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Introduction

Discovery of the Standard Model Higgs boson

The discovery of a Standard Model (SM) Higgs-like particle on 4th July in 2012 made a large
impact on almost all particle physicists. The ATLAS and CMS experiments of the Large Hadron
Collider (LHC) reported that mass of the new particle is about 125 GeV [1, 2]. Moreover, they
also reported that spin and parity of the new particle is 07 [3, 4], which led to a conclusion that
it is the SM Higgs boson.

The Standard Model is the SU(3)¢ x SU(2),, x U(1)y gauge theory with three generations
of quarks and leptons, and it has been quite well confirmed by past various experiments except
for the Higgs sector. The Higgs field of the SM is one doublet scalar of SU(2),. It breaks the
electroweak gauge symmetry spontaneously by its vacuum expectation value (VEV) and gives
masses to not only the electroweak gauge bosons but also the fermions through the Yukawa
couplings. The Higgs boson which is a fluctuation around the VEV has been observed through
the couplings with massive particles.

Naturalness and Hierarchy problem in the Standard Model

Due to the discovery of the SM Higgs boson, the SM seems almost complete. However, most
of particle physicists consider the SM as a low-energy effective theory up to a mass scale where
particles of new physics beyond the SM begin to appear. The scale of the new physics should
be at most the Planck scale, Mp; ~ 10 GeV, where gravitational interactions at quantum
level become visible, since the field theory cannot describe the gravitational interaction in a
renormalizable form.

Here, note that the mass square parameter of the Higgs boson receives finite radiative
corrections written by a square of the mass scale of the new physics,

Smi ~ M?

new phys. +oeee

Thus, the radiative corrections to the Higgs boson mass include the mass scale which has
nothing to do with the Higgs boson mass. This is caused by the fact that the Higgs boson
mass square parameter is an unnatural parameter which is not guaranteed to be zero by some
symmetries. This problem is called naturalness problem.

On the other hand, when the graviton mediating the gravitational interaction is defined as
a fluctuation around a flat background, g,, = 1., + h,., one-loop diagrams which include the
graviton h,, and contribute to the radiative corrections to the Higgs boson mass are shown
in Fig.0.1. If there is a renormalizable theory of gravity, the Higgs boson mass is expected to
receive the radiative corrections of the order of a square of the Planck mass,

Therefore, the renormalized parameter of the Higgs boson mass square should cancel out the
square of the Planck mass and results in the physical mass of the Higgs boson which is 125 GeV.



Figure 0.1: The one-loop diagrams which contribute the radiative corrections to the Higgs boson
mass, including the graviton h,,.

Very artificial fine-tuning is required since the Planck mass is much larger than the mass of
the Higgs boson. This problem essentially comes from the fact that a hierarchy between the
mass of the Higgs boson and the Planck mass has not been understood. The problem is called
hierarchy problem.

TeV scale gravity and Large extra dimension

We focus on the hierarchy problem. One of solutions to the hierarchy problem is that there
is a more fundamental gravitational scale of the order of TeV, rather than the Planck scale.
It is expected as a solution since the fundamental scale is the same order as the mass of the
Higgs boson. The solution can be realized by introducing extra space dimensions than three
and compactifying the extra dimensions into a space with large volume. It is called large extra
dimension which was proposed in ref.[5] in the light of Quantum Field Theory (QFT), and in
ref.[6, 7] in the light of string theory.!

If the SM gauge interactions live in our four-dimensional space-time but only the gravi-
tational interaction are spread on the extra dimensions, higher-dimensional Einstein-Hilbert

action is written by
1
SEH = W /dD.Z'\/ —gR,
167Gy
where Gg\?) is the Newton constant in a D-dimensional space-time. Since the extra dimensions
should be compactified into a space with finite volume, the action is reduced to the four-

dimensional Einstein-Hilbert action,

1

S - -
BT e GD)

/ do =g R = / do V=GR,

7TN

where Ggé) is the four-dimensional Newton constant and G%) = 1/M3,. When the D-dimensional
gravitational scale is denoted by Mp, the D-dimensional Newton constant GE\?) = 1/M52,
and the Planck scale is described as M2, = Vpp_4 M5 2. If the volume of the compactified space
Vp_4 is very large, we can choose the D-dimensional gravitational scale Mp to be of the order

!There is an another problem why the compactified space has large volume. The problem can be expected
to be solved in a framework of string theory.



of TeV. In this case, Mp is the more fundamental gravitational scale than the Planck scale and
it is almost the same order as the mass of the Higgs boson.

Why low-scale string models?

There are field theoretical models which can solve the hierarchy problem with extra dimensions,
such as the ADD [5] and the RS model [8]. However, since such models cannot describe the
gauge interactions in a renormalizable form, they are also low-energy effective theories with
cutoff scales. Moreover, since they are based on QFT, they of course cannot describe the
gravitational interaction at quantum level. Since we require more fundamental theories which
can solve the hierarchy problem, we consider models which are based on string theory.

The reasons why we consider string theory are:

e String theory is a strong candidate for quantum gravity. There is a closed string which
includes the graviton with spin 2.

e String theory does not need a renormalization. There are not ultraviolet divergences
which should be canceled out by a renormalization, as in QFT.

e String theory necessarily introduces extra dimensions. The absence of Weyl anomaly
in world-sheet theory requires that the space-time dimension is D = 10 in superstring
theory.

In models based on string theory, if the extra dimensional space has large volume, the
fundamental scale which is called the string scale M, or the Regge slope o/ = 1/M2? can be
chosen of the order of TeV. The models are called low-scale string models.

In string theory, there is a compactification mechanism which compactifies the extra dimen-
sions into a space with large volume. Since in string theory, the volume of the compactified
space is determined by an expectation value of a moduli field, a mechanism which stabilize the
value of the moduli field is required. As the mechanism of stabilization of the moduli, the Type
I[IB Calabi-Yau flux compactification was proposed by KKLT [9]. Using the KKLT mechanism,
large volume compactification is possible [10].

In order to introduce matter fermions of the SM, we should start with superstring theory.
If we assume that not the Minimal Supersymmetric Standard Model (MSSM) but the SM is
realized in low-scale string models, supersymmetry (SUSY) is explicitly broken at TeV scale.

String resonances and Model independence

Since the string scale M is of the order of TeV, low-scale string models have a possibility of
being confirmed or excluded by the LHC. Signatures of low-scale string models at the LHC are
different from typical signatures of other field theoretical models with extra dimensions, such
as the ADD and the RS.



A characteristic feature in low-scale string models is the appearance of string excited states.
String excited states are higher vibrational modes of open strings, and the open strings live in
a D-brane which is a subspace where the gauge interactions are localized. Therefore, the open
strings on D-branes can realize the SM gauge bosons and matters, and string excited states can
have the same gauge quantum number as that of the corresponding SM particle.

At the LHC, colored string excited states can be produced dominantly in dijet events [11, 12].
Scattering amplitudes of gluons and quarks with exchanges of string excited states are calculated
in ref.[13] (see ref.[14, 15] for earlier discussions). The string excited states can be observed as
resonances with mass of the order of My in dijet invariant mass distributions. The resonances
which are called string resonances have not been observed at the LHC yet, and the value of M,
has already been constrained in dijet events at the 7TeV and 8 TeV LHC, to be larger than
3.61 TeV by the ATLAS[16] and 4.78 TeV by the CMS [17].

If D-branes have directions of extra dimensions, there are not only string excited states but
also Kaluza-Klein (KK) modes of the SM particles. However, in dominant processes at the
LHC, the KK modes cannot be produced alone, because of the momentum conservation in the
direction of extra dimensions on D-branes. Since the KK modes appear by compactifying the
extra dimensions, signatures of processes with the KK mode exchanges depend on the detail of
model buildings, such as the geometry of compactified space and the configurations of D-branes.
Therefore, signatures of the dominant processes at the LHC without the KK mode exchanges
are independent of the detail of model buildings. Although in string theory there are various
kinds of the ways of model buildings, we can test low-scale string models model independently
at the LHC.

Distinction of low-scale string models at the LHC

If a new heavy resonance is discovered at the LHC, it is very important to specify what classes
of models cause the resonance. In ref.[18], Kitazawa proposed some analyses for dijet events at
the LHC which can distinguish the resonances in low-scale string models from that in the other
“new physics”. In ref.[19, 20|, adding a new analysis, Kitazawa and the author practically
performed two analyses using Monte Carlo (MC) simulations for the LHC, and we actually
confirmed the possibility of identifying string resonances in dijet events at the LHC. This thesis
is based on these studies[19, 20].

In order to identify a new resonance as a string resonance, we focus on the following unique
properties that string excited states have:

e String excited states are degenerate with a variety of spins higher than that of the corre-
sponding SM particle.

e Their degenerate mass is M,, = \/nM, for nth string excited states.

The highest spin of nth string excited states is Jpnax = Jjo + n, where jp is the spin of the
corresponding SM particle. For example, first string excited states of gluons are degenerate



with spin J = 0, 1 and 2, and first string excited states of quarks are degenerate with J = 1/2
and 3/2. All of them have the same mass of M.

Using the above properties, two analyses for dijet events can be considered:

e One is observing degeneracy of string excited states with higher spins, by an angular
distribution analysis on the resonance in dijet invariant mass distributions.

e The other is observing second string excited states with the characteristic masses, by a
search for a second resonance in dijet invariant mass distributions.

The former analysis is useful as a discriminator. The appearance of heavy colored states
with higher spins is quite characteristic of low-scale string models.

The latter analysis is also useful. First, there must be second string excited states in low-
scale string models, while there is no second state in the other “new physics”, such as the
axigluon models [21] and the color-octet scalar models [22]. Second, the masses of second string
excited states must be v/2 times of that of first string excited states in low-scale string models,
while typical masses of second KK modes are 2 times of that of first KK modes, in the other
“new physics” with extra dimensions, such as the five-dimensional Universal Extra Dimension

(UED) models [23].2

The process of qg — qg almost dominates over all the other two-parton scattering processes
at the LHC with several TeV collision energies, and string excited states of quarks are dominant
in string resonances in dijet invariant mass distributions. In the angular distribution analysis,
by comparing the angular distributions with both J = 1/2 and J = 3/2 states to that with
a J = 1/2 state only, we try to confirm the degeneracy with higher spin. In the second
resonance analysis, by calculating amplitudes with exchanges of second string excited states
and generating dijet invariant mass distributions with second string resonances, we try to obtain
a significance of the second string resonances. Then, we have to take into account the property
that the second string excited states can decay into both the SM particles and the first string
excited states.

About this thesis

This thesis consists of the following parts and sections.

Part1 is a review part. Throughout this part, we refer to the textbook [24, 25]. In Sec.1,
the basics of superstring theory such as the world-sheet action and quantization of the world-
sheet fields are reviewed, and the type I and type II theories are introduced. In Sec.2, after
introduction of D-branes, we review the idea of intersecting D-branes which give rise to chiral
fermions. Next, in order to obtain realistic models, we consider intersecting D6-branes in the
type IIA orientifolds with toroidal compactifications. At the end of this section, we review a

2In the six-dimensional UED models, typical masses of second KK modes with KK parity +1 is /2 times of
that of first KK modes with KK parity +1. It may be possible to confirm low-scale string models by a search
for a third resonance, since third string excited states have v/3 times of that of first string excited states.
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semi-realistic model with the SM-like spectrum. In Sec.3, using the fact that the SM spectrum
can be obtained in intersecting D-brane models, we introduce low-scale string models in which
the extra dimensions are compactified to general spaces with large volume. When we discuss
the LHC phenomenology in the next part, the low-scale string models are considered.

PartII is an original part of this thesis. In Sec.4, at first, the present constraints on the
string scale from the LHC is mentioned. Next, the model independence of signatures of low-
scale string models at the LHC is explained. We reduce the open-string amplitudes calculated
in ref.[13] to scattering amplitudes with exchanges of string excited states, and calculate widths
of string excited states, in Sec.4.3 and Appendix A. Using the scattering amplitudes and the
widths, we obtain dijet invariant mass distributions with string resonances, both at parton level
and using Monte Carlo simulations. In Sec.5 and Sec.6, we confirm the possibility of identifying
low-scale string models at the LHC, using the two analyses mentioned above.

In the last of this thesis, we summarize this thesis and mention some future prospects. The
original works in this thesis are presented in Sec.4.3 and Appendix A, Sec.4.5, Sec.5 and Sec.6.
These results are based on ref.[19, 20] with Noriaki Kitazawa.



Part 1
Basics of superstring theory and
Construction of low-scale string models

In this part, we review construction of low-scale string models which contain the particle content
of the Standard Model and whose string scale is of the order of TeV.

1 Basics of superstring theory

1.1 The world-sheet theory
The world-sheet action of the bosonic string

A relativistic (bosonic) string, in contrast to a point particle, is parametrized by not only a
time-like parameter 7 but also a space-like one ¢. The Nambu-Goto action, the action of the
relativistic string, is proportional to the area of the world-sheet which the string sweep out,

e oy

2mad
where the indices a,b run over (7,0).> The factor of 1/2ma’ is the string tension, where o is
the Regge slope and is related to the string scale Mg by o/ = 1/M2. The Nambu-Goto action
is recast into the Polyakov action, introducing the world-sheet metric 7,;, as an auxiliary field,

1
Sp = / drdo/—7 "0, X" 0 X, , (1.2)

Yt

where 7 = det 4, and 7y, has the Lorentzian signatures (—, +). Note that the Polyakov action
describes a two-dimensional field theory of D massless scalar fields X*.

The Polyakov action is invariant under the following gauge transformations:

e the two-dimensional general coordinate transformation (diffeomorphism),

do¢ Jo
YT o) = 57 _aglb%d(T’ o), (1.3)
e the Weyl transformation,
/
(T, 0) = exp2w(T, o) Yap - (1.4)

3In this thesis, the space-time metric is 7, = diag(—, +, +, +)

9



Gauge fixing

For the quantization of the world-sheet theory, we need to fix the gauge degrees of freedom
associated with the local symmetries (1.3) and (1.4). After the Minkowskian world-sheet metric
Yap in €q.(1.2) is replaced with an Euclidean world-sheet metric g, with signatures (+, +), we
consider the path integral,

zlg- | % exp(—Sx — AX). (15)

where Viigxweyl 18 the volume of the local symmetry group and x is the Euler number of the
world-sheet. Sx is the Euclidean one of the world-sheet action of scalar fields of eq.(1.2),

Sx =

yP— / d?0/G 90, X" 0 X, . (1.6)

where the indices a,b run over (o!,0%).* We perform the gauge fixing by setting the metric
gap to be some fiducial metric gop. Inserting 1 = App(g) [[d¢]d6(g — §°), where App is the
Faddeev-Popov measure and ( denotes a combination of diff and Weyl transformations, the

path integral of eq.(1.5) becomes
Zg) = /[dX dbdc]exp(—Sx — Sg — Ax) - (1.7)

Here the ghost action S, is given by

1 ~
Se=5- / oGy Vo (1.8)

where b, is the traceless symmetric tensor field and ¢ is the vector field, and both of them
have fermionic statistics. Let us choose the unit gauge of g, = d,5 and introduce a complex

1 5

coordinate z = o' + i0? and Z = o! — io?. Then, the gauge-fixed action can be written as

S =Sx+S,, (1.9)
with
Sy = i/d?z 2 ax1ax S, — i/d?z [b@wi@ﬂ (1.10)
T 4 o wr & or ’ '

where we introduced (b, ¢) and (b, ¢) defined by (b..,c*) and (bz, ¢*) in eq.(1.8).

The world-sheet action of the superstring

Let us next introduce the world-sheet theory of the superstring. In order to introduce spacetime
fermions, we extend the bosonic string action into the world-sheet supersymmetric one. Though
one might think that the space-time supersymmetry (SUSY') should be introduced rather than

4The Euclidean coordinate is obtained by replacing 7 with —ic? and o with o!.
5In the following, we use the notation d = 8, = %(81 —i0y) and O = 05 = %(81 + 10s).
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the world-sheet SUSY, the world-sheet SUSY results in the same spectrum as the space-time
SUSY does. Then, the matter action of the superstring is given by ©

1 a 1 R a
Su=—1— / drdo 00, X"0,X, — / drdo i) " 91), (1.11)

where ¢* is a two-dimensional Majorana fermion, and the two-dimensional v matrices are

= (_01 (1)) L e ((1) (1)> , (1.12)

and ¢" = #T~47. The action (1.11) is invariant under the following infinitesimal SUSY trans-
formation for the world-sheet fields,

OXH =o'zt oYPH = L 170, X e, 1.13
/
Va

where ¢ is a transformation parameter.

Equation of motion and boundary conditions

The equations of motion for X* and ¢* can be obtained by varying the action (1.11) with
respect to X* and ¢*
00, X" =0, 10" = 0. (1.14)

Suppose that the world-sheet has boundaries and 0 < o < /. Then, the variation of the action
induces the surface terms

o=/

[e'e) o={ [e'e)
/ dr {ag XH 5Xu] : / dr {wi S, — W00, |, (1.15)
— =0 _

0o = 00 o=0

where ¢ = (¢4,%_) in eq.(1.11). In order for the surface terms to vanish, we need to impose
some boundary conditions on the world-sheet fields. If we respect the Poincaré invariance, one
of the following two boundary conditions should be imposed:

e the periodic boundary condition,
X¥(r,0=0)=X"(r,0 =0), (1.16)
Y(r,0 =€) = e Yl (1,0 = 0), V(1,0 =) = ™Y (1,0 = 0), (1.17)
e the Neumann boundary condition,
0o Xt (1,0 =0) = 0, X" (1,0 =0) =0 (1.18)

Y (1,0 =0) = ™ YR (1,0 = 1), Y (r,0 =0) =Yk (r,0 =0), (1.19)

6Here we set the world-sheet metric to be the flat one to fix the gauge degrees of freedom: 74, = diag(—, +).
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where v and v take the values 0 and % The periodic boundary condition gives a closed string
and the Neumann boundary condition gives an open string. The boundary condition with
v = 0 is the Ramond (R) sector, while that with v = 3 is the Neveu-Schwarz (NS) sector. The
world-sheet fermions ¢, and 1¢_ have degrees of freedom of the sign at boundaries, and they
are independent for the closed string but not for the open string. For the open string, we can
also impose another boundary condition, which breaks the Poincaré invariance:

e the Dirichlet boundary condition,
X*(r,0 =L) = X*(1,0 = 0) = const., (1.20)

V(1,0 =0) = =™y (1,0 = 1), V(1,0 =0)=—¢,(1,0 =0). (1.21)

Superconformal symmetry

Let us next discuss the full action of the superstring. As in the case of the bosonic string,
we consider the world-sheet with the Euclidean metric and introduce a complex coordinate
2 ! . Then, the gauge-fixed action in the unit gauge of §u, = 64 is

z=c'+i0% and Z = o! — icg?

given by
S =5m+ S5, (1.22)
where ) )
Sw=1- a2z [O/ OXPOX,, + Yray, + JM&ZM] : (1.23)
T
1 - o~ _ ~
Sy = %/dzz [b@c + boc+ oy + ﬁaﬂ , (1.24)

where ¢ = (ifl/%ﬁbv, i'/24)) in eq.(1.11). The bosonic fields 3, v and E, ~ are superpartners of b,
c and b, ¢, respectively. The equations of motion in the complex coordinate are

JOXH =0, oY =0p=0, (1.25)

b=0c=0b=0c=0, OB=0vy=08=07=0. (1.26)

Therefore, when the equations of motion are satisfied, 9.X* is a holomorphic function of z and
OX*" is an antiholomorphic function of Z. Similarly, ¢, b, ¢ are holomorphic and 1/1“ b C are
antiholomorphic.

Consider the diff transformation by a holomorphic function of z and the Weyl transformation
by a specific function,

2= f(z), w=1In|d.f(2)]. (1.27)

Then the combination of eq.(1.27), which is a conformal transformation, keeps the unit metric
invariant. In other words, the gauge-fixed world-sheet action (1.22) has a conformal symmetry.
In the quantum theory, however, the conformal symmetry is broken (the Weyl anomaly), unless
the space-time dimension D = 10. The conformal symmetry combines with an invariance under
the global SUSY transformation (1.13) into a local superconformal symmetry. Therefore, the
world-sheet theory of the superstring is a two-dimensional superconformal field theory.

12



The current of conformal symmetry is the energy-momentum tensor,

1 1, — —u
Ty = —— (0 X" X — 510 X" 0:X,,) = - (10" a0ty — g 10"V 0etp) . (1.28)

for the Minkowskian action (1.11). The energy-momentum tensor is a traceless symmetric
tensor and satisfies the conservation law 0%T,;, = 0. These properties give holomorphic current
denoted by T’z and antiholomorphic one denoted by 7T’ in the complex coordinate,

Tp(z) = T (2) + Th(z), Tp(z) = T(2) + TH(2), (1.29)
T (z) = —%8)(“8)(# - %Wawu, To(z) = —ééx@xu - %JM&Z#, (1.30)
T4(2) = —A(be) + (Db)e — NO(By) + (98)y, TE(Z) = —A3(be) + (Bb)e — N(F7) + (9B)7 ,

(1.31)

where A = 2 and \ = %

The SUSY current is obtained from the global SUSY transformation (1.13) in the Minkowskian
action of eq.(1.11), ‘
i

V2!

The SUSY current is also conserved and gives holomorphic current denoted by 7% and anti-

J* =

VA O X 1y (1.32)

holomorphic one denoted by fp in the complex coordinate,”

Te(z) = T (2) + TE(2), Tr(z) = T (2) + TE(2), (1.33)
T(z) = z\/g OX i, To(z) = Z\/g X", | (1.34)
TH(z) = NO(Be) ~ 5(0B)c— 2y, TE(E)=NB(F) — ;@727 (1.35)

The world-sheet fields are covariant under the conformal transformation (1.27). A field is
called a tensor when it is transformed under the conformal transformation as

1

O = ey

0O(z,%2), (1.36)

where (h,?z) is a conformal weight of the tensor field. The world-sheet fields are tensor fields,
and their conformal wights are

oX* = (h,h)=(1,0), P (hyh) = (5,0),
(h,h) = (2,0), ¢ o (hh)=(-1,0), (1.37)
B+ (hh)=(0), v o (hh) = (=3,0),

"Here, the Minkowski current and the Euclidean current are related to each other as J = (i’l/ zfp, il2T, ),
just as in the case of 1.

13



for holomorphic fields as well as for antiholomorphic fields except for a replacement of h <> h.
The weights of be ghosts and [y ghosts correspond to the weights of the energy-momentum
tensor (1.29) and the SUSY current (1.33), respectively. The energy-momentum tensor itself is
not a tensor since it is transformed under the conformal transformation as

1 c 2022'0,2" — 3(0%22')?
AT 2(0.2)" ’

Tp(Z) = (1.38)

where ¢ is the central charge. Since the last term (1.38) is an origin of the Weyl anomaly, the
central charge should vanish. The central charge in superstring theory is calculated as

c="+E=D+2+[-32X-1)2+1] + [3(2N —1)* — 1]

_ 3D
=30 _15.

(1.39)
If the space-time dimension D = 10, the central charge is zero.

1.2 Mode expansions and physical states

The world-sheet theory in the unit gauge (1.22) is a free theory, and therefore, the world-
sheet fields can be easily quantized by imposing canonical commutation relation on the fields,
following the procedure of ordinary canonical quantization.

Let us choose two complex coordinates, w = o' + i0? and
z=e " = exp(—ioc! 4+ 0?). (1.40)

For a closed string which is periodic, setting the space coordinate o! ~ ¢! + 27 and the time
one —o0o < 02 < 00, the w-coordinate forms an infinite cylinder. On the other hand, in the
z-coordinate, time runs radically and the origin in the z-plane corresponds to the infinite past.
For an open string with a boundary, setting the space coordinate 0 < o' < 7, the w- coordinate
forms an infinite strip. The z-coordinate forms the upper complex plane and the real axis in
the z-plane corresponds to the boundary.® These coordinates are related by the conformal
transformation.

Closed string

In the case of the closed string, since the world-sheet scalar satisfies the periodic boundary
condition (1.16) which corresponds to X*(w + 27,w + 27) = X*(w, W) in the w-coordinate, it

can be expanded in terms of modes by just a Fourier transformation,
o . o s S
0uXH(w) ==\ 5 m;)o ape™ . 0pXM(W) =[5 m;m ar e imw (1.41)

for the holomorphic (left-moving) and antiholomorphic (right-moving) fields. Since the world-
sheet scalar X* has a conformal weight (1.37), the Fourier expansion (1.41) is transformed to

—iw

8Note that for an open string, z is defined as z = —e
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the z coordinate as follows:

0X"(2 [ Z T 0XM(z \f Z = (1.42)

Integrating them over z and Z, a mode expansion for X* is obtained as®

Xﬂ(z,z)_x“—@\/> ln|z|2+1\/72 (O‘“ O‘”). (1.43)

The zero mode aff in eq.(1.43) corresponds to center-of-mass momentum of the string. Since
the current of space-time translation is j* = ﬁ@aX # the space-time momentum is given by

. o Lo ¢ W gz il 2 2
pt=— do Ja =5 (de —dzyf): 0=\ —ap. (1.44)

By imposing the canonical commutation relation on the fields, commutation relations of mode
operators are obtained as

[k, o] = [k, a”, ] = mn™ 6y, (1.45)

—n

(a4, p"] = in™ . (1.46)

The world-sheet fermions also satisfy the periodic boundary conditions (1.17) which corre-

spond to Y*(w +27) = e>™1h(w) and PH (W + 27) = e~ 2"y (w) in the w-coordinate, and they
can be expanded by a Fourier transformation,

w —1/2 Z ¢m+y zm—l-l/)w’ iy — _Zl/2 Z wm—i_y zm—i—uw' (147>

m=—00 m=—0oQ

Using a collective notation r = m+v, the expansions (1.47) can be expressed in the z coordinate

=y W, b _r+7. (1.48)

r€Z+V r€Z+V

as

Then, anti-commutation relations are given by

[, w”} = {08 or ) = 5, (1.49)

The ghost fields satisfy the same boundary condition as the energy-momentum tensor (1.29)
for the bc ghosts and as the SUSY current (1.33) for the 5y ghosts. Therefore, they satisfy the
same boundary condition as 0X* for the be and y* for the [§v,

. b o~ Cm

b(z) = Z s =Y % (1.50)
Z 5r Z ”Yr (1.51)
T€Z+V T€Z+V

9Single-valuedness and hermiticity of X* implies that off = &, (o) = ", and (a#)f = a*

m m*
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as well as the antiholomorphic ghost fields. Similarly, anti-commutation and commutation
relations are obtained as

{by e} = b, 0} = b s (1.52)
[77’75—5} = [A’V/rag—s] = 5r,s~ (153)

Open string

In the case of the open string, the world-sheet scalar satisfies the Neumann boundary condition
(1.18) which corresponds to 9X*(Im z = 0) = X*(ImZ = 0) in the z-coordinate. Then, the
mode operators of the left-moving and right-moving are equivalent, o, = a# |

OXH(z [Z el 0XH(z \Fz_mﬂ, (1.54)

ok 1
XH(2,7) = M—,/ ab In |z|? ,/ . 1.55
(2,Z) =2t —i n|z|”+1 Z (zm _m) (1.55)
Note that space-time momentum of an open string is half of that of a closed string, p* = \/%ag‘ :

The world-sheet fermions also Satisfy the Neumann boundary conditions (1.19) which cor-
respond to Y*(z) = 2"y (%) for o' = 7 and Y (z) = 1/1“( ) for o' = 0, in the z-coordinate.

The mode operators of the left-moving and right-moving are equivalent, ¢* = ¥,
- re-T 2 (159
TEZ-H/ T€Z+V
States

We now focus on the open string or the holomorphic part of the closed string. For the world-
sheet scalar, as it is found from the commutation relation of mode operators in eq.(1.45), one
can consider ot for m < 0 as a creation operator and o, for m > 0 as an annihilation operator

which satisfies
ah |0;k) =0, form >0, (1.57)

where |0; k) is a ground state with space-time momentum k*. Then,
P'0:k) = S5=agl0;k) = k*[0; k). (1.58)

For the bc ghosts, let us define the be ghost vacuum |0),. as a state annihilated by mode
operators b, and ¢, for m > 0:

bin|0)pe = €m|0)pe = 0, form > 0. (1.59)
The zero modes by and ¢y form two independent vacua which satisfy

bolh) =0, Bty =14,  cll) =11, clt)=0. (1.60)
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We consider b, as an annihilation operator and ¢y as a creation operator, and define the bc
ghost vacuum as |0),. = | ).

Consider the world-sheet fermion. For the NS sector with v = %, as it is found from the
mode expansion (1.56), mode operators ¥* are labeled by r = %, %, .

modes. One can define the NS sector vacuum |0)xs as a state annihilated by ¥ for r > 0:

.., and they have no zero

¢f|0>NS:O, fOl“T:%,

NIV

S (1.61)

On the other hand, for the Ramond sector with v = 0, when we define the Ramond sector
vacuum |0)g as a state annihilated by ¢# for r > 0, the zero modes 9} form degenerate vacua,

Ok, Ul0r, YovglOr, YoveYglOr, .. (1.62)

Recall the commutation relation (1.49), the 1§ satisfy the Dirac gamma matrix algebra when
T = V2yf,

{vo, vi} =n" & AT} =2, (1.63)
Therefore, the degenerate vacua (1.62) form a spinor representation of SO(1, D — 1). Due to
D =10, I'* are grouped into five pairs of raising and lowering operators,

L =T a=0, (160
[ = 1.64
$(M2 £l ) a=1,....4,

which satisfy {['** T°F} = §% and {'**, T**} = 0. Then, we can take a basis of eigenstates of
the Lorentz generator S, = I'*"T'*~ — L with the eigenvalues s, = £3,1°

1 1
|s) = |50, 51, 59, 83, 54) = (DOF)* 72 (DIF)™72 | — ), (1.65)
Thus, the ground state in the Ramond sector, |s)g, corresponds to an eigenstate of the space-
time spin j:% in eq.(1.65). Therefore, we can expect to obtain space-time fermions.

For the fv ghosts, the gy NS vacuum is defined in the same manner as the NS vacuum for
the world-sheet fermion (1.61),

B0)5% =~ 02 =0, forr=1%3.... (1.66)
The v Ramond vacuum is given just as the bc ghost vacuum (1.59) by
BOYEY =0, forr>0, 4]0 =0, forr>0, (1.67)

where the zero mode [ is defined as an annihilation operator, and 7, as a creation operator.

YHere |—, —, —, —, —) in eq.(1.65) is a state with all spin eigenvalues —%.
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The Virasoro generators

The energy-momentum tensor which is the current of conformal symmetry (1.29) and the SUSY
current (1.33) are also expanded by a Laurant expansion as well as the world-sheet fields,

o

Lm = Lm
TB(Z) = Z Sm+2 ) TB(’Z) = zm.|_2 ) (168>
GT o= ér
Tr(z)= > —%, Tp(z)= —. (1.69)
ZT+2 ZT+2
reZ+v reZ+v

The expansions are obtained by the correspondence to the boundary conditions of dX* and
Y, for both closed and open string. Then, L,, = L,, and G, = G, for an open string.

