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The equation of state (EoS) is a needed input for neutron-star (NS) modelling allowing one to
connect microphysics inputs with global NS properties. In this contribution, we briefly present the
EoS modelling for NSs, particularly focusing on a meta-model-based approach, and discuss the
importance of a consistent and unified approach. We show that employing a fixed but inconsistent
model for the lower density region causes (small) errors and underestimates the uncertainties in
the estimation of global NS properties. This confirms our previous findings and underlines the
relevance of a consistent approach in NS modelling and inference.
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1. Introduction

Born in the aftermath of supernova explosions, neutron stars (NSs) are among the most compact
objects in the Universe, with a mass of ≈ 1 − 2𝑀⊙ (𝑀⊙ being the solar mass), a radius of about
10 km, and central densities that can reach several times nuclear saturation density, 𝑛sat ≈ 0.16 fm−3

[1]. The first multi-messenger detection of a binary NS merger, the event GW170817 [2], in addition
to the precise NS mass measurements around 2𝑀⊙ [3–5] and the recent quantitative estimation of
the mass–radius relation obtained from NICER measurements (see Refs. [6, 7] and refs. therein)
have, in the last few years, pushed the study of dense-matter properties in NSs. The more and
more numerous observations expected from the LIGO-Virgo-KAGRA collaboration, as well as
those foreseen from the planned third-generation detectors and instruments, are expected to provide
valuable data from which new information on the structure and composition of NSs can be inferred.

To reliably connect astrophysical observations to the properties of dense matter in the NS
interior, an equation of state (EoS), that is, the functional relation between the pressure and the
mass-energy density, is needed. Indeed, under the assumption of general relativity, the relation
between static properties of cold beta-equilibrated NSs, which is a valid assumption for mature
isolated NSs or coalescing NSs in their inspiral phase, and the underlying microphysics mainly
relies on the knowledge of the EoS. The determination of the NS EoS is a challenge, because of the
different phases of matter (from neutron-rich clustered matter in the crust to homogeneous matter
in the core) and the range of thermodynamic conditions encountered in these astrophysical objects.
From the nuclear-physics side, current constraints on the EoS come from terrestrial experiments,
mainly probing density around saturation and rather symmetric matter, and ab-initio calculations
([8–10] for a review). The latter ones, like those based on the chiral effective field theory (𝜒-EFT),
have undergone enormous progress, and are now able to quantify uncertainties on the infinite-
matter EoS. These models can constitute powerful constraints, particularly concerning predictions
for pure neutron matter, but cannot be employed in all NS regions. Phenomenological models, most
of which rooted on the nuclear energy-density functional theory, have thus to be applied instead.
Constraints on the EoS also come from astrophysical data; in this respect, most NS studies and
inference of NS properties from observations, specifically from gravitational-wave data, are done
with so-called non-unified EoSs, i.e. different models for the different NS regions (outer and inner
crust, and core) are employed. In particular, because of the complexity related to the calculation of
the inhomogeneous region and based on the idea that the crust EoS is relatively well constrained and
has a little effect on NS macroscopic properties, often a unique EoS crust model is used. However, a
thermodynamically consistent description of all NS regions is important for (dynamical) simulations
since the (ad-hoc) matching of different EoSs may lead to spurious instabilities and uncertainties in
the predictions of NS properties [11–14]. We recently proposed a numerical tool, the Crust Unified
Tool for Equation-of-state Reconstruction (CUTER), that provides a unified and consistent NS EoS
starting from a high-density beta-equilibrated EoS for the NS core [14].

In this work, we briefly present the EoS modelling for NSs in Sect. 2, with a particular focus on
a meta-model-based approach. To evaluate the importance of the use of a consistent and unified EoS
in NS modelling and inference, we extend the study of Ref. [14] and perform additional Bayesian
analyses. We compare the NS properties thus obtained with those calculated employing a unique
EoS model for the low-density part in Sect. 3. Finally, we draw our conclusion in Sect. 4.
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2. Neutron-star equation of state

