
博士論文

論文題目 Signatures of low-scale string models

at the LHC

（LHC実験における低スケール弦模型のシグナル）

氏名 橋 真奈美





博士学位論文

Signatures of low-scale string models at the LHC

（LHC実験における低スケール弦模型のシグナル）

東京大学大学院 総合文化研究科
広域科学専攻 相関基礎科学系

橋 真奈美





Contents

Introduction 3

I Basics of superstring theory and Construction of low-scale string
models 9

1 Basics of superstring theory 9

1.1 The world-sheet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Mode expansions and physical states . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Type I and type II superstring theory . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Intersecting D-brane models 25

2.1 Introduction of D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Intersecting D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Type IIA orientifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Getting the Standard Model spectrum . . . . . . . . . . . . . . . . . . . . . . . 38

3 Low-scale string models 41

3.1 Large extra dimensions in string compactifications . . . . . . . . . . . . . . . . . 41

3.2 Spectrum of low-scale string models . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Signatures of low-scale string models at the LHC 51

4 String resonances at the LHC 51

4.1 Dijet events at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model independence at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 gg → gg , gg → qq and qq → gg . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 qg → qg and qg → qg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 qq → qq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Reduction of string amplitudes and widths of string excited states . . . . . . . . 56

4.3.1 First string excited state exchanges . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Second string excited state exchanges and interference effects . . . . . . . 59

4.4 Dijet invariant mass distributions with string resonances . . . . . . . . . . . . . 62

4.5 The flow of Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Angular analysis 67

5.1 χ distributions on string resonances . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 χ distribution analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1



6 Second resonance analysis 74

6.1 Second string resonances in dijet invariant mass distributions . . . . . . . . . . . 74

6.2 Modified decay widths of second string excited states . . . . . . . . . . . . . . . 77

Summary and Prospects 83

A Calculation of scattering amplitudes with string excited state exchanges 87

A.1 Four gluon amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1.1 First string excited gluon exchanges . . . . . . . . . . . . . . . . . . . . . 90

A.1.2 Second string excited gluon exchanges . . . . . . . . . . . . . . . . . . . 95

A.2 Two gluons and two quarks amplitudes . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.1 qg → qg amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.2 gg → qq and qq → gg amplitudes . . . . . . . . . . . . . . . . . . . . . . 105

B Standard spinor products 116

C Calculation of four-point open string amplitudes 117

C.1 Four-point open string amplitudes at disk-level . . . . . . . . . . . . . . . . . . . 117

C.2 Four gluon amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.3 Two gluon and two quarks amplitudes . . . . . . . . . . . . . . . . . . . . . . . 119

2



Introduction

Discovery of the Standard Model Higgs boson

The discovery of a Standard Model (SM) Higgs-like particle on 4th July in 2012 made a large

impact on almost all particle physicists. The ATLAS and CMS experiments of the Large Hadron

Collider (LHC) reported that mass of the new particle is about 125GeV [1, 2]. Moreover, they

also reported that spin and parity of the new particle is 0+ [3, 4], which led to a conclusion that

it is the SM Higgs boson.

The Standard Model is the SU(3)C × SU(2)L ×U(1)Y gauge theory with three generations

of quarks and leptons, and it has been quite well confirmed by past various experiments except

for the Higgs sector. The Higgs field of the SM is one doublet scalar of SU(2)L. It breaks the

electroweak gauge symmetry spontaneously by its vacuum expectation value (VEV) and gives

masses to not only the electroweak gauge bosons but also the fermions through the Yukawa

couplings. The Higgs boson which is a fluctuation around the VEV has been observed through

the couplings with massive particles.

Naturalness and Hierarchy problem in the Standard Model

Due to the discovery of the SM Higgs boson, the SM seems almost complete. However, most

of particle physicists consider the SM as a low-energy effective theory up to a mass scale where

particles of new physics beyond the SM begin to appear. The scale of the new physics should

be at most the Planck scale, MPl ∼ 1019 GeV, where gravitational interactions at quantum

level become visible, since the field theory cannot describe the gravitational interaction in a

renormalizable form.

Here, note that the mass square parameter of the Higgs boson receives finite radiative

corrections written by a square of the mass scale of the new physics,

δm2
H ∼M2

new phys. + · · · .

Thus, the radiative corrections to the Higgs boson mass include the mass scale which has

nothing to do with the Higgs boson mass. This is caused by the fact that the Higgs boson

mass square parameter is an unnatural parameter which is not guaranteed to be zero by some

symmetries. This problem is called naturalness problem.

On the other hand, when the graviton mediating the gravitational interaction is defined as

a fluctuation around a flat background, gµν = ηµν + hµν , one-loop diagrams which include the

graviton hµν and contribute to the radiative corrections to the Higgs boson mass are shown

in Fig.0.1. If there is a renormalizable theory of gravity, the Higgs boson mass is expected to

receive the radiative corrections of the order of a square of the Planck mass,

δm2
H ∼M2

Pl + · · · .

Therefore, the renormalized parameter of the Higgs boson mass square should cancel out the

square of the Planck mass and results in the physical mass of the Higgs boson which is 125GeV.
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Figure 0.1: The one-loop diagrams which contribute the radiative corrections to the Higgs boson

mass, including the graviton hµν .

Very artificial fine-tuning is required since the Planck mass is much larger than the mass of

the Higgs boson. This problem essentially comes from the fact that a hierarchy between the

mass of the Higgs boson and the Planck mass has not been understood. The problem is called

hierarchy problem.

TeV scale gravity and Large extra dimension

We focus on the hierarchy problem. One of solutions to the hierarchy problem is that there

is a more fundamental gravitational scale of the order of TeV, rather than the Planck scale.

It is expected as a solution since the fundamental scale is the same order as the mass of the

Higgs boson. The solution can be realized by introducing extra space dimensions than three

and compactifying the extra dimensions into a space with large volume. It is called large extra

dimension which was proposed in ref.[5] in the light of Quantum Field Theory (QFT), and in

ref.[6, 7] in the light of string theory.1

If the SM gauge interactions live in our four-dimensional space-time but only the gravi-

tational interaction are spread on the extra dimensions, higher-dimensional Einstein-Hilbert

action is written by

SEH =
1

16πG
(D)
N

∫
dDx

√
−g R ,

where G
(D)
N is the Newton constant in a D-dimensional space-time. Since the extra dimensions

should be compactified into a space with finite volume, the action is reduced to the four-

dimensional Einstein-Hilbert action,

SEH =
1

16πG
(D)
N

VD−4

∫
d4x

√
−g R =

1

16πG
(4)
N

∫
d4x

√
−g R ,

whereG
(4)
N is the four-dimensional Newton constant andG

(4)
N = 1/M2

Pl. When theD-dimensional

gravitational scale is denoted by MD, the D-dimensional Newton constant G
(D)
N = 1/MD−2

D ,

and the Planck scale is described asM2
Pl = VD−4M

D−2
D . If the volume of the compactified space

VD−4 is very large, we can choose the D-dimensional gravitational scale MD to be of the order

1There is an another problem why the compactified space has large volume. The problem can be expected

to be solved in a framework of string theory.
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of TeV. In this case, MD is the more fundamental gravitational scale than the Planck scale and

it is almost the same order as the mass of the Higgs boson.

Why low-scale string models?

There are field theoretical models which can solve the hierarchy problem with extra dimensions,

such as the ADD [5] and the RS model [8]. However, since such models cannot describe the

gauge interactions in a renormalizable form, they are also low-energy effective theories with

cutoff scales. Moreover, since they are based on QFT, they of course cannot describe the

gravitational interaction at quantum level. Since we require more fundamental theories which

can solve the hierarchy problem, we consider models which are based on string theory.

The reasons why we consider string theory are:

• String theory is a strong candidate for quantum gravity. There is a closed string which

includes the graviton with spin 2.

• String theory does not need a renormalization. There are not ultraviolet divergences

which should be canceled out by a renormalization, as in QFT.

• String theory necessarily introduces extra dimensions. The absence of Weyl anomaly

in world-sheet theory requires that the space-time dimension is D = 10 in superstring

theory.

In models based on string theory, if the extra dimensional space has large volume, the

fundamental scale which is called the string scale Ms or the Regge slope α′ = 1/M2
s can be

chosen of the order of TeV. The models are called low-scale string models.

In string theory, there is a compactification mechanism which compactifies the extra dimen-

sions into a space with large volume. Since in string theory, the volume of the compactified

space is determined by an expectation value of a moduli field, a mechanism which stabilize the

value of the moduli field is required. As the mechanism of stabilization of the moduli, the Type

IIB Calabi-Yau flux compactification was proposed by KKLT [9]. Using the KKLT mechanism,

large volume compactification is possible [10].

In order to introduce matter fermions of the SM, we should start with superstring theory.

If we assume that not the Minimal Supersymmetric Standard Model (MSSM) but the SM is

realized in low-scale string models, supersymmetry (SUSY) is explicitly broken at TeV scale.

String resonances and Model independence

Since the string scale Ms is of the order of TeV, low-scale string models have a possibility of

being confirmed or excluded by the LHC. Signatures of low-scale string models at the LHC are

different from typical signatures of other field theoretical models with extra dimensions, such

as the ADD and the RS.
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A characteristic feature in low-scale string models is the appearance of string excited states.

String excited states are higher vibrational modes of open strings, and the open strings live in

a D-brane which is a subspace where the gauge interactions are localized. Therefore, the open

strings on D-branes can realize the SM gauge bosons and matters, and string excited states can

have the same gauge quantum number as that of the corresponding SM particle.

At the LHC, colored string excited states can be produced dominantly in dijet events [11, 12].

Scattering amplitudes of gluons and quarks with exchanges of string excited states are calculated

in ref.[13] (see ref.[14, 15] for earlier discussions). The string excited states can be observed as

resonances with mass of the order of Ms in dijet invariant mass distributions. The resonances

which are called string resonances have not been observed at the LHC yet, and the value of Ms

has already been constrained in dijet events at the 7TeV and 8TeV LHC, to be larger than

3.61TeV by the ATLAS [16] and 4.78TeV by the CMS [17].

If D-branes have directions of extra dimensions, there are not only string excited states but

also Kaluza-Klein (KK) modes of the SM particles. However, in dominant processes at the

LHC, the KK modes cannot be produced alone, because of the momentum conservation in the

direction of extra dimensions on D-branes. Since the KK modes appear by compactifying the

extra dimensions, signatures of processes with the KK mode exchanges depend on the detail of

model buildings, such as the geometry of compactified space and the configurations of D-branes.

Therefore, signatures of the dominant processes at the LHC without the KK mode exchanges

are independent of the detail of model buildings. Although in string theory there are various

kinds of the ways of model buildings, we can test low-scale string models model independently

at the LHC.

Distinction of low-scale string models at the LHC

If a new heavy resonance is discovered at the LHC, it is very important to specify what classes

of models cause the resonance. In ref.[18], Kitazawa proposed some analyses for dijet events at

the LHC which can distinguish the resonances in low-scale string models from that in the other

“new physics”. In ref.[19, 20], adding a new analysis, Kitazawa and the author practically

performed two analyses using Monte Carlo (MC) simulations for the LHC, and we actually

confirmed the possibility of identifying string resonances in dijet events at the LHC. This thesis

is based on these studies [19, 20].

In order to identify a new resonance as a string resonance, we focus on the following unique

properties that string excited states have:

• String excited states are degenerate with a variety of spins higher than that of the corre-

sponding SM particle.

• Their degenerate mass is Mn =
√
nMs for nth string excited states.

The highest spin of nth string excited states is Jmax = j0 + n, where j0 is the spin of the

corresponding SM particle. For example, first string excited states of gluons are degenerate
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with spin J = 0, 1 and 2, and first string excited states of quarks are degenerate with J = 1/2

and 3/2. All of them have the same mass of Ms.

Using the above properties, two analyses for dijet events can be considered:

• One is observing degeneracy of string excited states with higher spins, by an angular

distribution analysis on the resonance in dijet invariant mass distributions.

• The other is observing second string excited states with the characteristic masses, by a

search for a second resonance in dijet invariant mass distributions.

The former analysis is useful as a discriminator. The appearance of heavy colored states

with higher spins is quite characteristic of low-scale string models.

The latter analysis is also useful. First, there must be second string excited states in low-

scale string models, while there is no second state in the other “new physics”, such as the

axigluon models [21] and the color-octet scalar models [22]. Second, the masses of second string

excited states must be
√
2 times of that of first string excited states in low-scale string models,

while typical masses of second KK modes are 2 times of that of first KK modes, in the other

“new physics” with extra dimensions, such as the five-dimensional Universal Extra Dimension

(UED) models [23].2

The process of qg → qg almost dominates over all the other two-parton scattering processes

at the LHC with several TeV collision energies, and string excited states of quarks are dominant

in string resonances in dijet invariant mass distributions. In the angular distribution analysis,

by comparing the angular distributions with both J = 1/2 and J = 3/2 states to that with

a J = 1/2 state only, we try to confirm the degeneracy with higher spin. In the second

resonance analysis, by calculating amplitudes with exchanges of second string excited states

and generating dijet invariant mass distributions with second string resonances, we try to obtain

a significance of the second string resonances. Then, we have to take into account the property

that the second string excited states can decay into both the SM particles and the first string

excited states.

About this thesis

This thesis consists of the following parts and sections.

Part I is a review part. Throughout this part, we refer to the textbook [24, 25]. In Sec.1,

the basics of superstring theory such as the world-sheet action and quantization of the world-

sheet fields are reviewed, and the type I and type II theories are introduced. In Sec. 2, after

introduction of D-branes, we review the idea of intersecting D-branes which give rise to chiral

fermions. Next, in order to obtain realistic models, we consider intersecting D6-branes in the

type IIA orientifolds with toroidal compactifications. At the end of this section, we review a

2In the six-dimensional UED models, typical masses of second KK modes with KK parity +1 is
√
2 times of

that of first KK modes with KK parity +1. It may be possible to confirm low-scale string models by a search

for a third resonance, since third string excited states have
√
3 times of that of first string excited states.
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semi-realistic model with the SM-like spectrum. In Sec.3, using the fact that the SM spectrum

can be obtained in intersecting D-brane models, we introduce low-scale string models in which

the extra dimensions are compactified to general spaces with large volume. When we discuss

the LHC phenomenology in the next part, the low-scale string models are considered.

Part II is an original part of this thesis. In Sec.4, at first, the present constraints on the

string scale from the LHC is mentioned. Next, the model independence of signatures of low-

scale string models at the LHC is explained. We reduce the open-string amplitudes calculated

in ref.[13] to scattering amplitudes with exchanges of string excited states, and calculate widths

of string excited states, in Sec.4.3 and AppendixA. Using the scattering amplitudes and the

widths, we obtain dijet invariant mass distributions with string resonances, both at parton level

and using Monte Carlo simulations. In Sec.5 and Sec.6, we confirm the possibility of identifying

low-scale string models at the LHC, using the two analyses mentioned above.

In the last of this thesis, we summarize this thesis and mention some future prospects. The

original works in this thesis are presented in Sec.4.3 and AppendixA, Sec.4.5, Sec.5 and Sec.6.

These results are based on ref.[19, 20] with Noriaki Kitazawa.
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Part I

Basics of superstring theory and

Construction of low-scale string models

In this part, we review construction of low-scale string models which contain the particle content

of the Standard Model and whose string scale is of the order of TeV.

1 Basics of superstring theory

1.1 The world-sheet theory

The world-sheet action of the bosonic string

A relativistic (bosonic) string, in contrast to a point particle, is parametrized by not only a

time-like parameter τ but also a space-like one σ. The Nambu-Goto action, the action of the

relativistic string, is proportional to the area of the world-sheet which the string sweep out,

SNG = − 1

2πα′

∫
dτdσ

[
− det(∂aX

µ∂bXµ)
]1/2

, (1.1)

where the indices a, b run over (τ, σ).3 The factor of 1/2πα′ is the string tension, where α′ is

the Regge slope and is related to the string scale Ms by α
′ = 1/M2

s . The Nambu-Goto action

is recast into the Polyakov action, introducing the world-sheet metric γab as an auxiliary field,

SP = − 1

4πα′

∫
dτdσ

√
−γ γab∂aXµ∂bXµ , (1.2)

where γ = det γab and γab has the Lorentzian signatures (−,+). Note that the Polyakov action

describes a two-dimensional field theory of D massless scalar fields Xµ.

The Polyakov action is invariant under the following gauge transformations:

• the two-dimensional general coordinate transformation (diffeomorphism),

γ′ab(τ
′, σ′) =

∂σc

∂σ′a
∂σd

∂σ′b
γcd(τ, σ) , (1.3)

• the Weyl transformation,

γ′ab(τ, σ) = exp[2ω(τ, σ)]γab . (1.4)

3In this thesis, the space-time metric is ηµν = diag(−,+,+,+)
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Gauge fixing

For the quantization of the world-sheet theory, we need to fix the gauge degrees of freedom

associated with the local symmetries (1.3) and (1.4). After the Minkowskian world-sheet metric

γab in eq.(1.2) is replaced with an Euclidean world-sheet metric gab with signatures (+,+), we

consider the path integral,

Z[g] =

∫
[dX dg]

Vdiff×Weyl

exp(−SX − λχ) , (1.5)

where Vdiff×Weyl is the volume of the local symmetry group and χ is the Euler number of the

world-sheet. SX is the Euclidean one of the world-sheet action of scalar fields of eq.(1.2),

SX =
1

4πα′

∫
d2σ

√
g gab∂aX

µ∂bXµ . (1.6)

where the indices a, b run over (σ1, σ2).4 We perform the gauge fixing by setting the metric

gab to be some fiducial metric ĝab. Inserting 1 = ∆FP (g)
∫
[dζ]δ(g − ĝζ), where ∆FP is the

Faddeev-Popov measure and ζ denotes a combination of diff and Weyl transformations, the

path integral of eq.(1.5) becomes

Z[ĝ] =

∫
[dX db dc] exp(−SX − Sg − λχ) . (1.7)

Here the ghost action Sg is given by

Sg =
1

2π

∫
d2σ

√
ĝ bab∇̂acb , (1.8)

where bab is the traceless symmetric tensor field and ca is the vector field, and both of them

have fermionic statistics. Let us choose the unit gauge of ĝab = δab and introduce a complex

coordinate z = σ1 + iσ2 and z = σ1 − iσ2. Then, the gauge-fixed action can be written as 5

S = SX + Sg , (1.9)

with

SX =
1

4π

∫
d2z

2

α′∂X
µ∂Xµ , Sg =

1

2π

∫
d2z

[
b∂c+ b̃∂c̃

]
, (1.10)

where we introduced (b, c) and (̃b, c̃) defined by (bzz, c
z) and (bzz, c

z) in eq.(1.8).

The world-sheet action of the superstring

Let us next introduce the world-sheet theory of the superstring. In order to introduce spacetime

fermions, we extend the bosonic string action into the world-sheet supersymmetric one. Though

one might think that the space-time supersymmetry (SUSY) should be introduced rather than

4The Euclidean coordinate is obtained by replacing τ with −iσ2 and σ with σ1.
5In the following, we use the notation ∂ ≡ ∂z = 1

2 (∂1 − i∂2) and ∂ ≡ ∂z = 1
2 (∂1 + i∂2).
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the world-sheet SUSY, the world-sheet SUSY results in the same spectrum as the space-time

SUSY does. Then, the matter action of the superstring is given by 6

Sm = − 1

4πα′

∫
dτdσ ηab∂aX

µ∂bXµ −
1

4π

∫
dτdσ iψ

µ
γa∂aψµ , (1.11)

where ψµ is a two-dimensional Majorana fermion, and the two-dimensional γ matrices are

γτ =

(
0 1

−1 0

)
, γσ =

(
0 1

1 0

)
, (1.12)

and ψ
µ
= ψµTγτ . The action (1.11) is invariant under the following infinitesimal SUSY trans-

formation for the world-sheet fields,

δXµ =
√
α′ εψµ , δψµ = − 1√

α′
iγa∂aX

µε , (1.13)

where ε is a transformation parameter.

Equation of motion and boundary conditions

The equations of motion for Xµ and ψµ can be obtained by varying the action (1.11) with

respect to Xµ and ψµ

∂a∂aX
µ = 0 , iγa∂aψ

µ = 0 . (1.14)

Suppose that the world-sheet has boundaries and 0 ≤ σ ≤ ℓ. Then, the variation of the action

induces the surface terms∫ ∞

−∞
dτ

[
∂σX

µ δXµ

]σ=ℓ
σ=0

,

∫ ∞

−∞
dτ

[
ψµ+ δψ+µ − ψµ− δψ−µ

]σ=ℓ
σ=0

, (1.15)

where ψ = (ψ+, ψ−) in eq.(1.11). In order for the surface terms to vanish, we need to impose

some boundary conditions on the world-sheet fields. If we respect the Poincaré invariance, one

of the following two boundary conditions should be imposed:

• the periodic boundary condition,

Xµ(τ, σ = ℓ) = Xµ(τ, σ = 0) , (1.16)

ψµ+(τ, σ = ℓ) = e−2πiν̃ψµ+(τ, σ = 0) , ψµ−(τ, σ = ℓ) = e2πiνψµ−(τ, σ = 0) , (1.17)

• the Neumann boundary condition,

∂σX
µ(τ, σ = ℓ) = ∂σX

µ(τ, σ = 0) = 0 (1.18)

ψµ−(τ, σ = ℓ) = e2πiνψµ+(τ, σ = ℓ) , ψµ−(τ, σ = 0) = ψµ+(τ, σ = 0) , (1.19)

6Here we set the world-sheet metric to be the flat one to fix the gauge degrees of freedom: ηab = diag(−,+).
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where ν and ν̃ take the values 0 and 1
2
. The periodic boundary condition gives a closed string

and the Neumann boundary condition gives an open string. The boundary condition with

ν = 0 is the Ramond (R) sector, while that with ν = 1
2
is the Neveu-Schwarz (NS) sector. The

world-sheet fermions ψ+ and ψ− have degrees of freedom of the sign at boundaries, and they

are independent for the closed string but not for the open string. For the open string, we can

also impose another boundary condition, which breaks the Poincaré invariance:

• the Dirichlet boundary condition,

Xµ(τ, σ = ℓ) = Xµ(τ, σ = 0) = const. , (1.20)

ψµ−(τ, σ = ℓ) = −e2πiνψ+(τ, σ = ℓ) , ψµ−(τ, σ = 0) = −ψ+(τ, σ = 0) . (1.21)

Superconformal symmetry

Let us next discuss the full action of the superstring. As in the case of the bosonic string,

we consider the world-sheet with the Euclidean metric and introduce a complex coordinate

z = σ1 + iσ2 and z = σ1 − iσ2. Then, the gauge-fixed action in the unit gauge of ĝab = δab is

given by

S = Sm + Sg , (1.22)

where

Sm =
1

4π

∫
d2z

[
2

α′∂X
µ∂Xµ + ψµ∂ψµ + ψ̃µ∂ψ̃µ

]
, (1.23)

Sg =
1

2π

∫
d2z

[
b∂c+ b̃∂c̃+ β∂γ + β̃∂γ̃

]
, (1.24)

where ψ = (i−1/2ψ̃, i1/2ψ) in eq.(1.11). The bosonic fields β, γ and β̃, γ̃ are superpartners of b,

c and b̃, c̃, respectively. The equations of motion in the complex coordinate are

∂∂Xµ = 0 , ∂ψ = ∂ψ̃ = 0 , (1.25)

∂b = ∂c = ∂b̃ = ∂c̃ = 0 , ∂β = ∂γ = ∂β̃ = ∂γ̃ = 0 . (1.26)

Therefore, when the equations of motion are satisfied, ∂Xµ is a holomorphic function of z and

∂Xµ is an antiholomorphic function of z. Similarly, ψµ, b, c are holomorphic and ψ̃µ, b̃, c̃ are

antiholomorphic.

Consider the diff transformation by a holomorphic function of z and the Weyl transformation

by a specific function,

z′ = f(z) , ω = ln |∂zf(z)| . (1.27)

Then the combination of eq.(1.27), which is a conformal transformation, keeps the unit metric

invariant. In other words, the gauge-fixed world-sheet action (1.22) has a conformal symmetry.

In the quantum theory, however, the conformal symmetry is broken (the Weyl anomaly), unless

the space-time dimension D = 10. The conformal symmetry combines with an invariance under

the global SUSY transformation (1.13) into a local superconformal symmetry. Therefore, the

world-sheet theory of the superstring is a two-dimensional superconformal field theory.
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The current of conformal symmetry is the energy-momentum tensor,

Tab = − 1

α′

(
∂aX

µ∂bXµ − 1
2
ηab∂

cXµ∂cXµ

)
− 1

2

(
iψ

µ
γa∂bψµ − 1

2
ηab iψ

µ
γc∂cψµ

)
, (1.28)

for the Minkowskian action (1.11). The energy-momentum tensor is a traceless symmetric

tensor and satisfies the conservation law ∂aTab = 0. These properties give holomorphic current

denoted by TB and antiholomorphic one denoted by T̃B in the complex coordinate,

TB(z) = Tm
B (z) + T g

B(z) , T̃B(z) = T̃m
B (z) + T̃ g

B(z) , (1.29)

Tm
B (z) = − 1

α′∂X
µ∂Xµ −

1

2
ψµ∂ψµ , T̃m

B (z) = − 1

α′∂X
µ∂Xµ −

1

2
ψ̃µ∂ψ̃µ , (1.30)

T g
B(z) = −λ∂(bc) + (∂b)c− λ′∂(βγ) + (∂β)γ , T̃ g

B(z) = −λ∂(̃bc̃) + (∂b̃)c̃− λ′∂(β̃γ̃) + (∂β̃)γ̃ ,

(1.31)

where λ = 2 and λ′ = 3
2
.

The SUSY current is obtained from the global SUSY transformation (1.13) in the Minkowskian

action of eq.(1.11),

Ja =
i√
2α′

γbγa∂bX
µψµ , (1.32)

The SUSY current is also conserved and gives holomorphic current denoted by TF and anti-

holomorphic one denoted by T̃F in the complex coordinate,7

TF (z) = Tm
F (z) + T g

F (z) , T̃F (z) = T̃m
F (z) + T̃ g

F (z) , (1.33)

Tm
F (z) = i

√
2

α′ ∂X
µψµ , T̃m

F (z) = i

√
2

α′ ∂X
µψ̃µ , (1.34)

T g
F (z) = λ′∂(βc)− 1

2
(∂β)c− 2bγ , T̃ g

F (z) = λ′∂(β̃c̃)− 1

2
(∂β̃)c̃− 2b̃γ̃ . (1.35)

The world-sheet fields are covariant under the conformal transformation (1.27). A field is

called a tensor when it is transformed under the conformal transformation as

O′(z′, z′) =
1

(∂zz′)h(∂zz′)h̃
O(z, z) , (1.36)

where (h, h̃) is a conformal weight of the tensor field. The world-sheet fields are tensor fields,

and their conformal wights are

∂Xµ : (h, h̃) = (1, 0) , ψµ : (h, h̃) = (1
2
, 0) ,

b : (h, h̃) = (2, 0) , c : (h, h̃) = (−1, 0) , (1.37)

β : (h, h̃) = (3
2
, 0) , γ : (h, h̃) = (−1

2
, 0) ,

7Here, the Minkowski current and the Euclidean current are related to each other as J = (i−1/2T̃F , i
1/2TF ),

just as in the case of ψ.
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for holomorphic fields as well as for antiholomorphic fields except for a replacement of h ↔ h̃.

The weights of bc ghosts and βγ ghosts correspond to the weights of the energy-momentum

tensor (1.29) and the SUSY current (1.33), respectively. The energy-momentum tensor itself is

not a tensor since it is transformed under the conformal transformation as

T ′
B(z

′) =
1

(∂zz′)2
TB(z)−

c

12

2∂3zz
′∂zz

′ − 3(∂2zz
′)2

2(∂zz′)4
, (1.38)

where c is the central charge. Since the last term (1.38) is an origin of the Weyl anomaly, the

central charge should vanish. The central charge in superstring theory is calculated as

c = cm + cg = D + D
2
+
[
−3(2λ− 1)2 + 1

]
+
[
3(2λ′ − 1)2 − 1

]
= 3D

2
− 15 .

(1.39)

If the space-time dimension D = 10, the central charge is zero.

1.2 Mode expansions and physical states

The world-sheet theory in the unit gauge (1.22) is a free theory, and therefore, the world-

sheet fields can be easily quantized by imposing canonical commutation relation on the fields,

following the procedure of ordinary canonical quantization.

Let us choose two complex coordinates, w = σ1 + iσ2 and

z = e−iw = exp(−iσ1 + σ2) . (1.40)

For a closed string which is periodic, setting the space coordinate σ1 ∼ σ1 + 2π and the time

one −∞ < σ2 < ∞, the w-coordinate forms an infinite cylinder. On the other hand, in the

z-coordinate, time runs radically and the origin in the z-plane corresponds to the infinite past.

For an open string with a boundary, setting the space coordinate 0 ≤ σ1 ≤ π, the w- coordinate

forms an infinite strip. The z-coordinate forms the upper complex plane and the real axis in

the z-plane corresponds to the boundary.8 These coordinates are related by the conformal

transformation.

Closed string

In the case of the closed string, since the world-sheet scalar satisfies the periodic boundary

condition (1.16) which corresponds to Xµ(w + 2π, w + 2π) = Xµ(w,w) in the w-coordinate, it

can be expanded in terms of modes by just a Fourier transformation,

∂wX
µ(w) = −

√
α′

2

∞∑
m=−∞

αµme
imw , ∂wX

µ(w) =

√
α′

2

∞∑
m=−∞

α̃µme
−imw , (1.41)

for the holomorphic (left-moving) and antiholomorphic (right-moving) fields. Since the world-

sheet scalar ∂Xµ has a conformal weight (1.37), the Fourier expansion (1.41) is transformed to

8Note that for an open string, z is defined as z = −e−iw.
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the z coordinate as follows:

∂Xµ(z) = −i
√
α′

2

∞∑
m=−∞

αµm
zm+1

, ∂Xµ(z) = −i
√
α′

2

∞∑
m=−∞

α̃µm
zm+1 . (1.42)

Integrating them over z and z, a mode expansion for Xµ is obtained as 9

Xµ(z, z) = xµ − i

√
α′

2
αµ0 ln |z|2 + i

√
α′

2

∞∑
m=−∞
m ̸=0

1

m

(
αµm
zm

+
α̃µm
zm

)
. (1.43)

The zero mode αµ0 in eq.(1.43) corresponds to center-of-mass momentum of the string. Since

the current of space-time translation is jµa = i
α′∂aX

µ, the space-time momentum is given by

pµ =
1

2π

∫ 2π

0

dσ1 jµ2 =
i

2π

∮ (
dz jµz − dz jµz

)
=

√
2

α′ α
µ
0 =

√
2

α′ α̃
µ
0 . (1.44)

By imposing the canonical commutation relation on the fields, commutation relations of mode

operators are obtained as [
αµm, α

ν
−n

]
=

[
α̃µm, α̃

ν
−n

]
= mηµνδm,n , (1.45)[

xµ, pν
]
= iηµν . (1.46)

The world-sheet fermions also satisfy the periodic boundary conditions (1.17) which corre-

spond to ψµ(w+2π) = e2πiνψ(w) and ψ̃µ(w+2π) = e−2πiν̃ψ̃µ(w) in the w-coordinate, and they

can be expanded by a Fourier transformation,

ψµ(w) = i−1/2

∞∑
m=−∞

ψµm+νe
i(m+ν)w , ψ̃µ(w) = i1/2

∞∑
m=−∞

ψ̃µm+ν̃e
−i(m+ν̃)w . (1.47)

Using a collective notation r = m+ν, the expansions (1.47) can be expressed in the z coordinate

as

ψµ(z) =
∑
r∈Z+ν

ψµr

zr+
1
2

, ψ̃µ(z) =
∑
r∈Z+ν̃

ψ̃µr

zr+
1
2

. (1.48)

Then, anti-commutation relations are given by{
ψµr , ψ

ν
−s
}
=

{
ψ̃µr , ψ̃

ν
−s
}
= ηµνδr,s . (1.49)

The ghost fields satisfy the same boundary condition as the energy-momentum tensor (1.29)

for the bc ghosts and as the SUSY current (1.33) for the βγ ghosts. Therefore, they satisfy the

same boundary condition as ∂Xµ for the bc and ψµ for the βγ,

b(z) =
∞∑

m=−∞

bm
zm+2

, c(z) =
∞∑

m=−∞

cm
zm−1

, (1.50)

β(z) =
∑
r∈Z+ν

βr

zr+
3
2

, γ(z) =
∑
r∈Z+ν

γr

zr−
1
2

, (1.51)

9Single-valuedness and hermiticity of Xµ implies that αµ
0 = α̃µ

0 , (α
µ
m)† = αµ

−m and (α̃µ
m)† = α̃µ

−m.
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as well as the antiholomorphic ghost fields. Similarly, anti-commutation and commutation

relations are obtained as {
bm, c−n

}
=

{
b̃m, c̃−n

}
= δm,n , (1.52)[

γr, β−s
]
=

[
γ̃r, β̃−s

]
= δr,s . (1.53)

Open string

In the case of the open string, the world-sheet scalar satisfies the Neumann boundary condition

(1.18) which corresponds to ∂Xµ(Im z = 0) = ∂Xµ(Im z = 0) in the z-coordinate. Then, the

mode operators of the left-moving and right-moving are equivalent, αµm = α̃µm,

∂Xµ(z) = −i
√
α′

2

∞∑
m=−∞

αµm
zm+1

, ∂Xµ(z) = −i
√
α′

2

∞∑
m=−∞

αµm
zm+1 , (1.54)

Xµ(z, z) = xµ − i

√
α′

2
αµ0 ln |z|2 + i

√
α′

2

∞∑
m=−∞
m ̸=0

αµm
m

(
1

zm
+

1

zm

)
. (1.55)

Note that space-time momentum of an open string is half of that of a closed string, pµ = 1√
2α′α

µ
0 .

The world-sheet fermions also satisfy the Neumann boundary conditions (1.19) which cor-

respond to ψµ(z) = e2πiνψ̃µ(z) for σ1 = π and ψµ(z) = ψ̃µ(z) for σ1 = 0, in the z-coordinate.

The mode operators of the left-moving and right-moving are equivalent, ψµr = ψ̃µr ,

ψµ(z) =
∑
r∈Z+ν

ψµr

zr+
1
2

, ψ̃µ(z) =
∑
r∈Z+ν

ψµr

zr+
1
2

. (1.56)

States

We now focus on the open string or the holomorphic part of the closed string. For the world-

sheet scalar, as it is found from the commutation relation of mode operators in eq.(1.45), one

can consider αµm for m < 0 as a creation operator and αµm for m > 0 as an annihilation operator

which satisfies

αµm|0; k⟩ = 0 , for m > 0 , (1.57)

where |0; k⟩ is a ground state with space-time momentum kµ. Then,

pµ|0; k⟩ = 1√
2α′α

µ
0 |0; k⟩ = kµ|0; k⟩ . (1.58)

For the bc ghosts, let us define the bc ghost vacuum |0⟩bc as a state annihilated by mode

operators bm and cm for m > 0:

bm|0⟩bc = cm|0⟩bc = 0 , for m > 0 . (1.59)

The zero modes b0 and c0 form two independent vacua which satisfy

b0|↓⟩ = 0 , b0|↑⟩ = |↓⟩ , c0|↓⟩ = |↑⟩ , c0|↑⟩ = 0 . (1.60)
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We consider b0 as an annihilation operator and c0 as a creation operator, and define the bc

ghost vacuum as |0⟩bc ≡ |↓⟩.