The expansion coefficients in (1.68) and (1.69) correspond to conserved quantities of each
current. Therefore, L,, and L,, are the generators of conformal transformation (called the
Virasoro generators), while G, and G, are the SUSY generator.

Since the energy-momentum tensor and the SUSY current are written by products of the
world-sheet fields in egs.(1.29) and (1.33), the Virasoro generators and the SUSY generators
are expanded in terms of mode operators of the world-sheet fields. For the open string,

Ly = L™ + L5, (1.70)
where
1 - o M o 1 Z 2 _ o n/yH o 0
5 £ o ¥m—nCnp + Z ( r m)o mfrqvbruo m 7é )
L?L — n=-—00 - reZ+v (171>
QPP+ sl e, Y e, 4 a” m=0,
n=1 reN—v
- 1
Z (m+n)2bm—ncnz+§ Z (m +21r)2 By m#0,
Lgn — nO:O—oo reZ+v (172>
D n(bonen +ebn)s+ Y (B —v=Br)s +af m =0,
n=1 reN—v
and
(o] (o] 1
G, =G+ G5 = H_E_:OO Ay, — n;w [5(27’ + 1) Br—nCn + 2b0Yr—n | (1.73)

where ° ° denotes the creation-annihilation normal ordering, and a™ and a® are normal order-
ing constants. The normal ordering constant appears only in the zero mode of the Virasoro
generator, Ly. A sum of the normal ordering constants, a = a™ + a8, corresponds to zero-point
energy, and it is calculated using a result obtained by an analytical continuation!! as follows,

D D 1 1
_ﬂ+ﬁ+ﬁ_ﬁ_o for R sector,

D D 1 1

51 18 1272”3

a=a"+a¥+a"+ad" = (1.74)

for NS sector.

(&)
UThe result is Y (n — ) = o7 — $(20 — 1)%

n=1
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Physical states

Finally, we discuss physical states based on the old covariant quantization approach, where
we simply ignore the ghosts and impose the conditions that the Virasoro and SUSY lowering
operators in matter sector annihilate physical states:

L™|phys) = L™|phys) = 0, form >0,

~ (1.75)
G}'|phys) = G}'|phys) =0, forr > 0.

These conditions implies that matrix elements between the physical states do not depend on the
gauge, since classically the energy-momentum tensor in the matter sector varies the world-sheet
metric.

Furthermore, we impose the condition that the Virasoro zero operator in the matter and
the ghost sector annihilates physical states:

(Lg' + L§) |phys) = (Zgl + Z%) |phys) = 0. (1.76)
The condition implies that the world-sheet Hamiltonian and translation operator annihilate

physical states, since

1 27 " 1 27 "
H —/ d01T22:L0+L0, PZQ_/ dO’le:LO—Lo. (177)
0 ™ Jo

T or
The condition (1.76) determines the space-time mass of the state.

For the open string, let us impose the physical state conditions (1.75) and (1.76) on the
following lowest three states:

e The NS sector ground state, |0;k)ns,
(L5 + LE)|0: k)xs = (o'k? = )[0:K)ns = 0. (1.78)
Since m? = —k?, the state has tachyonic mass, m? = —s5;.

2a/

e The NS sector first excited state, |e; k)ns = euwﬁl/zm; k)ns ,

(L' + L§)le; k)ns = o'B?[e; k)ns = 0,

NG (1.79)
G1jsle; k)ns = V2a/ e, k"[0; k)ns = 0,

where e, is the polarization vector. The state is massless, m* = 0. Since e - k = 0, it
has no unphysical time-like and longitudinal polarization. Therefore, it forms a vector
representation of SO(8).

The state is physically equivalent to a state including itself and
GT1/2|0; k)ns = V2a/ k;ﬂ/’ﬁl/ﬂo? E)ns » (1.80)

which implies that there is the space-time gauge symmetry, e, = e, + \k,.
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e The Ramond sector ground state, |u; k)r = |s; k)R us,

(Lg' + LE)|u; k)r = ok u; k) =0,

1.81
G2 u; kg = Vo' k|8’ k) g T us = 0 (1.81)

where ug is the polarization spinor. The state is massless, and it satisfies the Dirac
equation, k - I'ysus = 0. This means that a spinor representation of SO(1,9) in eq.(1.65)
is reduced to two spinor representations of SO(8), with chirality =+.

1.3 Type I and type II superstring theory
The GSO projection

In spite of imposing the physical state conditions, unwanted states remain. For example,
the NS sector ground state |0;k)ns is a tachyon, and the NS sector second excited state
(U /21&{1 /2|O; k)ns is a space-time tensor but has fermionic statistics.'?> These unphysical states
are projected out by the GSO projection.

The GSO parity operator is defined as €™, where I is a sum of the world-sheet fermion
number, a sum of spin eigenvalues of the space-time fermion, and the 3y ghost number,!?

+% > [whel]  ae=0,

4
F=Y S.+Ng, S.=4q ;"<& (1.82)
a=0 —= Z (W2, > a=1,....,4.
2r€Z+v

S, is the Lorentz generator, and it has the property of counting the number of the world-sheet
fermion operator, [S,, (¥2* £ip2* )] = £(¢2* £ iy?*™). For the space-time fermion, S S,
gives a sum of the spin eigenvalues. Then, exp(m' Zizo sa) gives (i times) chirality of the
space-time fermion which takes the value +1 when the spin eigenvalues s, include an even
number of —% and —1 for an odd number of —%.

We now consider a case of the open string. The NS sector ground state |0; k)ns has the
GSO parity —, since the state has the Sy ghost number —1,

e™10; k)ns = —|0; k)ns - (1.83)

The NS sector first excited state and second excited state have the GSO parity + and —,
respectively,

emeﬁl/gm; k>NS = +¢51/2|07 k>NS )
€W1F¢ﬁl/g¢i1/2|0§ k>NS = _¢l—t1/2¢il/2|05 k?>NS .

If we restrict to only states with the GSO parity + for the NS sector, unwanted states such as
the tachyon and the space-time tensor with fermionic statistics are projected out.

(1.84)

1210; k)ns has the be ghost number +1 in the 2 coordinate. It has fermionic statistics.
13The reason why F includes the 3y ghost number is that the 37 ghosts are associated with the SUSY current
which is the world-sheet spinor.
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The Ramond sector ground state |s)r has the GSO parity corresponding to the chirality of
the state, since it has the gy ghost number —%,

e ls)r = |s")r Tsrs , (1.85)

where ' is the chirality matrix. The GSO projection for the Ramond sector which restricts to
states with the GSO parity + leaves only fermions with chirality 4. As a result, the Ramond
sector ground state [s)r becomes a superpartner of the NS sector first excited state ¢* /2 0; k)ns-
The former is a gaugino and the latter is a gauge boson. This means N' = 1 SUSY in a ten-
dimensional space-time.

Thus, there are two possible choices of the GSO projections which leave only physical states
and keep supersymmetry, NS+ and R+, or NS+ and R—, in the case of the open string.

Type ITA and IIB theory

We now consider the closed string. The on-shell condition (1.76) requires that the left-moving
and right-moving of the closed string satisfy the following relation,

4 4~ =
mQZQ(Na‘l‘Nw—V):J(Na“‘sz_g)? (186)

where N, + N, — v is the left-moving level and N, + Nd, — v is the right-moving level of the
closed string state. Here, N, and N, are excitation levels of the state due to the respective
mode operators, ot and ¥*,

No=) 0" 0n,0=012.. .,
= (1.87)
Ny= > rogt b, =

reN—v

{0,1,2,... for R sector,

0, %, 1, %,2, ... for NS sector.

Therefore, only the NS sector with the GSO parity — takes the values of (N — ) half-integers,
and the NS— sector cannot pair with the other three sectors, NS+, R+ and R—.

Possible tachyonic and massless states of the closed string are as follows,

e (NS— ,NS—) sector,

10,0; k)ns-ns (1.88)
o (NS+,NS+) sector, B
UL ¥ /10, 03 K)nsoxs (1.89)
e (R,R) sector,
S, S k)RR (1.90)
e (NS+,R) and (R,NS+) sector,
W_L1/2|0=§§ E)Nsr Jﬁl/ﬂsaa; k)r-Ns - (1.91)
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2 _ _ 2

Only the (NS—,NS—) sector has tachyonic mass, m —=, and all the remaining sectors are

massless.

Since the NS+ sector forms a SO(8) vector denoted by 8,, and the R+ sectors form two
SO(8) spinors with chirality + denoted by 8 and &', products of them are decomposed into
representations under the Lorentz transformation. In the (NS+,NS+) sector, 8, x 8, = [0] +
[2]+(2), where [0] is a scalar, [2] is an antisymmetric two-tensor, and (2) is a traceless symmetric
two-tensor. These representations correspond to the dilaton, the antisymmetric B-field, and
the graviton. In the (NS4, R+) sector, 8, x 8 = & + 56, where 56 is a vector-spinor. The
vector-spinor corresponds to the gravitino.

Now, let us search for the GSO projections which project out the tachyonic state, are
consistent with modular invariance'®, close the sector and conserve the GSO parity as follows

NSxNS=NS, RxR=NS, NSxR=R, (1.92)
+ x + :+, —X—I+, 4+ X —= —. (193)

There are two possible choices of the GSO projections, called type IIA and IIB,

IMA : (NS+,NS+) (R+,R—) (NS+,R—) (R+,NS+), (1.94)
OB : (NS+,NS+) (R+,R+) (NS+,R+) (R+,NS+), (1.95)

in addition to those replaced by opposite chirality in the Ramond sector of eqs.(1.94) and (1.95).

Both of the type IIA and IIB have two massless gravitinos in the NS-R and R-NS sectors,
which means N = 2 SUSY. In the type IIA, the gravitinos have opposite chiralities and in the
type IIB, they have the same chirality. A difference between the IIA and IIB is also in the R-R
sector, and the representations are decomposed as

8x8=[0]+[2]+[4].  for (R+,R+) sector, (1.96)
8 x 8 =[1] + [3] for (R+,R—) sector, (1.97)

where [n] is an anti-symmetric n-tensor. Then, the massless spectra in the IIA and IIB are

DA - [0]+[1] +[2] + [3] 4+ (2) + 8 + 8" + 56 + 56, (1.98)
OB : [0] +[0] + [2] + [2] + [4]+ + (2) + 8 + 8 + 56 + 56, (1.99)

which form supergravity multiplets of ten-dimensional N' = (1,1) and N' = (2,0) SUSY, for the
IIA and IIB, respectively. The type IIA and IIB are superstring theories which are consistent
in a flat ten-dimensional space-time, including the closed string only.

14The modular invariance is required to make one-loop amplitudes consistent. As a condition for the modular
invariance, we require at least one left-moving R sector and at least one right-moving R sector.
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Type I theory

We have obtained the type IIA and IIB as the closed string theories in a ten-dimensional space-
time. How is the open string introduced? Since one can expect an interaction between two
open strings generates one closed string, there is always the closed string. Therefore, we have
to introduce the open string in a closed string theory such as the type IIA and IIB. However,
we confirmed that the GSO projection for the open string resulted in A/ = 1 SUSY in a ten-
dimensional space-time. Therefore, in order to introduce the open string, we should break

N =2into N = 1.

Let us consider imposing the world-sheet parity projection on the type IIB. The world-sheet
parity transformation for the closed string is

Qo (r,0) = (1,27 —0), (1.100)

which reverses the left-moving and right-moving. It is found that the type IIB has symmetry
under 2. The mode operators of the world-sheet fermion and the NS-NS and NS-R sector
ground states are transformed under €2 as follows,

QurQt =Yk, QU = STy, (1.101)

Q10,0; k)nsns = — |0, 0; k)ns-ns » Q[0,5; k)ns.r = — |8, 0; k) rons - (1.102)

Consequently, the antisymmetric two-tensor in the NS-NS sector and an antisymmetric combi-
nation of the vector spinors in the NS-R and R-NS sectors have the world-sheet parity odd,

Q(¢ﬁ1/z¢i1/2 - ¢i1/2¢51/2)|0,6; k)nsns = —(1#:/21%1/2 - wil/2¢ﬁl/2)|o,6; k)nsns, (1.103)

Q(¢ﬁl/2|0ag; k?)Ns-R - @Zﬁl/ﬂsﬁ; k?>R-Ns) = —(iﬁﬁl/gmag; k>Ns-R - @Zﬁl/ﬂsaa; k)R—NS) ) (1-104)

and the antisymmetric two-tensor in the R-R sector has the world-sheet parity even,
Q(|S,§/; k)rr — [8',5; k>R-R) = +(|S>§/; k)rr — I8',5; k’)R-R) . (1.105)

If we restrict to only states with the world-sheet parity even, some of the massless states in the
type IIB are projected out. Thus, we obtain a theory with the world-sheet parity projection,
which is called the type I. A closed string part of the massless spectrum in the type I is

Losed = [0] 4+ [2] +(2) + 8"+ 56. (1.106)
The spectrum contains only one gravitino, which means that there is ten-dimensional V' = 1

SUSY in the type I theory.

Before considering the world-sheet parity projection for the open string, let us add new
degrees of freedom to each end of the open string. For example, the NS first excited state is
then

eu¢51/2|0;k;i73>NS ) (1107>
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where i and j denotes states of 0 = 0 and ¢ = 7 endpoints, running from 1 to N. Taking N?
Hermitian matrices which are the representation matrices of U(V) as a complete set,

etV o103 ks a)ns = 30 ety [05 ki, G)ns (T)i 7 (1.108)
Z’j

and one can expect that the massless vector bosons are associated with a U(N) gauge symmetry.
T* is called the Chan-Paton factor.

Now consider the world-sheet parity transformation for the open string,
Q : (r,0) = (r,m—0), (1.109)

which reverses the endpoints of the open string. The NS sector first excited state are trans-
formed under €2 as follows,

Q e;ﬂ/}/il/gm; k; ’i, j>NS - —€u¢f1/g|o; k; ja 7:>NS . (111())

If we restrict states with the world-sheet parity even, the Chan-Paton factors should be real
antisymmetric matrices. Since they are the representation matrices of SO(NN), one can expect
that the massless vector bosons are associated with a SO(V) gauge symmetry.

Thus, we obtain the type I theory including both the closed string and open string, by the
world-sheet parity projection of the type IIB. The massless spectrum is

I : [0]+[2]+(2) + 8 + 56+ (8, + 8)so(w) - (1.111)

Tadpole cancellation

In string theory including the open string, there is the open-closed string duality which means
that one-loop amplitudes of the open string are understood as tree-level amplitudes of the closed
string. Each string amplitude corresponds to a specific world-sheet diagram with a certain
topology. An one-loop diagram of the open string is an annulus while a tree-level diagram of
the closed string is a cylinder, and they have the same topology with two boundaries. The
open-closed duality also means that one-loop vacuum amplitudes of the open string always
contain contributions of tree-level vacuum-to-vacuum amplitudes of the closed string, and that
there are infrared divergences by a tree-level propagation of the massless closed string.

In the type I theory with the world-sheet parity projection, there are more diagrams which
contribute the vacuum-to-vacuum amplitudes. Another one-loop diagram of the open string
is the Mobius strip with a boundary and a crosscap. Another tree-level digram of the closed
string is the Klein bottle with two crosscaps. The vacuum-to-vacuum amplitudes which are
contributed by these diagrams are canceled out, if a gauge symmetry of the type I theory is
SO(32).

This is called the tadpole cancellation. In the next section, we introduce “D-branes” in
order to include the open string in the type IIA and IIB theories. In general configurations
of D-branes, there are cases in which the tadpoles are not canceled. The tadpole which is
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understood as an exchange of the NS-NS closed string (the dilaton, the antisymmetric B-
field, and the graviton) is called the NS-NS tadpole, while the tadpole as an exchange of the
Ramond-Ramond closed string is called the R-R tadpole. In particular, the R-R tadpole must
be canceled so that gauge symmetries on D-branes are anomaly free. On the other hand, the
NS-NS tadpole does not necessarily have to be canceled. However, in non-SUSY system, a
practical problem remains, which there are infrared divergences by an exchange of the massless
NS-NS closed string.

2 Intersecting D-brane models

2.1 Introduction of D-branes
Dirichlet boundary condition

In the previous section, we have imposed the Neumann boundary condition on the open string.
However, as it is shown in eq.(1.20), the Dirichlet boundary condition can be also imposed.
Since the Dirichlet boundary condition fix the position of endpoints of the open string, it breaks
the Poincaré invariance in a ten-dimensional space-time.

Let us consider the open string with the Neumann boundary condition in a four-dimensional
space-time p = 0,...,3, and the Dirichlet boundary condition in a six-dimensional space i =

.,9. Since eq.(1.20) can be recast into 9, X* (1,0 = {) = 9, X*(7,0 = 0) = 0, the Dirichlet
boundary conditions on the world-sheet fields are given in the z-coordinate by

0X'(Imz=0) = -0X'(Imz =0), (2.1)
Vi(2) = =¥ (z) for o' =, Vi(z) = = (z) for o' =0. (2.2)

Then, the world-sheet fields in the Dirichlet direction are expanded as follows:

OX'(z \/7 Z el X' (z \/7 Z T (2.3)

m=—0oQ

v = 3 -y = (2.4

rEZ-I—V

Note that the sign of the antiholomorphic field is opposite to the Neumann case (1.42). There
is no center-of-mass momentum in the Dirichlet direction as it is found from eq.(1.44), and a
mode expansion for X? is

Xi(z.2) —yﬂ\fmz_w s(L-2), (25)

m#0

where 9 is a constant vector. Commutation and anti-commutation relations of the mode
operators are the same as the Neumann case,

[al, o] =m696,,,,  {Yil} =696, (2.6)
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The energy-momentum tensor and the SUSY current can be separated into the Neumann
and the Dirichlet direction,

T (z) = —% (0X+9X, + 0X'0X") — %(Wawu + oyt (2.7)

TR(2) = Z\/g (0XH4p, + OX ")) . (2.8)

They are expanded so that they satisfy the Dirichlet boundary conditions (2.1) and (2.2),
and result in the same as the Neumann case (1.68) and (1.69). The on-shell condition (1.76)
determine mass in the four-dimensional space-time. For the NS sector first excited state,
the state in the Neumann direction e,*|0; k)ns acts as a gauge boson with e - £k = 0 and
e, = e, + Ak, while the state in the Dirichlet direction 1|0; k)ns acts as just a scalar:

e“w‘_‘l/2|0; k)Ns for pu=0,...,3, (2.9)
U pl0sk)ns for i =4,...,9. (2.10)

All the physical states are localized in the space-time consist of dimensions with the Neumann
boundary condition.

D-branes

Thus, if we impose the Neumann boundary condition on the open string in a (p+1)-dimensional
space-time and the Dirichlet boundary conditions in a (9 — p)-dimensional space, we can define
the open string which is localized in a p-dimensional space. Since one can expect that an
interaction between two open strings generates a closed string, the closed string can be emitted
from and absorbed into the p-dimensional space. Therefore, the p-dimensional space acts as
a object which scatters the closed string and excites the open string by the absorption of the
closed string. This p-dimensional object is called Dp-brane.

The D-brane has a coupling to the NS-NS closed string, and the low-energy effective action
which describes this coupling is known as the Dirac-Born-Infeld action,

Spp = —1,, / d" o Tr{e™ [~det(Guy + Buy + 21/ )] 1/2} s (2.11)

where ®, G, and B, are components of the NS-NS fields parallel to the Dp-brane, and F),,
is a gauge field living on the Dp-brane. T, a tension of the Dp-brane, is given by

T, = ﬁ(4w2a')3%p (2.12)

K10 ’
where k1 is the parameter in the low-energy effective action of the type II (discussed later).

The D-brane also has a coupling to the R-R closed string. At low energies this coupling is
described by

Tp/ Op+1 = Tp/ ﬁ C’M..Mﬂdx“l Ao A datrt N (213)
p+1 p+1
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where T}, is the Dp-brane tension (2.12) and Cy, ..., .,
(p + 1)-tensor which is the R-R field originating from the R-R massless states. As it is found
from eqs.(1.96) and (1.97), the R-R massless states in the type IIA are the ten-dimensional
antisymmetric tensors of rank 1 and 3, while in the type IIB, they are that of rank 0, 2 and
4. Note that the dimension p of the Dp-brane to which the R-R field can couple is different
between the type IIA and IIB. There can be only the D-branes of dimension even in the type

A and that of dimension odd in the type IIB.

Let us introduce a D-brane in the type IIA or IIB theory. Then, N' = 2 SUSY in the
ITA or 1IB is broken in half on the D-brane. This is the same that AV = 2 SUSY in the type
IIB must be broken into /' = 1 in the type I. The ten-dimensional N' = 2 SUSY has 32
supersymmetries. For example, if we introduce a D3-brane, 32 supersymmetries are broken

is the (p + 1)-dimensional antisymmetric

into 16 supersymmetries, and four-dimensional N' = 4 SUSY is realized on the D3-brane.

Next, let us introduce a stack of N D-branes. The open string on the stack has N? degrees
of freedom that each end of the open string attaches on N D-branes. This fact justifies the
Chan-Paton factor of eq.(1.108) which is originally added by hand in the type I theory. We can
understand that the type I is constructed from the type IIB by the world-sheet parity projection
and introduction of a stack of 32 D9-branes. Thus, introducing a stack of n D-branes results in
a gauge symmetry on the stack of U(N) without the world-sheet parity projection, and SO(N)
or USp(N) with the world-sheet parity projection. The massless vector bosons of the open
string on the stack correspond to gauge bosons associated with the gauge symmetry.

One can also consider two parallel D-branes separated by some distance y. Then, there is
a stretching open string whose ends attach on the respective D-branes. Because of the string
tension, the ground states obtain the mass proportional to the distance:

m? = : (2.14)

2.2 Intersecting D-branes
Neumann-Dirichlet boundary condition

Let us consider a system including two D-branes of different dimensions, a Dp-brane and a Dp'-
brane. There are three kinds of open strings, p-p, p’-p’ and p-p’, with ends on the respective
D-branes. The spectra of the p-p and p’-p’ strings are the same as obtained in the previous
section. However, the p-p’ string is new.

When p < p/, the p-p’ string has the (p + 1) Neumann-Neumann boundary conditions,
the (9 — p’) Dirichlet-Dirichlet boundary conditions, and (p’ — p) Neumann-Dirichlet boundary
conditions.'® Here note that the Neumann-Dirichlet boundary condition imposes the Neumann
condition on one end of the open string, o' = 0, and imposes the Dirichlet condition on the
other, o' = . With two D-branes of different dimensions, there is always the open string with
such a boundary condition.

15The p'-p string has (p’ — p) Dirichlet-Neumann boundary conditions.
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The Neumann-Dirichlet (ND) boundary conditions on the world-sheet fields are given by
0X'(z) = —0X'(2) for o' =, 0X'(z) =0X'(z) foro'=0, (2.15)
Wl(2) = —e¥l(z)  foro' =m, W(2) =0 (2) for o' =0, (2.16)

for I =1,...,p' —p. Then, the world-sheet fields in the ND direction are expanded differently
from the NN and DD cases of eqs.(1.42) and (2.3), by 3 in terms of modes,®

oX" (2 ax!(z o O}
Z +3, 5 Z ot (2.17)

I

V)= > Z—: VE) =Y E—Ll (2.18)

reZ+v reZ+v

The mode operator o L does not have zero mode, and there is no momentum in the ND
2

direction as well as the Dirichlet direction. Therefore, a mode expansion for X7 is

Vo 1
X'(2,2) =y H‘/ Z med ( = +_m+1), (2.19)
— 3 Zmta

Commutation and anti-commutation relations can be obtained in a similar way as before:

[O@In_kéa ai(n+%)] = (m + %) 5[J5m,n ) {¢f+%,¢i(s+%)} = 51J(5r,s . (220)

However, the mode operator wqf L1 has a zero mode in the NS sector, while it does not in the R
2

sector. This situation is opposite to the NN and DD cases. Therefore, the zero mode ! forms
degenerate vacua as eq.(1.65) in the NS sector,

[{sa}; kIns, (2.21)

. /_
where s, = j:% and the number of a is 52.

The energy-momentum tensor similarly can be separated as,
TE(2) = — - (9X"0X, + OX0X' + 0X'0X") — L (4#0 "oy + oy’ 2.22
B(z) = ——( wt + ) = 5 WOy, + oyt +yloyt), (2.22)
and the matter sector Virasoro zero operator is
L =L + LY (2.23)

where

X /2 I X
L =ap”+ g ° _nanuo—l— E ga,nano E n+%a °+a
n=1

Ly = > rot e+ Z rW KOS Z sul, vl e

reN—v reN—v reN-+v

(2.24)

16The antiholomorphic fields with the Dirichlet-Neumann (DN) boundary condition have opposite sign to
that with the ND boundary condition.
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The normal ordering constants, a® and a¥, are sums of contributions from the NN and DD
directions and the ND or DN direction. Since the modes differ by %, the normal ordering
constants from the ND direction also differ from that from the NN and DD direction (1.74).
Including contributions of the ghosts,

a=a®+a’+a"+ad”
/

d p-p d p-p 1 1
_ﬂ—i_ 5 +ﬂ_ T +E_E_O for R sector, (2'25>

d p-p d p-p 1 1 1 p—p
i as st o tTmtmT gt

for NS sector,

where d is the number of dimensions with the NN and DD boundary conditions, d = D—(p'—p).
Consequently, if p’ — p is four, the zero-point energies in the R and NS sector are equal. This
means that there is supersymmetry in the system including two D-branes of different dimensions
by four.

D5-D9 system

As a concrete example, let us consider the case of p =5 and p’ = 9. The system is constructed
by introducing a D5-brane and a D9-brane to the type IIB theory.

The introduction of a D-brane breaks ten-dimensional N’ = 2 SUSY in half. On the D9-
brane, there is ten-dimensional N' = 1 SUSY and on the D5-brane, there is six-dimensional
N =2 SUSY. The existence of 5-9 and 9-5 strings breaks supersymmetry further in half. The
system has eight unbroken supersymmetries, which means that there is six-dimensional N" = 1
SUSY. The massless states of 5-5 and 9-9 strings separate into a vector and hypermultiplet of
six-dimensional ' = 1 SUSY. The massless states of 5-9 and 9-5 strings form a hypermultiplet
of six-dimensional N = 1 SUSY, and they carry both charges under gauge symmetries on the
D5- and D9-branes.

The bosonic part of the action which is determined by supersymmetry is written as,'”

1
Sps-Dy = TR Az Fyy FMY —
D9

1 MN
o / Sz Fy /00— / d°z [D,X'D*x+-- -], (2.26)
where M, N =0,...,9and g =0,...,6. The covariant derivative is D, = 0, +i4, —iA;, where
A, and A, are gauge fields on the D9- and D5-branes. The field y is a doublet consisting of the
hypermultiplet scalars of 5-9 string, and x carries charge —1 and +1 under gauge symmetries on
the D9- and D5-branes. For 5-5 string, ten-dimensional vector fields separate as A}, = (A}, A7)

where 7 = 6,...,9. The gauge couplings gp, will be given later.

Since the NS sector zero-point energy (2.25) vanishes, the massless states of 5-9 string are
the NS and R sector ground states,

|53, 545 k)Ns Is; k)r = [s1, 52, k) - (2.27)

1"The last dots in eq.(2.26) mean the potential term required by supersymmetry.
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These spin eigenstates are generated by I'*T = %( 22 4 ip2*™) in eq.(1.64). For the ND or
DN direction, the (6,7,8,9)-directions, there are the zero modes in not the R sector but the
NS sector. Since the GSO parity of these states are as follows,'®

€3, 543 k)ns = =€ sy, 545 ks (2.28)
e™iF |51, 503 k)R = €™ 1) |51 501 k)R :
the GSO projection requires s3 = s4 and s; = —sy. The states (2.27) with s3 = s; and s; = —s,

are related by SUSY transformation.

D-branes at angles

Now, consider D-branes intersecting each other at general angles. Let us specify two D6-branes,
in which both initially are extended in the (1,2,3)- and (4, 6, 8)-directions and one of two is
rotated by an angle ¢ in the (4,5)-plane, ¢3 in the (6, 7)-plane and ¢, in the (8,9)-plane. We
call this rotation p. Then, the two D6-branes are on top of the four-dimensional space-time.

How many supersymmetries are broken by introducing two D-branes depends on the D-brane

configuration. In this case, when an eigenvalue of twice the rotation p? is 1, supersymmetry is
4

left unbroken. In the s-basis, the eigenvalue of p? is eXp(2z' > saaﬁa). Therefore, for example,
a=2

e For general ¢,, there are no unbroken supersymmetries.

e For ¢ + ¢3 + ¢4 = 0 mod 27, there are four unbroken supersymmetries, which means
N =1 SUSY in the four-dimensional space-time.

o For ¢ + ¢35 = ¢4, = 0 mod 27, there are eight unbroken supersymmetries, which means
N =2 SUSY in the four-dimensional space-time.

Let us join the (4,...,9)-coordinates into complex pairs,
7% = X% 4 i X%t fora=23,4. (2.29)

Then, the rotation p on Z is an U(3) matrix, diag[e'®?, e, e1]. When ¢5 + ¢3 + ¢4 = 0
mod 27, the determinant of p is 1 and the rotation is a SU(3) matrix. Consequently, a general
U(3) rotation breaks all the supersymmetry, a SU(3) rotation breaks three-fourths, and a SU(2)
rotation breaks half. These ideas were originally pointed out in ref.[26].

We consider an open string in which one end o' = 0 attaches on the unrotated D6-brane and
the other 0! = 7 attaches on the rotated D6’-brane. Such an open string follows the boundary
conditions,

0 ReZ% = 9, X% =0
{ e ! for o' =0, (2.30)

(92 ImZ* = 82X2a+1 =0

18The spin so can be fixed by % using the Dirac equation, and sy can cancel the 8y ghost number f% of the
Ramond vacuum.
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O Re[e~i%e 24] = 0 X2 4 sin 6, X201) = 0
{ i Rele | =01 (+cos¢ + sin ¢ ) ool (2.31)

0y Im [e—i% Za] =0 (— sin ¢, X2 + cos ¢aX2“+1) =0
Namely, the open string in the cos ¢,X?* direction follows the NN boundary condition, that

in the cos ¢, X?**! does the DD boundary condition, in the — sin ¢,X?* the ND boundary
condition, and in the sin ¢, X?**! the DN boundary condition.

Here, we use the doubling trick. First, we separate the mode expansion X (w,w) in the NN
direction of eq.(1.55) into a holomorphic part X' (w) and an antiholomorphic part X' (w),

X (w, ) = X(w) + X(w), (2.32)
where
/ = 3 iyl / s . —
X(w> = g—F % |:Oéo(—UJ) +1 Z % elmw} , X(m) = g—l— % |:a0@+7: 2 % e—zmw:| '
mr;;égo mm—?ggo
(2.33)

X (w) and X (w) are defined only in the region 0 < w,w < 7, so let us define X'(w) in the region
m < w < 27 as follows,
Xw)=X@w) form<w<2rm, (2.34)

where w' = 21 — w. Then, X (w,w) of eq.(2.32) is defined in the region 0 < w < 27.