For cold, mature, and non-accreting NSs, the temperature (typically below 1 MeV) is lower
than typical nuclear energies thus the zero-temperature approximation can be adopted in computing
the EoS. This assumption, together with the beta-equilibrium condition, makes the EoS dependent
on the (energy) density only (see Refs. [8, 9, 15] for a review and discussion on so-called ‘general-
purpose’ EoSs). Even in this case, the uncertainties in the EoS remain large, particularly as density
increases. Indeed, for the outer crust (corresponding to the first few hundreds metres under the NS
surface) the only nuclear inputs in the calculation of the EoS and composition are nuclear masses
(either experimentally measured or theoretically calculated) thus the model dependence is relatively
small and only affects the deeper layers, where masses of neutron-rich nuclei have to be determined
from theoretical mass models. In the inner crust (from the so-called neutron drip up to the crust–
core transition, at about 0.5𝑛sat), the presence of neutron-rich clusters in a background of electrons
and unbound neutrons makes the EoS model dependent, both on the underlying functional and the
many-body method used. In the core, the possible appearance of non-nucleonic degrees of freedom
highly increases the uncertainties. As illustrative examples, a collection of beta-equilibrated zero-
temperature NS EoSs is plotted in Fig. 1, using data taken from the CompOSE database [15]: the
left panel shows different unified nucleonic EoSs in the crust-core density regime (changes of slope
indicate the transition from the outer to the inner crust and from the crust to the core), while the right
panel displays different EoSs (all of which — except PCP-BSk24, GPPVA-DD2, and GMSR-H1
— include heavy baryons or a phase transition to quark matter) in the core. As expected, the
largest spread is indeed observed at high densities in the NS core. In view of these uncertainties
and of the unknown composition in the core, several works employ purely agnostic models (either
parametric, like piecewise polytropes or speed-of-sound models, or non-parametric, like Gaussian
process) to construct (phenomenological) EoSs. These approaches do not rely on any description
of the underlying microphysics and are only subject to general physics constraints such as causality
and thermodynamic stability. However, these powerful tools, widely used to extract the nuclear EoS
from gravitational waveforms (see e.g. Ref. [16] and refs. therein), cannot be used, for example,
for applications requiring the knowledge of the NS composition, such as NS cooling simulations.

An alternative approach to extract information on the structure and properties of dense matter
is constituted by EoS parametrisations covering the parameter space of effective nuclear models.
This can be achieved by using the so-called nucleonic meta-modelling, i.e. by introducing a flexible
energy functional able to reproduce existing effective nucleonic models and to interpolate between
them. Following Ref. [17], we write the energy per particle of nucleonic matter depending on the
baryon density 𝑛𝐵 and asymmetry 𝛿 = (𝑛𝑛 − 𝑛𝑝)/𝑛𝐵, with 𝑛𝑛(𝑝) the neutron (proton) density, as

𝑒nuc(𝑛𝐵, 𝛿) = 𝑡★FG(𝑛𝐵, 𝛿) + 𝑒is(𝑛𝐵) + 𝑒iv(𝑛𝐵)𝛿2 , (1)

where the kinetic term 𝑡★FG includes the dominant deviation to the parabolic approximation as well
as the effective mass contribution and the residual isoscalar 𝑒is and isovector 𝑒iv terms contain
the most important model dependence. The latter ones can be written as a Taylor expansion in
𝑥 = (𝑛𝐵 − 𝑛sat)/(3𝑛sat) up to order 𝑁 around the saturation density 𝑛sat as:

𝑒is(iv) (𝑛𝐵) =
𝑁∑︁
𝑘=0

𝑣
is(iv)
𝑘

𝑘!
𝑥𝑘𝑢𝑘 (𝑥) , (2)
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Figure 1: Pressure versus baryon number density
for different EoS models taken from the CompOSE
database [15] (see text for details).

Figure 2: Posterior distribution for the EoS when
LD+HD constraints or only HD constraints are applied
(see text for details).

where the function 𝑢𝑘 = 1−(−3𝑥)𝑁+1−𝑘 exp (−𝑏𝑛𝐵/𝑛sat) (with 𝑏 = 10 ln 2) ensures the correct zero-
density limit, and the parameters 𝑣is(iv)

