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Abstract:  The (N - 1)-dimensionai Maxwell fish-eye is an optical system 
with an SO(N-1) manifest symmetry and a SO(N) hidden symmetry, but aiso 
an SO(N, I) potential group and the SO(N, 2) group of the ( N -  1)-dimensional 
Kepler and point rotor systems. The optical Hamilton|an is proportional to 
the Casimfr invariant. We use a stereographic map extended to a ©anon~ca[ 
transformation between the two phase spaces of the rotor and the fish-eye. The 
groups permit a succint '4~' way|sat|on that shows that the constrained system 

support only discrete Hght colors and that it unavoidably has chromatic 
dispersion. E|ements of the potential group relate the fish-eye asymptotically 
to free propagation in homogenous media. PACS: 02.20.-~b, 42.20.'-y 

1. Introduction 

The  Maxwell  fish-eye is an optical med ium that  is t ruly the  Hydrogen a t o m  of optics: 
it possesses a manifest  S O ( N  - 1) and hidden SO(N)  ro ta t ion  symmet ry  groups,  an  SO(N,  1) 
dynamical  and potent ia l  group, and an SO(N,  2) group, one of  whose compact  generators  is the 
root of the  SO (N) Casimir  - - v e r y  much like the  number opera tor  in the  classical Kepler  system. 

In a geometric-optics Maxwell  fish-eye, the paths  of  light rays are circles on planes that  
contain the  origin. I t  was shown by R.K. Luneburg [1] tha t  these are the  8tereographic projection 
of great circles on a sphere in one higher dimension. (See also Refs. [2] and [3].) Con/er: the  
work of Fock [4] and Bargmann  [5] on the hidden symmet ry  of the  H-atom.  H.A. Buchdahl  in [6] 
mapped  the  constants  of the  fish-eye circles onto the angular  m o m e n t u m  and Runge-Lenz vector  
constants of the Kepler  orbits.  These are generators of an S0(4)  group under  the Polsson bracket.  

The  Maxwell  fish-eye is considered as an example  of a perfect  imaging ins t rument :  all light 
rays issuing from one point  in the  med ium will follow circle arcs t ha t  intersect  at the point  conjugate 
to the first, ~ all wi th  the  same the  optical  length [3]. This  is a rare instance of a '4~r' optical  
instrument;  it is a system worth  s tudying for its group-theoret ical  interest,  and as an example to 
call ibrate the  Lie-Hamil ton formulat ion of  geometr ic  optics and its subsequent wavizat ion.  

~Thk contribution to the XV[l! Internattomsl Colloquium on Group Theoretical Methock in Physics k an abstracted version of: A. Frank, 
F. Leyvre.~ and K.B. Wolf, Hidden symme|ry and potenfl~ group of the Maxwe/l ~h-eye, J. Math. Phys. , accepted (1990). 

* Iostltuto de C|ancins Nucleate| 1 UNA]~. Commlsioned at IIMAS-UNAM in Cuern&v&r~a, 
* $ lnstltuto de Fk|ca~ Laboratork~ de Cu~uavacal UNAM. 
1Two points ~1 and q2 are eo~ugate when they are antiparailel and their magnitudes relate as q l~  ---- P. They are 
the stereographie ir~ages of a pair of antipodal polnts on the sphere of radius p. 
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Section 2 presents and discusses the Hamilton equations for inhomogeneous optical media. 
Section 3 recalls the Hamiltonian formulation of the spherical rotor (point rna~s constrained to 
a sphere) and its subsequent stereographic map over a plane. We find the conjugate momentum 
transformation that must accompany this map if the transformation is to be canonical in the usual 
symplectie sense. The dynamical so(N, 2) algebra of the rotor is mapped in Section 4 on the fish- 
eye, and its action integrated to the group is given explicitly for two key one-parameter subgroups. 
Section 5 presents the essentials of the wavization process through choosing the realization of the 
dynamical algebra on the Hilbert space of functions on the sphere, stereographieally projected. 

