POTENTIAL GROUP IN OPTICS: THE MAXWELL FISH-EYE SYSTEM{t

A. FRANK* F. LEYVRAZ}** AND K.B. WoLF

Instituto de Investigaciones en
Matemdticas Aplicadas y en Sistemas —Cuernavaca

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICo
Apartado Postal 189-B, 62191 Cuernavaca, Mézico

Abgtract: The (N ~ 1)-dimensional Maxwell fish-eye is an optical system
with an SO{¥ — 1} manifest symmetry and a SO(N)} hidden symmetry, but also
an SO(N, 1) potential group and the SO{N, 2} group of the (N —1)-dimensional
Kepler and point rotor systems. The optical Hamiltonian is proportional to
the Casimir invariant. We use a stereographic map extended to a ical
transformation between the two phase spaces of the rotor and the fish-eye. The
groups permit a succint ‘4x’ wavization that shows that the constrained system
can support only discrete light colors and that it unavoidably has chromatic
dispersion. El ts of the potential group relate the fish-eye asymptotically
to free propagation in homogenous media. PACS: 02.20.+b, 42.20.-y

1. Introduction

The Maxwell fish-eye is an optical medium that is truly the Hydrogen atom of optics:
it possesses a manifest SO(N — 1) and hidden SO(N) rotation symmetry groups, an SO(N,1)
dynamical and potential group, and an SO(N,2) group, one of whose compact generators is the
toot of the SO(N) Casimir —very much like the number operator in the classical Kepler system.

In a geometric-optics Maxwell fish-eye, the paths of light rays are circles on planes that
contain the origin. It was shown by R.K. Luneburg [1] that these are the stereographic projection
of great circles on a sphere in one higher dimension. (See also Refs. [2] and [3].) Confer: the
work of Fock [4] and Bargmann [5] on the hidden symmetry of the H-atom. H.A. Buchdahl in [6]
mapped the constants of the fish-eye circles onto the angular momentum and Runge-Lenz vector
constants of the Kepler orbits. These are generators of an SO(4) group under the Poisson bracket.

The Maxwell fish-eye is considered as an example of s perfect imaging instrument: all light
rays issuing from one point in the medium will follow circle arcs that intersect at the point conjugate
to the first,! all with the same the optical length [3]. This is a rare instance of a ‘4x’ optical
instrument; it is a system worth studying for its group-theoretical interest, and as an example to
callibrate the Lie-Hamilton formulation of geometric optics and its subsequent wavization.
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F. Leyvras, and K.B. Wolf, Hidden symmetry and potential group of the Maxwell fish-eye, J. Math. Phys. , accepted {1990}.
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Two points §1 and §; arc conjugate when they are antiparallel and their magnitudes relate as gig2 = p. They are
the stereographic images of a pair of antipodal points on the sphere of radius .
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Section 2 presents and discusses the Hamilton equations for inhomogeneous optical media.
Section 3 recalls the Hamiltonian formulation of the spherical rotor (point mass constrained to
a sphere) and its subsequent stereographic map over a plane. We find the conjugate momentum
transformation that must accompany this map if the transformation is to be canonical in the usual
symplectic sense. The dynamical so(IV,2) algebra of the rotor is mapped in Section 4 on the fish-
eye, and its action integrated to the group is given explicitly for two key one-parameter subgroups.
Section § presents the essentials of the wavization process through choosing the realization of the
dynamical algebra on the Hilbert space of functions on the sphere, stereographically projected.

2. The Hamiltonian in optics

One may show that the two Hamilton equations of optics derive from the first principles of
differential geometry and the Snell-Descartes law of refraction, respectively [8], [9], [10], [11], when
the evolution parameter is along an optical axis in space. When the evolution parameter is time,
similar considerations [12], lead to the Hamilton equations

dq ¢ axort dp ¢ X opt
Z P &RVt e (210,0)
with the optical Hamiltonian function?
2
X (p,q) = CETT;?(W + constant. (2.2)

This holds for general space dimension D, q = (¢1,42,...,¢p), and similarly for p. Since the value
of the Hamiltonian function ¥°"* is preserved along the lines of the flow, it is a constant of the
motion. Hence, the momentum vector p is constrasned to have squared length

»* =n(q)%. (2.3)

This is the Descartes sphere of ray directions, whose radius depends, in inhomogeneous media, on
the point.