Similarly, the mode expansions X (w,w) in the DD, ND and DN directions of egs.(2.5) and
(2.19) are separated as eq.(2.32), and the holomorphic part is given by

,/ § Gm gimv for DD, X(w ,/ § Smts gitmtbe for ND,DN .
m+—
m?ﬁO

(2.35)
It is found that they satisfy X' (w+27) = X' (w) for the NN and DD directions and X (w+27) =
—X(w) for the ND and DN directions. Then, the complex coordinates Z(w,w) are also
separated into Z%(w) and Z%(w), and Z%(w) satisfies the following boundary condition,

Z%(w) = e [ei%za(w)}
= e "% [cos ¢ X (w) + i sin ¢, X (w) + i(cos g X** T (w) + i sin ¢, A>T (w))] (2.36)
= 672i¢>aza(w =+ 27T) .

This implies the mode expansion

m+9a i(m+0q)w 92
1/ Z_ ) e : (2.37)

where 6, = ¢,/m. The complex conjugate of Z* is denoted by 7" = X% _ jX%+1 A holomor-
phic part of Z°, Z", satisfies the boundary condition Z"(w) = ¢*#* Z"(w + 2), and the mode

expansion is
—“/ Z G ‘% “m—(’a)w, (2.38)
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Thus, for the open string with ends on the respective D-branes intersecting at angles, we
expand the complexified space-time coordinates. The mode expansions (2.37) and (2.38) are
different from the NN and DD cases by 6, in terms of modes, and when 6, = %, they are the
same as the mode expansions in the ND direction of eq.(2.19).

The world-sheet fermions in the (4,...,9)-directions also combine into complex pairs,
Tt =% 4 p? T fora=2,3,4, (2.39)

and the complex conjugate is denoted by ¥* = 2 — )21 The mode expansions of the
world-sheet fields are in the z-coordinate,

a m+0a m Oa
02'(z) = ~i\ 5 Z T -i\/5 Z T (2.40)

a w? a 7,4 Ei—a
)= Y onhe TR = Y S (2.41)

reZ+v reZ—v zZ

where the mode operators oy, , @) Pr e, and W*ea satisfy the following commutation

m—04°
and anti-commutation relations,

[O‘/gn—l—ea?ab—n—ab] = 2(m + 9(1) 5ab5m,n ) {wr—&-@a ¢is—0b} =2 5ab5r,s . (242)

: a —a a a s .
One can consider oy, 4 , @y, , ¥y, and 2., for m,r > 0 as annihilation operators, and
that for m,r < 0 as creation operators.

The energy-momentum tensor is again separated,
m 1 an=z% 1 aqm ¢ | ¢ a
T8 (2) = —a(aX"@XM +0Z2°9Z") - 5(;@“8% + SOV + W ow)) (2.43)

and the Virasoro zero operators are

1
L(‘;(_a/p2+20 —nanﬂo+§ Z 2a—n+9 an Oq o+a'
e (2.44)
ng - Z r wuer“Z +3 Z r—= ¢—r+9 %« Gao + aw
reN-v T€Z+I/
Then, the normal ordering constants are
a=a’+a¥+ a*+ >
4 4
0,(1—0,) d 0,(1—0,) d 1 1
—_ — — — ——t+—+—=—-——==0 for R sect
;; 2 24 Z > tutn T n of T ector,
0.(1—0,) d Sy d 1 1 j—
—_ - — = —— =4 —==—= — for NS sect
; 2 T ;2 s 12 2*2;2 oF T ROt

(2.45)
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where d = 3. Thus, the zero-point energy in the NS sector depends on rotation angles. This
is coincident with the above analysis that there are unbroken supersymmetries in cases of
0+ 605+ 60,=0 mod 2, 03+ 603 =60, =0 mod 2 and so on.

Let us form lower states of the 6-6" string. The NS sector ground state has the mass

1
|0, k>NS . m2 — ﬂ(_l —|— 92 + 93 + 94) y (246)

however this state is projected out by the GSO projection. In the NS sector first excited states,
there are four kinds of states with lowest mass,

1
¢ﬁ% |0; k>NS :om? = ﬂ(—i—% + 605 + (94) )
1
2 0: k : 2~ (-9 G + 0
w—%+92| ) >NS m 2?/< 2 + U3 + 4)7 (247)
¢i%+93|0; kyns @ m’= ﬂ(—wz — 03+ 94) ;
1
Wigmlo; k)ns m? = 2—0/(—0—92 + 65 — (94) .

The NS sector second excited states are projected out by the GSO projection, and the following
NS sector third excited state has lower mass,

1

Oé/

¢i%+92¢i%+93¢4_%+94’0; k>NS L om? (1 — %(92 + 03 + 94)) , (248)

The R sector ground state is massless due to the vanishing R sector zero-point energy,
lsik)r ¢ m?=0. (2.49)

Since the mode operators 1!, 4 have no zero modes, they do not form degenerate ground states
which have spins in the (4,5), (6,7) and (8,9)-planes. The GSO projection restricts |s1; k)g to
a state with s; = +%, and since s; is a space-time spin, the state is chiral.

Note that the state ¥, |0; k)ns does not act as a gauge boson, even if there are unbroken
supersymmetries, since it cémes from the open string stretched between the different D6-branes.
In case of 05 + 03 + 04 = 0, the state combine the massless state in the R sector, |sq;k)r,
into a chiral multiplet of the four-dimensional N/ = 1 SUSY. The chiral multiplet is in the
bifundamental representation under gauge symmetries on the D6- and D6’-branes, as discussed
above eq.(2.26).

Thus, we obtain bifundamental chiral fermions from the open string with ends on the
respective D-branes intersecting at angles. Then, we can expect that the chiral matters in the
Standard Model are obtained using the intersecting D-branes.

2.3 Type ITIA orientifolds

Now, let us consider construction of a realistic model using D-branes. We have discussed that
the open string on a stack of N D-branes gives massless gauge bosons (and scalars) associated
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with U(N) gauge symmetry, and the open string on intersecting D-branes gives massless chiral
fermions with both charges under gauge symmetries on the D-branes. Therefore, we can expect
that the gauge groups and chiral matters in the Standard Model are obtained by specific D-
brane configurations.

However, the D-brane configurations are not always consistent. They must satisfy the
Ramond-Ramond tadpole cancellation, which is required to make gauge symmetries on the
D-branes anomaly free. For example, in the type I theory which is projected by the world-sheet
parity, the R-R tadpoles are canceled when the gauge symmetry is SO(32). Thus, the world-
sheet parity projection can be used for the R-R tadpole cancellation in general situations. We
want to consider the type IIA with intersecting D6-branes as discussed in the previous section.
The type IIA does not have the world-sheet parity symmetry, but it does have a symmetry
under a combination of the world-sheet parity and odd times space-time reflections. A theory
which is projected by such an action is generally called orientifold. Referring to the earlier
constructions [27], let us consider the type ITA orientifolds with intersecting D6-branes.

Type ITA orientifolds

First, we consider compactification of extra six-dimensional space. As a simple choice, we
consider a six-dimensional torus which is factorizable into 7% x T? x T?. Let us introduce
D6-branes on top of the four-dimensional space-time and wrapped on three-cycles in the six-
dimensional torus. In this case, the three-cycles are products of one-cycles in each of three T2s.
Then, we consider stacks of N, D6,-branes which are wrapped on the cycle with the wrapping
numbers (n’,m!) in the i-th T2.

The type ITA is changed by the world-sheet parity transformation €2 into the type ITA’,
A" : (NS4,NS+) (R—,R+) (NS+,R+) (R—,NS+). (2.50)
On the other hand, a space-time reflection on a single axis,

XM —XF s gt R (2.51)
reverses the chirality in the R sector. Therefore, the type ITA has a symmetry under a combi-
nation of 2 and the odd times space-time reflections.

We mod out the type IIA by the orientifold action 2R, where 2 is the world-sheet parity
transformation (1.109), and R acts as
R : (Z4,22,7% = (2,207, (2.52)

where Z%s are complex coordinates in the 7T? x T? x T?. Here, Z"s are corresponding to
eq.(2.29). Then, there are orientifold fixed planes in the (4,6, 8)-directions, which are called
O6-planes. Furthermore, the symmetry under the orientifold action requires a image or mirror
of a D6-brane about the O6-planes. The orientifold images of the D6,-branes, D6,/ -branes,
are wrapped on the cycle with the wrapping numbers (n’, —m’) in the i-th T2, if the T?s are

rectangular.
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The R-R tadpole cancellation

Next, we consider the R-R tadpole cancellation conditions on the D6-brane configurations in
this type IIA orientifold. Here, we define the homology class of the three-cycles wrapped by
the D6,-branes,

M, = ] ] (milail +mq b)) (2.53)

where [a;] and [b;] denote the (1,0) and (0, 1) homology one-cycles in the i-th T2, for rectangular
tori. Similarly, the homology class of the cycles wrapped by the D6,-branes is defined as

3

My = [ [ (nilai) — mibi]) - (2.54)

=1

We also define the homology class of the cycles wrapped by the O6-planes,
HOG = [al] X [ag] X [ag] . (255)

The R-R tadpole is proportional to a charge of the D6-brane under the R-R field which
is an antisymmetric seven-tensor originating from the R-R closed string. Therefore, the R-R
tadpole cancellation is a simple Gauss law, namely the cancellation of the total R-R charge.
The R-R charge carried by all the D6-branes and the orientifold images is

> NI+ ) NIy, (2.56)

while the R-R charge carried by the O6-planes is,
—4 x 8 x Tpg , (2.57)

where —4 is a charge of an O6-plane and 8 is the number of O6-planes. Then, the requirement
that the total R-R charge is canceled gives the following constraints on the wrapping numbers
and the multiplicity of the D6-branes,

Z Nonin2n? =16, Z Nontm?m? =0,
¢ ¢ (2.58)
Z NominZm? =0, Z Nomlim?n =0.

Thus, the constraints (2.58) define a consistent D-brane configuration in the type ITA orientifold
compactified on a torus.

Spectrum

Let us discuss the spectrum of the open string in this theory. We denote the open string in
which one end attaches on a stack of D6,-branes and the other attaches on a stack of D6y-
branes, by the ab sector. These stacks of the D6-branes intersect at general angles, and the
open string stretched between the different D6-branes is localized on the intersection plane (in
this case, the four-dimensional space-time).

35



e The aa sector:
There are a vector multiplet and three chiral multiplets in the U(N,) adjoint represen-
tation. When the D6,-branes are on top of the O6-planes, the vector multiplet and the
chiral multiplets are in the SO(N,) or USp(N,) adjoint representation.

The scalar components of the chiral multiplets come from the Dirichlet components (2.10)
in the ten-dimensional vector.

e The ab + ba sector:
There are I,;, chiral fermions in the bifundamental representation (N,, N}), where I, is
the intersection number of the wrapped cycles,

3
Ly = T0g - Ty = [ [ (i, — mimy) . (2.59)

i=1
The sign of I, denotes a chirality of the chiral fermion.

e The ab’ + Va sector:
There are I,y chiral fermions in the bifundamental representation (NN,, N,), where

3
Ly =1, -1, = — H(n;mz + mjlné) : (2.60)

=1

e The ad' + d'a sector:
There are chiral fermions in the two-index symmetric and antisymmetric representations
of U(N,). The two indices correspond to ends of the open string. The number of the
symmetric and antisymmetric representations are

1 4 1 4
nm = _5 (Iaa’ - 2_kIa,O6) y nH = _5 ([aa/ + 2_kIa,O6) ) (261>
where k is the number of tilted tori and
Iaa’ = Ha . Ha/ = —8 H némz, Ia,Oﬁ = Ha . H06 = — H TTLZ . (262)

i=1 =1

There are undesirable chiral fermions in the aa and aa’ + d’a sectors. The adjoint chiral
fermions in the aa sector can obtain mass due to their hermiticity, and we can exclude them
from the massless spectrum. The antisymmetric fermions in the aa’ + a’a sector can be the
representation under the Standard Model gauge group, in particular, SU(3)¢, but the symmetric
fermions are always exotics. In order to exclude them from the massless spectrum, we can
require that the cycles wrapped by D6-branes satisfy H§:1 m! = 0. Then, as it is found from
eq.(2.62), there are no fermions in both the symmetric and antisymmetric representations. This
condition means that for any D6-branes, at least one of the three cycles in the 7s should be
parallel to the O6-planes.
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Thus, we can obtain the massless spectrum in which there are no chiral exotics. The
generation number of the Standard Model can be obtained as the intersection number of the
wrapped cycles in case of the toroidal compactification.

Note that, in order to obtain three generations, at least one of the three T?s should be
tilted. Consider that only the third 772 is tilted. The homology class of the cycle wrapped by
the O6-planes, (2.55), becomes

Iog = [a1] x [as] x (2[as] — [bs]), (2.63)

and then the R-R charge (2.57) carried by the O6-planes is divided by two. When the cycle
wrapped by the D6,-branes has the wrapping numbers (n’,m’) in the tilted T2, the cycle

i
a’

wrapped by the images has the wrapping numbers (n!, —n! — m), so the homology class of

the cycle wrapped by the D6,-branes becomes

I, = (n}l[al] — mi[bl]) X (ni[ag] — mZ[bg]) X (n3 [as] — (n2 + mz)[bg]) ) (2.64)

a

Then, the constraints (2.58) required by the R-R tadpole cancellation are modified as

12,3 _ 1,2~3 _
E Non,n;n, =16, E Non,m;m;, =0,
a

- 1,2~3 1, 2 3 (2.65)
Z N,om n.m;, =0, Z Nom, m;n;, =0,

where m = m + 5. The modification is simply to replace m — m. The half-integer wrapping
number realizes three generations.

SUSY conditions

As discussed in the previous section, the system in which one stack of D6-branes are related
to the other stack by a SU(3) rotation has four-dimensional N = 1 SUSY. Denoting by 6"
the intersection angles between the D6-branes in the i-th T2, configurations preserving N' = 1
SUSY must satisty

' +60*+60° =0 mod 27. (2.66)

If one stack of the D6-branes is parallel to the O6-planes in a i-th 72, the intersection angle
depends on the ratio of the radii in the i-th 72 and the wrapping numbers of the other stack,
for rectangular tori,

9" = arctan(ﬁ Hai ) , (2.67)

n' Roi—q
where Ry;,_1 and Ry, are the radii in the vertical and horizontal directions in the i-th 772.
For general §?, N’ = 1 SUSY is broken. Then, the R sector ground state |s;;k)r (2.49)
remains massless. However, the NS sector lower states (2.47) and (2.48) have masses which
depend on the intersection angles. In order for the system to be stable, they must not have

tachyonic masses. Setting 6% > 0, the absence of tachyons require #° to be within a regular
tetrahedron in the (6%, 0%, 03)-space.
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Intersection Matter (SU(3)c, SU(2)1) (Qa, Qpy Qe Qa) Y

(CL?b) QL (372) (17_17070) %
(a,b) qL 2 % (3,2) (1,1,0,0) 5
(a,c) (ug)® 3% (3,1) (—1,0,1,0) —2
(a,c) (dg)¢ 3% (3,1) (-=1,0,-1,0) 3
(b,d") (L 3x(1,2) (0,-1,0,-1) -1
(¢, d) (er)° 3% (1,1) (0,0,-1,1) 1
(c,d) (vg)° 3% (1,1) (0,0,1,1) 0

Table 2.1: The chiral fermion spectrum of the semi-realistic four stack model.

2.4 Getting the Standard Model spectrum

Now, we specify a D-brane configuration which gives the massless spectrum of the Standard
Model, considering the type ITA orientifolds with intersecting D6-branes compactified on a
torus. There are so many constructions with the SM spectrum, but in most cases, there are
extra chiral fermions (the right-handed neutrinos, and so on) and Higgs fields. However, it is
true that one can obtain the particle content quite close to that of the SM, using intersecting
D-branes with simple toroidal compactification. Here, we present a semi-realistic but simple
proto-type model [28] which contains the SM-like spectrum and features of D-brane models.

Non-supersymmetric semi-realistic model

In ref.[28], the authors considered a non-SUSY model. Using a bottom-up approach, they
introduced four stacks of D6-branes with N, =3, N, =2, N. =1 and Ny = 1. The stacks yield
the gauge group U(3), x U(2), x U(1). x U(1)4, in the sense of the SM gauge group,

SUB3)e x SU(2), x U(1), x U(1)y x U(1). x U(1)g4. (2.68)

A charge of an additional U(1), factor is denoted by (),. The desired chiral fermions and
representations are listed in Table 2.1. In the Table 2.1, (), is one left-handed quark antidoublet,
and ¢y, are two left-handed quark doublets. This is required to cancel U(2), anomalies, and then
¢y, are left-handed lepton antidoublets. vg are also required to cancel U(1),; anomaly. Thus,
such models with only bifundamental matter necessarily contain the right-handed neutrinos.

Considering mixed anomalies of the four U(1) factors with the non-Abelian ones SU(3)¢
and SU(2), it is found that (Q, + 3Q4) and Q. are free of triangle anomalies. Then, the
hypercharge is given by the linear combination

1 1 1
Y = aQa - §Qc + §Qd- (2.69)

The other orthogonal combinations are anomalous, however, gauge bosons of the anomalous
U(1)s receive masses via the Green-Schwarz mechanism [29], which can be realized by an ex-
change of the R-R field. All the massive U(1) gauge symmetries survive as global symmetries,
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N (nt,mb) (n?,m?) (n®,m3)
No=3 (1/80)  (ng,ep?)  (1/p,1/2)
Ny =2 (TL;,—EB ) (1/62 ) (173P/2)
N.=1 (nc,?)epﬁl) (1/62 ) (071)

No=1 (1/BY)  (ng,—eB?/p) (1,3p/2)
Table 2.2: The D6-brane wrapping numbers of the semi- realistic non-SUSY model. The pa-

rameters are defined as %2 = 1,1, a parameter p = 1,1, a phase ¢ = 1 and four integers

)2 a37

2 01 o1 .2
ns,ny,Ne, N5 € 4.

and ), and ()4 can be identified with the baryon number and the lepton number. They stabilize
the proton and prevent Majorana neutrino masses.

If the wrapping numbers of the four stacks of D6-branes are chosen as shown in Table 2.2,
the intersection numbers between the four stacks are

Iy =1, Ly =2, Loe = =3, I, = -3,

(2.70)
Iy =0, Ly = -3, Ig= -3, Iy =3,

and all the other vanish. They give rise to the number of generation of the desired chiral
fermions listed in Table2.1. In the configurations of Table2.2, all but the first of the R-R
tadpole cancellation conditions (2.58) are automatically satisfied, and the first cancellation
condition read '

B?+?+E:16 (271)
In order for the U(1)y to remain massless, further conditions are imposed as
LB
N = 25 (n2 + 3pnj) (2.72)

on the parameters in Table 2.2.

The possible Higgs configurations in this model are listed in Table2.3. The Higgs fields
appear in pairs analogous to the Higgs sector of the Minimal Supersymmetric Standard Model
(MSSM). The U(2); branes are parallel to the U(1), brane in the second T2, and there are no
massless chiral fermions at the intersection. However, if there is a small distance z between
these stacks of the branes in the second 72, the open strings can stretch between them and
lead light scalars with the masses,

2

1 . ) 2_ _* L 3
¢,%+91|0, k>NS oom-S = (271'0/)2 + 2@/( 0+ 0 ) ,
- | (2.73)
3 . . 2 __ 1 3
¢_5+93|0, k)ns @ m® = W + F(—i—& -0 ) .

90ne can always relax the constraint (2.71) by adding extra hidden D6-branes, for example, N’ D6-branes
with m/* = 0 (parallel to the O6-planes). Then the constraint is replaced by

3n2 2nb nd
a + + Nlnll 12 /3 — 16
pBt B2 Bl
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Intersection Matter (SU(3)c, SU(2)1) (Qa, Qpy Qe Qa) Y
(b, c) hy np X (1,2) (0,1,—1,0) :
(b, c) Ry ny x (1,2) 0,-1,1,0)  —3
(b,c) H, ny x (1,2) (0,-1,-1,0) 1
(b,¢) H, ng % (1,2) (0,1,1,0 -1

Table 2.3: The possible Higgs field configurations of the semi-realistic model.

Then, the Higgs fields have the quadratic potential similar to that of the MSSM,

unad. = m}%(’th + |h2|2) + m%{(|Hl|2 + ’H2’2)

+ m2hihy + h.c. + m3H Hy + hec. (2.74)
where
1 ) (2.75)
mg = ﬁ‘egc - eg)c‘ ) sz = @l% _ 91?a/| _

If the distances 2, and 2. are small compared to the string scale My = 1/v/o/, there appear
flat directions along (hy) = (hy) and (H;) = (H3) in the scalar potential, which may give rise
to the electroweak symmetry breaking below the string scale. However, note that this requires
the string scale to be not far above the weak scale.

The numbers of the Higgs fields, n;, and ngy, are given by the numbers of times the U(2),
branes intersect with the U(1), branes in the first and third 7?s, depending on the parameters
in Table 2.2,

nw = B'ne +3pmy|, g = B'|ne — 3pny| . (2.76)

The Yukawa couplings which are allowed by the symmetries have the general form,

v (W) Quhn+yp(dp) ' QuHs+yy (up) ap Hi+yy (d) ' a ho+y2 () 6, Ha -y (Vi) €3 b+ e

(2.77)
If n, = 0 and nyg = 1, only two up-type quarks and one down-type quark can get masses.
One would identify them with the top, charm and bottom quarks. Thus, at this level, the
strange, down and up quarks remain massless, as well as the neutrinos.?® If n, = 1 and
ny = 1, the observed hierarchy of fermion masses is a consequence of the different values of the
Higgs vacuum expectation values and hierarchical values of the Yukawa couplings. The Yukawa
couplings are calculated from open string three-point amplitudes for the left- and right-handed
fermion and the Higgs states appearing at the D-brane intersections, and they are proportional

20Since the U(1), symmetry has mixed SU(3)c anomalies, it can be regarded as the Peccei-Quinn symmetry.
If the symmetry is broken by strong interaction effects, one expects that effective Yukawa couplings uTRQ LHy
and d}r%qLHg, and dimension six operators ﬁ(uké L)(UEQ 1)* from an exchange of massive string excited states

are allowed. Then, the neutrino masses are of the order of A%CD JM2.
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to [ [, exp(—A;/2ma’) where A; is the area of the triangle formed by the three intersecting D-
branes in the i-th 72 [30, 31]. One also has to check whether the flavor-changing neutral current
(FCNC) from a Higgs exchange are sufficiently suppressed (see ref.[32, 33]).

Thus, we have discussed that there are D-brane configurations which give the massless
spectrum of the SM except for the Higgs sector, when we consider the type IIA orientifolds
with intersecting D6-branes compactified on a torus. For the MSSM, there is also a proto-type
D-brane configuration [34, 35] which keeps N' =1 SUSY and gives the MSSM spectrum. For
other phenomenological issues, see ref.[36] for review. Note that most non-SUSY constructions
assume a low string scale M which is of the order of TeV, in order to avoid large radiative
corrections to the Higgs boson mass, dm? ~ M2.2! However, in case of such a low string scale,
extra space should be compactified to not a simple torus but more general spaces. In the next
section, we consider D-brane models with the low string scale, which are called low-scale string
models.

3 Low-scale string models

Now, we consider low-scale string models in which the string scale M, = 1/y/a/ is of the order of
TeV. Such a low string scale is possible due to the existence of large extra dimensions, and these
models are expected to solve the hierarchy problem of the Standard Model. Since the string
scale M is of the order of TeV, low-scale string models have a possibility of being confirmed or
excluded by the LHC. We will assume the low-scale string models which are explained in this
section, in discussions of the LHC phenomenology in the next part.

3.1 Large extra dimensions in string compactifications
Gravitational and gauge coupling constants

Here, we discuss the gravitational and gauge coupling constants in the context of string com-
pactifications. While the gauge interactions are localized on the D-brane world volume, the
gravitational interactions are spread into the transverse space. This gives qualitatively different
quantities for their couplings.

The low-energy effective action of the type II theory which includes only the NS-NS closed
string is
1 1
S=— /dl% (—G)2e722( R + 40y, P0M®D — —Hpn HYNL ) | (3.1)
2K7 2
where Hy,ny, is the field strength of the antisymmetric B-field, Hyn;, = OBy + OnBra +
Or,Burn. Let us make field redefinitions of the forms

éMNZGXp(_Cb)GMN, (AIS:CI)—CI)O, (32)

2

2INote that in one-loop calculations in the non-SUSY system, there is a problem that infrared divergence
from an exchange of the NS-NS closed string is not canceled.
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where @, is a background value of the dilaton field and G un is called the Einstein metric. In
the Einstein frame, the space-time action (3.1) has the standard Hilbert form,
1 10 ~N1/2( » L) =suz 1 5 TTMNL
S=— dx (—G) R — —8M<I>8 d— —¢ HMNLH . (33)
2kK2 2 2

The constant k = k10e®0 is the gravitational coupling. Hereafter, we denote ®, simply by ®.
The extra six-dimensional space in the ten-dimensional space-time should be compactified to
an internal space with the finite volume V4. Then, the gravitational coupling x is reduced to
the four-dimensional Newton constant G, and since Gy = 1/M3,,

Ve 1 Mg

22 16mGN 167

(3.4)

On the other hand, from the ratio of the string tension 1/2wa’ and the D1-brane tension
T, = ;/Ti 47?0’ in eq.(2.12), we obtain the relation between x and o/,

K = %(27r)7e2q>o/4. (3.5)

Then, the Planck scale Mp; (3.4) can be written by the string scale M and the volume of the
internal space Vg,

_ Ve
Mlgl =8e 2¢M§w.

Therefore, if the string coupling g; = e*/“ is small and the internal volume Vj is as large as
M5V ~ 1032, we can take the string scale M; of the order of TeV.

(3.6)

®/2

On the other hand, the low-energy effective action which describes a coupling between a
Dp-brane and the NS-NS closed string is shown in eq.(2.11),

Sop = <1, [ @ Tr{e* [~det(Go + B + 200 F)] ). (3.7)

where T, is the Dp-brane tension (2.12). Expanding the action in terms of F),,, it is just the

Yang-Mills action in the (p + 1)-dimensional space-time,

1
4g%,

Spp = /dp+1x(—G)1/2 Te{F.>}+ -, (3.8)

where gp,, is the gauge coupling constant on the Dp-brane, as it appears also in eq.(2.26),

3—p
o' 2

I T —d 2 N2 — —d ) )
7z, ve T(2ma’)  =e o) (3.9)

When the extra (p — 3)-dimensional space on the Dp-brane is compactified to a space with the
volume V,,_3, the gauge coupling constant gp, is reduced to a four-dimensional gauge coupling
constant g,

L _Ves _ —eyp-s Vo3

! . 3.10
7?9, (2m)P—2 (3.10)
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Therefore, if the string scale M is of the order of TeV, in order to keep the four-dimensional
gauge coupling small, the volume on the Dp-brane V,,_3 must be as small as MP~3V,_5 ~ 1.

However, the intersecting D6-branes with the simple toroidal compactification that we have
discussed in the previous section cannot realize such a low string scale, because there is no
direction in the internal space which is transverse to all the D6-branes. In the case of toroidal
compactification, V,_s is the volume of the (p — 3)-cycles wrapped by the Dp-brane. In partic-
ular, for p =6,

Vs = (27)° H \/(niRQiﬂ)2 + (miRy;)?, (3.11)

where (n’, m') are the wrapping numbers of the one-cycle wrapped by the D6-branes, and Ry;_;
and Ry; are the radii in the i-th 7%. On the other hand, the total internal volume Vj is

Vo= (2m) [ R (3.12)

=1

Then, there is no radius that we can choose large in the internal space. In order to keep the
four-dimensional gauge coupling small, the total volume V5 must be also as small as M5V ~ 1,
and the string scale Mj is restricted to be a few orders of magnitude of the Planck scale.

Thus, consistent string compactifications with large extra dimensions can be possible not
for a simple torus but for more general Calabi-Yau spaces which can have large transverse
dimensions to all the D-branes.

“Local models”

Let us consider large extra dimensions in the context of string compactifications. As explained
above, in order to combine D-branes with the SM particle content with the scenario of large
extra dimensions, one has to consider specific Calabi-Yau compactifications (on the Calabi-Yau
large volume compactification, see ref.[10]). The three or four stacks of the intersecting D-
branes which give rise to the SM spectrum such as Table 2.2 are local modules embedded into
a global large volume Calabi-Yau manifold, as shown in Fig.3.1[13].22

The hidden sector in Fig.3.1 is required to satisfy the R-R tadpole cancellation and stability
conditions for the absence of tachyons. It is also responsible for spontaneously SUSY breaking
in the system which has four-dimensional N' = 1 SUSY for calculations of string amplitudes [13].
The supersymmetry breakdown is transferred to the SM branes by gravitational interactions or
by gauge interactions via some vector-like messenger fields. The hidden sector is also responsible
for moduli stabilization and cosmic inflation in the early universe (see ref.[37], for review).

We will use the results of open string four-point amplitudes involving the SM gauge and
matter fields. In particular, the amplitudes involving four gauge bosons or two gauge bosons

22Note that the stacks of the D-branes cannot be wrapped on untwisted cycles of a compact torus or of toroidal
orientifolds. One has to consider twisted and blowing-up cycles of an orbifold or more general Calabi-Yau spaces
with blowing-up cycles.
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Figure 3.1: Some stacks of D-branes giving rise to the SM spectrum are embedded into a large
Calabi-Yau space [13].

and two matter fermions do not depend on the geometry of the Calabi-Yau spaces. However,
in order to calculate the string amplitudes, we have to assume that the SM branes are wrapped
on flat or toroidal like cycles.

Thus, for discussions of the LHC phenomenology in the next part, we will assume such
“local models”, in which the intersecting D-branes giving rise to the SM spectrum are wrapped
on local and flat cycles, and the cycles are embedded into a global large volume Calabi-Yau
manifold giving rise to the low string scale.

3.2 Spectrum of low-scale string models

Let us summarize the spectrum of low-scale string models. This is useful for later discussions
on phenomenology at the LHC.

The Standard Model gauge bosons and chiral fermions

The SM branes in Fig.3.1 are constructed of three or four stacks of intersecting D-branes such
as Table 2.2 which yield the SM gauge group with additional U(1) factors and give rise to the
SM chiral fermions at their intersections.

The SM gauge boson is realized by the open string with both ends on a stack of N D-branes.
It is the NS sector massless state,

Tae,uwﬁl/g’o; k>NS ) (313>

where T° is the Chan-Paton factor in the adjoint representation of U(N) with a = 1,..., N2
The polarization vector e, satisfies the physical state condition e - k = 0 and the equivalence
condition e, = e, + Ak,.

