F

1.4.2 Invariant Variety of Periodic Points(IVPP) and IVPP
Theorem
A “variety” of periodic points(VPP) of period n of the map F' is defined by the

conditions

[F(n) - ld} (33) =0 = F(:)(y’h’> = 07 (IS Cd_p7 h € (Cpa .jn - 17 T ‘]TM

J

where y € C?P is the variable of the level set H(x) = h € CP, and J, < d — p.

H(z)=h

Figure 1.4: Variable y on level set H(x) = h

A VPP of period n has some cases as follows[7][8][9]:

- 12 —



e Uncorrelated (UC-VPP):

Ty h) =0, ky=1,... K, K,=1J,

e Correlated (C-VPP):

I (y,h) =0, %W'(R) =0, kn=1,....Kn, li=1,....Ly, Ku+Ly,=Jy,

e Full Correlated (FC-VPP):
W R) =0, ly=1,....Ln, Ly=J,

where F,(:L) (y, h) is a function of the variable y on the level set and the invariants h,

)

while 71(: is a function of the invariants h only.

A FC-VPP is given by only information of the invariants, thus it is also called an

invariant variety of periodic points(IVPP)[7][8][9].

We should give a small remark about the dimension of a VPP. In the case K,, =
d — p, the dimension of the UC-VPP on a level set is 0, and in the case L, = d — p,
the dimension of the IVPP on a level set is p. Therefore, in the case of maximal, the

UC-VPP is a set of discrete points and the IVPP is a set of continuous points.

Figure 1.5: UC-VPP Figure 1.6: C-VPP Figure 1.7: FC-VPP

— 13 —



IVPP Theorem

An IVPP has an important property that is called IVPP theorem|7][8][9].

First, we introduce an “axiom” as follows,

Axiom
[VPPS of different periodicity have no intersection on “generic points”. ]

Where, “generic points” will be defined in Chap.2. Based on this axiom, we can

prove IVPP theorem as follows,

IVPP Theorem
Let F be a d dimensional “rational map” with p invariants. If p > d/2, an IVPP

and a UC-VPP of any period do not exist in one map, simultaneously.

By IVPP theorem, a rational map that has the IVPP can be analyzed by the variables

on the level set and the parameters correspondent to the invariants.

1.4.3 IVPP/Julia Set and Integrable/Non Integrable Sys-

tem

A Julia set has definitions in many ways % . In particular, the following definition is

convenient for our argument,

J(F) = U {“repelling” periodic points of period n} C U Period(F,n).

Therefore, the Julia set is characterized by periodic points.

6In general, some definitions are not equivalent for a higher dimensional map.
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In general, an IVPP is a continuum set that has integer dimension, but the Julia

set is a fractal set[30] that has fractal dimension of non integer * .

Therefore, as a corollary of the IVPP theorem we conjecture as follows,

IVPP/Julia Set Conjecture
[If a map F' has an IVPP/Julia set then the map F' can’t have a Julia set/ IVPP]

and

Integrable/Non Integrable Conjecture
[If a map F' has an IVPP/Julia set then the map F' is Integrable/Non Integrablej

Thus the existence or nonexistence of the IVPP/Julia set of the map F' is a test
for the decision of Integrable/Non Integrable system. One of researches about this

problem is the transition of Integrable/Non Integrable system|[§].

1.4.4 Recurrence Equation(RE)

If a VPP of period n of a map F is C%, then the map F is called an n periodic

recurrence equation(RE)[31][32]. Of course, a RE is an integrable system.

Now, we give some examples of the RE[31][32],

e 2 periodic RE:

at s 2t = %, Ya € C\ {0},

e 5 periodic RE:

(il?t_l,.iEt) — mt-i—l —

"We need some attention for this statement, because, an IVPP is for each period, while a Julia

set is for all.
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e 8 periodic RE:

("2 2" 2 s

They are REs of period 2, period 5 and period 8, respectively, which have been given

in [31]. Yahagi and Hirota have derived many other examples[32].

Furthermore in ref. [33] a method was developed to derive infinitely many such

mappings associated with IVPP.

Fz\ ) =0, +\"(H@)) =0, i=1....d j=1,....d—p

= Fn,k(zt’zt'Fl) = 07 zZ = <I17 . 7'/1"])) c (Cp7 k= 17 Co D,

This RE is period n and p dimensional map with 2p — d invariants.

1.5 Summaries of This Thesis
We give summaries of our thesis in this section.

In Chap.2 we first give definitions of a rational map, an ADE and some notations.
An ADE is a generalization of a rational map. Since an ADE is multivalued in gen-
eral, the time evolutions of ADE becomes implicit. We will overcome this difficulty,

however, by using the notion of elimination ideal[34].

Compared with a rational map, an ADE has good properties as follows

e Invariant/Parameter Duality: By IVPP theorem, it is a good idea to restrict
the map to a level set. In general, a rational map restricted on the level set is

not a rational map, but an ADE remains the same.

e IVPP/RE Duality: Similarly, a rational map on an IVPP is not a rational map,

while an ADE remains the same.
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In other words, we think that the category of rational map is not available, and the
category of ADE is available. It is the reason that we investigate an ADE in addition

to a rational map.

We extend, in this chapter, the IVPP theorem, derived for a rational map, to an
ADE. In the derivation of the IVPP theorem|8], an axiom is introduced such that
“VPPs of different periodicity have no intersection on generic points”. As we extend
the theorem to an ADE, we are to investigate relations of the intersections of IVPPs

and the “indeterminate points(IDP)” of ADE.

In Chap.3 we study the Invariant/Parameter duality. Upon elimination of p
independent variables from a rational map by using p invariants, we will find an
ADE. This enables us to investigate explicitly the relations between a rational map

and an ADE, which we have just discussed above.

In Chap.4 we discuss a method to derive IVPPs iteratively from a singular point
of a rational map. This is possible when the singularity is confined and the point is

specified only by the invariants of the map.

We deepen this idea in Chap 5. As we discussed in §1.1 from the view of category
theory, an integrable system is a category in which objects are the states and the
functor is the change of the states. Keeping this correspondence in mind we will
show that the generation of IVPPs from the singularity can be associated with the

“projective resolution” of the “triangulated category”.

In Chap.6 we discuss about a transition of Integrable/Non Integrable systems.
This problem has been studied intensively in the literature. The transition to a
non integrable system was investigated perturbatively. An important result is well

known as the fixed point theorem[35][36]. It tells us that the perturbation causes
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a production of a number of unstable periodic points in the neighborhood of every

periodic point of the original map.

In order to understand this phenomenon in our terminology, we deform one of
integrable system by introducing a parameter. We can specify an algebraic curve
along which a periodic point of any period moves as the parameter changes. From
the fixed point theorem we expect that all such points approach some points on
I[VPPs in the integrable limit. In fact some part of the Julia set approach IVPPs.
But a large part of them move to the singular points of the map, instead of IVPPs.
We emphasize that this phenomenon is difficult to find by a traditional perturbative
method.
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Chapter 2

IVPP Theorem and Intersections

of VPPs

In this chapter, we give our set up and extension of the IVPP theorem for a rational
map to an algebraic difference equation(ADE). In addition, we consider carefully the
conditions for the intersections of VPPs. We will find that they are on indeterminate

points(IDP) of the map.

2.1 Rational Map

2.1.1 Rational Map

A d dimensional rational map F : 2! — x'*! is defined by

Foaxt= (2, 2h, . ah) w2 = (2t bt 2, 2t 2 e
N;(a? :
ot = () Ni(z"), Di(z") € Clz], i=1,...,d,

i T Dl(wt)’
where each pair of the denominator D;(x') and the numerator N;(x') are coprime

for all2 =1,...,d. The time evolution of the rational map Fis given by an iteration
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of the map,
FO gl 2? = FO(2!) .= F o F(x),

2
Zit? = % NPz, DP(x') e Clz'], i=1,....d.
D7 ()
In general, T € N times evolution of the map F' is given by T iterations of the map,
T
F(a'),

FO gt s 2T — PO (@) .= Fo Fo- o

('), D" (x") € Cla'], i=1,....d,

A rational map F is called a bi-rational map, when the inverse map of F is also

a rational map,

FED x' = (Qii,lﬁga 7xtd)
— mt_l = (:L‘tl_17 xé_l, .. ,.Tfi_l), wt’ wt_l € Cd>
N-(_l) t _ _
dti= B ) N D et e Clat), i1,
D; " (x?)

1

All our examples in this work are bi-rational maps.

2.1.2 Singular Points(SP) and Indeterminate Points(IDP)
A rational map F has “singular points(SP)” that are zero points of the denominators,
SP(Fi):={xeC"|Di(x) =0}, i=1,....,d, (2.1)

d
SP(F) := | JSP(F.i).

In addition, if there exist, at the same time, zero points of the numerators V;(x) and

(2.2)

the denominators D;(x), then they are called “indeterminate points(IDP)”,
=0}, i1=1,...,4 (2.3)

IDP(F,i) := { & € C* | D;(x) = 0, N;()
_ 20 _



IDP(F) := OIDP(F, ). (2.4)

Of course, we notice immediately the relation,

IDP(F) C SP(F).

In this thesis, we also discuss about an algebraic difference equation(ADE). We

might think the ADE

Fi(z', ') := 2! Di(x") — Ny(z') =0, Ny(z'), D;i(=") € Clz], i=1,...,d,

as an “implicitization”[34] of the rational map (2.1.1). Similarly the implicitization

of the inverse map F(-Y is given by
EV (@t 27 = 2DV (&) — N V() = 0

N V@), D (@) e Clatl, i=1,....d

(2

The implicitization of a rational map is often more convenient than the rational
map, because we can apply some algebraic methods (e.g. Grobner basis) to the

former.

Finally we notice that the IDP of an implicitization of a rational map is deter-

mined by the implicit function theorem[37], as follows:
IDP(F, i) = {w € C'| Oy Fy(m, o) = Dix) = o} — IDP(F, ).

Now we use the fact about the implicitization of a rational map such that if a

denominator D;(x) is zero, then N;(x) is also zero.
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2.1.3 Fixed Points and IDP

If a point x € C? satisfies the condition,
F(z,x) = z;Di(x) — Ny(x) =0, i=1,...,d,
the point € C? is called a fixed point of the implicitization of the rational map F.
If Di(x) = 0,i" € {1,...,d} then Ny(x) = 0, while if D;(x) # 0,i = 1,....d,

x € C? satisfies the condition,

In this case the point & € C? is called a fixed point of the rational map F. Therefore

the set of fixed points

FP(F) = { z € C¢ ‘ Fi(z, ) = :D;(x) — Ni(z) =0, i=1,....d } (2.5)

N;
v = ,(w), izl,...,d},

and

FP(F) := { x € C?

satisfy the relation

FP/IDP Conjecture

FP(F) = FP(F) UIDP(F). (2.6)

This is an important relation, but is not completely proved yet. Therefore, this

relation is a conjecture, at this moment.

2.1.4 Example
Rational Map

In this thesis, we often use the 2 dimensional Mobius map, defined by

Fonr .(t t)|_>( t+1 t+1)_ (l—ap 1—af (2.7)
2dMob - .I'17.T1 ZE’I ,(L’2 — l’l 1 — xt 7I21 — xt . .
1 2
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It has an inverse map

L1+ tl—i—xﬁ)

-1 — —
Flath + (ato) = (ot 07) = (ot Tk, af

that is also a rational map. Therefore the 2 dimensional Mébius map is a bi-rational
map. This is one of the most useful and convenient examples, which enables us to
check the validity of our argument.

Implicitization of Rational Map

The implicitization of the 2 dimensional Mobius map is
(Foamsp)i(a!, &™) = 2™ (1 — af) —2l(1—2},,) =0, i€Z/2Z

Time Evolution

The time evolution of the 2 dimensional Mébius map proceeds as
1—af ,1—2at
t ot t 2t 1
x],xy) — | x
(17 2) (11_x7iv 21—.%'5)
1 —=22h +atel 1 — 22 + atad
— Ly t to0 L2 t t ot

.. etc.
SP and IDP
The SP and IDP of the 2 dimensional M6bius map are given by

SP(FQdMéb, 1) = { (1,332) - (C2 ‘ V.CEQ € (C } s
SP(FQdMébv 2) = { (xla 1) € (C2 ‘ vxl S C } )

IDP(Foqmsn, 1) = IDP(Foamsn, 2) = {(1,1)}.
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Fixed Point and IDP
The set of fixed points of the 2 dimensional Mobius map are given by
FP<F2dM6b) = { (ZL’,Z') S (C2 ‘ i 7é 1, reC },

FP(FQdMéb) = { (.T,ZL’) c CZ ‘ T € (C} = FP(FQdM5b> U IDP(FQdM('jb).