2, The Hamiltonian in optics 
One may show that  the two Hamilton equations of optics derive from the first principles of 

differential geometry and the Snell-Descartes law of refraction, respectively [8], [9], [1O], [11], when 
the evolution parameter is along an optical axis in space. When the evolution parameter is t/me, 
similar considerations [12], lead to the Hamilton equations 

dq e 8~ °pt dp c Vn = aX°Pt (2.1a, b) 
d-t = n'2 p = Op ' d'-~ = n - 0 - ' ~ '  

with the optical Hamiltonian function 2 
p2 

~°PtCp, q) = ¢ ~  + constant. (2.2) 

This holds for general space dimension D, q = (ql, q2, . . . ,  qD), and similarly for p.  Since the value 
of the Hamiltonian function Hopt is preserved along the lines of the flow, it is a constant of the 
motion. Hence, the momentum vector p is constrained to have squared length 

= (2 .3 )  

This is the Descartes sphere of ray directions, whose radius depends, in inhomogeneous media, on 
the point. 

Geometric optics models light rays as the paths taken by points indicated by q(t) E ~ o ,  
at a time parameter t, whose velocity vector v --- dq/dt must be of magnitude ]v[ = c/n(q) at each 
point q of the medium. The velocity is related to the optical momentum by v = c/n 2 p. 

We should compare the general optical Hamiltonian function (2.2) with the prototype of 
mechanics, p2/2rn + V(q), to see that they are no t  equal. We expect that  the usual tools of 
quantum mechanics based on the Heisenberg-Weyl algebra where p E ~O must be adapted to 
4~r optical systems basing them on a group-theoretical formulation that pays attention to the 
symmetries of the system. The formulation is by these simmetries. 

3. The isotropie point rotor, stereographically projected 
We work with the Poisson bracket formalism and symplectic geometry of phase space. 

The configuration space of a point mass in A r dimensions is the ensemble of position coordinates 
(~ = {Qi}~=l E ~N. It is a point rotor when constrained to a sphere of radius p, 

N 
= 6 = E = q "  q + = 

i= l  

2We assume the op~.ical medium is time-independent. 
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It is usual to indicate by boldface Q = (01, O2 . . . .  , QN-1) the first N - 1 components of (~ = 
(Q, ON). The constraint on configuration space is thus 

OK ) = cr p ~ - - I Q ]  2, a E {- I - I ,0 , - I} .  (3.2) 

The aign a of O(~ ) labels the two hemispheres and the Q(~) = 0 equator. (We shall disregard the 
latter.) The HRmiltonian flow must leave that sphere invariant. 

Functions F of phase space (ff,(~) whose Poisson bracket with (~2 are zero, preserve the 
sphere and satisfy {F ,  (~2} = 0, i.¢., 0 N = ~i=1 2Ol {F, el} -- --2 (~. ~. So, among the linear and 
quadratic functions of the basic N-dimensional Heisenberg-Weyl algebra, only 1, Ol, OiOy, ..., 
and 1:Li. j = Qipj - Q, jPi have this property, and sums and products thereof, i.e., the enveloping 
algebra of the Euclidean algebra'iso(N). The second degree Casimlr function (of fourth degree in 
Q~ and Pj), is 

~ , ~ , j ~ , j  : _ ( ~ . / 7 ) 2 .  C3.3) 

(This is the angular momentum tensor Q ×/7  in N = 3 dimensions.) There is an abelian ideal of 
O's of dimension 1-FN + ~ N(N-i- 1)-t-. • .. The Lie transformations [13] generated by these functions 
leave configuration space (~ invariant. They only affect rnornen~m space through/7 ~-+/7 + f((~). 

The iaotropic point rotor is defined by its Hamiltonian being a rotation invariant, i.e., 
~ot can be only a function of • in (3.4); quadratic in momentum and constant of the motion is 
~/rot = co+ = E, with scale constant w. The fourth-order invariant is ~ P~,jRy, kRk,lRl, i = 2+ 2. 