The SM chiral fermion is realized by the open string stretched between stacks of N, D,-
branes and N, Dy-branes. It is the R sector massless state,

us|s; ki o, B)w (3.14)

where o and (3 are the Chan-Paton indices in the fundamental representations of U(N,) and
U(N,) with a =1,...,N, and = 1,..., N,, respectively. The polarization spinor ug satisfies
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the physical state condition k - I'ysus = 0 and the state which is in the spinor representation
of SO(1,3) is reduced to that in the spinor representation of SO(2). The GSO projection,
'ysus = +usg, restricts to the state with s = —i—%.

String excited states

We can obtain massive states by exciting the massless states such as (3.13) and (3.14) with
the mode operators, and such massive states are called string excited states. In the case of the
open string, the mass of the string excited state is given by

m2_$(Na+N¢—y), (3.15)

where N = N, + Ny, — v is the level of the state, and N, and N, are excitation levels due to
the mode operators o and ¥, as shown in eq.(1.87).

Let us focus on the case of N = 1. The first string excited state of the SM gauge boson,

™ [(el)uwﬁgp + (62)uvaﬁ1¢i1/2 + (€3>qu¢&1/2¢51/21/’€1/2} |0; k)ns (3.16)

has the mass of m? = 1/a’. The polarization three-tensor (e3),,, is antisymmetric. The physical
state conditions derived from eq.(1.75) on the polarization tensors are given by

V2d/(er) - k+ (e2)wn =0,
(e1)y + V2K (€2) = 0, (3.17)
(€2)w — (€2)uy +6V2a'kP(e3)p =0.
Counting the physical degrees of freedom in the four-dimensional space-time, we can understand

that the degrees of freedom correspond to one spin J = 2, two J = 1 and two J = 0 modes [38].
On the other hand, the first string excited state of the SM chiral fermion,

[(ul)usaﬁl + (UQ)MS@MJ |S; k; a, /B>R7 (3.18)

also has the mass of m? = 1/a/. The physical state conditions on the polarization vector-spinors
are given by

k - I_‘s’s(ul)us =k- Fs’s(u2)us = Oa
Tys - (u1)s 4+ 2V 'k - (ug)s = 0, (3.19)
AV 'k - (u1)s + Dyg - (Un)s = 0.

The GSO projection impose I'ys(u1)us = +(u1)us and Igg(ug)us = —(ug)us on the state. The
remaining physical degrees of freedom correspond to one spin J = 3/2 and one J = 1/2 modes.
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Kaluza-Klein and winding modes

In addition to the string excited states, there are other massive states in low-scale string models.
The massive states appear when the extra six-dimensional space is compactified to an internal
space with finite volume. They are called Kaluza-Klein and winding modes.

Although one has to consider more general Calabi-Yau compactifications in low-scale string
models, here, for simplicity, let us consider compactifications on a six-dimensional torus which
is factorizable into T x --- x T'. Then, the six-dimensional coordinates have the following
periodicity,

X'~ X'+ 27rR;  fori=4,...,9, (3.20)

where R; is the radius in the i-th 7.

Let us consider the open string realizing the SM gauge bosons. We specify that the open
string is on a stack of D6-branes and has the Neumann boundary condition in the four-
dimensional space-time with © = 0,1,2,3 and the three-dimensional space with ix = 4,5,6
and the Dirichlet boundary condition in the three-dimensional space with ip = 7,8,9. Note
that in the case of the non-compact ten-dimensional space-time, there are the open string
center-of-mass momenta only in the Neumann directions not in the Dirichlet directions. How-
ever, with the compact periodic dimensions (3.20), there are quantized momenta not only in
the Neumann directions but also the Dirichlet directions.

First, the operator exp(2miR; p™) which translates the open string around the periodic
Neumann directions iy = 4,5,6 must leave states invariant. The center-of-mass momenta in
the Neumann directions are quantized,

IN

kN = for n'™~ € Z. (3.21)

IN
The modes with the nonzero momenta (3.21) are Kaluza-Klein (KK) modes. On the other

hand, the open string may wind around the periodic Dirichlet directions ip = 7,8,9 and then
it satisfies the extended Dirichlet boundary condition,

XP(g=7)=X"(0=0)+ 27 R;,w™ for w' € Z, (3.22)

where w' is the winding number. Since the coordinates in the Dirichlet directions are expanded
as eq.(2.3), the change of the Dirichlet coordinates in going around the open string is

2R, w'P = / do' 0, X" = /(dz OX™ +dz0X™) = 2m/ % ay (3.23)
0
and the momenta in the Dirichlet directions are also quantized,

i ’l,UiD Rz
]{7 b = TD . (324)
The modes with the nonzero momenta (3.24) are winding modes. Then, the mass of the
Kaluza-Klein and winding mode of the open string is given by
o, (nin)? (w)2 R,

2 12
RZ «

(3.25)
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In low-scale string models, the radius in the compact Neumann direction R;, corresponds
1
to V,_37=3 which is determined by the size of the four-dimensional gauge coupling constants in

1/6 which is determined

eq.(3.10), and the radius in the Dirichlet direction R, corresponds to Vg
by the Planck scale in eq.(3.6). If the string coupling g5 is small and the string scale M is of
the order of TeV, V5'/® ~ (10MeV)~! and the winding mass is M2V;'/® ~ 108 GeV. Ignoring
the winding modes due to its heaviness, in order to keep the gauge coupling constants small,
%,317%3 ~ (1TeV)~! and the KK mode mass of the open string is of almost the same order as

the string excited state mass (3.15).

However, we will use the results of open string four-point amplitudes which do not depend
on the geometry and size of the internal space, namely, which do not include poles of the
KK and winding modes of the SM gauge and matter fields. Eventually, we can ignore both
exchanges of the KK and winding modes.

Closed string states

While the gravitational coupling » of eq.(3.5) is proportional to the string coupling g2, the
gauge coupling constant g of eq.(3.10) is proportional to gs. Therefore, the open string four-
point amplitudes with poles of closed string states are suppressed by g2 in contrast to that with
poles of open string states. This is also understood from the open-closed string duality that
tree-level amplitudes of the closed string are understood as one-loop amplitudes of the open
string. Thus, due to such one-loop suppressions, we can also ignore the closed string states
including the closed string excited states and the KK and winding modes of the closed string.

In low-scale string models, one has to consider the large Calabi-Yau spaces shown in Fig.3.1,
and the total volume Vg must be so large as MSVy ~ 1032, Therefore, we can expect that the
6 10 MeV, assuming that all the six
dimensions in the Calabi-Yau space are similar in size. If the six dimensions are extremely

mass of the Kaluza-Klein graviton is so small as Vj

asymmetric in size [39], for example, so that M2V, ~ 1 and M2V, ~ 1032, we can expect
that the lightest KK graviton mass is so much small as VQ_I/ 2~ 107%eV. Tt is important to
investigate experimental bounds on the KK graviton with a very small mass.

The model-independent signature is energy loss due to the KK graviton emission, which
can be observed as missing energy. The emission cross sections are sizable due to enormous
phase space of the KK gravitons. Even if each KK graviton couples with the four-dimensional
gravitational strength, 1/M3,, a sum over all the modes converts this small coupling to the
ten-dimensional gravitational strength, 1/M®. Searches for missing energy in monojet events
at the LHC set limits of My 2 4.54TeV for the asymmetric case and My 2 2.51TeV for
the symmetric case [40]. The SN1987A observations which agree with standard calculations of
supernovae energy loss also set limits of Mg 2 10 TeV for the asymmetric case and Mg 2 10 GeV

~Y

for the symmetric case (see ref.[39] and therein).

Signatures coming from the virtual KK graviton exchange are model-dependent, since they
are assumed that there are no exotic decay processes. Searches for signatures in dilepton
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events at the LHC set limits of My 2 3.8 TeV for the asymmetric case and Mg = 2.7TeV
for the symmetric case [41]. In the case that the KK gravitons have branching fractions into
photons and gluons, the absence of «-ray signals in the EGRET satellite and considerations of
neutron-star cooling give limits of M, 2 40 TeV and My 2 700 TeV for the asymmetric case,
and Mg 2 40GeV and M, 2 200 GeV for the symmetric case, respectively (see ref.[39] and

therein).

Anomalous U(1) gauge bosons

The three or four stacks of intersecting D-branes yield the SM gauge group with additional
U(1) factors, and some linear combinations of the U(1)s are anomalous. The anomalous U(1)
gauge bosons receive masses via the Green-Schwarz mechanism which can be realized by an
exchange of the R-R field originating from the R-R closed string.

The coupling of the Dp-brane with the R-R field is described by eq.(2.13). Under T-dualities
it transforms to Chern-Simons terms of the form

T, / Tr [exp(Bs + 27/ F3) A Z Cql, (3.26)
p+1

q

where B, is the NS-NS antisymmetric B-field parallel to the Dp-brane, F5 is the gauge field on
the Dp-brane and C, is the R-R antisymmetric g-tensor. Consider a D6,-brane wrapped on a
three-cycle 7,. Expanding (3.26) in terms of Fj, there is a Chern-Simons term of the form

2ma’ Ty /R1 ) Cs AN Tr(Fy) . (3.27)
WX Tq

The five-tensor C5 on the D6,-brane wrapped on the three-cycle 7, is reduced to four two-
tensors B with I = 0,1,2,3 in the four-dimensional space-time. The Chern-Simons term
(3.27) results in the following coupling

c! / By ATr(FY), (3.28)
R1.3

1

- 1s a constant. For example, in the case of compactification on a factorizable six-

where ¢
dimensional torus T = T? x T? x T?, considering a stack of N, D6,-branes wrapped on a cycle

with wrapping numbers (n’, m’) in the i-th T2, the constants ¢! are

; NomlmZm? for I =0,
(3.29)

c, =
NonInEm!  for 1=1,2,3, I#J#K#I.

Note that the B A F' couplings (3.28) are not nonzero only for an U(1) gauge field Fs.

In order to understand the mechanism giving a mass to the U(1) gauge boson, let us consider

the following Lagrangian of an Abelian gauge field A, and an antisymmetric two-tensor B,,,

1

1 c
L=—-——H, H"" ——F, F" + -e""B,F,, ., 3.30
1o hve 42" +46 pvdp ( )
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gauge bosons level  spin mass chiral fermions level spin mass
SM gauge bosons N =0 J=1 0 SM chiral fermions N =0 J=1/2 0
string excited states N =1 J=0 M string excited states N =1 J=1/2 M
J=1 M J=3/2 M
J=2 M
N=2 J=0 +2M, N=2 J=1/2 2M,
J=1 2M, J=3/2 2M,
J=2 2M, J=5/2 2M,
J=3 V2M,
Kaluza-Klein modes n=1 J=1 vp:g% Kaluza-Klein modes n=1 J=1/2 VCI:?,,%S
winding modes =1 J=1 MS2V61/6 winding modes w=0 J=1/2 ]\452‘/61/6
anomalous U(1)s =0 J=1 ~gM, gravitons level spin mass
string excited states N =1 J=0 ~ M; massless gravitons N =0 J=2 0
J=1 ~M, |Kaluza-Klein modes n=1 J=2 V;
J=2 ~ M winding modes w=1 J=2 Mf%l/ﬁ

Table 3.1: The spectrum of lower states in low-scale string models.

where H,,,, = 0,B,,+ 0,B,, + 0,B,, and F,, = 0, A, — 0,A,. We can rewrite (3.30) in terms
of the arbitrary field H,,, so that the constraint H = dB is imposed by introducing a Lagrange
multiplier field 7,

1

Lo=——
0 12

v, 1 14 c vV po C vpo
H“ypH'u - 4—92FMVF'M — 66” g H'LLVPAG' - 67}6“ P (‘LHDPU . (331)
Integrating by parts the last term in eq.(3.31), we can find a quadratic action for H and
immediately solve for H,

HMWP = —ce™ (A, + 0,m). (3.32)
Inserting (3.32) into (3.31), we can find

1 2

- _ w _ & 2
*CA 492 /u/F 9 <AO' + 8077) ) (333)

which is a mass term of the Abelian gauge field A, “eating” the scalar n and acquiring a mass

m? = g2c2.

Thus, the BA F couplings (3.28) give masses to some linear combinations of additional U(1)
gauge bosons. The masses of the U(1) gauge bosons are explicitly given by

my = gagMZ Y chep, (3.34)
I

where the sum runs over the R-R fields with nonzero B A F' couplings and g, is the gauge
coupling constant of U(1),. Therefore, the anomalous U(1) gauge bosons have masses of the
order of My ~ 1TeV.
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After electroweak symmetry breaking, the anomalous U(1) gauge bosons form mass eigen-
states of neutral gauge bosons together with the third component of SU(2),. The mass of
Z boson receives corrections induced by the additional U(1) gauge bosons. The electroweak
precision measurements give constraints on the p parameter, p = 1.000470 0003 [42], and this can
be used to impose bounds on the string scale M. For example, in case of ny =1 and n, =0
in eq.(2.76), My 2 10 TeV, while in case of ny = 0 and n;, = 1, M 2 5TeV [43]. However, note
that these bounds highly depend on the detail of the Higgs sector.

We will use the results of open string four-point amplitudes which do not include poles of
the anomalous U(1) gauge bosons as well as the KK modes. We can ignore the anomalous U(1)
exchanges. However, note that the amplitudes do include poles of string excited states of the
anomalous U(1) gauge bosons.

The spectrum of lower states in low-scale string models which have been discussed above
is summarized in Table3.1. We will eventually consider only string excited states in the next
part, however, it is important to understand the spectrum of the models that we will assume
in discussions on phenomenology at the LHC.
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Part II
Signatures of low-scale string models at

the LHC

In this part, we explore a possibility of observing signatures of low-scale string models in dijet
events at the LHC. This part is original of this thesis based on ref.[19, 20].

4 String resonances at the LHC

4.1 Dijet events at the LHC

We focus on dijet events. String excited states which are characteristic modes in low-scale
string models have the color quantum number and can be produced in scattering processes of
partons. Since string excited states do not have a characteristic parity, such as the R-parity
in the MSSM (for review, in ref.[44]) and the KK parity in the UED models [23], they can be
produced alone in two-parton scattering processes. In these processes with exchanges of the
states with masses of the order of TeV, the two partons in the final state are very energetic
and hadronized into hadrons resulting in two jets.

Dijet events consist of two jets with higher transverse momentum, pr, which is the size of
momenta in the plane vertical to the beam pipe. In the QCD processes in the high-pt regime,
t-channel processes with small scattering angles from the beam pipe are dominant. Since at
the LHC which is a proton-proton collider, the parton scattering processes cannot be in the
center-of-mass frame, the Lorentz invariant observables are important. One of the Lorentz
invariant observables in dijet events is the dijet invariant mass,

M;; = \/(Ey + E»)2 — (p1 + py)2%, (4.1)

where F; is the energy and p; is the momentum of each jet. The dijet invariant mass distribu-
tions at the LHC are shown in Fig.4.1. The results are fitted well with the QCD prediction.

If string excited states are produced in the two-parton scattering processes, they can be
observed as “resonances” in the dijet invariant mass distributions, since scattering amplitudes of
the processes have s-channel poles. The resonances create a deviation from the QCD prediction
or an excess of events localized in the dijet invariant mass. They are most clear signature for
the discovery of colored new particles.

Constraints at the LHC

The string scale Mg, the mass of the first string excited state, is constrained by the ATLAS and
CMS experiments at the LHC. The value of the string scale smaller than 3.61 TeV and 4.78 TeV
has been excluded by the ATLAS[16] and by the CMS [17], respectively. This is obtained
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Figure 4.1: The dijet invariant mass distributions fitted with a function fitting to the QCD prediction
at the ATLAS (the left figure) [16] and the CMS (the right figure) [17], with 4.8 fb~1 for \/s = 7TeV
and with 4 fb~! for \/s = 8 TeV, respectively. The right figure shows together with the QCD prediction.
The middle panel in the left figure shows the data minus the fit divided by the fit, and the bottom
panels in the left and right figures show the bin-by-bin significance between the data and the fit.
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Figure 4.2: The 95% Confidence Level (CL) upper limit on the cross section times acceptance for
string resonances at the ATLAS (the right figure) [16] with 4.8fb™! for \/s = 7TeV, and the cross
section times branching fraction times acceptance for resonances decaying to gg final state at the CMS
(the right figure) [17] with 4fb~! for \/s = 8 TeV. The acceptance ranges from 45% to 48% for the

ATLAS, and A = 0.6 for the CMS.
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from Fig.4.2. The black filled circles or the red filled circles in Fig.4.2 are the observed 95%
Confidence Level (CL) upper limit on the cross section for string resonances. The value of the
string scale where the cross section is larger than the observed upper limit has been excluded
at 95% CL.

Photon+jet events

Besides dijet events, other interesting events at the LHC have also the possibility of observing
string resonances, such as y+jet events[45, 46] and t¢ events[38]. In particular, y+jet events
include a process which is absent in the SM, and they are available for confirming string models.

The process of gg — gy in y+jet events does not occurs at tree-level in the SM but does
in string models using D-branes. Since the open string on a stack of N D-branes realize U(V)
gauge bosons, in scattering processes of a SU(N) and an U(1) gauge bosons on the same stack,
string excited states of the SU(N) gauge bosons can be exchanged. The U(1)y hypercharge
gauge boson of the SM is a linear combination of some U(1) gauge bosons on some stacks of
D-branes, and the string excited states of the SU(N) gauge bosons can decay into a photon.
Therefore, string excited states of the SU(3)color gauge bosons can be exchanged at tree-level in
g9 — g7, and string resonances can be also observed in the y4jet invariant mass distributions.

The ~v+jet invariant mass distributions at the ATLAS are fitted well with the SM predic-
tion [47], and the recorded highest invariant mass is 2.57 TeV. Although an additional parameter
which is the U(1) gauge boson fraction of a photon is required, y+jet events are interesting and
available for confirming D-brane models.

4.2 Model independence at the LHC

We concentrate on dijet events. Let us consider two-parton scattering processes which result
in dijet events and where string excited states can be exchanged. The two-parton scattering
processes are g9 — g9, 99 — qq, 44 = 99, 49 — 49, 49 — 99, 49 — 94, 4¢' — qq’ and ¢q — qg.
Since quarks and gluons are massless modes of open strings on stacks of D-branes, scattering
amplitudes of these processes are calculated from open string amplitudes with external four
massless states of the open strings. The open string amplitudes are reduced to the QCD
amplitudes in a low-energy limit of /s < Mg, where /s is the center-of-mass energy in the
parton CM frame.

When /s &~ Mj, the open string amplitudes have all the s, ¢ and u-channel poles of all the
infinitely excited open string states. Including all the poles of all the infinitely excited states is
just a string effect, and the string amplitudes cannot be reduced to field theoretical amplitudes
without some approximation. We should expand them by any one of the s, ¢t and u-channel
poles in order to add widths of string excited states in the poles. Since we want to observe a
resonance in a mass distribution, we expand the open string amplitudes with a sum over the
s-channel poles. Then the amplitudes have already been correct only near the s-channel poles.
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We consider only the two-parton scattering processes with s-channels, gg — g9, 99 — qq,
49 — 99, 99 = 99, 99 — qg and qq — ¢q.

Kaluza-Klein and winding modes

In the spectrum of low-scale string models, in addition to string excited states of the open
strings, there are other states which can be exchanged in the two-parton scattering processes at
tree-level. They are Kaluza-Klein modes and characteristic modes of strings, winding modes.

Generally, D-branes realizing the SM gauge group have extra space dimensions than three.
When the extra dimensions on the SM branes are compactified, Kaluza-Klein (KK) and winding
modes of open strings on the SM branes appear in our four-dimensional space-time. They have
the same gauge quantum numbers as that of the SM particles. The KK modes come from
that momenta along the compact dimensions parallel to the SM brane are quantized, and the
winding modes come from that the open strings can wind around the compact dimensions
transverse to the SM branes. If the compact dimensions are flat, and radii of the parallel and
transverse dimensions are Ry and Rp, respectively, the KK and winding modes have masses,

MES = 2 Myt — wM2Ry, (4.2)
Ry
for the KK modes with nth level, and for the winding modes with the winding number w. Both

of them appear from momenta along the compact dimensions.

Thus, the masses of the KK and winding modes depend on the size of the compact dimen-
sions and the geometry of the compact space. Therefore, processes where the KK and winding
modes can be exchanged also depend on such the detail of model-buildings. Since there are a
lot of possible ways of model-buildings in string models, it does not seem worthwhile to discuss
each individual model.

The KK and winding modes have the possibility of being exchanged in the two-parton scat-
tering processes at tree-level. However, if momenta along the extra dimensions are conserved,
they are produced in pairs but not alone, like the KK parity conservation in the UED mod-
els. In fact, among the two-parton scattering processes with s-channels, in the processes of
99 — 99, 99 — 44, @ — 99, q9 — qg and gg — qg, only the string excited states can be
exchanged (Fig.4.3), on the other hand, in the process of qg — ¢g, both the string excited
states and the KK and winding modes can be exchanged (Fig.4.4). The former processes are
model-independent, and the latter is model-dependent.

In the rest of this subsection, let us discuss the momentum conservation in each process.

4.2.1 g9—g99, 99—~ qq and qq — gg

In the processes of gg — g9, g9 — qq and gG — gg, there may be exchanges of the SM gluons,
the string excited gluons and the KK gluons which are realized by an open string on the U(3)color
branes. In particular, gg — gg is a scattering process including only states realized by the open
string. Since the U(3)e1or brane is one stack of three D-branes, momenta in the process are
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Figure 4.3: The model independent two-parton scattering processes with exchanges of the string
excited states of gluons and quarks, ¢g* and ¢*, respectively.
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Figure 4.4: The model-dependent processes with an exchange of the KK gluon, gkk.

conserved. The single KK gluon cannot be produced in gg — gg and the pair of the KK gluons
can be produced as shown in Fig.4.5. However, the process such as Fig.4.5 is at one-loop level
beyond a scope of this thesis. The momentum conservation is similarly true in gg — ¢q and
qq — gg, because these processes have the same interaction vertices gg — g* as gg — gg has,
where g* denotes the first string excited gluon. If momenta are conserved at the vertex, they
are also conserved through the processes.

4.2.2 qg — qg and qg — qg

In the processes of qg — qg and gg — qg, there may be exchanges of the SM quarks, the string
excited quarks and the KK quarks which are realized by an open string whose ends attach on
two different stacks of D-branes intersecting each other. For example, the left-handed quark
doublets @, are realized as massless modes of the open string with ends on both the U(3)color
and the U(2)5 branes. An intersection plane between the two different stacks of D-branes
contains our three-dimensional space, and the open string is localized on the intersection plane.
If the intersection plane does not have extra dimensions, there are not KK modes of the open
string including the KK quarks. Even if the intersection plane has extra dimensions, momenta
on the intersection plane are conserved. Therefore, the KK quarks cannot be exchanged in

q9 — qg and qg — qg.

4.2.3 qq —qq

In the process of ¢qg — ¢q, there may be exchanges of the SM gluons, the string excited gluons
and the KK gluons which are realized by the open string on the U(3)c1or branes. On the other
hand, since the process is a scattering process between a quark and an antiquark realized by the
open strings with ends on the two different stacks of D-branes, momenta in the process are not
conserved. The process of g¢g — ¢q is a pair-annihilation and pair-production, and each quark
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Figure 4.5: The gg — gg process with an exchange of a pair of the KK gluons, gkk.

current is conserved but an internal charge through the process is not conserved. In qq — ¢q,
the KK gluons and the other KK modes can be exchanged, and the process is model-dependent.

As mentioned above, it does not seem worthwhile to discuss the model-dependent process in
detail. Fortunately, considering dijet events at the LHC which is a proton-proton collider, we
may ignore antiquarks in the initial state because antiquark fractions of a proton are suppressed
by the parton distribution functions (PDFs). In fact, although ¢7 initial states contribute larger
than gg initial states since ¢q contains an initial quark, ¢g initial states have largest contribu-
tions of all the initial states. Therefore, we can consider only qg — ¢gg in later analyses, and
eventually we can say leading signatures of low-scale string models at the LHC are independent
of the detail of model-buildings.

Here, we will simply ignore the model-dependent process, gg — ¢g, and concentrate on only
the model-independent processes, g9 — 99, 99 — q¢q (qq — gg) and qg — qg (g9 — qg).%

4.3 Reduction of string amplitudes and widths of string excited
states

As mentioned in the previous subsection, in low-scale string models, scattering amplitudes of
the two-parton scattering processes are calculated from open string amplitudes with external
four massless states of the open strings. The tree-level amplitude with external four gluons has
been calculated in ref.[48, 49]. The amplitudes with external two gluons and two quarks at
tree-level have been calculated in ref.[13], where it is assumed that the SM chiral fermions are
realized by the open string stretching between D-branes intersecting each other. 24

The open string amplitudes should be reduced to field theoretical amplitudes in order to
add widths of string excited states in their poles. In this subsection, the reduction of the open
string amplitudes and calculation of the widths of string excited sates are reviewed briefly, and
see Appendix A in detail.

23 Although contributions of q¢ — qq are very large due to initial quarks, the process does not contribute
dijet resonances because it has no s-channel. Contributions of ¢-channel poles of KK modes in the process are
analyzed in ref.[12].

24 A brief review of calculation of the four-point open string amplitudes is in Appendix C.
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The open-string amplitudes are reduced to the QCD amplitudes in the low-energy limit
where the scattering energy /s is much less than the string scale M, /s < M. When
Vs & M, string effects appear in the open string amplitudes through “string form factor”

functions such as
1—s/MA)T(1 —u/M?)

T(1+ t/M2) ’

where s, t and u are the Mandelstam variables of scattering particles, and I'(x) is the ordinary

Vs, t,u) = al (4.3)

Gamma function. The form factor functions have all the s, ¢ and u-channel poles of all the
infinitely excited open string states, which is just the string effect. We expand them by a sum
over the s-channel poles in order to reduce to field theoretical amplitudes,

(%9) n—1

V(s,tu) =y & _1 ol (M;>n_1 — 2M2 [T+ 702), (4.4)

n=1 S J=0

which is an approximation near each nth pole, s ~ nM?2. These poles correspond to string
excited states which have masses of M,, = \/nM;. This expansion implies that the open string
four-point amplitudes are reduced to two-body scattering amplitudes of SM particles, in which
string excited states are exchanged in s-channel.

The string form factor functions can be expanded in terms of 1/M2. The expansion corre-
sponds to the low-energy limit of My — oo. In the expansion, the string form factor functions
become unity,

V(stu)zl—ﬁ—quLﬁ—(’)(L). (4.5)
o 6 M2 MS$
The unity in eq.(4.5) describes an exchange of a massless state, and the open string amplitudes
are reduced to the QCD amplitudes. On the other hand, the term of the order of 1/M2 in
eq.(4.5) describes a string contact interaction as a result of summing up all string excited
states. Note that there is no term of the order of 1/M? in eq.(4.5).

In the open string amplitudes expanded by s-channel poles, there is a new angular depen-
dence which is described by a factor [['i—y(u + JM?) in eq.(4.4). The new angular dependence
is multiplied by an original angular dependence in the SM amplitudes and decomposed into a
sum over the Wigner d-functions. The Wigner d-function, d _,, 5,_,,(0), represents an angu-
lar dependence of a process through a state with spin .J, in which initial helicities along z-axis
are A1, Ag, and final helicities along z’-axis are A3, A\y. The angle 6 is that between the z-axis
and z’-axis. Then, the two-body scattering amplitude with exchanges of nth string excited
states are

1 Jmax

E J J * J
g — M2 d)\l—)\z,)\3—)\4 (0) Fn A3,A4 Fn A1,A2 0 (46)
n J:Jmin

Mpin(A1, A2 = Ag, Ay) ~

where F), i ), IS a matrix element of a decay of the nth string excited state with spin J into
states with helicities A;, A\;. This decomposition implies that nth string excited states are
degenerate in mass of M, with various spin J which ranges from Jyi, to Juax. The value of
the highest spin is Jyax = Jo + n, where jg is original spin of the corresponding SM particle.
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String excited states are unstable and decay into not only the SM particles but also other
light string excited states or KK modes. The s-channel poles corresponding to nth string
excited states in eq.(4.4) should be softened to the Breit-Wigner form,

1 1
_>
s—M2 ~ s— M2+4iM,TJ’

(4.7)

where T’/ is a total decay width of the nth string excited state with spin J. The width is
calculated as

1 1
i = 167 M, 2J +1 Z|Fni,>\j|27 (4.8)
" VRV

by extracting F;, { N from the two-body scattering amplitudes with exchanges of the nth string
excited states in eq.(4.6).

Loop-level amplitudes may lead to an imaginary part in a pole written by a width of an
exchanged state. However, for the purpose of this thesis, we consider only tree-level amplitudes,
and we add the width to the imaginary part in the s-channel pole by hand.

4.3.1 First string excited state exchanges

The model-independent two-parton scattering processes with exchanges of the first string ex-
cited states are gg — 99, 99 — 44, q@ — 99, qg — qg and qg — qg in Fig.4.3. The scattering
amplitudes of the processes are calculated in ref.[11, 12], and the calculations are reviewed in
Appendix A. The squared amplitudes averaged over spins and colors in the initial state and
summed in the final state are

| Mg (99 — 99)|° = 8 1 { (N~ 4) [ M + Ul }
MEN? \A(N? = 1) [(3— M2)2 + (MJIJ=0)2 (5 — M2)2 + (M,IJ=2)?
M? at 4 ¢4
[ s )
(4.9)
(M99 — qa)|” = QQi AV P . st i ar | -
MININ2=1)| 2 (53— M2)2+ (MIJ72)2 " (3 — M2)? + (MJIZ22)2)
A A ) A (4.10)_
}Mlt(qq—>gg)|2=2—g4 N?2—-1 [N?—-4 tad + at? N tad + at?
i ME NS |2 (5 M2)2+ (M2 (5 - M2)? + (M)
(4.11)
‘Mls‘c(qg — qg)|2 = ‘Mlst(qg — 69)‘2
29" N* -1 M (=) (—a)®
T M2 AN {@ M (TR G- MR <Msrj*3/2>2] ’
(4.12)
}Mlst(qg — QQ)|2 = ‘Mlst(qg — 97)}2
29" N* -1 M (1) (—1)?
T M2 4N? {(g — M2)? + (M=) " (5 — M2)2 + (MSPZ*?’/Q)?} ’
(4.13)
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where N = 3, Ny = 6 and g is the gauge coupling constant of strong interaction. Here, 8, t
and 4 are the Mandelstam variables of the scattering partons. F‘;*,C*, . are total decay widths
of the first string excited states of gluons, the U(1)c0r gauge bosons and quarks with spin J,

respectively,

o M, N . M,1/N N

/=0 = — r/=2=2 s 22 4 2 4.14
g 471' 4 g 4 5(2 T3 ) (4.14)
o M, N L, ?M, 1 N

/=0 = = /2= "= (N4 L 415
¢ 47r 2’ ¢ 4mr 5( T3 ) (4.15)
_ 2M, 1 N _ ¢*M, 1 N

p/=2 9 s /=32 416
a A4r 2 47 a 4r 44 (4.16)

which are calculated in ref.[50].