2.2 Algebraic Difference Equation(ADE)

2.2.1 ADE

A d dimensional algebraic difference equation(ADE) F : &' — @' is defined by

Fi(z' 2" =0, Fi(z' 2" eClz, 2], i=1,...,d (2.8)

2.2.2 Time Evolution of ADE

1

In contrast to the rational map case, the point x!*! after the time evolution from

the initial point ! is difficult to determine in the ADE case. Therefore, we need a

new way to study the time evolution of an ADE.
Now, we define an ideal ' form of the ADE F(IADE) by
1 @ 2t = (R 2™, . Rt at)). (2.9)

Thus, we define an ADE F® or an IADE IIt:;HZ(wt, x'™?) that is a time evolution of

the ADE F, by the elimination ideal,

;t+2(mt7 wt+2) — Cb ( ;t+1<wt7 xt—i—l)7 I}+1’t+2<wt+l, wt+2)> N (C[l't, $t+2],

In Appendix A, we give a very short explanation of affine algebraic variety and this notation.
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where Gb (Ig’tﬂ (!, '), I;H’HQ(zvt“, wt”)) represents the Grobner basis 2 [34][39]
of the ordering x'*2 > x' > x!™!. In general, we can define the T-th time evolution

of the ITADE I;HT(:Bt, x*T) recursively.

2.2.3 Time Evolution and “Exact Sequence”

Proposition

The IADE I;;tﬂ(zct,a:t“) of a bi-rational map F and the IADE [;f:l) ('t xt) of

the inverse map F(Y are equivalent 3 -

I 1 5 1
2t ) ~ I (e ). (2.10)

Proof: The bi-rational map is bijective. Thus, a bi-rational map F' gives the same

points solved by both of the variables ! and x!**.

Lemma 1

In this thesis, we assume * that the number of bases of the IADE ];t+2(mt, x'*?) is
d, and these bases are represented in the form Fi@)(a}t, x'*?), i =1,...,d. Therefore,
the relation,

I}’t“(a:t, wt+2) ~ ];1(5;1 (wt’ wt+2)7 (211)

is satisfied.

2The Grobeer basis is a possible basis which generates the ideal given by some algorithm e.g.

Buchberger’s algorithm[39].
3This equivalence is defined as (A.1) in Appendix A.
4This assumption has some difficulty, in the sense that we need “minimal Grébner basis” [40] for

a map chosen by usual Grobner basis.
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Lemma 2

From the nature of the TADE, it has an important property:

/ ’ v ’
I;;t (', x") + [%’t (x'

Lemma 3
From the Lem. 2, we find an “exact sequence”:

Iy = 12N 20 2t) — I ')+ 1% (a 2?)
¢ 4
I%l(zco, ') + [%’2(330, x?) —

N

or, equivalently,

. 0,1 0,1 0,2
Ip=17 (%, ') — I (mo,m1)+lﬁ (x°, 2?)

02/,0 2 03/,0 3
= I (x", 7)) + [ (x", 2°) — -

From this argument we have the following result:

Proposition

/ "
) = 1 (ot at) 1 1 (a2,

(2.12)

(2.13)

An iteration of the ADE can be identified with an “ezact sequence” (2.13) of the

IADE up to “common factors”.

Remark

We notice that % is not a completely “exact sequence”, because these terms have

common factors, e.g. fixed points. Thus we should remove some parts from I3 to

make it exact.
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This indeterminacy by common factors produces a delicate problem. In chapter
6, we discuss about this problem as null system of “triangulated category” in the

case of Hirota-Miwa equation(HM eq.).

2.3 IVPP of ADE

The most important object of this thesis is an invariant variety of periodic points(IVPP).

In this section, we define the IVPP of ADE.

Invariant

An invariant H(x') € C[z!] of an ADE F is defined to satisfy the relation,
H(z') = H(z'"'(z")), H(z') € Clz'].

We assume that an ADE F' has p invariants H (z*) := (H,(z"),..., Hy(z")) ® .

Level Set

A level set of an ADE F constrained by the parameter set b € CP is defined as,

LS(F,h):={xzeC’|H(zx)—-h=0}. (2.14)

VPP and IVPP

A variety of periodic points(VPP) of period n > 2 of an ADE F is defined by

Period(F, n) := { x € C? ’ Fi(n)(a:,a:) =0, Fi(m)(w,m) #£0,nm,i=1,...,d } .
(2.15)

5In general, invariants may not be polynomials, but we assume this, in this work, for convenience.
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We notice a relation
Period(F,n) = FP(F™)\ | [ JFP(F™) |, (2.16)
nlm

where n|m means that m is a divisor of n. Hence a Period(F,n) of rational map F

satisfies

Period/IDP Proposition

Period(F,n) = Period(F,n) UIDP(F™) (2.17)

by FP/IDP conjecture. In general, the condition for VPP of period n on the level
set LS(F, h)

() _ —

Iy, h) =0, jon=1,...,Jp (2.18)

is given by the following “mixed conditions”

W(h) = 0, l,=1,... L, (2.20)

where y € C? P is a variable on the level set, and J,, = K,, + L, < d — p.
e If L,, = 0 then a VPP of period n is called “uncorrelated(UC)-VPP”.
o If K, #0,L, # 0 then a VPP of period n is called “correlated(C)-VPP”.

o If K,, =0 then a VPP of period n is called “full correlated(FC)-VPP”.

A FC-VPP is also called an IVPP. The IVPP also can be represented as,

Period(F,n) := U LS(F, h).

In sum, any point on the level set LS(F, k) for the parameter set { h € C? ‘ 71(:)(h) =

0, l,=1,...,L, }, is an n periodic point.
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LS(F, h) € Period(F,3)

Figure 2.1: An IVPP of period 3 of the map F

2.3.1 Example

For an example, we use again the 2 dimensional M6bius map (2.7).

Invariant

The invariant H(x') of the 2 dimensional Mobius map is given

1—at 1—af
H(z™ ' (zh)) = #t (a2l (o) = (xt :ch) : <xt xl) =217y (2.21)

Tt g3
VPPs
e Period(Faqmsn, 2) = 0,
e Period(Fhqvsn,3) ={x € C* | 125 +3=H(x)+3=01},
e Period(Fhqvsn,4) ={x € C* |12+ 1=H(x)+1=0},

[ Period(FQdMéb, 5) = { T € CZ | (leg)z + 10%11’2 + 5= (H(CL’))Q + 10H($) +5=0 },

etc.
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Therefore VPPs of the 2 dimensional Mobius map are IVPPs. We give a picture of
IVPPs of 2 dimensional Mobius map.

Period(F.3) Period(F.4) PcriodfF.5]|

Figure 2.2: IVPPs of 2 dimensional Mobius map

2.4 IVPP Theorem

The IVPP theorem for a rational map is also true for an ADE by a similar proof.

First, one more time, we state the “axiom” as follows,

Axiom
[VPPS of different periodicity have no intersection on “generic points”. ]

Where, “generic points” mean that are not on IDP. On this axiom, we can prove

IVPP theorem as follows,
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IVPP Theorem
Let F be a d dimensional ADE with p invariants. If there exists n > 2 such that
p > J,, and a VPP of period n is an IVPP, then a VPP of period m is not an
UC-VPP for any m > 2.

Proof:

By the assumption, the condition for the VPP being period n is given by only the

parameter h of the invariants, and is written as
71(:)(’1) :07 ln = 17"‘7Ln - Jn; h e Cr. (222)

where y is a variable on LS(F, h). Notice that if we discuss on p dimensional in-
variant space, the condition (2.22) determines a p — J,, dimensional variety in the
p dimensional invariant space. In other words, there is no IVPP, in general, when

p > J, is not satisfied.
Now, we assume that J,, conditions of period m are UC-VPP,
D (y,h) =0, kp=1,...,Kn=1Jn, yeC? heCr

This condition is solvable for the parameter h € CP of the IVPP of period n. It is

impossible by the axiom. Therefore, we proved the statement.

(Q.E.D)

Remark

By this proof, we can find some propositions as follows.

e There is not FC-VPP of period n in general when p > J, is not satisfied.

— 31 —



e [VPP theorem is satisfied when the intersections of the VPPs are not on generic

points.

In the next section, we discuss about the above propositions.

2.5 Conditions for Intersections of VPPs

In this section, we consider conditions for intersections of VPPs.

Let F be a d dimensional ADE with p invariants. We assume that there exist

a(=n,m) > 2, such that the period « conditions on the level set,
Dy, h) =0, jo=1,....,J0, yeC? heC,
are written as
Dy, h) =0, ka=1,....Ke, A(h)=0, la=1,...,La,

yecC? hecr

where y € C4P are the variables on the level set and J, = K, + L, < d — p.
If L, < p then we get periodic points of period «,
Yo(Ya, ho(H,), H,) € C*  h,(H,) € Cl Y,eC P H,ecCll
where Y, € C4P=Ka and H, € CP~Le are free parameters.

In these assumptions, there can be some situations as follows,
o K, > K,,,L, > L,,, i.e. J,> J,.

e K, > K,,, L, < L,,.

e Alternative case of n and m.
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In the case K,, > K,,,, L, > L,,:
(gm)km(lfna Hn) = (gn)km(}fna Hn)a km = 17 <. >Km7

(Bm)lm (Hn) - (ﬁn)lm (Hn)a lm=1,..., Ly,
Y, € Cd_p_K”, H, e CP~ I,

Hence we get

e p>Lyp+L,>Jy+Jy—(d—p), (d>J,+ Jn): There exist intersections of
the VPP of period n and the VPP of period m on the variables y € C?7.

e p> L, + J,: There exist intersections of the VPP of period n and the VPP

of period m on the parameters h € CP.

e d > J,+ J,: There exist intersections of the VPP of period n and the VPP of

period m.

In the case K,, > K,,,, L, < L,,:
(gm>km(muHm) = (Qn)km<lfnaHm)y km = 17---7Km7

(}Alm)ln (Hm) = (iLN)ln (Hm)7 ln=1,..., Ly,
Y, € (Cd_p_K", H,, € CP~im

Hence we get

e p>L,+Ly>Jy+Jy—(d—p), (d>J,+ Jn): There exist intersections of
the VPP of period n and the VPP of period m on the variables y € C¢P.

e p > L, + J,: There exist intersections of the VPP of period n and the VPP

of period m on the parameters h € CP.

e d> J,+ J,: There exist intersections of the VPP of period n and the VPP of

period m.
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Special case J, = J,, =d—p

In fact, every our example satisfies J, = J,, = d — p, and this IVPP satisfies L, =
d — p. Here we consider concrete cases, i.e., the case J, = J,, = d —p, and L, =
L, =d—p.
tJ,=J,=d—p
ep>1L,+ L, >d—p, (p>d/2): There exist intersections of the VPP of
period n and the VPP of period m on the variables y € C*P.

e 2p—d > L,: There exist intersections of the VPP of period n and the VPP of

period m on the parameters h € CP.

e p > d/2: There exist intersections of the VPP of period n and the VPP of
period m.

fL,=L,=d—p

e p > 2d/3: There exist intersections of the VPP of period n and the VPP of

period m on the parameters h € CP.

2
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2.6 Origins of Intersection of VPPs

In the previous section, we considered about intersections of VPPs. Our discussion
is based on counting the dimension and counting the number of conditions. Hence,
it does not prohibit that VPPs have intersections. In this section, we consider about

this possibility.

2.6.1 IDP

By the condition for the IVPP theorem that the VPPs have no intersection on generic

points, intersections of the VPPs must be “singular points” of some kind.
In the case of rational map F, Period(F,n) and Period(F,n) satisfy,
Period(F,n) = Period(F,n) UIDP(F™),

by the Period/IDP conjecture. Therefore Period(F,n), Period(F,n), Period(F,m)
and Period(F', m) satisfy,

Period(F,n) N Period(F,m) = (Period(F,n) N Period(F,m))
U(IDP(F™) N IDP(F™)).  (2.23)

Here, we assume that the intersections of VPPs are not generic points. Hence we

can get more conjectures as follows.

Conjecture for rational map

Period(F,n) N Period(F, m) = IDP(F™) N IDP(F™) (2.24)

and
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Conjecture for ADE
In general, an ADE has IDP from the implicit function theorem. Therefore
intersections of VPPs of an ADE are on the IDP.

2.6.2 Common Factors

We consider other source of intersections of VPPs that is given by common factors

of the conditions for a VPP. We give only the easiest case as follows:

e The conditions of the period n > 2,
Fi(")(:c,w) =0, i=1,...,d, xeC
can be rewritten on the LS(F, h) as,
I (y,h)=0, ju=1,...,J,, yeC*? heCr

In general, the conditions of the VPP are not just the conditions of the IVPP,

but become
(n) (n) _ C_ d—
K; (y,h)”yjn (h)=0, jo=1,...,J,, yeC"? heCr
We now must take care of the extra factor KJ(-:) (y,h), jn=1,...,Jp.

e The easiest case, we assume that the conditions ’7](:)(h) =0,j, =1,...,J,

give a generic VPP(i.e. IVPP). Any other m > 2 periodic conditions must be
written as 7](-:?)(h) =0, jm=1,...,J,, by the IVPP theorem. In other words,

the zero point conditions of the factors K](::)(y, h), jm = 1,...,J, give the
intersections of the VPP of period n and the VPP of period m. Therefore,
the zero points of the conditions of the factors K ](Z) (y,h), jm=1,...,J, are

some kinds of singular points.
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2.6.3 Singular Points of Variety

Finally, we discuss about an origin of intersection of VPPs from the view of singular

points of variety. We consider only the easiest case in the following.