𝑘
are directly connected to the so-called isoscalar (isovector)

nuclear empirical parameters (NEP) ({𝐸sat(sym) , (𝐿sym, )𝐾sat(sym) , 𝑄sat(sym) , 𝑍sat(sym) } for 𝑁 = 4),
given by the successive derivatives of the energy functional at saturation (see Refs. [14, 17–19] for
details). In this way, it is possible to reproduce given functionals by assigning the corresponding
values of the NEP, or sample them to generate (semi-agnostic) EoS sets in a statistical analysis.
For a correct computation of the NS EoS, a treatment of the clustered (inhomogeneous) crust is
required. To this aim, we used a compressible liquid-drop model for the ions, where the bulk energy
was complemented with Coulomb, surface, and curvature contributions (see Refs. [14, 18, 19] for
details). The complete parameter set of the model thus consists of 13 bulk parameters plus 5 surface
parameters, which are consistently determined from a 𝜒2 fit to the experimental masses from the
Atomic Mass Evaluation (AME) [20]. The EoS and composition are then variationally computed
for each full set of parameters by minimising the energy density of the system under the condition
of baryon number conservation, charge neutrality and beta equilibrium holding. In this work, only
spherical clusters were considered (see e.g. Refs. [19] for a discussion on the so-called ‘pasta’
phases).

3. Numerical results for the EoS and NS properties

To assess the theoretical uncertainties in the EoS and the impact on the NS properties, we
performed a Bayesian analysis, as described in Ref. [14]. The nuclear meta-modelling is run at
order 𝑁 = 4 up to a given baryon density 𝑛𝐵 = 𝑛match, and the NEP {𝑛sat, 𝐸sat,sym, 𝐿sym, 𝐾sat,sym,
𝑄sat,sym, 𝑍sat,sym}, together with the nucleon effective mass, the effective mass isosplit, and the
𝑏 parameter are sampled from a uniform prior (see Table 4 in [14]). To account for the limited
knowledge of the high-density part of the EoS and the possible occurrence of phase transitions
not accounted for in a pure nucleonic (meta-)model, we matched a piecewise polytrope (with
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a maximum of 5 polytropes) after 𝑛match. The transition densities among polytropes (and each
polytropic index) are randomly drawn in the interval [𝑛match, 1.6 fm−3] ([0, 8]). In this work, we set
𝑛match = 0.16 fm−3, because we think that allowing for phase transitions below the saturation density
would be rather unrealistic. Each piecewise polytrope is calculated until causality is reached.

Once the EoS is calculated, the static properties of a NS can be computed through the Tolmann-
Oppenheimer-Volkoff equations [21], that allow the determination of the NS radius 𝑅 and mass 𝑀 .
Moreover, the tidal deformability Λ is calculated as Λ = (2/3) 𝑘2 (𝐺𝑀/(𝑅𝑐2))−5, 𝑘2, 𝐺 and 𝑐
being the tidal Love number, the gravitational constant, and speed of light, respectively [22] (see
Ref. [14] for complete expressions used in this work). The posterior distributions of the observables
Y under the set of constraints c are obtained by marginalizing over the EoS parameters as

𝑃(Y|c) =
𝑁par∏
𝑘=1

∫ 𝑋max
𝑘

𝑋min
𝑘

𝑑𝑋𝑘𝑃(X|c)𝛿(Y − Y(X)) , (3)

where 𝑁par is the number of parameters in the model (i.e. the NEP plus the polytrope parameters),
and the posterior distribution of the parameters X conditioned by the likelihood of the different
constraints c is given by 𝑃(X|c) ∝ 𝑃(X)∏𝑘 𝑃(𝑐𝑘 |X) , where 𝑃(X) is the prior. In this study, the
following constraints are considered (see Ref. [14] for details): (i) the probability of each model
(i.e. of each parameter set) is quantified by a Gaussian weight on the quality of the reproduction of
the experimental nuclear masses [20]; (ii) at low density (LD), models are selected through a strict
filter from the 𝜒−EFT calculations of the energy per nucleon of symmetric nuclear matter and pure
neutron matter of Ref. [23] (the energy bands are enlarged by 5%). This constraint is applied in
the interval from 0.02 fm−3 to 𝑛match; (iii) at high density (HD), causality, thermodynamic stability,
non-negative symmetry energy at all densities where the meta-model is applied are imposed; in
addition, the EoS has to support∼ 2𝑀⊙ NSs [4] (the associated likelihood is defined as a cumulative
Gaussian distribution function). In Ref. [14], constraints from NICER [24, 25] and GW170817
[26] were also included, but were not considered here.