The first string excited states of gluons and the U(1)..r gauge boson have spins not only
J =0 and J = 2 but also J = 1, which is verified by counting physical degrees of freedom of
them as in ref.[38]. However, as it is found from eqs.(4.10) and (4.11), the string excited gluons
with J = 1 cannot be accessible even in the process of qg — gg.?°

The string excited states of the U(1)q10r gauge boson can be also exchanged in scattering
processes of gluons and quarks, since the open string on U(3).o1o; branes realizes not only gluons
but also the U(1)color gauge boson. The anomalous U(1) gauge bosons including the U(1)color
gauge boson obtain masses of the order of My by the Green-Schwartz mechanism if the theory
is consistent or anomaly free.

4.3.2 Second string excited state exchanges and interference effects

The amplitudes of the model-independent two-parton scattering processes with exchanges of
the second string excited states are calculated in ref.[38, 19]. The authors of ref.[38] calculate
them for the processes of gg — gg, g9 — qq, and we calculated for the processes of qg — qg
and gg — qg in ref.[19]. The squared amplitudes of the processes are

|Mana(gg — 992
gt N? 16MS(—a + t)?
- 8M3 N2 -1 { (5 — 2M2)2 + (V2MIJ=")?2 (4.17)
N F AMA (0 + ) L1 at(—a + 5t)? +f4(—£+5a)2”
9 (8 —2M2)2 + (V2M,IJ=2)2 9 (53— 2M2)% + (V2MIJ=3)2

|M2nd 99 = qq)|non int.
¢ Ny-N {1 AMZ (F6® + af®) 4 f0d(—i + 26)? + ad®(—1 + 2@)2} (4.18)
CO8ME2(NZ—1)[9 (5 —2M2)2 + (V2MIJ52)2 9 (3 —2M2)2 + (V2MIJ=%)2 |7

25The string excited gluons with J = 1 can be identified with a intermediate state in scattering processes of
gg — gg and gg — qq, where g denotes a gluino, a superpartner of gluon. Widths of the string excited gluons
with J = 1 are calculated in ref.[50] and Appendix A.
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|M2nd aq — gg)lnon int.
gt N?-1 [1 AME (tad + at®) 4 03 (=0 4 20)% 4 at®(—t + 2@)2}

— —_ + —_
8MP 2N [9 (5 —2M2)2 + (V2MIIZ2)2 9 (35— 2M2)2 + (V2M,D)=3)?
(4.19)
[(Mena(09 = 49) s . = [M20a(@9 = 79) 0 0
g N2—1{{ 1 16 M8 (—) N 4 AMA(—1)(—a + 2t)? ]
AMS ANZ UL 9 (5 2M2)2 4 (VEMTIZ22 T 9 (5 2M2)2 + (VM2
+[3 AM{ (—a)® LA ( 0)*(—u + 41)° ”
25 (3 = 2M2)2 + (VEMT,ZY%)2 25 (3 - 2M2)2 + (VM2
(4.20)
[(Maa(ag = 90100 1. = [Mena(@9 = 90|00
4 N2—1{{ 1 16 M3 (—t) N 4 AMA(—1)(—t + 20)? ]
AMS AN? L9 (5 —2M2)2 4+ (V2MDZ2)2 0 9 (5 —2M2)? + (V2M 2?2
+{3 AMA(—1)3 L4 (—1)3(—t + 4a)* H
25 (8 — 2M2)* + (V2MI,2%)2 0 25 (3 — 2M2)2 + (V2M. ="

(4.21)

Note that the second string excited states of the U(1)co10r gauge boson do not appear as inter-
mediate states in gg — gg, g9 — qq and gqg — gg. It is a general fact that string excited states
of an Abelian gauge boson with even level do not appear as poles in open string amplitudes.

J . . . . .
['yex 4o+ are decay widths of the second string excited gluons and quarks with spin J, respec-

tively,

N L N Ny pime _ CV2M LN N\ g V2M LN Ng

9 47 3\ 4 360)° ¢ 47 5\ 3 48 ) 9 4t T\ 6 15
(4.22)

=12 _ QQﬁMslﬁ /=32 _ 92\/§Ms119N [I=5/2 _ QQﬁMslﬁ

o A7 212’ - A7 4 60’ o A7 6 10°
(4.23)

Note that in calculations of the decay widths (4.22) and (4.23), it is assumed that the second
string excited states decay into only the SM particles. The decay widths are calculated as
eq.(4.8) by extracting matrix elements from the two-body scattering amplitudes (4.6). However,
since the second string excited states are heavier than and have coupling with the first string
excited states, we should consider decay widths of the string excited states into the first string
excited states. Since there are some technical complication to calculate open string amplitudes
with external first string excited states, we do not calculate the decay widths of 2nd — 1st+SM.
We will discuss this issue in Sec.6.

Interference effect between second string excited states

As it is understood from eq.(4.6), string excited states are degenerate in mass with various spin
J. Therefore, we should consider interference effects between degenerate string excited states
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with different spins.

The necessity to consider the interference effects appear in the scattering amplitudes with
exchanges of the second string excited states for the first time. For one example, in the processes
of g¥¢T — g*gT with exchanges of intermediate states with J, = £2, both the second string
excited gluons with J = 2 and J = 3 are exchanged. For the other example, in the processes of
qF g — qFg* with exchanges of states with J, = £1/2, both the second string excited quarks
with J = 1/2 and J = 3/2 are exchanged. Similarly, in the processes of ¢¥¢g7 — ¢T¢T with
J. = £3/2, both the second string excited quarks with J = 3/2 and J = 5/2 are exchanged.

The interference effects in the above processes between the second string excited states are
[ Maua(gg — 99)|5,.
gt N {2 (5 — 2M2)? + 2MZTJ22T)=% 2M2 (0t (—a + 5t) + ¢4(—t + 5@))} (4.24)
AMPN? =T [0 (5202 + (VAMTJ2? (3 2M2)2 4 (VIMEL)= |

|Mana(gg — q)|..
_g* NyN {2 (8 — 2M2)% + 2M2T22T028 2M2 (H03(—a + 28) + at3(—t + 2@))]
CAME2(N? = 1) [9 (5 - 2M2)2 + (V2MIIE2)? (5 - 2M2)2 + (V2MI)E3)? ’

(4.25)

}M2nd C]q — gg) int.
gt N?T-1 {2 (8 — 2M2)* + 2M2TJZ2T=3 2M2 (03 (—a + 2t) + 4t (— + 2@))]
AME 2N |9 (8 —2M2)2+ (V2M,IJ22)2 (5 —2M2)? + (V2MI)5?)? ’

(4.26)

[Moaua(ag — a9)|, = |Mowa(@g — 79)|;
gt NP1 2 (B-2M22 4202 PR 8MS (—a)(—a 4 20)
T 2M§ 4N? {{5 (5— 2M2)2 + (VZMIIZ2)2 (5 —2Mz)2 + (\/EMngz?’/?)J

6 (3—2M2)% 4 2M2T)% 3/2rj**5/2 M2 (—0)*(—a + 4f)
[% (3 — 2M2)2 + (VEMIIZ2)2 (5 — 2M2)2 + (\/§M2FJ§5/2)2} } ’

int.

[Moaua(ag = 99)|., = |Mowa(@g — 92)|;
gt NP1 2 (3-2M2)7 4 2MTE TS 8MS (—)(— + 24)
S 2M5 4N {{5 (8 —2M2)2 + (V2MI)S 1/2) (§—2M§)2+(\/§M§F;§3/2)2}

6 (83— 2M2)% +2M2U)22PTI2%2 o2 (—4)3(—f + 40)
{ (5 — 2M2)% + (V2MIJZY2)2 (§—2Mg)2+(\/§Mgr;’§5/2)2H

int.

(4.28)

If the scattering amplitudes with exchanges of the first and second string excited states are
correct even in the region of M2 < s < 2M2, we can also consider interference effects between
the first and second string excited states. However, the string form factor functions which
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are expanded by s-channel poles in eq.(4.4) are good approximations only near the s-channel
poles, s ~ M? and s ~ 2M2. The interference effects between the first and second string
excited states are calculated in ref.[19] and considered in later analyses. The inclusion of the
interference effects may make the analyses imprecise. However, in the analyses, we focus on
only the neighborhood of the s-channel poles, and the interference effects are negligible.

4.4 Dijet invariant mass distributions with string resonances

The squared amplitudes of the two-parton scattering processes with exchanges of the first and
second string excited states have been shown in the previous subsection. We can obtain dijet
invariant mass distributions with string resonances at parton level, assuming the LHC.

Formulation for dijet invariant mass distributions

A formula for the dijet invariant mass distribution is derived in the following way. A cross
section of dijet events caused by two-parton scattering processes is described by

U(Pl(P1)>P2(P2) — jl(P1)>j2(p2),X)

1 1
. . 4.29
:Z/ dI1/ dws fi(x1, Q) fi(x2,Q) o (i(pi), 5 (p;) — k(pr), (pe)) , (4.29)
Z?]
where p1, p2 denote the incoming protons, ji, j» denote observed jets and X denote the QCD
remnants. The functions of f;(z1,Q) and f;(z2, Q) are the PDFs of a proton for the initial
parton ¢ and j, with momentum transfer () and momentum fractions
Pi D
T1 = — s To = — ) 430
S (430)
respectively, where p; and p; are each momentum of the initial parton ¢ and j. The cross section
(4.29) is described in terms of a differential cross section of a specific two-parton scattering
process ij — k¢,

1 1 ..
U(P1P2 — j1j2) = Z/o dI1/O dxy fz'(h;@)fj(@;@) /df Wa (4'31>

where the differential cross section can be recast by a squared amplitude |M(ij — k£)|? into

do(ij — kt) _ |M(ij = ko)|’ (432
dt 16752 ' '

We want to transform the integrating variables in eq.(4.31) into observables in dijet events.
The observables are the dijet invariant mass M, the transverse momentum pr and rapidity y
or pseudo-rapidity n of the observed jet which are defined as

tanhy = % , tanhn = Ip] : (4.33)

z

and so on.
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In the parton center-of-mass frame, rapidities of the final parton k£ and ¢ are opposite in
sign: y = y; = —y;, since these partons are produced back-to-back in this frame. We define
a boost velocity from the parton center-of-mass frame to the proton center-of-mass frame as
£ =tanhY. Then pseudo-rapidities of the observed jets, y; and y5, can be written by

1=y+Y, Ypo=—-y+Y. (4.34)

As the observables in dijet events, we use the following quantities independent each other,

1

1
5(3/1 —Y2), Y = §(y1 +42), (4.35)

which correspond to the rapidity and the boost in the parton CM frame, respectively. Then

y:

the Mandelstam variables §, ¢ and @ of the scattering partons and the momentum fractions z;
and x5 can be described in terms of y, Y and the dijet invariant mass M,

soae, oM g M (4.36)
’ 2 coshy 2 coshy '
M? M?
Ty =1/ —e", Ty =1/ —e ¥, (4.37)
s s

where /s is the proton center-of-mass energy.

Then, we obtain the dijet invariant mass distribution by transforming the integrating vari-
ables in eq.(4.31) into the observables in dijet events,

do( p—>JJ ZM/

Ym ax

Ymax 1 ‘M(Zj — kfg)‘Q
dy 7 ) j ’M d S
zy fi(z1, M) 2o f5 (29 )/ Y cosh? 16782

rnax Ymax

(4.38)

Kinematical cuts for dijet invariant mass distributions

We impose cuts on kinematical observables event by event in order to suppress background
events and relatively enhance signal events. According to ref.[51], we impose kinematical cuts
for the dijet invariant mass distributions as follows,

Pr,i > PT,cut 5 ‘yz| < Yi,cut » ’y‘ < Yeut - (439>

where pp; is the transverse momentum and y; is the pseudo-rapidity of the observed jet. Dijet
events consist of two jets with high-pr, since momenta along the beam pipe are not conserved
but the transverse momenta vertical to the beam pipe are conserved at a hadron collider.
The pseudo-rapidity cut in eq.(4.39) is also required, since jets near the beam pipe cannot be
observed. The last cut in eq.(4.39) on the rapidity in the parton CM frame y is imposed to
suppress the QCD background events. The dominant QCD processes in the high-pt regime are
t-channel processes with small scattering angles from the beam pipe. Small y means a large
scattering angle because of the following relation with a scattering angle in the parton CM
frame 6,,

y=—1In (4.40)

1 1+ cosd,
ST |

1 — cos®,
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Figure 4.6: The dijet invariant mass distribution do/dM [fb/GeV] of the first string resonances for
Mg = 4TeV in the processes of gg — gg (the blue line), g9 — ¢g (the red line), qg — gg (the green
line), qg — qg (the cyan line) and gg — Gg (the magenta line), of the first string resonances in the all
processes and the SM background (the yellow solid line), and of the SM background only (the yellow
dashed line), at the 14 TeV LHC.

Therefore, the rapidity cut on y is useful to suppress the background events.

Taken into account the kinematical cuts (4.39), the integrating region of y and Y in eq.(4.38)

are
max = IMin cut » imax_Y for Y >0
Y (et » 3 ) (4.41)
= Min(Yeut , Yimax +Y) for ¥ <0,
. S
Ymax = I\ Y; max » In W ) (442>
where

e = min (e Sn |1+ 41— P 1—4/1-— P (4.43)
yz,max yz,cut ) 2 (M/2)2 (M/2)2 . .

Dominance of gg — qg process

The dijet invariant mass distributions of the first and second string resonances for M; = 4 TeV
are shown in Fig.4.6 and Fig.4.7. We take into account the kinematical cuts (4.39) with pr e =
350GeV, Yicut = 2.3 and Yo, = 0.85. We use mstw2008 [52] as the PDFs, and we use the
following function as the dijet invariant mass distribution of the SM background [51],

(1 —x)p

gp2tpslnz’

f(x) =po (4.44)

which are fitted with the QCD prediction and where x = % and po 12,3 are parameters.
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Figure 4.7: The dijet invariant mass distribution do/dM [fb/GeV] of the second string resonances for
Mg = 4TeV in the processes of gg — gg (the blue line), gg — ¢g (the red line), qg — gg (the green
line), qg — qg (the cyan line) and gg — gg (the magenta line), of the second string resonances in
the all processes and the SM background (the yellow solid line), and of the SM background only (the
yellow dashed line), at the 14 TeV LHC.

As it is clearly understood from Fig.4.6 and Fig.4.7, the process of q¢g — qg are dominant
in both the first and second string resonances. The dominance of qg — qg comes from the
dominance of quarks in the PDF of a proton. The process of qg — ¢g is remarkably dominant
in case of My = 4TeV, while the process of gg — gg also have major contributions to the string
resonances in case of My = 2TeV [18].

Thus, since the process of gg — qg is dominant, we can consider only the process in later
analyses. The fact that there are almost only the string excited quarks in the string resonances
is useful for later analyses.

4.5 The flow of Monte Carlo simulation

In studies of this thesis, we focus on the two-parton scattering processes. The two partons in the
final state are hadronized into two bundles of hadrons which result in two jets. Therefore, we
should perform computer simulations for hadronization and detector simulation to reproduce
results at the LHC. The setup of our Monte Carlo (MC) simulation is as follows.

First, we use CalcHEP [53, 54] to generate event samples at parton-level, using MRST2007
Modified LO[55] as the PDFs. We generate event samples for the SM background of all
the two-parton scattering processes at tree-level, as well as event samples for string signal of
the model-independent two-parton scattering processes in Fig.4.3. Since there was no event
generator including higher spin fields in particular J = 3/2, we generate the event samples by
adding the scattering amplitudes calculated in Sec.4.3 to CalcHEP programs by hand.?® See the
web page [57] about event generations for string signal in detail.

26We may use technique in ref.[56] to generate event samples including spin-3/2 particles.
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Figure 4.8: The dijet invariant mass distribution of the first string resonances for Mg = 4TeV in the
process of qg — gg only (the blue points with error bars) and the all processes (the red points with

error bars) including the SM background (the histogram), using the MC simulations with 1.4fb~! at
the 14 TeV LHC.

Next, we use Pythia8 [58] for hadronization of quarks and gluons in the final state, and we
use Delphes1.9 [59] for detector simulation mainly to identify jets consisting of hadrons, using
its default detector card for the ATLAS. Finally, we use ROOT [60] to construct dijet events by
choosing two jets, j; and j, with highest and second highest transverse momenta, event by
event. We also use ROOT to suppress background events and relatively enhance signal events by
imposing kinematical cuts in dijet events, as eq.(4.39).

The flow of our MC simulation is as follows:

CalcHEP for event generation

{
Pythia8 for hadronization
l (4.45)
Delphes1.9 for detector simulation
1

ROOT for analysis.

The dijet invariant mass distribution of the first string resonances for My = 4 TeV using the
MC simulation with 1.4fb™! at the 14 TeV LHC is shown in Fig.4.8. The kinematical cuts are
(4.39) with prcut = 330 GeV, Y cut = 2.5 and yeur = 0.65. As it is also found from Fig.4.8, the
process of qg — gqg dominates over all the processes.

In Fig.4.8, there are some bins which the number of events in gg — ¢g only exceeds the
number of events in all the processes. It is considered as the reason that each event sample
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for gqg — qg only and for all the processes corresponds to an independent experiment, and the
statistics are poor due to the integrated luminosity of 1.4 fb™!.

5 Angular analysis

If a new heavy resonance is discovered at the LHC, an angular distribution analysis is important
to confirm that the resonance comes from low-scale string models. In the dominant process at
the LHC, qg — qg, two degenerate first string excited quarks with J = 1/2 and J = 3/2 are
exchanged. If we can experimentally distinguish angular distributions with both J = 1/2 and
J = 3/2 states from that with a J = 1/2 state only, this can be a signature of low-scale string
models.

5.1 x distributions on string resonances

We analyze y distributions as angular distributions of dijet events. The quantity y is defined

as
1+ cosb,

1 —cosé,’

X =exp(y; —ya) = (5.1)

where y; and gy, are the pseudo rapidities of the observed jets, and 6, is the scattering angle in
the parton CM frame.

The y distributions are used to search for non-resonant signals of new physics, such as the
quantum black hole and contact interactions at the ATLAS[16] and quark compositeness at
the CMS [61]. The x distribution predicted by the QCD is relatively flat, while that by many
new physics has a peak at low values of y, since the new physics signals are more isotropic
than the QCD predictions which dominantly have small scattering angles. Fig.5.1 shows the
distributions for the dijet invariant mass bins at the ATLAS [16].

Formulation for y distributions on string resonances

A formula for the y distribution is derived in the following way. The cross section of dijet
events caused by two-parton scattering processes is shown in eqgs.(4.31) and (4.32). In case of
the dijet invariant mass distributions, the integrating variables in eq.(4.31) are transformed into
the observables in dijet events, (1, 2s,) — (y,Y, M). In case of the y distributions, since Y is
defined as y = e, the transformation is (x1, x2,%) — (X, Y, M). The Mandelstam variables 3,
t and @ of the scattering quark and gluon can be described in terms of y and M,

M? M?y
1+’ 1+x°

§=M*  t=- (5.2)

Then, we obtain the y distribution of dijet events,

.. 2
do(pp = jj) Mitan /Y 1 [M(ij — ko)
= E dM dY xy fi(x, M (29, M ’ ’

dx — sz, o oy fi(xy, M) xa fi (29, M) 1+ x)? 1678

(5.3)
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Figure 5.1: The x distributions of the QCD prediction with theoretical and total systematic uncer-
tainties and of the data with statistical uncertainties at the ATLAS with 4.8fb~! for \/s = 7TeV,
for each bin of the dijet invariant mass[16]. The distributions are offset by the amount shown in
parentheses.

where Moy and My are lowest and highest values of the dijet invariant mass bins.

We focus on the y distribution on the first string resonance. In the first string resonance,
the first string excited quarks with J = 1/2 and J = 3/2 dominate over all the other string
excited states. Substituting the squared amplitudes of gg — qg of eqs.(4.12) and (4.13) into
(5.3), we obtain a prediction to the y-distribution on the first string resonance,

doist(q9 — q9) 1 ( J=1/2 Jegp L+ )
= c/=2 L ol=8r 5.4
iy T+ 1) TESYE (5:4)

where C/=1/2 and C7=%/2 are constants. The term proportional to C/='/2 in the parentheses
represents a y dependence due to an exchange of the first string excited quark with J = 1/2,
and the term proportional to C7=3/2 represents that due to an exchange of the first string
excited quark with J = 3/2. The overall factor 1/(1+ x)? in eq.(5.4) is a kinematical factor.?”

We consider the y distribution on a new resonance coming from other “new physics”. In
the new resonance, there may be new J = 1/2 and J = 1 states. Then, the x distribution of
dijet events on the new resonance is

do(pp =+ jj) 1 (CJ:1/2 4 oI A= o 14X ) , (5.5)

= - + L
dy (1+x)? S e )

where C/=1/2, CJZ} and CJ7!, | are also constants. The term proportional to C/=1/2 represents
a x dependence due to an exchange of the new J = 1/2 state in qg — qg, and the terms
proportional to CY=Z} and Cy=1,, represent that due to exchanges of the new J = 1 state in
99 — gg and qq — qq, respectively. If we want to distinguish which a new resonance comes

2TNote that the x dependence due to a .J = 1/2 state exchange vanishes, and leaves only the overall kinematical
factor 1/(1 + x)2. The x dependence is the same as that due to a J = 0 state exchange.
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from low-scale string or the other “new physics”, we should consider the y dependence due to
a J = 1 state exchange. However, in this analysis for simplicity, we do not consider it and
assume that the “new physics” include only a J = 1/2 state.

Kinematical cuts for y distributions

As well as for the dijet invariant mass distributions, according to ref.[51], we impose kinematical
cuts for the y distributions as follows,

pT,jl > pT,cut 3 |y| < Yeut » ‘Y‘ < S/;ut . (56>

The transverse momentum cut is imposed on the leading jet j; with highest pr. The rapidity
cut on y corresponds to constrain the small region of x which we focus on. The last cut in
eq.(5.6) on the boost Y is imposed to make the QCD prediction of the y distribution flat. The
boost cut corresponds to selection of more central events and it does not affect events with the
dijet invariant mass of the order of TeV. We set the dijet invariant mass bin M = [May, Mhign]
around the first string resonance.

In this analysis, we use a definition of y = ¥, and we can obtain twice the number of
events in the y distribution.

5.2 x distribution analysis

We generate event samples for both the SM background only and the SM background plus
string signal for My = 4TeV, 4.5TeV and 5TeV, at the LHC with /s = 14 TeV. The event
samples for the string signal are generated using the scattering amplitudes with the first string
excited state exchanges of all the model-independent processes in Fig.4.3.

After choosing two jets with highest and second highest pr to construct dijet events, the
kinematical cuts (5.6) are imposed on both the SM background and the SM plus string event
samples, using the following parameters

Pr.cut = 300GeV  for My =4TeV,
Pr.ewt = 400GeV  for My =4.5TeV

PT,cut = 450 GeV for Ms =5TeV ,
Yeut = 115, chut =1.0.

(5.7)

The dijet invariant mass bin is set by M,;; = [M; — 250 GeV, M, + 250 GeV] around the first
string resonance.?® In order to obtain event samples for the string signal only, we subtract the
SM background from the SM plus string event samples.

Thus, we obtain a y distribution which shows a behavior different from the QCD prediction.
If the behavior comes from the first string resonance, the y distribution shows the x dependences

28The dijet invariant mass bin is set by us, however, we consider the bin to be valid because the Gaussian fits
to the dijet invariant mass distributions give M = 39954+6.2 GeV and 0 = 171.9£5.0 GeV for My = 4 TeV with
20 fb_l, M =44714+7.9GeV and 0 = 206 + 9.0 GeV for Mg = 4.5 TeV with 30 fb_l, and M = 4997+ 11.8 GeV
and o = 222.4 4 13.7GeV for M, = 5TeV with 50fb™ !, and [M — o, M + o] is almost fitted with the bin.
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M (luminosity) | J =1/2and 3/2 | J =1/2 only | J =3/2 only
4TeV (18771 0.7471 0.04058 0.

4.5TeV (30fb™1) 0.6966 0.004562 | 5.386 x 107
5TeV (50 b~ 1) 0.4737 0.0466 3.198 x 107°

Table 5.1: p-values of the fits

(5.4) due to exchanges of the first string excited quarks with not only J = 1/2 but also J = 3/2.
The other “new physics” may also cause the x dependence due to exchanges of new J = 1/2
and J = 1 states. In this analysis, for simplicity, it is assumed that the other “new physics”
includes only new J = 1/2 states.

Fitting y distribution with three hypotheses

Using event samples for the string signal only, we fit the y distribution with the function
of eq.(5.4), in three cases of C’=Y/2 #£ 0 and C’=%2 # 0, C/=Y/2 # 0 and C/=%/2 = 0,
and C7=Y2 = 0 and C7/=3/2 # 0. These fittings are performed by ROOT. These three cases
correspond to the hypotheses with both J = 1/2 and J = 3/2 states, a J = 1/2 state only,
and a J = 3/2 state only, respectively. The first hypothesis corresponds to low-scale string
models with the first string excited quarks with J = 1/2 and J = 3/2, while the second one
corresponds to the other “new physics” with new quark-like states.

Figs. 5.2, 5.3 and 5.4 show the y-distributions of the string signal for My = 4TeV, 4.5 TeV
and 5TeV with 18.7fb™!, 30fb~" and 50fb™", respectively, at the 14 TeV LHC. Each figure
includes three figures corresponding to the fits associated with the above three hypotheses.

The x-distributions clearly do not match the fits with J = 3/2 only in the bottom figures
of Figs. 5.2, 5.3 and 5.4, therefore, the hypothesis with J = 3/2 only can be excluded. On the
other hand, the other two hypotheses with both J = 1/2 and J = 3/2 in the top figures and
with J = 1/2 only in the middle figures give rather good fits. It is difficult to judge which
hypothesis are fitted better with the y distributions, without statistical analyses. We calculate
p-values of these fits using ROOT, and give them in Table 5.1.

The p-value is a probability that if a hypothesis is excluded in spite of that it is correct, the
exclusion is an experimental error [62]. If the p-value is smaller than 5%, the hypothesis can
be excluded at 95% Confidence Level. Evidently, the p-values of the hypotheses with J = 1/2
only and with J = 3/2 only are very small and smaller than 5% in Table5.1. On the other
hand, the p-value of the hypothesis with both J = 1/2 and J = 3/2 is much larger than 5%,
and the hypothesis cannot be excluded, for M, = 4 TeV with 18.7fb~ !, for M, = 4.5 TeV with
30fb~! and for My = 5TeV with 50fb™'. Indeed, if we look at the middle figures of Figs.5.2,
5.3 and 5.4 closer, it is found that the fit with J = 1/2 only is systematically inconsistent, since
curves of the fit falls more quickly than the MC data for large .

Note that in this analysis, we consider only statistical uncertainties but not systematic
uncertainties. We may need to use normalized y distributions 1/ do/dx, to reduce systematic
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Figure 5.2: The x-distributions of the MC data for M = 4TeV with 18.7fb! at the 14 TeV LHC
(the points with error bars), and the fits associated with three hypotheses with both J = 1/2 and
J = 3/2 (the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and
J = 3/2 only (the long dashed line in the bottom figure).
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Figure 5.3: The x-distributions of the MC data for M, = 4.5 TeV with 30fb™! at the 14 TeV LHC
(the points with error bars), and the fits associated with three hypotheses with both J = 1/2 and
J = 3/2 (the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and
J = 3/2 only (the long dashed line in the bottom figure).
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Figure 5.4: The y-distributions of the MC data for My = 5TeV with 50 fb~! at the 14 TeV LHC (the
points with error bars), and the fits associated with three hypotheses with both J =1/2 and J = 3/2
(the solid line in the top figure), J = 1/2 only (the dashed line in the middle figure) and J = 3/2 only
(the long dashed line in the bottom figure).
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uncertainties such as the jet energy scale (JES), the PDFs and the integrated luminosity, as in
the analysis at the ATLAS[16]. Subtracting with the QCD background, we need to consider
theoretical and systematic uncertainties in the y distribution predicted by the QCD, ~ 10%
for higher dijet invariant mass bins. However, even in this easy analysis, the wrong hypotheses
can be excluded at 95% CL with O(10) fb~'. Therefore, we can expect that the LHC has the
ability to statistically identify characteristic angular dependences on the string resonance.

Thus, spin degeneracy of string excited states can be experimentally confirmed with the
integrated luminosity of O(10)fb™", by the angular distribution analysis on the first string
resonance. This can be a signature of low-scale string models.

6 Second resonance analysis

In order to identify a new resonance as the string resonance, search for a second resonance
in dijet invariant mass distributions is important. The existence of the second string excited
states and their characteristic masses are distinct properties of low-scale string models.

First, there must be second string excited states in low-scale string models, while there is
no second state in the other “new physics”, such as the axigluon models [21] and the color-octet
scalar models [22]. Second, the masses of the second string excited states are y/2 times of that
of the first string excited states, while typical masses of second KK modes are 2 times of that
of first KK modes, in the other models with extra dimensions, such as the five-dimensional
Universal Extra Dimension (UED) models.?

In this analysis, we investigate a discovery potential of the second string resonance in dijet
invariant mass distributions.

6.1 Second string resonances in dijet invariant mass distributions

We generate event samples for the SM background only and the SM background plus string
signal for My = 4TeV, 4.5 TeV, 4.75 TeV and 5 TeV, at the LHC with /s = 14 TeV. The event
samples for the string signal are generated using the scattering amplitudes with the first and
second string excited state exchanges of the dominant process at the LHC, qg — qg.

After constructing dijet events, the kinematical cuts for the dijet invariant mass distributions
(4.39) are imposed on both the SM background and the SM plus string event samples, using

29In the six-dimensional UED models, typical masses of second KK modes with KK parity +1 is /2 times of
that of first KK modes with KK parity +1. It may be possible to confirm low-scale string models by a search
for the third resonance, since third string excited states have /3 times of that of first string excited states.
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the following parameters

Preut = 300GeV  for My =4TeV,
Drcut = 400 GeV  for My =4.5TeV,
Prewt = 430GeV  for My = 4.75TeV (6.1)
Preut = 450GeV  for My =5TeV,
Yieut = 2.3, Yeur = 0.85.

As well as the kinematical cuts for the y distributions (5.6), the transverse momentum cut is
imposed on the leading jet j; with highest pr.

The dijet invariant mass distributions with the first and second string resonances are shown
in Fig. 6.1, for My = 4TeV, 4.5 TeV and 5 TeV with 50fb~*, 100fb™" and 300 fb~*, respectively,
at the 14 TeV LHC. We can see first resonances at M;; = M and second resonances at M;; =
V2 x M, ~ 5.66 TeV, 6.36 TeV and 7.07 TeV for M, = 4TeV, 4.5 TeV and 5TeV, respectively.
In particular, for My = 5 TeV, the second resonance seems a just excess rather than a resonance,
and the statistics are clearly poor.

In order to investigate the discovery potential of the second string resonance, we calculate a
signal significance which represents a deviation from the SM prediction. We focus on the dijet
invariant mass window of M;; = [\/§Ms — 250 GeV, v2M,+ 250 GeV] around the second string
resonance. If the signal significance is larger than 5o, we can propose that the second string
resonance can be discovered.