The cor~tralnt of the sphere, Eqs. (3.1)-(3.2), leaves us with a lower-dimensional phase 
space. We expect another phase-space constraint to be imposable [14], because Hamiltonian phase 
spaces are of even dimension. One may show [12] (it is not obvious) that extinction of ON as an 
independent variable is compatible with setting PAr = 0 in the Lie algebra generators Ri,y, Oi, 
etc., and using Dirac brackets [14b, c]. The Dirac brackets turn out to be the Poisson brackets in 
the first .JV - 1 coordinates (~N is now simply a function of the remaining coordinates). Since we 
denoted Q = (Q, Oh-); let us similarly denote/7 = (P, 0) where P are the first N - 1 components 
Under this ]roto, map, the so(N) symmetry subalgebra generators become 

L ; , j .  = ~ , ~  I~o,o~ = 0 ; P ,  - Q i e ; ,  i , j  = 1 . . . .  , N - 1, (3 .11)  

Me -- P~,JVi.oto. --- - c ' V ~  - IQI 2 P+, i = 2 . . . . .  N - 1, (3.4) 
The Hamiltonian function becomes, for some constant w, 

~rot ~-- ~C, C = +lrotor = p2[p[2 _ (Q.p)a .  (3.Sa, b) 

Under the rotor map the Lie-Poisson bracket relations among these functions are the same in this 
reduced 2(N - 1)-dimensional phase space (Q, P) .  Free motion of a point rotor in ((~,/7 ) is on arcs 
of great circles. The restriction to (Q, a ,P )  projects the point rotor on two copies of its equatorial 
plane (distinguished by the hemisphere sign o), and with a netu canonically conjugate momentum 
P. The trajectory jumps between the two values of the sign ¢r when it crosses the sphere equator. 
This is the spherical rotor motion projected on the equatorial plane. 

The map between the projected sphere coordinates Q E ~N-1 ,  Q < p, and the plane 
q E ~ N - 1  given by 

2pQ 4p2q (3.6a, b) 
q = p - . o ' ~ '  Q = [ql 2 + 4P 2'  
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is the usual stereographic map, that 'opens' the SN_ 1 rotor sphere to the plane that is the Maxwell 
fish-eye configuration space. Seen as a canonical map between the full phase spaces, it must be 
accompanied by the corresponding momentum map 

- 4P 2 (p  2q.p q)  (4.7a, b) P = P-c'~r~2p I Q [ 2 P -  Q'P2-'-~ Q'  P = [ql~ +4P2 + 4pff---Fql 2 " 

This is a map between two 2(N - 1)-dimensional phase spaces; the (~, 15 ) space of the constrained 
rotor motion need not be used further. The nature of the map is that of optical diotoraion, i.e., 
point transformation of configuration space; as a m.ap in momentum space, it is eomatie (and 
distinct from the comatie map studied in Ref. [10]). 

We may write the so(N) functions (3.4) in (q,p).  They are 

LiE = qiPy - qjPi, i, j = 1 , . . . ,  N -- 1, (3.8a) 

[ (  ~p~:) q 'Pq ]  /---- 1 , . . . , N - 2 .  (3.8b) Mi=P 1 - - - -  P+2 - -~  ' 

The Casimlr and H~miltonian functions in can be calculated replacing q(q,P) and p(Q,P) in 
(3.5). They are 

/ N-1 2 N-1 2x _.1 E 
C= ~ ~ Li , j+ ~ A/I~) =p2( l+ lq j2 /4p2)21p[2=w~(q 'P)=-"  (3.9) 

i<~'=2 = W 

We may now compare this projected rotor Hamiltonian ~ with the generic optical Hamiltonian 
Nopt = c]pl2/n(q)[2 in (2.2). They are equal only when the refractive index of the optical medium 
is that which characterizes the Maxwell fish-eye: 

n ( q )  = I + I q ] 2 / 4 p  2 '  no = n ( O )  = . ( 3 . 1 0 )  