Singular points of an IVPP of period n with respect to the invariants,

O (K (y, R)7 " (R) =0, k=1,....p, jo=1,....d—p, (2.25)
are calculated as,

Ony (K7 (y, R)7\ M (R)) = 0
O K (y, ) () + K (y, h)(0,7\" (R)) = 0.

Hence, the singular points of the variety, i.e., the IVPP are given by the following

conditions,

(n) — -
an (y7h)_07 ]n_la---7d_pa

or

O (R) =0, ju=1,....,d—p.

The zero points conditions of the common factors K](-:)(y, h),jn=1,...,d—p
give the conditions of the singular points of the variety. Therefore we “push forward”

the results of the previous subsection:

Conjecture of Singular Points of Variety
[If there exist intersections of VPPs, then they are on singular points of the VPPS.J
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2.7 Examples

2.7.1 2 dimensional Mobius Map

The 2 dimensional Mobius map has 1 invariant, then it does not satisfy the intersec-

tion condition

P> = (2.26)

of VPPs in the case of L,, = d — p. Hence, IVPPs of 2 dimensional Mébius map has

no intersection.

2.7.2 3 dimensional Lotka-Volterra Map

Next, we discuss about the 3 dimensional Lotka-Volterra(3dLV) map[41][42]. Itis a 3
dimensional map which has two invariants, then it satisfies the intersection condition

of VPPs (2.26) in the case L,, = d — p. Hence, IVPPs of 3dLV map has intersections.

Rational Map

1—at,, + 2t ot
(Fsawy )i - " — 2™ = ] 1 ;1 + ;1 ;JQQ, i €Z/3L. (2.27)
4l 142

ADE

H_l) = $§+1(1 - $§+1 + x§+2x§)

a1 —at, 42t al,) =0, i€Z/3Z. (2.28)

(F?)dLV)i(mtv (Y
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Invariants

There are two invariants, which we denote by f = H;(x'),g = Ha(x"') for conve-

nience,

fo= mayrh — (1—a3)(1 = 25)(1 — a3), (2.29)
g = 1+ (1 —a2)(1—ah)(1—ab). (2.30)

IVPPs

The conditions of the IVPPs of this map have been known[7][8][9] :

Y (f9) = g, (2.31)

YI(f9) = FP+rfe+d (2.32)

Y(f9) = F+1-9f+9) (2.33)
etc.

We give Figure 2.4, Figure 2.5 of IVPPs of 3dLV map for period 2 and 4. The IVPP

of period 3 is invisible in real number space, since that is in complex number space.

Figure 2.4: IVPP of period 2 of 3dLV map Figure 2.5: IVPP of period 4 of 3dLV map
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IDP and Intersections of IVPPs

There are some intersections of IVPPs which we can see in Figure 2.6, Figure 2.7.

Figure 2.6: Intersections of IVPPs of pe- Figure 2.7: Intersections of IVPPs of pe-
riod 2,4 of 3dLV map riod 2,4 of 3dLV map

In particular, IDP of the 3dLV map is given as follows.

Figure 2.8: IDP of 3dLV map

Thus we can see that these give the same points.
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Common Factors and Intersections of IVPPs

Next we consider the common factors of the periodic conditions, which we discussed
in §2.6.2. Here, because the formulas become too large, we present only the 2 period

case as follows.

2 2,2 2 2 2 2, 2
K§ )(:13) = T3T\T5 — 2X3TTo + T3T] + T1T5T3 — T3T1X5 + T1T2x3
-9 2,2 2 2 2
T3T1 + THx3 Tox3 + Ty — T + T3 + T3,
(2) _ 2,2 2,2 2. .2 2 2 2
Ky (x) = —z32] + 2ox3x] — 230125 + 2012523 — T105 — T301T
—z + 23133 + 2057, — — a1 + 13 — T3
1T2T3 19 T3 31 T XT3 X3,
(2) _ 2,2 2,2 2,2 2 2 2
K7 (x) = —x3x] + 230705 — Tox3x] — T3x7To + 20007 — X7

2 2
+22501 T2 — T1T2T3 — T1T2 + Ty — Tax3 + 2T2x3 — To.

We can easily check that these give the set of IDP(F3qry).

Singular Points of Variety and Intersections of IVPPs

We show the singular points of IVPP. Because, the IVPP of period 2 has no singular
point and the case of other periods are too difficult to write down, we consider only
the period 3 case here. However, we can check that any periods have the same

situations as the case of 3 period.

oI (f.9) = 2f+g,
89 (3)(fag> = f+29a

therefore we get singular points of the IVPP of period 3 at

We notice that the singular points of the variety include the IDP(Fiqry).
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2.7.3 3 dimensional Korteweg-de Vries Map

Since we must know IVPPs of the map to check the validity of our propositions
we next study the 3 dimensional Korteweg-de Vries(3dKdV) map[41][42], which has

been well studied.

Rational Map

tot t 2

+l o tl xzxz+2 + xzxz+1($i+2)
i1 it 2 ¢

I —aimyyy + (})%w i+15’72‘+2

(Fiakav)i : ' — i€ Z/37. (2.34)

Y

ADE

= tﬂ(l xzxz+1+( )2xf+1xz+2)

—at(1—alal +alal, (21,,)*)=0, i € Z/3Z. (2.35)

(F3deV)i<wt7 th)

Invariants

There are two invariants, which we denote by f = hy(x"), g = ho(a") for convenience,

[ = 1+ ziabad, (2.36)
g = 1+(1+ x1x2>(1 + 1'2%)(1 + 3335’71) (2.37)

IVPPs

We can find the IVPPs in [7],

YA (f.9) = g, (2.38)

Y (f.g) = (FP=2f+9)?—gf(f-2), (2.39)

YW(f.9) = (FP=2f+9)°—(g- 1) (f —2)° (2.40)
etc.
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We give Figure 2.9, Figure 2.10 of IVPPs of 3dKdV map for period 2 and 4. The

IVPP of period 3 is again invisible in real number space.

Figure 2.9: IVPP of period 2 of 3dKdV Figure 2.10: IVPP of period 4 of 3dKdV

map map

Intersection of IVPPs

There are some intersections of IVPPs which we can see in Figure 2.11, Figure 2.12.

Figure 2.11: Intersections of IVPPs of pe- Figure 2.12: Intersections of IVPPs of pe-
riod 2,4 of 3dKdV map riod 2,4 of 3dKdV map
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In particular, IDP of the 3dKdV map is given as follows.

Figure 2.13: IDP of 3dKdV map

Thus we can see that these give the same points.

Common Factors and Intersections of IVPPs

Next we also show the common factors of the periodic conditions about only the 2

period as follows.

(2) _ 3,33 23,2 4,23 3,22 2,2 3,.3
K\7(x) = zyxies + w3xins — xo01xy + 250725 + 2050703 — 205251

—l—a:gzvl — x%xlxg + 212379 — x%x% — 21‘%352 + x5 — 23,
K2(2)(CI:) = zhatal — piagal — 203 adny — 232l + adaiad + adada?

—x%xgxf — 21]%1‘3 + 2x§x1x§ 4+ x103T9 — 1 + T3 + l’%l‘g,
Kéz)(:c) = aiatal — adatad + 2030t ns — 22030+ ada? — adala?

2.2 2. .2 2 2
+T5T{T3 — 205020 — T1T3 + 20571 — T1X3T2 — T1 + Ta.

We can easily check that these give the set of IDP(F3qkqv). In addition, the common

factors of the other periods are the same situations as the 3dLV map case.

— 44 —



Singular Points of Variety and Intersections of IVPPs

We show the singular points of IVPP of only 3 period. Because, IVPP of period 2
has no singular point, and other periods are difficult to draw here. However, we can

check that any periods have the same situations as the case of 3 period.

Oy (fg) = 4f* —12f2 +2fg+8f — 2g,
0D (f.9) = f*—2f+2g,

therefore we get a singular points of variety of IVPP of period 3 is

f:07 g:()v
1

f_7 g_ia

f=2 9=

We notice that the singular points of the variety include the IDP(Fiqkav)-

2.7.4 Discussion

In this section, we showed two examples, 3dLV map and 3dKdV, about intersections
of IVPPs. These examples have intersections of [VPPs in many forms, IDP, common
factors and singular points of IVPP. However, all intersections of IVPPs are on IDP
of ADE, therefore, we checked a correctness of the axiom of IVPP theorem in these

examples.
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Chapter 3

Invariant /Parameter Duality

In this chapter, we discuss an ADE on a level set such that it is also an ADE. In
particular, an ADE constrained on an IVPP provides a recurrence equation(RE). In
addition, the ADE on the level set can be interpreted as an IVPP on a “parameter

space”, hence we can consider higher dimensional IVPPs on the parameter space.

3.1 Invariant/Parameter Duality

In the discussion thus far, we explained that the level set of the ADE and the VPP
of ADE are important for the IVPP theorem. However, counting of dimension of

each ADE and setting variables and parameters are tedious.

Hence, we propose a new ADE F}, that is restricted the ADE F on the LS(F, h).
The IADE of the ADE F), is defined as,

;}i—l—l(yt’ yt+1) — Cb ( %’H-l(mt, wt—i—l)7 (h . h(wt))> N (C[yt,yt“],
y'y™ e CTP heCP, (3.1)
where y := (z1,...,24-p). The ADE F}, has no invariant, but it has p parameters.
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From the definition we find a relation as follows:

Invariant/Parameter Duality

A d dimensional ADE F with p invariants < A d — p dimensional ADE F}, with

p parameters.

This relation is called Invariant/Parameter duality. By this duality, we can dis-
cuss in the world in which the variables are separated by the variables on the level

set and the parameters of the invariants.

3.2 Invariant/Parameter Duality and IVPP/RE
Duality

We can rewrite IVPP theorem by using the Invariant/Parameter duality.

Remark

An ADE F), with p parameters satisfies,

e If the ADE F}, with p parameters becomes an RE of period n on a parameter
h, € CP space, there exist parameters h, € CP that satisfy the n periodic
condition of the ADE F),.

Therefore, by the Invariant /Parameter duality, we can find a relation between an

IVPP and an RE.
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IVPP/RE Duality Theorem

If an ADE F satisfies the same conditions of IVPP theorem and the ADE F has
an IVPP of period n > 2, then an ADE F}, that is restricted on the LS(Z:", h),
becomes an RE of period n when we take the parameters h € CP on the IVPP.

We can find a new theorem that is given by IVPP theorem and IVPP/RE duality

theorem as,

e RE Theorem ~
Let n be a d dimensional ADE with p parameters. If p > d and there exists n > 2
such that a VPP of period n is given by only information of the parameters, then
VPP of period m for any m > 2 are given by only information of the parameters.
In other words, if the ADE Fh has parameters such that the ADE Fh becomes
an RE of period n, then the ADE F), has parameters that the ADE F), becomes

an RE of period m for any m > 2.
J

Proof:

e abbreviation

In addition, we define that IVPP theorem and RE theorem are called together
the IVPP/RE theorem. The IVPP/RE theorem suggests that there exist a series of
IVPP/RE from an ADE.
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3.3 Examples

3.3.1 3 dimensional Lotka-Volterra Map

ADE on Level Set

The ADE (ngw)h restricted on the level set LS(F’gdLV, (r,s)), r,s € C of Faary
(2.28) is given by the following “bi-quadratic equation”[7][8][9],
(Fsa)n(', 9™ = ai(r,s) (") (™) + ba(r, ) (" (y') + ()%y")
+e(r ) () + (1)) + du(r, s)y'y™

+ei(r, s)(y' +yh + fi(r, s), (3.2)

where y = x1, and new invariants,

roi= IT9%3, (3.3)
s = (1 —x)(1 —a2)(1 —x3), (3.4)

and the parameters,
ai(r,s)=r+1, bi(r,s)=s—1-=2r, c(r,s)=1r—s, (3.5)

di(r,s) =1+4+3r+rs+s* e(r,s)=—-r(1+s), fi(r,s)=0. (3.6)

It is important to notice that an iteration of (3.2) yields the same bi-quadratic

form every time,

(Bsa)y (9™ T) = ar(r,s)() T2 + br(r ) (5T (51)% + (7))
+or(r,s)(Y7)? + (")) + dr(r, s)y'y'™*"

+er(r,s)(y' +y™) + fr(r,s). (3.7)

Hence, if there exist parameters (r, s) that satisfy,
an-i-l(r? S) - &1(T, 5)7 BRI fn+1(ra ‘9) = fl(rv 5)7 (38)
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then these parameters give the n period IVPP/RE.

Therefore it is apparent that periodic points of different periods are specified only

by the different sets of parameters.