Geometric optics models light rays as the paths taken by points indicated by q(t) € R0,
at a time parameter ¢, whose velocity vector v = dq/dt must be of magnitude |v| = ¢/n(q) at each
point q of the medium. The velocity is related to the optical momentum by v = ¢/n* p.

We should compare the general optical Hamiltonian function (2.2) with the prototype of
mechanics, p?/2m + V{q), to see that they are not equal. We expect that the usual tools of
quantum mechanics based on the Heisenberg-Weyl algebra where p € %P must be adapted to
47 optical systems basing them on a group-theoretical formulation that pays attention to the
symmetries of the system. The formulation is by these simmetries.

3. The isotropic point rotor, stereographically projected

We work with the Poisson bracket formalism and symplectic geometry of phase space.
The configuration space of a point mass in N dimensions is the ensemble of position coordinates
Q= {Q,-}fil € RN, 1t is a point rotor when constrained to a sphere of radius p,

N
@*=G¢-¢=30I=Q.-Q+Q}=," (3.1

g=1

2We assume the optical medium is time-independent.
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It is usual to indicate by boldface Q = (Q1,Q2,...,Q@x_1) the first N — 1 components of g=
(Q,Q ~). The constraint on configuration space is thus

QY=o —|1QF, o€ {+1,0,-1}. (3.2)

The sign o of Q( ) labels the two hemispheres and the QS\’) = 0 equator. (We shall disregard the
latter.) The Hamxltoma.n flow must leave that sphere invariant.

Functions F of phase space (P,Q) whose Poisson bracket with @2 are zero, preserve the
sphere and satisfy {F, 62} =0,4de,0= E;‘il 2Q; {F,Q;} =-2Q- g—g So, among the linear and
quadratic functions of the basic N-dimensional Heisenberg-Weyl algebra, only 1, Qi Qi@j, +. s
and R; ; = Q;P; — Q;F; have this property, and sums and products thereof, i.c., the enveloping
ﬁlgebra. of the Euchdea.n algebra-iso(N). The second degree Casimsr function (of fourth degree in
Q; and P; %)» 18

® = 35 R R = QP - (G-F)%. (3.3)
(This is the angular momentum tensor é xPinN=3 dimensions.) There is an abelian ideal of
@’s of dimension 1+ N+ gN (N +1)}+---. The Lie transformations [13] generated by these functions
leave configuration space Q invariant. They only affect momentum space through PP+ 7 (Q)

The isotropic point rotor is defined by its Hamiltonian being a rotation invariant, i.e.,
X™* can be only a function of @ in {3.4); quadratic in momentum and constant of the motion is
¥* = w® = E, with scale constant w. The fourth-order invariant is ¥ R; ;R; ; Rp 1 By = 282,

The constraint of the sphere, Egs. (3.1)-(3.2), leaves us with a lower-dimensional phase
space. We expect another phase-space constraint to be imposable [14], because Hamiltonian phase
spaces are of even dimension. One may show [12] (it is not obvious) that extinction of Q, as an
independent variable is compatible with setting Py = 0 in the Lie algebra generators R; i @i
ete., and using Dirac brackets [14b ¢]. The Dirac brackets turn out to be the Poisson brackets in
the ﬁrst N — 1 coordinates (@ is now simply a function of the remaining coordinates). Since we
denoted @ = (Q, Qn); let us similarly denote P = (P,0) where P are the first N — 1 components
Under this |roter map, the so(N) symmetry subalgebra generators become

L‘l,] = Rt',jlroior = Qin - Q;'Pis ,7=1,...,N -1, (3.17)
M=R|',N|rocor=—m/ﬂ2—|Q|2 B, t=2...,N—-1, (3.4)

The Hamiltonian function becomes, for some constant w,
W =wC, €= Bl = #2[P[ - (Q-P)% (3.50,5)

Under the rotor map the Lie-Poisson bracket relations among these functions are the same in this
reduced 2(N — 1)-dimensional phase space (Q,P). Free motion of a point rotor in (Q, P ) is on arcs
of great circles. The restriction to (Q, o, P) projects the point rotor on two copies of its equatorial
plane (distinguished by the hemisphere sign ¢), and with a new canonically conjugate momentum
P. The trajectory jumps between the two values of the sign o when it crosses the sphere equator.
This is the spherical rotor motion projected on the equatorial plane.