4 .  T h e  fish-eye io(N,2)  dynamical a l g e b r a  

The realization of the so(N) algebra shown in (3.8) is well known in the theory of the 
hydrogen atom [4-7]. If we label the so(N,M) generators as Ai,y , i , j  = 1, 2, . . .  N, N + I , . . . ,  N + M ,  
their standard Lie (Poisson) bracket relations are 

{~,S, ~k,~} = gj, k,i~,i + gl,uik,j + g j ,~ ,k  + g,-,k,ij,~, (4.1a) 

where 
1, j=k_<~r ,  

gi,k= --1, N-I-I <_j=k<_N-I-M, (4.1b) 
O, otherwise. 

The symmetry properties of the indices are X/,;. = -Ay,i for i , j  both in the range (1, . . .  ,N)  or 
both in (N + 1 . . . .  , N + M),  and +Aj, i otherwise. 

We enlarge the so(N) generator set in (3.8), Li,y = X/,;. and M i = A/, N for i , j  = 
1, 2 , . . . ,  N - 1, with the following so(N, 1) generators: 

K i  = ~ , N + ~  = M i  - 2 p p l  = p - 1 + - -  p l  + ~ o 2  q~ , 

K N = AN, N+ 1 = - q . p .  (4.2b) 
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These are the 'noncompact '  generators because of the minus sign in {Ki,  Ky} = --Li,y. Thus 
KN = --q.p generates magnifications of configuration space: 

exp~{KN, o ~ : f ( q , p )  ~ f ( e -Pq ,  e~p), ~ E ~. (4.3) 
In particular, 

e x p f l { K N ,  o} : ~(p)e,h-eye ~, ~(Jp)e*h-ey® (4.4) 

We have thus the line fl of noninvariance transformations, where the radius p of  the rotor sphere 
dilates to infinity as fl --* so. Setting 0J = ½cn~2p-2~ we map the Maxwell fish-eye Hamiltonian 
~(p)eJh-eye onto the homogeneous medium Hamiltonian X (eo)a.h-,ye = no. 

We note the coordinate functions Pi = (Mi - Ki)/2P. Thus a second visible noninvariance 
transformation of the optical fish-eye Hamiltonian is the ordinary configuration-space translation: 

exp~, ia i{M i - Ki,  o} : ,~ (q,p)~h-eye ~ ~,(q _ 2pa, p)~h-®ye (4.5) 

We may thus map a Maxwell fish-eye to another fish-eye whose center of symmetry is at a instead 
of the origin, and/or dilated, up to the homogeneous medium. The algebra with the property that 
it relates the system to the homogeneous medium, is the potential algebra of the Maxwell fish-eye. 
Up to now, potential algebraa of the family so(M,.N) were used in Refs. [15], [16], and others, to 
relate the PSschl-Teller potential to the free particle, for example. Here we see that the concept 
also serves optical systems, and in this case the algebra can be truly integrated to the Lie group: 
(4.4) and (4.5). 

The set of generators of so(N, 1) given above is further extended to so(N, 1) when we add 

Hi = ~,N+2 : qiP, i = I, 2 , . . . ,  N -- 1, (4.6a) 

]:IN = AN, N + 2  = HN+I - 2pp = -p(1  - lql2/4p 2) p, (4.6b) 

~V = HN+ 1 = AN+I,N+ 2 = p(1 + Iq12/4p 2) p = -}-V~. (4.6e) 

Here X is the root of the so(N) Casimir function C in (3.9), and a compact generator of so(N,2) 
that is a constant of the motion. In the Hydrogen-atom [17], [18], this is the number operator. 
Note that we have introduced the function p = pv/p-=~ = IP[" 

The integrated group action on phase space generated by ~{ : HN+ 1 = A n + l , N +  2 is 

2 4-~,] j p~: + sin++, + ~ q .  q+, 
4p2 (4.7.) 

