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The Cottingham formula expresses the electromagnetic part of the mass of a particle in terms of the
virtual Compton scattering amplitude. At large photon momenta, this amplitude is dominated by short
distance singularities associated with operators of spin 0 and spin 2. In the difference between proton
and neutron, chiral symmetry suppresses the spin O term. Although the angular integration removes
the spin 2 singularities altogether, the various pieces occurring in the standard decomposition of the
Cottingham formula do pick up such contributions. These approach asymptotics extremely slowly because
the relevant Wilson coefficients only fall off logarithmically. We rewrite the formula in such a way that
the leading spin 2 contributions are avoided ab initio. Using a sum rule that follows from Reggeon
dominance, the numerical evaluation of the e.m. part of the mass difference between proton and neutron
yields mggp = 0.58 £ 0.16 MeV. The result indicates that the inelastic contributions are small compared
to the elastic ones.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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The fact that proton and neutron nearly have the same mass
is understood since the 1930s, as consequence of an approximate
symmetry: isospin [1]. For a long time, it was taken for granted
that the symmetry is broken only by the e.m. interaction - the
Cottingham formula [2] did explain the size of the observed mass
differences with Al =2, m;+ —m.o for instance. For Al =1, how-
ever, in particular for my, —my, the fact that the charged particle is
lighter than the neutral one remained mysterious [3-5].

In 1975, Gasser and Leutwyler [6] pointed out that the mystery
disappears if the popular conviction, according to which the strong
interaction conserves isospin, is dismissed. They showed that a co-
herent picture of isospin breaking can be reached within the Quark
Model, provided the masses of the two lightest quarks are not only
very small but also very different. At that time, the experimental
results on deep inelastic scattering were consistent with the scal-
ing laws of Bjorken [7]. Evaluating the Cottingham formula with
the scarce experimental information available then, they concluded
that the elastic contributions dominate over the inelastic ones and
arrived at the estimate mggp = 0.7 0.3 MeV [6].

Walker-Loud, Carlson and Miller [8] claimed that the analysis
in [6] is incorrect and instead arrived at mqgp = 1.30(03)(47). This
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paper triggered renewed interest and several authors investigated
the matter [9-12]. We will briefly discuss the results obtained in
these works below. Some of the claims made in [8] are rectified in
Appendix E of [13] and in [14,15].

A thorough account of our recent work on the subject with the
technical details of the calculation is given in [16]. The aim of the
present paper is to describe the basic ideas underlying our analysis
and the conclusions drawn from it.

Cottingham formula. We denote the e.m. self-energy of the par-
ticle by my,. As shown by Cottingham [2], it is determined by the
spin averaged forward Compton scattering amplitude,

T (p,q) = % f d*xe'T(p|Tj* (x)j* (0)|p) . (1)

Current conservation, Lorentz invariance and symmetry under
space reflection imply that T*Y can be expressed in terms of two
functions T1(v, g2), T2(v, %) that only depend on v = p - q/m and
g* (m is the mass of the particle). We use the notation of [13]:

" (p,q) = (@"q" — g"'q)HT1(v, ¢%) (2)
1
+1(0"q" +p"¢")p g —g"(p -q)?

— p"p @I T2 (v, q%).
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The Cottingham formula represents m,, as an integral over the
four components of the photon momentum g. In the rest frame
of the particle, the analytic properties of the time-ordered prod-
uct allow one to perform a Wick rotation that turns the path of
integration in the variable q° from the real axis into the imagi-
nary axis, q° = iQ4 [2,13]. The variable v coincides with ¢q° and
thus becomes purely imaginary. Identifying Q1, Q2, Q3 with the
space components of the physical momentum, we have g2 = —Q?2,
where Q is the length of the euclidean four-vector Q. The Cot-
tingham formula then takes the form of an integral over euclidean
space:

2 d4Q
" = gy | @
¢=3Q%T1 +(2QZ+ QT2 3)
where T1, T, are to be evaluated at v =iQq4, g2 = —Q?2.