Consider the world-sheet fermion. For the NS sector with ν = 1
2
, as it is found from the

mode expansion (1.56), mode operators ψµr are labeled by r = 1
2
, 3
2
, . . . , and they have no zero

modes. One can define the NS sector vacuum |0⟩NS as a state annihilated by ψµr for r > 0 :

ψµr |0⟩NS = 0 , for r = 1
2
, 3
2
, . . . . (1.61)

On the other hand, for the Ramond sector with ν = 0, when we define the Ramond sector

vacuum |0⟩R as a state annihilated by ψµr for r > 0, the zero modes ψµ0 form degenerate vacua,

|0⟩R , ψµ0 |0⟩R , ψµ0ψ
ν
0 |0⟩R , ψµ0ψ

ν
0ψ

ρ
0 |0⟩R , . . . . (1.62)

Recall the commutation relation (1.49), the ψµ0 satisfy the Dirac gamma matrix algebra when

Γµ ∼=
√
2ψµ0 ,

{ψµ0 , ψν0} = ηµν ⇔ {Γµ,Γν} = 2ηµν . (1.63)

Therefore, the degenerate vacua (1.62) form a spinor representation of SO(1, D − 1). Due to

D = 10, Γµ are grouped into five pairs of raising and lowering operators,

Γa± =


1
2

(
±Γ0 + Γ1

)
a = 0 ,

1
2

(
Γ2a ± iΓ2a+1

)
a = 1, . . . , 4 ,

(1.64)

which satisfy {Γa±,Γb∓} = δab and {Γa±,Γb±} = 0. Then, we can take a basis of eigenstates of

the Lorentz generator Sa = Γa+Γa− − 1
2
with the eigenvalues sa = ±1

2
,10

|s⟩ = |s0, s1, s2, s3, s4⟩ =
(
Γ0+

)s0+1
2 · · ·

(
Γ4+

)s4+1
2 |−,−,−,−,−⟩ . (1.65)

Thus, the ground state in the Ramond sector, |s⟩R, corresponds to an eigenstate of the space-

time spin ±1
2
in eq.(1.65). Therefore, we can expect to obtain space-time fermions.

For the βγ ghosts, the βγ NS vacuum is defined in the same manner as the NS vacuum for

the world-sheet fermion (1.61),

βr|0⟩βγNS = γr|0⟩βγNS = 0 , for r = 1
2
, 3
2
, . . . . (1.66)

The βγ Ramond vacuum is given just as the bc ghost vacuum (1.59) by

βr|0⟩βγR = 0 , for r ≥ 0 , γr|0⟩βγR = 0 , for r > 0 , (1.67)

where the zero mode β0 is defined as an annihilation operator, and γ0 as a creation operator.

10Here |−,−,−,−,−⟩ in eq.(1.65) is a state with all spin eigenvalues −1
2 .
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The Virasoro generators

The energy-momentum tensor which is the current of conformal symmetry (1.29) and the SUSY

current (1.33) are also expanded by a Laurant expansion as well as the world-sheet fields,

TB(z) =
∞∑

m=−∞

Lm
zm+2

, T̃B(z) =
∞∑

m=−∞

L̃m
zm+2 , (1.68)

TF (z) =
∑
r∈Z+ν

Gr

zr+
3
2

, T̃F (z) =
∑
r∈Z+ν̃

G̃r

zr+
3
2

. (1.69)

The expansions are obtained by the correspondence to the boundary conditions of ∂Xµ and

ψµ, for both closed and open string. Then, Lm = L̃m and Gr = G̃r for an open string.

The expansion coefficients in (1.68) and (1.69) correspond to conserved quantities of each

current. Therefore, Lm and L̃m are the generators of conformal transformation (called the

Virasoro generators), while Gr and G̃r are the SUSY generator.

Since the energy-momentum tensor and the SUSY current are written by products of the

world-sheet fields in eqs.(1.29) and (1.33), the Virasoro generators and the SUSY generators

are expanded in terms of mode operators of the world-sheet fields. For the open string,

Lm = Lm
m + Lg

m , (1.70)

where

Lm
m =


1

2

∞∑
n=−∞

◦
◦α

µ
m−nαnµ

◦
◦ +

1

4

∑
r∈Z+ν

(2r −m) ◦
◦ψ

µ
m−rψrµ

◦
◦ m ̸= 0 ,

α′p2 +
∞∑
n=1

◦
◦α

µ
−nαnµ

◦
◦ +

∑
r∈N−ν

r ◦
◦ψ

µ
−rψrµ

◦
◦ + am m = 0 ,

(1.71)

Lg
m =



∞∑
n=−∞

(m+ n) ◦
◦bm−ncn ◦

◦ +
1

2

∑
r∈Z+ν

(m+ 2r) ◦
◦βm−rγr ◦

◦ m ̸= 0 ,

∞∑
n=1

n ◦
◦(b−ncn + c−cbn) ◦

◦ +
∑

r∈N−ν

r ◦
◦(β−rγr − γ−rβr) ◦

◦ + ag m = 0 ,

(1.72)

and

Gr = Gm
r +Gg

r =
∞∑

n=−∞

αµnψr−nµ −
∞∑

n=−∞

[
1

2
(2r + n)βr−ncn + 2bnγr−n

]
, (1.73)

where ◦
◦

◦
◦ denotes the creation-annihilation normal ordering, and am and ag are normal order-

ing constants. The normal ordering constant appears only in the zero mode of the Virasoro

generator, L0. A sum of the normal ordering constants, a = am + ag, corresponds to zero-point

energy, and it is calculated using a result obtained by an analytical continuation11 as follows,

a = aX + aψ + abc + aβγ =


−D

24
+
D

24
+

1

12
− 1

12
= 0 for R sector ,

−D

24
− D

48
+

1

12
+

1

24
= −1

2
for NS sector .

(1.74)

11The result is
∞∑

n=1
(n− θ) = 1

24 − 1
8 (2θ − 1)2.
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Physical states

Finally, we discuss physical states based on the old covariant quantization approach, where

we simply ignore the ghosts and impose the conditions that the Virasoro and SUSY lowering

operators in matter sector annihilate physical states:

Lm
m|phys⟩ = L̃m

m|phys⟩ = 0 , for m > 0 ,

Gm
r |phys⟩ = G̃m

r |phys⟩ = 0 , for r ≥ 0 .
(1.75)

These conditions implies that matrix elements between the physical states do not depend on the

gauge, since classically the energy-momentum tensor in the matter sector varies the world-sheet

metric.

Furthermore, we impose the condition that the Virasoro zero operator in the matter and

the ghost sector annihilates physical states:(
Lm
0 + Lg

0

)
|phys⟩ =

(
L̃m

0 + L̃g
0

)
|phys⟩ = 0 . (1.76)

The condition implies that the world-sheet Hamiltonian and translation operator annihilate

physical states, since

H =
1

2π

∫ 2π

0

dσ1 T22 = L0 + L̃0 , P =
1

2π

∫ 2π

0

dσ1 T12 = L0 − L̃0 . (1.77)

The condition (1.76) determines the space-time mass of the state.

For the open string, let us impose the physical state conditions (1.75) and (1.76) on the

following lowest three states:

• The NS sector ground state, |0; k⟩NS ,

(Lm
0 + Lg

0)|0; k⟩NS = (α′k2 − 1
2
)|0; k⟩NS = 0 . (1.78)

Since m2 = −k2, the state has tachyonic mass, m2 = − 1
2α′ .

• The NS sector first excited state, |e; k⟩NS = eµψ
µ
−1/2|0; k⟩NS ,

(Lm
0 + Lg

0)|e; k⟩NS = α′k2|e; k⟩NS = 0 ,

Gm
1/2|e; k⟩NS =

√
2α′ eµk

µ|0; k⟩NS = 0 ,
(1.79)

where eµ is the polarization vector. The state is massless, m2 = 0. Since e · k = 0, it

has no unphysical time-like and longitudinal polarization. Therefore, it forms a vector

representation of SO(8).

The state is physically equivalent to a state including itself and

Gm
−1/2|0; k⟩NS =

√
2α′ kµψ

µ
−1/2|0; k⟩NS , (1.80)

which implies that there is the space-time gauge symmetry, eµ ∼= eµ + λkµ.
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• The Ramond sector ground state, |u; k⟩R = |s; k⟩R us ,

(Lm
0 + Lg

0)|u; k⟩R = α′k2|u; k⟩R = 0 ,

Gm
0 |u; k⟩R =

√
α′ kµ|s′; k⟩R Γµs′sus = 0 ,

(1.81)

where us is the polarization spinor. The state is massless, and it satisfies the Dirac

equation, k · Γs′s us = 0. This means that a spinor representation of SO(1, 9) in eq.(1.65)

is reduced to two spinor representations of SO(8), with chirality ±.

1.3 Type I and type II superstring theory

The GSO projection

In spite of imposing the physical state conditions, unwanted states remain. For example,

the NS sector ground state |0; k⟩NS is a tachyon, and the NS sector second excited state

ψµ−1/2ψ
ν
−1/2|0; k⟩NS is a space-time tensor but has fermionic statistics.12 These unphysical states

are projected out by the GSO projection.

The GSO parity operator is defined as eπiF , where F is a sum of the world-sheet fermion

number, a sum of spin eigenvalues of the space-time fermion, and the βγ ghost number,13

F ≡
4∑

a=0

Sa +Nβγ , Sa =


+
1

2

∑
r∈Z+ν

[
ψ0
r , ψ

1
−r
]

a = 0 ,

− i

2

∑
r∈Z+ν

[
ψ2a
r , ψ

2a+1
−r

]
a = 1, . . . , 4 .

(1.82)

Sa is the Lorentz generator, and it has the property of counting the number of the world-sheet

fermion operator,
[
Sa, (ψ

2a
r ± iψ2a+1

r )
]
= ±(ψ2a

r ± iψ2a+1
r ). For the space-time fermion,

∑4
a=0 Sa

gives a sum of the spin eigenvalues. Then, exp
(
πi

∑4
a=0 sa

)
gives (i times) chirality of the

space-time fermion which takes the value +1 when the spin eigenvalues sa include an even

number of −1
2
and −1 for an odd number of −1

2
.

We now consider a case of the open string. The NS sector ground state |0; k⟩NS has the

GSO parity −, since the state has the βγ ghost number −1,

eπiF |0; k⟩NS = −|0; k⟩NS . (1.83)

The NS sector first excited state and second excited state have the GSO parity + and −,

respectively,

eπiFψµ−1/2|0; k⟩NS = +ψµ−1/2|0; k⟩NS ,

eπiFψµ−1/2ψ
ν
−1/2|0; k⟩NS = −ψµ−1/2ψ

ν
−1/2|0; k⟩NS .

(1.84)

If we restrict to only states with the GSO parity + for the NS sector, unwanted states such as

the tachyon and the space-time tensor with fermionic statistics are projected out.

12|0; k⟩NS has the bc ghost number +1 in the z coordinate. It has fermionic statistics.
13The reason why F includes the βγ ghost number is that the βγ ghosts are associated with the SUSY current

which is the world-sheet spinor.
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The Ramond sector ground state |s⟩R has the GSO parity corresponding to the chirality of

the state, since it has the βγ ghost number −1
2
,

eπiF |s⟩R = |s′⟩R Γs′s , (1.85)

where Γ is the chirality matrix. The GSO projection for the Ramond sector which restricts to

states with the GSO parity + leaves only fermions with chirality +. As a result, the Ramond

sector ground state |s⟩R becomes a superpartner of the NS sector first excited state ψµ−1/2|0; k⟩NS.

The former is a gaugino and the latter is a gauge boson. This means N = 1 SUSY in a ten-

dimensional space-time.

Thus, there are two possible choices of the GSO projections which leave only physical states

and keep supersymmetry, NS+ and R+, or NS+ and R−, in the case of the open string.

Type IIA and IIB theory

We now consider the closed string. The on-shell condition (1.76) requires that the left-moving

and right-moving of the closed string satisfy the following relation,

m2 =
4

α′

(
Nα +Nψ − ν

)
=

4

α′

(
Ñα + Ñψ − ν̃

)
, (1.86)

where Nα + Nψ − ν is the left-moving level and Ñα + Ñψ − ν̃ is the right-moving level of the

closed string state. Here, Nα and Nψ are excitation levels of the state due to the respective

mode operators, αµn and ψµr ,

Nα =
∞∑
n=1

◦
◦α

µ
−nαnµ

◦
◦ = 0, 1, 2, . . . ,

Nψ =
∑

r∈N−ν

r ◦
◦ψ

µ
−rψrµ

◦
◦ =

{
0, 1, 2, . . . for R sector ,

0, 1
2
, 1, 3

2
, 2, . . . for NS sector .

(1.87)

Therefore, only the NS sector with the GSO parity − takes the values of (Nψ−ν) half-integers,
and the NS− sector cannot pair with the other three sectors, NS+, R+ and R−.

Possible tachyonic and massless states of the closed string are as follows,

• (NS−,NS−) sector,

|0, 0̃; k⟩NS-NS , (1.88)

• (NS+,NS+) sector,

ψµ−1/2ψ̃
ν
−1/2|0, 0̃; k⟩NS-NS , (1.89)

• (R,R) sector,

|s, s̃; k⟩R-R , (1.90)

• (NS+,R) and (R,NS+) sector,

ψµ−1/2|0, s̃; k⟩NS-R , ψ̃µ−1/2|s, 0̃; k⟩R-NS . (1.91)
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Only the (NS−,NS−) sector has tachyonic mass, m2 = − 2
α′ , and all the remaining sectors are

massless.

Since the NS+ sector forms a SO(8) vector denoted by 8v, and the R± sectors form two

SO(8) spinors with chirality ± denoted by 8 and 8′, products of them are decomposed into

representations under the Lorentz transformation. In the (NS+,NS+) sector, 8v × 8v = [0] +

[2]+(2), where [0] is a scalar, [2] is an antisymmetric two-tensor, and (2) is a traceless symmetric

two-tensor. These representations correspond to the dilaton, the antisymmetric B-field, and

the graviton. In the (NS+,R+) sector, 8v × 8 = 8′ + 56, where 56 is a vector-spinor. The

vector-spinor corresponds to the gravitino.

Now, let us search for the GSO projections which project out the tachyonic state, are

consistent with modular invariance14, close the sector and conserve the GSO parity as follows

NS× NS = NS , R×R = NS , NS× R = R , (1.92)

+×+ = + , −×− = + , +×−= − . (1.93)

There are two possible choices of the GSO projections, called type IIA and IIB,

IIA : (NS+,NS+) (R+,R−) (NS+,R−) (R+,NS+) , (1.94)

IIB : (NS+,NS+) (R+,R+) (NS+,R+) (R+,NS+) , (1.95)

in addition to those replaced by opposite chirality in the Ramond sector of eqs.(1.94) and (1.95).

Both of the type IIA and IIB have two massless gravitinos in the NS-R and R-NS sectors,

which means N = 2 SUSY. In the type IIA, the gravitinos have opposite chiralities and in the

type IIB, they have the same chirality. A difference between the IIA and IIB is also in the R-R

sector, and the representations are decomposed as

8× 8 = [0] + [2] + [4]+ for (R+,R+) sector , (1.96)

8× 8′ = [1] + [3] for (R+,R−) sector , (1.97)

where [n] is an anti-symmetric n-tensor. Then, the massless spectra in the IIA and IIB are

IIA : [0] + [1] + [2] + [3] + (2) + 8+ 8′ + 56+ 56′ , (1.98)

IIB : [0] + [0] + [2] + [2] + [4]+ + (2) + 8′ + 8′ + 56+ 56 , (1.99)

which form supergravity multiplets of ten-dimensional N = (1, 1) and N = (2, 0) SUSY, for the

IIA and IIB, respectively. The type IIA and IIB are superstring theories which are consistent

in a flat ten-dimensional space-time, including the closed string only.

14The modular invariance is required to make one-loop amplitudes consistent. As a condition for the modular

invariance, we require at least one left-moving R sector and at least one right-moving R sector.
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Type I theory

We have obtained the type IIA and IIB as the closed string theories in a ten-dimensional space-

time. How is the open string introduced? Since one can expect an interaction between two

open strings generates one closed string, there is always the closed string. Therefore, we have

to introduce the open string in a closed string theory such as the type IIA and IIB. However,

we confirmed that the GSO projection for the open string resulted in N = 1 SUSY in a ten-

dimensional space-time. Therefore, in order to introduce the open string, we should break

N = 2 into N = 1.

Let us consider imposing the world-sheet parity projection on the type IIB. The world-sheet

parity transformation for the closed string is

Ω : (τ, σ) → (τ, 2π − σ) , (1.100)

which reverses the left-moving and right-moving. It is found that the type IIB has symmetry

under Ω. The mode operators of the world-sheet fermion and the NS-NS and NS-R sector

ground states are transformed under Ω as follows,

Ωψµr Ω
−1 = e−2πirψ̃µr , Ω ψ̃µr Ω

−1 = e2πirψµr , (1.101)

Ω |0, 0̃; k⟩NS-NS = − |0, 0̃; k⟩NS-NS , Ω |0, s̃; k⟩NS-R = − |s, 0̃; k⟩R-NS . (1.102)

Consequently, the antisymmetric two-tensor in the NS-NS sector and an antisymmetric combi-

nation of the vector spinors in the NS-R and R-NS sectors have the world-sheet parity odd,

Ω
(
ψµ−1/2ψ̃

ν
−1/2 − ψν−1/2ψ̃

µ
−1/2

)
|0, 0̃; k⟩NS-NS = −

(
ψµ−1/2ψ̃

ν
−1/2 − ψν−1/2ψ̃

µ
−1/2

)
|0, 0̃; k⟩NS-NS , (1.103)

Ω
(
ψµ−1/2|0, s̃; k⟩NS-R − ψ̃µ−1/2|s, 0̃; k⟩R-NS

)
= −

(
ψµ−1/2|0, s̃; k⟩NS-R − ψ̃µ−1/2|s, 0̃; k⟩R-NS

)
, (1.104)

and the antisymmetric two-tensor in the R-R sector has the world-sheet parity even,

Ω
(
|s, s̃ ′; k⟩R-R − |s′, s̃; k⟩R-R

)
= +

(
|s, s̃ ′; k⟩R-R − |s′, s̃; k⟩R-R

)
. (1.105)

If we restrict to only states with the world-sheet parity even, some of the massless states in the

type IIB are projected out. Thus, we obtain a theory with the world-sheet parity projection,

which is called the type I. A closed string part of the massless spectrum in the type I is

I closed : [0] + [2] + (2) + 8′ + 56 . (1.106)

The spectrum contains only one gravitino, which means that there is ten-dimensional N = 1

SUSY in the type I theory.

Before considering the world-sheet parity projection for the open string, let us add new

degrees of freedom to each end of the open string. For example, the NS first excited state is

then

eµψ
µ
−1/2|0; k; i, j⟩NS , (1.107)
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where i and j denotes states of σ = 0 and σ = π endpoints, running from 1 to N . Taking N2

Hermitian matrices which are the representation matrices of U(N) as a complete set,

eµψ
µ
−1/2|0; k; a⟩NS =

∑
i,j

eµψ
µ
−1/2|0; k; i, j⟩NS (T

a)i
j , (1.108)

and one can expect that the massless vector bosons are associated with a U(N) gauge symmetry.

T a is called the Chan-Paton factor.

Now consider the world-sheet parity transformation for the open string,

Ω : (τ, σ) → (τ, π − σ) , (1.109)

which reverses the endpoints of the open string. The NS sector first excited state are trans-

formed under Ω as follows,

Ω eµψ
µ
−1/2|0; k; i, j⟩NS = −eµψµ−1/2|0; k; j, i⟩NS . (1.110)

If we restrict states with the world-sheet parity even, the Chan-Paton factors should be real

antisymmetric matrices. Since they are the representation matrices of SO(N), one can expect

that the massless vector bosons are associated with a SO(N) gauge symmetry.

Thus, we obtain the type I theory including both the closed string and open string, by the

world-sheet parity projection of the type IIB. The massless spectrum is

I : [0] + [2] + (2) + 8′ + 56+ (8v + 8)SO(N) . (1.111)

Tadpole cancellation

In string theory including the open string, there is the open-closed string duality which means

that one-loop amplitudes of the open string are understood as tree-level amplitudes of the closed

string. Each string amplitude corresponds to a specific world-sheet diagram with a certain

topology. An one-loop diagram of the open string is an annulus while a tree-level diagram of

the closed string is a cylinder, and they have the same topology with two boundaries. The

open-closed duality also means that one-loop vacuum amplitudes of the open string always

contain contributions of tree-level vacuum-to-vacuum amplitudes of the closed string, and that

there are infrared divergences by a tree-level propagation of the massless closed string.

In the type I theory with the world-sheet parity projection, there are more diagrams which

contribute the vacuum-to-vacuum amplitudes. Another one-loop diagram of the open string

is the Möbius strip with a boundary and a crosscap. Another tree-level digram of the closed

string is the Klein bottle with two crosscaps. The vacuum-to-vacuum amplitudes which are

contributed by these diagrams are canceled out, if a gauge symmetry of the type I theory is

SO(32).

This is called the tadpole cancellation. In the next section, we introduce “D-branes” in

order to include the open string in the type IIA and IIB theories. In general configurations

of D-branes, there are cases in which the tadpoles are not canceled. The tadpole which is
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understood as an exchange of the NS-NS closed string (the dilaton, the antisymmetric B-

field, and the graviton) is called the NS-NS tadpole, while the tadpole as an exchange of the

Ramond-Ramond closed string is called the R-R tadpole. In particular, the R-R tadpole must

be canceled so that gauge symmetries on D-branes are anomaly free. On the other hand, the

NS-NS tadpole does not necessarily have to be canceled. However, in non-SUSY system, a

practical problem remains, which there are infrared divergences by an exchange of the massless

NS-NS closed string.

2 Intersecting D-brane models

2.1 Introduction of D-branes

Dirichlet boundary condition

In the previous section, we have imposed the Neumann boundary condition on the open string.

However, as it is shown in eq.(1.20), the Dirichlet boundary condition can be also imposed.

Since the Dirichlet boundary condition fix the position of endpoints of the open string, it breaks

the Poincaré invariance in a ten-dimensional space-time.

Let us consider the open string with the Neumann boundary condition in a four-dimensional

space-time µ = 0, . . . , 3, and the Dirichlet boundary condition in a six-dimensional space i =

4, . . . , 9. Since eq.(1.20) can be recast into ∂τX
i(τ, σ = ℓ) = ∂τX

i(τ, σ = 0) = 0, the Dirichlet

boundary conditions on the world-sheet fields are given in the z-coordinate by

∂X i(Im z = 0) = −∂X i(Im z = 0) , (2.1)

ψi(z) = −e2πiνψ̃i(z) for σ1 = π , ψi(z) = −ψ̃i(z) for σ1 = 0 . (2.2)

Then, the world-sheet fields in the Dirichlet direction are expanded as follows:

∂X i(z) = −i
√
α′

2

∞∑
m=−∞

αim
zm+1

, ∂X i(z) = +i

√
α′

2

∞∑
m=−∞

αim
zm+1 , (2.3)

ψi(z) =
∑
r∈Z+ν

ψir

zr+
1
2

, ψ̃i(z) = −
∑
r∈Z+ν

ψir

zr+
1
2

. (2.4)

Note that the sign of the antiholomorphic field is opposite to the Neumann case (1.42). There

is no center-of-mass momentum in the Dirichlet direction as it is found from eq.(1.44), and a

mode expansion for X i is

X i(z, z) = yi + i

√
α′

2

∞∑
m=−∞
m ̸=0

αim
m

(
1

zm
− 1

zm

)
, (2.5)

where yi is a constant vector. Commutation and anti-commutation relations of the mode

operators are the same as the Neumann case,[
αim, α

j
−n

]
= mδijδm,n ,

{
ψir, ψ

j
−s
}
= δijδr,s . (2.6)
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The energy-momentum tensor and the SUSY current can be separated into the Neumann

and the Dirichlet direction,

Tm
B (z) = − 1

α′

(
∂Xµ∂Xµ + ∂X i∂X i

)
− 1

2

(
ψµ∂ψµ + ψi∂ψi

)
, (2.7)

Tm
F (z) = i

√
2

α′

(
∂Xµψµ + ∂X iψi

)
. (2.8)

They are expanded so that they satisfy the Dirichlet boundary conditions (2.1) and (2.2),

and result in the same as the Neumann case (1.68) and (1.69). The on-shell condition (1.76)

determine mass in the four-dimensional space-time. For the NS sector first excited state,

the state in the Neumann direction eµψ
µ|0; k⟩NS acts as a gauge boson with e · k = 0 and

eµ ∼= eµ + λkµ, while the state in the Dirichlet direction ψi|0; k⟩NS acts as just a scalar:

eµψ
µ
−1/2|0; k⟩NS for µ = 0, . . . , 3 , (2.9)

ψi−1/2|0; k⟩NS for i = 4, . . . , 9 . (2.10)

All the physical states are localized in the space-time consist of dimensions with the Neumann

boundary condition.

D-branes

Thus, if we impose the Neumann boundary condition on the open string in a (p+1)-dimensional

space-time and the Dirichlet boundary conditions in a (9− p)-dimensional space, we can define

the open string which is localized in a p-dimensional space. Since one can expect that an

interaction between two open strings generates a closed string, the closed string can be emitted

from and absorbed into the p-dimensional space. Therefore, the p-dimensional space acts as

a object which scatters the closed string and excites the open string by the absorption of the

closed string. This p-dimensional object is called Dp-brane.

The D-brane has a coupling to the NS-NS closed string, and the low-energy effective action

which describes this coupling is known as the Dirac-Born-Infeld action,

SDp = −Tp
∫
dp+1xTr

{
e−Φ

[
−det(Gµν +Bµν + 2πα′Fµν)

]1/2}
, (2.11)

where Φ, Gµν and Bµν are components of the NS-NS fields parallel to the Dp-brane, and Fµν
is a gauge field living on the Dp-brane. Tp, a tension of the Dp-brane, is given by

Tp =

√
π

κ10
(4π2α′)

3−p
2 , (2.12)

where κ10 is the parameter in the low-energy effective action of the type II (discussed later).

The D-brane also has a coupling to the R-R closed string. At low energies this coupling is

described by

Tp

∫
p+1

Cp+1 = Tp

∫
p+1

1
(p+1)!

Cµ1···µp+1dx
µ1 ∧ · · · ∧ dxµp+1 , (2.13)
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where Tp is the Dp-brane tension (2.12) and Cµ1···µp+1 is the (p+1)-dimensional antisymmetric

(p + 1)-tensor which is the R-R field originating from the R-R massless states. As it is found

from eqs.(1.96) and (1.97), the R-R massless states in the type IIA are the ten-dimensional

antisymmetric tensors of rank 1 and 3, while in the type IIB, they are that of rank 0, 2 and

4. Note that the dimension p of the Dp-brane to which the R-R field can couple is different

between the type IIA and IIB. There can be only the D-branes of dimension even in the type

IIA and that of dimension odd in the type IIB.

Let us introduce a D-brane in the type IIA or IIB theory. Then, N = 2 SUSY in the

IIA or IIB is broken in half on the D-brane. This is the same that N = 2 SUSY in the type

IIB must be broken into N = 1 in the type I. The ten-dimensional N = 2 SUSY has 32

supersymmetries. For example, if we introduce a D3-brane, 32 supersymmetries are broken

into 16 supersymmetries, and four-dimensional N = 4 SUSY is realized on the D3-brane.

Next, let us introduce a stack of N D-branes. The open string on the stack has N2 degrees

of freedom that each end of the open string attaches on N D-branes. This fact justifies the

Chan-Paton factor of eq.(1.108) which is originally added by hand in the type I theory. We can

understand that the type I is constructed from the type IIB by the world-sheet parity projection

and introduction of a stack of 32 D9-branes. Thus, introducing a stack of n D-branes results in

a gauge symmetry on the stack of U(N) without the world-sheet parity projection, and SO(N)

or USp(N) with the world-sheet parity projection. The massless vector bosons of the open

string on the stack correspond to gauge bosons associated with the gauge symmetry.

One can also consider two parallel D-branes separated by some distance y. Then, there is

a stretching open string whose ends attach on the respective D-branes. Because of the string

tension, the ground states obtain the mass proportional to the distance:

m2 =
y2

(2πα′)2
. (2.14)

2.2 Intersecting D-branes

Neumann-Dirichlet boundary condition

Let us consider a system including two D-branes of different dimensions, a Dp-brane and a Dp′-

brane. There are three kinds of open strings, p-p, p′-p′ and p-p′, with ends on the respective

D-branes. The spectra of the p-p and p′-p′ strings are the same as obtained in the previous

section. However, the p-p′ string is new.

When p < p′, the p-p′ string has the (p + 1) Neumann-Neumann boundary conditions,

the (9− p′) Dirichlet-Dirichlet boundary conditions, and (p′ − p) Neumann-Dirichlet boundary

conditions.15 Here note that the Neumann-Dirichlet boundary condition imposes the Neumann

condition on one end of the open string, σ1 = 0, and imposes the Dirichlet condition on the

other, σ1 = π. With two D-branes of different dimensions, there is always the open string with

such a boundary condition.

15The p′-p string has (p′ − p) Dirichlet-Neumann boundary conditions.
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The Neumann-Dirichlet (ND) boundary conditions on the world-sheet fields are given by

∂XI(z) = −∂XI(z) for σ1 = π , ∂XI(z) = ∂XI(z) for σ1 = 0 , (2.15)

ψI(z) = −e2πiνψ̃I(z) for σ1 = π , ψI(z) = ψ̃I(z) for σ1 = 0 , (2.16)

for I = 1, . . . , p′ − p. Then, the world-sheet fields in the ND direction are expanded differently

from the NN and DD cases of eqs.(1.42) and (2.3), by 1
2
in terms of modes,16

∂XI(z) = −i
√
α′

2

∞∑
m=−∞

αI
m+ 1

2

zm+ 3
2

, ∂XI(z) = −i
√
α′

2

∞∑
m=−∞

αI
m+ 1

2

zm+ 3
2

, (2.17)

ψI(z) =
∑
r∈Z+ν

ψI
r+ 1

2

zr+1
, ψ̃I(z) =

∑
r∈Z+ν

ψI
r+ 1

2

zr+1 . (2.18)

The mode operator αI
m+ 1

2

does not have zero mode, and there is no momentum in the ND

direction as well as the Dirichlet direction. Therefore, a mode expansion for XI is

XI(z, z) = yI + i

√
α′

2

∞∑
m=−∞

αI
m+ 1

2

m+ 1
2

(
1

zm+ 1
2

+
1

zm+ 1
2

)
. (2.19)

Commutation and anti-commutation relations can be obtained in a similar way as before:[
αI
m+ 1

2
, αJ−(n+ 1

2
)

]
=

(
m+ 1

2

)
δIJδm,n ,

{
ψI
r+ 1

2
, ψJ−(s+ 1

2
)

}
= δIJδr,s . (2.20)

However, the mode operator ψI
r+ 1

2

has a zero mode in the NS sector, while it does not in the R

sector. This situation is opposite to the NN and DD cases. Therefore, the zero mode ψI0 forms

degenerate vacua as eq.(1.65) in the NS sector,

|{sa}; k⟩NS , (2.21)

where sa = ±1
2
and the number of a is p′−p

2
.

The energy-momentum tensor similarly can be separated as,

Tm
B (z) = − 1

α′

(
∂Xµ∂Xµ + ∂X i∂X i + ∂XI∂XI

)
− 1

2

(
ψµ∂ψµ + ψi∂ψi + ψI∂ψI

)
, (2.22)

and the matter sector Virasoro zero operator is

Lm
0 = LX0 + Lψ0 , (2.23)

where

LX0 = α′p2 +
∞∑
n=1

◦
◦α

µ
−nαnµ

◦
◦ +

∞∑
n=1

◦
◦α

i
−nα

i
n

◦
◦ +

∞∑
n=1

◦
◦α

I
−n+ 1

2
αI
n− 1

2

◦
◦ + aX ,

Lψ0 =
∑

r∈N−ν

r ◦
◦ψ

µ
−rψrµ

◦
◦ +

∑
r∈N−ν

r ◦
◦ψ

i
−rψ

i
r
◦
◦ +

∑
r∈N+ν

(
r − 1

2

)
◦
◦ψ

I
−r+ 1

2
ψI
r− 1

2

◦
◦ + aψ .

(2.24)

16The antiholomorphic fields with the Dirichlet-Neumann (DN) boundary condition have opposite sign to

that with the ND boundary condition.
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The normal ordering constants, aX and aψ, are sums of contributions from the NN and DD

directions and the ND or DN direction. Since the modes differ by 1
2
, the normal ordering

constants from the ND direction also differ from that from the NN and DD direction (1.74).

Including contributions of the ghosts,

a = aX + aψ + abc + aβγ

=


− d

24
+
p′ − p

48
+

d

24
− p′ − p

48
+

1

12
− 1

12
= 0 for R sector ,

− d

24
+
p′ − p

48
− d

48
+
p′ − p

24
+

1

12
+

1

24
= −1

2
+
p′ − p

8
for NS sector ,

(2.25)

where d is the number of dimensions with the NN and DD boundary conditions, d = D−(p′−p).
Consequently, if p′ − p is four, the zero-point energies in the R and NS sector are equal. This

means that there is supersymmetry in the system including two D-branes of different dimensions

by four.

D5-D9 system

As a concrete example, let us consider the case of p = 5 and p′ = 9. The system is constructed

by introducing a D5-brane and a D9-brane to the type IIB theory.

The introduction of a D-brane breaks ten-dimensional N = 2 SUSY in half. On the D9-

brane, there is ten-dimensional N = 1 SUSY and on the D5-brane, there is six-dimensional

N = 2 SUSY. The existence of 5-9 and 9-5 strings breaks supersymmetry further in half. The

system has eight unbroken supersymmetries, which means that there is six-dimensional N = 1

SUSY. The massless states of 5-5 and 9-9 strings separate into a vector and hypermultiplet of

six-dimensional N = 1 SUSY. The massless states of 5-9 and 9-5 strings form a hypermultiplet

of six-dimensional N = 1 SUSY, and they carry both charges under gauge symmetries on the

D5- and D9-branes.

The bosonic part of the action which is determined by supersymmetry is written as,17

SD5-D9 = − 1

4g2D9

∫
d10xFMNF

MN − 1

4g2D5

∫
d6xF ′

MNF
′MN −

∫
d6x

[
Dµχ

†Dµχ+ · · ·
]
, (2.26)

whereM,N = 0, . . . , 9 and µ = 0, . . . , 6. The covariant derivative is Dµ = ∂µ+ iAµ− iA′
µ where

Aµ and A′
µ are gauge fields on the D9- and D5-branes. The field χ is a doublet consisting of the

hypermultiplet scalars of 5-9 string, and χ carries charge −1 and +1 under gauge symmetries on

the D9- and D5-branes. For 5-5 string, ten-dimensional vector fields separate as A′
M = (A′

µ, A
′
i)

where i = 6, . . . , 9. The gauge couplings gDp will be given later.

Since the NS sector zero-point energy (2.25) vanishes, the massless states of 5-9 string are

the NS and R sector ground states,

|s3, s4; k⟩NS , |s; k⟩R = |s1, s2; k⟩R . (2.27)

17The last dots in eq.(2.26) mean the potential term required by supersymmetry.
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These spin eigenstates are generated by Γa+ = 1√
2
(ψ2a

0 + iψ2a+1
0 ) in eq.(1.64). For the ND or

DN direction, the (6, 7, 8, 9)-directions, there are the zero modes in not the R sector but the

NS sector. Since the GSO parity of these states are as follows,18

eπiF |s3, s4; k⟩NS = −eπi(s3+s4)|s3, s4; k⟩NS ,

eπiF |s1, s2; k⟩R = eπi(s1+s2)|s1, s2; k⟩R ,
(2.28)

the GSO projection requires s3 = s4 and s1 = −s2. The states (2.27) with s3 = s4 and s1 = −s2
are related by SUSY transformation.

D-branes at angles

Now, consider D-branes intersecting each other at general angles. Let us specify two D6-branes,

in which both initially are extended in the (1, 2, 3)- and (4, 6, 8)-directions and one of two is

rotated by an angle ϕ2 in the (4, 5)-plane, ϕ3 in the (6, 7)-plane and ϕ4 in the (8, 9)-plane. We

call this rotation ρ. Then, the two D6-branes are on top of the four-dimensional space-time.

How many supersymmetries are broken by introducing two D-branes depends on the D-brane

configuration. In this case, when an eigenvalue of twice the rotation ρ2 is 1, supersymmetry is

left unbroken. In the s-basis, the eigenvalue of ρ2 is exp
(
2i

4∑
a=2

saϕa
)
. Therefore, for example,

• For general ϕa, there are no unbroken supersymmetries.