[p cos + + q-p/2p sin s]q i -- p(1 + lql2/4p 2) sin s Pl (4.7b) 
exP s{)~/, °} : ql = [ c o s s  + +(1 - eoss)(1 + Iq12/492)]p - l q . p / p  sina" 

The parameter s measures length along the flow lines. The time evolution generated by the 
H~m~Itonian H a'h-eye = wj~2 is thus 

exp t ( H  a'h-'ye, o) = ~ p  2 ~ ( ~ ,  o), (4.s) 

in termos of (4.7) w i th  s = 20~r/t, where ~ is the constant of the motion ~ = p(1 + Iql=/4p2)p. 
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5. Wavization o f  the Maxwell f i s h - e y e  

We may 'waviz¢ ' the Maxwell fish-eye as a dynamical quantization problem of mechanical 
systems [19], since we know the symmetry and dynamical groups. This is based on the scalar 
wave equation for a function ~(Q, t), of a single color ~ [so ~(v)({~, t) -- ~ (Q )¢i~], restricted to a 
sphere ~ = , d  [so ~ ( ~ )  = ~p(d) ,  n+ = Q;/ I~I]  - - the sphere on which the mass point moves, and 
stereo~raphically projected on the Maxwell fish-eye space of N - 1 dimensions, whose coordinate 
q G ~Jv-1 we continue to indicate by boldface. I t  leads to the solutions of 

where C is the Casimir operator of so(N), 

= ~ ,~ ,  ~+,k = i Q~o-~-~+ - Qk • (52)  
]',k 

This realization of so (N) is also well known from the theory of quantum angular momentum. 
It is different from the Poisson bracket realization of geometric optics used in the foregoing sections. 
We surmise this leads to the proper 4~r wavization of the Maxwell fish-eye. The operators A~',k are 

self-a~oint in the space L2(SN_I) of Lebesgue square-integrable functions on the sphere SN-1 [20]. 
The wave equation (5.1) is thus reduced to a Sturm-Liouville problem whose proper  eigenvalues 
on the right-hand side axe ~ = £1v(~' + J7 - 2), ~ = 0,1,2~. . . .  and consequently, the possible 
colors ~, the medium can sustain are: 

. .  = ~ . ( ~ .  + ~ -  2), ~ = 0,~,2 . . . . .  (~3)  

The projection.of the Lie algebra of Aj, k's from the sphere onto the Maxwell fish-eye space 
q, proceeds as if we were to use the chain rule to write 

<' ° +  ° 
+Q, _ - - .  (~q /  ,p22__qilq12q' ~qq) '  (5.4) 

for i : 1, 2 , . . .  JV -- 1 and, for i = .N', functions on the p-sphere have QN : u ~ -  - Iq12; so a/oQ~ 
acts as zero playing no further role ~ 

The Hilbert space /~-2(S~_1) of functions ~,  • on the sphere is mapped  through the 
stereographie projection on wave functions on q(Q, ~) ~ ~ N - 1 .  The inner product  integral of two 

(~>, x~)~2(SN_I) = --/5'-1 d N - l n  ~ (d  ) *~ (d  ) (5.5a) 

dZ~-lQ 
= + o I Q r , + ° m l  

1 / "  d N - l q  
~ ( d ( q ) )  J~N-I (1 + [qJ2/4p2)N-1 

---- (~b, ~)Ssh-®,. =- /•N-1 dN-lq ~Cq)*~b(q), (5.5b) 