The map between the projected sphere coordinates Q € RN -1, Q < p, and the plane
q & RV-1 given by
20Q 4p%q

qQ=———— Q =
p—oy/o? — QP laf? + 4p%*

(3.6a,b)
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is the usual stereographic map, that ‘opens’ the Sy _1 rotor sphere to the plane that is the Maxwell
fish-eye configuration space. Seen as a canonical map between the full phase spaces, it must be
accompanied by the corresponding momentum map

_e-o//-1aP, QP p_laltee (p+ 24P q (4.7a,0)
, l . . 4

2p 2p? 4p? 4p% —|q

This is a map between two 2(N — 1)-dimensional phase spaces; the (@, P ) space of the constrained
rotor motion need not be used further. The nature of the map is that of optical distorsion, t.e.,
point transformation of configuration space; as a map in momentum space, it is comatic (and
distinet from the comatic map studied in Ref. [10]).

We may write the so(/N) functions (3.4) in (q,p). They are

L; ; = 4;p; — ;0 ,7=1,...,N—1, (3-8q)
_ |q)? qp . _
M—P[(l—m p 2,29 i=1,...,N—-2 (3.82)

The Cesimir and Hamiltonian functions in can be calculated replacing q(Q,P) and p(Q,P) in
(3.5). They are

¢= ( > i+ X M.-’) = p*(1 + [a*/46")? Ip* = =¥ (a.p) = =. (3.9)
i<j=2 i=1 w w
We may now compare this projected rotor Hamiltonian ¥ with the generic optical Hamiltonian
H°P = c|p|?/n(q)|? in (2.2). They are equal only when the refractive index of the optical medium
is that which characterizes the Maxwell fish-eye:

_ "o —n(0) =1,/ 5
n(q) - 1 + 'qlz/4p21 Ng = n’(o) = Py zw' (3-10)

4. The fish-eye so(N,2) dynamical algebra

The realization of the so(N) algebra shown in (3.8) is well known in the theory of the
hydrogen atom [4-7]. If we label the so(N, M) generators as 4; ;, 4,5 = 1,2,... N,N+1,...,N+M,
their standard Lie (Poisson) bracket relations are

{A“:j’ Akil} = gj;kAlri + g;"lAk,j + gj’l/i{,k + g{,kAj,l, (4.10)
where i
1, j7=k<N,
9,',1c={—1, N+1<j=k<N+M, (4.10)
0, otherwise.

The symmetry properties of the indices are 4; ; = —A4;; for i,5 both in the range (1,...,N) or
both in (N +1,...,N + M), and +4,; otherwise.

We enlarge the so(N) generator set in (3.8), L;; = 4;; and M; = 4; 5 for 1,j =
1,2,...,N — 1, with the following so(N,1) generators:

2
q qp
K= di N1 =M;—2pp; = p [— (1 + %pl—z) P+ 257 Qu‘] ) (4.2a)

Ky = 4N Ny1= —QP- (4.25)
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These are the ‘noncompact’ generators because of the minus sign in {K;, K;} = —L;;. Thus
K = —q-p generates magnifications of configuration space:

exp B{Kp,0} : f(a,p) = flePa,e’p), Ben (4.3)
In particular,

exp B{Kp,0} : X(p) ™27 s ) (&P p)lebere, (4.4)

We have thus the line 8 of noninvariance transformations, where the radius p of the rotor sphere
dilates to infinity as § — oo. Setting w = %cn},‘ zp"z! we map the Maxwell fish-eye Hamiltonian
H(p)fsh—er¢ onto the homogeneous medium Hamiltonian X (oo)8~* = n,.

We note the coordinate functions p; = (M; — K;)}/2p. Thus a second visible noninvariance
transformation of the optical fish-eye Hamiltonian is the ordinary configuration-space translation:

exp Tiai{ M; — K;,0} : X(q,p)™ % — ¥(q — 2pa, p)™"". (4.5)

We may thus map a Maxwell fish-eye to another fish-eye whose center of symmetry is at a instead
of the origin, and/or dilated, up to the homogeneous medium. The algebra with the property that
it relates the system to the homogeneous medium, is the potential algebra of the Maxwell fish-eye.
Up to now, potential algebras of the family so(M, N) were used in Refs. [15], [16], and others, to
relate the Poschl-Teller potential to the free particle, for example. Here we see that the concept
also serves optical systems, and in this case the algebra can be truly integrated to the Lie group:
(4.4) and (4.5).