• For ϕ2 + ϕ3 + ϕ4 = 0 mod 2π, there are four unbroken supersymmetries, which means

N = 1 SUSY in the four-dimensional space-time.

• For ϕ2 + ϕ3 = ϕ4 = 0 mod 2π, there are eight unbroken supersymmetries, which means

N = 2 SUSY in the four-dimensional space-time.

Let us join the (4, . . . , 9)-coordinates into complex pairs,

Za = X2a + iX2a+1 for a = 2, 3, 4 . (2.29)

Then, the rotation ρ on Za is an U(3) matrix, diag
[
eiϕ2 , eiϕ3 , eiϕ4

]
. When ϕ2 + ϕ3 + ϕ4 = 0

mod 2π, the determinant of ρ is 1 and the rotation is a SU(3) matrix. Consequently, a general

U(3) rotation breaks all the supersymmetry, a SU(3) rotation breaks three-fourths, and a SU(2)

rotation breaks half. These ideas were originally pointed out in ref.[26].

We consider an open string in which one end σ1 = 0 attaches on the unrotated D6-brane and

the other σ1 = π attaches on the rotated D6′-brane. Such an open string follows the boundary

conditions, {
∂1ReZ

a = ∂1X
2a = 0

∂2 ImZa = ∂2X
2a+1 = 0

for σ1 = 0 , (2.30)

18The spin s0 can be fixed by 1
2 using the Dirac equation, and s0 can cancel the βγ ghost number −1

2 of the

Ramond vacuum.
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{
∂1 Re

[
e−iϕaZa

]
= ∂1

(
+cosϕaX

2a + sinϕaX
2a+1

)
= 0

∂2 Im
[
e−iϕaZa

]
= ∂2

(
− sinϕaX

2a + cosϕaX
2a+1

)
= 0

for σ1 = π . (2.31)

Namely, the open string in the cosϕaX
2a direction follows the NN boundary condition, that

in the cosϕaX
2a+1 does the DD boundary condition, in the − sinϕaX

2a the ND boundary

condition, and in the sinϕaX
2a+1 the DN boundary condition.

Here, we use the doubling trick. First, we separate the mode expansion X(w,w) in the NN

direction of eq.(1.55) into a holomorphic part X (w) and an antiholomorphic part X̃ (w),

X(w,w) = X (w) + X̃ (w) , (2.32)

where

X (w) =
x

2
+

√
α′

2

[
α0(−w) + i

∞∑
m=−∞
m ̸=0

αm
m

eimw
]
, X̃ (w) =

x

2
+

√
α′

2

[
α0w+ i

∞∑
m=−∞
m̸=0

αm
m

e−imw
]
.

(2.33)

X (w) and X (w) are defined only in the region 0 ≤ w,w ≤ π, so let us define X (w) in the region

π ≤ w ≤ 2π as follows,

X (w) ≡ X̃ (w′) for π ≤ w ≤ 2π , (2.34)

where w′ = 2π − w. Then, X(w,w) of eq.(2.32) is defined in the region 0 ≤ w ≤ 2π.

Similarly, the mode expansions X(w,w) in the DD, ND and DN directions of eqs.(2.5) and

(2.19) are separated as eq.(2.32), and the holomorphic part is given by

X (w) = i

√
α′

2

∞∑
m=−∞
m ̸=0

αm
m

eimw for DD , X (w) = i

√
α′

2

∞∑
m=−∞

αm+ 1
2

m+ 1
2

ei(m+ 1
2
)w for ND,DN .

(2.35)

It is found that they satisfy X (w+2π) = X (w) for the NN and DD directions and X (w+2π) =

−X (w) for the ND and DN directions. Then, the complex coordinates Za(w,w) are also

separated into Za(w) and Z̃a(w), and Za(w) satisfies the following boundary condition,

Za(w) = e−iϕa
[
eiϕaZa(w)

]
= e−iϕa

[
cosϕaX 2a(w) + i sinϕaX 2a(w) + i

(
cosϕaX 2a+1(w) + i sinϕaX 2a+1(w)

)]
= e−2iϕaZa(w + 2π) .

(2.36)

This implies the mode expansion

Za(w) = i

√
α′

2

∞∑
m=−∞

αam+θa

m+ θa
ei(m+θa)w , (2.37)

where θa = ϕa/π. The complex conjugate of Za is denoted by Z
a
= X2a− iX2a+1. A holomor-

phic part of Z
a
, Za

, satisfies the boundary condition Za
(w) = e2iϕaZa

(w + 2π), and the mode

expansion is

Za
(w) = i

√
α′

2

∞∑
m=−∞

αam−θa
m− θa

ei(m−θa)w . (2.38)

31



Thus, for the open string with ends on the respective D-branes intersecting at angles, we

expand the complexified space-time coordinates. The mode expansions (2.37) and (2.38) are

different from the NN and DD cases by θa in terms of modes, and when θa = 1
2
, they are the

same as the mode expansions in the ND direction of eq.(2.19).

The world-sheet fermions in the (4, . . . , 9)-directions also combine into complex pairs,

Ψa = ψ2a + iψ2a+1 for a = 2, 3, 4 , (2.39)

and the complex conjugate is denoted by Ψ
a
= ψ2a − iψ2a+1. The mode expansions of the

world-sheet fields are in the z-coordinate,

∂Za(z) = −i
√
α′

2

∞∑
m=−∞

αam+θa

zm+θa+1
, ∂Za

(z) = −i
√
α′

2

∞∑
m=−∞

αam−θa
zm−θa+1

, (2.40)

Ψa(z) =
∑
r∈Z+ν

ψar+θa
zr+θa+

1
2

, Ψ
a
(z) =

∑
r∈Z−ν

ψ
a

r−θa

zr−θa+
1
2

, (2.41)

where the mode operators αam+θa
, αam−θa , ψ

a
r+θa

and ψ
a

r−θa satisfy the following commutation

and anti-commutation relations,[
αam+θa , α

b
−n−θb

]
= 2(m+ θa) δ

abδm,n ,
{
ψar+θa , ψ

b

−s−θb

}
= 2 δabδr,s . (2.42)

One can consider αam+θa
, αam−θa , ψ

a
r+θa

and ψ
a

r−θa for m, r > 0 as annihilation operators, and

that for m, r < 0 as creation operators.

The energy-momentum tensor is again separated,

Tm
B (z) = − 1

α′

(
∂Xµ∂Xµ + ∂Za∂Za)− 1

2

(
ψµ∂ψµ +

1
2
(Ψa∂Ψ

a
+ Ψ

a
∂Ψa)

)
, (2.43)

and the Virasoro zero operators are

LX0 = α′p2 +
∞∑
n=1

◦
◦α

µ
−nαnµ

◦
◦ +

1

2

∞∑
n=−∞

◦
◦α

a
−n+θaα

a
n−θa

◦
◦ + aX ,

Lψ0 =
∑

r∈N−ν

r ◦
◦ψ

µ
−rψrµ

◦
◦ +

1

2

∑
r∈Z+ν

(r − θa) ◦
◦ψ

a
−r+θaψ

a

r−θa
◦
◦ + aψ .

(2.44)

Then, the normal ordering constants are

a = aX + aψ + abc + aβγ

=


4∑

a=2

θa(1− θa)

2
− d

24
−

4∑
a=2

θa(1− θa)

2
+

d

24
+

1

12
− 1

12
= 0 for R sector ,

4∑
a=2

θa(1− θa)

2
− d

24
+

4∑
a=2

θ2a
2

− d

48
+

1

12
+

1

24
= −1

2
+

4∑
a=2

θa
2

for NS sector ,

(2.45)
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where d = 3. Thus, the zero-point energy in the NS sector depends on rotation angles. This

is coincident with the above analysis that there are unbroken supersymmetries in cases of

θ2 + θ3 + θ4 = 0 mod 2, θ2 + θ3 = θ4 = 0 mod 2 and so on.

Let us form lower states of the 6-6′ string. The NS sector ground state has the mass

|0; k⟩NS : m2 =
1

2α′

(
−1 + θ2 + θ3 + θ4

)
, (2.46)

however this state is projected out by the GSO projection. In the NS sector first excited states,

there are four kinds of states with lowest mass,

ψµ− 1
2

|0; k⟩NS : m2 =
1

2α′

(
+θ2 + θ3 + θ4

)
,

ψ2
− 1

2
+θ2

|0; k⟩NS : m2 =
1

2α′

(
−θ2 + θ3 + θ4

)
,

ψ3
− 1

2
+θ3

|0; k⟩NS : m2 =
1

2α′

(
+θ2 − θ3 + θ4

)
,

ψ4
− 1

2
+θ4

|0; k⟩NS : m2 =
1

2α′

(
+θ2 + θ3 − θ4

)
.

(2.47)

The NS sector second excited states are projected out by the GSO projection, and the following

NS sector third excited state has lower mass,

ψ2
− 1

2
+θ2
ψ3
− 1

2
+θ3
ψ4
− 1

2
+θ4

|0; k⟩NS : m2 =
1

α′

(
1− 1

2
(θ2 + θ3 + θ4)

)
, (2.48)

The R sector ground state is massless due to the vanishing R sector zero-point energy,

|s1; k⟩R : m2 = 0 . (2.49)

Since the mode operators ψar+θa have no zero modes, they do not form degenerate ground states

which have spins in the (4, 5), (6, 7) and (8, 9)-planes. The GSO projection restricts |s1; k⟩R to

a state with s1 = +1
2
, and since s1 is a space-time spin, the state is chiral.

Note that the state ψµ− 1
2

|0; k⟩NS does not act as a gauge boson, even if there are unbroken

supersymmetries, since it comes from the open string stretched between the different D6-branes.

In case of θ2 + θ3 + θ4 = 0, the state combine the massless state in the R sector, |s1; k⟩R,
into a chiral multiplet of the four-dimensional N = 1 SUSY. The chiral multiplet is in the

bifundamental representation under gauge symmetries on the D6- and D6′-branes, as discussed

above eq.(2.26).

Thus, we obtain bifundamental chiral fermions from the open string with ends on the

respective D-branes intersecting at angles. Then, we can expect that the chiral matters in the

Standard Model are obtained using the intersecting D-branes.

2.3 Type IIA orientifolds

Now, let us consider construction of a realistic model using D-branes. We have discussed that

the open string on a stack of N D-branes gives massless gauge bosons (and scalars) associated
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with U(N) gauge symmetry, and the open string on intersecting D-branes gives massless chiral

fermions with both charges under gauge symmetries on the D-branes. Therefore, we can expect

that the gauge groups and chiral matters in the Standard Model are obtained by specific D-

brane configurations.

However, the D-brane configurations are not always consistent. They must satisfy the

Ramond-Ramond tadpole cancellation, which is required to make gauge symmetries on the

D-branes anomaly free. For example, in the type I theory which is projected by the world-sheet

parity, the R-R tadpoles are canceled when the gauge symmetry is SO(32). Thus, the world-

sheet parity projection can be used for the R-R tadpole cancellation in general situations. We

want to consider the type IIA with intersecting D6-branes as discussed in the previous section.

The type IIA does not have the world-sheet parity symmetry, but it does have a symmetry

under a combination of the world-sheet parity and odd times space-time reflections. A theory

which is projected by such an action is generally called orientifold. Referring to the earlier

constructions [27], let us consider the type IIA orientifolds with intersecting D6-branes.

Type IIA orientifolds

First, we consider compactification of extra six-dimensional space. As a simple choice, we

consider a six-dimensional torus which is factorizable into T 2 × T 2 × T 2. Let us introduce

D6-branes on top of the four-dimensional space-time and wrapped on three-cycles in the six-

dimensional torus. In this case, the three-cycles are products of one-cycles in each of three T 2s.

Then, we consider stacks of Na D6a-branes which are wrapped on the cycle with the wrapping

numbers (nia,m
i
a) in the i-th T 2.

The type IIA is changed by the world-sheet parity transformation Ω into the type IIA′,

IIA′ : (NS+,NS+) (R−,R+) (NS+,R+) (R−,NS+) . (2.50)

On the other hand, a space-time reflection on a single axis,

Xµ → −Xµ , ψµ → −ψµ , ψ̃µ → −ψ̃µ , (2.51)

reverses the chirality in the R sector. Therefore, the type IIA has a symmetry under a combi-

nation of Ω and the odd times space-time reflections.

We mod out the type IIA by the orientifold action ΩR, where Ω is the world-sheet parity

transformation (1.109), and R acts as

R : (Z1, Z2, Z3) → (Z
1
, Z

2
, Z

3
) , (2.52)

where Zi’s are complex coordinates in the T 2 × T 2 × T 2. Here, Zi’s are corresponding to

eq.(2.29). Then, there are orientifold fixed planes in the (4, 6, 8)-directions, which are called

O6-planes. Furthermore, the symmetry under the orientifold action requires a image or mirror

of a D6-brane about the O6-planes. The orientifold images of the D6a-branes, D6a′-branes,

are wrapped on the cycle with the wrapping numbers (nia,−mi
a) in the i-th T 2, if the T 2s are

rectangular.
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The R-R tadpole cancellation

Next, we consider the R-R tadpole cancellation conditions on the D6-brane configurations in

this type IIA orientifold. Here, we define the homology class of the three-cycles wrapped by

the D6a-branes,

Πa =
3∏
i=1

(
nia[ai] +mi

a[bi]
)
, (2.53)

where [ai] and [bi] denote the (1, 0) and (0, 1) homology one-cycles in the i-th T 2, for rectangular

tori. Similarly, the homology class of the cycles wrapped by the D6a′-branes is defined as

Πa′ =
3∏
i=1

(
nia[ai]−mi

a[bi]
)
. (2.54)

We also define the homology class of the cycles wrapped by the O6-planes,

ΠO6 = [a1]× [a2]× [a3] . (2.55)

The R-R tadpole is proportional to a charge of the D6-brane under the R-R field which

is an antisymmetric seven-tensor originating from the R-R closed string. Therefore, the R-R

tadpole cancellation is a simple Gauss law, namely the cancellation of the total R-R charge.

The R-R charge carried by all the D6-branes and the orientifold images is∑
a

NaΠa +
∑
a

NaΠa′ , (2.56)

while the R-R charge carried by the O6-planes is,

−4× 8× ΠO6 , (2.57)

where −4 is a charge of an O6-plane and 8 is the number of O6-planes. Then, the requirement

that the total R-R charge is canceled gives the following constraints on the wrapping numbers

and the multiplicity of the D6-branes,∑
a

Nan
1
an

2
an

3
a = 16 ,

∑
a

Nan
1
am

2
am

3
a = 0 ,∑

a

Nam
1
an

2
am

3
a = 0 ,

∑
a

Nam
1
am

2
an

3
a = 0 .

(2.58)

Thus, the constraints (2.58) define a consistent D-brane configuration in the type IIA orientifold

compactified on a torus.

Spectrum

Let us discuss the spectrum of the open string in this theory. We denote the open string in

which one end attaches on a stack of D6a-branes and the other attaches on a stack of D6b-

branes, by the ab sector. These stacks of the D6-branes intersect at general angles, and the

open string stretched between the different D6-branes is localized on the intersection plane (in

this case, the four-dimensional space-time).
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• The aa sector :

There are a vector multiplet and three chiral multiplets in the U(Na) adjoint represen-

tation. When the D6a-branes are on top of the O6-planes, the vector multiplet and the

chiral multiplets are in the SO(Na) or USp(Na) adjoint representation.

The scalar components of the chiral multiplets come from the Dirichlet components (2.10)

in the ten-dimensional vector.

• The ab+ ba sector :

There are Iab chiral fermions in the bifundamental representation (Na, N b), where Iab is

the intersection number of the wrapped cycles,

Iab = Πa · Πb =
3∏
i=1

(
niam

i
b −mi

an
i
b

)
. (2.59)

The sign of Iab denotes a chirality of the chiral fermion.

• The ab′ + b′a sector :

There are Iab′ chiral fermions in the bifundamental representation (Na, Nb), where

Iab′ = Πa · Πb′ = −
3∏
i=1

(
niam

i
b +mi

an
i
b

)
. (2.60)

• The aa′ + a′a sector :

There are chiral fermions in the two-index symmetric and antisymmetric representations

of U(Na). The two indices correspond to ends of the open string. The number of the

symmetric and antisymmetric representations are

n□□ = −1

2

(
Iaa′ −

4

2k
Ia,O6

)
, n□□

= −1

2

(
Iaa′ +

4

2k
Ia,O6

)
, (2.61)

where k is the number of tilted tori and

Iaa′ = Πa · Πa′ = −8
3∏
i=1

niam
i
a , Ia,O6 = Πa · ΠO6 = −

3∏
i=1

mi
a . (2.62)

There are undesirable chiral fermions in the aa and aa′ + a′a sectors. The adjoint chiral

fermions in the aa sector can obtain mass due to their hermiticity, and we can exclude them

from the massless spectrum. The antisymmetric fermions in the aa′ + a′a sector can be the

representation under the Standard Model gauge group, in particular, SU(3)C , but the symmetric

fermions are always exotics. In order to exclude them from the massless spectrum, we can

require that the cycles wrapped by D6-branes satisfy
∏3

i=1m
i = 0. Then, as it is found from

eq.(2.62), there are no fermions in both the symmetric and antisymmetric representations. This

condition means that for any D6-branes, at least one of the three cycles in the T 2s should be

parallel to the O6-planes.
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Thus, we can obtain the massless spectrum in which there are no chiral exotics. The

generation number of the Standard Model can be obtained as the intersection number of the

wrapped cycles in case of the toroidal compactification.

Note that, in order to obtain three generations, at least one of the three T 2s should be

tilted. Consider that only the third T 2 is tilted. The homology class of the cycle wrapped by

the O6-planes, (2.55), becomes

Π̃O6 = [a1]× [a2]× (2[a3]− [b3]) , (2.63)

and then the R-R charge (2.57) carried by the O6-planes is divided by two. When the cycle

wrapped by the D6a-branes has the wrapping numbers (nia,m
i
a) in the tilted T 2, the cycle

wrapped by the images has the wrapping numbers (nia,−nia − mi
a), so the homology class of

the cycle wrapped by the D6a′-branes becomes

Π̃a′ =
(
n1
a[a1]−m1

a[b1]
)
×

(
n2
a[a2]−m2

a[b2]
)
×
(
n3
a[a3]− (n3

a +m3
a)[b3]

)
. (2.64)

Then, the constraints (2.58) required by the R-R tadpole cancellation are modified as∑
a

Nan
1
an

2
an

3
a = 16 ,

∑
a

Nan
1
am

2
am̃

3
a = 0 ,∑

a

Nam
1
an

2
am̃

3
a = 0 ,

∑
a

Nam
1
am

2
an

3
a = 0 ,

(2.65)

where m̃ = m + n
2
. The modification is simply to replace m → m̃. The half-integer wrapping

number realizes three generations.

SUSY conditions

As discussed in the previous section, the system in which one stack of D6-branes are related

to the other stack by a SU(3) rotation has four-dimensional N = 1 SUSY. Denoting by θi

the intersection angles between the D6-branes in the i-th T 2, configurations preserving N = 1

SUSY must satisfy

θ1 + θ2 + θ3 = 0 mod 2π . (2.66)

If one stack of the D6-branes is parallel to the O6-planes in a i-th T 2, the intersection angle

depends on the ratio of the radii in the i-th T 2 and the wrapping numbers of the other stack,

for rectangular tori,

θi = arctan

(
mi

ni
R2i

R2i−1

)
, (2.67)

where R2i−1 and R2i are the radii in the vertical and horizontal directions in the i-th T 2.

For general θi, N = 1 SUSY is broken. Then, the R sector ground state |s1; k⟩R (2.49)

remains massless. However, the NS sector lower states (2.47) and (2.48) have masses which

depend on the intersection angles. In order for the system to be stable, they must not have

tachyonic masses. Setting θi ≥ 0, the absence of tachyons require θi to be within a regular

tetrahedron in the (θ1, θ2, θ3)-space.
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Intersection Matter (SU(3)C , SU(2)L) (Qa, Qb, Qc, Qd) Y

(a, b) QL (3,2) (1,−1, 0, 0) 1
6

(a, b′) qL 2× (3,2) (1, 1, 0, 0) 1
6

(a, c) (uR)
c 3× (3,1) (−1, 0, 1, 0) −2

3

(a, c′) (dR)
c 3× (3,1) (−1, 0,−1, 0) 1

3

(b, d′) ℓL 3× (1,2) (0,−1, 0,−1) −1
2

(c, d) (eR)
c 3× (1,1) (0, 0,−1, 1) 1

(c, d′) (νR)
c 3× (1,1) (0, 0, 1, 1) 0

Table 2.1: The chiral fermion spectrum of the semi-realistic four stack model.

2.4 Getting the Standard Model spectrum

Now, we specify a D-brane configuration which gives the massless spectrum of the Standard

Model, considering the type IIA orientifolds with intersecting D6-branes compactified on a

torus. There are so many constructions with the SM spectrum, but in most cases, there are

extra chiral fermions (the right-handed neutrinos, and so on) and Higgs fields. However, it is

true that one can obtain the particle content quite close to that of the SM, using intersecting

D-branes with simple toroidal compactification. Here, we present a semi-realistic but simple

proto-type model [28] which contains the SM-like spectrum and features of D-brane models.

Non-supersymmetric semi-realistic model

In ref.[28], the authors considered a non-SUSY model. Using a bottom-up approach, they

introduced four stacks of D6-branes with Na = 3, Nb = 2, Nc = 1 and Nd = 1. The stacks yield

the gauge group U(3)a × U(2)b × U(1)c × U(1)d, in the sense of the SM gauge group,

SU(3)C × SU(2)L × U(1)a × U(1)b × U(1)c × U(1)d . (2.68)

A charge of an additional U(1)a factor is denoted by Qa. The desired chiral fermions and

representations are listed in Table 2.1. In the Table 2.1, QL is one left-handed quark antidoublet,

and qL are two left-handed quark doublets. This is required to cancel U(2)b anomalies, and then

ℓL are left-handed lepton antidoublets. νR are also required to cancel U(1)d anomaly. Thus,

such models with only bifundamental matter necessarily contain the right-handed neutrinos.

Considering mixed anomalies of the four U(1) factors with the non-Abelian ones SU(3)C
and SU(2)L, it is found that (Qa + 3Qd) and Qc are free of triangle anomalies. Then, the

hypercharge is given by the linear combination

Y =
1

6
Qa −

1

2
Qc +

1

2
Qd . (2.69)

The other orthogonal combinations are anomalous, however, gauge bosons of the anomalous

U(1)s receive masses via the Green-Schwarz mechanism [29], which can be realized by an ex-

change of the R-R field. All the massive U(1) gauge symmetries survive as global symmetries,
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N (n1, m̃1) (n2, m̃2) (n3, m̃3)

Na = 3 (1/β1, 0) (n2
a, ϵβ

2) (1/ρ, 1/2)

Nb = 2 (n1
b ,−ϵβ1) (1/β2, 0) (1, 3ρ/2)

Nc = 1 (n1
c , 3ϵρβ

1) (1/β2, 0) (0, 1)

Nd = 1 (1/β1) (n2
d,−ϵβ2/ρ) (1, 3ρ/2)

Table 2.2: The D6-brane wrapping numbers of the semi-realistic non-SUSY model. The pa-

rameters are defined as β1,2 = 1, 1
2
, a parameter ρ = 1, 1

3
, a phase ϵ = ±1 and four integers

n2
a, n

1
b , n

1
c , n

2
d ∈ Z.

and Qa and Qd can be identified with the baryon number and the lepton number. They stabilize

the proton and prevent Majorana neutrino masses.

If the wrapping numbers of the four stacks of D6-branes are chosen as shown in Table 2.2,

the intersection numbers between the four stacks are

Iab = 1 , Iab′ = 2 , Iac = −3 , Iac′ = −3 ,

Ibd = 0 , Ibd′ = −3 , Icd = −3 , Icd′ = 3 ,
(2.70)

and all the other vanish. They give rise to the number of generation of the desired chiral

fermions listed in Table 2.1. In the configurations of Table 2.2, all but the first of the R-R

tadpole cancellation conditions (2.58) are automatically satisfied, and the first cancellation

condition read 19

3n2
a

ρβ1
+

2n1
b

β2
+
n2
d

β1
= 16 . (2.71)

In order for the U(1)Y to remain massless, further conditions are imposed as

n1
c =

β2

2β1

(
n2
a + 3ρn2

d

)
(2.72)

on the parameters in Table 2.2.

The possible Higgs configurations in this model are listed in Table 2.3. The Higgs fields

appear in pairs analogous to the Higgs sector of the Minimal Supersymmetric Standard Model

(MSSM). The U(2)b branes are parallel to the U(1)c brane in the second T 2, and there are no

massless chiral fermions at the intersection. However, if there is a small distance z between

these stacks of the branes in the second T 2, the open strings can stretch between them and

lead light scalars with the masses,

ψ1
− 1

2
+θ1

|0; k⟩NS : m2 =
z2

(2πα′)2
+

1

2α′

(
−θ1 + θ3

)
,

ψ3
− 1

2
+θ3

|0; k⟩NS : m2 =
z2

(2πα′)2
+

1

2α′

(
+θ1 − θ3

)
.

(2.73)

19One can always relax the constraint (2.71) by adding extra hidden D6-branes, for example, N ′ D6-branes

with m′i = 0 (parallel to the O6-planes). Then the constraint is replaced by

3n2a
ρβ1

+
2n1b
β2

+
n2d
β1

+N ′n′1n′2n′3 = 16 .

39



Intersection Matter (SU(3)C , SU(2)L) (Qa, Qb, Qc, Qd) Y

(b, c) h1 nh × (1,2) (0, 1,−1, 0) 1
2

(b, c) h2 nh × (1,2) (0,−1, 1, 0) −1
2

(b, c′) H1 nH × (1,2) (0,−1,−1, 0) 1
2

(b, c′) H2 nH × (1,2) (0, 1, 1, 0) −1
2

Table 2.3: The possible Higgs field configurations of the semi-realistic model.

Then, the Higgs fields have the quadratic potential similar to that of the MSSM,

Vquad. = m2
h

(
|h1|2 + |h2|2

)
+m2

H

(
|H1|2 + |H2|2

)
+m2

bh1h2 + h.c.+m2
BH1H2 + h.c. ,

(2.74)

where

m2
h =

zbc
2

(2πα′)2
, m2

H =
zbc′

2

(2πα′)2
,

m2
b =

1

2α′ |θ
1
bc − θ3bc| , m2

B =
1

2α′ |θ
1
bc′ − θ3bc′ | .

(2.75)

If the distances zbc and zbc′ are small compared to the string scale Ms = 1/
√
α′, there appear

flat directions along ⟨h1⟩ = ⟨h2⟩ and ⟨H1⟩ = ⟨H2⟩ in the scalar potential, which may give rise

to the electroweak symmetry breaking below the string scale. However, note that this requires

the string scale to be not far above the weak scale.

The numbers of the Higgs fields, nh and nH , are given by the numbers of times the U(2)b
branes intersect with the U(1)c branes in the first and third T 2s, depending on the parameters

in Table 2.2,

nh = β1|n1
c + 3ρn1

b | , nH = β1|n1
c − 3ρn2

b | . (2.76)

The Yukawa couplings which are allowed by the symmetries have the general form,

yiU(u
i
R)

†QLh1+y
i
D(d

i
R)

†QLH2+y
ij
u (u

i
R)

†qjLH1+y
ij
d (d

i
R)

†qjLh2+y
ij
e (e

i
R)

†ℓjLH2+y
ij
ν (ν

i
R)

†ℓjLh1+h.c. .

(2.77)

If nh = 0 and nH = 1, only two up-type quarks and one down-type quark can get masses.

One would identify them with the top, charm and bottom quarks. Thus, at this level, the

strange, down and up quarks remain massless, as well as the neutrinos.20 If nh = 1 and

nH = 1, the observed hierarchy of fermion masses is a consequence of the different values of the

Higgs vacuum expectation values and hierarchical values of the Yukawa couplings. The Yukawa

couplings are calculated from open string three-point amplitudes for the left- and right-handed

fermion and the Higgs states appearing at the D-brane intersections, and they are proportional

20Since the U(1)b symmetry has mixed SU(3)C anomalies, it can be regarded as the Peccei-Quinn symmetry.

If the symmetry is broken by strong interaction effects, one expects that effective Yukawa couplings u†RQLH1

and d†RqLH2, and dimension six operators 1
M2

s
(ν†RℓL)(u

†
RQL)

∗ from an exchange of massive string excited states

are allowed. Then, the neutrino masses are of the order of Λ3
QCD/M

2
s .
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to
∏

i exp(−Ai/2πα′) where Ai is the area of the triangle formed by the three intersecting D-

branes in the i-th T 2 [30, 31]. One also has to check whether the flavor-changing neutral current

(FCNC) from a Higgs exchange are sufficiently suppressed (see ref.[32, 33]).

Thus, we have discussed that there are D-brane configurations which give the massless

spectrum of the SM except for the Higgs sector, when we consider the type IIA orientifolds

with intersecting D6-branes compactified on a torus. For the MSSM, there is also a proto-type

D-brane configuration [34, 35] which keeps N = 1 SUSY and gives the MSSM spectrum. For

other phenomenological issues, see ref.[36] for review. Note that most non-SUSY constructions

assume a low string scale Ms which is of the order of TeV, in order to avoid large radiative

corrections to the Higgs boson mass, δm2
H ∼M2

s .
21 However, in case of such a low string scale,

extra space should be compactified to not a simple torus but more general spaces. In the next

section, we consider D-brane models with the low string scale, which are called low-scale string

models.

3 Low-scale string models

Now, we consider low-scale string models in which the string scaleMs = 1/
√
α′ is of the order of

TeV. Such a low string scale is possible due to the existence of large extra dimensions, and these

models are expected to solve the hierarchy problem of the Standard Model. Since the string

scale Ms is of the order of TeV, low-scale string models have a possibility of being confirmed or

excluded by the LHC. We will assume the low-scale string models which are explained in this

section, in discussions of the LHC phenomenology in the next part.

3.1 Large extra dimensions in string compactifications

Gravitational and gauge coupling constants

Here, we discuss the gravitational and gauge coupling constants in the context of string com-

pactifications. While the gauge interactions are localized on the D-brane world volume, the

gravitational interactions are spread into the transverse space. This gives qualitatively different

quantities for their couplings.

The low-energy effective action of the type II theory which includes only the NS-NS closed

string is

S =
1

2κ210

∫
d10x (−G)1/2e−2Φ

(
R + 4∂MΦ∂MΦ− 1

2
HMNLH

MNL

)
, (3.1)

where HMNL is the field strength of the antisymmetric B-field, HMNL = ∂MBNL + ∂NBLM +

∂LBMN . Let us make field redefinitions of the forms

G̃MN = exp
(−Φ̃

2

)
GMN , Φ̃ = Φ− Φ0 , (3.2)

21Note that in one-loop calculations in the non-SUSY system, there is a problem that infrared divergence

from an exchange of the NS-NS closed string is not canceled.
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where Φ0 is a background value of the dilaton field and G̃MN is called the Einstein metric. In

the Einstein frame, the space-time action (3.1) has the standard Hilbert form,

S =
1

2κ2

∫
d10x (−G̃)1/2

(
R̃− 1

2
∂M Φ̃∂̃M Φ̃− 1

2
e−Φ̃HMNLH̃

MNL

)
. (3.3)

The constant κ = κ10e
Φ0 is the gravitational coupling. Hereafter, we denote Φ0 simply by Φ.

The extra six-dimensional space in the ten-dimensional space-time should be compactified to

an internal space with the finite volume V6. Then, the gravitational coupling κ is reduced to

the four-dimensional Newton constant GN , and since GN = 1/M2
Pl,

V6
2κ2

=
1

16πGN

=
M2

Pl

16π
. (3.4)

On the other hand, from the ratio of the string tension 1/2πα′ and the D1-brane tension

T1 =
√
π

κ10
4π2α′ in eq.(2.12), we obtain the relation between κ and α′,

κ2 = 1
2
(2π)7e2Φα′4 . (3.5)

Then, the Planck scale MPl (3.4) can be written by the string scale Ms and the volume of the

internal space V6,

M2
Pl = 8 e−2ΦM8

s

V6
(2π)6

. (3.6)

Therefore, if the string coupling gs ≡ eΦ/2 is small and the internal volume V6 is as large as

M6
s V6 ∼ 1032, we can take the string scale Ms of the order of TeV.

On the other hand, the low-energy effective action which describes a coupling between a

Dp-brane and the NS-NS closed string is shown in eq.(2.11),

SDp = −Tp
∫
dp+1xTr

{
e−Φ

[
−det(Gµν +Bµν + 2πα′Fµν)

]1/2}
, (3.7)

where Tp is the Dp-brane tension (2.12). Expanding the action in terms of Fµν , it is just the

Yang-Mills action in the (p+ 1)-dimensional space-time,

SDp = − 1

4g2Dp

∫
dp+1x (−G)1/2 Tr

{
Fµν

2
}
+ · · · , (3.8)

where gDp is the gauge coupling constant on the Dp-brane, as it appears also in eq.(2.26),

1

g2Dp
= Tp e

−Φ(2πα′)2 = e−Φ α′ 3−p
2

(2π)p−2
. (3.9)

When the extra (p− 3)-dimensional space on the Dp-brane is compactified to a space with the

volume Vp−3, the gauge coupling constant gDp is reduced to a four-dimensional gauge coupling

constant g,
1

g2
=
Vp−3

g2Dp
= e−ΦMp−3

s

Vp−3

(2π)p−2
. (3.10)
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Therefore, if the string scale Ms is of the order of TeV, in order to keep the four-dimensional

gauge coupling small, the volume on the Dp-brane Vp−3 must be as small as Mp−3
s Vp−3 ∼ 1.

However, the intersecting D6-branes with the simple toroidal compactification that we have

discussed in the previous section cannot realize such a low string scale, because there is no

direction in the internal space which is transverse to all the D6-branes. In the case of toroidal

compactification, Vp−3 is the volume of the (p− 3)-cycles wrapped by the Dp-brane. In partic-

ular, for p = 6,

V3 = (2π)3
3∏
i=1

√
(niR2i−1)2 + (miR2i)2 , (3.11)

where (ni,mi) are the wrapping numbers of the one-cycle wrapped by the D6-branes, and R2i−1

and R2i are the radii in the i-th T 2. On the other hand, the total internal volume V6 is

V6 = (2π)6
6∏
i=1

Ri . (3.12)

Then, there is no radius that we can choose large in the internal space. In order to keep the

four-dimensional gauge coupling small, the total volume V6 must be also as small as M6
s V6 ∼ 1,

and the string scale Ms is restricted to be a few orders of magnitude of the Planck scale.

Thus, consistent string compactifications with large extra dimensions can be possible not

for a simple torus but for more general Calabi-Yau spaces which can have large transverse

dimensions to all the D-branes.

“Local models”

Let us consider large extra dimensions in the context of string compactifications. As explained

above, in order to combine D-branes with the SM particle content with the scenario of large

extra dimensions, one has to consider specific Calabi-Yau compactifications (on the Calabi-Yau

large volume compactification, see ref.[10]). The three or four stacks of the intersecting D-

branes which give rise to the SM spectrum such as Table 2.2 are local modules embedded into

a global large volume Calabi-Yau manifold, as shown in Fig.3.1 [13].22

The hidden sector in Fig.3.1 is required to satisfy the R-R tadpole cancellation and stability

conditions for the absence of tachyons. It is also responsible for spontaneously SUSY breaking

in the system which has four-dimensionalN = 1 SUSY for calculations of string amplitudes [13].

The supersymmetry breakdown is transferred to the SM branes by gravitational interactions or

by gauge interactions via some vector-like messenger fields. The hidden sector is also responsible

for moduli stabilization and cosmic inflation in the early universe (see ref.[37], for review).