Calculation of significance

The significance Z is calculated in the following way. We define a statistic x? as follows

X2 _ % (N2M+str,i - NSM,i)2 : (62)

2
i=1 O-SM+StI‘,Z' + USM,i

where npi, is the number of bins. Ngyystr; and Ngy; are the numbers of events of 7th bin in
the dijet invariant mass distributions, for the SM plus string signal and for the SM background
only event samples, respectively. o2y, strd and angi are dispersions of Ngnystr,i and Nemipstr,i,
including only statistical uncertainties.

We consider that the SM plus string event samples correspond to “experimental results”
and the SM only event samples correspond to “theoretical predictions” generated by MC sim-
ulations. Therefore, the numerator of eq.(6.2) represents a deviation from the SM hypothesis,
while the denominator represents a sum of the dispersions of “experiment” and “theory”. Since
the number of events N follows the Poisson distribution, the standard deviation is ¢ = v/N (if
only statistical errors are considered). Therefore, 0,1, ¢, = Nomtstr and ody; = Nsu, and (6.2)
is recast into o )

= i (Nsmstr,i — Nam,i) ' (6.3)
Nsmstr,i + Nawm,i

=1
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Figure 6.1: The dijet invariant mass distributions with the first and second string resonances of the

MC data (the points with error bars) including the SM background (the histogram), for My = 4 TeV

with 50 fb~! (the top figure), My = 4.5 TeV with 100fb™! (the middle figure) and My = 5TeV with
300fb™! (the bottom figure) at the 14 TeV LHC.
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If the SM hypothesis is correct and the statistics are rich, the statistic y? follows the x?
distribution. Then, the p-value is calculated as follows,

b= /X:O fx2 (Z7 nbin) dz s (64)

where f,2(z;n) is the probability distribution function of the x? distribution with n degrees
of freedom. The significance is calculated using the p-value and the cumulative distribution
function ® of the standard Gaussian distribution with the average 0 and the standard deviation
L,

Z=011-p). (6.5)

Significance of second string resonances

We calculate the significance of the second string resonance in the above way. Fig.6.2 shows
the dijet invariant mass distributions in which the second string resonances are observed at
50 level. The integrated luminosities of 50fb™*, 150fb~", 300fb~' and 600fb~* are required
for My = 4TeV, 4.5TeV, 4.75TeV and 5TeV, respectively. Here, we assume that the second
string excited states decay into the SM particles but not into the first string excited states,
namely the second string excited states have narrow widths (4.23). We consider the decay of
2nd — 1st + SM in the next subsection.

We consider only statistics uncertainties but not systematic uncertainties. In systematic
uncertainties, the normalization of the QCD background is important because the systematic
uncertainties include the JES, the PDFs, the integrated luminosity and so on which are asso-
ciated with the normalization. The normalization of the dijet invariant mass distributions is
determined so that it is fitted with the data in a control region. However, the dijet invariant
mass distributions between the first and second string resonances are raised due to string ef-
fects, and there is a possibility that the normalization is determined so that it is excessively
large. Then, we will compare the dijet invariant mass distributions with the string resonances
and that of the background only which is increased by some percent.

When the SM background is increased by 20 %, Fig.6.3 shows the dijet invariant mass
distributions in which the second string resonances are observed at 5 o level and for M, = 4 TeV
and 4.5 TeV, and at 4.8 ¢ level for M, = 5 TeV. The integrated luminosities of 70fb™*, 350 fb™!
and 1500fb~! are required, respectively. When the SM background is increased by 50 %, the
integrated luminosity of 100fb™! is required to observe the second string resonance at 2.4 ¢
level for My = 4TeV. In this case, in order to observe the second string resonance at 5o level,
we need much more integrated luminosities, however, the analysis about how much luminosities
are required is not performed in this thesis.

6.2 Modified decay widths of second string excited states

Since we consider only the dominant process of qg — qg, exchanged states are the string excited
quarks. The decay width of the second string excited quark of eq.(4.23) includes only a decay
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Figure 6.2: The dijet invariant mass distributions with the second string resonances with the narrow

widths of the MC data (the points with error bars) including the SM background (the histogram),

in which the resonances are observed at 5o level for My = 4.5 TeV with 150 fb~* (the top figure),
My = 4.75 TeV with 300fb™! (the middle figure) and My = 5 TeV with 600fb~! (the bottom figure).
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79



process of ¢** — qg. However, we should consider other decay channels into the first string
excited states, where the second string excited quark decays into a quark and the first string
excited gluon, ¢** — qg*, and into a gluon and the first string excited quark, ¢** — ¢*g.

Simple estimate of decay width of 2nd — 1st + SM

In order to avoid technical complication in calculations of decay widths of 2nd — 1st + SM, we
make a simple estimate that the decay widths of 2nd — 1st + SM are that of 2nd — SM + SM
multiplied by a factor, following in ref. [38]. In other words, we describe total decay widths of
the second string excited quarks as

= Dgronsgg + Agee X Dgreigg s

where A+« is a constant factor.

The factor A, in eq.(6.6) is estimated in the following way. First, we count the number
of the first string excited states which are decay products of the second string excited quarks.
The first string excited quarks have two states with J = 1/2 and J = 3/2, while the first string
excited gluons have three states with J =0, J = 1 and J = 2. The number of physical degrees
of freedom of the first string excited states are counted in ref.[38]. Therefore, the number of
the decay products is five.

Second, we consider phase space suppression. The phase space of a two-body decay in the
center-of-mass frame is

d®(M — p1,p2) = H (2;'5)%(%)454(1)1 +py — M)
1 bi (6.7)
_ A (M2 — (my 4+ mo)?) (M2 — (my — my)?)
(47)2 e ’

where a parent particle mass is M, and each four-momentum of daughter particles is p; =
(mi,pi;). If m = my # 0 and my = 0, a measure of the phase space is proportional to
(M? — m?)/2M?. 1f m; = my = 0, that is proportional to 1/2. A ratio of these phase
spaces is (M? — m?)/M?. Therefore, the phase space suppression between decay channels of
2nd — 1st + SM and 2nd — SM + SM is proportional to the ratio. In the case of M = /2],
and m = Mj, the ratio is

(V2M)? = M2 1
T (6.8)

In total, the factor A, is estimated as 5/2.

Significance of second string resonances with broader widths

We generate event samples for the string signal with the modified widths of the second string
excited quarks, for My = 4.5 TeV and 4.75TeV at the LHC with /s = 14 TeV. The modified
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Figure 6.4: The dijet invariant mass distributions with the second string resonances with the broader
widths of the MC data (the points with error bars) including the SM background (the histogram), in

which the resonances are observed at 50 and 4.10 level, for My = 4.5 TeV with 1200fb~! (the top
figure) and M = 4.75 TeV with 3000 fb~! (the bottom one), respectively.

widths are 7/2 times of the widths of the second string excited quarks of eq.(4.23). Then, we
calculate the significance of the second string resonance with the broader width. Fig.6.4 shows
the dijet invariant mass distributions in which the second string resonances are observed at 5o
and 4.1 ¢ level, for My = 4.5TeV and 4.75 TeV, respectively. In order for the significance Z to
exceed 5, the integrated luminosities of 1200 fb~* for M, = 4.5 TeV and larger than 3000 fb™!

for My = 4.75TeV are required.
In Fig.6.4, the resonances almost do not form peaks. The height of the resonance becomes

much lower as the width and mass are larger. In addition, the low-mass region of the resonance
becomes broader due to the effects of final state radiations and parton distribution functions. On
the other hand, the high-mass region of it also becomes broader due to initial state radiations,
though this effect is not included in our MC simulations [63].

The existence of the second string excited states and their characteristic masses are distinct
properties of low-scale string models. If the second string excited states do not decay into the
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first string excited states, the second string resonance in dijet events can be discovered at 5o
level with the integrated luminosity of ©@(100)fb~! for M, < 5TeV. However, since they have
the decay channels of 2nd — 1st + SM, the integrated luminosity of larger than ©(1000)fb~!
may be required to discover the second string resonance at 5o level. This means that we may
need the High-Luminosity LHC which is a possible future plan of the extension of the LHC.
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Summary and Prospects

Summary of this thesis

In this thesis, we have discussed signatures of low-scale string models at the LHC. Low-scale
string models are phenomenological models based on string theory, where the string scale M,
which is the fundamental scale in string theory is of the order of TeV. Such a low string scale
is possible due to the existence of large extra dimensions, and these models are expected as
solutions to the hierarchy problem and have a possibility of being confirmed or excluded by the
LHC. In the following paragraphs, let us summarize what we have discussed in this thesis.

Intersecting D-branes and low-scale string models

In Partl, we reviewed intersecting D-branes which could give the SM spectrum, and we ex-
plained low-scale string models which has been considered in the studies of this thesis.

In Sec.1, we reviewed the basics of superstring theory. In Sec.2, we reviewed the idea
of intersecting D-branes which could give rise to chiral fermions. In order to obtain realistic
models, we considered intersecting D6-branes in the type ITA orientifolds with toroidal com-
pactifications. We presented the semi-realistic model with the SM-like spectrum, as the specific
example. In Sec.3, we introduced low-scale string models in which the extra dimensions are
compactified to general spaces with large volume, and which has been considered in the studies
of this thesis.

String resonances and Distinction of low-scale string models at the LHC

In Part IT, we explained the features of signatures of low-scale string models, and we performed
two analyses to identify string resonances in dijet events at the LHC.

In Sec.4, we explained the features of signatures of low-scale string models. String excited
states which are characteristic modes in low-scale string models can be observed as resonances
in dijet invariant mass distributions at the LHC, and signatures of the dominant processes
at the LHC are independent of the detail of model buildings. We reduced the open string
amplitudes to the scattering amplitudes with exchanges of string excited states and calculated
the widths of string excited states. We obtained the dijet invariant mass distributions with
string resonances, both at parton level and using the MC simulations.

In Sec.5 and Sec.6, we performed the following two analyses using the MC simulations for
the 14TeV LHC, and we confirmed the possibility of distinguishing low-scale string models
from the other “new physics”.

The angular distribution analysis of dijet events is important, because the degeneracy of
string excited states with higher spins is a distinct property of low-scale string models. We
have shown that hypotheses for the angular distributions without higher spin states could be
excluded at 95% confidence level with the integrated luminosities of 18.7fb™*, 30fb~" and
50fb~t for M, = 4TeV, 4.5 TeV and 5 TeV, respectively.
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The dijet invariant mass distribution analysis for the second string resonance is also impor-
tant, because the existence of second string excited states with v/2 times masses of that of the
first string excited states is also a distinct property of low-scale string models. We have shown
that the second string resonance in dijet invariant mass distributions could be discovered at 5 o
level with 150fb™", 300fb™" and 600fb™" for M, = 4.5 TeV, 4.75 TeV and 5 TeV, respectively.
In these results, it is assumed that the second string excited states do not decay into the first
string excited states.

In case of broader decay widths of the second string excited states including decay channels
into the first string excited states, we found that integrated luminosities of 1200fb™" and
more than 3000 fb~! would be required to observe the second string resonance at 5o level, for
Mg = 4.5TeV and 4.75 TeV, respectively. This means that we might need the High-Luminosity
LHC which is a possible future plan of the extension of the LHC.

Future prospects

Finally, we mention some future prospects after this thesis.

Calculation of decay widths of 2nd — 1st + SM

In Sec.6, we parametrized the decay widths of the second string excited states into the first string
excited states, in order to avoid technical complication in calculation of the widths. In ref.[64],
however, string amplitudes with external one massive state of open strings are calculated. They
are tree-level amplitudes with external three gluons and one first string excited gluon, and that
with external two gluons, one quark and one first string excited quark. If we can expand them
by s-channel poles, we can calculate the decay widths of 2nd — 1st + SM by extracting a
matrix element in decomposition of the amplitudes into the Wigner d-functions.

If the decay widths of 2nd — 1st + SM can be calculated, and if they are smaller than
the parametrized widths in Sec.6, there may be a possibility of discovering the second string
resonances at 5o level without the High-Luminosity LHC.

Direct production of first string excited states

The amplitudes which are calculated in ref.[64] are also that of the two-parton scattering pro-
cesses with a direct production of the first string excited states. If the string excited states are
produced directly at the LHC, what signatures can be observed is interesting. Since the first
string excited states decay into the SM particles immediately, the final states result in three-jet
events. String resonances may be observed not only in dijet invariant mass distributions but
also in three-jet invariant mass distributions. In ref.[65], string amplitudes with external five
massless states of open strings are calculated. They are two-parton scattering processes with
three partons in the final state and contribute the three-jet events. We have to investigate
different interactions in the three-parton final state processes from in the direct production
processes, since there may be some contact interactions in the amplitudes.
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Multi-jet event analyses are performed by the CMS to search for the microscopic black
holes [66]. Three-jet events give contributions at the next-to-leading order with respect to
the gauge coupling constant, compared with dijet events. However, we expect that the cross
sections of string excited state production are large enough to observe string resonances in
three-jet invariant mass distributions.

Radiative electroweak symmetry breaking in low-scale string models

At present, the string scale has been excluded to 3.61 TeV by the ATLAS and 4.78 TeV by the
CMS. The LHC can constrain to be about 7TeV on the string scale, for the 14 TeV LHC with
100fb~" [11]. However, if we consider low-scale string models as a solution to the hierarchy
problem in the SM, the string scale must not be larger than O(TeV).

On the other hand, if the Higgs field obtains a negative mass square at one-loop level in
non-SUSY system, and the radiative electroweak symmetry breaking can occur in low-scale
string models. In ref.[67], it is shown that the potential has a minimum and the Higgs field
obtain a vacuum expectation value (VEV), when the Higgs field is in the adjoint representa-
tion. In ref.[68], a possibility that the Higgs field in the fundamental representation obtain a
negative mass square is investigated, however, the Higgs one-loop mass square is calculated by
order estimate, since there is a problem in non-SUSY system that infrared divergence from an
exchange of the NS-NS closed string is not cancelled.°

In ref.[72], it is shown that even if the Higgs mass square is positive, the potential around
the origin is lifted up by the Fayet-Iliopoulos term, and the Higgs field obtain a VEV. Then,
the Higgs mass square is shown as,

iQQ 2

w? 1672 %7

ml o

where ¢ is a gauge coupling constant and 1/w? is a factor of the order of unity. If m% /g? ~ v?,
the string scale M, should be about 3 x w TeV.

Thus, considering the radiative electroweak symmetry breaking in low-scale string models,
we can set an upper limit on the string scale. Then, we can conclude low-scale string models
with the constraint on the string scale by the LHC. However, note that the radiative electroweak
symmetry breaking in low-scale string models is open to further discussions.

30Using a prescription of the NS-NS tadpole resummation [70, 71], one-loop corrections can be calculated even
in non-SUSY system.
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A Calculation of scattering amplitudes with string ex-
cited state exchanges

A.1 Four gluon amplitudes

String amplitudes are calculated based on SuperConformal Field Theory (SCFT) in the two-
dimensional world-sheet. The disk-level open string amplitude with external four gluons is a
Maximally Helicity Violating (MHV) amplitude3' shown in ref.[48, 49] as

M(gl_’ 92_’ gg',g;f) — 492<12>4 Tr(Ta1Ta2Ta3Ta4 + TaQTalTa4Ta3)

+ Te(TTYTST™ + TTT“T*)  (A.1)

Tr(TwTeT2T 4 TRTATT?
T e e * )]
where ¢ is the gauge coupling constant of strong interaction, and 7% are generators of SU(3)¢
gauge group. Here, g;, g5, g1 and g refer to incoming gluons with helicity — or +.
In eq.(A.1), Vi, V; and V, are string “form factor” functions of the Mandelstem variables,
s, t and u, with s + ¢t + u = 0, which are defined as

Vi=Vi(s,t,u) , Vu=V(tu,s) , V,=V(u,s,t) (A.2)

where
D(1—s/M2))T(1—u/MZ) 1 suT(—s/MZ)T(—u/MZ)
(1 +t/M2) M2t D(t/M2)
In addition, (ij) (i,j = 1,2,3,4) are standard spinor products associated with momenta k;
and k;,

V(s t,u) = (A.3)

(i) = u(k;, —) u(k;, +), (A.4)

where u(k, \) is the Dirac spinor wave function of a massless fermion, as an eigenstate of helicity
A. The spinor products have important properties

(i) = v/ =2ki -k, (1) = ={ji) - (A.5)

See Appendix B in detail.

Amplitudes with four gluons similar to eq.(A.1) are given by using crossing symmetry,

,/\/l(gf’ g2+7 ggr?g;) = 4g2<14>4 TI'(TalTa4Ta3Ta2 + Ta4Ta1Ta2Ta3)

+ Te(TTHTT%  THTUT2T%) (A6
(13)(32)(24)(41) ( ) (A.6)
+ Yy Te(TUT®T“T* + T T T*T*)
(12)(24)(43)(31) ’
31The MHV amplitudes are amplitudes with n external gauge bosons, where (n — 2) gauge bosons have a
particular helicity and the other two have the opposite helicity. The tree-level amplitudes in which all gauge
bosons have the same helicity or all but one have the same helicity vanish (helicities refer to incoming particles).
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|
(13)(32)(24)(41)
Vu

Ty (3T T2 % | Tarasadaz A.
t i en@en + ) (A7)

w0

M(g7, 95,95 ,97) = 4g*(13)*

Te(TUT®T>T™ + T T T*T*)

Vi
Tr (T T2 Tos T | To2oaasas) |
a3y (32) (21) r( + )

(A.7) and (A.6) are obtained by replacements of 2 <+ 4 and 2 <+ 3 in eq.(A.1), respectively.

s-channel pole expansion in form factor functions The string “form factor” functions
in eq.(A.2) can be expanded in terms of s-channel poles. That is because the Gamma function
for e < 1 has a property that it has a pole of 1/e,

I'(e) = g + O(£"). (A.8)

The Gamma function also has the following properties for an integer n and z € R,

[(e—n)= %§+0(80),
Ie4+z—n)= (=1" L(z+e) (A.9)

[ (m—2) 14+ 0()
ED eyt og).

T (m—2)

The factor written by the Gamma functions in the string form factor function of eq.(A.3),
[D(—s/M2)T(—u/M2)] /T(t/M2), has s-channel poles of 1/(s —nM?) for an integer n. Suppose
that e = (nM? — s)/M? and z = —u/M?2,

D(—s/M)T(—u/M2) T(s—n)T(z) 11

T(—(s+u)/M2)  T(e+z-n) nle [[(m—2+0E". (A.10)

m=1

Since the s-channel poles for an integer n in eq.(A.10) should be summed over all integers, the
string form factor functions are

1 su[ 1 1 1 -
i [ s s L )+ 0 g

5 J=1
_lstfo§t LT 2 M2 Al
Vu—Mgu _ ;n!(MSQ)"—l S_nMgg(HJMS)JrO((s nM?) )}, (A.11)

1 tu

V=5
M s |

of(s - ni2))]

and hence V; has no s-channel poles. The terms of O((s—nM2)?) in eq.(A.11) can be neglected,
since we consider only near each nth s-channel pole, s ~ nM2 The each s-channel pole
corresponds to the nth string excited state with mass of M,, = v/nM;.
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low-energy limit of form factor functions The string form factor functions can be also
expanded in terms of 1/M?2 by using a formula of the Gamma functions for ¢ < 1,

1 1/, = 9

Ie)==-—=v+(7v+—=)e+0(7), (A.12)
€ 2 6

where 7 is the Euler constant. In the expansion by 1/M?2 corresponding to low-energy limit of

My — oo, the string form factor functions become unity;,

2

w:1—%suMi§+O(1/M§). (A.13)
In eq.(A.13), unity describes an exchange of a massless gluon, so QCD amplitudes with external
four gluons are obtained by replacements of V;;, — 1 in egs.(A.1), (A.6) and (A.7). On the
other hand, the term at the order of 1/MZ in eq.(A.13) describes a string contact interaction
as a result of summing up all string excited states. Note that there is no term at the order
of 1/M2 in eq.(A.13). Nevertheless, according to ref.[13], a disk-level amplitude with external
four fermions yields a contact term at the order of 1/M?2.

two gluon scattering amplitudes Now, we regard the four gluon amplitudes of egs.(A.1),
(A.6) and (A.7) as two gluon scattering amplitudes of processes of g1, g2 — g3, 94 (g1, g2 refer
to incoming gluons, while g3, g4 refer to outgoing gluons). The amplitudes of these processes
are obtained by replacements of k34 = —kj 4 in the four gluon amplitudes of eqgs.(A.1), (A.6)
and (A.7). Since expressions of the spinor products (i7) in the processes are given in Appendix
B,

v,
M(gi, 97 = 95,05) = —4g° 5° { — T (T T ™ + T T T™)

Va
+— Te(TTYT®T™ + T T>T*T*) (A.14)
S
‘/5 a Qa, [ Q. a, a [ Qa;
+t—Tr(T VTBTRT™ 4 TS TT 2)] :
u

v
Mgy, 95 = 95,91 = —4g* u? [i Te(THT“T®ST™ + TTT*T%)

Vs
D T (THT T T 4 THT T T™) (A.15)
u

Vi
o T (TUT T T 4 T T T T‘“)} ,
S

Vs
Mg g5 = g3.97) = —4g° 1 {5 Te(TTTT™ + T TT™)

+ KZ Te (T T T T 4 T T TT ) (A.16)
S

G Te (T TT* T + T“QT‘“T‘“T%)} .
sSu
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A.1.1 First string excited gluon exchanges

Let us consider the two gluon scattering process, which has an exchange of a first string excited
gluon in s-channel. We focus on only the first s-channel pole, in case of n = 1 in eq.(A.11).
Then the string form factor functions are

1 su 1 1 st 1
-2 M? = —— = t4+ M? Al
K Mgts—Mg(“ Do T Mfus—M3(+ ) A
and in the limit of s ~ M2,
U t

~ ~ ) Al

In this limit, the two gluon scattering amplitudes with the first string excited gluon ex-
changes are obtained from eqs.(A.14), (A.15) and (A.16),

Mualgrs g = 93, 90) = =4 g M; —m Tr({T", T HT™, T"}), (A.19)
1 w)?

M15t<g;,g; — g;,gi) ~ 4 ‘92]\4'52 m (—g) TI'({Tal, TGQ}{TCLS,TCM}) , (A20>
1 £\?

Mus(gr. 95 = 93,91) = —4¢*M; — (-;) Te({T, TH{T*,T"}).  (A21)

The absence of angular dependence in eq.(A.19) imply that the exchanged first string excited
gluon has spin J = 0. On the other hand, the presence of angular dependence in eqs.(A.20)
and (A.21) imply that the exchanged first string excited gluons have spin J = 2. This is found
from that the angular dependence can be factorized into the Wigner d-function,

did’ () =1,

4722 (0) = u 2: 1+ cosf\>
+2,£2 S 9 ) (A22>

_ £\ 2 1—cosf\?>
it - () - (1)

The Wigner d-function di, JZ,(Q) represents angular dependence of a process through a state
with spin J, in which an initial state has total spin along z-axis, J,, and a final state has total
spin along z’-axis, J.,. The angle 6 is that between the z- and z’-axes.

aja

U(N) gauge bosons and group factors We define a completely symmetric symbol d *
as a symmetrized trace of generators 7%,

J @123 — STr(Ta1Ta2Ta3) — %Tr({T‘ll7T“2} T“3) , (A23)

so that
(T, 7%} =4) dme=AT4, (A.24)
A
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Note that 7% are SU(3)c generators in the fundamental representation with Tr(7%7%) =
16492 Then, the group factor of egs.(A.19), (A.20) and (A.21) is

Te({T*, T H{T"%, T%}) =8y  dmeAdesm?, (A.25)
A

Since U(N) gauge group rather than SU(N) is realized in D-brane models, gluons as SU(3)¢
gauge bosons come from U(3)¢ gauge bosons. The U(3)¢ gauge bosons are G4 = (C°, g%) where
C?is an U(1)¢ gauge boson and g are gluons with @ = 1, - -+ , 8. The gauge index A in eq.(A.25)
sums over string excited “gluons” exchanged in the process. The string excited “gluons” are G*
which are excited U(3)¢ gauge bosons, including not only excited gluons ¢g* but also an excited
U(1)c gauge boson C*.

The U(N) generator is T4 = (T°,T%), where T° = \/%WHN is an U(1) generator and 7
is the SU(N) generator with @ = 1,--- , N?> — 1. The completely symmetric symbols d 4454
defined by the U(V) generators are

1
da100 =0 7 dlllllQO EEp— , (A26>

VBN

(000 _ 1
VSN
_1)

and d %% (g; =1,--- , N?

instability of string excited states The string excited states are unstable and decay into
SM particles or other light states associated with string. The s-channel pole of the nth string
excited states in eq.(A.11) should be softened as follows,

1 1
%
s—M? s—M2+iM,T]’

where M,, is the mass of the nth string excited states, M, = /nM,, and F;{ is a total decay
width of the nth string excited states with spin J.

(A.27)

Loop-level amplitudes necessarily lead to an imaginary part in a pole, in terms of a width of
an exchanged state. For the purpose of this thesis, however, we calculate only tree-level string
amplitudes, and have to add the imaginary part in the s-channel pole by hand.

calculation of widths of exchanged states Consider a decay of a massive particle into
two massless particles. The decay S-matrix is given by

S = i(27r)4 54(P — p3 — Pa) { P3, A3, a3 ; Py, Ad, Ay | L’ |P,AA), (A.28)

where £7 is an interaction Lagrangian of spin J. P and p34 are four-momenta, and, A and
as 4 are gauge indices of the parent particle and the two daughter particles, respectively. A is
spin z-component of the parent, and A3 4 are helicities of the daughters. In a rest frame of the
parent particle with mass M, P = 0 and p; = —p, = p with |p| = % The decay width is

1 2
Fiﬁ)u;;ag,a;; = /dH3 dH4 m (27T)4 54(P —P3— p4) ‘<p37 )\37 as ; Py, /\47 Qg | ‘CJ | P7 A7A>‘
1 1

- 167 M 4r

/dQ}<p7)\37a3;_pa)\47a4|£’07A7A>‘2'
(A.29)
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The spin z-component eigenstate with zero momentum, |0, A ), is expanded in terms of a spin
z'-component eigenstate, |0, A’), in which the z’-axis has an angle # with the z-axis. The
expansion coefficient is the Wigner d-function,

10,A) :Z 10,A")(0,A"|0,A)

_ZdAA/ oy, (A.30)

The width becomes

1 1
Fiﬁ)\4;a3,a4: /dQ|dA Ag— 9)‘2|<Pa)\3,a3;—P,)\4,CL4|£J|0,>\3—)\4,14)‘2

167 M 4m
_ ! 1 JA 2
167 M 2J 41 ‘ /\37>\4;a3,a4| ’

(A.31)

since = [ dQ |d{ A ( )}2 = -+—. Here, F{4

2J+1 A3,A4; 03,04
Z'-component A3 — \; into helicitles Az and A4 along the z/-axis.

is a matrix element of a decay for spin

The matrix element F {4 Naas.a, Can be extracted from a two-body scattering amplitude
among massless particles with a massive state exchange in s-channel. In the center-of-mass
frame, p; = —p, = p and p; = —p, = p’ with an angle 6 between p and p’. The amplitude is

<P37>\37a3;P4a)\4,G4|M | P A1, @1 §Pga)\2702>

=<p',/\3,a3;—p’,/\4,a4;(9|/\/l|p,)\1,a1;—p,)\2,a2;0)

T

(P As.a5; =D Apag; 0] L7 ) ]0,A,4;0)
A,©
X<0aA7A;@|‘CJ|pa)\laa'l;_p7)\2>a2;0>

(P, A3 a55 =P Ag,as; 01 L7100 — Ao, A50) FYA

al,a2

p )\3,(13, p )\47a479|£J Zd —Aa, A/(@/>|0 A/ A: @,>

A, ©

_ J JA T mJA
- Z S — M2 d)\lf)\z,ksf)m(e) (F )\3,)\4;(13,(14) F)\l,)\g;al,aQ .

>\1 A2;a1,a2

(A.32)

See ref.[50] for a way of calculating decay widths in detail.

widths of first string excited gluons In order to calculate widths of the first string excited
gluons, G*, comparing the amplitudes with the first excited gluon exchanges of eqs.(A.19),
(A.20) and (A.21) to the general amplitude with a massive state exchange of eq.(A.32), we can

*
extract matrix elements of G*, Fg» 74 Neji asayr B

FG* :I:l(zﬁ as,as FG* :tl ¥1 as,as 4\/§ng da3a4A . (A33>
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Once the matrix element Fg- iﬁj; as,a, 18 Obtained, a decay width of G* — G'G' can be calculated
from eq.(A.31) by summing over helicities and gauge indices in the final state,

1 1 1 2
JA _ JA
FG*—)GG 9 1670, 27 + 1 )\E/\ AEA ‘FG* ,\3,)\4;A3,A4| ) (A.34)
3,74 A3,A4

where a factor of % is introduced to take into account identical particles in the final state. For
J=0and J =2,

_ 1 1 1 1 _ 2 - 2
J=0A __ J=0A J=0A
FG*%GG - 5 167TMS 2 % O + 1 AZA 5 {|FG* +1,+1§A3,A4| + ‘FG* 71,71;1437144‘ }
3,414
(A.35)
_ 9> M Z JAsAsA J AsAuA
T )
Ag,As
_ 1 1 1 _ 2 - 2
J=2A __ J=2A J=2A
FG*—)G’G - 5 167TMS 2% 241 AZA {lFG* +1,—1;A3,A4| + ’FG* _1,+1;A3A4‘ }
3,44
(A.36)

29> M 1 AsAqA 7 A3 ALA
— - dA3AsA g AsdA
—

Asz,Ay

Note that a factor of % for J = 0 reflects the fact that the resonance produced through an initial
helicity configuration of (—, —) subsequently does not decay into a final helicity configuration
of (+,+), as it is found from the amplitude of the process, g-g~ — g~ ¢, of eq.(A.19).