It was shown in [7][8][9] that many integrable maps, including the symmetric
QRT map, can be reduced to the bi-quadratic equation (3.2) when p = d — 1, and
generate [VPPs.

REs

We obtain REs from the IVPPs of the ADE Esqry upon elimination of s and putting

r = ( for convenience:

e 2 periodic RE
Yyt = (Yt = 0.

e 3 periodic RE
W)W+ (W) + W) — W) =200 ()2 + gy =0,
e 4 periodic RE
W) + () + (™)) — 29" (y"™) = 0.
ete.

It will be worthwhile to see how they look like. Although the invariants are
complex numbers, we can draw a curve associated with 4™ (r, s) = 0, if we constrain
r and s to real values. Figure 3.1 shows the result. IVPPs of different periods from

2 to 10 are drawn by different colors.
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2
: N

Figure 3.1: IVPPs of 3dLV map

3.3.2 3 dimensional Korteweg-de Vries Map

ADE on Level Set

Restricted on the level set LS(Fsqkav, (7, 5)), 7,5 € C of 3dKdV map(2.35) is also
given by the bi-quadratic equation,
(Fsakav)a(y', 9" = an(rs) () (v + 0u(r, s) (6 (") + (1))
+ar(r ) () + (1)) + da(r, s)y'y™
+ei(r,s)(y' + ™) + fi(rys), (3.9)

where y = x1, and new invariants,

o= XT1X9%3, (3.10)
s = (14+z22)(1 — zoz3) (1 — x321), (3.11)

and the parameters,
ay(r,s) =0, by(r,s)=r(1+s), ci(r,s)=1r*+s, (3.12)
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di(r,8) = 12s+3r* =1, e(r,s) = r(=142r°+s),  fi(r,s) = r*(r—1)(r+1). (3.13)

REs

We obtain REs from the IVPPs of the ADE F?;deV upon elimination of s and putting

r = (0 for convenience:

e 2 periodic RE

y'+ytt =0,

e 3 periodic RE
(") + (™)) +y'y™ =0

e 4 periodic RE
(¥")? + (y™1)* =0.

3_
7
1 4
-1
R %
e
-3 -2 -1 0 1
,

YS Y{.\ Y.T Y¥ Y"} ¥ 10

ete.

ra —

— y —

Figure 3.2: IVPPs of 3dKdv map
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Chapter 4

Derivation of IVPPs from SC

In this chapter, we give a method of derivation of IVPPs of a rational map that is
given by singularity confinement. In addition, we want to propose that this phenom-
ena determines an integrability test of the map, in other words, this phenomenon is

a candidate of the test of a judgement of integrability of the map.

4.1 SC and Derivation of IVPPs

4.1.1 SC

The singularity confinement(SC) is a phenomenon of a rational map such that a
point, which is mapped to infinity, returns to finite region after finite steps. Although
this phenomenon had been expected to play the role of discrete version of the Painlevé
test for the integrability of second order difference equations, some counter examples

have been found.

In [8], by studying 3dLV map, the authors found the fact that an IVPP appears
as a zero set of the denominator at every step of iteration of the map after it is

recovered from a singularity. We are going to develop an algorithm in this section
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which enables us to generate IVPPs from singularities in general case.

Before the discussion of the algorithm it is useful to explain the mechanism of
SC. Let us first rewrite the notion of zero set of denominators. Namely we denoted
by SP(F') the set of zero points of the denominators of the rational map F' in (2.2).

SP(F) = JSP(F,i), SP(F.i):={xzecC'|Diz)=0}.

i=1

All points on SP(F') are mapped to oo, where oo means

50 ~ = (4.1)

When F has its inverse F~1 we denote by SP(F(V) the zero set of the denom-
inators of F("V. A point & € F=Y (SP(F)), which is at oo, is mapped to a finite
point F(z) € SP(FY). The SC will take place if there exists a finite number N,
such that

FW)(SP(F)) ¢ SP(FY).

We call the minimum of N,. the SC step number of F.

4.1.2 Example

For example in the 3dLV map(4.2) case,

Lot
Fsqiy 1z
t+1 t1_$é+xg$§ t1_$§+x§$t1 tl—a:ﬁ—&—xtla:g
— = e~ t7x21_ T t’xsl— T ,(4.2)
T3 T T3 Ty T T2y Ty T XT3

a point
20 — (xg),xg, 1_;1;9) € SP(Fyaty, 1) C SP(Faary). (4.3)
which satisfies
Dy (z°) =0, (4.4)



is mapped iteratively according to

1 _ _
2’ — (00,0,1) — (1,0, 00) — <ﬁ,mg,x?) € SP(FiV,3) C SP(ELN), (4.5)
1

hence N,. = 3.

4.1.3 Derivation of IVPPs

Now we notice that if £° € FP(F) is a period n point with n > N,. — 1, its image

FO+D(29) must be divergent, i.e.,
x’ € SP(F) N Period(F,n) = F"(x0) is divergent, (4.6)
hence we get
SP(F"V|gp(r)) C Period(F, n) (4.7)

by F+)(x2%) = F(x). Generally speaking the converse of (4.6) is not true. An
important observation in [8], however, is that, in the 3dLV case, the divergence of

F®+1) (x0) is sufficient to determine the set of period n points.

Let us see how this happens. Since the map (4.2) has two invariants

f = muazxrs— (1 —21)(1 —x9)(1 — x3),
g = 14+ (1 —29)(1 —x9)(1 — x3), (4.8)

we can solve (4.4) to express ° of (4.3) in terms of the invariants. In fact we obtain

moz( f o9 f+y
f+a f g

Hence all images of 2 are expressed only by the invariants. On the other hand, the

) , r = f —|— g — ]. = X1T9T3. <49)

condition (4.4) also implies that D§”“)(m0) must vanish at period n points. Now
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we recall that, in the 3dLV case, all periodic points of period n are on the IVPP
uniquely determined by the single function v (f, g) of the invariants.

¥2(f9) = g,
Y(f.9) = P+ fg+d%
W(f.g9) = F+0—-9(f+9)°

Therefore DE"H)(:BO) must be proportional to v (f,g). In other words, we
can generate IVPPs of all periods in the denominators of z7™(x%), n = 2,3,4, ...
iteratively. This is the phenomenon observed in [8], which takes place irrespective

whether ° belongs to Period(F,n) or not.

4.1.4 Generalization and Algorithm

We can use the same procedure to derive all IVPPs if the map has d — 1 invariants
and at least one IVPP. In this case the IVPP of period n is determined by a single
polynomial 7™ (h) of the invariants. But when p < d — 2, the condition x° € SP(F)
is not sufficient to determine x° by the invariants. Therefore it is certainly not clear,
in general cases, whether IVPPs of all periods are generated by the map recovered

from the singularities.

We now ask if there exists a way to derive IVPPs by the SC when d/2 < p < d—2.
To answer this question we notice that, in addition to £° € SP(F), we need d —p—1
extra conditions to write down x° by the invariants. We can obtain such conditions by
forcing d — p independent denominators of the images F(™ (z°) of ° to vanish when
m < N.. If they are chosen properly IVPPs must be derived from the periodicity

conditions iteratively.
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Without loss of generality we assume x° € SP(F, 1), or equivalently D;(z°) =
0. Now suppose this condition also implies D%Q)(wo) = 0. Then it is clear that
D™ (x%) = 0 for all n. Therefore the SC can take place only if D'* () does not
vanish identically when D;(z°) vanishes, unless we enforce it to vanish. In other

words we can adopt the conditions

to express ” in terms of the invariants.

Summarizing these arguments we are ready to propose the algorithm, which en-
ables us to generate IVPPs from the SC. We present it here in more precise form as

follows.

We consider a rational map which has p invariants such that p > d/2.

1. Solve the d equations

DV (z) = 0, j=1,2,...d—p (4.10)
for & to write the initial point £° by the invariants.

2. Compute F(™(x°), n > N, iteratively to find D{" (2°), which is a polynomial

functions of the invariants.

3. Let PWse=1(h) be a set of d — p irreducible polynomials, one from each of the
set
Nsc Ngc+1 Nge+d—p—1
[P (@), DI (at), .., DN ()]

If the polynomials in P®™s=V(h) are all independent, the intersection of the

elements is a set of periodic points of period N,. — 1.
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4. By the same reason the intersection of the set of polynomials P™ (k) chosen

from
(D™D, DI (@), ., DI @), 0z N1
is a set of periodic points of period n.

d—p
x’ < (ﬂ SP(FU), 1)) N Period(F,n)
j=1

— FOH)(g%), j=1,...,d—p are divergent, (4.11)

Our algorithm is given by an ansatz as

Derivation of IVPPs Ansatz

d—p
ﬂ SP (F("ﬂ)’mj/_:pl SP(FD.1)" 1) C Period(F,n) (4.12)
j=1

It is clear that if there exists PMs<=Y(h), it must be Period(F, Ny.—1). Therefore,
when N, is finite, hence the SC takes place, and if we can derive P (h) by our
algorithm, the IVPP theorem guarantees integrability of the map.

4.2 Examples

This section is devoted to application of the algorithm we developed in the previous
section. In order to examine our integrability test, we would like to recall that only
maps which have sufficient number of invariants, satisfying p > d/2, can pass the
test. This is not a sufficient condition for the integrability but a necessary condition

for an IVPP to exist.
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Although there have been known many integrable maps, their invariants have
not been given explicitly. Exceptions are the Lotka-Volterra maps of all dimensions.
We will study mainly this series in this thesis, because we can test our algorithm in

various dimensions, (see Appendix B).

4.2.1 2 dimensional Mobius Map

Before discussing the LV series, we study the case of 2 dimensional Mobius map(2.7)
that has the invariant

h = x129.

Following to the first step of our algorithm we find the initial point of the map

which is parameterized by the invariant 7:
CL‘O = (1, h) S SP(FQdME)b, 1)

Then, by the second step, we see that the SC undergoes as
14+h 2r
2 ’_1+h)
1+3h  h(3+h) 1+ 6h + h? 4h(1+ h)
(‘ 3+h’  1+3h ) (_ 401 +h) _1+6h+h2)
The SC step number is 2, in this map.

x’ — (00,0) = (=1, —h) = (

We can derive analytic expression of " for all n,

2zt = (/2 (1 — h1/2)n + (1 + h1/2)n 1/2 (1 — h1/2)” — (1 + hl/2>n
(1 — h1/2)n — (1 + h1/2)n’ (1 _ h1/2)n + (1 4 h1/2)” )

from which we find all v (h)’s as follows,

@(n) = 3+,

@) = 1+4h,

G)(h) = 54 10h+ h2,

= 2 2

etc.
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4.2.2 3 dimensional Korteweg-de Vries Map

In the case of 3d KdV map(2.34):

Parametrization of SP(F34kqv, 1) and SC

(P2 +g fU-D(F-2) g(f— 1)
v = (_ g(f=1) " f2—2f+4g ’f(f_Q))GSP(F:adev,l),

2’ — (00,0,1— f) — (00,1~ f,0),
_><_f2—2f+g g(f —1) f(f—l)(f—2))_>

g(f =1) 7 f(f—2) fA=2f+g

The steps of SC is 3.

IVPP
YI(f9) = g,
YI(f9) = (fP=2f+9°—gf(f—2)
YWt = (fP=2f+9°—(g—DF(f -2
YI(f9) = (fP=2f+9)°—gf*(f —22(f* = 2f +3)(f* = 2f + 9)°
=3¢ F(f=2)(f =1 (f*=2f +9)° =’ (f —2)°(g — 1),
etc.

4.2.3 4 dimensional Lotka-Volterra Map

The Lotka-Volterra(LV) map of arbitrary dimension d was introduced in [41][42],
which we review briefly in Appendix B. Because we have already discussed the 3 di-

mensional case, we will study the cases d = 4,5 in this and the following subsections.
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The d dimensional LV map and invariants are given in (B.1) and (B.2). Solving
(B.1) for (X, Xy, X3, X4) in the d = 4 case we obtain

t t t .t t .t t t t .t t .t
11— @ —ay + xpxy +wpwy 1 —wp — 2y + wpxy + 27
1 t t t ot toat 72 t t t ot ot
1 —af —af + ol + 2i2t’ °1 —af — 2 + 2l2l + 2l
¢ t t .t tot t ¢ ¢t ¢t
L=y — 2y + ryry + vy t1_$1_$2+$1$2+$2x3>

3 )4
1—at —ab+atal + abal’ *1 — of — of + abal + ala)

F4dLV : sct — IBtJrl = <:U

There are three invariants Hy, Hy and R, which are given explicitly in (B.2). If we
define r:= R, f=H, — Hy — 1, g:=1— H; they are

ro= T1X2T3%4,

f = maozszry — (1 —21)(1 — 22)(1 — x3) (1 — xy),

g = 2—q—q—q—dq,

where we use the notation ¢; = z;(1 — z;_1).