We will use the results of open string four-point amplitudes involving the SM gauge and

matter fields. In particular, the amplitudes involving four gauge bosons or two gauge bosons

22Note that the stacks of the D-branes cannot be wrapped on untwisted cycles of a compact torus or of toroidal

orientifolds. One has to consider twisted and blowing-up cycles of an orbifold or more general Calabi-Yau spaces

with blowing-up cycles.
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Figure 3.1: Some stacks of D-branes giving rise to the SM spectrum are embedded into a large

Calabi-Yau space [13].

and two matter fermions do not depend on the geometry of the Calabi-Yau spaces. However,

in order to calculate the string amplitudes, we have to assume that the SM branes are wrapped

on flat or toroidal like cycles.

Thus, for discussions of the LHC phenomenology in the next part, we will assume such

“local models”, in which the intersecting D-branes giving rise to the SM spectrum are wrapped

on local and flat cycles, and the cycles are embedded into a global large volume Calabi-Yau

manifold giving rise to the low string scale.

3.2 Spectrum of low-scale string models

Let us summarize the spectrum of low-scale string models. This is useful for later discussions

on phenomenology at the LHC.

The Standard Model gauge bosons and chiral fermions

The SM branes in Fig.3.1 are constructed of three or four stacks of intersecting D-branes such

as Table 2.2 which yield the SM gauge group with additional U(1) factors and give rise to the

SM chiral fermions at their intersections.

The SM gauge boson is realized by the open string with both ends on a stack of N D-branes.

It is the NS sector massless state,

T aeµψ
µ
−1/2|0; k⟩NS , (3.13)

where T a is the Chan-Paton factor in the adjoint representation of U(N) with a = 1, . . . , N2.

The polarization vector eµ satisfies the physical state condition e · k = 0 and the equivalence

condition eµ ∼= eµ + λkµ.

The SM chiral fermion is realized by the open string stretched between stacks of Na Da-

branes and Nb Db-branes. It is the R sector massless state,

us|s; k;α, β⟩R , (3.14)

where α and β are the Chan-Paton indices in the fundamental representations of U(Na) and

U(Nb) with α = 1, . . . , Na and β = 1, . . . , Nb, respectively. The polarization spinor us satisfies
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the physical state condition k · Γs′s us = 0 and the state which is in the spinor representation

of SO(1, 3) is reduced to that in the spinor representation of SO(2). The GSO projection,

Γs′sus = +us, restricts to the state with s1 = +1
2
.

String excited states

We can obtain massive states by exciting the massless states such as (3.13) and (3.14) with

the mode operators, and such massive states are called string excited states. In the case of the

open string, the mass of the string excited state is given by

m2 =
1

α′

(
Nα +Nψ − ν

)
, (3.15)

where N ≡ Nα +Nψ − ν is the level of the state, and Nα and Nψ are excitation levels due to

the mode operators αµn and ψµr , as shown in eq.(1.87).

Let us focus on the case of N = 1. The first string excited state of the SM gauge boson,

T a
[
(e1)µψ

µ
−3/2 + (e2)µνα

µ
−1ψ

ν
−1/2 + (e3)µνρψ

µ
−1/2ψ

ν
−1/2ψ

ρ
−1/2

]
|0; k⟩NS , (3.16)

has the mass ofm2 = 1/α′. The polarization three-tensor (e3)µνρ is antisymmetric. The physical

state conditions derived from eq.(1.75) on the polarization tensors are given by

√
2α′(e1) · k + (e2)µνη

µν = 0 ,

(e1)ν +
√
2α′kµ(e2)µν = 0 ,

(e2)µν − (e2)νµ + 6
√
2α′kρ(e3)µνρ = 0 .

(3.17)

Counting the physical degrees of freedom in the four-dimensional space-time, we can understand

that the degrees of freedom correspond to one spin J = 2, two J = 1 and two J = 0 modes [38].

On the other hand, the first string excited state of the SM chiral fermion,[
(u1)µsα

µ
−1 + (u2)µsψ

µ
−1

]
|s; k;α, β⟩R , (3.18)

also has the mass ofm2 = 1/α′. The physical state conditions on the polarization vector-spinors

are given by

k · Γs′s(u1)µs = k · Γs′s(u2)µs = 0 ,

Γs′s · (u1)s + 2
√
α′k · (u2)s = 0 ,

4
√
α′k · (u1)s + Γs′s · (u2)s = 0 .

(3.19)

The GSO projection impose Γs′s(u1)µs = +(u1)µs and Γs′s(u2)µs = −(u2)µs on the state. The

remaining physical degrees of freedom correspond to one spin J = 3/2 and one J = 1/2 modes.
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Kaluza-Klein and winding modes

In addition to the string excited states, there are other massive states in low-scale string models.

The massive states appear when the extra six-dimensional space is compactified to an internal

space with finite volume. They are called Kaluza-Klein and winding modes.

Although one has to consider more general Calabi-Yau compactifications in low-scale string

models, here, for simplicity, let us consider compactifications on a six-dimensional torus which

is factorizable into T 1 × · · · × T 1. Then, the six-dimensional coordinates have the following

periodicity,

X i ∼= X i + 2πRi for i = 4, . . . , 9 , (3.20)

where Ri is the radius in the i-th T 1.

Let us consider the open string realizing the SM gauge bosons. We specify that the open

string is on a stack of D6-branes and has the Neumann boundary condition in the four-

dimensional space-time with µ = 0, 1, 2, 3 and the three-dimensional space with iN = 4, 5, 6

and the Dirichlet boundary condition in the three-dimensional space with iD = 7, 8, 9. Note

that in the case of the non-compact ten-dimensional space-time, there are the open string

center-of-mass momenta only in the Neumann directions not in the Dirichlet directions. How-

ever, with the compact periodic dimensions (3.20), there are quantized momenta not only in

the Neumann directions but also the Dirichlet directions.

First, the operator exp(2πiRiNp
iN) which translates the open string around the periodic

Neumann directions iN = 4, 5, 6 must leave states invariant. The center-of-mass momenta in

the Neumann directions are quantized,

kiN =
niN

RiN

for niN ∈ Z . (3.21)

The modes with the nonzero momenta (3.21) are Kaluza-Klein (KK) modes. On the other

hand, the open string may wind around the periodic Dirichlet directions iD = 7, 8, 9 and then

it satisfies the extended Dirichlet boundary condition,

X iD(σ = π) = X iD(σ = 0) + 2πRiDw
iD for wiD ∈ Z , (3.22)

where wiD is the winding number. Since the coordinates in the Dirichlet directions are expanded

as eq.(2.3), the change of the Dirichlet coordinates in going around the open string is

2πRiDw
iD =

∫ π

0

dσ1 ∂1X
iD =

∫ (
dz ∂X iD + dz ∂X iD

)
= 2π

√
α′

2
αiD0 , (3.23)

and the momenta in the Dirichlet directions are also quantized,

kiD =
wiDRiD

α′ . (3.24)

The modes with the nonzero momenta (3.24) are winding modes. Then, the mass of the

Kaluza-Klein and winding mode of the open string is given by

m2 =
(niN)2

R2
iN

+
(wiD)2R2

iD

α′2 . (3.25)
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In low-scale string models, the radius in the compact Neumann direction RiN corresponds

to Vp−3

1
p−3 which is determined by the size of the four-dimensional gauge coupling constants in

eq.(3.10), and the radius in the Dirichlet direction RiD corresponds to V6
1/6 which is determined

by the Planck scale in eq.(3.6). If the string coupling gs is small and the string scale Ms is of

the order of TeV, V6
1/6 ∼ (10MeV)−1 and the winding mass is M2

s V6
1/6 ∼ 108 GeV. Ignoring

the winding modes due to its heaviness, in order to keep the gauge coupling constants small,

Vp−3

1
p−3 ∼ (1TeV)−1 and the KK mode mass of the open string is of almost the same order as

the string excited state mass (3.15).

However, we will use the results of open string four-point amplitudes which do not depend

on the geometry and size of the internal space, namely, which do not include poles of the

KK and winding modes of the SM gauge and matter fields. Eventually, we can ignore both

exchanges of the KK and winding modes.

Closed string states

While the gravitational coupling κ of eq.(3.5) is proportional to the string coupling g2s , the

gauge coupling constant g of eq.(3.10) is proportional to gs. Therefore, the open string four-

point amplitudes with poles of closed string states are suppressed by g2s in contrast to that with

poles of open string states. This is also understood from the open-closed string duality that

tree-level amplitudes of the closed string are understood as one-loop amplitudes of the open

string. Thus, due to such one-loop suppressions, we can also ignore the closed string states

including the closed string excited states and the KK and winding modes of the closed string.

In low-scale string models, one has to consider the large Calabi-Yau spaces shown in Fig.3.1,

and the total volume V6 must be so large as M6
s V6 ∼ 1032. Therefore, we can expect that the

mass of the Kaluza-Klein graviton is so small as V
−1/6
6 ∼ 10MeV, assuming that all the six

dimensions in the Calabi-Yau space are similar in size. If the six dimensions are extremely

asymmetric in size [39], for example, so that M4
s V4 ∼ 1 and M2

s V2 ∼ 1032, we can expect

that the lightest KK graviton mass is so much small as V
−1/2
2 ∼ 10−4 eV. It is important to

investigate experimental bounds on the KK graviton with a very small mass.

The model-independent signature is energy loss due to the KK graviton emission, which

can be observed as missing energy. The emission cross sections are sizable due to enormous

phase space of the KK gravitons. Even if each KK graviton couples with the four-dimensional

gravitational strength, 1/M2
Pl, a sum over all the modes converts this small coupling to the

ten-dimensional gravitational strength, 1/M8
s . Searches for missing energy in monojet events

at the LHC set limits of Ms ≳ 4.54TeV for the asymmetric case and Ms ≳ 2.51TeV for

the symmetric case [40]. The SN1987A observations which agree with standard calculations of

supernovae energy loss also set limits ofMs ≳ 10TeV for the asymmetric case andMs ≳ 10GeV

for the symmetric case (see ref.[39] and therein).

Signatures coming from the virtual KK graviton exchange are model-dependent, since they

are assumed that there are no exotic decay processes. Searches for signatures in dilepton
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events at the LHC set limits of Ms ≳ 3.8TeV for the asymmetric case and Ms ≳ 2.7TeV

for the symmetric case [41]. In the case that the KK gravitons have branching fractions into

photons and gluons, the absence of γ-ray signals in the EGRET satellite and considerations of

neutron-star cooling give limits of Ms ≳ 40TeV and Ms ≳ 700TeV for the asymmetric case,

and Ms ≳ 40GeV and Ms ≳ 200GeV for the symmetric case, respectively (see ref.[39] and

therein).

Anomalous U(1) gauge bosons

The three or four stacks of intersecting D-branes yield the SM gauge group with additional

U(1) factors, and some linear combinations of the U(1)s are anomalous. The anomalous U(1)

gauge bosons receive masses via the Green-Schwarz mechanism which can be realized by an

exchange of the R-R field originating from the R-R closed string.

The coupling of the Dp-brane with the R-R field is described by eq.(2.13). Under T -dualities

it transforms to Chern-Simons terms of the form

Tp

∫
p+1

Tr
[
exp(B2 + 2πα′F2) ∧

∑
q

Cq
]
, (3.26)

where B2 is the NS-NS antisymmetric B-field parallel to the Dp-brane, F2 is the gauge field on

the Dp-brane and Cq is the R-R antisymmetric q-tensor. Consider a D6a-brane wrapped on a

three-cycle πa. Expanding (3.26) in terms of F2, there is a Chern-Simons term of the form

2πα′ T6

∫
R1,3×πa

C5 ∧ Tr(F a
2 ) . (3.27)

The five-tensor C5 on the D6a-brane wrapped on the three-cycle πa is reduced to four two-

tensors BI
2 with I = 0, 1, 2, 3 in the four-dimensional space-time. The Chern-Simons term

(3.27) results in the following coupling

cIa

∫
R1,3

BI
2 ∧ Tr(F a

2 ) , (3.28)

where cIa is a constant. For example, in the case of compactification on a factorizable six-

dimensional torus T 6 = T 2×T 2×T 2, considering a stack of Na D6a-branes wrapped on a cycle

with wrapping numbers (nia,m
i
a) in the i-th T 2, the constants cIa are

cIa =

{
Nam

1
am

2
am

3
a for I = 0 ,

Nan
J
an

K
a m

I
a for I = 1, 2, 3 , I ̸= J ̸= K ̸= I .

(3.29)

Note that the B ∧ F couplings (3.28) are not nonzero only for an U(1) gauge field F2.

In order to understand the mechanism giving a mass to the U(1) gauge boson, let us consider

the following Lagrangian of an Abelian gauge field Aµ and an antisymmetric two-tensor Bµν ,

L = − 1

12
HµνρH

µνρ − 1

4g2
FµνF

µν +
c

4
ϵµνρσBµνFρσ , (3.30)
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gauge bosons level spin mass chiral fermions level spin mass

SM gauge bosons N = 0 J = 1 0 SM chiral fermions N = 0 J = 1/2 0

string excited states N = 1 J = 0 Ms string excited states N = 1 J = 1/2 Ms

J = 1 Ms J = 3/2 Ms

J = 2 Ms

N = 2 J = 0
√
2Ms N = 2 J = 1/2

√
2Ms

J = 1
√
2Ms J = 3/2

√
2Ms

J = 2
√
2Ms J = 5/2

√
2Ms

J = 3
√
2Ms

Kaluza-Klein modes n = 1 J = 1 V
− 1

p−3

p−3 Kaluza-Klein modes n = 1 J = 1/2 V
− 1

q−3

q−3

winding modes w = 1 J = 1 M2
s V

1/6
6 winding modes w = 0 J = 1/2 M2

s V
1/6
6

anomalous U(1)s N = 0 J = 1 ∼ gMs gravitons level spin mass

string excited states N = 1 J = 0 ∼Ms massless gravitons N = 0 J = 2 0

J = 1 ∼Ms Kaluza-Klein modes n = 1 J = 2 V
−1/6
6

J = 2 ∼Ms winding modes w = 1 J = 2 M2
s V

1/6
6

Table 3.1: The spectrum of lower states in low-scale string models.

where Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν and Fµν = ∂µAν − ∂νAµ. We can rewrite (3.30) in terms

of the arbitrary field Hµνρ so that the constraint H = dB is imposed by introducing a Lagrange

multiplier field η,

L0 = − 1

12
HµνρH

µνρ − 1

4g2
FµνF

µν − c

6
ϵµνρσHµνρAσ −

c

6
ηϵµνρσ∂µHνρσ . (3.31)

Integrating by parts the last term in eq.(3.31), we can find a quadratic action for H and

immediately solve for H,

Hµνρ = −c ϵµνρσ(Aσ + ∂ση) . (3.32)

Inserting (3.32) into (3.31), we can find

LA = − 1

4g2
FµνF

µν − c2

2
(Aσ + ∂ση)

2 , (3.33)

which is a mass term of the Abelian gauge field Aµ “eating” the scalar η and acquiring a mass

m2 = g2c2.

Thus, the B∧F couplings (3.28) give masses to some linear combinations of additional U(1)

gauge bosons. The masses of the U(1) gauge bosons are explicitly given by

m2
ab = gagbM

2
s

∑
I

cIac
I
b , (3.34)

where the sum runs over the R-R fields with nonzero B ∧ F couplings and ga is the gauge

coupling constant of U(1)a. Therefore, the anomalous U(1) gauge bosons have masses of the

order of Ms ∼ 1TeV.
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After electroweak symmetry breaking, the anomalous U(1) gauge bosons form mass eigen-

states of neutral gauge bosons together with the third component of SU(2)L. The mass of

Z boson receives corrections induced by the additional U(1) gauge bosons. The electroweak

precision measurements give constraints on the ρ parameter, ρ = 1.0004+0.0003
−0.0004 [42], and this can

be used to impose bounds on the string scale Ms. For example, in case of nH = 1 and nh = 0

in eq.(2.76), Ms ≳ 10TeV, while in case of nH = 0 and nh = 1, Ms ≳ 5TeV [43]. However, note

that these bounds highly depend on the detail of the Higgs sector.

We will use the results of open string four-point amplitudes which do not include poles of

the anomalous U(1) gauge bosons as well as the KK modes. We can ignore the anomalous U(1)

exchanges. However, note that the amplitudes do include poles of string excited states of the

anomalous U(1) gauge bosons.

The spectrum of lower states in low-scale string models which have been discussed above

is summarized in Table 3.1. We will eventually consider only string excited states in the next

part, however, it is important to understand the spectrum of the models that we will assume

in discussions on phenomenology at the LHC.
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Part II

Signatures of low-scale string models at

the LHC

In this part, we explore a possibility of observing signatures of low-scale string models in dijet

events at the LHC. This part is original of this thesis based on ref.[19, 20].

4 String resonances at the LHC

4.1 Dijet events at the LHC

We focus on dijet events. String excited states which are characteristic modes in low-scale

string models have the color quantum number and can be produced in scattering processes of

partons. Since string excited states do not have a characteristic parity, such as the R-parity

in the MSSM (for review, in ref.[44]) and the KK parity in the UED models [23], they can be

produced alone in two-parton scattering processes. In these processes with exchanges of the

states with masses of the order of TeV, the two partons in the final state are very energetic

and hadronized into hadrons resulting in two jets.

Dijet events consist of two jets with higher transverse momentum, pT, which is the size of

momenta in the plane vertical to the beam pipe. In the QCD processes in the high-pT regime,

t-channel processes with small scattering angles from the beam pipe are dominant. Since at

the LHC which is a proton-proton collider, the parton scattering processes cannot be in the

center-of-mass frame, the Lorentz invariant observables are important. One of the Lorentz

invariant observables in dijet events is the dijet invariant mass,

Mjj =
√

(E1 + E2)2 − (p1 + p2)
2, (4.1)

where Ei is the energy and pi is the momentum of each jet. The dijet invariant mass distribu-

tions at the LHC are shown in Fig.4.1. The results are fitted well with the QCD prediction.

If string excited states are produced in the two-parton scattering processes, they can be

observed as “resonances” in the dijet invariant mass distributions, since scattering amplitudes of

the processes have s-channel poles. The resonances create a deviation from the QCD prediction

or an excess of events localized in the dijet invariant mass. They are most clear signature for

the discovery of colored new particles.

Constraints at the LHC

The string scaleMs, the mass of the first string excited state, is constrained by the ATLAS and

CMS experiments at the LHC. The value of the string scale smaller than 3.61TeV and 4.78TeV

has been excluded by the ATLAS [16] and by the CMS [17], respectively. This is obtained
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Figure 4.1: The dijet invariant mass distributions fitted with a function fitting to the QCD prediction

at the ATLAS (the left figure) [16] and the CMS (the right figure) [17], with 4.8 fb−1 for
√
s = 7TeV

and with 4 fb−1 for
√
s = 8TeV, respectively. The right figure shows together with the QCD prediction.

The middle panel in the left figure shows the data minus the fit divided by the fit, and the bottom

panels in the left and right figures show the bin-by-bin significance between the data and the fit.

Figure 4.2: The 95% Confidence Level (CL) upper limit on the cross section times acceptance for

string resonances at the ATLAS (the right figure) [16] with 4.8 fb−1 for
√
s = 7TeV, and the cross

section times branching fraction times acceptance for resonances decaying to qg final state at the CMS

(the right figure) [17] with 4 fb−1 for
√
s = 8TeV. The acceptance ranges from 45% to 48% for the

ATLAS, and A ≈ 0.6 for the CMS.
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from Fig.4.2. The black filled circles or the red filled circles in Fig.4.2 are the observed 95%

Confidence Level (CL) upper limit on the cross section for string resonances. The value of the

string scale where the cross section is larger than the observed upper limit has been excluded

at 95% CL.

Photon+jet events

Besides dijet events, other interesting events at the LHC have also the possibility of observing

string resonances, such as γ+jet events [45, 46] and tt events [38]. In particular, γ+jet events

include a process which is absent in the SM, and they are available for confirming string models.

The process of gg → gγ in γ+jet events does not occurs at tree-level in the SM but does

in string models using D-branes. Since the open string on a stack of N D-branes realize U(N)

gauge bosons, in scattering processes of a SU(N) and an U(1) gauge bosons on the same stack,

string excited states of the SU(N) gauge bosons can be exchanged. The U(1)Y hypercharge

gauge boson of the SM is a linear combination of some U(1) gauge bosons on some stacks of

D-branes, and the string excited states of the SU(N) gauge bosons can decay into a photon.

Therefore, string excited states of the SU(3)color gauge bosons can be exchanged at tree-level in

gg → gγ, and string resonances can be also observed in the γ+jet invariant mass distributions.

The γ+jet invariant mass distributions at the ATLAS are fitted well with the SM predic-

tion [47], and the recorded highest invariant mass is 2.57TeV. Although an additional parameter

which is the U(1) gauge boson fraction of a photon is required, γ+jet events are interesting and

available for confirming D-brane models.

4.2 Model independence at the LHC

We concentrate on dijet events. Let us consider two-parton scattering processes which result

in dijet events and where string excited states can be exchanged. The two-parton scattering

processes are gg → gg, gg → qq, qq → gg, qg → qg, qg → qg, qq → qq, qq′ → qq′ and qq → qq.

Since quarks and gluons are massless modes of open strings on stacks of D-branes, scattering

amplitudes of these processes are calculated from open string amplitudes with external four

massless states of the open strings. The open string amplitudes are reduced to the QCD

amplitudes in a low-energy limit of
√
s ≪ Ms, where

√
s is the center-of-mass energy in the

parton CM frame.

When
√
s ≈Ms, the open string amplitudes have all the s, t and u-channel poles of all the

infinitely excited open string states. Including all the poles of all the infinitely excited states is

just a string effect, and the string amplitudes cannot be reduced to field theoretical amplitudes

without some approximation. We should expand them by any one of the s, t and u-channel

poles in order to add widths of string excited states in the poles. Since we want to observe a

resonance in a mass distribution, we expand the open string amplitudes with a sum over the

s-channel poles. Then the amplitudes have already been correct only near the s-channel poles.
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We consider only the two-parton scattering processes with s-channels, gg → gg, gg → qq,

qq → gg, qg → qg, qg → qg and qq → qq.

Kaluza-Klein and winding modes

In the spectrum of low-scale string models, in addition to string excited states of the open

strings, there are other states which can be exchanged in the two-parton scattering processes at

tree-level. They are Kaluza-Klein modes and characteristic modes of strings, winding modes.

Generally, D-branes realizing the SM gauge group have extra space dimensions than three.

When the extra dimensions on the SM branes are compactified, Kaluza-Klein (KK) and winding

modes of open strings on the SM branes appear in our four-dimensional space-time. They have

the same gauge quantum numbers as that of the SM particles. The KK modes come from

that momenta along the compact dimensions parallel to the SM brane are quantized, and the

winding modes come from that the open strings can wind around the compact dimensions

transverse to the SM branes. If the compact dimensions are flat, and radii of the parallel and

transverse dimensions are RN and RD, respectively, the KK and winding modes have masses,

MKK
n =

n

RN

, Mwind.
w = wM2

sRD , (4.2)

for the KK modes with nth level, and for the winding modes with the winding number w. Both

of them appear from momenta along the compact dimensions.

Thus, the masses of the KK and winding modes depend on the size of the compact dimen-

sions and the geometry of the compact space. Therefore, processes where the KK and winding

modes can be exchanged also depend on such the detail of model-buildings. Since there are a

lot of possible ways of model-buildings in string models, it does not seem worthwhile to discuss

each individual model.

The KK and winding modes have the possibility of being exchanged in the two-parton scat-

tering processes at tree-level. However, if momenta along the extra dimensions are conserved,

they are produced in pairs but not alone, like the KK parity conservation in the UED mod-

els. In fact, among the two-parton scattering processes with s-channels, in the processes of

gg → gg, gg → qq, qq → gg, qg → qg and qg → qg, only the string excited states can be

exchanged (Fig.4.3), on the other hand, in the process of qq → qq, both the string excited

states and the KK and winding modes can be exchanged (Fig.4.4). The former processes are

model-independent, and the latter is model-dependent.

In the rest of this subsection, let us discuss the momentum conservation in each process.

4.2.1 gg → gg , gg → qq and qq → gg

In the processes of gg → gg, gg → qq and qq → gg, there may be exchanges of the SM gluons,

the string excited gluons and the KK gluons which are realized by an open string on the U(3)color
branes. In particular, gg → gg is a scattering process including only states realized by the open

string. Since the U(3)color brane is one stack of three D-branes, momenta in the process are
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Figure 4.3: The model independent two-parton scattering processes with exchanges of the string

excited states of gluons and quarks, g∗ and q∗, respectively.

❣
✦ ❣❑❑

Figure 4.4: The model-dependent processes with an exchange of the KK gluon, gKK.

conserved. The single KK gluon cannot be produced in gg → gg and the pair of the KK gluons

can be produced as shown in Fig.4.5. However, the process such as Fig.4.5 is at one-loop level

beyond a scope of this thesis. The momentum conservation is similarly true in gg → qq and

qq → gg, because these processes have the same interaction vertices gg → g∗ as gg → gg has,

where g∗ denotes the first string excited gluon. If momenta are conserved at the vertex, they

are also conserved through the processes.

4.2.2 qg → qg and qg → qg

In the processes of qg → qg and qg → qg, there may be exchanges of the SM quarks, the string

excited quarks and the KK quarks which are realized by an open string whose ends attach on

two different stacks of D-branes intersecting each other. For example, the left-handed quark

doublets QL are realized as massless modes of the open string with ends on both the U(3)color
and the U(2)left branes. An intersection plane between the two different stacks of D-branes

contains our three-dimensional space, and the open string is localized on the intersection plane.

If the intersection plane does not have extra dimensions, there are not KK modes of the open

string including the KK quarks. Even if the intersection plane has extra dimensions, momenta

on the intersection plane are conserved. Therefore, the KK quarks cannot be exchanged in

qg → qg and qg → qg.

4.2.3 qq → qq

In the process of qq → qq, there may be exchanges of the SM gluons, the string excited gluons

and the KK gluons which are realized by the open string on the U(3)color branes. On the other

hand, since the process is a scattering process between a quark and an antiquark realized by the

open strings with ends on the two different stacks of D-branes, momenta in the process are not

conserved. The process of qq → qq is a pair-annihilation and pair-production, and each quark
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Figure 4.5: The gg → gg process with an exchange of a pair of the KK gluons, gKK.

current is conserved but an internal charge through the process is not conserved. In qq → qq,

the KK gluons and the other KK modes can be exchanged, and the process is model-dependent.

As mentioned above, it does not seem worthwhile to discuss the model-dependent process in

detail. Fortunately, considering dijet events at the LHC which is a proton-proton collider, we

may ignore antiquarks in the initial state because antiquark fractions of a proton are suppressed

by the parton distribution functions (PDFs). In fact, although qq initial states contribute larger

than gg initial states since qq contains an initial quark, qg initial states have largest contribu-

tions of all the initial states. Therefore, we can consider only qg → qg in later analyses, and

eventually we can say leading signatures of low-scale string models at the LHC are independent

of the detail of model-buildings.

Here, we will simply ignore the model-dependent process, qq → qq, and concentrate on only

the model-independent processes, gg → gg, gg → qq (qq → gg) and qg → qg (qg → qg).23

4.3 Reduction of string amplitudes and widths of string excited

states

As mentioned in the previous subsection, in low-scale string models, scattering amplitudes of

the two-parton scattering processes are calculated from open string amplitudes with external

four massless states of the open strings. The tree-level amplitude with external four gluons has

been calculated in ref.[48, 49]. The amplitudes with external two gluons and two quarks at

tree-level have been calculated in ref.[13], where it is assumed that the SM chiral fermions are

realized by the open string stretching between D-branes intersecting each other. 24

The open string amplitudes should be reduced to field theoretical amplitudes in order to

add widths of string excited states in their poles. In this subsection, the reduction of the open

string amplitudes and calculation of the widths of string excited sates are reviewed briefly, and

see AppendixA in detail.

23Although contributions of qq → qq are very large due to initial quarks, the process does not contribute

dijet resonances because it has no s-channel. Contributions of t-channel poles of KK modes in the process are

analyzed in ref.[12].
24A brief review of calculation of the four-point open string amplitudes is in AppendixC.
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The open-string amplitudes are reduced to the QCD amplitudes in the low-energy limit

where the scattering energy
√
s is much less than the string scale Ms,

√
s ≪ Ms. When√

s ≈ Ms, string effects appear in the open string amplitudes through “string form factor”

functions such as

V (s, t, u) =
Γ(1− s/M2

s )Γ(1− u/M2
s )

Γ(1 + t/M2
s )

, (4.3)

where s, t and u are the Mandelstam variables of scattering particles, and Γ(x) is the ordinary

Gamma function. The form factor functions have all the s, t and u-channel poles of all the

infinitely excited open string states, which is just the string effect. We expand them by a sum

over the s-channel poles in order to reduce to field theoretical amplitudes,

V (s, t, u) ≃
∞∑
n=1

1

(n− 1)!

1

(M2
s )
n−1

1

s− nM2
s

n−1∏
J=0

(u+ JM2
s ) , (4.4)

which is an approximation near each nth pole, s ≃ nM2
s . These poles correspond to string

excited states which have masses of Mn =
√
nMs. This expansion implies that the open string

four-point amplitudes are reduced to two-body scattering amplitudes of SM particles, in which

string excited states are exchanged in s-channel.

The string form factor functions can be expanded in terms of 1/M2
s . The expansion corre-

sponds to the low-energy limit of Ms → ∞. In the expansion, the string form factor functions

become unity,

V (s, t, u) = 1− π2

6
su

1

M4
s

+O
(

1

M6
s

)
. (4.5)

The unity in eq.(4.5) describes an exchange of a massless state, and the open string amplitudes

are reduced to the QCD amplitudes. On the other hand, the term of the order of 1/M4
s in

eq.(4.5) describes a string contact interaction as a result of summing up all string excited

states. Note that there is no term of the order of 1/M2
s in eq.(4.5).

In the open string amplitudes expanded by s-channel poles, there is a new angular depen-

dence which is described by a factor
∏n−1

J=0(u+ JM2
s ) in eq.(4.4). The new angular dependence

is multiplied by an original angular dependence in the SM amplitudes and decomposed into a

sum over the Wigner d-functions. The Wigner d-function, dJλ1−λ2, λ3−λ4(θ), represents an angu-

lar dependence of a process through a state with spin J , in which initial helicities along z-axis

are λ1, λ2, and final helicities along z′-axis are λ3, λ4. The angle θ is that between the z-axis

and z′-axis. Then, the two-body scattering amplitude with exchanges of nth string excited

states are

Mnth(λ1, λ2 → λ3, λ4) ≃
1

s−M2
n

Jmax∑
J=Jmin

d Jλ1−λ2, λ3−λ4(θ)Fn
J ∗
λ3,λ4

Fn
J
λ1,λ2

, (4.6)

where Fn
J
λi,λj

is a matrix element of a decay of the nth string excited state with spin J into

states with helicities λi, λj. This decomposition implies that nth string excited states are

degenerate in mass of Mn with various spin J which ranges from Jmin to Jmax. The value of

the highest spin is Jmax = j0 + n, where j0 is original spin of the corresponding SM particle.
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String excited states are unstable and decay into not only the SM particles but also other

light string excited states or KK modes. The s-channel poles corresponding to nth string

excited states in eq.(4.4) should be softened to the Breit-Wigner form,

1

s−M2
n

→ 1

s−M2
n + iMn ΓJn

, (4.7)

where ΓJn is a total decay width of the nth string excited state with spin J . The width is

calculated as

ΓJn =
1

16πMn

1

2J + 1

∑
λi,λj

∣∣Fn Jλi,λj ∣∣2 , (4.8)

by extracting Fn
J
λi,λj

from the two-body scattering amplitudes with exchanges of the nth string

excited states in eq.(4.6).

Loop-level amplitudes may lead to an imaginary part in a pole written by a width of an

exchanged state. However, for the purpose of this thesis, we consider only tree-level amplitudes,

and we add the width to the imaginary part in the s-channel pole by hand.

4.3.1 First string excited state exchanges

The model-independent two-parton scattering processes with exchanges of the first string ex-

cited states are gg → gg, gg → qq, qq → gg, qg → qg and qg → qg in Fig.4.3. The scattering

amplitudes of the processes are calculated in ref.[11, 12], and the calculations are reviewed in

Appendix A. The squared amplitudes averaged over spins and colors in the initial state and

summed in the final state are∣∣M1st(gg → gg)
∣∣2 = 8g4

M4
s

1

N2

{
(N2 − 4)2

4(N2 − 1)

[
M8

s

(ŝ−M2
s )

2 + (MsΓJ=0
g∗ )2

+
û4 + t̂4

(ŝ−M2
s )

2 + (MsΓJ=2
g∗ )2

]
+

[
M8

s

(ŝ−M2
s )

2 + (MsΓJ=0
C∗ )2

+
û4 + t̂4

(ŝ−M2
s )

2 + (MsΓJ=2
C∗ )2

]}
,

(4.9)∣∣M1st(gg → qq)
∣∣2 = 2g4

M4
s

Nf

N(N2 − 1)

[
N2 − 4

2

t̂û3 + ût̂3

(ŝ−M2
s )

2 + (MsΓJ=2
g∗ )2

+
t̂û3 + ût̂3

(ŝ−M2
s )

2 + (MsΓJ=2
C∗ )2

]
.

(4.10)∣∣M1st(qq → gg)
∣∣2 = 2g4

M4
s

N2 − 1

N3

[
N2 − 4

2

t̂û3 + ût̂3

(ŝ−M2
s )

2 + (MsΓJ=2
g∗ )2

+
t̂û3 + ût̂3

(ŝ−M2
s )

2 + (MsΓJ=2
C∗ )2

]
,

(4.11)∣∣M1st(qg → qg)
∣∣2 = ∣∣M1st(qg → qg)

∣∣2
=

2g4

M2
s

N2 − 1

4N2

[
M4

s (−û)
(ŝ−M2

s )
2 + (MsΓ
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,

(4.12)∣∣M1st(qg → gq)
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∣∣2
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]
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(4.13)
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where N = 3, Nf = 6 and g is the gauge coupling constant of strong interaction. Here, ŝ, t̂

and û are the Mandelstam variables of the scattering partons. ΓJg∗, C∗, q∗ are total decay widths

of the first string excited states of gluons, the U(1)color gauge bosons and quarks with spin J ,

respectively,

ΓJ=0
g∗ =

g2Ms

4π

N

4
, ΓJ=2

g∗ =
g2Ms

4π

1

5

(
N

2
+
Nf

8

)
, (4.14)

ΓJ=0
C∗ =

g2Ms

4π

N

2
, ΓJ=2

C∗ =
g2Ms

4π

1

5

(
N +

Nf

8

)
, (4.15)

Γ
J=1/2
q∗ =

g2Ms

4π

1

2

N

4
, Γ

J=3/2
q∗ =

g2Ms

4π

1

4

N

4
, (4.16)

which are calculated in ref.[50].

The first string excited states of gluons and the U(1)color gauge boson have spins not only

J = 0 and J = 2 but also J = 1, which is verified by counting physical degrees of freedom of

them as in ref.[38]. However, as it is found from eqs.(4.10) and (4.11), the string excited gluons

with J = 1 cannot be accessible even in the process of qq → gg.25

The string excited states of the U(1)color gauge boson can be also exchanged in scattering

processes of gluons and quarks, since the open string on U(3)color branes realizes not only gluons

but also the U(1)color gauge boson. The anomalous U(1) gauge bosons including the U(1)color
gauge boson obtain masses of the order of Ms by the Green-Schwartz mechanism if the theory

is consistent or anomaly free.

4.3.2 Second string excited state exchanges and interference effects

The amplitudes of the model-independent two-parton scattering processes with exchanges of

the second string excited states are calculated in ref.[38, 19]. The authors of ref.[38] calculate

them for the processes of gg → gg, gg → qq, and we calculated for the processes of qg → qg

and qg → qg in ref.[19]. The squared amplitudes of the processes are∣∣M2nd(gg → gg)
∣∣2
non int.

=
g4

8M8
s

N2

N2 − 1

{
16M8

s (−û+ t̂)2

(ŝ− 2M2
s )

2 + (
√
2MsΓJ=1

g∗∗ )2

+

[
4

9

4M4
s (û

4 + t̂4)

(ŝ− 2M2
s )

2 + (
√
2MsΓJ=2

g∗∗ )2
+

1

9

û4(−û+ 5t̂)2 + t̂4(−t̂+ 5û)2

(ŝ− 2M2
s )

2 + (
√
2MsΓJ=3

g∗∗ )2

]}
,

(4.17)

∣∣M2nd(gg → qq)
∣∣2
non int.