A group factor in egs.(A.35) and (A.36) is different for each decay process, calculated by
averaging over gauge indices for the initial state,

® g"—ygg
N2—-1N2-1
1 aszaqga azaqga N2 — 4
NTIT 2 D dnmdmt = e (437
a asz,aq
e g — gC 32
1 N2-1N2-1 1
9 % T Z Z da30ada30a:m’ (A38)
a as
o C* = gg
N2-1
N? -1
Z da3a40 da3a40 — SN (A39)
asz,aq
e O*—=CC 1
(000 7000 _ e (A.40)

32A factor of 2 is introduced due to not identical particles in the final state.
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where N = 3.
As a result, widths of the first string excited gluons, ¢* and C*, with J =0 and J = 2 for
the processes of G* — GG are

2 2
j—0 _ 9 Mg N j—o g Mg1N
Fg*—)GG = A Z 5 Fg*—>GG = A g 3 5 (A41)
2 2
= g Ms N — g MS 1
Ilae = i 2 I = “ir 5 N. (A.42)

Total widths of ¢* and C* should be included processes of G* — ¢q in case of J = 2, and the
processes are considered later.

squared amplitudes with first string excited gluon exchanges Including above results,
the two gluon scattering amplitudes with the first excited gluon exchanges of eqs.(A.19), (A.20)
and (A.21) are rewritten by softening the s-channel pole into the Breit-Wigner form of eq.(A.27),

Mlst(gfvg; — g:;;QZ)
1 1
dalaga da3a4a
s — M2+ M0 Z TS TR M

— — 32 gQ]WS2 |: dalazo da3a40:| ’

(A.43)

Mlst(Ql_mg; — 93?,9:)
1 u? u?
- 32 2M2 - dauzga da3a4a 4 da1a20 da3a40 ,
I |- )3

S M s — M2+ iMIE A s — M2+ iM[Z?
(A.44)
Mist(91,95 = 95.95)
322 M? L [ t2' _ Z 1020 g asasa | t2‘ __ Jmaz0 da3a40:| .
P M s — M2+ iMTI"? 4 s — M2+ M2
(A.45)

A squared amplitude is averaged over helicities and gauge indices in the initial state, and
summed over them in the final state,

’Mlst<gla g2 — 937g4)‘2

1 1 - 2 2
:ﬁ <N2—1)2 § {|Mlst(91;92 _>937g4>‘ +|M15t(gi}—’g;_>g;7.gi)‘
a1,a2,a3,a4 (A.46)

_ _ 2 —_ —\|2
+ |Mlst(gl 793_ — gs 792_)‘ + |Mlst(gf—792 - 9;794 )‘

— N2 — _ 2
+|M1st(91,g;—>9;794)‘ +|Mlst(gii_792 %93791)‘ }

Here, we do not have to consider an interference effect between processes with exchanges of g*
and C*, gg — g* — gg and gg — C* — gg. Group factors in eqs.(A.43), (A.44) and (A.45) are
squared for each product of scattering processes,
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* (99 = g* — gg)?

N2-1 N2-1

1 1 (N?—4)
dalaga da3a4a dalagb da3a4b — A47
i XY L Y
a1,a2,a3,a4 a,
* (99 = C* = gg)?
1 = 1
— dnez0)? (quea0)? = A48
(N2—1)2 Z ( ) ( ) {2 N2 ( )
a1,a2,a3,a4
* (99— 9" —g9) x (99 = C* = gg)
1 N2-1 N2-1 1 1 N2_1
da1a20 da3a40 dalaza da3a4a — . da1a1a da3a3a
(N2_1)2 Z Z (N2—1)2 SN Z !
al,a2,a3,a4 a al,as,a
(A.49)
where, from the definition of the completely symmetric symbol of eq.(A.23),
N2-1 N2-1 N2 _1
Y odnme =" T (TTYTY) = o Ti(T7) =0. (A.50)
al ai
Using parity conservation, the squared two gluon scattering amplitude is given by
2
|Mis(99 — 99)|
_8¢* 1 {(N2 — 4)? { M? N ut + ¢t }
M2E N2 | 4(N?2 = 1) (s — M2)? + (MJ70)2 (s — M2)2 + (MI')=2)? (A.51)

n ]\438 n ut + t*
(s =32+ (MTER T (s = 322+ (MTE2 S

S

A.1.2 Second string excited gluon exchanges

Next, let us consider the two gluon scattering process with an exchange of a second string
excited gluon. Focusing on the second s-channel pole for n = 2 in s-channel pole expansions of
eq.(A.11), the string form factor functions are

1 su 1
Vt:_2M473—2M2 (u+M52)(u+2M52),

1S of 1 S (A.52)
V, = (t+ M2)(t+2M2),

C2ME u s — 2M2

and in the approximation of s ~ 2M2,

u uw ot t w ot
~ [ —— = ~ [ —— 4+~ ], A.
Vi 5—2MS2< s+s) W 5—2M52< 3+5> (A.53)
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In this approximation, the two gluon scattering amplitudes with the second string excited
gluon exchanges are obtained from eqs.(A.14), (A.15) and (A.16),

1 u t
_ — — -\ ~ 2 2 _ _ a a [} a
M2nd(gl792 _>g3ag4)—8g Ms 3_—2]\432( S+S) TI'([Tl,TZHT 37T4])7 (A54>
1 w\ > u ot
— + — +\ ~ 2 2 a a Q, [0
Mona(91, 92 — 93,91 ) =89~ M, s—2M? <—g> (—g + ;) Te ([T, T[T, T™]),
(A.55)

- - 1 t ? a a a a.
Mona(gy .95 = 93,95) ~ 89> M YV (—g) (—§+ )Tr([T LT [T, TM)
(A.56)

Angular dependences in eqgs.(A.54), (A.55) and (A.56) are factorized into the Wigner d-functions
for J=1,J=2and J =3,

dﬁl (0) = —% + 2 = cosf,
_ 14 cosf\?
1255 0) = (F570) Beost-2), (A57)

1 . 2
d15%, () = (%S% (3cosf+2),

and d{3%, (0) and d{5%, () of eq.(A.22). In the process of g~g~ — g~ g~ of eq.(A.54), the

second string excited gluon with spin J = 1 is exchanged, while in the processes of g~ gt — g g™
and ¢g—g* — ¢gtg~, those with spin J = 2 and J = 3 are exchanged, as follows,

1
Mona(g1 95 = 95,95 ) = —4 92M2 o2 d()J o1 Z foreee peeas

(A.58)

M —4 2M2 1 ngZQ 9 ldJ:Ii 9 ajala rasaqa
2nd (975 95 —>93794) g ss_onm2 | 3 72,72( )+3 72,72( ) Zf f )
(A.59)

1 2 = alaza asaqga

Mona(g1, 95 = 95, 01) =~ —4¢* M ———— s — 202 {_gd‘]fm )+ 3 dJQ 1 ( } Zf He pastat
(A.GO)

Note that there are excitations of SU(3)¢ gluons only, as the second string excited gluons
exchanged in these processes. That is because the completely anti-symmetric symbol with
U(1) component, f*%9 vanish. The completely anti-symmetric symbol follows that i f#19293 =
2Tr([T“1 , T“Q]T“?’) .
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widths of second excited gluons Comparing eqgs.(A.54), (A.55) and (A.56) to eq.(A.32),

Fyo 4555 apan = 29Ms fo4°
2v/2
J=2a azaqa
F*:I:l:Fla3a4:j:\/§ng34 (A61)
_ 2
Fg** J=3a — ng fa3a4a )

:tl’:Fl;a37a4 \/g

Decay widths of ¢** — gg for J =1, J =2 and J = 3 are

_ 1 1 1 1 _ 2 _ 2
FJ*—*la S - F** J—la. F** J—la‘
gt —gg 2 167T\/§M 2x14+1 Z 2{| g +1,+1,a3,a4| + ‘ 9 *1,*1,a3,a4‘

(A.62)
2\/_M 1 Zfa3a4a asasa

)

CLS a4

L. 11 1 o sa
Fg’:igg ~ 9 16mv2M, 2 x2+1 24{ ‘Fg** ilil;as,az;}z + {Fg** Jl’il;“‘"”mf}

2\/_M 1 Z fa3a4a fa3a4a

12

(A.63)

a3 aq

_ 1 1 1 _ 2 _ 2
J=3a __ J=3a J=3a
Fg**—>gg - 5 167?\/§M 2%x34+1 Z{}Fg** +1,—1;a3,a4} + |F9** —1,+1;a3,a4‘ }

(A.64)
2
\/_M 1 Z fa3a4a fa3a4a

a3 aq

where a group factor is averaged over an initial gauge index,

N2-1N2-1

(A.65)

a as,aq

Widths of the second string excited gluon ¢** with J =1, J = 2 and J = 3 for the process of
g™ — gg are

squared amplitudes with second excited gluon exchanges The amplitudes of eqs.(A.58),
(A.59) and (A.60) are rewritten by softening the s-channel pole into the Breit-Wigner form with
the widths,
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L L —u—+t
Mona(97, 95 = 95.91) — —4g° M.

ajaza a3a4a7 A67
P 2MZ s — 2M2 + iv/2MT)E! 2 g (A.67)

a

-/\/12nd<gli7g2+ — g??aQI)

1 [ 2 2M2
—49°M? :

“ + 1 UQ(_U’ + 5t> :| Z falaga fa3a4a
35— 2M2+iV2MIJZ2 3 s — 2M2 +iV/2MIJ= | 4

g**

(A.68)
Mowa(97,95 — 95, 91)

1 2 2M2 12 1 —t*(—t + 5u)
— —4g*M? {—— S + = } a1aza fasasa
g s 8MS| 3s—2M2+ i\/ﬁMstff 3s—2M2+ i\/ﬁMJHiS Za: / /

(A.69)
since in d 3%, (f) and d:{5%, (0) of eq.(A.57), 3cosf — 2 = (—u + 5t)/s and 3cosf + 2 =
(—t + bu)/s, respectively.

A squared amplitude of the two gluon scattering process with the second excited gluon

exchange is calculated as well as eq.(A.46). Since the group factor in eqs.(A.54), (A.55) and
(A.56) is squared,

N2-1 NZ2-1 N2

1 ajasa grazasa paijazb pasagsb
e DD foee pre pred pood = (A.70)

a1,a2,a3,a4  a,b

the squared amplitude is given by

2 2 2
| Maua(g99 = 99)|” = |Manalgg = 99)|.. ... + [ Maua(99 = 99)|., (A.71)
where
2
‘MQnd(gg — gg)lnon—int.
gt N? { 16ME(—u + t)?
C8ME N2 —1 | (s — 2M2)2 + (V2MJ=1)2 (A.72)

{4 4MH(ut 4 t) 1 u*(—u + 5t)? —I—t4(—t+5u)2} }
9 (s —2M2)? + (V2MIJZ2)2 9 (s —2M2)? 4+ (V2MI)=3)?
2

| Mana(gg = 99)|..,

gt N2 {2 (s — 2M2)? + 2M2T)Z°T)5% 2M2 (ut(—u + 5t) + t(—t + 5u))} (A.73)
CAMEN? =109 (s —2M2)2 + (V2MIJZ2)2 (s — 2M2)% + (V2M2T/=3)?
The last term of eq.(A.73) is an interference effect between processes with exchanges of the
second string excited gluons with J =2 and J = 3.
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A.2 Two gluons and two quarks amplitudes
A.2.1 qg — qg amplitudes

The open string amplitudes with external gluons and quarks at disk-level are calculated in
ref.[13] as

- (12)2 s L U P

M4y 95,05, 91) = 292W SVa (1) Ve (T (A.74)
_ . (14)? [u S S o

Mlar . 95,05, 91) = QQQW SV (T Ve (TR (A.75)

where q7, g5, G5 and g; in egs.(A.74) and (A.75) are incoming gluons and quarks. The latter
of eq.(A.75) is obtained by a replacement of 2 <> 4 in eq.(A.74). Amplitudes with replacements
of 3 <> 4 in eqs.(A.74) and (A.75) can also be obtained,

_ _ (12)? [s asa t 03 ras
M(q1,gz,gi,qi):2g2<13><43>_ SV (T2T), (T, (A.76)

_ _ <13>2 t s s S agra
M(q1,gi,gg,QI)=292—<12><42> SV(TRT), V(TR (A.77)

Here, similarly to the previous section, we consider two-body scattering processes of quark
and gluon, ¢, 92 — ¢3, g4 Or q1, 92 — g3, qs (1, 2 refer to incoming particles, while 3, 4 refer to
outgoing ones). In these processes, kinetic factors of eqs.(A.74), (A.75), (A.76) and (A.77) are

(12> [s 4 [ u
(14)(34) u T (12)(32) s’
(12)? (13)2 t
(13)(43) Vs

(A.78)

T (12)(42) s’

~+ | W

first string excited quark exchanges The quark and gluon scattering process exchanges
a string excited quark in s-channel. First, we focus on the first s-channel pole, that is a first
string excited quark. Using the string form factor functions in the limit of s ~ M? of eq.(A.18),

u

- = — =\ ~ 2a72 aqrias
Miuselar 92 = a5, 95) = —29" M s — M2 T (T T )043041 ’ (A.79)
3
M7, 95 3, 015) ~ —2¢°M? (e (TT*) (A.80)
1st\91 » 92 _>Q3,g4 - g SS—MS2 s asal :
Similarly, amplitudes obtained by replacements of ¢ <+ u are
M (.95 = 95,a5) ~ +29°M? ! (TT2) (A.81)
1st\q1 » 9o 93,44 ) = g My 5 — MS2 S agon ’ ’
1 £\ 2
— =\ ~ 2a72 asra,
Mlst(q1 793 — 93+7Q4) - +2g Ms s — Ms2 (_g> (T T 3)a4a1 : (A82>
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Angular dependences in eqgs.(A.79), (A.80), (A.81) and (A.82) can be decomposed into the

Wigner d-functions of J =1/2 and J = 3/2,

J=1/2 . u 0
dﬂ:l/2,j:1/2 (9) = \/ —g = COs 57
t

J=1/2 B .
di1/27$1/2(0)—2F —;—$s1n§,
3
J=3/2 - u\?* 30
dﬂ:3/2,j:3/2 (0) = (_g) = COos 9
J=3/2 _ t\2 .30
di3/27$3/2 (0) = ZF(—;) = Fsin 7

(A.83)

It is found that in the processes of q1, g2 — g3, g4 Or q1, g2 — g3, g, the first string excited quark
with J = 1/2 and J = 3/2 are exchanged. The amplitudes with an exchange of the first string

excited quark can be rewritten as,

1 — a a
Mlst((h 192 — Q3 794) —292M2 —M?dil/l2/,2+1/2 (Q) Z(T 4>a3a (T 2)aa1

67

1 _
Mlst(ql 792 — q3 » 94 ) _292M2 — M2 dig;Z/,sz/Q (0) Z(Ta4>a3a (TaQ)QOq

o

1 - a a
Migi(qr,92 = 95,01 ) = _292M2 — M2 di1/12/,271/2 (0) Z(T 3>a4a (T 2)aa1

«

_ _ 1 J=3/2 a a
Mlst(ql 793_ - g;» dy ) = +292M52 S — M2 d*3/2/,+3/2 (9) Z<T 3)a4a (T 2)@&1

a

Y

Y

Y

Y

(A.84)

(A.85)

(A.86)

(A.87)

widths of ﬁrst string excited quarks Then matrix elements of the first string excited

quark ¢*, Fy §! “\jiaia, can be extracted by comparing to eq.(A.32),

J=1/2 J=3/2 A

Fq* +1/2,41; 03,44 Fq* +1/2,F1; 08,44 \/§ng (T 4)aa3 ’
J=1/2 o J=3/2 . A

For iy L1 agon = Far b151/2 Ag00 = FV29M, (T 3)aa

Using the above results, widths of ¢* — ¢G for J =1/2 and J = 3/2 are

J=1/2a 1 1 1 J=1/2« 2 J=1/2a 2
Foae = 6007 2% 51 )3 5{‘Fq* el + e T g all
s ag,As

g*M; 1
- 8 5 Z (TA4)Oé3oé (TA4)aas’

ag,Aq

J=3/2a 1 1 J=3/2« J=3/2« 2
e R TS VACRVE: +1 Z { ¢ +1/2,- 103, al B s ] }
s 2 as,

g*M; 1
B & Z_l Z (TA4)04304 (TA4)oza3’

as,Aq
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A group factor egs.(A.89) and (A.90) is averaged over a gauge index « of ¢* for each decay
process into g or C|

¢ —qg
1 N N2-1 ] N2_1 N2 1
NQZ% 24 (T*) e (T") s = 24 Te(T9T™) = =5 (A.91)
o ¢ — qC
1 a 0 0 1 010 1
N;%(T Dz (T g = 7 T(TTY) = - (A.92)

Total widths of the first string excited quarks ¢* with J =1/2 and J = 3/2 are

/=12 _ 9’M; 1 N /=32 _ 9°Ms 1 N

. = L = —. A.
1 A 2 4 7 q A7 4 4 (A.93)

squared amplitudes with first string excited quark exchanges A squared amplitude
of the process of q1, g2 — q3, g4 is calculated,

Mt (g1, g2 = Q3,94)‘2

1 1
3 > {|Mlst<q;,g;%q;,gz)ﬁ\Mlst(qi,giﬁq;gi)\z

T 22 N(N2— (A.94)

«1,02,03,a4

_ _ 2 _ |2
+’Mlst(q1ag;_)Q3agz_)’ +|Mlst((ﬂ_vg2 _>q;_a94)| }>

and that of the process of ¢1, g2 — g3, g4 is similar. Since the group factor of eqs.(A.84), (A.85),
(A.86) and (A.87) is squared as follows,

N N2-1

1 Q. a a a. N2 - 1
N(NZ-1) D2 (1T, (12T, = TANZ (A.95)
Q1,3 a2,a4
the squared amplitudes of the processes become
2g* N2 17 M (—u) (—u)? 1
Mualgg — a9)|* = 35 s 4 _ 7
[Moalts =40 5z T [ O G+ (AT
(A.96)
2g* N2 — 17 MA(—t) (—t)3 1
Mis(ag = g9)|" = =5 : —o t - :
e T (e AR G e+ AT
(A.97)
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second string excited quark exchanges Next, let us consider the quark and gluon scat-
tering amplitude with an exchange of a second string excited quark. Inserting the string form
factor functions in the limit of s ~ 2M? of eq.(A.53) into the amplitudes,

1 U u ot S
Monalar .95 = d3,95) = —4g° M o\ s <——+—> (TT%) e (A98)

S S

3
1 u\ 2 t
- + } - + ~ __ 2 2— _ _ _ a. Qa
Man(QlJQZ q3794)— 49 Ms S—QMSQ ( 8> < +8> T4T 2)a TR (A99>
1 t u ot
- a7 - N~ _AAf2 _ v aza
Monalar, 9 = 95 0) = —49" M7 — e\ s ( T+ S) (T*72),. .. »  (A.100)
1 £ 2 t
2772 u asra
Mona(ar, 95 = 95,05) ~ —4g" M7 — PV <‘g> (_g + g) (T7),.. - (A.101)

Angular dependences on egs.(A.98), (A.99), (A.100) and (A.101) are decomposed into the
Wigner d-functions,

_ 0 (3cosf—1
J=3/2
d:l:l/z/,:l:l/Q (0) = cos; (—> )

2 2

J=3/2 .0 [(3cosf+1

di1/2/,¢1/2 (0) = Fsin s\—T % ) .
.102

J=5/2 30 (5cos—3 ( )
di3/2,i3/2 () = cos o\ o )

J=5/2 30 (5cosf+3
di3/2/, 372 (f) = Fsin s\l )

and d i1/12/2i1/2 (0) and di3;2/2i3/2 (0) of eq.(A.83). Thus, the second string excited quarks which
are exchanged in the processes have J =1/2, J = 3/2 and J = 5/2, as follows

1 1 J=3/2 ] “ a
Mona(dgr', 9 = s, 91) = —4g° My S| 3% <9)+3 A’y 12 (0) > (T ) w1
(A.103)
1 [ 3 J=3/2 2 J=5/2 ] aq a2
Mona(qr, 95 = 43,94) = 492M2 “omz| 5 d73/2/ —3/2 (9)"‘5 d73/2/, —3/2 (6) Z(T )aga (T )aoq’
(A.104)
o o 1 1 i J=3/2 | a a
MQHd(Ql »92 7 93,4y ) = +492M52 m _g d+1/2,—1/2 (0)+3 d+1/2,—1/2 (0) Z(T 3)a4a (T 2)o¢a1’
(A.105)
1 [ 3 J=3/2 2 J=5/2 ] a a
Mona(qr, 95 = 93,45) = _492M2 “omz| 5 d—3/2 +3/2 (0)"‘5 d—3/2,+3/2 (0) Z(T 3)a4a (T 2)aa1’
(A.106)
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widths of second string excited quarks Matrix elements of the second string excited
quark ¢**, Fyer {2\ o, 0, can be extracted as

J=1/2a . 2 A J=1/2c _ 2 A
FQ** +1/2,41;a3,A4 ﬁ ng (T 4)aa3 ) FQ** +1,£1/2; Az,oq :Fﬁ ng (T 3)aa4 )
J=3/2c 2\/§ Ay J=3/2« . 2\/_ A
F *11/2,4103,A0 \/§ QMS (T )MS ) FQ** +1,41/2; As,00 +—= \/3 gM (T 3)aa4 ’
(A.107)
F J=3/2« 2\/§ng (TA4) F**J 3/2a o :FQ\/_ (TA3)
*41/2,F1; 03,44 \/5 aaz +1,71/2; As,ou \/5 oy’
J=5/2a 2V2 A J=5/2a B 2\/_ A
F i1/2 F1; as, A4 \/5 ng (T 4)aa3 ’ Fq** +1,F1/2; As,aa — T— \/5 (T 3)aa4 :
Then widths of ¢** — ¢G for J =1/2, J =3/2 and J = 5/2 are
J=1/2a 1 1 1 J=1/2a 2 J=1/2a 2
Uoretaa = 16mv2M, 2 x 3 +1 %224 §{|Fq** +1/2,+1;a3,A4| + ‘Fq** 71/2,71;a3,A4‘ }
2 /BN 1 ’ (A.108)
g s A A
— - TA4 TAa
247 9 ZA ( )aga ( )aag )
a3,A4
J=3/2a 1 1 1 J=3/2a 2 J=3/2a 2
Ponlac = 16mv/2M, 2 x 3 +1 a§4 §{|Fq** +1/2,+1;a3,A4| + |Fy *1/2,*1;%%14‘

J=3/2« 2 J=3/2« 2
+ |Fq** +1/2,—1;a3,A4| + ‘Fq** _1/2,+1;a37A4‘ } (A.109)

VM, (2 3\ 1
- 8—7T (g + 5) Z Z (TA4)0¢30¢ (TA4)aa3’

as,Aq

J=5/2a 1 1 l J=5/2 « 2 J=5/2« 2
Fq**—ﬂ]G o 167T\/§Ms 2 X g + 1 Q3ZA4 2{{Fq** +1/27_1§0¢37A4| + ‘Fq** _1/274_1;0437144’ }

9*V2M; 1
=5 2 (M) (1) 0y

a3, Ag
Since a group factor of egs.(A.108), (A.109) and (A.110) is in eqs.(A.91) and (A.92) for each
decay process, total widths of the second string excited quarks ¢** with J = 1/2, J = 3/2 and
J =5/2 are

pr=te _ PVIMOLN sy VM LION s VMG TN (A11D)
a 4 212 7 ¢ 4 4 60 7 ¢ 47 610" '

(A.110)

squared amplitudes with second string excited quark exchanges Softening the s-
channel pole into the Breit-Wigner form, the amplitudes are rewritten as

Mana(ar, 95 = 65, 95)
1 1 2M2\/~u p V—u(—u+ 2t
— — 4g>M? = =iz T3 ( )J 372 (T72)
2V2M3 | 3 s — 2M2 +iV2M, T~ 35— 2M2 +iV2MI,~

agay ’

(A.112)
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MQHd(Ql_ag;_ — QB_LQI)

5 492M2 1 |: 3 2M2<_ )3/2 + 2 (_ )3/2(—U + 4t> :| ( a4 ag)
4V2M? —OMZ 4 iVIMTIS? 5 s — 2M2 4 VM agar’
(A.113)
M2nd(Q1_7 gQ_ — 93_7 Q4_)
— + 4Q2M2 |: 1 _2MS2 — g vV (_t + 2U) :| ( aq a2)
VM3 3 s —2M2+iVaAMIIE T 35— 2M2 4+ iv/ZMI ason
(A.114)
M2nd(Q1_7 g;_ — 9;7 Q4_>
5 4g2M2 1 |: § 2M52(_t)3/2 g _(_t)3/2(_t + 4U) :| ( aq ag)
W35 s 202 +iVaMIER B s - 2M2 4 iv2M I o
(A.115)

since in diT%,Zﬂ/Q (0) and di3?2/2$3/2 (0) of eq.(A.102), (3cos® — 1)/2 = (—u + 2t)/s and

(3cosd + 1)/2 = —(—t + 2u)/s, while in d'{37,°,,, (0) and d'{57°, , (0), (5eos — 3)/2 =

(—u+4t)/s and (5cosf + 3)/2 = —(—t + 4u)/s.
A squared amplitudes of the processes of ¢qg — qg and qg — gq are

| Manalgg — q9)|” = | Mawalag — a9)| + | Mawalag — q9)|

non—int.

nt.” (A.116)

int. ’

[Moaua(ag — 99)|” = | Maualag — 99)| + | Maua(ag — g9);

non—int.

where

| Manalag — q9)|

non—int.

_9 Nz—l{[l 16M7(—u) L4 AMIy(zut 2t }
AMZ AN L9 (s —2M2)2 + (V2MI= )2 9 (s — 2M2)2 + (V2MI2)2
9 M (—u)? 4 (zu)’(—u +40)°
+[25 (s = 2M2)2 + (V2M,T,2?)? T (s = 2M2)% + (V2MI %) ”

(A.117)

|Maua(ag — a9)|,
gt NP1 2 (s—2M2)? 4 2M2rR PR MO (—u)(—u + 2t)
2MP W{ [ 9 (s—2M2)2+ (VZMJIIZ22 (s —2M2)2 + (\/QMS?F;M?’/?)J
6 (s —2M2)? + 2M20 P02 o2 (—u)3(—u + 4t)
l% (s — 2M2)2 + (V2MIJZ%)2 (5 — 2M2)2 + (\/§M3r555/2)2”

S

(A.118)
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| Manalgg — gq)|}

non—int.
gt N -1 1 16 M3(—t) 4 AMH(—t)(—t + 2u)?
AMSAN? {[5 (s — 2M2)2 + (V2MI) 21 %)2 "9 (s — 2M2)2 + (V2M,I)2%%)2 }
+[3 AMA(—t)? L4 (—t)3(—t + 4u)? ]}
25 (s = 2M2)2 + (VEMIUEY)2 0 25 (s = 2M2)2 4 (VZMLL2)?
(A.119)
(Mowa(ag = ga)|5,,
gt NP1 2 (s—2M2)? 4 2M2rR PR SME (—t)(—t + 2u)
2M¢ W{ { 9 (s—2M2)2+ (VZMJIIZP2 (s —2M2)2 + (\/EMgquj/?)J
6 (s—2M2)2 4 2M2TIZPPTIZ% 9M2 (—4)3(—t + 4u)
l% (5 — 2M2)2 + (V2MIJZ%)2 (5 — 2M2)2 + (\/ngrg?/?)ZH
(A.120)

Interference terms of eqs.(A.118) and (A.120) are interferences between the processes with
exchanges of the second string excited quarks with J = 1/2 and J = 3/2, and, J = 3/2 and

J = 5/2, respectively.

A.2.2 gg— qgq and qq — gg amplitudes

The following string amplitudes with external gluons and quarks are obtained by some replace-
ments in eq.(A.74),

M(gr. 95,43 ,d5) = 292% % Vo (TTe2) o+ 2 Vi (11, | S (A.121)
Mgy, 9345, T0) = 292% 2 v, (11, + gvu (T‘“T“?)am: : (A.122)
M(ar,3.95,91) = 292% g Vo (TT) z V; (T‘“T%)am: , (A.123)
M(ar,d5,95,94) = 292“%% z Vi (T4 + g v, (T“3T“4)a2a1: . (A.124)

We consider two-body scattering processes of gluons and quarks, g1, 92 — ¢3,q, and ¢1,q, —
g3, 94 In these processes, kinetic factors of eqs.(A.121), (A.122), (A.123) and (A.124) are

(32 fu @Bn*

@BnEn - Ve o (32)(42) u’ (A.125)
4> w13 t

(13)(23) _\E L ey - Vo
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first string excited gluon exchanges The gluons-to-quarks or quarks-to-gluons scattering
process exchanges the string excited gluons. First, focusing on the first s-channel pole which is
the first string excited gluon and using the string form factor functions in the limit of s ~ M2
in eq.(A.17),

Musilgr, 98 = ¢5,d1) = 29°M; _1M52 —2 <—%>§{T“17T“2}a4a37 (A.126)
Miuslgr, 95 = 6f,d1) = =29" M - _IMSQ \/g(—g ;{Tal7T“2}a4a3 : (A.127)
Mue(qr, @3 = 95,91 ) ~ —2¢° M - _1M32 \/—Z(—%) S{T‘j’?”T“}ml ) (A.128)
Mia(ar, @5 = 93,91) = 29°M? s—lMg —§<—£)S{T“37T“4}ml- (A.129)

Since angular dependences of eqs.(A.126), (A.127), (A.128) and (A.129) are factorized into the
Wigner d-functions,
d:t2,j:1 (0) = d:Fl,:Fg (0) = F2sin 5 COs 3

= = 0 50
diigm (0) = diii:g (0) = F2cos 3 sin® 3

(A.130)

it is found that the first string excited gluons with J = 2 are exchanged in the processes. The
amplitudes become

Mialar g = 05T = AU g 52 0) S (Mo, (A131

Mialar s = .T0) = 49" ME 025 (O3 ey (A132)

Musa 35 = g, 07) = APMZ — o d %5, (0) 3 d™ A (T, (A133)
s A

Mis(ar, @ = 93.90) = 4g* M — 0B d’ 7%, (0) ZA:d%““A(TA)m : (A.134)

widths of first string excited gluons In order to extract a matrix element of Fi;- iff;‘ﬂ /2: s

from eqs.(A.131) and (A.132), using the result of the matrix element of Fg- {724, ,, in
eq.(A.33),

_ 1
FG* iI/22:4:Fl/2;a3,a4 = iﬁ gMS (TA)oc4a3 . (A]_?)E))
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The widths of G* — ¢q for J = 2 are

_ 1 1 _ 2 _ 2
J=2A _ J=2 A J=2 A
FG*—>q§ - 167M, 2x 2+ 1 Z {|FG* +1/27—1/2;Oc37044| + ‘FG* —1/27+1/2;043,044‘ }
as,aq (A.136)
2M 1

= — Te(TATH).
16w 5

A group factor of eq.(A.136) is averaged over a gauge index A of G* for each decay process of
g* and C*,

* g —=qq i
N2-1
1 N? -1 1
Te(TT*) = Tr(Iy) = = Al
Z I “nr-1 oy v =3 (A.137)
o (" — qq
1 1
Tr(T°T") = — Tr(Iy) = A.138
H(TOT%) = - Tr(ly) = (A139)
Thus, widths of the first string excited gluons, ¢g* and C*, with J = 2 for the process of G* — ¢q
e M, 1 N M, 1 N
J=2 _ 9 Ms 1INy J=2 9 Nf
Fg @ = T 58 FC*_,qq ix 58 (A.139)

where Ny is the number of quark flavor. Total widths of g* and C* with J = 2 are obtained
from eqs.(A.41), (A.42) and (A.139),

My1/N N 9> M, 1 N
I B i (AR A el (5 SRR A A.140
g 4 5<2+ s ) ¢ i 5\ 38 ( )

squared amplitudes with first string excited gluon exchanges The amplitude of
egs.(A.131), (A.132), (A.133) and (A.134) are written as

Mlst(gl_ag;_ — qfi_aqjl_)

N 892M2 1 |: V _t( )3/2 Zdalaza Ta) + V _t<_u)3/2 da1a20(T0) :|
S a4 . — Q403 )
M s — M2+ iMI)=2 s — M2 4 iMITE? ’
(A.141)
Masi(91 5 93 —q3.dy)
V() N
- 892M52 l . - da1a2a<Ta)a o + : - dala20(T0)a N ,
M7 |5 — M2 + iMTJ= Z 10 T TN M 10
(A.142)
Misi(ar @5 — 95, 91)
— 8g2M2 1 |: —V _t< )3/2 Zda3a4a Ta) + -V _t(_U)B/Q da3a40(TO) :|
S [e]e 5] . — 2001 9
M2 | s — M2+ iMI)=2 s — M2+ iMJ.T?
(A.143)
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Mlst(ql_7a;— — g;_,gzl_)

2M2 L V. (_t)3/2 Z da3a4a(Ta) + V (_t)3/2 da3a40(T0)
S ME s — MZ2+iMTIE S s — M2+ M a2

— 8¢

(A.144)

Squared amplitudes of the processes of g1, 9> — ¢3,¢, and q1,q, — g3, g4 are calculated,

‘M1st(91,92 — QS7§4)|2

= % (NQN—_fl)Qw;M{lMlst(gf,QJ = ¢5, 7D + Mol s = ¢ 7)) (A.145)
+ Mo g8 — 6. @)]" + Mg g5 — q3,61)|2} ,
| Misi(q1, Gy —>93794)|2
:21_2% Z {|Mlst(q1_’q§r—>93_’QZ)|2+‘M1st(q;ra§2_—>9§F794_)‘2 (A.146)

a1,02,03,04
o _\2 __ _ 2
+ [(Muslar, @8 = g5, 90)] + [Muwlah @ — 95,97 } :
Since group factors of eqs.(A.141) and (A.142) are squared for each product scattering processes,
(99 = 9" — qq)’

N2-1N2-1 N2-1

1 alaza jaia a 1 1 aiasa) 2 1 N2_4
(N2—1)22 Zd12d12bTr(TTb):(N2_1>2§Z(d ) T N2_1 32N

ai,a2 a,b ai,a2,a

(A.147)
* (07— g" — g9)°
N2-1N2-1
1 N?2—1N?—4
L ( @340 g azasb . (paby _ A.148
BY Y ) = N
as,aq4 a,
e (g9 — C* = qq)*
g 11
( 01020 g a1az0 . (O0Y _ I A14
. ) = gy (A
al,a2
o (47— C* — gg)?
N2-1
1 N2—-1 1
L (] @3040  azas0 . (O0Y — Al
N2 2. WT°) =~ om0 (4.150)
asz,aq
* (99— 9" — qq) x (99 = C* = qq) or (¢ — ¢* — g9) x (47 — C* — gg)
N2*1 N2*1 N27].
Z Z d M192¢ 41920 Ty (TOT0) = 1 Z d“*Tr(T*) =0 (A.151)
4N ’
ai,az a a1,a
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the squared amplitudes are

‘M1 t(gg—>q§)|2: 29" Ny [N? —4 tu® + ut’® tu® + ut’ ]
: MINV-T)| 2 (5= MR+ (MR | (s = M)+ (VTR
(A.152)
_ s 2¢* N?2—-1 [N?-4 tud + ut3 tu? + ut3 |

‘Mlst qaq9 — gg)| = 4 3 2)2 =2 2\2 J=2\2 | -
Ms N 2 (S - Ms) + (MSFg* ) (S - Ms ) + (MSFC* ) J
(A.153)

second string excited gluon exchanges Next, we consider the two-body scattering am-
plitudes of gluons and quarks, with the second string excited gluon exchanges. From the string
form factor functions in the limit of s ~ 2M? of eq.(A.53),

Mowa(gr,05 = 45,@) = 49" M 8_—12Mg
Mowa(97, 95 = 63 ,T5) = —4g° M 9 12]\/[2
Mowa(ar, @3 — 95,95) = —4g" M _12M2
Mona(a7, @5 = 95595) ~ 492Ms28_—12Mg

Angular dependences in egs.(A.126), (A.127), (A.