Operator product expansion. The asymptotic behaviour of the in-
tegrand in formula (3) is controlled by the operator product ex-
pansion [17-22]. The leading contributions are determined by the
Wilson coefficients of the operators of lowest dimension, which
carry either spin 0 or spin 2. The explicit expressions [21-23] show
that the contributions from T; and T, both diverge - the for-
mula (3) must be regularized, e.g. by cutting the integral off with
Q2 < A%. We denote the regularized version of m, by m)/}.

Since the operators of spin 2 are of anomalous dimension, their
contributions to the asymptotic behaviour of T{ and T, involve a
negative fractional power of In Q 2, so that asymptotics sets in only
very slowly. The key observation in our evaluation of the Cotting-
ham formula is that the spin 2 contributions to T; and T, are the
same - apart from the sign and a factor of 2. In the amplitude

T.¢*)=T1(v.¢*) + ;T2 (v.¢%). (4)

the leading short distance singularities of spin 2 drop out. Accord-
ingly, this amplitude approaches asymptotics much more rapidly
than the individual terms. The advantage of replacing T; with T
also shows up in the asymptotic behaviour of the integrand in
(3): the divergence stems from the first term in the decomposition
¢ =3Q?T — 1(Q? — 4Q2)T,. The angular integration suppresses
the second when Q2 — oo.

Dispersion relations. The amplitudes T(v, —Q2) and T (v, —Q?)
obey fixed-Q 2 dispersion relations in the variable v. The imaginary
parts are determined by the structure functions:

ImT =7 F/2xQ?%,  ImT, =m2m?xF,/Q*%,
F=F; +2m%x*F,/Q?, (5)

with x= Q2/2mv and F| = F, — 2xF;. Regge asymptotics implies
that T, obeys an unsubtracted dispersion relation, while T requires
a subtraction:

Tw,—Q*) =T, -QH +5(-Q?

Xth -
2 2 mZF(X, Qz)
QA )O/dx (Q2 + m2x2)(Q4 — 4m2x2v2 — ie)’
To(.—Q2) =T (v, —Q2) h d 4m*Fa(x, Q%) (6)
2, = +0 QA —am2v —ie

The elastic parts, T¢ and TZEI, are unambiguously determined by
the nucleon form factors [6,13,15]. In the dispersion integrals, we
have replaced the variable of integration with v’ = Q2/(2mx). The
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upper limit represents the boundary of the inelastic region, x¢, =
Q2/(Q% +2mMy + M2).

Note that we are not subtracting the dispersion integral for T
at v =0, but at v = %Q. This simplifies the analysis further, as
it implies that, for v =iQg4, the subtracted integral picks up the
factor (Q2 — 4Qf). so that the angular average suppresses that
part as well.

Renormalization. In the framework of QCD+QED, the mass of a
particle is determined by the bare parameters that occur in the
Lagrangian and the cutoff used to regularize the theory. If the
electromagnetic interaction is turned off, only the QCD coupling
constant, the quark masses and the cutoff are relevant. To order
e2, the e.m. interaction changes the mass not only by the regu-
larized version of equation (3), but in addition by the contribution
Am?, which arises from the change in the bare parameters needed
for the mass of the particle to stay finite when the cutoff is re-
moved: the bare quantities depend on the cutoff as well as on e.
The e.m. contribution to the mass is given by

Mmgep = lim {m)f} + AmtY. (7)
A—o00

Decomposition of the Cottingham formula. With our decomposi-
tion of the Compton amplitude, the renormalized Cottingham for-
mula consists of four parts [16]:

Mgep = Mel + Mg + Mp, + M5 . (8)

While the first term collects the elastic contributions, the second
and third ones represent the contributions from the integrals oc-
curring in the dispersion relations for T and T». In the first three
parts, the limit A — oo can be taken - the explicit expressions
involve integrals over the elastic form factors and structure func-
tions of the nucleon [16]. The divergence resides in the fourth
term, which contains the contributions from subtraction function
and renormalization,

AZ
mg = lim N/dQ2Q2§(—Q2)+AmA , 9)
0

where the constant N stands for 3cep, /8Tm.

Asymptotic behaviour of the subtraction function. The operator
product expansion implies that S falls off in proportion to 1/Q*
when Q2 becomes large, while Am® grows logarithmically with
A. For m; to stay finite, the leading contributions must match:

S N2 ¢ A A?