The set of generators of so(V, 1) given above is further extended to so{¥,1) when we add

H; = A; yyg = ¢p, i=1,2,...,N-1, (4.6a)
Hy = AN 42 = Hyy1— 200 = —p(1 — |a*/40%) p, (4.60)
N=Hyi= Ay n+2 = p(1+ |a* /40 p = +VC. (4.8¢)

Here N is the root of the so(N) Casimir function C in (3.9), and a compact generator of so(N, 2)
that is a constant of the motion. In the Hydrogen-atom [17], [18], this is the number operator.
Note that we have introduced the function p= ,/p-p = |p|.

The integrated group action on phase space generated by N = Hy..y = dpq1 N2 I8

1—coss 2 ) 1—coss
sty - () e ]

[p cos s + q-p/2p sin slg; — p(1 + |q|*/4p?) sins p; (4.78)

s{N,0}:q; = )
PN i = e T — cos s) (L + [a/47)lp — Jap/p sin s

The parameter s measures length along the flow lines. The time evolution generated by the
Hamiltonian Ho- =, N? is thus

exp t{ %% 0} = exp 2wnt{N,o}, (4.8)

in termos of (4.7) with s = 2wnt, where 7 is the constant of the motion N = p(1 + |q|%/4p%)p.
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5. Wavization of the Maxwell fish-eye

We may ‘wavize’ the Maxwell fish-eye as a dynamical quantization problem of mechanical
systems [19], since we know the symmetry and dynamical groups. This is based on the scalar
wave equation for a function Q(d, t), of a single color v [so olv )(é, t) = Q(@ )e’”], restricted to a
sphere § = pfl [so 8(Q) = 8,(f1), N; = Q;/|§|) —the sphere on which the mass point moves, and
stereo%,ra?hically projected on the Maxwell fish-eye space of N — 1 dimensions, whose coordinate

qeR we continue to indicate by boldface. It leads to the solutions of
o N
éa(fl) = (3‘—";"—’3) a(61), (5.1)
where C is the Casimir operator of so(IV),
N
. - - ;] a3
C=-1 2 4; =i( e — ———) 5.2
2 T 7,k 1,k QJ o Q"BQ, ( )

This realization of so(V) is also well known from the theory of quantum angular momentum.
It is different from the Poisson bracket realization of geometric optics used in the foregoing gections.
We surmise this leads to the proper 4n wavization of the Maxwell fish-eye. The operators XJ-, k aTe
self-adjoint in the space £Z(S)y_;) of Lebesgue square-integrable functions on the sphere Sy [20].
The wave equation (5.1) is thus reduced to a Sturm-Liouville problem whose proper eigenvalues
on the right-hand side are A = €y(€y + N — 2), &y = 0,1,2,.... and consequently, the possible
colors v the medium can sustain are:

un = ——flu(ly + N —2), LIy =0,1,2,.... (5.3)
Nop

The projection.of the Lie algebra of ﬁj,k’s from the sphere onto the Maxwell fish-eye space
q, proceeds as if we were to use the chain rule to write

9 Iqlz) ( 3 2¢; 2 )
=1+ ) o=+ —5——q = » 5.4

3Q; ( 17 ) \3g; " 47— g 3q (54)
fori=1,2,...N—1 and, for i = N, functions on the p-sphere have Q5 = 0/p? — |Q|?; 50 3/9Q ¥
acts as zero playing no further role? _

The Hilbert space £2(SN_1) of functions ®, ¥ on the sphere is mapped through the
stereographic projection on wave functions on q(Q, o) € RN-1, The inner product integral of two
functions is

(@ ¥)gsy_y = f; 4" M0e(d) w(d) (5.5)
1 dN—IQ

- og;:u N2 /IQ|<,, m $,(Q)* ¥ (Q)

1 dv-1 e e S
= 71 fos T oyt 20() ¥(E(@)

= ($,D)tui-are = [y PV (@) ¥(q), (5.55)