functions is 

3Compare. with the geometrical,, (classical)..expressi°n I ' )  $ 8 uslng.the Schr~dinger. quanti~ation map on p~. Keep in 
mind that operators ~i cannot be selr-adjomt m domains orfunchons whose Fourier transform have compact support, 
because they are generators of translations that do not leave the domain invariant. 
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where 6¢=±(Q)  = e ( ~ )  and ~(q) = (1 + lql214p2)¢N-x)/2e(~(q)), and similarly for • and ~. 
Under this inner product integral, symmetry transformations are unitary and their infinitesimal 
generators (5.6b) are seif-adjoint. When we use the customary inner product form (~b,~)~h_~, in 
(5.5b) for a 'flat' space of measure dN- lq ,  the so(N) generators ~i i and Mi axe the SchrSdinger 
quantization of the 'classical functions' in (3.8) and Ki, K N in (4.2I. 4 The functions axe linear in 
the components ofPl , so there is no ordering ambiguity: any quantization rule gives the same result. 
The optical fish-eye Hamiltonian (2.2), being neither p2/2 + V(q) nor of the form pf(q) + g(q), 
I#ould be subject to ordering freedom [21]. As Caslrnlr operator however, it is the well-defined sum 
of squares of the operators (5.2). The wave Hamiltonian is thus unique and independent of the 
qua~tization scheme. 

As in the Hydrogen atom, there are a finite number of independent Maxwell fish-eye states 
for each allowed color. They may be labelled by the so(N) representation £A, in (5.3), and the row 
indices of the canonical bask [22], {l~r-1 .... ,~2}, with integer ly's bound by the usual branching 
rules. For N = 3 (the 2-dlmensional Maxwell fish-eye), we have the spherical harmonics on the 
surface of the ordinary sphere S z. In this plane optical world, the description of the wave patterns 
in the Maxwell fish-eye by the usual {l,m}-labels is by projecting ~/t,,~(~) to [20] 

",... c .o) 
T&m(q't) = 1 + [ql2/4p ~" V hop 

vibrating with v(£) = (c/nop)vfl-(-~-+ 1), £ = 0 ,1 ,2 , . . . .  These functions can be visualized ms 

patterns of light with an intensity weighted by an obliqulty factor N ITt,m(q)12~(1 + Iq12/4p2) -2.  

For m = ± l  we have waves travelling around the equator. The nodes of the real part 
axe moving sphere meridians. This rotating light pattern projects on the fish-eye plane as nodes 
moving as spokes in a rotating, rigid wheel. When the rotation axis is inclined, the belt of maxima 
projects on an off-center circle and the nodal meridians on circular nodes that cross through the 
two projected rotation poles. We conjecture that these 'circle-of-light' solutions are the best wave 
analogues of the geometric light orbits. We note that since the phase velocity is not linear in l, 
chromatic disperslon takes place whenever more light has more than one constituent color. The 
periods are incommensurable. 

The m = 0 solutions contain a Legendre polynomial Pl(cos fl) and are independent of the 
longitude angle ~/. They can be described as standing-wave solutions that have their maxima at 
two conjugate points. They will be in or out of phase according to the parity of L A flash at some 
point of the fish-eye will decompose into Pl(cos/~0)'s, subject di#perslon again. Thus signals will 
loose their shape, even though the optical path between two conjugate points is equal along any 
circle arc, and wavefronts are well defined [2]. The Maxwell fish-eye is thus not quite a perfect 
imaging device [3] because it cannot forestall the chromatic dispersion. 

Other operators in the hidden, potential, or dynamical algebras may be used to define 
other bases for the polychromatic, wavlzed fish-eye. We may choose the two commuting operators 

= - &) = - OlOq , i = 1,2. These yield plan wave has , hut since they do 
com~ute with the driving Hamiltonian, the solutions quickly loose their shape. They are in fact 
the cross-basis representations between the elliptic (£, m) and parabolic (Pt, P2) subgroups of the 
SO(3,1) group that we have realized on the R 2 plane [22]. The conformal so(3,2) algebra adds 

4i.e. through the replacements qi ~-~ qi', (multlpllcation by ql), and pi ~ ~ ..~ --iO/aqi. 
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the  to the list the  generators  H i = qiP, i = 1 , 2 , / I s  = )~ - 2pp, a~d H 4 = ~ = p(1 + [q12/4p2) p. 
They  are wv.vized wi th  the  integral  opera tor  tha t  realizes the  formal root  of  the  Lsplac ian  integral 

opera tor  p = ~ p~. 
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