Wigner d-functions of J =2 and J = 3,

A (R s s
) (), w
S () e
) ()

0 50 0—1
di?gﬂ (9) = dijp13¢2 (9) =+ 2\/j sin 5 cos® 5 < oS )
0 .0 (3cosh+1 (A.158)
= = cost +
diz,?)n (0) = dil,‘q’n 0)=F 2\/j cos o sin 5 < )
Therefore, it is found that the second string excited gluons with J = 2 and J = 3 are exchanged,

S L

as follows,
Mona(91, 95 = 45,75) = 49> M !
n 192 344 S s — 2MS2
2072 1 [
M?nd(glag2 _>C13aCI4) —4g” M s — 9N
MQnd(ql_aQ; — 93_’92_) = 492Ms2 S — 2Ms2

1 _ ]_ 2 _ - £a1a2a a

G4 O+5 /%50, (9>} D UML) gy

T (A159)

_1 17=2 (9)4‘1 ng:S (9) Zifamza (Ta)
6“2t W 5 e e

(A.160)

ld‘]:2 (0)+1 2dJ:3 (0):| Zifagaw(Ta)
6123\ 5 ¢ o

(A.161)
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o _ 1 1, 1 /2 . panana (.
MQnd(Ql 7QZ+ — 9;794 ) = 4g2M52 m _6 d£1,2+2 (9)+§\/gd£1,3+2 (6):| sz s (T )azal ’
(A.162)

widths of second string excited gluons From the above amplitudes, we can extract matrix
J=23a

H1/9F1/2: a0 , using the result of the matrix

elements of the second string excited gluons, Fy«-

element of Fj« 112;)1“&3 o, Of eq.(A.61),

1 2v/2
J=2a o . a J=3a _
Fo 312.51/2 0,00 = T1 V6 gM, (T )aws o e psyege, = £ V15 gM (T* )a4a3 .
(A.163)
The widths of ¢** — ¢q for J = 2 are

1 1 _ 2 _ 2
J=2a __ J=2a J=2a
Fg**—ﬂﬁ 167?\/_M 2%x2+1 Z {‘Fg** +1/2,—1/2;as,oc4| + ‘Fg** —1/2,+1/2;a3,a4| }
as,a1 (A.164)
2V2M; 1
gV2My = Te(T°T7) ,
S 9%m 5

1 1 _ 2
J=3a __ J=3a
I g**—=qq 167T\/§M 2% 3+1 Z {‘F o +1/2 -1/2; as, cx4| + ‘Fg** —1/2,+1/2;a3,a4| }

v 1 a0 (A.165)
= S Loy (o).
30 7

Using the result of the group factor averaged over a gauge index a of ¢** of eq.(A.137), widths

of the second string excited gluons, ¢**, with J = 2 and J = 3 for the process of ¢** — ¢q are

/=2 92\/§Ms 1Ny /=3 92\/§Ms LNy (A.166)
A AT T T S E '
Total widths of ¢** with J = 2 and J = 3 are obtained from eqs.(A.66) and (A.210),
22M;1 (N N 2V2M;1 (N N
/=2 — FVIM, 1 (N | Ny R s GV2M, 1 (N | Ny ‘ (A.167)
g 47 5\ 3 48 g dr T\ 6 15

squared amplitudes with second string excited gluon exchanges The amplitudes of
egs.(A.159), (A.160), (A.161) and (A.162) are rewritten as

Mona(9y .95 = a5.G5)

1 1 2M2 . 2/=t(—u)3/? 1 2v—=t(—u)3?(—u + 2t

N 492MS2 - - S ‘ ( U) 4= ( U) ( u + )1Zifa1a2a(Ta) ’
8MJ [ 65— 2M2+iV2MI')=2 3 s —2M2 +iv2MI')=3 aaes

(A.168)
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M2nd(gl_7g;— — qgry@f)
1 1 2M2.2(/—u(—t)3/? 1 —2v/—=u(=t)*?(—t + 2
_)_492M2 |:__ s . U( ) += U( ) ( + U):| Zifmaza(Ta) ’
6 s —2M2+iV2MIJZ2 3 s —2M2 +iv2MI=3 xaas

S 8MS
(A.169)
M2nd(Q1_aq; — 93_7 QI)

o4 2M2 1 |: 1 —2M52 - 24/ —t(—u)3/2 1 —24/ —t(—u)?’/?(—u + 2t):| Zifagtua (Ta)
I 65— 2M2 + iV2MIJ= 3 s — 2M2 1 iy2MIJ azay

5 8MS
(A.170)

~/\/12nd<q17762+ — g;;QZ)

1 12M2-2y/—=u(—t)** 1 =2y/=u(—t)**(—t+2
N 4g2MS2 - [__ s u( ) + = u( ) ( + u):| Z § fasaac (Ta) '
8MJ | 65 —2M2+iV2MI)=2 3 s —2M2 + iv/2MI)53 a2
(A.171)
Since the group factors are squared for each product of scattering processes,
* (99 = g — qq)°
1 N2Z-1N2-1 1 1 NZ-1 1 N

(N2 — 1)2 Z Z fees falazb Tr(TaTb> - (N2 _ 1)2 5 Z (fa1a2a)2 - N2 1 Ev

ai,a2 a,b ai,a2,a
(A.172)
* (q7— g — g9)°
N2-1N2-1 N2-1
1 ailaza raiash arb L1 aiaza) 2 N2_1N
N2 zb:f T (TTY) = 55 > () = g (AT
al,a2 a, al,a2,a
the squared amplitudes are
)2 )2 )
| Mona(g99 = q@)|” = [Mana(99 = @@, ... + [Manalgg = @], (A174)
_ 2 _ 2 _ 2 .
| Mawa(qq = 99)|” = |[Manalqq = 99)|.,, ... + |Monalq? = 99)|,, -
where
2
‘MQnd(gg - qQ)‘non—int.
¢t NN [1 AMH (tu® + ut?) 4 tud(—u + 2t)% 4+ ut®(—t + 2u)2}
8MP 2(N2 = 1) [9 (s —2M2)2 + (V2MI/=2)2 9 (s —2M2)2 + (V2MI/=%)2 |7
(A.175)

|Mona(99 — )|,

_g¢* Ny-N {2 (s —2M2)? + 2M2T)22T0 58 2M2 (tud (—u + 2t) + ut®(—t + 2u))1
CAME2(N? = 1) [9 (s — 2M2)> + (V2MIJR2)? (s —2M2)2 4 (V2MIy=)2 |’
(A.176)
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| Mana(qd — g9)|

non—int.
gt N1 [1 AM2 (tu?® + ut?) 4t (—u 4 26)2 + utd(—t + 2u)2:|
SME 2N 19 (s —2M2) + (V2MIGEE? 9 (s = 2M2) + (V2MDG2)> |

(A.177)

[ Moua(ag — 99)|..,

gt NP-1 [2 (5 = 2M2)* + 2M2T)=2T )57 2M2 (tu® (—u + 2t) + ut®(—t + 2u))]
CAME 2N |9 (s —2M2)2+ (V2MIJE2)2 (s — 2M2)2 + (V2MI))?
(A.178)

widths of first string excited gluons with J=1 A fact that the first string excited gluons
have J =0, J =1 and J = 2 is verified, by counting of physical degrees of freedom in ref.[38].
However, as it is found from eqs.(A.128) and (A.129), the string excited gluon with J = 1
cannot be accessible in the process of qg — gg. In order to calculate a width of the string
excited gluon with J = 1, we identify it with an intermediated state in scattering processes of
g9 — gg and gqg — gg, where g denotes a gluino which is a superpartner of gluon.

Using the supersymmetric Ward identity[74], amplitudes with external four gluinos are
shown as

ST 23 _ _

M(glagg_ag;_7g4) :%M(glmg;ag;mgél)’ (Al?g)
e~ 24 _ _

M(9179;7937QD :%M(gug;agga&f) (A180>

If we consider two-gluino scattering processes, g1, g2 — g3, g4, kKinetic factors of egs.(A.179) and

(A.179) are
%:_1 : %:4_1, (A.181)

Let us consider two-gluino scattering amplitudes with the first string excited gluon ex-

changes. Inserting the string form factor functions in the limit of s ~ M2 of eq.(A.18) into
them, from eqs.(A.20) and (A.21),

o 1 u\* e as g
-A/llst(gl7f]g__>g?mg;,{_)2 492Ms2m<_§> TI"({T 17T2}{T37T4})7 (A182>

S

o ar 5 1 t ’ a a a: a
Mua(Gr. 95 = G5, 05) = —4¢° M — 5 (‘g) Te({T%, T T T*}).  (A.183)

Since angular dependences in eqs.(A.182) and (A.183) are decomposed into the Wigner d-
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functions of J =1 and J = 2,

1+ cosf
dillﬂzl (0) = 5
_ 1 —cosf
d:{:il:yzl (0) = T )
1+ cos® (A-184)
d{7%, (0) = — (2cosf —1),
1 —
d;ﬁ?ﬂ (0) = LSG (2 cos 0 + 1) ,

the two-gluino scattering amplitudes become

Mua@, 5 = 85,50 = 829 M2 o | 2075 () 4 {77, (6)| S dmet aes,
. (A.185)
Mis(G1,05 = 95,0) = =329°M; — %dﬁfﬂ (9)—;1611?2“ (@) ) S dmetdeset
o 7 (A.186)

Extracting matrix elements of the first string excited gluons from the amplitudes of eqs.(A.185)
and (A.185),

Fee ﬂ};‘ﬂ asas = F V6 gM, d 4 | Fe. iff;ﬂ nanas = 22 gM, d®4 . (A.187)

On the other hand, using another of the supersymmetric Ward identity, amplitudes with
external two gluinos and two quarks are

e 24 o -
M(Ql 76279;794) %M((h 7q3_7.g;_ g4)7 (A188>
— 23 _
M(Qlaqgagdagi) %M(Q17QZ793 g4+)7 (A189>

If we consider two-body scattering processes of quarks and gluinos, ¢1,q, — 93,94, kinetic
factors of eqs.(A.188) and (A.189) are

24] \ﬁ 23] u
il RN Lot SN A.190
23] uw o [24] t ( )
Let us consider scattering amplitudes of quarks into gluinos, with the first string excited
gluon exchanges. From eqgs.(A.128) and (A.129),

o ~ ~ 1 t u a5 pas
Musilar @ = G5, 90) = 29" M — YE (_g) (_g) {12, T} (A.191)
1 U t Qa a
Musilar @ = 5,91 = —29" M — UE <—§> (‘g) {1, T}, . (A.192)
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Since angular dependences of eqs.(A.191) and (A.192) are decomposed into the Wigner d-
functions of eq.(A.184), the amplitudes are

L 1 (1, 1 ] o
Mlst(ql qu — 03 792—) = 892M32 P MSQ 1 d{1,1—1 (9) - Z dil,z—l (9) §d saad (TA)agag ’
(A.193)
P ~. ~ _]‘ = 1 = ] azaq
Mg (g ,q2+ — 93+>94 )~ -8 92Ms2 s_ M2 |2 dil,lJrl (0) + 1 d£1,2+1 (0) Zd saad (TA)a2a1 :
s L 1A
(A.194)
Using the results of the matrix elements of G* of eq.(A.187),
1
J=1A A J=2A A
Fo- +£1/2,F1/2a3,00 — + % ng (T )a4a3 ! Fe- +1/2,F1/2; 03,00 _E gMS (T )oc4oc3
(A.195)
a width of the first string excited gluon with J = 1 for the process of G* — ¢q is
/=14 _ 1 1 F.. /=14 2 Fl.. /=14 2
G*—qq — 167TMS 2% 1 + 1 Z | G* +1/2,71/2;013,a4| + ‘ G* 71/2,+1/2;a3,a4‘
.0 (A.196)
M, 1
= L5 Sy (AT
481 3
Since the group factor is 3 in eqs.(A.137) and (A.138) for both g* and C*,
M, 1N @M. 1 N
IR M = =9 e A.197
9 Ar 324 7 TN 4r 324 ( )

widths of second string excited gluons with J=1 Next, consider two-gluino scattering
amplitudes and quarks into gluinos scattering amplitudes with second string excited gluon
exchanges. The amplitudes are

1 % u t
~— ~ ~ ~4 ~ 2 2 _ - _ _ a a Qac: a
Mona(G1,95 — 93,09, ) ~ —8 g~ M; —3—2]\/[52( s) ( 8+S)Tr([T T2 [T 7))
(A.198)
N> u ot
~— ~4 ~F ~— ~ 2 2 _ - _ _ a a a a
Mona(G1:95 — 93.92) = 89 M; REYVE ( 8) ( o+ S) ([T, T[T, T)).
(A.199)
1 t U u t
- —+ ~— N 2 2 _ _ — — a a
M2nd<Q17QQ —>g3,g4)— 4g MSS_2M52< S)( S)( S+S) [T 3’T4]a2a1’
(A.200)
1 U t u t
w00, T = G, 05) ~ —4g> M2 —— =) (o) T, T] .,
M2 d(q1’q2_>g37g4> g SS—QMSQ( S)( S>< 8+S>[ ’ }agal
(A.201)
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Since angular dependences of egs.(A.198), (A.199), (A.200) and (A.201) are decomposed into
the Wigner d-functions of J =1, J =2 and J = 3,

_ 1+ 0
diﬁil (0) = % ( 1 (cose— 1) + 5(0089— 1) + 1) ,
A.202
1 —cosé ( )

dis m(@)— 5 (4((3059—1) +10(c089—1)+6),

the amplitudes become
Mona(91,95 = 93,91)
~ 4 2M2 12M2 [ 2 d{ilfl (9) + id{f—l (9) + _dJ1 71 ] Zfalaza azasa
(A.203)
Mona(Gr .95 — 95.95)
~_ 4g2]\/[2 1 [ 9 diilﬂ 6) + 152 d£12+1 ) - d‘ilgﬂ ] chuaga fasasa

—2M2| 20
(A.204)
Man(quq; — ggagi)
1 1 — 1 2 - £a3a4a a
>~ 492M3m |: %diil_l (0)+ 12dJ12+1 (0) 15dJ13+1 (9):| sz ’ (T )agoq’
(A.205)

MQnd(q;aa;_ — 27/;754_)

1 1 = 1 = 2 = © £a3040 a
~ — 4g° M sl {—2—0 Al (0) + 2 d’3%,(0) + R d’3 (9)} > ifesse (T ) ey
(A.206)
Therefore, matrix elements of ¢g** are
J=1la 3 asaqa
Fg** :‘:1/2,?1/2;&3,&4 - ﬁ gMS f ’
=za 5 a3zaqa
Fg** i?/22,$1/2;a3,a4 =+ \/;ng f a4 y (A207>
a 2\/§ azaqa
Fyon 1105512 as.00 = \/_1—59Ms2f34 :
J=1la . a
Fg** +1/2,F1/2;a3,00 — L 3\/5 ng (T )a4a3 ’
=2a . ]- a
Fguen 11/22,11/2;%,014 =+ \/—1—5 gM; (T )a4a3 ) (A.208)
2v/2
J=3a o . a
Fger +1/2,F1/2% 03,00 L \/_1—5 gM; (T )a4a3 .
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Then a width of the second string excited gluon with J = 1 for the process of g** — ¢q is

1 1 _ 2 _ 2
J=1la __ J=1a J=1la
g**—qq — 1671'\/_M 2x1+1 Z {‘Fg** +1/2,—1/2;a3,o¢4| + ‘Fg** —1/2,+1/2;o¢3,o¢4| }

a3 (A.209)

2

FVIM 1 (7).

167T 45 3
that is,

¢>V2M, 1 N
[l g= "z =t A21
2@ 4r o 3360 (A.210)

and a total width of ¢** with J =1 is from eq.(A.66),

2V2M,1 (N N
puzt o CV2M LN NG (A.211)
g dr 3\ 4 360
B Standard spinor products
Spinor products associated to momenta k; and k; are defined by
ij) = ulk;, —) ukj, +) =v(k;, +) v(kj, —),
(i) = e, =) ully, +) = ki, +) vl ) -

S
=
I
=

(kia +) u(kjv _) = E(kiv _) U(kjv +) :

u(k, \) and v(k, \) are Dirac spinor wave functions of massless fermions, as eigenstates of helicity

A. The massless fermion has a four-momentum k* = (k, k) with k = |k|(sin 0 cos ¢, sin 6 sin ¢, cos ),
where |k| = |k|, # and ¢ are polar and azimuthal angles in the polar coordinate system. In the
standard representation, the Dirac spinor wave functions can be chosen as follows,

(e—i¢/2 cos 0/2) (_6—i¢/z sin 9/2>
02 s i6/2
ulk,+) =v(k,—) = VEk e sin6/2 uk, =) = v(k,+) = VE e’ cosf/2

e"/? cos /2 ’ (=T sing/2
e'?/2 sin /2 /2 cos /2

(B.2)
When k& > 0, the spinor products (ij) are
2[— sin %2% cos 2z ¢7 — isin 10 gip 9o d)J
(i) = \/—2k; - k; V2| 2 2 ) , (B.3)
\/1 —sinf; sin §; cos(qbz- — ¢;) — cosb; cos Gj
[+ sin %2 cos 2z ¢] — jsin Yt gip i ¢J
[ij] = /—2k; - k; V2| 2 2 . , (B.4)

\/1 — sin @, sin §; cos(gbi — ¢;) — cos 0; cos Hj

and has important properties

(i) = lig]] = /—2ki - Ky, (ig) =—=(i) , [ig] = —[ji]. (B.5)

For example, consider a two-body scattering process 1,2 — 3,4 (1,2 refer to incoming parti-
cles, while 3,4 to outgoing particles). In the center-of-mass frame, momenta of the incoming
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particles can be set along the z axis, and that of the outgoing ones can be set in the x-z plane.
Suppose that a scattering angle in this process is 6, polar and azimuthal angles of each particle
momentum, #; and ¢;, can be taken

ki =k(1,0,0,1) = (61,61) =(0,0),
kY = Ek(1,0,0,—1) = (02,¢9) = (m,0), (B.6)
Ky = Ek(1,sin0,0,cos0) = (05,¢3) = (6,0),
kY =k(1,—sinfh,0,—cosf) = (04,¢4) = (04 m,0)

In the process, spinor products are given as
(12)=@34)=vs ., 13)=04)=v-t , (14)=(32)=V-u, (B.7)
where s, t and u are the Mandelstam variables,

s = —(k1 + ko)* = —2ky - ky = 4K,

1 —cost

t=—(ky — k3)® = +2k; - kg = —s — (B.8)
1

w= (k= k)’ = 42k ky = —s e

C Calculation of four-point open string amplitudes

C.1 Four-point open string amplitudes at disk-level

String amplitudes are correlation functions of the corresponding vertex operators on a given
topology of the two-dimensional world-sheet. In this thesis, we use the results of four-point
open string amplitudes at tree-level, namely, four-point correlation functions of the open string
vertex operators on a boundary of a two-dimensional disk Dy. The S-matrix on Ds is

SD2<1€1; kQ, ]{Zg, ]{Z4) = 67)\ / dzy TI'< :C(Zl)V(Zl) X :C(ZQ)V(ZQ) X :C(Zg)V(Zg) X :V(Z4):>+(k2 < kg) ,
h (C.1)

where * * denotes the boundary conformal normal ordering, ¢(z;) is the ¢ ghost field and V(z;)
is the vertex operator, and the trace is for Chan-Paton factors of the vertex operators. We
can fix three positions 2, 2o and z3 of the vertex operators, for example, z; = 0, zo0 = 1 and
z3 = 00. There are six cyclic inequivalent orderings of the four vertex operators, depending on
the position of V(zy),

Spy, (ki; ko; kg ky) = e‘k{/

—00

0

a2 Tr<:v<24>::c(zowzl)::c<Z2>v<22>::c<Z3>V<Z3)1>
+ / dz4Tr<:c<zl>v<zl)::vw::c<22>v<zQ>::c<23>"<23>1>
o dZ4Tr<:c<zl>v<zl>::c(zzwwz:V<Z4>::c<23>v<z3>i>}

+ (kg — ]{Ig) .
(C.2)
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Note that in order to cancel the background v ghost number —2 on the disk, the vertex
operators are chosen to have the appropriate ghost picture and the total picture must be —2.

C.2 Four gluon amplitudes

The gluon vertex operator with the picture —1 is

VD (2,6, k) = ga Tt (2)e ¢ X () (C.3)

g

and that with the picture 0 is

Vg(g)(z, e k)= \/g;_ T, [z’X“(z) +2a'k - w(z)w“(z)]eik'X(z) : (C4)
Oél

where e, is the polarization vector. The picture corresponds to an exponent coefficient of
the holomorphic scalar field ¢(z), and e~®*) is the vertex operator of the fy NS vacuum
|0)2% in eq.(1.66).33 This comes from the fact that the Sy ghosts are bosonized using ¢ and
anticommutative fields n and &,

>~ e ?0¢ v e, (C.5)

Then, the S-matrix is
Sp,({a;, e, ki}) = e_’\/ dzy Tr<:C(Zl)Vg(a_ll)(21, e, kl)::C(ZQ)V;a_QI)(ZQ, g, ko)™

X :c(zg)Végg (23, €3, kg)ijga4(z4, eq, k) > + (kg <> k3) .
(C.6)

The correlation functions of operators are calculated as follows,

4 4
<H * gthi X (i) « > = iOp (2m)P0P (32, ks) H R (C.7)

i=1

I

<_
3 . Ny

<H :eZk’X(Z’)::XM( ) ikg- X(z4)*> = — %% Z i <H ik;- X(Zz):> , (08)
! 244

=1 =

2 4

ik;- X ) ikj- X 2 : - k'j U S : ik;- X

*x SUK;* Zi) % 1 z -/ 7 / * K" Zi) %

Il*e ()*” XJ( e (J)>—{(—27,a) II E “—204(34>2:|<||*6 ()*>,
j=3i=1l,i£j J*

i=1 j=3 j i=1
(C.9)
(c(z1)e(2)c(z3)) = Ch, 219213203 (C.10)
1
(refB) o)) = — | (C.11)
Z12

33The vertex operator of the 3y Ramond vacuum |0>R in eq.(1.67) is e~ ¢(2)/2,
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() () = (C.12)

212
1
(4 (20)0" (2) 1P (25) 1) = o (=" 0" + ), (C.13)
! 1
M1 K2 woyVighti (5 Y%\ — _ _ pMV3 ([ H2V4 (3[4 U3V 02 [ha
(P (z) 2 (2) [ | s0m e (20) 1) o Ry )

=3
+ 77#1#3(_77#21/477#41/3 + 77#2“4771/3”4)]

1 : (C.14)
H2V3 (o M1V M3 M1 4 ) 3 VA .
t o [+ Vs (—ptavaphska 4 praiappsv)

_ n#2#3(_nlt11/47]u41/3 + n#1u4nl/31/4)}

+ 1 5 T]NIHZ (_nu3u4771/31/4 + nu4l/3nu3l/4) 7

2’12(2’34)
where C’f)(? and 7}, are constants and z;; = z; —z;. The normalization of the gauge boson vertex

operator g4 has the following relation with the gauge coupling constant on the Dp-brane, g4 =
V20 gy, and the universal factor Cp, = e *C}, CY, is determined so that Cp, = 1/g%po/2.

Since the S-matrix is described by the invariant amplitude M as S = i(2m)PP (>, k;) M,
the disk-level open string amplitude with external four gluons is

1
M(91792793794) — 492 K(@l,eg, es, 64) _ ‘/tTr(TmeTaaTazl + Ta1Ta4Ta3Ta2)
SU
1
+—V Te(T“T“T>T* + T T*T*>T™) (C.15)
Uu
1
+—Vu Tr(TT2TT* + TYTSTT*) |
S

where ¢ is the gauge coupling constant of strong interaction, IC(eq, 9, €3, €4) is the kinematical
factor defined as
K(ey,ea,e3,64) = €1,€2,€3p€44 [ — tun™n’” —usn"n" — stn'n"’
20 (PREES + P ORUKS + o TRARS PR
+ 28 (1P kg kY KGR kg 1 R k)
+ 2t (" KSKT + 0" RYK] + 0 RERS + 0 RS KY)]

(C.16)

and V, V; and V,, are functions of the Mandelstam variables which are defined in Appendix A.

C.3 Two gluon and two quarks amplitudes

The quark and antiquark vertex operators with the picture —1/2 are,

Vé;ﬁlﬂ)(z’ u, /{?) — ngaﬁuA@)\(Z)€f¢(z)/25aﬁb(Z)eik-X(z) ’ (C17>
Va(;;/Q)(Z,ﬂ, k) = ngaﬁﬂj\@}\<Z>e—¢>(z)/2§aﬂb(Z)eik-X(z) 7 (C.18)
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where u* and 5 are the fermionic wave functions, and ©(z) is the spin field,

1

= H explis,H(2)] - (C.19)

a=0

The spin field is the vertex operator of the R sector ground state |{s,}; k)r with spin s, = +1.
This comes from the fact that in the R sector, the fermionic operator ¢/* is bosonized using the
holomorphic scalar field H*,

L(E YY) a=0

\/%(w?aiw?aﬂ) a=1,...,4.

et =~ (C.20)

The vertex operators (C.17) and (C.18) correspond to an open string originating from a D-
brane intersection (a,b), and they connect two segments of the disk boundary, associated with
stacks of D-branes a and b. The field 297 in eq.(C.17) is the fermionic boundary changing
operator. In intersecting D-brane models, the intersections are characterized by angles 6.
Then, =% and 2" can be expressed in terms of bosonic and fermionic twist fields ¢ and
s[73],

Zeb(, H"e SO Z Hg o (2)5 g1 (2), (C.21)

where the spin fields

sei(2) = expli(¢/ — 1) HI(2)], s_gi(2) = exp[—i(6/ — 2)H/(2)] . (C.22)

The S-matrix including two gluons and quarks is
SDQ({aia €is kl7 Q;, ﬁi) Uj,s kl})
= G_A/ dzy Tr<IC(Zl)Végz (21,1, k1) 7 1 Vhe) (22, €, Ko (C.23)

x re(z) Vi P (25, u, k)t 2 c(z) VP (2, 1, k4);> + (ky ¢ k3).

Qo By

The correlation functions are calculated as follows,

1

< e~ zl)**e Z3)/2**€_¢(z4 /2 > — —1/2 75 1/1 (CQ4>
213 *14 34

(" (21)Ox(23)0*(24)) = %ﬁ(auﬁ)?- (C.25)
213 “14

The normalization of the fermion vertex operators g, has the relation with the string coupling,

11/4 2/2

gy = V2a' o/ " gs, and the universal factor is determined so that Cp, = 1/g;a
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Then, the disk-level open string amplitude with external two gluons and quarks is

Q4

1 1
M(g1, 92,43, G4) = 29° K(ey, e, u3, Uy) [a Vi (TQITGQ)% +3 Vi (TGQT(“)%M] ; (C.26)
where KC(eq, €9, u3,Uy) is the kinematical factor defined as

1 t
lC(el, €2, Ug,ﬂ4) = 61M62V{§ kﬁlp(u3a‘p5“0‘Vﬂ4) + |:(SZ]€§ + g((sgkf - (S'Zkg — n“yklp):| (U3o'pﬂ4)} .
(C.27)
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