The resulting posterior EoS posterior is shown in Fig. 2: the yellow shaded areas represent the
50% (dark) and 90% (light) confidence intervals, while the curves correspond to the 50% (dashed
lines) and 90% (dotted lines) confidence intervals for the EoS models calculated employing a unique
EoS until the crust-core transition density 𝑛cc (green lines) or until 𝑛match (blue lines). We chose as
unique EoS (crust plus eventually part of the core) that based on the SLy4 functional [27] because
of its wide application to NS modelling and inference analyses (see e.g. Refs. [28, 29]). In the
left panel, both LD filter from the 𝜒−EFT calculations and HD constraints, are applied. In the
right panel, only HD filters have been applied, enlarging, as expected, the uncertainties in the lower
density region, as already noticed in Ref. [30]. We can see that at high density the EoSs coincide, by
construction1. When the additional polytrope is built between 𝑛cc and 𝑛match (indicated by vertical
lines), the EoS remains smooth and partially retains the outer-core uncertainties. On the other
hand, when the unique EoS is glued at 𝑛match, jumps in pressure are possible, although these remain
relatively small because the SLy4 EoS agrees well with our posterior (yellow bands).

1The same posterior for the polytropic EoS resulting from the consistent EoS set was used when the unique low-density
EoS is employed. The polytropic EoS is matched ensuring pressure monotonicity. When the unique EoS is calculated
until the corresponding crust-core transition density 𝑛cc (𝑛cc,SLy = 0.08 fm−3 for the SLy4 model, as indicated by the
left vertical lines in Fig. 2), an additional polytrope is added between 𝑛cc and 𝑛match; see Ref. [14] for details.
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Figure 3: Joint probability density plots of dimensionless tidal deformability and radius for a 𝑀 = 1.4𝑀⊙
NS, when LD+HD (top panels) or only HD (lower panels) filters are applied (see text for details).

As illustrative examples, the predictions for the radius and tidal deformability of a 1.4𝑀⊙ NS
corresponding to the EoSs shown in Fig. 2 are plotted in Fig. 3. As already noticed in Ref. [14],
the median values of the global NS properties are not very much affected by the use of the unique
crust (middle panel) when both LD and HD filters are considered. However, when the unique EoS
is employed until 𝑛match (right panel), although the median values do not change significantly (a
few % and up to 10% for Λ1.4), the uncertainties in the determination of the NS properties are
underestimated. In Ref. [14] it was also pointed out that the small difference between the unique
crust and the consistent treatment is largely influenced by the LD filter imposed on the EoS which
strongly constrains the EoS for densities in the crust region. This is demonstrated in the lower
panels of Fig. 3, where one can see that, although the average values are again not much affected by
the use of a unique low-density EoS model (the difference being also in this case of a few %), the
uncertainties are, and this is already noticeable when the unique EoS is applied until the crust-core
transition density (middle panel). Indeed, the median and 68% confidence intervals for 𝑅1.4 are
13.57+0.54

−0.81 km (13.83+0.38
−0.75 km) when LD+HD filters are applied (when the unique EoS is used until

𝑛match), and 13.71+0.60
−0.89 km (13.92+0.39

−0.76 km) when only HD filters are applied. For Λ1.4, the median
and 68% confidence intervals are 925+274

−332 (1025+226
−349) when LD+HD filters are applied (when the

unique EoS is used until 𝑛match), and 971+314
−362 (1073+243

−372) when only HD filters are applied. The
impact of the unique low-density EoS is particularly visible for larger values of radii and tidal
deformabilities, that is, for lower NS masses, as one may expect since for these NSs the crust is
expected to contribute in a more important way. This is shown in Fig. 4, that illustrates the joint
probability for the radius and tidal deformability for 1𝑀⊙ NS.

4. Conclusions

In this work, we have presented the EoS for NS modelling and inference, with particular focus
on a meta-model-based approach. Using a Bayesian analysis and employing a piecewise polytrope
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Figure 4: Same as in Fig. 3 for a 1.0𝑀⊙ NS.

at high density to account for the possible appearance of non-nucleonic degrees of freedom and
phase transitions in the NS core, we discussed the impact of the use of a unified and consistent
EoS model instead of a unique EoS at lower density. We show that the use of a fixed crust EoS
model does not yield noticeable differences in the NS global properties, if the employed unique
model is matched consistently at the corresponding crust-core transition and describes reasonably
well the crust, confirming the findings in Ref. [14]. However, the use of non-unified EoSs and a
fixed crust reduces the width of the distributions, particularly if the strict filter imposed on the EoS
by the 𝜒−EFT results is relaxed. This underlines, on the one side, the importance of a correct
estimation of the systematic uncertainties in the theoretical calculations, and, on the other hand, the
relevance of employing a consistent EoS in NS modelling and inference schemes to properly assess
the associated uncertainties.
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