=
g4

8M8
s

Nf ·N
2(N2 − 1)

[
1

9

4M4
s

(
t̂û3 + ût̂3

)
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s )
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√
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4
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t̂û3(−û+ 2t̂)2 + ût̂3(−t̂+ 2û)2
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s )

2 + (
√
2MsΓJ=3

g∗∗ )2

]
,
(4.18)

25The string excited gluons with J = 1 can be identified with a intermediate state in scattering processes of

g̃g̃ → g̃g̃ and g̃g̃ → qq, where g̃ denotes a gluino, a superpartner of gluon. Widths of the string excited gluons

with J = 1 are calculated in ref.[50] and Appendix A.
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∣∣M2nd(qq → gg)
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(ŝ− 2M2
s )

2 + (
√
2MsΓ

J=5/2
q∗∗ )2

]}
,
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(ŝ− 2M2
s )

2 + (
√
2MsΓ

J=5/2
q∗∗ )2

]}
.

(4.21)

Note that the second string excited states of the U(1)color gauge boson do not appear as inter-

mediate states in gg → gg, gg → qq and qq → gg. It is a general fact that string excited states

of an Abelian gauge boson with even level do not appear as poles in open string amplitudes.

ΓJg∗∗,q∗∗ are decay widths of the second string excited gluons and quarks with spin J , respec-

tively,
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(4.22)
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4π

1

6

N

10
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(4.23)

Note that in calculations of the decay widths (4.22) and (4.23), it is assumed that the second

string excited states decay into only the SM particles. The decay widths are calculated as

eq.(4.8) by extracting matrix elements from the two-body scattering amplitudes (4.6). However,

since the second string excited states are heavier than and have coupling with the first string

excited states, we should consider decay widths of the string excited states into the first string

excited states. Since there are some technical complication to calculate open string amplitudes

with external first string excited states, we do not calculate the decay widths of 2nd → 1st+SM.

We will discuss this issue in Sec.6.

Interference effect between second string excited states

As it is understood from eq.(4.6), string excited states are degenerate in mass with various spin

J . Therefore, we should consider interference effects between degenerate string excited states
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with different spins.

The necessity to consider the interference effects appear in the scattering amplitudes with

exchanges of the second string excited states for the first time. For one example, in the processes

of g±g∓ → g±g∓ with exchanges of intermediate states with Jz = ±2, both the second string

excited gluons with J = 2 and J = 3 are exchanged. For the other example, in the processes of

q±g± → q±g± with exchanges of states with Jz = ±1/2, both the second string excited quarks

with J = 1/2 and J = 3/2 are exchanged. Similarly, in the processes of q±g∓ → q±g∓ with

Jz = ±3/2, both the second string excited quarks with J = 3/2 and J = 5/2 are exchanged.

The interference effects in the above processes between the second string excited states are∣∣M2nd(gg → gg)
∣∣2
int.

=
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s
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(4.24)
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(4.28)

If the scattering amplitudes with exchanges of the first and second string excited states are

correct even in the region of M2
s < s < 2M2

s , we can also consider interference effects between

the first and second string excited states. However, the string form factor functions which
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are expanded by s-channel poles in eq.(4.4) are good approximations only near the s-channel

poles, s ≃ M2
s and s ≃ 2M2

s . The interference effects between the first and second string

excited states are calculated in ref.[19] and considered in later analyses. The inclusion of the

interference effects may make the analyses imprecise. However, in the analyses, we focus on

only the neighborhood of the s-channel poles, and the interference effects are negligible.

4.4 Dijet invariant mass distributions with string resonances

The squared amplitudes of the two-parton scattering processes with exchanges of the first and

second string excited states have been shown in the previous subsection. We can obtain dijet

invariant mass distributions with string resonances at parton level, assuming the LHC.

Formulation for dijet invariant mass distributions

A formula for the dijet invariant mass distribution is derived in the following way. A cross

section of dijet events caused by two-parton scattering processes is described by

σ
(
p1(P1), p2(P2) → j1(p1), j2(p2), X

)
=
∑
i, j

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1, Q)fj(x2, Q)σ
(
i(pi), j(pj) → k(pk), ℓ(pℓ)

)
,
(4.29)

where p1, p2 denote the incoming protons, j1, j2 denote observed jets and X denote the QCD

remnants. The functions of fi(x1, Q) and fj(x2, Q) are the PDFs of a proton for the initial

parton i and j, with momentum transfer Q and momentum fractions

x1 =
pi
P1

, x2 =
pj
P2

, (4.30)

respectively, where pi and pj are each momentum of the initial parton i and j. The cross section

(4.29) is described in terms of a differential cross section of a specific two-parton scattering

process ij → kℓ,

σ(p1p2 → j1j2) =
∑
i, j

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1, Q)fj(x2, Q)

∫
dt̂

dσ(ij → kℓ)

dt̂
, (4.31)

where the differential cross section can be recast by a squared amplitude |M(ij → kℓ)|2 into

dσ(ij → kℓ)

dt̂
=

∣∣M(ij → kℓ)
∣∣2

16πŝ2
. (4.32)

We want to transform the integrating variables in eq.(4.31) into observables in dijet events.

The observables are the dijet invariant mass M , the transverse momentum pT and rapidity y

or pseudo-rapidity η of the observed jet which are defined as

tanh y ≡ |p|
E
, tanh η ≡ |p|

pz
, (4.33)

and so on.
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In the parton center-of-mass frame, rapidities of the final parton k and ℓ are opposite in

sign: y ≡ y∗k = −y∗ℓ , since these partons are produced back-to-back in this frame. We define

a boost velocity from the parton center-of-mass frame to the proton center-of-mass frame as

β ≡ tanhY . Then pseudo-rapidities of the observed jets, y1 and y2, can be written by

y1 = y + Y , y2 = −y + Y . (4.34)

As the observables in dijet events, we use the following quantities independent each other,

y =
1

2
(y1 − y2) , Y =

1

2
(y1 + y2) , (4.35)

which correspond to the rapidity and the boost in the parton CM frame, respectively. Then

the Mandelstam variables ŝ, t̂ and û of the scattering partons and the momentum fractions x1
and x2 can be described in terms of y, Y and the dijet invariant mass M ,

ŝ =M2 , t̂ = −M
2

2

e−y

cosh y
, û = −M

2

2

ey

cosh y
, (4.36)

x1 =

√
M2

s
eY , x2 =

√
M2

s
e−Y , (4.37)

where
√
s is the proton center-of-mass energy.

Then, we obtain the dijet invariant mass distribution by transforming the integrating vari-

ables in eq.(4.31) into the observables in dijet events,

dσ(pp → jj)

dM
=

∑
i, j

M

∫ Ymax

−Ymax

dY x1fi(x1,M)x2fj(x2,M)

∫ ymax

−ymax

dy
1

cosh2 y

∣∣M(ij → kℓ)
∣∣2

16πŝ2
.

(4.38)

Kinematical cuts for dijet invariant mass distributions

We impose cuts on kinematical observables event by event in order to suppress background

events and relatively enhance signal events. According to ref.[51], we impose kinematical cuts

for the dijet invariant mass distributions as follows,

pT,i > pT,cut , |yi| < yi,cut , |y| < ycut . (4.39)

where pT,i is the transverse momentum and yi is the pseudo-rapidity of the observed jet. Dijet

events consist of two jets with high-pT, since momenta along the beam pipe are not conserved

but the transverse momenta vertical to the beam pipe are conserved at a hadron collider.

The pseudo-rapidity cut in eq.(4.39) is also required, since jets near the beam pipe cannot be

observed. The last cut in eq.(4.39) on the rapidity in the parton CM frame y is imposed to

suppress the QCD background events. The dominant QCD processes in the high-pT regime are

t-channel processes with small scattering angles from the beam pipe. Small y means a large

scattering angle because of the following relation with a scattering angle in the parton CM

frame θ∗,

y =
1

2
ln

[
1 + cos θ∗
1− cos θ∗

]
. (4.40)
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Figure 4.6: The dijet invariant mass distribution dσ/dM [fb/GeV] of the first string resonances for

Ms = 4TeV in the processes of gg → gg (the blue line), gg → qq (the red line), qq → gg (the green

line), qg → qg (the cyan line) and qg → qg (the magenta line), of the first string resonances in the all

processes and the SM background (the yellow solid line), and of the SM background only (the yellow

dashed line), at the 14TeV LHC.

Therefore, the rapidity cut on y is useful to suppress the background events.

Taken into account the kinematical cuts (4.39), the integrating region of y and Y in eq.(4.38)

are

ymax = min(ycut , yi,max − Y ) for Y > 0

= min(ycut , yi,max + Y ) for Y < 0 ,
(4.41)

Ymax = min

(
yi,max , ln

√
s

M2

)
, (4.42)

where

yi,max = min

(
yi,cut ,

1

2
ln

[
1 +

√
1−

p2T,cut
(M/2)2

]/[
1−

√
1−

p2T,cut
(M/2)2

])
. (4.43)

Dominance of qg → qg process

The dijet invariant mass distributions of the first and second string resonances for Ms = 4TeV

are shown in Fig.4.6 and Fig.4.7. We take into account the kinematical cuts (4.39) with pT,cut =

350GeV, yi,cut = 2.3 and ycut = 0.85. We use mstw2008 [52] as the PDFs, and we use the

following function as the dijet invariant mass distribution of the SM background [51],

f(x) = p0
(1− x)p1

xp2+p3 lnx
, (4.44)

which are fitted with the QCD prediction and where x ≡ Mjj√
s
and p0,1,2,3 are parameters.
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Figure 4.7: The dijet invariant mass distribution dσ/dM [fb/GeV] of the second string resonances for

Ms = 4TeV in the processes of gg → gg (the blue line), gg → qq (the red line), qq → gg (the green

line), qg → qg (the cyan line) and qg → qg (the magenta line), of the second string resonances in

the all processes and the SM background (the yellow solid line), and of the SM background only (the

yellow dashed line), at the 14TeV LHC.

As it is clearly understood from Fig.4.6 and Fig.4.7, the process of qg → qg are dominant

in both the first and second string resonances. The dominance of qg → qg comes from the

dominance of quarks in the PDF of a proton. The process of qg → qg is remarkably dominant

in case ofMs = 4TeV, while the process of gg → gg also have major contributions to the string

resonances in case of Ms = 2TeV [18].

Thus, since the process of qg → qg is dominant, we can consider only the process in later

analyses. The fact that there are almost only the string excited quarks in the string resonances

is useful for later analyses.

4.5 The flow of Monte Carlo simulation

In studies of this thesis, we focus on the two-parton scattering processes. The two partons in the

final state are hadronized into two bundles of hadrons which result in two jets. Therefore, we

should perform computer simulations for hadronization and detector simulation to reproduce

results at the LHC. The setup of our Monte Carlo (MC) simulation is as follows.

First, we use CalcHEP [53, 54] to generate event samples at parton-level, using MRST2007

Modified LO [55] as the PDFs. We generate event samples for the SM background of all

the two-parton scattering processes at tree-level, as well as event samples for string signal of

the model-independent two-parton scattering processes in Fig.4.3. Since there was no event

generator including higher spin fields in particular J = 3/2, we generate the event samples by

adding the scattering amplitudes calculated in Sec.4.3 to CalcHEP programs by hand.26 See the

web page [57] about event generations for string signal in detail.

26We may use technique in ref.[56] to generate event samples including spin-3/2 particles.
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Figure 4.8: The dijet invariant mass distribution of the first string resonances for Ms = 4TeV in the

process of qg → qg only (the blue points with error bars) and the all processes (the red points with

error bars) including the SM background (the histogram), using the MC simulations with 1.4 fb−1 at

the 14TeV LHC.

Next, we use Pythia8 [58] for hadronization of quarks and gluons in the final state, and we

use Delphes1.9 [59] for detector simulation mainly to identify jets consisting of hadrons, using

its default detector card for the ATLAS. Finally, we use ROOT [60] to construct dijet events by

choosing two jets, j1 and j2, with highest and second highest transverse momenta, event by

event. We also use ROOT to suppress background events and relatively enhance signal events by

imposing kinematical cuts in dijet events, as eq.(4.39).

The flow of our MC simulation is as follows:

CalcHEP for event generation

↓
Pythia8 for hadronization

↓
Delphes1.9 for detector simulation

↓
ROOT for analysis .

(4.45)

The dijet invariant mass distribution of the first string resonances for Ms = 4TeV using the

MC simulation with 1.4 fb−1 at the 14TeV LHC is shown in Fig.4.8. The kinematical cuts are

(4.39) with pT,cut = 330GeV, yi,cut = 2.5 and ycut = 0.65. As it is also found from Fig.4.8, the

process of qg → qg dominates over all the processes.

In Fig.4.8, there are some bins which the number of events in qg → qg only exceeds the

number of events in all the processes. It is considered as the reason that each event sample
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for qg → qg only and for all the processes corresponds to an independent experiment, and the

statistics are poor due to the integrated luminosity of 1.4 fb−1.

5 Angular analysis

If a new heavy resonance is discovered at the LHC, an angular distribution analysis is important

to confirm that the resonance comes from low-scale string models. In the dominant process at

the LHC, qg → qg, two degenerate first string excited quarks with J = 1/2 and J = 3/2 are

exchanged. If we can experimentally distinguish angular distributions with both J = 1/2 and

J = 3/2 states from that with a J = 1/2 state only, this can be a signature of low-scale string

models.

5.1 χ distributions on string resonances

We analyze χ distributions as angular distributions of dijet events. The quantity χ is defined

as

χ ≡ exp (y1 − y2) =
1 + cos θ∗
1− cos θ∗

, (5.1)

where y1 and y2 are the pseudo rapidities of the observed jets, and θ∗ is the scattering angle in

the parton CM frame.

The χ distributions are used to search for non-resonant signals of new physics, such as the

quantum black hole and contact interactions at the ATLAS [16] and quark compositeness at

the CMS [61]. The χ distribution predicted by the QCD is relatively flat, while that by many

new physics has a peak at low values of χ, since the new physics signals are more isotropic

than the QCD predictions which dominantly have small scattering angles. Fig.5.1 shows the χ

distributions for the dijet invariant mass bins at the ATLAS [16].

Formulation for χ distributions on string resonances

A formula for the χ distribution is derived in the following way. The cross section of dijet

events caused by two-parton scattering processes is shown in eqs.(4.31) and (4.32). In case of

the dijet invariant mass distributions, the integrating variables in eq.(4.31) are transformed into

the observables in dijet events, (x1, x2, t̂) → (y, Y,M). In case of the χ distributions, since χ is

defined as χ ≡ e2y, the transformation is (x1, x2, t̂) → (χ, Y,M). The Mandelstam variables ŝ,

t̂ and û of the scattering quark and gluon can be described in terms of χ and M ,

ŝ =M2 , t̂ = − M2

1 + χ
, û = −M2χ

1 + χ
. (5.2)

Then, we obtain the χ distribution of dijet events,

dσ(pp → jj)

dχ
=

∑
i,j

∫ M2
high

M2
low

dM2

∫ Ymax

−Ymax

dY x1fi(x1,M)x2fj(x2,M)
1

(1 + χ)2

∣∣M(ij → kℓ)
∣∣2

16πŝ2
,

(5.3)
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Figure 5.1: The χ distributions of the QCD prediction with theoretical and total systematic uncer-

tainties and of the data with statistical uncertainties at the ATLAS with 4.8 fb−1 for
√
s = 7TeV,

for each bin of the dijet invariant mass [16]. The distributions are offset by the amount shown in

parentheses.

where Mlow and Mhigh are lowest and highest values of the dijet invariant mass bins.

We focus on the χ distribution on the first string resonance. In the first string resonance,

the first string excited quarks with J = 1/2 and J = 3/2 dominate over all the other string

excited states. Substituting the squared amplitudes of qg → qg of eqs.(4.12) and (4.13) into

(5.3), we obtain a prediction to the χ-distribution on the first string resonance,

dσ1st(qg → qg)

dχ
=

1

(1 + χ)2

(
CJ=1/2 + CJ=3/2 1 + χ3

(1 + χ)3

)
, (5.4)

where CJ=1/2 and CJ=3/2 are constants. The term proportional to CJ=1/2 in the parentheses

represents a χ dependence due to an exchange of the first string excited quark with J = 1/2,

and the term proportional to CJ=3/2 represents that due to an exchange of the first string

excited quark with J = 3/2. The overall factor 1/(1+χ)2 in eq.(5.4) is a kinematical factor.27

We consider the χ distribution on a new resonance coming from other “new physics”. In

the new resonance, there may be new J = 1/2 and J = 1 states. Then, the χ distribution of

dijet events on the new resonance is

dσ(pp → jj)

dχ
=

1

(1 + χ)2

(
CJ=1/2 + CJ=1

Jz=0

(1− χ)2

(1 + χ)2
+ CJ=1

Jz=±1

1 + χ2

(1 + χ2)

)
, (5.5)

where CJ=1/2, CJ=1
Jz=0 and C

J=1
Jz=±1 are also constants. The term proportional to CJ=1/2 represents

a χ dependence due to an exchange of the new J = 1/2 state in qg → qg, and the terms

proportional to CJ=1
Jz=0 and CJ=1

Jz=±1 represent that due to exchanges of the new J = 1 state in

gg → gg and qq → qq, respectively. If we want to distinguish which a new resonance comes

27Note that the χ dependence due to a J = 1/2 state exchange vanishes, and leaves only the overall kinematical

factor 1/(1 + χ)2. The χ dependence is the same as that due to a J = 0 state exchange.
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from low-scale string or the other “new physics”, we should consider the χ dependence due to

a J = 1 state exchange. However, in this analysis for simplicity, we do not consider it and

assume that the “new physics” include only a J = 1/2 state.

Kinematical cuts for χ distributions

As well as for the dijet invariant mass distributions, according to ref.[51], we impose kinematical

cuts for the χ distributions as follows,

pT,j1 > pT,cut , |y| < ycut , |Y | < Ycut . (5.6)

The transverse momentum cut is imposed on the leading jet j1 with highest pT. The rapidity

cut on y corresponds to constrain the small region of χ which we focus on. The last cut in

eq.(5.6) on the boost Y is imposed to make the QCD prediction of the χ distribution flat. The

boost cut corresponds to selection of more central events and it does not affect events with the

dijet invariant mass of the order of TeV. We set the dijet invariant mass bin M = [Mlow,Mhigh]

around the first string resonance.

In this analysis, we use a definition of χ ≡ e2|y|, and we can obtain twice the number of

events in the χ distribution.

5.2 χ distribution analysis

We generate event samples for both the SM background only and the SM background plus

string signal for Ms = 4TeV, 4.5TeV and 5TeV, at the LHC with
√
s = 14TeV. The event

samples for the string signal are generated using the scattering amplitudes with the first string

excited state exchanges of all the model-independent processes in Fig.4.3.

After choosing two jets with highest and second highest pT to construct dijet events, the

kinematical cuts (5.6) are imposed on both the SM background and the SM plus string event

samples, using the following parameters

pT,cut = 350GeV for Ms = 4TeV ,

pT,cut = 400GeV for Ms = 4.5TeV ,

pT,cut = 450GeV for Ms = 5TeV ,

ycut = 1.15 , Ycut = 1.0 .

(5.7)

The dijet invariant mass bin is set by Mjj = [Ms − 250GeV, Ms + 250GeV] around the first

string resonance.28 In order to obtain event samples for the string signal only, we subtract the

SM background from the SM plus string event samples.

Thus, we obtain a χ distribution which shows a behavior different from the QCD prediction.

If the behavior comes from the first string resonance, the χ distribution shows the χ dependences
28The dijet invariant mass bin is set by us, however, we consider the bin to be valid because the Gaussian fits

to the dijet invariant mass distributions giveM = 3995±6.2GeV and σ = 171.9±5.0GeV forMs = 4TeV with

20 fb−1, M = 4471± 7.9GeV and σ = 206± 9.0GeV for Ms = 4.5TeV with 30 fb−1, and M = 4997± 11.8GeV

and σ = 222.4± 13.7GeV for Ms = 5TeV with 50 fb−1, and [M − σ,M + σ] is almost fitted with the bin.
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Ms (luminosity) J = 1/2 and 3/2 J = 1/2 only J = 3/2 only

4TeV (18.7 fb−1) 0.7471 0.04058 0.

4.5TeV (30 fb−1) 0.6966 0.004562 5.386× 10−9

5TeV (50 fb−1) 0.4737 0.0466 3.198× 10−5

Table 5.1: p-values of the fits

(5.4) due to exchanges of the first string excited quarks with not only J = 1/2 but also J = 3/2.

The other “new physics” may also cause the χ dependence due to exchanges of new J = 1/2

and J = 1 states. In this analysis, for simplicity, it is assumed that the other “new physics”

includes only new J = 1/2 states.

Fitting χ distribution with three hypotheses

Using event samples for the string signal only, we fit the χ distribution with the function

of eq.(5.4), in three cases of CJ=1/2 ̸= 0 and CJ=3/2 ̸= 0, CJ=1/2 ̸= 0 and CJ=3/2 = 0,

and CJ=1/2 = 0 and CJ=3/2 ̸= 0. These fittings are performed by ROOT. These three cases

correspond to the hypotheses with both J = 1/2 and J = 3/2 states, a J = 1/2 state only,

and a J = 3/2 state only, respectively. The first hypothesis corresponds to low-scale string

models with the first string excited quarks with J = 1/2 and J = 3/2, while the second one

corresponds to the other “new physics” with new quark-like states.

Figs. 5.2, 5.3 and 5.4 show the χ-distributions of the string signal for Ms = 4TeV, 4.5TeV

and 5TeV with 18.7 fb−1, 30 fb−1 and 50 fb−1, respectively, at the 14TeV LHC. Each figure

includes three figures corresponding to the fits associated with the above three hypotheses.

The χ-distributions clearly do not match the fits with J = 3/2 only in the bottom figures

of Figs. 5.2, 5.3 and 5.4, therefore, the hypothesis with J = 3/2 only can be excluded. On the

other hand, the other two hypotheses with both J = 1/2 and J = 3/2 in the top figures and

with J = 1/2 only in the middle figures give rather good fits. It is difficult to judge which

hypothesis are fitted better with the χ distributions, without statistical analyses. We calculate

p-values of these fits using ROOT, and give them in Table 5.1.

The p-value is a probability that if a hypothesis is excluded in spite of that it is correct, the

exclusion is an experimental error [62]. If the p-value is smaller than 5%, the hypothesis can

be excluded at 95% Confidence Level. Evidently, the p-values of the hypotheses with J = 1/2

only and with J = 3/2 only are very small and smaller than 5% in Table 5.1. On the other

hand, the p-value of the hypothesis with both J = 1/2 and J = 3/2 is much larger than 5%,

and the hypothesis cannot be excluded, for Ms = 4TeV with 18.7fb−1, for Ms = 4.5TeV with

30 fb−1 and for Ms = 5TeV with 50 fb−1. Indeed, if we look at the middle figures of Figs.5.2,

5.3 and 5.4 closer, it is found that the fit with J = 1/2 only is systematically inconsistent, since

curves of the fit falls more quickly than the MC data for large χ.

Note that in this analysis, we consider only statistical uncertainties but not systematic

uncertainties. We may need to use normalized χ distributions 1/σ dσ/dχ, to reduce systematic
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Figure 5.2: The χ-distributions of the MC data for Ms = 4TeV with 18.7 fb−1 at the 14TeV LHC

(the points with error bars), and the fits associated with three hypotheses with both J = 1/2 and

J = 3/2 (the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and

J = 3/2 only (the long dashed line in the bottom figure).
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Figure 5.3: The χ-distributions of the MC data for Ms = 4.5TeV with 30 fb−1 at the 14TeV LHC

(the points with error bars), and the fits associated with three hypotheses with both J = 1/2 and

J = 3/2 (the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and

J = 3/2 only (the long dashed line in the bottom figure).

72



chi_with_str
Entries  617
Mean    3.469
RMS     2.267

|)
2

-y
1

X=exp(|y
1 2 3 4 5 6 7 8 9 10

ev
en

ts

0

100

200

300

400

500

600

700

chi_with_str
Entries  617
Mean    3.469
RMS     2.267

Chi Distribution

chi_with_str
Entries  617
Mean    3.469
RMS     2.267

|)
2

-y
1

X=exp(|y
1 2 3 4 5 6 7 8 9 10

ev
en

ts

0

100

200

300

400

500

600

700

chi_with_str
Entries  617
Mean    3.469
RMS     2.267

Chi Distribution

chi_with_str
Entries  617
Mean    3.469
RMS     2.267

|)
2

-y
1

X=exp(|y
1 2 3 4 5 6 7 8 9 10

ev
en

ts

0

100

200

300

400

500

600

700

chi_with_str
Entries  617
Mean    3.469
RMS     2.267

Chi Distribution

Figure 5.4: The χ-distributions of the MC data for Ms = 5TeV with 50 fb−1 at the 14TeV LHC (the

points with error bars), and the fits associated with three hypotheses with both J = 1/2 and J = 3/2

(the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and J = 3/2 only

(the long dashed line in the bottom figure).
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uncertainties such as the jet energy scale (JES), the PDFs and the integrated luminosity, as in

the analysis at the ATLAS [16]. Subtracting with the QCD background, we need to consider

theoretical and systematic uncertainties in the χ distribution predicted by the QCD, ∼ 10%

for higher dijet invariant mass bins. However, even in this easy analysis, the wrong hypotheses

can be excluded at 95% CL with O(10) fb−1. Therefore, we can expect that the LHC has the

ability to statistically identify characteristic angular dependences on the string resonance.

Thus, spin degeneracy of string excited states can be experimentally confirmed with the

integrated luminosity of O(10) fb−1, by the angular distribution analysis on the first string

resonance. This can be a signature of low-scale string models.

6 Second resonance analysis

In order to identify a new resonance as the string resonance, search for a second resonance

in dijet invariant mass distributions is important. The existence of the second string excited

states and their characteristic masses are distinct properties of low-scale string models.

First, there must be second string excited states in low-scale string models, while there is

no second state in the other “new physics”, such as the axigluon models [21] and the color-octet

scalar models [22]. Second, the masses of the second string excited states are
√
2 times of that

of the first string excited states, while typical masses of second KK modes are 2 times of that

of first KK modes, in the other models with extra dimensions, such as the five-dimensional

Universal Extra Dimension (UED) models.29

In this analysis, we investigate a discovery potential of the second string resonance in dijet

invariant mass distributions.

6.1 Second string resonances in dijet invariant mass distributions

We generate event samples for the SM background only and the SM background plus string

signal for Ms = 4TeV, 4.5TeV, 4.75TeV and 5TeV, at the LHC with
√
s = 14TeV. The event

samples for the string signal are generated using the scattering amplitudes with the first and

second string excited state exchanges of the dominant process at the LHC, qg → qg.

After constructing dijet events, the kinematical cuts for the dijet invariant mass distributions

(4.39) are imposed on both the SM background and the SM plus string event samples, using

29In the six-dimensional UED models, typical masses of second KK modes with KK parity +1 is
√
2 times of

that of first KK modes with KK parity +1. It may be possible to confirm low-scale string models by a search

for the third resonance, since third string excited states have
√
3 times of that of first string excited states.
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the following parameters

pT,cut = 350GeV for Ms = 4TeV ,

pT,cut = 400GeV for Ms = 4.5TeV ,

pT,cut = 430GeV for Ms = 4.75TeV ,

pT,cut = 450GeV for Ms = 5TeV ,

yi,cut = 2.3 , ycut = 0.85 .

(6.1)

As well as the kinematical cuts for the χ distributions (5.6), the transverse momentum cut is

imposed on the leading jet j1 with highest pT.

The dijet invariant mass distributions with the first and second string resonances are shown

in Fig. 6.1, forMs = 4TeV, 4.5TeV and 5TeV with 50 fb−1, 100 fb−1 and 300 fb−1, respectively,

at the 14TeV LHC. We can see first resonances at Mjj =Ms and second resonances at Mjj =√
2×Ms ≃ 5.66TeV, 6.36TeV and 7.07TeV for Ms = 4TeV, 4.5TeV and 5TeV, respectively.

In particular, forMs = 5TeV, the second resonance seems a just excess rather than a resonance,

and the statistics are clearly poor.

In order to investigate the discovery potential of the second string resonance, we calculate a

signal significance which represents a deviation from the SM prediction. We focus on the dijet

invariant mass window ofMjj = [
√
2Ms−250GeV,

√
2Ms+250GeV] around the second string

resonance. If the signal significance is larger than 5σ, we can propose that the second string

resonance can be discovered.

Calculation of significance

The significance Z is calculated in the following way. We define a statistic χ2 as follows

χ2 =

nbin∑
i=1

(
NSM+str,i −NSM,i

)2
σ2
SM+str,i + σ2

SM,i

, (6.2)

where nbin is the number of bins. NSM+str,i and NSM,i are the numbers of events of ith bin in

the dijet invariant mass distributions, for the SM plus string signal and for the SM background

only event samples, respectively. σ2
SM+str,i and σ

2
SM,i are dispersions of NSM+str,i and NSM+str,i,

including only statistical uncertainties.

We consider that the SM plus string event samples correspond to “experimental results”

and the SM only event samples correspond to “theoretical predictions” generated by MC sim-

ulations. Therefore, the numerator of eq.(6.2) represents a deviation from the SM hypothesis,

while the denominator represents a sum of the dispersions of “experiment” and “theory”. Since

the number of events N follows the Poisson distribution, the standard deviation is σ =
√
N (if

only statistical errors are considered). Therefore, σ2
SM+str = NSM+str and σ

2
SM = NSM, and (6.2)

is recast into

χ2 =

nbin∑
i=1

(
NSM+str,i −NSM,i

)2
NSM+str,i +NSM,i

. (6.3)
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Figure 6.1: The dijet invariant mass distributions with the first and second string resonances of the

MC data (the points with error bars) including the SM background (the histogram), for Ms = 4TeV

with 50 fb−1 (the top figure), Ms = 4.5TeV with 100 fb−1 (the middle figure) and Ms = 5TeV with

300 fb−1 (the bottom figure) at the 14TeV LHC.
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If the SM hypothesis is correct and the statistics are rich, the statistic χ2 follows the χ2

distribution. Then, the p-value is calculated as follows,

p =

∫ ∞

χ2

fχ2(z;nbin) dz , (6.4)

where fχ2(z;n) is the probability distribution function of the χ2 distribution with n degrees

of freedom. The significance is calculated using the p-value and the cumulative distribution

function Φ of the standard Gaussian distribution with the average 0 and the standard deviation

1,

Z = Φ−1(1− p) . (6.5)

Significance of second string resonances

We calculate the significance of the second string resonance in the above way. Fig. 6.2 shows

the dijet invariant mass distributions in which the second string resonances are observed at

5σ level. The integrated luminosities of 50 fb−1, 150 fb−1, 300 fb−1 and 600 fb−1 are required

for Ms = 4TeV, 4.5TeV, 4.75TeV and 5TeV, respectively. Here, we assume that the second

string excited states decay into the SM particles but not into the first string excited states,

namely the second string excited states have narrow widths (4.23). We consider the decay of

2nd → 1st + SM in the next subsection.

We consider only statistics uncertainties but not systematic uncertainties. In systematic

uncertainties, the normalization of the QCD background is important because the systematic

uncertainties include the JES, the PDFs, the integrated luminosity and so on which are asso-

ciated with the normalization. The normalization of the dijet invariant mass distributions is

determined so that it is fitted with the data in a control region. However, the dijet invariant

mass distributions between the first and second string resonances are raised due to string ef-

fects, and there is a possibility that the normalization is determined so that it is excessively

large. Then, we will compare the dijet invariant mass distributions with the string resonances

and that of the background only which is increased by some percent.

When the SM background is increased by 20%, Fig. 6.3 shows the dijet invariant mass

distributions in which the second string resonances are observed at 5σ level and forMs = 4TeV

and 4.5TeV, and at 4.8 σ level for Ms = 5TeV. The integrated luminosities of 70 fb−1, 350 fb−1

and 1500 fb−1 are required, respectively. When the SM background is increased by 50%, the

integrated luminosity of 100 fb−1 is required to observe the second string resonance at 2.4σ

level for Ms = 4TeV. In this case, in order to observe the second string resonance at 5σ level,

we need much more integrated luminosities, however, the analysis about how much luminosities

are required is not performed in this thesis.

6.2 Modified decay widths of second string excited states

Since we consider only the dominant process of qg → qg, exchanged states are the string excited

quarks. The decay width of the second string excited quark of eq.(4.23) includes only a decay
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Figure 6.2: The dijet invariant mass distributions with the second string resonances with the narrow

widths of the MC data (the points with error bars) including the SM background (the histogram),

in which the resonances are observed at 5σ level for Ms = 4.5TeV with 150 fb−1 (the top figure),

Ms = 4.75TeV with 300 fb−1 (the middle figure) and Ms = 5TeV with 600 fb−1 (the bottom figure).
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Figure 6.3: The dijet invariant mass distributions with the second string resonances with the nar-

row widths of the MC data (the points with error bars) including the SM background (the dashed

histogram) and that increased by 20% (the solid histogram), in which the resonances are observed at

5σ level for Ms = 4TeV with 70 fb−1 (the top figure) and Ms = 4.5TeV with 350 fb−1 (the middle

figure), and at 4.8σ level for Ms = 5TeV with 1500 fb−1 (the bottom figure).
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process of q∗∗ → qg. However, we should consider other decay channels into the first string

excited states, where the second string excited quark decays into a quark and the first string

excited gluon, q∗∗ → qg∗, and into a gluon and the first string excited quark, q∗∗ → q∗g.

Simple estimate of decay width of 2nd→ 1st+ SM

In order to avoid technical complication in calculations of decay widths of 2nd → 1st+SM, we

make a simple estimate that the decay widths of 2nd → 1st + SM are that of 2nd → SM+ SM

multiplied by a factor, following in ref. [38]. In other words, we describe total decay widths of

the second string excited quarks as

Γq∗∗, tot. = Γq∗∗→qg + Γq∗∗→qg∗ + Γq∗∗→q∗g

≡ Γq∗∗→qg + Aq∗∗ × Γq∗∗→qg ,
(6.6)

where Aq∗∗ is a constant factor.

The factor Aq∗∗ in eq.(6.6) is estimated in the following way. First, we count the number

of the first string excited states which are decay products of the second string excited quarks.

The first string excited quarks have two states with J = 1/2 and J = 3/2, while the first string

excited gluons have three states with J = 0, J = 1 and J = 2. The number of physical degrees

of freedom of the first string excited states are counted in ref.[38]. Therefore, the number of

the decay products is five.

Second, we consider phase space suppression. The phase space of a two-body decay in the

center-of-mass frame is

dΦ(M → p1, p2) =
2∏
i=1

d3pi
(2π)22p0i

(2π)4δ4(p1 + p2 −M)

=
dΩ

(4π)2

√
(M2 − (m1 +m2)2)(M2 − (m1 −m2)2)

2M2
,

(6.7)

where a parent particle mass is M , and each four-momentum of daughter particles is pi =

(mi,pi). If m ≡ m1 ̸= 0 and m2 = 0, a measure of the phase space is proportional to

(M2 − m2)/2M2. If m1 = m2 = 0, that is proportional to 1/2. A ratio of these phase

spaces is (M2 − m2)/M2. Therefore, the phase space suppression between decay channels of

2nd → 1st + SM and 2nd → SM + SM is proportional to the ratio. In the case of M =
√
2Ms

and m =Ms, the ratio is
(
√
2Ms)

2 −M2
s

(
√
2Ms)2

=
1

2
. (6.8)

In total, the factor Aq∗∗ is estimated as 5/2.