S(-Q°)—> —, Am®* — —NCln—. (10)
Q* w2

The constant C is related to the matrix elements of the lowest

dimensional operators of spin 0.

In the following, we consider the difference between proton
and neutron, without explicitly indicating this in the notation: we
write T for TP~" and likewise for S, C, F, Ta,... In the proton-
neutron mass difference, we work to first order in the isospin
breaking parameters m, — my and e? and neglect contributions of
0[e?(my —mg)]. The constant C can then be expressed in terms of
the proton matrix elements of iiu — dd:
C=w<p|ﬂu—ad|p). (11)
The same matrix element also determines the leading contribution
to the QCD part of the mass difference [24]:
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%(pmu — dd|p) {1+ 0(my —mg)} . (12)

The crude estimate mqgep ~ —2 MeV and the known quark
mass ratios imply that C is tiny: with the lattice result
ms/myq = 27.23(10) [25] and the value of the ratio Q =
\/(mf —m2,)/(m} —m3) = 22.1(7) extracted from 7-decay [26],
we obtain C ~ 6-10~% GeV2. The approximate chiral symmetry of
the Standard Model very strongly suppresses the asymptotic be-
haviour of S.

The expression (11) for the constant C receives corrections
from higher orders of the perturbation series. These imply that
the Cottingham formula contains subleading divergences propor-
tional to Inln A - for details, we refer to [16]. Since chiral sym-
metry suppresses the entire contribution from the region where
perturbation theory applies, the corresponding effects in the renor-
malized mass difference are tiny and can be neglected. Setting
= exp(—%),u, the expression for Am? in (10) differs from

2
—NC [ dQ2Q?/(2* + @%)? only by terms of order ;>/A%. The
contribution to mqgp that arises from the subtraction function can
thus be written in the form [16]

Mqcp =

[o.¢]
212)¢ 2 C

ms=N [ a0’ {S( e (;12+Q2>2]' 1)

0
This distinguishes our evaluation of the Cottingham formula from
those in the literature [8-12], where the integral as well as the
counter term are evaluated at a finite value of the cutoff around
A2 =~ 2 GeV2. This would be legitimate if asymptotics were reached
at such a low scale, but for the subtraction function used in these
references, that is not the case.

Role of spin 2 operators: S versus S;. Traditionally, the subtraction
function is identified with a multiple of S;(q?) = T1(0, g%). Asymp-
totically, Q#S; approaches the same constant C as Q“S, but this
happens much more slowly: in contrast to S, the function S; does
pick up spin 2 contributions [21] and these are not proportional to
the lightest quark masses. This implies that, in the pre-asymptotic
region, the two subtraction functions behave quite differently. In
S, it takes extremely large values of Q2 for the spin O term to fi-
nally win over those of spin 2. When working with a low cutoff,
this affects the result for the mass difference quite substantially -
see below.

In contrast to the mass itself, mqep depends on the renormal-
ization scale w: the splitting into a contribution from QCD and one
from QED is a matter of convention. In the decomposition (8), the
parameter p resides in mg and enters through the term Am® in
(10). The above estimate for the size of the constant C shows, how-
ever, that the sensitivity of mg to u is extremely weak: increasing
the scale by a factor of 2 increases the value of mqggp by about 1
keV. For definiteness, we set ;1 =2 GeV.

Reggeon dominance. The behaviour of the Compton amplitude
in the limit g = A g, A — oo is controlled by the operator product
expansion, which implies that both T and T, tend to zero in this
limit. The gluons as well as the quarks reggeize, however [27-32]:
in the limit where v becomes large while g2 is kept fixed, only T
disappears, T diverges.

In the Compton amplitudes of proton and neutron, the leading
terms stem from singlet contributions due to Pomeron exchange,
but in the difference between the two, these drop out: the dom-
inating contributions to T stem from the exchange of the leading
Reggeon with I€ = 1%, which we refer to as the a,. It generates
a Regge pole in the angular momentum plane which moves along
the trajectory «(t). In the forward direction, only the value at t =0
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matters: at fixed g2, the contribution from the a, grows with the
power v*:
2

PR, 2 = ~ L9 g ey, (14)

sinTo
where « stands for «(0) and the variables s = m? + 2mv + g2,
u =m? — 2mv + ¢® represent the square of the centre of mass
energy in the s- and u-channels, respectively. The value of « is
experimentally well determined from the high energy behaviour
of hadronic cross sections and is in the vicinity of o ~ 0.55 - the
uncertainties in o are too small to affect our results.