3Compare with the geometrical (cla.saical) expression (3.8) using the Schrédinger quantization map on p;. Keep in
mind that operators ‘§;' cannot be self-adjoint in demains of functions whose Fourier transform have compact support,
because they are generators of translations that do not leave the domain invariant.
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where &,-.(Q) = &(@) and ¢(q) = (1 + lq|2/4p2)(N‘1)/2{>(ﬁ(q)), and similarly for ¥ and .
Under this inner product integral, symmetry transformations are unitary and their infinitesimal
generators (5.6) are self-adjoint. When we use the customary inner product form (@, ¥/)gm~eye in
(5.5b) for a ‘flat’ space of measure av -1q, the so(IV) generators .i),' ; and 1\2, are the Schrédinger
quantization of the ‘classical functions’ in (3.8) and K;, Ky in (4.2).4 The functions are linear in
the components of p;, so there is no ordering ambiguity: any quantization rule gives the same result.
The optical fish-eye Hamiltonian (2.2), being neither p?/2 + V(q) nor of the form pf(g) + g(g),
would be subject to ordering freedom [21]. As Casimir operator however, it is the well-defined sum
of squares of the operators (5.2). The wave Hamiltonian s thus unique and independent of the
quantization scheme.

As in the Hydrogen atom, there are a finite number of independent Maxwell fish-eye states
for each allowed color, They may be labelled by the so{N) representation &y in (5.3), and the row
indices of the canonical basis [22], {€x-1,...,4}, with integer £;’s bound by the usual branching
tules, For N = 3 (the 2-dimensional Maxwell fish-eye), we have the spherical harmonics on the
surface of the ordinary sphere S3. In this plane optical world, the description of the wave patterns
in the Maxwell fish-eye by the usual {£, m}-labels is by projecting Y, (1) to [20]

£{£+1)

Y; ———%——;
bm (chﬂ I ) exp tety [ —m—>_ (5.6)

Ym0 T T wop

vibrating with v{f) = {e/n,p)/E{£+1), £ = 0,1,2,.... These functions can be visualized as
Patterns of light with an intensity weighted by an obliquity factor ~ |Xy (q) |22(1 + |a?/4p%) 2.

For m = +£ we have waves travelling around the equator. The nodes of the real part
are moving sphere meridians. This rotating light pattern projects on the fish-eye plane as nodes
moving as spokes in & rotating, rigid wheel. When the rotation axis is inclined, the belt of maxima
projects on an off-center circle and the nodal meridians on circular nodes that cross through the
two projected rotation poles. We conjecture that these ‘circle-of-light’ solutions are the best wave
analogues of the geometric light orbits. We note that since the phase velocity is not linear in £,
chromatic dispersion takes place whenever more light has more than one constituent color. The
periods are incommensurable.

The m = 0 solutions contain 2 Legendre polynomial Py{cos 8) and are independent of the
longitude angle 4. They can be described as standing-wave solutions that have their maxima at
two conjugate points. They will be in or out of phase according to the parity of £, A flash at some
point of the fish-eye will decompose into P;{cos fg)’s, subject dispersion again. Thus signals will
loose their shape, even though the optical path between two conjugate points is equal along any
circle arc, and wavefronts are well defined [2]. The Maxwell fish-eye is thus not quite a perfect
imaging device [3] because it cannot forestall the chromatic dispersion.

Other operators in the hidden, potential, or dynamical algebras may be used to define
other bases for the polychromatic, wavized fish-eye. We may choose the two commuting operators
b= %(M; — K;) = —18/8¢;, i = 1,2. These yield the plane-wave basis, but since they do not
commute with the driving Hamiltonian, the solutions quickly loose their shape. They are in fact
the cross-basis representations between the elliptic (¢,m) and parabolic (p1, pz) subgroups cf the
80(8,1) group that we have realized on the %2 plane [22]. The conformal so(3,2) algebra adds

4{.c. through the replacements ¢; -+ ¢-, {multiplication by ¢;), and p; = fi; = ~i8/8¢;.
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the to the list the generators H; = ¢;p, { = 1,2, Hs = N — 2pp, and Hy = N = p(1 + |q|2/4p%) p.
They are wavized with the integral operator that realizes the formal root of the Laplacian integral
operator p = \/p% + pg.
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