Significance of second string resonances with broader widths

We generate event samples for the string signal with the modified widths of the second string

excited quarks, for Ms = 4.5TeV and 4.75TeV at the LHC with
√
s = 14TeV. The modified
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Figure 6.4: The dijet invariant mass distributions with the second string resonances with the broader

widths of the MC data (the points with error bars) including the SM background (the histogram), in

which the resonances are observed at 5σ and 4.1σ level, for Ms = 4.5TeV with 1200 fb−1 (the top

figure) and Ms = 4.75TeV with 3000 fb−1 (the bottom one), respectively.

widths are 7/2 times of the widths of the second string excited quarks of eq.(4.23). Then, we

calculate the significance of the second string resonance with the broader width. Fig.6.4 shows

the dijet invariant mass distributions in which the second string resonances are observed at 5σ

and 4.1 σ level, for Ms = 4.5TeV and 4.75TeV, respectively. In order for the significance Z to

exceed 5, the integrated luminosities of 1200 fb−1 for Ms = 4.5TeV and larger than 3000 fb−1

for Ms = 4.75TeV are required.
In Fig.6.4, the resonances almost do not form peaks. The height of the resonance becomes

much lower as the width and mass are larger. In addition, the low-mass region of the resonance

becomes broader due to the effects of final state radiations and parton distribution functions. On

the other hand, the high-mass region of it also becomes broader due to initial state radiations,

though this effect is not included in our MC simulations [63].

The existence of the second string excited states and their characteristic masses are distinct

properties of low-scale string models. If the second string excited states do not decay into the
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first string excited states, the second string resonance in dijet events can be discovered at 5σ

level with the integrated luminosity of O(100) fb−1 for Ms ≤ 5TeV. However, since they have

the decay channels of 2nd → 1st + SM, the integrated luminosity of larger than O(1000) fb−1

may be required to discover the second string resonance at 5σ level. This means that we may

need the High-Luminosity LHC which is a possible future plan of the extension of the LHC.
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Summary and Prospects

Summary of this thesis

In this thesis, we have discussed signatures of low-scale string models at the LHC. Low-scale

string models are phenomenological models based on string theory, where the string scale Ms

which is the fundamental scale in string theory is of the order of TeV. Such a low string scale

is possible due to the existence of large extra dimensions, and these models are expected as

solutions to the hierarchy problem and have a possibility of being confirmed or excluded by the

LHC. In the following paragraphs, let us summarize what we have discussed in this thesis.

Intersecting D-branes and low-scale string models

In Part I, we reviewed intersecting D-branes which could give the SM spectrum, and we ex-

plained low-scale string models which has been considered in the studies of this thesis.

In Sec.1, we reviewed the basics of superstring theory. In Sec. 2, we reviewed the idea

of intersecting D-branes which could give rise to chiral fermions. In order to obtain realistic

models, we considered intersecting D6-branes in the type IIA orientifolds with toroidal com-

pactifications. We presented the semi-realistic model with the SM-like spectrum, as the specific

example. In Sec.3, we introduced low-scale string models in which the extra dimensions are

compactified to general spaces with large volume, and which has been considered in the studies

of this thesis.

String resonances and Distinction of low-scale string models at the LHC

In Part II, we explained the features of signatures of low-scale string models, and we performed

two analyses to identify string resonances in dijet events at the LHC.

In Sec.4, we explained the features of signatures of low-scale string models. String excited

states which are characteristic modes in low-scale string models can be observed as resonances

in dijet invariant mass distributions at the LHC, and signatures of the dominant processes

at the LHC are independent of the detail of model buildings. We reduced the open string

amplitudes to the scattering amplitudes with exchanges of string excited states and calculated

the widths of string excited states. We obtained the dijet invariant mass distributions with

string resonances, both at parton level and using the MC simulations.

In Sec.5 and Sec.6, we performed the following two analyses using the MC simulations for

the 14TeV LHC, and we confirmed the possibility of distinguishing low-scale string models

from the other “new physics”.

The angular distribution analysis of dijet events is important, because the degeneracy of

string excited states with higher spins is a distinct property of low-scale string models. We

have shown that hypotheses for the angular distributions without higher spin states could be

excluded at 95% confidence level with the integrated luminosities of 18.7 fb−1, 30 fb−1 and

50 fb−1 for Ms = 4TeV, 4.5TeV and 5TeV, respectively.
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The dijet invariant mass distribution analysis for the second string resonance is also impor-

tant, because the existence of second string excited states with
√
2 times masses of that of the

first string excited states is also a distinct property of low-scale string models. We have shown

that the second string resonance in dijet invariant mass distributions could be discovered at 5σ

level with 150 fb−1, 300 fb−1 and 600 fb−1 for Ms = 4.5TeV, 4.75TeV and 5TeV, respectively.

In these results, it is assumed that the second string excited states do not decay into the first

string excited states.

In case of broader decay widths of the second string excited states including decay channels

into the first string excited states, we found that integrated luminosities of 1200 fb−1 and

more than 3000 fb−1 would be required to observe the second string resonance at 5σ level, for

Ms = 4.5TeV and 4.75TeV, respectively. This means that we might need the High-Luminosity

LHC which is a possible future plan of the extension of the LHC.

Future prospects

Finally, we mention some future prospects after this thesis.

Calculation of decay widths of 2nd → 1st + SM

In Sec.6, we parametrized the decay widths of the second string excited states into the first string

excited states, in order to avoid technical complication in calculation of the widths. In ref.[64],

however, string amplitudes with external one massive state of open strings are calculated. They

are tree-level amplitudes with external three gluons and one first string excited gluon, and that

with external two gluons, one quark and one first string excited quark. If we can expand them

by s-channel poles, we can calculate the decay widths of 2nd → 1st + SM by extracting a

matrix element in decomposition of the amplitudes into the Wigner d-functions.

If the decay widths of 2nd → 1st + SM can be calculated, and if they are smaller than

the parametrized widths in Sec.6, there may be a possibility of discovering the second string

resonances at 5 σ level without the High-Luminosity LHC.

Direct production of first string excited states

The amplitudes which are calculated in ref.[64] are also that of the two-parton scattering pro-

cesses with a direct production of the first string excited states. If the string excited states are

produced directly at the LHC, what signatures can be observed is interesting. Since the first

string excited states decay into the SM particles immediately, the final states result in three-jet

events. String resonances may be observed not only in dijet invariant mass distributions but

also in three-jet invariant mass distributions. In ref.[65], string amplitudes with external five

massless states of open strings are calculated. They are two-parton scattering processes with

three partons in the final state and contribute the three-jet events. We have to investigate

different interactions in the three-parton final state processes from in the direct production

processes, since there may be some contact interactions in the amplitudes.
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Multi-jet event analyses are performed by the CMS to search for the microscopic black

holes [66]. Three-jet events give contributions at the next-to-leading order with respect to

the gauge coupling constant, compared with dijet events. However, we expect that the cross

sections of string excited state production are large enough to observe string resonances in

three-jet invariant mass distributions.

Radiative electroweak symmetry breaking in low-scale string models

At present, the string scale has been excluded to 3.61TeV by the ATLAS and 4.78TeV by the

CMS. The LHC can constrain to be about 7TeV on the string scale, for the 14TeV LHC with

100 fb−1 [11]. However, if we consider low-scale string models as a solution to the hierarchy

problem in the SM, the string scale must not be larger than O(TeV).

On the other hand, if the Higgs field obtains a negative mass square at one-loop level in

non-SUSY system, and the radiative electroweak symmetry breaking can occur in low-scale

string models. In ref.[67], it is shown that the potential has a minimum and the Higgs field

obtain a vacuum expectation value (VEV), when the Higgs field is in the adjoint representa-

tion. In ref.[68], a possibility that the Higgs field in the fundamental representation obtain a

negative mass square is investigated, however, the Higgs one-loop mass square is calculated by

order estimate, since there is a problem in non-SUSY system that infrared divergence from an

exchange of the NS-NS closed string is not cancelled.30

In ref.[72], it is shown that even if the Higgs mass square is positive, the potential around

the origin is lifted up by the Fayet-Iliopoulos term, and the Higgs field obtain a VEV. Then,

the Higgs mass square is shown as,

m2
H ≃ 1

ω2

g2

16π2
M2

s ,

where g is a gauge coupling constant and 1/ω2 is a factor of the order of unity. If m2
H/g

2 ≃ v2,

the string scale Ms should be about 3× ωTeV.

Thus, considering the radiative electroweak symmetry breaking in low-scale string models,

we can set an upper limit on the string scale. Then, we can conclude low-scale string models

with the constraint on the string scale by the LHC. However, note that the radiative electroweak

symmetry breaking in low-scale string models is open to further discussions.

30Using a prescription of the NS-NS tadpole resummation [70, 71], one-loop corrections can be calculated even

in non-SUSY system.
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A Calculation of scattering amplitudes with string ex-

cited state exchanges

A.1 Four gluon amplitudes

String amplitudes are calculated based on SuperConformal Field Theory (SCFT) in the two-

dimensional world-sheet. The disk-level open string amplitude with external four gluons is a

Maximally Helicity Violating (MHV) amplitude 31 shown in ref.[48, 49] as

M(g−1 , g
−
2 , g

+
3 , g

+
4 ) = 4g2⟨12⟩4

[
Vt

⟨12⟩⟨23⟩⟨34⟩⟨41⟩
Tr

(
T a1T a2T a3T a4 + T a2T a1T a4T a3

)
+

Vu
⟨13⟩⟨34⟩⟨42⟩⟨21⟩

Tr
(
T a2T a1T a3T a4 + T a1T a2T a4T a3

)
+

Vs
⟨14⟩⟨42⟩⟨23⟩⟨31⟩

Tr
(
T a1T a3T a2T a4 + T a3T a1T a4T a2

)]
,

(A.1)

where g is the gauge coupling constant of strong interaction, and T ai are generators of SU(3)C
gauge group. Here, g−1 , g

−
2 , g

+
3 and g+4 refer to incoming gluons with helicity − or +.

In eq.(A.1), Vs, Vt and Vu are string “form factor” functions of the Mandelstem variables,

s, t and u, with s+ t+ u = 0, which are defined as

Vt ≡ V (s, t, u) , Vu ≡ V (t, u, s) , Vs ≡ V (u, s, t) (A.2)

where

V (s, t, u) =
Γ(1− s/M2

s ) Γ(1− u/M2
s )

Γ(1 + t/M2
s )

=
1

M2
s

su

t

Γ(−s/M2
s ) Γ(−u/M2

s )

Γ(t/M2
s )

. (A.3)

In addition, ⟨ij⟩ (i, j = 1, 2, 3, 4) are standard spinor products associated with momenta ki
and kj,

⟨ij⟩ ≡ u(ki,−)u(kj,+) , (A.4)

where u(k, λ) is the Dirac spinor wave function of a massless fermion, as an eigenstate of helicity

λ. The spinor products have important properties

|⟨ij⟩| =
√
−2ki · kj , ⟨ij⟩ = −⟨ji⟩ . (A.5)

See Appendix B in detail.

Amplitudes with four gluons similar to eq.(A.1) are given by using crossing symmetry,

M(g−1 , g
+
2 , g

+
3 , g

−
4 ) = 4g2⟨14⟩4

[
Vt

⟨14⟩⟨43⟩⟨32⟩⟨21⟩
Tr

(
T a1T a4T a3T a2 + T a4T a1T a2T a3

)
+

Vs
⟨13⟩⟨32⟩⟨24⟩⟨41⟩

Tr
(
T a4T a1T a3T a2 + T a1T a4T a2T a3

)
+

Vu
⟨12⟩⟨24⟩⟨43⟩⟨31⟩

Tr
(
T a1T a3T a4T a2 + T a3T a1T a2T a4

)]
,

(A.6)

31The MHV amplitudes are amplitudes with n external gauge bosons, where (n − 2) gauge bosons have a

particular helicity and the other two have the opposite helicity. The tree-level amplitudes in which all gauge

bosons have the same helicity or all but one have the same helicity vanish (helicities refer to incoming particles).
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M(g−1 , g
+
2 , g

−
3 , g

+
4 ) = 4g2⟨13⟩4

[
Vs

⟨13⟩⟨32⟩⟨24⟩⟨41⟩
Tr

(
T a1T a3T a2T a4 + T a3T a1T a4T a2

)
+

Vu
⟨12⟩⟨24⟩⟨43⟩⟨31⟩

Tr
(
T a3T a1T a2T a4 + T a1T a3T a4T a2

)
+

Vt
⟨14⟩⟨43⟩⟨32⟩⟨21⟩

Tr
(
T a1T a2T a3T a4 + T a2T a1T a4T a3

)]
.

(A.7)

(A.7) and (A.6) are obtained by replacements of 2 ↔ 4 and 2 ↔ 3 in eq.(A.1), respectively.

s-channel pole expansion in form factor functions The string “form factor” functions

in eq.(A.2) can be expanded in terms of s-channel poles. That is because the Gamma function

for ε≪ 1 has a property that it has a pole of 1/ε,

Γ(ε) =
1

ε
+O(ε0) . (A.8)

The Gamma function also has the following properties for an integer n and z ∈ R,

Γ(ε− n) =
(−1)n

n!

1

ε
+O(ε0) ,

Γ(ε+ z − n) =
(−1)n∏n

m=1(m− z)

Γ(z + ε)

1 +O(ε)

=
(−1)n∏n

m=1(m− z)
Γ(z) +O(ε) .

(A.9)

The factor written by the Gamma functions in the string form factor function of eq.(A.3),[
Γ(−s/M2

s )Γ(−u/M2
s )
]
/Γ(t/M2

s ), has s-channel poles of 1/(s−nM2
s ) for an integer n. Suppose

that ε ≡ (nM2
s − s)/M2

s and z ≡ −u/M2
s ,

Γ(−s/M2
s ) Γ(−u/M2

s )

Γ
(
−(s+ u)/M2

s

) =
Γ(ε− n) Γ(z)

Γ(ε+ z − n)
=

1

n!

1

ε

n∏
m=1

(m− z) +O(ε0) . (A.10)

Since the s-channel poles for an integer n in eq.(A.10) should be summed over all integers, the

string form factor functions are

Vt =
1

M2
s

su

t

[
−

∞∑
n=1

1

n!

1

(M2
s )
n−1

1

s− nM2
s

n∏
J=1

(
u+ JM2

s

)
+O

(
(s− nM2

s )
0
)]
,

Vu =
1

M2
s

st

u

[
−

∞∑
n=1

1

n!

1

(M2
s )
n−1

1

s− nM2
s

n∏
J=1

(
t+ JM2

s

)
+O

(
(s− nM2

s )
0
)]
,

Vs =
1

M2
s

tu

s

[
O
(
(s− nM2

s )
0
)]
,

(A.11)

and hence Vs has no s-channel poles. The terms of O
(
(s−nM2

s )
0
)
in eq.(A.11) can be neglected,

since we consider only near each nth s-channel pole, s ≃ nM2
s . The each s-channel pole

corresponds to the nth string excited state with mass of Mn =
√
nMs.
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low-energy limit of form factor functions The string form factor functions can be also

expanded in terms of 1/M2
s , by using a formula of the Gamma functions for ε≪ 1,

Γ(ε) =
1

ε
− γ +

1

2

(
γ2 +

π2

6

)
ε+O(ε2) , (A.12)

where γ is the Euler constant. In the expansion by 1/M2
s corresponding to low-energy limit of

Ms → ∞, the string form factor functions become unity,

Vt = 1− π2

6
su

1

M4
s

+O
(
1/M6

s

)
. (A.13)

In eq.(A.13), unity describes an exchange of a massless gluon, so QCD amplitudes with external

four gluons are obtained by replacements of Vs,t,u → 1 in eqs.(A.1), (A.6) and (A.7). On the

other hand, the term at the order of 1/M4
s in eq.(A.13) describes a string contact interaction

as a result of summing up all string excited states. Note that there is no term at the order

of 1/M2
s in eq.(A.13). Nevertheless, according to ref.[13], a disk-level amplitude with external

four fermions yields a contact term at the order of 1/M2
s .

two gluon scattering amplitudes Now, we regard the four gluon amplitudes of eqs.(A.1),

(A.6) and (A.7) as two gluon scattering amplitudes of processes of g1, g2 → g3, g4 (g1, g2 refer

to incoming gluons, while g3, g4 refer to outgoing gluons). The amplitudes of these processes

are obtained by replacements of k3,4 = −k3,4 in the four gluon amplitudes of eqs.(A.1), (A.6)

and (A.7). Since expressions of the spinor products ⟨ij⟩ in the processes are given in Appendix

B,

M(g−1 , g
−
2 → g−3 , g

−
4 ) = −4g2 s2

[
Vt
su

Tr
(
T a1T a2T a3T a4 + T a2T a1T a4T a3

)
+
Vu
st

Tr
(
T a2T a1T a3T a4 + T a1T a2T a4T a3

)
+
Vs
tu

Tr
(
T a1T a3T a2T a4 + T a3T a1T a4T a2

)]
,

(A.14)

M(g−1 , g
+
2 → g−3 , g

+
4 ) = −4g2 u2

[
Vt
su

Tr
(
T a1T a4T a3T a2 + T a4T a1T a2T a3

)
+
Vs
tu

Tr
(
T a4T a1T a3T a2 + T a1T a4T a2T a3

)
+
Vu
st

Tr
(
T a1T a3T a4T a2 + T a3T a1T a2T a4

)]
,

(A.15)

M(g−1 , g
+
2 → g+3 , g

−
4 ) = −4g2 t2

[
Vs
tu

Tr
(
T a1T a3T a2T a4 + T a3T a1T a4T a2

)
+
Vu
st

Tr
(
T a3T a1T a2T a4 + T a1T a3T a4T a2

)
+
Vt
su

Tr
(
T a1T a2T a3T a4 + T a2T a1T a4T a3

)]
.

(A.16)
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A.1.1 First string excited gluon exchanges

Let us consider the two gluon scattering process, which has an exchange of a first string excited

gluon in s-channel. We focus on only the first s-channel pole, in case of n = 1 in eq.(A.11).

Then the string form factor functions are

Vt = − 1

M2
s

su

t

1

s−M2
s

(
u+M2

s

)
, Vu = − 1

M2
s

st

u

1

s−M2
s

(
t+M2

s

)
, (A.17)

and in the limit of s ≃M2
s ,

Vt ≃
u

s−M2
s

, Vu ≃
t

s−M2
s

. (A.18)

In this limit, the two gluon scattering amplitudes with the first string excited gluon ex-

changes are obtained from eqs.(A.14), (A.15) and (A.16),

M1st(g
−
1 , g

−
2 → g−3 , g

−
4 ) ≃ −4 g2M2

s

1

s−M2
s

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
, (A.19)

M1st(g
−
1 , g

+
2 → g−3 , g

+
4 ) ≃ −4 g2M2

s

1

s−M2
s

(
−u
s

)2

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
, (A.20)

M1st(g
−
1 , g

+
2 → g+3 , g

−
4 ) ≃ −4 g2M2

s

1

s−M2
s

(
− t

s

)2

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
. (A.21)

The absence of angular dependence in eq.(A.19) imply that the exchanged first string excited

gluon has spin J = 0. On the other hand, the presence of angular dependence in eqs.(A.20)

and (A.21) imply that the exchanged first string excited gluons have spin J = 2. This is found

from that the angular dependence can be factorized into the Wigner d-function,

d J=0
0, 0 (θ) = 1 ,

d J=2
±2,±2 (θ) =

(
−u
s

)2

=

(
1 + cos θ

2

)2

,

d J=2
±2,∓2 (θ) =

(
− t

s

)2

=

(
1− cos θ

2

)2

.

(A.22)

The Wigner d-function d JJz , Jz′ (θ) represents angular dependence of a process through a state

with spin J , in which an initial state has total spin along z-axis, Jz, and a final state has total

spin along z′-axis, Jz′ . The angle θ is that between the z- and z′-axes.

U(N) gauge bosons and group factors We define a completely symmetric symbol d aiajak

as a symmetrized trace of generators T ai ,

d a1a2a3 ≡ STr
(
T a1T a2T a3

)
=

1

2
Tr

(
{T a1 , T a2}T a3

)
, (A.23)

so that

{T a1 , T a2} = 4
∑
A

d a1a2A TA . (A.24)
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Note that T ai are SU(3)C generators in the fundamental representation with Tr(T a1T a2) =
1
2
δa1a2 . Then, the group factor of eqs.(A.19), (A.20) and (A.21) is

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
= 8

∑
A

d a1a2A d a3a4A . (A.25)

Since U(N) gauge group rather than SU(N) is realized in D-brane models, gluons as SU(3)C
gauge bosons come from U(3)C gauge bosons. The U(3)C gauge bosons are GA = (C0, ga) where

C0 is an U(1)C gauge boson and ga are gluons with a = 1, · · · , 8. The gauge index A in eq.(A.25)

sums over string excited “gluons” exchanged in the process. The string excited “gluons” are G∗

which are excited U(3)C gauge bosons, including not only excited gluons g∗ but also an excited

U(1)C gauge boson C∗.

The U(N) generator is TA = (T 0, T a), where T 0 = 1√
2N

IN is an U(1) generator and T a

is the SU(N) generator with a = 1, · · · , N2 − 1. The completely symmetric symbols d AiAjAk

defined by the U(N) generators are

d 000 =
1√
8N

, d a100 = 0 , d a1a20 =
1√
8N

δa1a2 , (A.26)

and d a1a2a3 (ai = 1, · · · , N2 − 1).

instability of string excited states The string excited states are unstable and decay into

SM particles or other light states associated with string. The s-channel pole of the nth string

excited states in eq.(A.11) should be softened as follows,

1

s−M2
n

→ 1

s−M2
n + iMn ΓJn

, (A.27)

where Mn is the mass of the nth string excited states, Mn =
√
nMs, and ΓJn is a total decay

width of the nth string excited states with spin J .

Loop-level amplitudes necessarily lead to an imaginary part in a pole, in terms of a width of

an exchanged state. For the purpose of this thesis, however, we calculate only tree-level string

amplitudes, and have to add the imaginary part in the s-channel pole by hand.

calculation of widths of exchanged states Consider a decay of a massive particle into

two massless particles. The decay S-matrix is given by

S = i(2π)4 δ4(P − p3 − p4) ⟨p3, λ3, a3 ;p4, λ4, a4 | LJ |P,Λ, A ⟩ , (A.28)

where LJ is an interaction Lagrangian of spin J . P and p3,4 are four-momenta, and, A and

a3,4 are gauge indices of the parent particle and the two daughter particles, respectively. Λ is

spin z-component of the parent, and λ3,4 are helicities of the daughters. In a rest frame of the

parent particle with mass M , P = 0 and p3 = −p4 ≡ p with |p| = M
2
. The decay width is

Γ JA
λ3,λ4; a3,a4

=

∫
dΠ3 dΠ4

1

2M
(2π)4 δ4(P − p3 − p4)

∣∣⟨p3, λ3, a3 ;p4, λ4, a4 | LJ |P,Λ, A ⟩
∣∣2

=
1

16πM

1

4π

∫
dΩ

∣∣⟨p, λ3, a3 ;−p, λ4, a4 | L |0,Λ, A ⟩
∣∣2 .

(A.29)
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The spin z-component eigenstate with zero momentum, |0,Λ ⟩, is expanded in terms of a spin

z′-component eigenstate, |0,Λ′ ⟩, in which the z′-axis has an angle θ with the z-axis. The

expansion coefficient is the Wigner d-function,

|0,Λ ⟩ =
∑
Λ′

|0,Λ′ ⟩⟨0,Λ′ |0,Λ ⟩

=
∑
Λ′

d JΛ,Λ′(θ) |0,Λ′ ⟩ .
(A.30)

The width becomes

Γ JA
λ3,λ4; a3,a4

=
1

16πM

1

4π

∫
dΩ

∣∣d JΛ, λ3−λ4(θ)∣∣2∣∣⟨p, λ3, a3 ;−p, λ4, a4 | LJ |0, λ3 − λ4, A ⟩
∣∣2

=
1

16πM

1

2J + 1

∣∣F JA
λ3,λ4; a3,a4

∣∣2 ,
(A.31)

since 1
4π

∫
dΩ

∣∣d JΛ,Λ′(θ)
∣∣2 = 1

2J+1
. Here, F JA

λ3,λ4; a3,a4
is a matrix element of a decay for spin

z′-component λ3 − λ4 into helicities λ3 and λ4 along the z′-axis.

The matrix element F JA
λ3,λ4; a3,a4

can be extracted from a two-body scattering amplitude

among massless particles with a massive state exchange in s-channel. In the center-of-mass

frame, p1 = −p2 ≡ p and p3 = −p4 ≡ p′ with an angle θ between p and p′. The amplitude is

⟨p3, λ3, a3 ;p4, λ4, a4 |M |p1, λ1, a1 ;p2, λ2, a2 ⟩

= ⟨p′, λ3, a3 ;−p′, λ4, a4 ; θ |M |p, λ1, a1 ;−p, λ2, a2 ; 0 ⟩

=−
∑
J,A

1

s−M2
⟨p′, λ3, a3 ;−p′, λ4, a4 ; θ | LJ

∑
Λ,Θ

|0,Λ, A ; Θ ⟩

× ⟨0,Λ, A ; Θ | LJ |p, λ1, a1 ;−p, λ2, a2 ; 0 ⟩

=−
∑
J,A

1

s−M2
⟨p′, λ3, a3 ;−p′, λ4, a4 ; θ | LJ |0, λ1 − λ2, A ; 0 ⟩F JA

λ1,λ2; a1,a2

=−
∑
J,A

1

s−M2
⟨p′, λ3, a3 ;−p′, λ4, a4 ; θ | LJ

∑
Λ′,Θ′

d Jλ1−λ2,Λ′(Θ′)|0,Λ′, A ; Θ′ ⟩F JA
λ1,λ2; a1,a2

=−
∑
J,A

1

s−M2
d Jλ1−λ2, λ3−λ4(θ)

(
F JA

λ3,λ4; a3,a4

)†
F JA

λ1,λ2; a1,a2
.

(A.32)

See ref.[50] for a way of calculating decay widths in detail.

widths of first string excited gluons In order to calculate widths of the first string excited

gluons, G∗, comparing the amplitudes with the first excited gluon exchanges of eqs.(A.19),

(A.20) and (A.21) to the general amplitude with a massive state exchange of eq.(A.32), we can

extract matrix elements of G∗, FG∗ JAλi,λj ; ai,aj
, as

FG∗
J=0A
±1,±1; a3,a4

= FG∗
J=2A
±1,∓1; a3,a4

= 4
√
2 gMs d

a3a4A . (A.33)
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Once the matrix element FG∗ JAλi,λj ; ai,aj
is obtained, a decay width of G∗ → GG can be calculated

from eq.(A.31) by summing over helicities and gauge indices in the final state,

Γ JA
G∗→GG =

1

2

1

16πMs

1

2J + 1

∑
λ3,λ4

∑
A3,A4

∣∣FG∗
JA
λ3,λ4;A3,A4

∣∣2 , (A.34)

where a factor of 1
2
is introduced to take into account identical particles in the final state. For

J = 0 and J = 2,

Γ J=0A
G∗→GG =

1

2

1

16πMs

1

2× 0 + 1

∑
A3,A4

1

2

{∣∣FG∗
J=0A
+1,+1;A3,A4

∣∣2 + ∣∣FG∗
J=0A
−1,−1;A3,A4

∣∣2}
=
g2Ms

π

∑
A3,A4

d A3A4A d A3A4A ,

(A.35)

Γ J=2A
G∗→GG =

1

2

1

16πMs

1

2× 2 + 1

∑
A3,A4

{∣∣FG∗
J=2A
+1,−1;A3,A4

∣∣2 + ∣∣FG∗
J=2A
−1,+1;A3A4

∣∣2}
=

2g2Ms

π

1

5

∑
A3,A4

d A3A4A d A3A4A .

(A.36)

Note that a factor of 1
2
for J = 0 reflects the fact that the resonance produced through an initial

helicity configuration of (−,−) subsequently does not decay into a final helicity configuration

of (+,+), as it is found from the amplitude of the process, g−g− → g−g−, of eq.(A.19).

A group factor in eqs.(A.35) and (A.36) is different for each decay process, calculated by

averaging over gauge indices for the initial state,

• g∗ → gg

1

N2 − 1

N2−1∑
a

N2−1∑
a3,a4

d a3a4a d a3a4a =
N2 − 4

16N
, (A.37)

• g∗ → gC 32

2× 1

N2 − 1

N2−1∑
a

N2−1∑
a3

d a30a d a30a =
1

4N
, (A.38)

• C∗ → gg
N2−1∑
a3,a4

d a3a40 d a3a40 =
N2 − 1

8N
, (A.39)

• C∗ → CC

d 000 d 000 =
1

8N
, (A.40)

32A factor of 2 is introduced due to not identical particles in the final state.
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where N = 3.

As a result, widths of the first string excited gluons, g∗ and C∗, with J = 0 and J = 2 for

the processes of G∗ → GG are

ΓJ=0
g∗→GG =

g2Ms

4π

N

4
, ΓJ=2

g∗→GG =
g2Ms

4π

1

5

N

2
, (A.41)

ΓJ=0
C∗→GG =

g2Ms

4π

N

2
, ΓJ=2

C∗→GG =
g2Ms

4π

1

5
N . (A.42)

Total widths of g∗ and C∗ should be included processes of G∗ → qq in case of J = 2, and the

processes are considered later.

squared amplitudes with first string excited gluon exchanges Including above results,

the two gluon scattering amplitudes with the first excited gluon exchanges of eqs.(A.19), (A.20)

and (A.21) are rewritten by softening the s-channel pole into the Breit-Wigner form of eq.(A.27),

M1st(g
−
1 , g

−
2 → g−3 , g

−
4 )

→− 32 g2M2
s

[
1

s−M2
s + iMsΓJ=0

g∗

∑
a

d a1a2a d a3a4a +
1

s−M2
s + iMsΓJ=0

C∗
d a1a20 d a3a40

]
,

(A.43)

M1st(g
−
1 , g

+
2 → g−3 , g

+
4 )

→− 32 g2M2
s

1

M4
s

[
u2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a1a2a d a3a4a +
u2

s−M2
s + iMsΓJ=2

C∗
d a1a20 d a3a40

]
,

(A.44)

M1st(g
−
1 , g

+
2 → g+3 , g

−
4 )

→− 32 g2M2
s

1

M4
s

[
t2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a1a2ad a3a4a +
t2

s−M2
s + iMsΓJ=2

C∗
d a1a20 d a3a40

]
.

(A.45)

A squared amplitude is averaged over helicities and gauge indices in the initial state, and

summed over them in the final state,∣∣M1st(g1, g2 → g3, g4)
∣∣2

=
1

22
1

(N2 − 1)2

∑
a1,a2,a3,a4

{∣∣M1st(g
−
1 , g

−
2 → g−3 , g

−
4 )

∣∣2 + ∣∣M1st(g
+
1 , g

+
2 → g+3 , g

+
4 )

∣∣2
+
∣∣M1st(g

−
1 , g

+
2 → g−3 , g

+
4 )

∣∣2 + ∣∣M1st(g
+
1 , g

−
2 → g+3 , g

−
4 )

∣∣2
+
∣∣M1st(g

−
1 , g

+
2 → g+3 , g

−
4 )

∣∣2 + ∣∣M1st(g
+
1 , g

−
2 → g−3 , g

+
4 )

∣∣2} .
(A.46)

Here, we do not have to consider an interference effect between processes with exchanges of g∗

and C∗, gg → g∗ → gg and gg → C∗ → gg. Group factors in eqs.(A.43), (A.44) and (A.45) are

squared for each product of scattering processes,
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• (gg → g∗ → gg)2

1

(N2 − 1)2

N2−1∑
a1,a2,a3,a4

N2−1∑
a,b

d a1a2a d a3a4a d a1a2b d a3a4b =
1

N2 − 1

(N2 − 4)2

162N2
, (A.47)

• (gg → C∗ → gg)2

1

(N2 − 1)2

N2−1∑
a1,a2,a3,a4

(
d a1a20

)2 (
d a3a40

)2
=

1

82N2
. (A.48)

• (gg → g∗ → gg)× (gg → C∗ → gg)

1

(N2 − 1)2

N2−1∑
a1,a2,a3,a4

N2−1∑
a

d a1a20 d a3a40 d a1a2a d a3a4a =
1

(N2 − 1)2
1

8N

N2−1∑
a1,a3,a

d a1a1a d a3a3a ,

(A.49)

where, from the definition of the completely symmetric symbol of eq.(A.23),

N2−1∑
a1

d a1a1a =
N2−1∑
a1

Tr
(
T a1T a1T a

)
=
N2 − 1

2N
Tr(T a) = 0 . (A.50)

Using parity conservation, the squared two gluon scattering amplitude is given by∣∣M1st(gg → gg)
∣∣2

=
8g4

M4
s

1

N2

{
(N2 − 4)2

4(N2 − 1)

[
M8

s

(s−M2
s )

2 + (MsΓJ=0
g∗ )2

+
u4 + t4

(s−M2
s )

2 + (MsΓJ=2
g∗ )2

]
+

[
M8

s

(s−M2
s )

2 + (MsΓJ=0
C∗ )2

+
u4 + t4

(s−M2
s )

2 + (MsΓJ=2
C∗ )2

]}
.

(A.51)

A.1.2 Second string excited gluon exchanges

Next, let us consider the two gluon scattering process with an exchange of a second string

excited gluon. Focusing on the second s-channel pole for n = 2 in s-channel pole expansions of

eq.(A.11), the string form factor functions are

Vt = − 1

2M4
s

su

t

1

s− 2M2
s

(
u+M2

s

)(
u+ 2M2

s

)
,

Vu = − 1

2M4
s

st

u

1

s− 2M2
s

(
t+M2

s

)(
t+ 2M2

s

)
,

(A.52)

and in the approximation of s ≃ 2M2
s ,

Vt ≃ − u

s− 2M2
s

(
−u
s
+
t

s

)
, Vu ≃

t

s− 2M2
s

(
−u
s
+
t

s

)
. (A.53)
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In this approximation, the two gluon scattering amplitudes with the second string excited

gluon exchanges are obtained from eqs.(A.14), (A.15) and (A.16),

M2nd(g
−
1 , g

−
2 → g−3 , g

−
4 ) ≃ 8 g2M2

s

1

s− 2M2
s

(
−u
s
+
t

s

)
Tr

(
[T a1 , T a2 ][T a3 , T a4 ]

)
, (A.54)

M2nd(g
−
1 , g

+
2 → g−3 , g

+
4 ) ≃ 8 g2M2

s

1

s− 2M2
s

(
−u
s

)2 (
−u
s
+
t

s

)
Tr

(
[T a1 , T a2 ][T a3 , T a4 ]

)
,

(A.55)

M2nd(g
−
1 , g

+
2 → g+3 , g

−
4 ) ≃ 8 g2M2

s

1

s− 2M2
s

(
− t

s

)2(
−u
s
+
t

s

)
Tr

(
[T a1 , T a2 ][T a3 , T a4 ]

)
.

(A.56)

Angular dependences in eqs.(A.54), (A.55) and (A.56) are factorized into the Wigner d-functions

for J = 1, J = 2 and J = 3,

d J=1
0, 0 (θ) = −u

s
+
t

s
= cos θ ,

d J=3
±2,±2 (θ) =

(
1 + cos θ

2

)2 (
3 cos θ − 2

)
,

d J=3
±2,∓2 (θ) =

(
1− cos θ

2

)2 (
3 cos θ + 2

)
,

(A.57)

and d J=2
±2,±2 (θ) and d

J=2
±2,∓2 (θ) of eq.(A.22). In the process of g−g− → g−g− of eq.(A.54), the

second string excited gluon with spin J = 1 is exchanged, while in the processes of g−g+ → g−g+

and g−g+ → g+g−, those with spin J = 2 and J = 3 are exchanged, as follows,

M2nd(g
−
1 , g

−
2 → g−3 , g

−
4 ) ≃ −4 g2M2

s

1

s− 2M2
s

d J=1
0, 0 (θ)

∑
a

fa1a2a fa3a4a ,
(A.58)

M2nd(g
−
1 , g

+
2 → g−3 , g

+
4 ) ≃ −4 g2M2

s

1

s− 2M2
s

[
2

3
d J=2

−2,−2 (θ) +
1

3
d J=3

−2,−2 (θ)

]∑
a

fa1a1a fa3a4a ,

(A.59)

M2nd(g
−
1 , g

+
2 → g+3 , g

−
4 ) ≃ −4 g2M2

s

1

s− 2M2
s

[
−2

3
d J=2

−2,+2 (θ) +
1

3
d J=3

−2,+2 (θ)

]∑
a

fa1a2a fa3a4a .