Since d — p = 1, the single condition D;(x) = 0 is sufficient to determine the
initial point " on SP(Fyqry, 1). We find
L0 ((—g2+g—gf+2f+gN4)f C9f =29f — [+ [P+ [Ny

2(9f — g*r + f?) ’ 2f ’
(=gf +29r+ f = 12+ [Na)g —g—2f+g2+gf+gN4)
20—gf —gr+ 2+ 4*f) 2(g —1)g

where

Ny =+/1—29—2f + g2+ 2¢f + f2+ 4r — 4gr.

2° is then mapped to

f+g—1-Ny
2’ — <oo,0, 25— 1) ,1)
—>(1,f+g_1+N4,O,oo)—>a:3—>---
2(g—1)
where
. (—g—2f+92+gf+gN4 C(=gf+29r+ f—f2+ [Ni)g
' 2(g —1)g L 2A=gf g+ P4 2f)
C9f —2gr—f+ P4+ [Ny (—92+g—gf+2f+gN4)f)
2f ’ 209f = g*r+ f?)
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hence the SC step number is 3. If we continue the map further the IVPPs of this

map are generated from the denominators of 27, n = 3,4,5, ... as

YI(fgr) = g,

Y(fgr) = P -g'r+ i,

YO(fg,r) = =28+ g°f + 217,

YO frg.m) = g +31° + 3¢ 7 f7 = 3rfrgP — gt P+ f0 =Pt 4+ gt 1Y,
etc. (4.13)

In this way integrability of the 4dLLV map is shown by our test.

4.2.4 5 dimensional Lotka-Volterra Map

The maps we studied so far are the case of d — p = 1. When d — p > 2, we must
consider, according to our algorithm in §4.1.4, more condition (4.10) in addition to
D;(x) = 0. Since the number p of the invariants of the d dimensional LV map is

[d%], the 5dLV map is an example of d — p = 2 case.

By solving (B.1) in the Appendix B for (Xi, X3, X3, X4, X5) the 5dLV map is
given by

Fyqy : @t — 2tt! = <$t Ds(x?) D (") Dy (") Ds(zt) D4(wt))

t t t t
'Dy(x") P Dy(at) D) Di(a) O Dsla)
where we used the notation

Dl(.’lj) = (1 — xi+2) (.Z'Z'.Ti+4 + (1 — .TZ'+3)(1 — l‘i+4)) + Li12Li43L544%5, 1 E Z/5Z
This map has three invariants,

T = X1T2T3T4Ts,
f = mmewsrgrs — (1 —21)(1 — 29) (1 — 23)(1 — 24)(1 — @5), (4.14)

= 2—q1— G2 — (3 — Q1 — 5 + T1T2X3T4T5.

— 064 —



Therefore we impose two conditions D;(x) = 0 and DP(:I:) = 0 to obtain the initial

point 2° on SP(EFyry, 1) N SP(EZ), 1),

20— (ng B-fAB-fg* (B—gf)f  Blg—/) )
B’ —f "B-fAT(B-fg*)(f-9) (B-gfYg)’

where

A=f—gf+¢*° B:=rA-f

The SC mapping undergoes as
0 00 000
0 (00,0, L1} = (2,01,-~) = (1,0~~~
€T (007 7g_ ) Y 07 ) 7070 7707070

f
g
— <L,O,oo,1,i> S’ st — ... (4.15)
g

where

so (BIE BIA Ly Beop (B )
B—fA" —f* " B (B—gf*g (B—-fg)(f—9)
The SC step number is 5. 0/0 in (4.15) means that the denominator and the nu-

merator of the component become zero separately, so that we can not determine its

value. In other words the point is indeterminate.

The IVPPs derived by our algorithm are as follows,

Witgr) = g—f W(fgr)=r—f-1,

Witgr) = 2f2=2fg+ R (fgr)=F+f-g-rf
W (fgr) = f1=3gf +4f¢* - 2f¢* + ¢,

Wi(fgr) = =2f +2f = rf 4+ (6> = f)g— 3f — 1)g* + 24",

ete.

Thus our algorithm has been proved to work when d — p # 1 as well.
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Chapter 5

SC and “Projective Resolution” of

“Triangulated Category”

In this chapter we propose a method to characterize the Hirota-Miwa equation(HM
eq.) by means of the theory of “triangulated category”. In particular we show in de-
tail how the SC, a phenomenon which was proposed to characterize integrable maps,

can be associated with the “projective resolution” of the “triangulated category”.

5.1 Geometrical Feature of the Hirota-Miwa Equa-
tion(HM eq.)

Before starting our argument we review briefly some features of the HM eq.[14][15].

(14023714(P) T23(P) — 024013724 (P)T13(P) + 34012734 (p)T12(p) = O, (5.1)

7(p) €C, p=(p1,p2,p3,P4) € (C47 ai; = —ay; € C.

In above and hereafter we use the abbreviations, such as
7i(p) == D;7(p) = 7(p+6;), 7i;(p) == D;D;7(p) = 7(p + &; + J;), (5.2)
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8; := (015, 0aj, 035, 045),

with the Kronecker symbol d;;.

1) If we substitute

) =] (M)p% 0(C + ijw(zﬂ)» Gij = Zi = %, (5.3)

irj L

into (5.1), we obtain an identity, called Fay’s trisecant formula, for the hyper-
elliptic function § and the prime form E(z;, z;) defined on a Riemann surface

of arbitrary genus[43][44].

2) From this single equation all soliton equations in the Kadomtsev—Petviashvili(KP)
hierarchy can be derived corresponding to various continuous limits of indepen-

dent variables[14][15].

3) The solutions of (5.1) were identified with the points of universal Grassmannian

by Sato and known as the 7 functions[12].

5.1.1 Nature of 7 Functions

It was shown in [45] that the 7 functions can be represented by means of tachyon
correlation functions of the string theory. Since it provides the most convenient
formulation in our argument we will use the notion of string theory in what follows.

The 4 point string (tachyon) correlation function is given by

D(p, 2;G) = (O|V (p1, 21)V (P2, 22)V (3, 23)V (P4, 24) | G), (5.4)

where z = (z1,29,23,24) € Z* is a set of parameters determined by a;;’s of the

equation (5.1). Here
Vi(pj» zj) = explip; X (z))
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is the vertex operator of momentum p; of a string attached at z; of the string world
sheet specified by the state vector |G). The string coordinate X (z) is an operator
which acts on the state |-), while the symbol :: means the normal order product. It

was proved in [45] that the substitution of the ratio

_ ®(p, 2 G)

7(p) = B(p.2:0) (5.5)

into (5.1) yields exactly Fay’s formula associated with the Riemann surface Figure
5.1 corresponding to the world sheet |G). Hence the point z; on the world sheet is
a puncture of the Riemann surface. Notice that, since we do not integrate over z;’s,

thus has no problem of divergence, we define the vertex operator V(p, z) with no

ghost field c.

L Ly

1G>

Figure 5.1: Riemann surface

Although every solution of (5.1) is obtained by specifying the state |G) of the
general solution (5.5), we do not discuss explicit forms of |G) in this thesis. Therefore
we simply write ®(p, z; G) as ®(p, z) unless it is necessary. On the other hand the
main property of 7 functions is determined by the nature of the vertex operators as

we will see now. Since they satisfy

Vip,2)V(p,7) = (-1 V(, 2 )V(p, 2), (5.6)
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we see immediately that the fields ¢4 (z) := V(&£1, z) have the properties

b(2)¥£(2) = =¥ (2)x(2),  ¥e(2)Px(2) = —=(2)Y+(2), (5.7)

and, in particular, the following holds:

Ge(2)4(2) =0, () () =0. (5.8)
Hence 14 (z) are Grassmann fields. These relations are checked in Appendix C.

By taking this property into account we define operators f);ﬂ by

DE'®(p, 2) := (0|V (p1, 21)V (P2, 22)V (D3, 23)V (pa, 20) s (%) |G), (5.9)

to describe the insertion of ¥4 (z5) into ®(p, z) of (5.4). When z; of ¢4 (z,) coincides
with one of z = (21, 29, 23, 24) in (5.9), say s = j, the insertion of 14 (z,) is equivalent
to change p; to p; £1, up to a phase factor which comes from the exchange of order
of 14 (z;) with vertex operators. If we use the notations such as

Q;(p, z) = f)jq)(p, z), P@ii(p,z) = f)if)jq)(p, z), i,7=1,2,34,
in these particular cases, we obtain

(I)ij(pv Z) = _(I)ji<p7 Z)? i7j = 17273747

hence

Du(p,2) =0, i=1,2,34. (5.10)

This is an expression of (5.8). Thus we have found that the zero of ®(p, z) is associ-

ated with a coincidence of two punctures on the Riemann surface.

In the theory of KP hierarchy[46] [47] [48] the operators e¥+() = 1 4 1h.(2;)
are known as elements of the symmetry group GL(co) which act on the state |G).
Correspondingly we call

~

Dj :ebj —]_,
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a ‘difference’ operator, in analogy with the differential operator 9;.

Despite of this odd behavior of the correlation function ® under the operation
of Ijj:, the solutions (5.5) of the HM eq. behave regularly. It owes to the fact that
both ®(p, z; G) and ®(p, z;0) are shifted by ﬁj simultaneously in 7(p). The extra
phase factors arising from the exchange of order of vertex operators and ¢ (z;) in

(5.9) cancel exactly. As a result we find

~

Dj7(p) = Dj7(p) = 7(p + 0;) = 7;(p),

in these particular cases, we obtain

Tij(p) = Tji(p)7 7’7] = 17273547

in agreement with our previous notation (5.2). Nevertheless it is important to notice
that the zero point of ® function (5.10) is an indeterminate point of 7(p). This fact

will play a central role in our analysis of the SC in §5.4.

q)ii(p7 Z3 G) 0 9
.. = = =, .11
i (p) D, (p, 2 O) 0 (5 )

5.1.2 Difference Geometry on Lattice Spaces

Although the variable p of the 7 function is on C*, the solutions of the HM eq. are
on a lattice space Z* embedded in C*, which is fixed once an ‘initial point’ py € C*

of 7 is fixed. Let us call this lattice space

E4(po) 3:{P€C4|P—p0€Z4}-

Since, however, the ‘initial point’ pg does not appear explicitly in our discussion, we
simply write Z4(po) as Z4. Moreover we often write p — pg as p € =4 unless there is

a confusion.
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In order to study the HM eq. within the framework of the theory of category, it
will be useful to study its geometrical feature on the lattice space =4. For this purpose

we introduce a notion of 'difference form’ on the lattice space in this subsection.

4 dimensional ‘Difference’ Forms

Let us define an exterior ‘difference’ operator dg by

4
dpw ::ZDjw/\dpj, "weQE] ={w|w:Z4—C}. (5.12)

j=1
We must emphasize that the form D w(p) is on Z4 if p € Z4, but, in contrast to the
differential form, it is not at the same point p but is at p 4+ d,. In particular, the
operation of dg to w(p) increases the value of the sum Z?:l p; of the components of

p by 1. To describe the situation more precisely we define a subspace of =, by

4
Ein)::{peil sz:'RGZ},

=1

so that

(n) _ =
4 — —i4.

[1]

U
ne”Z
(1)

We notice that Efln) is a lattice hyperplane in =,. In particular =, is the hyperplane

which includes the four points {d1, 2, 03, d4}. All other hyperplanes are parallel to
=(1)
|—44 .

Each hyperplane is embedded in a three dimensional lattice space Z3. In fact the
points of Efln) occupy all corners of octahedra which fill Z3 together with tetrahedra,

as it is illustrated in Figure 5.2.
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Figure 5.2: Efln)

If p € 2", the forms D;w(p) = w;(p) are on ="V for all j, hence

_ — —(n+1
w Dw : :Eln) — :TJ’ )

)

with D = (Dy, D9, D3, Dy4). Since all functions in the HM eq.(5.1) are of the form
7.;(p) = D;D;7(p), they are on =" it p € =1, Moreover the six functions 7:5(p)
in (5.1) are at the six corners of the octahedron whose center is at p. Hence the HM
eq. determines relations among functions on ETH). In other words solutions of the
HM eq. are different if they are on different hyperplanes. We mention that this is a

result of the fact that the HM eq. is a Pliicker relation.

Let us define Q™ [Eflo)] by

Qe [Eﬁf”] = { Y Wirindpi A Adpy,

i1...0n

Wiy i - Ein) —C } , ne Z’

when p € ESL"). We then naturally obtain a graded algebra

B caw [Eg‘”} : (5.13)

ne’
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on which dg acts by
4 o |20] - aen [20]. (5.14)

We give a remark that the maximal of n of Q) [Eio)} seems 4, but we impose a

connection condition later, so that we do not have to limit n.