Reggeization implies that the dispersion relation for T requires
a subtraction. We assume that the Reggeons fully determine the
asymptotic behaviour [4,6,13],

lim (T-T®H =0, (15)
V—>00

and that the remainder disappears sufficiently fast for the differ-
ence T — TR to obey an unsubtracted dispersion relation. We refer
to this assumption as Reggeon dominance.

A nonzero limiting value in (15) would represent a fixed pole in
T at o = 0. We do not know of a physical phenomenon that could
produce such a term - neither causality, nor the short-distance
singularities, nor the Reggeons generate terms of this sort. The
presence of a fixed pole would mean that the high energy be-
haviour of the Compton amplitude is not understood.

For T, the contribution from the Reggeons tends to zero in
proportion to v¥~2. The generally accepted assumption that this
amplitude obeys an unsubtracted dispersion relation immediately
implies that it also obeys the Reggeon dominance condition (15).
Note, however, that the expansion of the dispersion integral for T,
in inverse powers of v contains a term proportional to 1/v%. As
pointed out by Damashek and Gilman [33] and, independently by
Dominguez et al. [34], this term corresponds to a fixed pole in T,
at o = 0 (there is an analogous term also in T, but it represents a
fixed pole with @ = —2 and is at most of academic interest).

Sum rule. Elitzur and Harari [4] pointed out that if the exchange
of Reggeons correctly describes the asymptotic behaviour in the
limit v — oo at fixed g2, then the subtraction function obeys a sum
rule which fully determines it through the cross section of lepton-
nucleon scattering. The sum rule relevant for our decomposition
of the Compton amplitude exclusively involves the structure func-
tion F. At small values of x, this quantity is dominated by Reggeon
exchange:

FR=b@>x'™*, b(Q?*=2Q**"Vp(-0Q?%. (16)
In the difference F — FR, the leading term cancels out. As demon-
strated in [16], the sum rule for S can be brought to the form:

X

h — -
Q25(—-Q?) =ftdx F. Q%) - FF(x.Q®)  b(Q?

) x2 Xy
* 2F 2
m=F(x, Q%)
— [ dx e (17)
0

In [6], the violations of Bjorken scaling were ignored: it was
assumed that for Q2 — oo, the structure function F tends to
(2xH{ + F2)x*m?/Q2, where H; and F, only depend on x. One
readily checks that the sum rule (17) then indeed reduces to the
relation between the operator matrix element C and the structure
functions given in (5.2), (5.3), (13.14) of [6]. Scaling would imply
that the last term on the r.h.s. of (17) tends to zero o« 1/Q*. The
scaling violations merely make it disappear less rapidly, in propor-
tion to 1/Q2/(In Q)42 with d, > 0 [16].
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Elastic contributions. In recent years, the precision to which the
elastic form factors are known has increased significantly [35-38].
The results obtained with the three parametrizations of [35-37]
are in the range

Met = 0.75 £ 0.02 MeV. (18)

Note that the amplitudes used in the literature often have kine-
matic zeros - this can make it difficult not only to sort out the
asymptotic behaviour, but also to identify the elastic part of the
dispersive representation (“Born term”) with the contribution gen-
erated by the one-particle intermediate state [13,15]. In [12], for
instance, it is assumed that the amplitude T = ¢2T; + V2T, sat-
isfies the asymptotic condition (15). That assumption, however,
requires q2T; to contain a fixed pole which compensates the one
in V2T, and hence violates Reggeon dominance.

Structure functions, parton distributions. For the numerical eval-
uation of the dispersion integrals and of the sum rule for the
subtraction function, we need a representation for the difference
between the structure functions of proton and neutron, and not
only for the relatively well explored quantity F,, but also for the
longitudinal component F;, which is known less well. In the reso-
nance region (W < 3), we make use of the parametrizations of the
structure functions in [39-43]. For W > 3 and low photon virtual-
ities (Q2 < 1), we invoke the Regge representation of Alwall and
Ingelman (AI) [44].