(A.60)

Note that there are excitations of SU(3)C gluons only, as the second string excited gluons

exchanged in these processes. That is because the completely anti-symmetric symbol with

U(1) component, fa1a20, vanish. The completely anti-symmetric symbol follows that ifa1a2a3 =

2Tr
(
[T a1 , T a2 ]T a3

)
.
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widths of second excited gluons Comparing eqs.(A.54), (A.55) and (A.56) to eq.(A.32),

Fg∗∗
J=1 a
±1,±1; a3,a4

= 2 gMs f
a3a4a ,

Fg∗∗
J=2 a
±1,∓1; a3,a4

= ±2
√
2√
3
gMs f

a3a4a ,

Fg∗∗
J=3 a
±1,∓1; a3,a4

=
2√
3
gMs f

a3a4a .

(A.61)

Decay widths of g∗∗ → gg for J = 1, J = 2 and J = 3 are

ΓJ=1 a
g∗∗→gg =

1

2

1

16π
√
2Ms

1

2× 1 + 1

∑
a3,a4

1

2

{∣∣Fg∗∗ J=1 a
+1,+1; a3,a4

∣∣2 + ∣∣Fg∗∗ J=1 a
−1,−1; a3,a4

∣∣2}

=
g2
√
2Ms

16π

1

3

∑
a3,a4

fa3a4a fa3a4a ,

(A.62)

ΓJ=2 a
g∗∗→gg =

1

2

1

16π
√
2Ms

1

2× 2 + 1

∑
a3,a4

{∣∣Fg∗∗ J=2 a
+1,−1; a3,a4

∣∣2 + ∣∣Fg∗∗ J=2 a
−1,+1; a3,a4

∣∣2}

=
g2
√
2Ms

12π

1

5

∑
a3,a4

fa3a4a fa3a4a ,

(A.63)

ΓJ=3 a
g∗∗→gg =

1

2

1

16π
√
2Ms

1

2× 3 + 1

∑
a3,a4

{∣∣Fg∗∗ J=3 a
+1,−1; a3,a4

∣∣2 + ∣∣Fg∗∗ J=3 a
−1,+1; a3,a4

∣∣2}

=
g2
√
2Ms

24π

1

7

∑
a3,a4

fa3a4a fa3a4a ,

(A.64)

where a group factor is averaged over an initial gauge index,

1

N2 − 1

N2−1∑
a

N2−1∑
a3,a4

fa3a4a fa3a4a = N . (A.65)

Widths of the second string excited gluon g∗∗ with J = 1, J = 2 and J = 3 for the process of

g∗∗ → gg are

ΓJ=1
g∗∗→gg =

g2
√
2Ms

4π

1

3

N

4
, ΓJ=2

g∗∗→gg =
g2
√
2Ms

4π

1

5

N

3
, ΓJ=3

g∗∗→gg =
g2
√
2Ms

4π

1

7

N

6
. (A.66)

squared amplitudes with second excited gluon exchanges The amplitudes of eqs.(A.58),

(A.59) and (A.60) are rewritten by softening the s-channel pole into the Breit-Wigner form with

the widths,
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M2nd(g
−
1 , g

−
2 → g−3 , g

−
4 ) → −4 g2M2

s

1

2M2
s

−u+ t

s− 2M2
s + i

√
2MsΓJ=1

g∗∗

∑
a

fa1a2a fa3a4a , (A.67)

M2nd(g
−
1 , g

+
2 → g−3 , g

+
4 )

→− 4 g2M2
s

1

8M6
s

[
2

3

2M2
s u

2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

u2(−u+ 5t)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

fa1a2a fa3a4a

(A.68)

M2nd(g
−
1 , g

+
2 → g+3 , g

−
4 )

→− 4 g2M2
s

1

8M6
s

[
−2

3

2M2
s t

2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

−t2(−t+ 5u)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

fa1a2a fa3a4a ,

(A.69)

since in d J=3
±2,±2 (θ) and d J=3

±2,∓2 (θ) of eq.(A.57), 3 cos θ − 2 = (−u + 5t)/s and 3 cos θ + 2 =

(−t+ 5u)/s, respectively.

A squared amplitude of the two gluon scattering process with the second excited gluon

exchange is calculated as well as eq.(A.46). Since the group factor in eqs.(A.54), (A.55) and

(A.56) is squared,

1

(N2 − 1)2

N2−1∑
a1,a2,a3,a4

N2−1∑
a,b

fa1a2a fa3a4a fa1a2b fa3a4b =
N2

N2 − 1
, (A.70)

the squared amplitude is given by∣∣M2nd(gg → gg)
∣∣2 = ∣∣M2nd(gg → gg)

∣∣2
non−int.

+
∣∣M2nd(gg → gg)

∣∣2
int.
, (A.71)

where∣∣M2nd(gg → gg)
∣∣2
non−int.

=
g4

8M8
s

N2

N2 − 1

{
16M8

s (−u+ t)2

(s− 2M2
s )

2 + (
√
2MsΓJ=1

g∗∗ )2

+

[
4

9

4M4
s (u

4 + t4)

(s− 2M2
s )

2 + (
√
2MsΓJ=2

g∗∗ )2
+

1

9

u4(−u+ 5t)2 + t4(−t+ 5u)2

(s− 2M2
s )

2 + (
√
2MsΓJ=3

g∗∗ )2

]}
,

(A.72)

∣∣M2nd(gg → gg)
∣∣2
int.

=
g4

4M8
s

N2

N2 − 1

[
2

9

(s− 2M2
s )

2 + 2M2
s Γ

J=2
g∗∗ ΓJ=3

g∗∗

(s− 2M2
s )

2 + (
√
2MsΓJ=2

g∗∗ )2
2M2

s

(
u4(−u+ 5t) + t4(−t+ 5u)

)
(s− 2M2

s )
2 + (

√
2M2

s Γ
J=3
g∗∗ )2

]
.

(A.73)

The last term of eq.(A.73) is an interference effect between processes with exchanges of the

second string excited gluons with J = 2 and J = 3.
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A.2 Two gluons and two quarks amplitudes

A.2.1 qg → qg amplitudes

The open string amplitudes with external gluons and quarks at disk-level are calculated in

ref.[13] as

M(q−1 , g
−
2 , q

+
3 , g

+
4 ) = 2g2

⟨12⟩2

⟨14⟩⟨34⟩

[
s

t
Vs

(
T a2T a4

)
α3α1

+
u

t
Vu

(
T a4T a2

)
α3α1

]
, (A.74)

M(q−1 , g
+
2 , q

+
3 , g

−
4 ) = 2g2

⟨14⟩2

⟨12⟩⟨32⟩

[
u

t
Vu

(
T a4T a2

)
α3α1

+
s

t
Vs

(
T a2T a4

)
α3α1

]
, (A.75)

where q−1 , g
∓
2 , q

+
3 and g±4 in eqs.(A.74) and (A.75) are incoming gluons and quarks. The latter

of eq.(A.75) is obtained by a replacement of 2 ↔ 4 in eq.(A.74). Amplitudes with replacements

of 3 ↔ 4 in eqs.(A.74) and (A.75) can also be obtained,

M(q−1 , g
−
2 , g

+
3 , q

+
4 ) = 2g2

⟨12⟩2

⟨13⟩⟨43⟩

[
s

u
Vs

(
T a2T a3

)
α4α1

+
t

u
Vt

(
T a3T a2

)
α4α1

]
, (A.76)

M(q−1 , g
+
2 , g

−
3 , q

+
4 ) = 2g2

⟨13⟩2

⟨12⟩⟨42⟩

[
t

u
Vt

(
T a3T a2

)
α4α1

+
s

u
Vs

(
T a2T a3

)
α4α1

]
, (A.77)

Here, similarly to the previous section, we consider two-body scattering processes of quark

and gluon, q1, g2 → q3, g4 or q1, g2 → g3, q4 (1, 2 refer to incoming particles, while 3, 4 refer to

outgoing ones). In these processes, kinetic factors of eqs.(A.74), (A.75), (A.76) and (A.77) are

⟨12⟩2

⟨14⟩⟨34⟩
=

√
− s

u
,

⟨14⟩2

⟨12⟩⟨32⟩
=

√
−u
s
,

⟨12⟩2

⟨13⟩⟨43⟩
= −

√
−s
t

,
⟨13⟩2

⟨12⟩⟨42⟩
= −

√
− t

s
.

(A.78)

first string excited quark exchanges The quark and gluon scattering process exchanges

a string excited quark in s-channel. First, we focus on the first s-channel pole, that is a first

string excited quark. Using the string form factor functions in the limit of s ≃M2
s of eq.(A.18),

M1st(q
−
1 , g

−
2 → q−3 , g

−
4 ) ≃ −2g2M2

s

1

s−M2
s

√
−u
s

(
T a4T a2

)
α3α1

, (A.79)

M1st(q
−
1 , g

+
2 → q−3 , g

+
4 ) ≃ −2g2M2

s

1

s−M2
s

(
−u
s

) 3
2 (
T a4T a2

)
α3α1

. (A.80)

Similarly, amplitudes obtained by replacements of t↔ u are

M1st(q
−
1 , g

−
2 → g−3 , q

−
4 ) ≃ +2g2M2

s

1

s−M2
s

√
− t

s

(
T a3T a2

)
α4α1

, (A.81)

M1st(q
−
1 , g

+
2 → g+3 , q

−
4 ) ≃ +2g2M2

s

1

s−M2
s

(
− t

s

) 3
2 (
T a2T a3

)
α4α1

. (A.82)
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Angular dependences in eqs.(A.79), (A.80), (A.81) and (A.82) can be decomposed into the

Wigner d-functions of J = 1/2 and J = 3/2,

d
J=1/2
±1/2,±1/2 (θ) =

√
−u
s
= cos

θ

2
,

d
J=1/2
±1/2,∓1/2 (θ) = ∓

√
− t

s
= ∓ sin

θ

2
,

d
J=3/2
±3/2,±3/2 (θ) =

(
−u
s

) 3
2

= cos3
θ

2
,

d
J=3/2
±3/2,∓3/2 (θ) = ∓

(
− t

s

) 3
2

= ∓ sin3 θ

2
.

(A.83)

It is found that in the processes of q1, g2 → q3, g4 or q1, g2 → g3, q4, the first string excited quark

with J = 1/2 and J = 3/2 are exchanged. The amplitudes with an exchange of the first string

excited quark can be rewritten as,

M1st(q
−
1 , g

−
2 → q−3 , g

−
4 ) ≃ −2g2M2

s

1

s−M2
s

d
J=1/2
+1/2,+1/2 (θ)

∑
α

(
T a4

)
α3α

(
T a2

)
αα1

, (A.84)

M1st(q
−
1 , g

+
2 → q−3 , g

+
4 ) ≃ −2g2M2

s

1

s−M2
s

d
J=3/2
−3/2,−3/2 (θ)

∑
α

(
T a4

)
α3α

(
T a2

)
αα1

, (A.85)

M1st(q
−
1 , g

−
2 → g−3 , q

−
4 ) ≃ −2g2M2

s

1

s−M2
s

d
J=1/2
+1/2,−1/2 (θ)

∑
α

(
T a3

)
α4α

(
T a2

)
αα1

, (A.86)

M1st(q
−
1 , g

+
2 → g+3 , q

−
4 ) ≃ +2g2M2

s

1

s−M2
s

d
J=3/2
−3/2,+3/2 (θ)

∑
α

(
T a3

)
α4α

(
T a2

)
αα1

, (A.87)

widths of first string excited quarks Then matrix elements of the first string excited

quark q∗, Fq∗
J α
λi,λj ;αi,aj

, can be extracted by comparing to eq.(A.32),

Fq∗
J=1/2
±1/2,±1;α3,A4

= Fq∗
J=3/2
±1/2,∓1;α3,A4

=
√
2 gMs

(
TA4

)
αα3

,

Fq∗
J=1/2
±1,±1/2;A3,α4

= Fq∗
J=3/2
±1,∓1/2;A3,α4

= ∓
√
2 gMs

(
TA3

)
αα4

.
(A.88)

Using the above results, widths of q∗ → qG for J = 1/2 and J = 3/2 are

Γ
J=1/2α
q∗→qG =

1

16πMs

1

2× 1
2
+ 1

∑
α3,A4

1

2

{∣∣Fq∗ J=1/2α
+1/2,+1;α3,A4

∣∣2 + ∣∣Fq∗ J=1/2α
−1/2,−1;α3,A4

∣∣2}
=
g2Ms

8π

1

2

∑
α3,A4

(
TA4

)
α3α

(
TA4

)
αα3

,

(A.89)

Γ
J=3/2α
q∗→qG =

1

16πMs

1

2× 3
2
+ 1

∑
α3,A4

1

2

{∣∣Fq∗ J=3/2α
+1/2,−1;α3,A4

∣∣2 + ∣∣Fq∗ J=3/2α
−1/2,+1;α3,A4

∣∣2}
=
g2Ms

8π

1

4

∑
α3,A4

(
TA4

)
α3α

(
TA4

)
αα3

,

(A.90)
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A group factor eqs.(A.89) and (A.90) is averaged over a gauge index α of q∗ for each decay

process into g or C,

• q∗ → qg

1

N

N∑
α,α3

N2−1∑
a4

(
T a4

)
α3α

(
T a4

)
αα3

=
1

N

N2−1∑
a4

Tr
(
T a4T a4

)
=
N2 − 1

2N
, (A.91)

• q∗ → qC

1

N

N∑
α,α3

(
T 0

)
α3α

(
T 0

)
αα3

=
1

N
Tr

(
T 0T 0

)
=

1

2N
. (A.92)

Total widths of the first string excited quarks q∗ with J = 1/2 and J = 3/2 are

Γ
J=1/2
q∗ =

g2Ms

4π

1

2

N

4
, Γ

J=3/2
q∗ =

g2Ms

4π

1

4

N

4
. (A.93)

squared amplitudes with first string excited quark exchanges A squared amplitude

of the process of q1, g2 → q3, g4 is calculated,∣∣M1st(q1, g2 → q3, g4)
∣∣2

=
1

22
1

N(N2 − 1)

∑
α1,a2,α3,a4

{∣∣M1st(q
−
1 , g

−
2 → q−3 , g

−
4 )

∣∣2 + ∣∣M1st(q
+
1 , g

+
2 → q+3 , g

+
4 )

∣∣2
+
∣∣M1st(q

−
1 , g

+
2 → q−3 , g

+
4 )

∣∣2 + ∣∣M1st(q
+
1 , g

−
2 → q+3 , g

−
4 )

∣∣2} ,
(A.94)

and that of the process of q1, g2 → g3, q4 is similar. Since the group factor of eqs.(A.84), (A.85),

(A.86) and (A.87) is squared as follows,

1

N(N2 − 1)

N∑
α1,α3

N2−1∑
a2,a4

(
T a4T a2

)
α3α1

(
T a2T a4

)
α1α3

=
N2 − 1

4N2
, (A.95)

the squared amplitudes of the processes become

∣∣M1st(qg → qg)
∣∣2 = 2g4

M2
s

N2 − 1

4N2

[
M4

s (−u)
(s−M2

s )
2 + (MsΓ
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+
(−u)3

(s−M2
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2 + (MsΓ
J=3/2
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]
,

(A.96)∣∣M1st(qg → gq)
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]
.

(A.97)
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second string excited quark exchanges Next, let us consider the quark and gluon scat-

tering amplitude with an exchange of a second string excited quark. Inserting the string form

factor functions in the limit of s ≃ 2M2
s of eq.(A.53) into the amplitudes,

M2nd(q
−
1 , g

−
2 → q−3 , g

−
4 ) ≃ −4g2M2

s

1

s− 2M2
s

√
−u
s

(
−u
s
+
t

s

)(
T a4T a2

)
α3α1

, (A.98)

M2nd(q
−
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+
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s

1
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s

(
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s

) 3
2
(
−u
s
+
t

s
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T a4T a2
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, (A.99)

M2nd(q
−
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−
2 → g−3 , q

−
4 ) ≃ −4g2M2
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s

√
− t

s

(
−u
s
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)(
T a3T a2
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, (A.100)

M2nd(q
−
1 , g

+
2 → g+3 , q

−
4 ) ≃ −4g2M2

s
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s− 2M2
s

(
− t

s

) 3
2
(
−u
s
+
t

s

)(
T a2T a3

)
α4α1

. (A.101)

Angular dependences on eqs.(A.98), (A.99), (A.100) and (A.101) are decomposed into the

Wigner d-functions,

d
J=3/2
±1/2,±1/2 (θ) = cos

θ

2

(
3 cos θ − 1

2

)
,

d
J=3/2
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d
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θ

2
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2

)
,

d
J=5/2
±3/2,∓3/2 (θ) = ∓ sin3 θ

2

(
5 cos θ + 3

2

)
,

(A.102)

and d
J=1/2
±1/2,±1/2 (θ) and d

J=3/2
±3/2,±3/2 (θ) of eq.(A.83). Thus, the second string excited quarks which

are exchanged in the processes have J = 1/2, J = 3/2 and J = 5/2, as follows

M2nd(q
−
1 , g

−
2 → q−3 , g

−
4 ) ≃ −4g2M2
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(A.103)
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−
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+
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−
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(A.106)
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widths of second string excited quarks Matrix elements of the second string excited

quark q∗∗, Fq∗∗
J α
λi,λj ;αi,aj

, can be extracted as
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3
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√
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Then widths of q∗∗ → qG for J = 1/2, J = 3/2 and J = 5/2 are
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Γ
J=3/2α
q∗∗→qG =

1

16π
√
2Ms

1

2× 3
2
+ 1

∑
α3,A4

1

2

{∣∣Fq∗∗ J=3/2α
+1/2,+1;α3,A4

∣∣2 + ∣∣Fq∗∗ J=3/2α
−1/2,−1;α3,A4

∣∣2
+
∣∣Fq∗∗ J=3/2α

+1/2,−1;α3,A4

∣∣2 + ∣∣Fq∗∗ J=3/2α
−1/2,+1;α3,A4

∣∣2}
=
g2
√
2Ms

8π

(
2

3
+

3

5

)
1

4

∑
α3,A4

(
TA4

)
α3α

(
TA4

)
αα3

,

(A.109)
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Since a group factor of eqs.(A.108), (A.109) and (A.110) is in eqs.(A.91) and (A.92) for each

decay process, total widths of the second string excited quarks q∗∗ with J = 1/2, J = 3/2 and

J = 5/2 are

Γ
J=1/2
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g2
√
2Ms

4π
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12
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. (A.111)

squared amplitudes with second string excited quark exchanges Softening the s-

channel pole into the Breit-Wigner form, the amplitudes are rewritten as
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s + i

√
2MsΓ

J=3/2
q∗∗

+
2

5

−(−t)3/2(−t+ 4u)

s− 2M2
s + i

√
2MsΓ

J=5/2
q∗∗

](
T a4T a2

)
α3α1

,

(A.115)

since in d
J=3/2
±1/2,±1/2 (θ) and d

J=3/2
±3/2,∓3/2 (θ) of eq.(A.102), (3 cos θ − 1)/2 = (−u + 2t)/s and

(3 cos θ + 1)/2 = −(−t + 2u)/s, while in d
J=5/2
±3/2,±3/2 (θ) and d

J=5/2
±3/2,∓3/2 (θ), (5 cos θ − 3)/2 =

(−u+ 4t)/s and (5 cos θ + 3)/2 = −(−t+ 4u)/s.

A squared amplitudes of the processes of qg → qg and qg → gq are∣∣M2nd(qg → qg)
∣∣2 = ∣∣M2nd(qg → qg)

∣∣2
non−int.

+
∣∣M2nd(qg → qg)

∣∣2
int.
,∣∣M2nd(qg → gq)

∣∣2 = ∣∣M2nd(qg → gq)
∣∣2
non−int.

+
∣∣M2nd(qg → gq)

∣∣2
int.
,

(A.116)

where∣∣M2nd(qg → qg)
∣∣2
non−int.

=
g4

4M6
s

N2 − 1

4N2

{[
1

9

16M8
s (−u)

(s− 2M2
s )

2 + (
√
2MsΓ

J=1/2
q∗∗ )2

+
4

9

4M4
s (−u)(−u+ 2t)2

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

]
+

[
9

25

4M4
s (−u)3

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

+
4

25

(−u)3(−u+ 4t)2

(s− 2M2
s )

2 + (
√
2MsΓ

J=5/2
q∗∗ )2

]}
,

(A.117)∣∣M2nd(qg → qg)
∣∣2
int.

=
g4

2M6
s

N2 − 1

4N2

{[
2

9

(s− 2M2
s )

2 + 2M2
s Γ

J=1/2
q∗∗ Γ

J=3/2
q∗∗

(s− 2M2
s )

2 + (
√
2MsΓ

J=1/2
q∗∗ )2

8M6
s (−u)(−u+ 2t)

(s− 2M2
s )

2 + (
√
2M2

s Γ
J=3/2
q∗∗ )2

]

+

[
6

25

(s− 2M2
s )

2 + 2M2
s Γ

J=3/2
q∗∗ Γ

J=5/2
q∗∗

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

2M2
s (−u)3(−u+ 4t)

(s− 2M2
s )

2 + (
√
2M2

s Γ
J=5/2
q∗∗ )2

]}
,

(A.118)
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∣∣M2nd(qg → gq)
∣∣2
non−int.

=
g4

4M6
s

N2 − 1

4N2

{[
1

9

16M8
s (−t)

(s− 2M2
s )

2 + (
√
2MsΓ

J=1/2
q∗∗ )2

+
4

9

4M4
s (−t)(−t+ 2u)2

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

]
+

[
9

25

4M4
s (−t)3

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

+
4

25

(−t)3(−t+ 4u)2

(s− 2M2
s )

2 + (
√
2MsΓ

J=5/2
q∗∗ )2

]}
.

(A.119)∣∣M2nd(qg → gq)
∣∣2
int.

=
g4

2M6
s

N2 − 1

4N2

{[
2

9

(s− 2M2
s )

2 + 2M2
s Γ

J=1/2
q∗∗ Γ

J=3/2
q∗∗

(s− 2M2
s )

2 + (
√
2MsΓ

J=1/2
q∗∗ )2

8M6
s (−t)(−t+ 2u)

(s− 2M2
s )

2 + (
√
2M2

s Γ
J=3/2
q∗∗ )2

]

+

[
6

25

(s− 2M2
s )

2 + 2M2
s Γ

J=3/2
q∗∗ Γ

J=5/2
q∗∗

(s− 2M2
s )

2 + (
√
2MsΓ

J=3/2
q∗∗ )2

2M2
s (−t)3(−t+ 4u)

(s− 2M2
s )

2 + (
√
2M2

s Γ
J=5/2
q∗∗ )2

]}
.

(A.120)

Interference terms of eqs.(A.118) and (A.120) are interferences between the processes with

exchanges of the second string excited quarks with J = 1/2 and J = 3/2, and, J = 3/2 and

J = 5/2, respectively.

A.2.2 gg → qq and qq → gg amplitudes

The following string amplitudes with external gluons and quarks are obtained by some replace-

ments in eq.(A.74),

M(g−1 , g
+
2 , q

+
3 , q

−
4 ) = 2g2

⟨32⟩2

⟨31⟩⟨41⟩

[
u

s
Vu

(
T a1T a2

)
α4α3

+
t

s
Vt

(
T a2T a1

)
α4α3

]
, (A.121)

M(g−1 , g
+
2 , q

−
3 , q

+
4 ) = 2g2

⟨31⟩2

⟨32⟩⟨42⟩

[
t

s
Vt

(
T a2T a1

)
α4α3

+
u

s
Vu

(
T a1T a2

)
α4α3

]
, (A.122)

M(q−1 , q
+
2 , g

+
3 , g

−
4 ) = 2g2

⟨14⟩2

⟨13⟩⟨23⟩

[
u

s
Vu

(
T a3T a4

)
α2α1

+
t

s
Vt

(
T a4T a3

)
α2α1

]
, (A.123)

M(q−1 , q
+
2 , g

−
3 , g

+
4 ) = 2g2

⟨13⟩2

⟨14⟩⟨24⟩

[
t

s
Vt

(
T a4T a3

)
α2α1

+
u

s
Vu

(
T a3T a4

)
α2α1

]
. (A.124)

We consider two-body scattering processes of gluons and quarks, g1, g2 → q3, q4 and q1, q2 →
g3, g4. In these processes, kinetic factors of eqs.(A.121), (A.122), (A.123) and (A.124) are

⟨32⟩2

⟨31⟩⟨41⟩
=

√
u

t
,

⟨31⟩2

⟨32⟩⟨42⟩
= −

√
t

u
,

⟨14⟩2

⟨13⟩⟨23⟩
= −

√
u

t
,

⟨13⟩2

⟨14⟩⟨24⟩
=

√
t

u
.

(A.125)
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first string excited gluon exchanges The gluons-to-quarks or quarks-to-gluons scattering

process exchanges the string excited gluons. First, focusing on the first s-channel pole which is

the first string excited gluon and using the string form factor functions in the limit of s ≃M2
s

in eq.(A.17),

M1st(g
−
1 , g

+
2 → q−3 , q

+
4 ) ≃ 2g2M2

s

1

s−M2
s

√
− t

s

(
−u
s

) 3
2{
T a1 , T a2

}
α4α3

, (A.126)

M1st(g
−
1 , g

+
2 → q+3 , q

−
4 ) ≃ −2g2M2

s

1

s−M2
s

√
−u
s

(
− t

s

) 3
2{
T a1 , T a2

}
α4α3

, (A.127)

M1st(q
−
1 , q

+
2 → g−3 , g

+
4 ) ≃ −2g2M2

s

1

s−M2
s

√
− t

s

(
−u
s

) 3
2{
T a3 , T a4

}
α2α1

, (A.128)

M1st(q
−
1 , q

+
2 → g+3 , g

−
4 ) ≃ 2g2M2

s

1

s−M2
s

√
−u
s

(
− t

s

) 3
2{
T a3 , T a4

}
α2α1

. (A.129)

Since angular dependences of eqs.(A.126), (A.127), (A.128) and (A.129) are factorized into the

Wigner d-functions,

d J=2
±2,±1 (θ) = d J=2

∓1,∓2 (θ) = ∓ 2 sin
θ

2
cos3

θ

2
,

d J=2
±2,∓1 (θ) = d J=2

±1,∓2 (θ) = ∓ 2 cos
θ

2
sin3 θ

2
,

(A.130)

it is found that the first string excited gluons with J = 2 are exchanged in the processes. The

amplitudes become

M1st(g
−
1 , g

+
2 → q−3 , q

+
4 ) ≃ 4g2M2

s

1

s−M2
s

d J=2
−2,−1 (θ)

∑
A

d a1a2A(TA)α4α3 , (A.131)

M1st(g
−
1 , g

+
2 → q+3 , q

−
4 ) ≃ −4g2M2

s

1

s−M2
s

d J=2
−2,+1 (θ)

∑
A

d a1a2A(TA)α4α3 , (A.132)

M1st(q
−
1 , q

+
2 → g−3 , g

+
4 ) ≃ 4g2M2

s

1

s−M2
s

d J=2
−1,−2 (θ)

∑
A

d a3a4A(TA)α2α1 , (A.133)

M1st(q
−
1 , q

+
2 → g+3 , g

−
4 ) ≃ 4g2M2

s

1

s−M2
s

d J=2
−1,+2 (θ)

∑
A

d a3a4A(TA)α2α1 . (A.134)

widths of first string excited gluons In order to extract a matrix element of FG∗ J=2A
±1/2,∓1/2;α3,α4

from eqs.(A.131) and (A.132), using the result of the matrix element of FG∗ J=2A
±1,∓1; a1,a2

in

eq.(A.33),

FG∗
J=2A
±1/2,∓1/2;α3,α4

= ± 1√
2
gMs (T

A)α4α3 . (A.135)
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The widths of G∗ → qq for J = 2 are

ΓJ=2A
G∗→qq =

1

16πMs

1

2× 2 + 1

∑
α3,α4

{∣∣FG∗
J=2A
+1/2,−1/2;α3,α4

∣∣2 + ∣∣FG∗
J=2A
−1/2,+1/2;α3,α4

∣∣2}
=
g2Ms

16π

1

5
Tr(TATA) .

(A.136)

A group factor of eq.(A.136) is averaged over a gauge index A of G∗ for each decay process of

g∗ and C∗,

• g∗ → qq

1

N2 − 1

N2−1∑
a

Tr(T aT a) =
1

N2 − 1

N2 − 1

2N
Tr(IN) =

1

2
, (A.137)

• C∗ → qq

Tr(T 0T 0) =
1

2N
Tr(IN) =

1

2
. (A.138)

Thus, widths of the first string excited gluons, g∗ and C∗, with J = 2 for the process of G∗ → qq

are

ΓJ=2
g∗→qq =

g2Ms

4π

1

5

Nf

8
, ΓJ=2

C∗→qq =
g2Ms

4π

1

5

Nf

8
, (A.139)

where Nf is the number of quark flavor. Total widths of g∗ and C∗ with J = 2 are obtained

from eqs.(A.41), (A.42) and (A.139),

ΓJ=2
g∗ =

g2Ms

4π

1

5

(
N

2
+
Nf

8

)
, ΓJ=2

C∗ =
g2Ms

4π

1

5

(
N +

Nf

8

)
. (A.140)

squared amplitudes with first string excited gluon exchanges The amplitude of

eqs.(A.131), (A.132), (A.133) and (A.134) are written as

M1st(g
−
1 , g

+
2 → q−3 , q

+
4 )

→ 8 g2M2
s

1

M4
s

[ √
−t(−u)3/2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a1a2a(T a)α4α3 +

√
−t(−u)3/2

s−M2
s + iMsΓJ=2

C∗
d a1a20(T 0)α4α3

]
,

(A.141)

M1st(g
−
1 , g

+
2 → q+3 , q

−
4 )

→− 8 g2M2
s

1

M4
s

[ √
−u(−t)3/2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a1a2a(T a)α4α3 +

√
−u(−t)3/2

s−M2
s + iMsΓJ=2

C∗
d a1a20(T 0)α4α3

]
,

(A.142)

M1st(q
−
1 , q

+
2 → g−3 , g

+
4 )

→ 8 g2M2
s

1

M4
s

[
−
√
−t(−u)3/2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a3a4a(T a)α2α1 +
−
√
−t(−u)3/2

s−M2
s + iMsΓJ=2

C∗
d a3a40(T 0)α2α1

]
,

(A.143)
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M1st(q
−
1 , q

+
2 → g+3 , g

−
4 )

→ 8 g2M2
s

1

M4
s

[ √
−u(−t)3/2

s−M2
s + iMsΓJ=2

g∗

∑
a

d a3a4a(T a)α2α1 +

√
−u(−t)3/2

s−M2
s + iMsΓJ=2

C∗
d a3a40(T 0)α2α1

]
.

(A.144)

Squared amplitudes of the processes of g1, g2 → q3, q4 and q1, q2 → g3, g4 are calculated,∣∣M1st(g1, g2 → q3, q4)
∣∣2

=
1

22
Nf

(N2 − 1)2

∑
a1,a2,α3,α4

{∣∣M1st(g
−
1 , g

+
2 → q−3 , q

+
4 )
∣∣2 + ∣∣M1st(g

+
1 , g

−
2 → q+3 , q

−
4 )
∣∣2

+
∣∣M1st(g

−
1 , g

+
2 → q+3 , q

−
4 )
∣∣2 + ∣∣M1st(g

+
1 , g

−
2 → q−3 , q

+
4 )
∣∣2} ,

(A.145)

∣∣M1st(q1, q2 → g3, g4)
∣∣2

=
1

22
1

N2

∑
α1,α2,a3,a4

{∣∣M1st(q
−
1 , q

+
2 → g−3 , g

+
4 )

∣∣2 + ∣∣M1st(q
+
1 , q

−
2 → g+3 , g

−
4 )

∣∣2
+
∣∣M1st(q

−
1 , q

+
2 → g+3 , g

−
4 )

∣∣2 + ∣∣M1st(q
+
1 , q

−
2 → g−3 , g

+
4 )

∣∣2} .
(A.146)

Since group factors of eqs.(A.141) and (A.142) are squared for each product scattering processes,

• (gg → g∗ → qq)2

1

(N2 − 1)2

N2−1∑
a1,a2

N2−1∑
a,b

d a1a2a d a1a2bTr
(
T aT b

)
=

1

(N2 − 1)2
1

2

N2−1∑
a1,a2,a

(
d a1a2a

)2
=

1

N2 − 1

N2 − 4

32N
,

(A.147)

• (qq → g∗ → gg)2

1

N2

N2−1∑
a3,a4

N2−1∑
a,b

d a3a4a d a3a4bTr
(
T aT b

)
=
N2 − 1

N2

N2 − 4

32N
, (A.148)

• (gg → C∗ → qq)2

1

(N2 − 1)2

N2−1∑
a1,a2

d a1a20 d a1a20 Tr
(
T 0T 0

)
=

1

N2 − 1

1

16N
, (A.149)

• (qq → C∗ → gg)2

1

N2

N2−1∑
a3,a4

d a3a40 d a3a40 Tr
(
T 0T 0

)
=
N2 − 1

N2

1

16N
, (A.150)

• (gg → g∗ → qq)× (gg → C∗ → qq) or (qq → g∗ → gg)× (qq → C∗ → gg)

N2−1∑
a1,a2

N2−1∑
a

d a1a2a d a1a20 Tr
(
T aT 0

)
=

1

4N

N2−1∑
a1,a

d a1a1aTr
(
T a

)
= 0 , (A.151)
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the squared amplitudes are

∣∣M1st(gg → qq)
∣∣2 = 2g4

M4
s

Nf

N(N2 − 1)

[
N2 − 4

2

tu3 + ut3

(s−M2
s )

2 + (MsΓJ=2
g∗ )2

+
tu3 + ut3

(s−M2
s )

2 + (MsΓJ=2
C∗ )2

]
.

(A.152)∣∣M1st(qq → gg)
∣∣2 = 2g4

M4
s

N2 − 1

N3

[
N2 − 4

2

tu3 + ut3

(s−M2
s )

2 + (MsΓJ=2
g∗ )2

+
tu3 + ut3

(s−M2
s )

2 + (MsΓJ=2
C∗ )2

]
.

(A.153)

second string excited gluon exchanges Next, we consider the two-body scattering am-

plitudes of gluons and quarks, with the second string excited gluon exchanges. From the string

form factor functions in the limit of s ≃ 2M2
s of eq.(A.53),

M2nd(g
−
1 , g

+
2 → q−3 , q

+
4 ) ≃ 4g2M2

s

1

s− 2M2
s

√
− t

s

(
−u
s

) 3
2
(
−u
s
+
t

s

)[
T a1 , T a2

]
α4α3

, (A.154)

M2nd(g
−
1 , g

+
2 → q+3 , q

−
4 ) ≃ −4g2M2

s

1

s− 2M2
s

√
−u
s

(
− t

s

) 3
2
(
−u
s
+
t

s

)[
T a1 , T a2

]
α4α3

, (A.155)

M2nd(q
−
1 , q

+
2 → g−3 , g

+
4 ) ≃ −4g2M2

s

1

s− 2M2
s

√
− t

s

(
−u
s

) 3
2
(
−u
s
+
t

s

)[
T a3 , T a4

]
α2α1

, (A.156)

M2nd(q
−
1 , q

+
2 → g+3 , g

−
4 ) ≃ 4g2M2

s

1

s− 2M2
s

√
−u
s

(
− t

s

) 3
2
(
−u
s
+
t

s

)[
T a3 , T a4

]
α2α1

. (A.157)

Angular dependences in eqs.(A.126), (A.127), (A.128) and (A.129) are factorized into the

Wigner d-functions of J = 2 and J = 3,

d J=3
±2,±1 (θ) = d J=3

∓1,∓2 (θ) = ∓ 2

√
5

2
sin

θ

2
cos3

θ

2

(
3 cos θ − 1

2

)
,

d J=3
±2,∓1 (θ) = d J=3

±1,∓2 (θ) = ∓ 2

√
5

2
cos

θ

2
sin3 θ

2

(
3 cos θ + 1

2

)
.