3 dimensional ‘Difference’ Forms

From Figure 5.2 we can see that the lattice space Einw) consists of parallel planes,

each filled by triangles of octahedra, as illustrated in Figure 5.3. If we fix the direction
of the planes parallel to the direction of —p,, we can specify them by the values of

t:= 22:1 Pa- Such a plane is defined by

E:())t7n+2) = { (p1,p2,p3) € Z°

3
Zpa =tec Z7 (p17p27p37p4) € Ez(ln+2) } ;

a=1
—(tn+2) _ —=(nt+2)
|_43 - L_J4 .
teZ

Since n+2 (= Z?Zl pi) = t+py is fixed, the planes are perpendicular to the direction
of —P4.-

Figure 5.3: E:(f’nﬁ)
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We denote a point on =j (tnt2) by p = (p1,p2,p3) € Z3. Corresponding to dp of

(5.14) we define the 3 dimensional exterior ‘difference’ operator dr by

drwlt] = iDaw[t] Adpe, “wlt] € Q [ t”*”] = {w[t] ( wlt] : 2P S } ,

a=1
which we call the shift operator. Since, similar to the 4 dimensional case, w(p) and

D,w(p) are on different planes, we define graded forms of degree ¢ by w[t] when
—(t,n+2)

pE s . The graded algebra
@ CQ (t,n+2) |: (0, n+2)}
teZ
Qe [“30 n+2)} { Z Way...arPay N -+ N dpa, | Way.a, - Eit7n+2) - C } , t€Z,
ai...at
is generated by
dy : Otn+2) |:E§07”+2):| N Ot+1n+2) |:Ez())0,n+2):| ) (515)

5.2 Dynamical Feature of the HM eq.

Based on the geometrical structure of the HM eq. we studied in the previous section,

we discuss dynamical feature of the HM eq. in this section.

5.2.1 Dynamical Evolution

First, we give a pair of 4 dimensional ‘difference’ 2-forms

4
F= Z Fiydp; A dpy, Fij := a7, (5.16)
ij=1
~ 4 o ~
= 2 Fydpi A dp;, Fij = "aijTij, (5.17)
ij=1
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with *a;; = >, €jmam, where € is the Levi-Civita symbol. We can easily check

that each of the followings[49]
det Fj; =0,  detF; =0, (5.18)

is equivalent to the HM eq. (5.1). By this reason we call F of (5.16) the HM 2-form

in this section.

In this subsection we fix the hyperplane Z{""? . hence we simply denote Ef;’”“)

by Eg], and study behavior of a particular solution of the HM eq. For this purpose

we rewrite the HM 2-form by using the operator d of (5.15) as

4 3
F = Z Fijdp; Ndp; = drp <F4dp4 + Zdepb> ,

ij=1 b=1

and see that the six components F;; split into two parts

3
drFy = > Fudp,, (5.19)
a=1
3 3
dp Z Fydp, = Z Fyedpy A dpe, (5.20)
b=1 b,c=1

corresponding to 3 dimensional 1-form and 2-form, respectively.

Let us denote by S;[t 4+ 1] and S;[t + 2] the triangles in an octahedron which
are perpendicular to p; and parallel each other. From Figure 5.3 we see that every
octahedron is put between two nearest planes, such that two parallel triangles are
on each plane. In fact the triangle Sy[t + 1] is on Egﬂ} and Syt + 2] is on EgH] if

7(p) is on Eg]. Define O[t] = (S4t + 1], Syt + 2]) with

Syt +1] = <714[t + 1], Tou[t + 1), T34t + 1]>7

Suft+2 = (ng[t 42, Tt + 2, malt + 2]).
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Then the procedure to solve initial value problem is to determine the following se-

quence

o I on & oopg & oop & (5.21)

when information O at initial time ¢ = 0 is given.

O[t]
T4t + 1] T2t + 2]

5.2.2 Deterministic Rule for the Flow of Information

We want to know how information on O[t] transfers to other octahedra as t increases.
The HM eq. determines a relation between Sy[t + 1] and Sy[t 4+ 2]. But it does not
tell us how the information of Syt + 1] transfers to Sy[t + 2]. In order to solve an
initial value problem we must know some deterministic rules which decide uniquely
the local flow of information. In this subsection we set up a rule for the flow of

information in an octahedron.

Let us consider two lattice points p and p’ on =4 which are separated by
p—p=meZ.
If they are on the same hyperplane Efln), the separation m must satisfy

my + Mo + Mg +my = 0. (5.22)
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If p and p’ are neighbor of an octahedron,
m=0i—b;,  i#] (5.23)

corresponding to the edge parallel to the vector p; — p;. There will be many possible
routs along which information can transfer between two points p and p’ fixed arbi-
trary. Since an addition of a path of the type (5.23) does not change the condition
(5.22), any routs can connect p and p’ as long as they are connected by edges of

octahedra.

When we decide the rule of transfer of information we must keep in mind the

following items:

e Information at p + §; + J; is transfered properly to p’ + 6 + d; if all operators

corresponding to all possible routs {r} change 7;;(p) to 7, (p") uniquely.

D, (i, kl)pyp Tij (p) 5 Th (p/), Vi e {possible routs}.

e Our system is deterministic if a rule of transfer of information is fixed along

edges of an octahedron, and is the same for all octahedra.

e The system is integrable if this rule is sufficient to predict the values of 7 on
[0]

Egﬂ for all t when the values on Z=5" are given arbitrary.

There are 12 edges in an octahedron O. Every object 7;; at a corner has connections
to its four neighbors but no direct connection to its diagonal one. Since we are
interested in a flow of information from one corner to another of O, we must decide
direction (hence a rule) of the flow. In other words we fix the order of points in O.

A natural way is the cyclic ordering of suffixes, i.e.,

1<2<3<4<1<2<3. (5.24)
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We notice in Figure 5.4 that every pair of corners connected by an edge have a

common suffix, like (714, 712). Therefore we define the direction of transfer by
D(ij,ik)pyp : Tij(p) — Tie(p), iff k<i<j. (5.25)

The action of D(kl,ij),, is to remove punctures at z; and z; from |G) and insert
other punctures at z; and z;. It will be convenient to represent this action explicitly

by means of the operators:
D(ij, kl)pp = DeDD; 'D; . (5.26)
We can easily check the rule of product,
D(ij, kl),p o D(kl,mn),, = D(ij,mn),,,.

From
D(ij, /{;l)p’p o D(kl, z'j)mj = D(iy, ij)p,p =id

tjp,p?

we see that D(ij,1j),, is an isomorphism.
Since corners connected by an edge have a common suffix, (5.26) simplifies
D(ij, ik)pp = DiD; ',

whereas the morphism connecting the diagonals of an octahedron can be obtained

by a product of morphisms.

5.2.3 Transfer of Information along a Chain of Octahedra

In this subsection we want to see how information flows along a chain of octahedra.

Let us denote by O[0] = (S4(p)[1], S4(p)[2]) the octahedron whose center is at p €

:(n)

=, . There are three octahedra which share three edges of the triangle Sy(p)[2].

Since these three neighbors are on the same hyperplane ESHZ) their centers must be
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at p+ 01 — 04, p+ 0o — 04, p+ 03 — 04, respectively. Let O[1] be one of them, say
O[0]. Then these octahedra are connected as illustrated in Figure 5.5, where we use

the abbreviations:

Sul] = (X,Y, 7) = (714[1], Toa[1], 734[1]), Su[2] = (X', Y, 7') = (723 2], 71 (2], m[z]).

X Y’ Y'[1]
projection dr
a[ong P3 Z’[l]

Y X' X'[1]

Figure 5.5:

For the information of O[0] to transfer to its neighbor O[1] properly, we must

impose the following conditions :

T14[2) = 731(2],  T24[2] = T23[2]. (5.27)
This means the connecting condition in the lattice space, the following:

Q) [=1] ~ e 200, (5.28)

Repeating this procedure we can define a chain of octahedra.

5.3 View from the Category Theory

We are now ready to summarize our result in the previous section in terms of the

category theory.
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Comparing our arguments in §5.2.2 and §5.2.3 with the set of axioms Trl ~

Tr4d of the triangulated category in Appendix D, we naturally find the following

correspondence:
objects —> Tij € Ua:m Usez Olan+2) [Eét,n+2):| ’
morphism — { D, (i, kl),,, "r € {possible routs}, p,p’ € =(nt+2) } ,
shift functor — dr : Oft] — O[t + 1],
octahedron axiom <+— { D(ij,ik)pp, iff k<i<j, pe€ =(n+2) }

(5.29)

We have thus found various type of categories which are related from each other.
Among others our interpretation of the information flow of the HM eq. by means of
the triangulated category is the most fundamental. However the correspondence of

the flow with the triangulated category seems not quite right by two reasons.

1. An addition of objects is no longer an object in general, because our objects
are solutions of a nonlinear equation. Although most of studies of triangulated
category have been based on additive categories in mathematics, the above
axioms themselves do not use the notion of additivity. Therefore nonadditive

nature of our theory will not cause any problem.

2. Second reason is that we have not yet defined null object 0, which appears in
the first axiom Trl. This is the main subject which we are going to discuss in

the following section.

5.4 Localization and SC

It is well known that a localization of a triangulated category is also a triangulated

category. We show in this section that the SC of a rational map obtained from

— 81 —



the 7 function of the HM eq. can be described in terms of the localization of the

triangulated category.

5.4.1 Reduction of the Lattice Space

We have studied difference geometry of 4 and 3 dimensions in §5.2. Our concern in

this section is a 2 dimensional lattice space.

If we fix n = ijl pj —2and t = Zizl pa We are left with 2 dimensional lattice

space, which we parameterize by
q=p1+p2, J:=Dp2—D1.

Like the higher dimensional lattice cases we define 2 dimensional lattice space

qu7t7n+2) = { (pl’pQ) < Z2 ‘ D +p2 =qc Za (plaanp?)) € Egt7n+2) } ,

’:‘(Q7t’n+2) — :(t7n+2)
=2 - =3 ’

qEZ

and the exterior difference operator dg by

do7(p) = D17 (p)dp1 + Dor(p)dp2,
which displaces the lattice space

_ —(q,t,n+2 —(g+1,t,n+2
w 1Dcu::gq n+2) —>:§q+ " ).

Because t = ¢ + p3, we can fix ps instead of £. In this frame of coordinate, the
change of t is exactly the same with the change of q. We recall that the diagram
Figure 5.5 (b) was the projection Figure 5.5 (a) along p3. Since j = py —p; € Z is

still free we denote 7} := 7(p) and consider the lattice space

{Gper

At=Aq, po—p1 =37 €Z, (p1,p2) € Eé%t’n”) } .
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In our previous section we discussed the transfer of information along the chain
of octahedra. We now extend the study to consider a transfer of information of many

octahedra linked along a line in the j direction.

We have to mention that the connection condition (5.27) is already taken into
account in this expression. Moreover the projection along ps enforces degeneration
of Z'[t] in O[t] and Z[t + 2] in Ot + 2|. Therefore the shift operation dr brings
Su[t + 1] directly to Sy[t + 2], so that 7} is determined uniquely for all ¢ and j as we

can see in the Figure 5.6.

0 1 2 3
To ps—p3 To 70 0
T R T
p3—Dp L T T
x P4
Ty rol- ¥
/o / /
147 o /
T Tixe TR T A
N \ e \
a » N AN N \
Ps = P2 \\ TR \\ 2 \v| 3
\72 T2 \ 72 d
To - > - - = sveeee —> AT
/ "y / l
S LA P A '
: S . , J=P2—D1
1/ 2 /- /
T3 T3 ) T3 73 <
N AR \
|3 L \
* \ A, \\ * X
0 \ 1 TN 2 \
T Ta e Td NTa
Figure 5.6:

In the theory of KP hierarchy it is known that we can either truncate the function
T;, or impose periodicity in the direction of j at any value, with no violation of
integrability. For example we can impose

Ta =T, (5.30)
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to obtain a reduced map of d dimension. In this case it is more convenient to consider

ot ottt ¢
T = (T, Ty Tas Tas ooy Tg—1)s

instead of a triangle Sy [t + 1] of each octahedron separately. When d = 3, the chain

of Figure 5.6 becomes a chain of triangles.

5.4.2 Localization of a Triangulated Category

The theory of triangulated category tells us that, if there is a null system, the theory
can be localized such that the localized theory again satisfies the axioms of triangu-
lated category[50][51]. A null system N C T of the triangulated category T is a set
of objects defined by

1. 0 € N, where 0 is null object that is object as both of initial object and terminal
object.

2. ZeNifX)Y e Nand X - Y — Z — X]1] is a distinguished triangle.
3. X[1]e N iff X eN.
For any triangulated category 7 and a null system N C 7, we define a multi-
plicative system by
S(N) ::{g‘x%y—méxm, X.YeT, ZEN}.

Then the localization is defined by the functor 7 — 7 /S(N). The following theorem

is known in the theory of triangulated category:

Theorem

T/S(N) is again a triangulated category whose null object is 0 itself.
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Therefore, in order to discuss the localization of our system we must know a null
system of our “triangulated category”. Our objects are solutions {7;;} of the HM
eq. which are assigned at corners of each octahedron. They are generically finite,
because the 7 functions are defined by the ratios (5.5) of correlation functions such

that the zeros of correlation functions cancel from each other.

As we explained in §5.1.1 the correlation functions {®;;} vanish by themselves
when two punctures encounter on the Riemann surface. It is, however, important to
notice that, when the correlation functions ®(p, z; G) and ®(p, z;0) vanish simulta-
neously, the cancellation of their zeros does not mean the value of their ratio being

definite. Let A(p) be the ratio of the correlation functions at the point where they

vanish, i.e.
®(p, 2 G)
Ap)=¢ ——= | ® G) =@ ;0)=0 5.31
(p) { 3(p. 2. 0) ‘ (p, 2,G) = ®(p, 2,0) } (5.31)
then A(p) is set of indeterminate points at p € EEL"H) in general, hence can take any

value. Since zero is not excluded in (5.31) we call the zero of A(p) the null object
and denote by 0, 7.e.,
0 € A(p).

We now focus our attention to this subtle object in the following discussion and show

how the localization of triangulated category resolves the subtlety.

The localization of our system will be introduced by considering rational maps
of the 7 functions. To be specific we consider some reduced flow diagrams of Figure
5.6 which satisfy the condition (5.30). In particular we study in detail rational maps

defined by the following variables:

! it

e je=1,2.3,..,d, LV,

Tj+175

7= (5.32)
Tt it

Jt+i+]1 67 j7€: 172737"'7d7 KdV.

L TiTj+1—¢
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The maps which are obtained by the new variables LV and KdV of (5.32) are nothing
but the LV map and the KdV map[41][42].

An important feature of the variables (5.32) is that they are invariant under the

3 t
local gauge transformation of 7;

t J
Gl ] : 7t — exp ( [ wtear | u<t,j'>dj') (5.33)

where p(t, 7) and v(t, j) are arbitrary functions. For example, we can write the right

hand side of (5.32) as

(P10, 2) P (p, 2)
@§+1(p’ Z)q)?l(pa z) 7
Ty = (5.34)
CI)E‘H(Pa Z)q)zi(pa z)
Ol (p, 2) 51 (p, 2)

joe=1,2.3,..,d, LV,

J,e=1,2,3,...4d, KdV.

This follows from the fact that the denominator of T;IZ (p) is given by

(Dt-l—u

j+k‘(paz,0) = (Zl — 22)(p1—k)(p2+k)(z

5 — 24)(p3+u)(p4—U)’

so that all denominators of 7 functions in (5.32) are eliminated exactly from the

expression.

We notice that we can not distinguish a change of A\(p) in (5.31) with the gauge
transformation

Glu, v] - AMp) — N(p). (5.35)

This means that, if A(co) is the set of all possible A(p), i.e.,

A(oo) = { Alp) ‘ p ezt } . (5.36)

A(o0) is invariant under the gauge transformation.
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t+1 t41
Now suppose that 7; (or T

i1i_. in the KdV case) in the denominator of z in

(5.32) is the null object, hence takes the value zero. Then 2% and also :vzfll diverge

u

while all components of &' with u > 2 are finite, as far as other 7 functions are

finite. This owes to the fact that the same 7 function does not propagate beyond

t+1>

two steps. There is no way to determine the values of 7°7'’s because the null object

is invariant under the gauge (5.35), i.e.,
Glu,v] 0 — Glu, v]0 = 0.
In other words the null object is transferred to an indeterminate object,
dr : {0} = A(p). (5.37)

which is an element of A(co). It should be emphasized that A(co) does not appear
in the localized theory, because the localized variables a:;’s are gauge invariant. Thus

we are strongly suggested to identify A(oco) with the null system N of our map
N ~ A(0). (5.38)

Our argument in the rest of this paper will be devoted to support this conjecture.

5.4.3 SC of 3 dimensional Maps

To proceed our argument further we consider the case d = 3 and ¢ = 1 in (5.32) for
simplicity. Then the HM eq. becomes the following rational maps, 3dLV map(4.2)
and 3dKdV map(2.34). These maps have two invariants (2.30) and (2.37), respec-
tively.
We can solve the initial value problem of the HM eq. following to the algorithm:
Al Fix initial values 7° = (7,7, 7)) and 7! = (73,7}, 73) by hand to determine

r = (371,1'1,1‘3).
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A2 x' = (2}, 2h,2%), t > 1 are obtained as functions of @ iteratively by the maps

3dLV map or 3dKdV map.

A3 L = (7T A A ¢ > 1 are determined by (5.32) from 7! and x'.

Needless to say this procedure of solving the HM eq. (5.1) is compatible with the
flow of information through the chain of octahedra, since the rational maps 3dLV map
and 3dKdV map are derived from the HM eq. by the transformation of dependent
variables (5.32). The algorithm is certainly deterministic, since values of 7* for all
t > 2 are determined if the initial values 7° and 7! are fixed. As we will show in
the following, however, it becomes not clear how the null object appears during the

procedure.

The SC of the 3dLLV and 3dKdV map have been studied in detail in the previous
chapter. To see what happens we review this problem from the view point of the

theory of category.

Since we are interested in studying the SC we fix the initial conditions such that
x! is divergent. Without loss of generality this condition is satisfied by requiring for
the denominator of z1 to vanish. Let us solve the 3dLV map case following to our

algorithm.
Al We fix the initial values 7! at
Th = (X0, A1, M),
and, instead of fixing 7° by hand, we require
(a) denominator of z] vanishes:
1 — a9+ 2929 = 0.
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(b) invariants f, g are fixed by
f=alzpas — (1—a))(1—ap)(1—a%), g=1+(1—a)(1—a3)(1—ay),

from which we obtain

moz( f o9 f+g
f+9 g

) , ori=f+g—1=a%03 (5.39)

and

= (s ghes (f +9)%).
A2 Tteration of the 3dLV yields the sequence of SC,
x — (00,0,1) = (1,0,00) = 2* = x* — --- (5.40)
A3 (a) From x! = (00,0,1), we find 72 = 0 and 75y = 73);. Since an overall
factor is irrelevant we obtain
7%= (A\2,0, \1).

(b) From z? = (1,0, 00) we find 75\; = A1, but 73 is undetermined.

(c) Since x'’s are finite for all ¢ > 3, the rest of 7/*! are determined for all

t > 3, thus we obtain, up to overall factors,
70— (Mo, AL, A2) = (A2, 0, A1) — (NG, Ay, AS)
N (XQO(<2>7A67<2>7X15<2>> S (Ma®, Xy XY o (5.41)
Here we defined new functions
(A0, AL AY) = (19,7, 73),

which are free as far as

is satisfied.
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From this result it is clear how the SC undergoes. The singularities of ' and
x? in (5.40) come from 77 = 0. This null object is the source of the singularities.
This information, however, can transfer only to its neighbor since 72 does not appear

beyond x2. Hence it does not transfer directly to remote objects.

We can extend the sequence of (5.41) to the left, if we apply the inverse map of
3dLV to . We find, with A3 := A, AN 5= Aj,

(

(Allfta(t% /\/27157[15}7 Altﬁ(t)>7 t Z 27

(/\6’/\/1’/\/2)’ = 17
Tt+2 = ()\Qa 07 >\1)7 t= 07 (543)
(Aos A1, Ag), t=-1,

\ </\2—t6(_t)7>\—t7[_t]a)\1—ta(_t)>a t< -2

Here we denote by v the product
A= ny(t’).
t|¢/

We can summarize our result of this subsection by the diagram in Figure 5.7.

3) (2)
A A

Figure 5.7: 7l t € Z
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Here we used the notations 04(;), 59 and ’y/[\t] to represent the elements of 7 in (5.43).

From this analysis we learned that the existence of a null object introduces free
functions (Aj, A}, Ay) in addition to the initial values (Ag, A1, A2). Since it is con-
strained by (5.42) and the overall factor is irrelevant there is only one degree of
freedom. As we have seen it comes from the gauge invariance of the null object

G, v]0 ~ 0.

We are now ready to apply the localization theorem of the category theory dis-
cussed in §5.4.2. The diagram of Figure 5.7 shows how the effect of this gauge
freedom propagates as t increases. It is important to notice that all objects in three

triangles Sy[—1], 54[0], S4[1] are indeterminate. In other words

54[—1], 54[0], 54[1} C A(OO)

If we accept the conjecture (5.38) to identify N ~ A(oco), we naturally define our

multiplicative system by the set of gauge transformations
SWN) ={Glu ]| Glu,v]: A(p) = N(p), 0= Glp,J0=01},

so that our local theory is obtained simply by gauge fixing all A;’s and A}’s at 1.

K4
il
— ] L 0 L 1
L e e e e e e e e e e = =
RN
Figure 5.8:
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5.4.4 “Projective Resolution”

Let us consider a subchain of Figure 5.7,

(3k)

Figure 5.9:
which can be obtained by iteration of the map x! — x'**. Especially in the diagram
k
.
/ \
/ \u
/ \
¥ N
Xy Ao 0
Figure 5.10:
the morphism w : 'y;k} — A, passes the epimorphism 7 : A} — A|. Hence the object

'y&k] is a “projective object” for all k£, and the “exact sequence”

4 3 2
Pi=- o 2 =)

P M = N =0, (5.44)
is a “projective resolution” of Aj.

This is a result of the theory of triangulated category in mathematics. It tells us

that infinitely many projections by ygt]’s constitute the object \j.
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5.5 Discussion

5.5.1 Localization and 3 dimensional Maps

While HM has a null set A(co), however, A(co) does not appear in the maps of the
variables defined by (5.32), for example. Moreover we discussed the localization of
HM by means of the gauge transformations S(A(c0)). Therefore we notice, in the

case of 3dLV map, a relation as follows:

3 dimensional maps ~ HM /S(A(c0)).

5.5.2 Derivation of IVPPs

Since 72 = 0, a point satisfying 7172 = 0 must include periodic points of period t.

On the other hand 717 o v holds as we can see from (5.43). If we repeat the
procedure explained in the previous subsections we derive a sequence of polynomial

functions of the invariants. Thus we have found an important fact:

[ Derivation of IVPPs by SC and “Projective Resolution” ]

P of (5.44) is a chain of polynomial functions whose zero sets are IVPPs.

5.5.3 IDP of IVPPs

Now we must call attention to another remarkable feature of IVPPs. In previous
chapter, we have found that IVPPs of all periods intersect on a IDP. It is a set of

“singular points” by two reasons.

1. Every point on IDP is singular because it is a point which is occupied by

periodic points of all periods simultaneously.

— 93 —



2. It is an indeterminate point of the map. Namely IDP is a set of points on
which the denominators and the numerators of the rational map vanish simul-

taneously.

Now we can translate information of IDP into the language of 7 functions using
the formula (5.32). In the case of LV map the points ' = (00,0, 1) and % = (1,0, )
are on SP. From the algorithm of §5.4.3 they correspond exactly to the three triangles
(§4[—1], S,4[0], 54[1]> of the chain in Figure 5.7. The latter belongs to A(oo), which
is a set of indeterminate points again, but of the 7 functions instead of the map

functions.

The correspondence of IDP with A(co) is clear because the indeterminacy of
both functions comes from the same source, i.e., the zero set of correlation functions
®(p, z; G). Moreover from this correspondence we see that A\j and A\; in P of (5.44)
must be objects in which all IVPPs are degenerate. In other words the null set is
a source from which IVPPs are generated. This will provide us an interpretation of

the “projective resolution”.
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Chapter 6

Transition of Integrable/Non
Integrable System

In this thesis we have so far studied mainly properties of integrable systems. In order
to understand integrable systems, however, it is quite important to study them in
comparison with non integrable systems. We show in this chapter that, when a non-
integrable rational map changes to an integrable one continuously, a large part of
the periodic points approach indeterminate points(IDP) of the map along algebraic
curves. Not only this type of work has not been discussed in other literatures, but
our study is still at the beginning[52, 53]. Therefore we consider here deformations
of only two maps, the 2 dimensional Mobius map and the 3dLV map, to clarify our

argument.
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6.1 2 dimensional Mobius Map

We consider one of the deformations of integrable map. First, we show the case of 2

dimensional Mdbius map (2.7).

11—y 11—
Foaman (2, Foavisp)a(z,y) = , , 6.1
2amb (45 4) = (Faantsb)a (2 y) (1'1_:[_@ yl_y) (6.1)

where x,y € C are variables of the map and a € C is a continuous parameter.

6.1.1 Fixed points
There are two fixed points of (Faqmsp)a at
(xvy) = (070) and (—CL,O),

Although the fixed points are not considered being periodic in general, they form
the line y = z in the integrable limit in this particular map (6.1).

6.1.2 Period 2 points

When a # 0, we must solve the periodicity condition to find the period 2 points.
They are at (z,y) = (23,93 ), where

(xiayi)=<1——i\/ — 2_“ ,/ — ) (6.2)

Now we recall that, in the a = 0 case, there is no IVPP of period 2, while the period
2 points of (6.2) exist at a = 0. But the point (z,y) = (1,1), where the period 2
points of (6.2) approach, is exactly the IDP of the map Fogysn. Therefore all period
2 points approach the IDP in this case, and none of them move to IVPP, in the

integrable limit.