(A.158)

Therefore, it is found that the second string excited gluons with J = 2 and J = 3 are exchanged,

as follows,

M2nd(g
−
1 , g

+
2 → q−3 , q

+
4 ) ≃ 4g2M2

s

1

s− 2M2
s

[
1

6
d J=2
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1

3

√
2

5
d J=3

−2,−1 (θ)

]∑
a

ifa1a2a
(
T a

)
α4α3

,

(A.159)

M2nd(g
−
1 , g

+
2 → q+3 , q

−
4 ) ≃ −4g2M2

s

1

s− 2M2
s

[
−1

6
d J=2

−2,+1 (θ)+
1

3

√
2

5
d J=3

−2,+1 (θ)

]∑
a

ifa1a2a
(
T a

)
α4α3

,

(A.160)

M2nd(q
−
1 , q

+
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+
4 ) ≃ 4g2M2

s

1

s− 2M2
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1
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d J=2
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1

3

√
2

5
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−1,−2 (θ)

]∑
a

ifa3a4a
(
T a

)
α2α1

,

(A.161)
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M2nd(q
−
1 , q

+
2 → g+3 , g

−
4 ) ≃ 4g2M2

s

1

s− 2M2
s

[
−1

6
d J=2

−1,+2 (θ)+
1

3

√
2

5
d J=3
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]∑
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ifa3a4a
(
T a

)
α2α1

.

(A.162)

widths of second string excited gluons From the above amplitudes, we can extract matrix

elements of the second string excited gluons, Fg∗∗
J=2,3 a
±1/2,∓1/2;α3,α4

, using the result of the matrix

element of Fg∗∗
J=2,3 a
±1,∓1; a3,a4

of eq.(A.61),

Fg∗∗
J=2 a
±1/2,∓1/2;α3,α4

= + i
1√
6
gMs

(
T a

)
α4α3

, Fg∗∗
J=3 a
±1/2,∓1/2;α3,α4

= ± i
2
√
2√
15
gMs

(
T a

)
α4α3

.

(A.163)

The widths of g∗∗ → qq for J = 2 are

ΓJ=2 a
g∗∗→qq =

1

16π
√
2Ms

1

2× 2 + 1

∑
α3,α4

{∣∣Fg∗∗ J=2 a
+1/2,−1/2;α3,α4

∣∣2 + ∣∣Fg∗∗ J=2 a
−1/2,+1/2;α3,α4

∣∣2}

=
g2
√
2Ms

96π

1

5
Tr

(
T aT a

)
,

(A.164)

ΓJ=3 a
g∗∗→qq =

1

16π
√
2Ms

1

2× 3 + 1

∑
α3,α4

{∣∣Fg∗∗ J=3 a
+1/2,−1/2;α3,α4

∣∣2 + ∣∣Fg∗∗ J=3 a
−1/2,+1/2;α3,α4

∣∣2}

=
g2
√
2Ms

30π

1

7
Tr

(
T aT a

)
.

(A.165)

Using the result of the group factor averaged over a gauge index a of g∗∗ of eq.(A.137), widths

of the second string excited gluons, g∗∗, with J = 2 and J = 3 for the process of g∗∗ → qq are

ΓJ=2
g∗∗→qq =

g2
√
2Ms

4π

1

5

Nf

48
, ΓJ=3

g∗∗→qq =
g2
√
2Ms

4π

1

7

Nf

15
. (A.166)

Total widths of g∗∗ with J = 2 and J = 3 are obtained from eqs.(A.66) and (A.210),

ΓJ=2
g∗∗ =

g2
√
2Ms

4π

1

5

(
N

3
+
Nf

48

)
, ΓJ=3

g∗∗ =
g2
√
2Ms

4π

1

7

(
N

6
+
Nf

15

)
. (A.167)

squared amplitudes with second string excited gluon exchanges The amplitudes of

eqs.(A.159), (A.160), (A.161) and (A.162) are rewritten as

M2nd(g
−
1 , g

+
2 → q−3 , q

+
4 )

→ 4g2M2
s

1

8M6
s

[
1

6

2M2
s · 2

√
−t(−u)3/2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

2
√
−t(−u)3/2(−u+ 2t)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

ifa1a2a
(
T a

)
α4α3

,

(A.168)
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M2nd(g
−
1 , g

+
2 → q+3 , q

−
4 )

→− 4g2M2
s

1

8M6
s

[
−1

6

2M2
s · 2

√
−u(−t)3/2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

−2
√
−u(−t)3/2(−t+ 2u)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

ifa1a2a
(
T a

)
α4α3

,

(A.169)

M2nd(q
−
1 , q

+
2 → g−3 , g

+
4 )

→ 4g2M2
s

1

8M6
s

[
1

6

−2M2
s · 2

√
−t(−u)3/2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

−2
√
−t(−u)3/2(−u+ 2t)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

ifa3a4a
(
T a

)
α2α1

,

(A.170)

M2nd(q
−
1 , q

+
2 → g+3 , g

−
4 )

→ 4g2M2
s

1

8M6
s

[
−1

6

2M2
s · 2

√
−u(−t)3/2

s− 2M2
s + i

√
2MsΓJ=2

g∗∗
+

1

3

−2
√
−u(−t)3/2(−t+ 2u)

s− 2M2
s + i

√
2MsΓJ=3

g∗∗

]∑
a

ifa3a4a
(
T a

)
α2α1

.

(A.171)

Since the group factors are squared for each product of scattering processes,

• (gg → g∗∗ → qq)2

1

(N2 − 1)2

N2−1∑
a1,a2

N2−1∑
a,b

fa1a2a fa1a2bTr
(
T aT b

)
=

1

(N2 − 1)2
1

2

N2−1∑
a1,a2,a

(
fa1a2a

)2
=

1

N2 − 1

N

2
,

(A.172)

• (qq → g∗∗ → gg)2

1

N2

N2−1∑
a1,a2

N2−1∑
a,b

fa1a2a fa1a2bTr
(
T aT b

)
=

1

N2

1

2

N2−1∑
a1,a2,a

(
fa1a2a

)2
=
N2 − 1

N2

N

2
, (A.173)

the squared amplitudes are∣∣M2nd(gg → qq)
∣∣2 = ∣∣M2nd(gg → qq)

∣∣2
non−int.

+
∣∣M2nd(gg → qq)

∣∣2
int.
,∣∣M2nd(qq → gg)

∣∣2 = ∣∣M2nd(qq → gg)
∣∣2
non−int.

+
∣∣M2nd(qq → gg)

∣∣2
int.
,

(A.174)

where∣∣M2nd(gg → qq)
∣∣2
non−int.

=
g4

8M8
s

Nf ·N
2(N2 − 1)

[
1

9

4M4
s

(
tu3 + ut3

)
(s− 2M2

s )
2 + (

√
2MsΓJ=2

g∗∗ )2
+

4

9

tu3(−u+ 2t)2 + ut3(−t+ 2u)2

(s− 2M2
s )

2 + (
√
2MsΓJ=3

g∗∗ )2

]
,

(A.175)∣∣M2nd(gg → qq)
∣∣2
int.

=
g4

4M8
s

Nf ·N
2(N2 − 1)

[
2

9

(s− 2M2
s )

2 + 2M2
s Γ

J=2
g∗∗ ΓJ=3

g∗∗

(s− 2M2
s )

2 + (
√
2MsΓJ=2

g∗∗ )2
2M2

s

(
tu3(−u+ 2t) + ut3(−t+ 2u)

)
(s− 2M2

s )
2 + (

√
2MsΓJ=3

g∗∗ )2

]
,

(A.176)
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∣∣M2nd(qq → gg)
∣∣2
non−int.

=
g4

8M8
s

N2 − 1

2N

[
1

9

4M4
s

(
tu3 + ut3

)
(s− 2M2

s )
2 + (

√
2MsΓJ=2

g∗∗ )2
+

4

9

tu3(−u+ 2t)2 + ut3(−t+ 2u)2

(s− 2M2
s )

2 + (
√
2MsΓJ=3

g∗∗ )2

]
,

(A.177)∣∣M2nd(qq → gg)
∣∣2
int.

=
g4

4M8
s

N2 − 1

2N

[
2

9

(s− 2M2
s )

2 + 2M2
s Γ

J=2
g∗∗ ΓJ=3

g∗∗

(s− 2M2
s )

2 + (
√
2MsΓJ=2

g∗∗ )2
2M2

s

(
tu3(−u+ 2t) + ut3(−t+ 2u)

)
(s− 2M2

s )
2 + (

√
2MsΓJ=3

g∗∗ )2

]
.

(A.178)

widths of first string excited gluons with J=1 A fact that the first string excited gluons

have J = 0, J = 1 and J = 2 is verified, by counting of physical degrees of freedom in ref.[38].

However, as it is found from eqs.(A.128) and (A.129), the string excited gluon with J = 1

cannot be accessible in the process of qq → gg. In order to calculate a width of the string

excited gluon with J = 1, we identify it with an intermediated state in scattering processes of

g̃g̃ → g̃g̃ and qq → g̃g̃, where g̃ denotes a gluino which is a superpartner of gluon.

Using the supersymmetric Ward identity[74], amplitudes with external four gluinos are

shown as

M(g̃−1 , g̃
+
2 , g̃

+
3 , g̃

−
4 ) =

⟨23⟩
⟨14⟩

M(g−1 , g
+
2 , g

+
3 , g

−
4 ) , (A.179)

M(g̃−1 , g̃
+
2 , g̃

−
3 , g̃

+
4 ) =

⟨24⟩
⟨13⟩

M(g−1 , g
+
2 , g

−
3 , g

+
4 ) . (A.180)

If we consider two-gluino scattering processes, g̃1, g̃2 → g̃3, g̃4, kinetic factors of eqs.(A.179) and

(A.179) are
⟨23⟩
⟨14⟩

= −1 ,
⟨24⟩
⟨13⟩

= +1 . (A.181)

Let us consider two-gluino scattering amplitudes with the first string excited gluon ex-

changes. Inserting the string form factor functions in the limit of s ≃ M2
s of eq.(A.18) into

them, from eqs.(A.20) and (A.21),

M1st(g̃
−
1 , g̃

+
2 → g̃−3 , g̃

+
4 ) ≃ 4 g2M2

s

1

s−M2
s

(
−u
s

)2

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
, (A.182)

M1st(g̃
−
1 , g̃

+
2 → g̃+3 , g̃

−
4 ) ≃ −4 g2M2

s

1

s−M2
s

(
− t

s

)2

Tr
(
{T a1 , T a2}{T a3 , T a4}

)
. (A.183)

Since angular dependences in eqs.(A.182) and (A.183) are decomposed into the Wigner d-
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functions of J = 1 and J = 2,

d J=1
±1,±1 (θ) =

1 + cos θ

2
,

d J=1
±1,∓1 (θ) =

1− cos θ

2
,

d J=2
±1,±1 (θ) =

1 + cos θ

2

(
2 cos θ − 1

)
,

d J=2
±1,∓1 (θ) =

1− cos θ

2

(
2 cos θ + 1

)
,

(A.184)

the two-gluino scattering amplitudes become

M1st(g̃
−
1 , g̃

+
2 → g̃−3 , g̃

+
4 ) ≃ 32 g2M2

s

1

s−M2
s

[
3

4
d J=1

−1,−1 (θ) +
1

4
d J=2

−1,−1 (θ)

]∑
A

d a1a2A d a3a4A ,

(A.185)

M1st(g̃
−
1 , g̃

+
2 → g̃+3 , g̃

−
4 ) ≃ −32 g2M2

s

1

s−M2
s

[
3

4
d J=1

−1,+1 (θ)−
1

4
d J=2

−1,+1 (θ)

]∑
A

d a1a2A d a3a4A .

(A.186)

Extracting matrix elements of the first string excited gluons from the amplitudes of eqs.(A.185)

and (A.185),

FG∗
J=1A
±1/2,∓1/2; a3,a4

= ∓ 2
√
6 gMs d

a3a3A , FG∗
J=2A
±1/2,∓1/2; a3,a4

= 2
√
2 gMs d

a3a3A . (A.187)

On the other hand, using another of the supersymmetric Ward identity, amplitudes with

external two gluinos and two quarks are

M(q−1 , q
+
2 , g̃

+
3 , g̃

−
4 ) =

[24]

[23]
M(q−1 , q

+
2 , g

+
3 , g

−
4 ) , (A.188)

M(q−1 , q
+
2 , g̃

−
3 , g̃

+
4 ) =

[23]

[24]
M(q−1 , q

−
2 , g

−
3 , g

+
4 ) , (A.189)

If we consider two-body scattering processes of quarks and gluinos, q1, q2 → g̃3, g̃4, kinetic

factors of eqs.(A.188) and (A.189) are

[24]

[23]
= −

√
t

u
,

[23]

[24]
= −

√
u

t
. (A.190)

Let us consider scattering amplitudes of quarks into gluinos, with the first string excited

gluon exchanges. From eqs.(A.128) and (A.129),

M1st(q
−
1 , q

+
2 → g̃−3 , g̃

+
4 ) ≃ 2g2M2

s

1

s−M2
s

(
− t

s

)(
−u
s

){
T a3 , T a4

}
α2α1

, (A.191)

M1st(q
−
1 , q

+
2 → g̃+3 , g̃

−
4 ) ≃ −2g2M2

s

1

s−M2
s

(
−u
s

)(
− t

s

){
T a3 , T a4

}
α2α1

. (A.192)
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Since angular dependences of eqs.(A.191) and (A.192) are decomposed into the Wigner d-

functions of eq.(A.184), the amplitudes are

M1st(q
−
1 , q

+
2 → g̃−3 , g̃

+
4 ) ≃ 8 g2M2

s

1

s−M2
s

[
1

4
d J=1

−1,−1 (θ)−
1

4
d J=2

−1,−1 (θ)

]∑
A

d a3a4A
(
TA

)
α2α2

,

(A.193)

M1st(q
−
1 , q

+
2 → g̃+3 , g̃

−
4 ) ≃ −8 g2M2

s

1

s−M2
s

[
1

4
d J=1

−1,+1 (θ) +
1

4
d J=2

−1,+1 (θ)

]∑
A

d a3a4A
(
TA

)
α2α1

.

(A.194)

Using the results of the matrix elements of G∗ of eq.(A.187),

FG∗
J=1A
±1/2,∓1/2;α3,α4

= ∓ 1√
6
gMs

(
TA

)
α4α3

, FG∗
J=2A
±1/2,∓1/2;α3,α4

= − 1√
2
gMs

(
TA

)
α4α3

(A.195)

a width of the first string excited gluon with J = 1 for the process of G∗ → qq is

ΓJ=1A
G∗→qq =

1

16πMs

1

2× 1 + 1

∑
α3,α4

{∣∣FG∗
J=1A
+1/2,−1/2;α3,α4

∣∣2 + ∣∣FG∗
J=1A
−1/2,+1/2;α3,α4

∣∣2}
=
g2Ms

48π

1

3
Tr

(
TATA

)
.

(A.196)

Since the group factor is 1
2
in eqs.(A.137) and (A.138) for both g∗ and C∗,

ΓJ=1
g∗→qq =

g2Ms

4π

1

3

Nf

24
, ΓJ=1

C∗→qq =
g2Ms

4π

1

3

Nf

24
. (A.197)

widths of second string excited gluons with J=1 Next, consider two-gluino scattering

amplitudes and quarks into gluinos scattering amplitudes with second string excited gluon

exchanges. The amplitudes are

M2nd(g̃
−
1 , g̃

+
2 → g̃−3 , g̃

+
4 ) ≃ −8 g2M2

s

1

s− 2M2
s

(
−u
s

)2(
−u
s
+
t

s

)
Tr

(
[T a1 , T a2 ][T a3 , T a4 ]

)
,

(A.198)

M2nd(g̃
−
1 , g̃

+
2 → g̃+3 , g̃

−
4 ) ≃ 8 g2M2

s

1

s− 2M2
s

(
− t

s

)2(
−u
s
+
t

s

)
Tr

(
[T a1 , T a2 ][T a3 , T a4 ]

)
.

(A.199)

M2nd(q
−
1 , q

+
2 → g̃−3 , g̃

+
4 ) ≃ 4g2M2

s

1

s− 2M2
s

(
− t

s

)(
−u
s

)(
−u
s
+
t

s

)[
T a3 , T a4

]
α2α1

,

(A.200)

M2nd(q
−
1 , q

+
2 → g̃+3 , g̃

−
4 ) ≃ −4g2M2

s

1

s− 2M2
s

(
−u
s

)(
− t

s

)(
−u
s
+
t

s

)[
T a3 , T a4

]
α2α1

.

(A.201)
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Since angular dependences of eqs.(A.198), (A.199), (A.200) and (A.201) are decomposed into

the Wigner d-functions of J = 1, J = 2 and J = 3,

d J=3
±1,±1 (θ) =

1 + cos θ

2

(
15

4

(
cos θ − 1

)2
+ 5

(
cos θ − 1

)
+ 1

)
,

d J=3
±1,∓1 (θ) =

1− cos θ

2

(
15

4

(
cos θ − 1

)2
+ 10

(
cos θ − 1

)
+ 6

)
,

(A.202)

the amplitudes become

M2nd(g̃
−
1 , g̃

+
2 → g̃−3 , g̃

+
4 )

≃ 4 g2M2
s

1

s− 2M2
s

[
9

20
d J=1

−1,−1 (θ) +
5

12
d J=2

−1,−1 (θ) +
2

15
d J=3

−1,−1 (θ)

]∑
a

fa1a2a fa3a4a ,

(A.203)

M2nd(g̃
−
1 , g̃

+
2 → g̃+3 , g̃

−
4 )

≃− 4 g2M2
s

1

s− 2M2
s

[
− 9

20
d J=1

−1,+1 (θ) +
5

12
d J=2

−1,+1 (θ)−
2

15
d J=3

−1,+1 (θ)

]∑
a

fa1a2a fa3a4a ,

(A.204)

M2nd(q
−
1 , q

+
2 → g̃−3 , g̃

+
4 )

≃ 4g2M2
s

1

s− 2M2
s

[
1

20
d J=1

−1,−1 (θ) +
1

12
d J=2

−1,+1 (θ)−
2

15
d J=3

−1,+1 (θ)

]∑
a

ifa3a4a
(
T a

)
α2α1

,

(A.205)

M2nd(q
−
1 , q

+
2 → g̃+3 , g̃

−
4 )

≃− 4g2M2
s

1

s− 2M2
s

[
− 1

20
d J=1

−1,−1 (θ) +
1

12
d J=2

−1,+1 (θ) +
2

15
d J=3

−1,+1 (θ)

]∑
a

ifa3a4a
(
T a

)
α2α1

.

(A.206)

Therefore, matrix elements of g∗∗ are

Fg∗∗
J=1 a
±1/2,∓1/2; a3,a4

=
3√
5
gMs f

a3a4a ,

Fg∗∗
J=2 a
±1/2,∓1/2; a3,a4

= ∓
√

5

3
gMs f

a3a4a ,

Fg∗∗
J=3 a
±1/2,∓1/2; a3,a4

=
2
√
2√
15
gM2

s f
a3a4a ,

(A.207)

Fg∗∗
J=1 a
±1/2,∓1/2;α3,α4

= i
1

3
√
5
gMs

(
T a

)
α4α3

,

Fg∗∗
J=2 a
±1/2,∓1/2;α3,α4

= ∓ i
1√
15
gMs

(
T a

)
α4α3

,

Fg∗∗
J=3 a
±1/2,∓1/2;α3,α4

= − i
2
√
2√
15
gMs

(
T a

)
α4α3

.

(A.208)

115



Then a width of the second string excited gluon with J = 1 for the process of g∗∗ → qq is

ΓJ=1 a
g∗∗→qq =

1

16π
√
2Ms

1

2× 1 + 1

∑
α3,α4

{∣∣Fg∗∗ J=1 a
+1/2,−1/2;α3,α4

∣∣2 + ∣∣Fg∗∗ J=1 a
−1/2,+1/2;α3,α4

∣∣2}

=
g2
√
2Ms

16π · 45
1

3
Tr

(
T aT a

)
,

(A.209)

that is,

ΓJ=1
g∗∗→qq =

g2
√
2Ms

4π

1

3

Nf

360
, (A.210)

and a total width of g∗∗ with J = 1 is from eq.(A.66),

ΓJ=1
g∗∗ =

g2
√
2Ms

4π

1

3

(
N

4
+
Nf

360

)
. (A.211)

B Standard spinor products

Spinor products associated to momenta ki and kj are defined by

⟨ij⟩ ≡ u(ki,−)u(kj,+) = v(ki,+) v(kj,−) ,

[ij] ≡ u(ki,+)u(kj,−) = v(ki,−) v(kj,+) .
(B.1)

u(k, λ) and v(k, λ) are Dirac spinor wave functions of massless fermions, as eigenstates of helicity

λ. The massless fermion has a four-momentum kµ = (k,k) with k = |k|(sin θ cosϕ, sin θ sinϕ, cos θ),
where |k| = |k|, θ and ϕ are polar and azimuthal angles in the polar coordinate system. In the

standard representation, the Dirac spinor wave functions can be chosen as follows,

u(k,+) = v(k,−) =
√
k


(
e−iϕ/2 cos θ/2

eiϕ/2 sin θ/2

)
(
e−iϕ/2 cos θ/2

eiϕ/2 sin θ/2

)
 , u(k,−) = v(k,+) =

√
k


(
−e−iϕ/2 sin θ/2

eiϕ/2 cos θ/2

)
−
(
−e−iϕ/2 sin θ/2

eiϕ/2 cos θ/2

)
 .

(B.2)

When k > 0, the spinor products ⟨ij⟩ are

⟨ij⟩ =
√

−2ki · kj

√
2
[
− sin

θi−θj
2

cos
ϕi−ϕj

2
− i sin

θi+θj
2

sin
ϕi−ϕj

2

]√
1− sin θi sin θj cos(ϕi − ϕj)− cos θi cos θj

, (B.3)

[ij] =
√

−2ki · kj

√
2
[
+sin

θi−θj
2

cos
ϕi−ϕj

2
− i sin

θi+θj
2

sin
ϕi−ϕj

2

]√
1− sin θi sin θj cos(ϕi − ϕj)− cos θi cos θj

, (B.4)

and has important properties∣∣⟨ij⟩| = ∣∣[ij]∣∣ = √
−2ki · kj , ⟨ij⟩ = −⟨ji⟩ , [ij] = −[ji] . (B.5)

For example, consider a two-body scattering process 1, 2 → 3, 4 (1, 2 refer to incoming parti-

cles, while 3, 4 to outgoing particles). In the center-of-mass frame, momenta of the incoming
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particles can be set along the z axis, and that of the outgoing ones can be set in the x-z plane.

Suppose that a scattering angle in this process is θ, polar and azimuthal angles of each particle

momentum, θi and ϕi, can be taken

kµ1 = k(1, 0, 0, 1) ⇒ (θ1, ϕ1) = (0, 0) ,

kµ2 = k(1, 0, 0,−1) ⇒ (θ2, ϕ2) = (π, 0) ,

kµ3 = k(1, sin θ, 0, cos θ) ⇒ (θ3, ϕ3) = (θ, 0) ,

kµ4 = k(1,− sin θ, 0,− cos θ) ⇒ (θ4, ϕ4) = (θ + π, 0) .

(B.6)

In the process, spinor products are given as

⟨12⟩ = ⟨34⟩ =
√
s , ⟨13⟩ = ⟨24⟩ =

√
−t , ⟨14⟩ = ⟨32⟩ =

√
−u , (B.7)

where s, t and u are the Mandelstam variables,

s = −(k1 + k2)
2 = −2k1 · k2 = 4k2 ,

t = −(k1 − k3)
2 = +2k1 · k3 = −s 1− cos θ

2
,

u = −(k1 − k4)
2 = +2k1 · k4 = −s 1 + cos θ

2
.

(B.8)

C Calculation of four-point open string amplitudes

C.1 Four-point open string amplitudes at disk-level

String amplitudes are correlation functions of the corresponding vertex operators on a given

topology of the two-dimensional world-sheet. In this thesis, we use the results of four-point

open string amplitudes at tree-level, namely, four-point correlation functions of the open string

vertex operators on a boundary of a two-dimensional disk D2. The S-matrix on D2 is

SD2(k1; k2; k3; k4) = e−λ
∫ ∞

−∞
dz4Tr

⟨
⋆
⋆
c(z1)V(z1) ⋆

⋆
⋆
⋆
c(z2)V(z2) ⋆

⋆
⋆
⋆
c(z3)V(z3) ⋆

⋆
⋆
⋆
V(z4) ⋆

⋆

⟩
+(k2 ↔ k3) ,

(C.1)

where ⋆
⋆

⋆
⋆
denotes the boundary conformal normal ordering, c(zi) is the c ghost field and V(zi)

is the vertex operator, and the trace is for Chan-Paton factors of the vertex operators. We

can fix three positions z1, z2 and z3 of the vertex operators, for example, z1 = 0, z2 = 1 and

z3 = ∞. There are six cyclic inequivalent orderings of the four vertex operators, depending on

the position of V(z4),

SD2(k1; k2; k3; k4) = e−λ
{∫ 0

−∞
dz4Tr

⟨
⋆
⋆
V(z4) ⋆

⋆
⋆
⋆
c(z1)V(z1) ⋆

⋆
⋆
⋆
c(z2)V(z2) ⋆

⋆
⋆
⋆
c(z3)V(z3) ⋆

⋆

⟩
+

∫ 1

0

dz4Tr

⟨
⋆
⋆
c(z1)V(z1) ⋆

⋆
⋆
⋆
V(z4) ⋆

⋆
⋆
⋆
c(z2)V(z2) ⋆

⋆
⋆
⋆
c(z3)V(z3) ⋆

⋆

⟩
+

∫ ∞

1

dz4Tr

⟨
⋆
⋆
c(z1)V(z1) ⋆

⋆
⋆
⋆
c(z2)V(z2) ⋆

⋆
⋆
⋆
V(z4) ⋆

⋆
⋆
⋆
c(z3)V(z3) ⋆

⋆

⟩}
+ (k2 ↔ k3) .

(C.2)
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Note that in order to cancel the background βγ ghost number −2 on the disk, the vertex

operators are chosen to have the appropriate ghost picture and the total picture must be −2.

C.2 Four gluon amplitudes

The gluon vertex operator with the picture −1 is

V(−1)
ga (z, e, k) = gA T

aeµψ
µ(z)e−ϕ(z)eik·X(z) , (C.3)

and that with the picture 0 is

V(0)
ga (z, e, k) =

gA√
2α′

T aeµ
[
iẊµ(z) + 2α′k · ψ(z)ψµ(z)

]
eik·X(z) , (C.4)

where eµ is the polarization vector. The picture corresponds to an exponent coefficient of

the holomorphic scalar field ϕ(z), and e−ϕ(z) is the vertex operator of the βγ NS vacuum

|0⟩βγNS in eq.(1.66).33 This comes from the fact that the βγ ghosts are bosonized using ϕ and

anticommutative fields η and ξ,

β ∼= e−ϕ∂ξ , γ ∼= eϕη . (C.5)

Then, the S-matrix is

SD2({ai, ei, ki}) = e−λ
∫ ∞

−∞
dz4Tr

⟨
⋆
⋆
c(z1)V(−1)

ga1 (z1, e1, k1) ⋆
⋆

⋆
⋆
c(z2)V(−1)

ga2 (z2, e2, k2) ⋆
⋆

× ⋆
⋆
c(z3)V(0)

ga3 (z3, e3, k3)
⋆
⋆

⋆
⋆
V(0)
ga4 (z4, e4, k4)

⋆
⋆

⟩
+ (k2 ↔ k3) .

(C.6)

The correlation functions of operators are calculated as follows,⟨ 4∏
i=1

⋆
⋆
eiki·X(zi) ⋆

⋆

⟩
= iCX

D2
(2π)pδp(

∑
i ki)

4∏
i,j=1
i<j

|zij|2α
′ki·kj , (C.7)

⟨ 3∏
i=1

⋆
⋆
eiki·X(zi) ⋆

⋆
⋆
⋆
Ẋµ(z4)e

ik4·X(z4) ⋆
⋆

⟩
= −2iα′

3∑
i=1

kµi
z4i

⟨ 4∏
i=1

⋆
⋆
eiki·X(zi) ⋆

⋆

⟩
, (C.8)

⟨ 2∏
i=1

⋆
⋆
eiki·X(zi) ⋆

⋆

4∏
j=3

⋆
⋆
Ẋµj(zj)e

ikj ·X(zj) ⋆
⋆

⟩
=

[
(−2iα′)2

4∏
j=3

4∑
i=1,i̸=j

k
µj
i

zji
− 2α′ η

µ3µ4

(z34)2

]⟨ 4∏
i=1

⋆
⋆
eiki·X(zi) ⋆

⋆

⟩
,

(C.9)⟨
c(z1)c(z2)c(z3)

⟩
= Cg

D2
z12z13z23 , (C.10)⟨

⋆
⋆
e−ϕ(z1) ⋆

⋆
⋆
⋆
e−ϕ(z2) ⋆

⋆

⟩
=

1

z12
, (C.11)

33The vertex operator of the βγ Ramond vacuum |0⟩βγR in eq.(1.67) is e−ϕ(z)/2.
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⟨
ψµ(z1)ψ

ν(z2)
⟩
=
ηµν

z12
, (C.12)

⟨
ψµ(z1)ψ

ν(z2) ⋆
⋆
ψσψρ(z3) ⋆

⋆

⟩
=

1

z13z23

(
−ηµσηνρ + ηµρηνσ

)
, (C.13)

⟨
ψµ1(z1)ψ

µ2(z2)
4∏
i=3

⋆
⋆
ψνiψµi(zi) ⋆

⋆

⟩
=

1

z13z24z34

[
− ηµ1ν3(−ηµ2ν4ηµ3µ4 + ηµ3ν4ηµ2µ4)

+ ηµ1µ3(−ηµ2ν4ηµ4ν3 + ηµ2µ4ην3ν4)
]

+
1

z23z14z34

[
+ ηµ2ν3(−ηµ1ν4ηµ3µ4 + ηµ1µ4ηµ3ν4)

− ηµ2µ3(−ηµ1ν4ηµ4ν3 + ηµ1µ4ην3ν4)
]

+
1

z12(z34)2
ηµ1µ2

(
−ηµ3µ4ην3ν4 + ηµ4ν3ηµ3ν4

)
,

(C.14)

where CX
D2

and Cg
D2

are constants and zij ≡ zi−zj. The normalization of the gauge boson vertex

operator gA has the following relation with the gauge coupling constant on the Dp-brane, gA =√
2α′ gDp, and the universal factor CD2 ≡ e−λCX

D2
Cg
D2

is determined so that CD2 = 1/g2Dpα
′2.

Since the S-matrix is described by the invariant amplitude M as S = i(2π)pδp(
∑

i ki)M,

the disk-level open string amplitude with external four gluons is

M(g1, g2, g3, g4) = 4g2K(e1, e2, e3, e4)

[
1

su
VtTr

(
T a1T a2T a3T a4 + T a1T a4T a3T a2

)
+

1

ut
VsTr

(
T a1T a4T a2T a3 + T a1T a3T a2T a4

)
+

1

ts
VuTr

(
T a1T a2T a4T a3 + T a1T a3T a4T a2

)]
,

(C.15)

where g is the gauge coupling constant of strong interaction, K(e1, e2, e3, e4) is the kinematical

factor defined as

K(e1, e2, e3, e4) = e1µe2νe3ρe4σ
[
− tu ηµνηρσ − us ηµρηνσ − st ηµσηνρ

+ 2u (ηµνkρ1k
σ
2 + ηµρkν1k

σ
3 + ηνσkµ2k

ρ
4 + ηρσkµ3k

ν
4)

+ 2s (ηµρkν3k
σ
1 + ηµσkν4k

ρ
1 + ηνρkµ3k

σ
2 + ηνσkµ4k

ρ
2)

+ 2t (ηµνkρ2k
σ
1 + ηµσkν1k

ρ
4 + ηνρkµ2k

σ
3 + ηρσkν3k

µ
4 )
]
,

(C.16)

and Vs, Vt and Vu are functions of the Mandelstam variables which are defined in AppendixA.

C.3 Two gluon and two quarks amplitudes

The quark and antiquark vertex operators with the picture −1/2 are,

V(−1/2)
qαβ

(z, u, k) = gψTαβu
λΘλ(z)e

−ϕ(z)/2Ξa∩b(z)eik·X(z) , (C.17)

V(−1/2)
qαβ

(z, u, k) = gψTαβuλ̇Θ
λ̇(z)e−ϕ(z)/2Ξ

a∩b
(z)eik·X(z) , (C.18)
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where uλ and uλ̇ are the fermionic wave functions, and Θ(z) is the spin field,

Θ(z) =
1∏

a=0

exp
[
isaH

a(z)
]
. (C.19)

The spin field is the vertex operator of the R sector ground state |{sa}; k⟩R with spin sa = ±1
2
.

This comes from the fact that in the R sector, the fermionic operator ψµ is bosonized using the

holomorphic scalar field Ha,

e±iH
a ∼=


1√
2

(
±ψ0 + ψ1

)
a = 0

1√
2

(
ψ2a ± iψ2a+1

)
a = 1, . . . , 4 .

(C.20)

The vertex operators (C.17) and (C.18) correspond to an open string originating from a D-

brane intersection (a, b), and they connect two segments of the disk boundary, associated with

stacks of D-branes a and b. The field Ξa∩b in eq.(C.17) is the fermionic boundary changing

operator. In intersecting D-brane models, the intersections are characterized by angles θab.

Then, Ξa∩b and Ξ
a∩b

can be expressed in terms of bosonic and fermionic twist fields σ and

s [73],

Ξa∩b(z) =
4∏
j=2

σθjab
(z)sθjab

(z) , Ξ
a∩b

(z) =
4∏
j=2

σ−θjab
(z)s−θjab

(z) , (C.21)

where the spin fields

sθj(z) = exp
[
i(θj − 1

2
)Hj(z)

]
, s−θj(z) = exp

[
−i(θj − 1

2
)Hj(z)

]
. (C.22)

The S-matrix including two gluons and quarks is

SD2({ai, ei, ki;αi, βi, ui, ki})

= e−λ
∫ ∞

−∞
dz2Tr

⟨
⋆
⋆
c(z1)V(0)

ga1 (z1, e1, k1)
⋆
⋆

⋆
⋆
V(−1)
ga2 (z2, e2, k2) ⋆

⋆

× ⋆
⋆
c(z3)V(−1/2)

qα3β3
(z3, u3, k3) ⋆

⋆
⋆
⋆
c(z4)V(−1/2)

qα4β4
(z4, u4, k4) ⋆

⋆

⟩
+ (k2 ↔ k3) .

(C.23)

The correlation functions are calculated as follows,⟨
⋆
⋆
e−ϕ(z1) ⋆

⋆
⋆
⋆
e−ϕ(z3)/2 ⋆

⋆
⋆
⋆
e−ϕ(z4)/2 ⋆

⋆

⟩
=

1

z
1/2
13 z

1/2
14 z

1/4
34

, (C.24)

⟨
ψµ(z1)Θλ(z3)Θ

λ̇(z4)
⟩
=

1√
2

1

z
1/2
13 z

1/2
14

(σµε) λ̇λ . (C.25)

The normalization of the fermion vertex operators gψ has the relation with the string coupling,

gψ =
√
2α′ α′1/4gs, and the universal factor is determined so that CD2 = 1/g2sα

′2.
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Then, the disk-level open string amplitude with external two gluons and quarks is

M(g1, g2, q3, q4) = 2g2K(e1, e2, u3, u4)

[
1

u
Vt (T

a1T a2
)
α3α4

+
1

t
Vu

(
T a2T a1

)
α3α4

]
, (C.26)

where K(e1, e2, u3, u4) is the kinematical factor defined as

K(e1, e2, u3, u4) = e1µe2ν

{
1

2
k1ρ(u3σ

ρσµσνu4) +

[
δνρk

µ
3 +

t

s
(δµρk

ν
1 − δνρk

µ
2 − ηµνk1ρ)

]
(u3σ

ρu4)

}
.

(C.27)
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