The explicit expression of the points like (6.2) is not easy to find as the period n

becomes large. It will be more convenient to present the polynomial function K (x)
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from which we can derive :1:5-”) by solving K () = 0, and another polynomial

function L (z) so that y](.n) is given by y§”) = LM (xﬁn)) In the period 2 case we

obtain
KP) = (a—4)2*+ (a—2)(a —4)z —2(a — 2)(a — 1),

L) = (1 - g) (z + a), (6.3)

from which we find (6.2) immediately.

Now we want to know the paths of the periodic points along which they move
as a changes and approaches in the limit a = 0. We can do it if we eliminate the
parameter a from K" (z) =0 and y — L (z) = 0 of (6.3). The result we obtain is
the algebraic curve G (x,y) = 0, with

G(2)(x,y) =Q2-2)*1-y?-301-2)1—y)2—2)+ (1 —2)*2—z+2y). (6.4)

This curve certainly passes the IDP(Fhansn) = (1,1), hence GP(1,1) = 0, as we
can check easily. From (6.3) we see that it corresponds the integrable limit a = 0.
To see the paths of period 2 points, we can draw the curve on the (z,y) real plane.
We find a curve in Figure 6.1.

0.2

0.2 4

0.4+

-0.6 4

-0.8

Figure 6.1: Path of period 2 points.

— 97 —



Notice that the IDP(Faqmsn) = (1, 1) is shifted to the origin in this graph. From
this picture it is apparent that the IDP is the singular locus of the curve (6.4). In
fact we can convince ourselves that the multiplicity of the curve at the point (1,1) is
two. Since K\” (x) and LgQ)(x) are smooth functions of a, two periodic points must

approach IDP along this curve at the same time, continuously as a becomes small.

Similarly, we can give curves of some other periods, as shown in Figure 6.2. In the
picture the red, blue and green curves correspond to period 2, 3, and 4, respectively:

In Figure 6.3 the details of these curves near (z,y) = (1,1) are shown.

10

-10 | (_ 0

Figure 6.2: Paths of points of period two, three and four.
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0.3

0.2

0.1 1

-0.3 -0.2 -0.1 0 0.1 0.2

-01

-0.2 1

-0.3 -

Figure 6.3: Details of the paths of period 2,3 and 4.

6.2 3 dimensional Lotka-Volterra Map

We can apply the same method to see how the periodic points of the deformed 3dLV

map

Fiav(z,y,2) = (Fsaw)ap(®, v, 2)

1—y+yz l1+4b—z2z42z 1—z+u2ay
=z Y , 2 ,(6.5)
l+a—2z+z2x l—z+2y 1l—y+yz

move. In this case we have two parameters a,b. As they change every periodic point

must move on a surface instead of a curve. In fact, after elimination of a,b from the
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period 2 conditions, we obtain a formula
Ké’b)(l',y,Z) = 07 (66)

which represents a complex surface in C3. The surface is shown in Figure 6.4, and

we show a detail of one of the intersection curves in Figure 6.5.

Figure 6.4: period 2 surface K =0
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Figure 6.5: details near IDP(Fiqry)

The curves along which the surface (6.6) intersect with itself is not difficult to

teC}

tec}. (6.7)

find. They consist of two independent curves

AT = 1—1,L,t cC?
t'1—t
1 1
A" = —1--,t)eC?
(i) e

The curve of Figure 6.5 corresponds to AT. From our experience in the deformed

2dMobius map, all surfaces of different periods must intersect along the same curves

A*. Tt is, however, very difficult to draw surfaces of large period numbers.

A remarkable fact is that the curves we observed in Figure 6.5 coincide exactly
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with A*. This means that almost all periodic points approach A* in the integrable

limit.

6.3 Discussion

Some remarks are in order: We have presented the behavior of periodic points here
only those of small number of period. Nevertheless we are certain that all other
periodic points of higher periods behave similar, because of the IVPP theorem. In
particular the periodic points will approach the IDP as deformation parameters be-
come zero, if they do not move to the IVPPs. Since this is true for all periods, we

can say that a large part of the Julia set approach the IDP.
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Chapter 7

Conclusion

In this chapter, we give conclusion about this thesis.

7.1 ADE Dynamical System

First, we extended the dynamical system of a mapping to an ADE, in which time
evolution is given by elimination ideal. However an ADE has IDP with “gauge
transformation”, then the sequence of iteration of the mapping does not become an
“exact sequence”. For one of the solutions of this problem, in the case of HM eq.,
we considered IDP with gauge transformation as null system. Therefore, within the
frame work of localization of triangulated category, the sequence of iteration of the
mapping becomes an “exact sequence”. In other words, an ADE dynamical system

is identified with an “exact sequence” of iteration of the mapping.

7.2 IVPP Theorem

Next, we proved IVPP theorem that is the main theorem of this thesis. Because

IVPP theorem gave Integrable/Non Integrable conjecture that is a judgemental con-
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jecture of integrability. In Chap.4, we discussed a method to derive IVPPs by SC.
Therefore we can determinate the Integrable/Non Integrable system by this method.
Furthermore, we considered the structure of this method as “projective resolution”
of “triangulated category”, in the case of the HM eq.. Hence we understand the suf-
ficient condition of integrability has “projective resolution” structure. In addition,
by the Invariant/Parameter duality, this structure provides an ADE resolution by

REs of all periods like a Fourier expansion.

7.3 Intersections of IVPPs

In addition, we considered about intersections of IVPPs that were seemed a problem
of IVPP theorem. We discussed about the conditions for the existence of intersec-
tions of VPPs, which are the origins of IDP, common factors and singular points of
IVPP, and we analyzed some examples. The reasons of these origins, we considered
in Chap.6. We deformed the Integrable/Non Integrable systems in the case of 2
dimensional Mobius map and the 3dLV map. We studied the fate of Julia set to IDP
and IVPPs, and thus found that infinitely many periodic points go to IDP.
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Appendix A

Affine Algebraic Variety

Affine Algebraic Variety

Let f := {f1,..., fu} be elements of C[x]. We denote the (affine algebraic) variety
V(f) that is generated by f as follows,

V(f)i={xeC| fi(®)=0,i=1,....d}.

Ideal and Variety

We denote the ideal Iy that is generated by f as follows,

Iy = (f1,.., fn) = {9(33) € Clz]

g(x) => hi(x)fi(x), hi(x) €Clx], i=1,...,N } .

i=1

Moreover, we denote the variety V(If) that is generated by I as follows,

V() ={xecC|glx)=0, "g(x)c I} }.

In addition, we define an equivalence between ideal I; and I, when the ideals I;
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and I, generate the same variety ! |

Ideal Calculations and Variety

Ideals Iy and Iy are defined addition I + Iy as follows,

Iy + Iy = (f. f)
This addition has important property as follows,

V(Ip+1p)=V()NV(Ip).

Similarly, Ideals Iy and Iy are product I; - Iy as follows,

Iy-Ip = { 9"(z) € Clx]

" () = Zgj(a:)g}(a:), gi(x) € Iy, gj(x) € I/, n €N }
j=1
This product has important property as follows,

V(- Ip) =V(I) UV ).

n formal mathematical definition, a variety is given by a radical of an ideal[29][38]. Therefore
L =L V(Il) = V(IQ)

is satisfied. However, we do not use a radical of an ideal for our convenience.
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Appendix B
d dimensional Lotka-Volterra Map

The original Lotka-Volterra map of d dimension was defined [41][42] by
X (1-o0XH) =X (1-6X110), j=1,....d, (B.1)

Xj =X}, (periodiccondition),

which becomes, by taking the zero limit of the the minimal step of time J, integrable

continuous time Lotka-Volterra equations,

X5(0) = X,(0) X1 (8) = Xpa (0], G =1,....d.

dt

Hereafter we fix 6 = 1 and denote t =n € N.

Invariants of the map (B.1) were also derived in [41][42], but in implicit form.
We present here their explicit form cited from [7] [8][9],

(

1—(=1)%qqz--qa, k=0

Z./jth ,,,,, Ik 451952 * D> k= 1727:[d/2]
0, k=[d/2] +1,...d—1
-1, k= d,
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g = X;(1 = X;1),

here [d/2] = d/2 if d is even and [d/2] = (d—1)/2 if d is odd. The prime in the sum-
mation Y’ means that the summation must be taken over all possible combinations
of j1,j2, ..., Jx but excluding direct neighbors. Since H, can be represented by other
H’s and

R:=X1 Xy Xy

it is convenient to use R instead of Hy. The total number of the invariants is

- [1]
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Appendix C

String/Soliton Correspondence

String Theory

Classical Theory

First, we give notations of (closed) string theory[54]. The equation of motion(EOM)

of a string about complex coordinate z, Z is given by

0,0-X(2,2) = 0.

Therefore, the solution of this EOM, is the following form

X(z,2) = X(2) + X(2),

1 1 Qay, 1
X(z):§x+é—laologz+2?zn’ X(z):§x+ &010g2+z o
n#0 n#0

In this appendix, we consider X (z), a part of X(z, 2).
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Quantum Theory

In addition, the first (canonical) quantization of the string is given by canonical

commutative relation(CCR) as follows,
T Qg 1 .
5| =1 - —m| == : 1
[22, 4] ) {nan,za m} Onm, n,m €N (C.1)

Therefore, we can take a differential representation of CCR(C.1) by new variables

th,m=0,1,2,...
T 1 o 1 0

lo=1=, tn = —ay,
0 2’ n

Vertex Operator

The tachyon vertex operator, that is given by the state/operator correspondence[54],

is defined as

ipX(z) ipX ~(2) LipX T (2)

Ip,z) ~V(p,z) =e =e e ,

where

oo 0 > z7" 0
_ . n + — _g _ -
X (2):= zZz th, X7(2): Z(logzato ; n 8tn>'

n=0
Product of Vertex Operators
Lemma

We need Baker-Campbell-Hausdorft’s formula for our calculation. In particular, if

[A, B] is a scalar then it is written as follows,

etef = el BleBeA,
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Normal Ordering
Normal ordering is defined as follows,
Vip, )V, 2): =V (p,2)V(p,2)VT(p,2)VT (Y, 2,

where VE(p, ) := eX* (),

Vertex Operator Algebra

We want to check the relation(5.6)

V(p, Z>V(p/> Z/) = (_1)pp’v<p/’ Z/)V(pv Z)'

Check
Vip,2)V(pY,2) = iPX ™ (2) gip X (2) ip X () gip X * (/)
— X7 (2) (e—pp’[XJr(z),X*(z/)]eip/X*(zl)eipXJr(z)) o X ()
= W EEX N Vi )V, 2)
where,

n=1 m=1
1Z/m
— — l —
wi= 33 10 )
n=1m= 1
1 /Z\"
—= J— l — — .
!
= —<logz+log [1—(2—)])
z
= —log(z — 7).

- 115 —



Hence we get

Vip,2)V(,7) = (=2 :V(p,2)V({p,7):
= (—)?VQ, )V (p,2)

String/Soliton Correspondence

The Miwa transformation[15] is given as,

oo 1 oo .

Therefore we can get

1.€.
eiPi X (%) Piap;
Moreover, we can get
B oo
ePiXT() = exp _pjzzjﬂtn]
L n=1
s > 1 Zj "
~ o |- >k (2
i=1 n=1 v
L i#£]
= exp |—p; Y _pilog {1— (—]H
i=1 ¢
L 1]
o0 —P;pi
Z.
-2
; Zj
=1
i#£]
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Hence we can get a relation between the vertex operator and the shift operator as
follows,

O zj —PjPi pjai
V(pj,Zj):Hll— (Z—):| e,

1=1
i#£]

- 117 —






Appendix D

Triangulated Category

In order to see this correspondence more in detail let us first recall the axioms of

triangulated category[50][56].

Definition

Let D be an additive category, X,Y, Z, X', Y’ Z’ be objects and u, v, w be morphisms
of D. The structure of a triangulated category on D is defined by the shift functor T

and the class of distinguished triangles satistying the following axioms:

Trl (1)Any triangle of the form
X4 X —0-—T(X)

is in the class of distinguished triangles.
(2) Any triangle isomorphic to a distinguished triangle is distinguished.
(3) Any morphism u : X — Y can be completed to a distinguished triangle

X -5Y —Cu) — T(X)
by the object C'(u) obtained by morphism wu.
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Tr2 The triangle
X5y -5 75 T(X)

is a distinguished triangle if and only if

is a distinguished triangle.

Tr3 Suppose there exists a commutative diagram of distinguished triangles,

X —Y — 7 —T(X)

ul vl 1 T(u)
X —Y — 7 —TX).

Then this diagram can be completed to a commutative diagram by a (not

necessarily unique) morphism w : Z — Z'.

Tr4 (the octahedron axiom) Let X —+ Y — Z be a triangle. Then the following
commutative diagram holds:
T-1(X")

N

!

X— Y z
!
z

N b

N |

X — T(Y)

N (D.1)

T(Z)
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