At higher values of Q2, the DGLAP equations [45-47] for the
parton distribution functions (PDFs) provide a strong constraint for
the analysis of the data: at leading order in «;, these equations
imply that F; is given by an integral over F,. A vast amount of
PDFs is available [48,49] and APFEL Web [50,51] provides a flexible,
user-friendly tool for the evaluation of the corresponding structure
functions. Since the quark masses m, and my are tiny, the u- and
d-distributions in the neutron must be very close to the d- and
u-distributions in the proton, respectively. As emphasized e.g. in
[52], this ensures that the u- and d-distributions can separately
be determined by using neutral and charged current data on the
proton - scattering on deuterons or heavier nuclei is not needed
to sort out the difference between the u- and d-distributions of
the proton.

As mentioned above, the behaviour in the Regge region (x
small) is dominated by the singlet part of the distributions. This
implies that the u- and d-distributions must approach one another
when x — 0. While the available data strongly constrain the singlet
part at small x, the non-singlet PDFs are much less well deter-
mined. The same applies to the non-singlet structure function F
which plays a central role in our work.

Since reggeization involves sums to all orders of perturbation
theory, it is not a simple matter to analyze the behaviour at small
x in the framework of the DGLAP equations (for a review of the
problems encountered in this endeavour, we refer to [53]). In par-
ticular, the requirement that the u- and d-distributions must ap-
proach one another in the Regge limit and that their difference
yields a contribution to F that falls off with b(Q2)x'~%, « =~ 0.55
imposes nontrivial theoretical constraints. A coherent parametriza-
tion of the PDFs that is consistent not only with the data, but also
with these constraints, yet needs to be found.

In our calculation, we rely on the solutions of the DGLAP equa-
tions constructed by Alekhin, Bliimlein and Moch (ABM) [52,54,55]
in the region x > 0.01. At smaller values of x, we assume that F is
dominated by the Reggeon a;, not only at small photon virtualities,
but also at higher values of Q2. We determine the residue b(Q 2)
by smoothly matching the two parametrizations around x = 0.01.
In the region W >3, Q2 > 1, we estimate the uncertainty in our
representation for the structure functions FP~" and Fj " at 30%.
For details, we refer to [16].

Physics Letters B 814 (2021) 136087

Inelastic contributions. The most striking aspect of our numeri-
cal result is that the two terms mz and mp, turn out to be tiny:
mg + mp, = —0.004(1) MeV. As discussed above, the angular in-
tegration suppresses the integrands of these quantities at large
values of Q2, but the numerical result shows that the suppres-
sion is very efficient also in the low energy region. We conclude
that - in our decomposition of the Compton amplitude - only
the elastic contribution me| and the term mg from the subtraction
function play a significant role. Note that this statement holds in-
dependently of the assumptions used to determine the subtraction
function. Since the various attempts at evaluating the Cottingham
formula arrive at very similar values for the elastic part, the dis-
crepancies in the results for the mass difference mainly come from
the term ms, i.e. from the fact that the parametrizations used for
the Compton amplitude yield different representations for the sub-
traction function S.

Contribution from the subtraction function. It is straightforward
to evaluate the sum rule for S with the two representations of
F(x,Q2) and b(Q?2) we are using below and above Q2 =1 GeV?,
respectively and to calculate the corresponding contribution to mg
with (13). Isospin conservation prevents the most prominent fea-
ture in the low energy region, the A(1232), to make a significant
contribution. Moreover, the regions below and above a centre of
mass energy of 3 GeV contribute with opposite sign - within er-
rors, they cancel: mg(Q2 <1 GeV?) = —0.034(68) MeV. Note that
the error is twice as large as the central value. It is dominated
by the uncertainties in the resonance region and is of systematic
nature, as it stems from the simplification used in the data analy-
sis of Bosted and Christy [42,43]: the ratio R = o /o1 is assumed
to be the same for proton and neutron. In the region where the
Pomeron dominates, this holds to good accuracy, but we need the
difference between the two, where Pomeron exchange drops out.

At Q2 =1 GeVZ, where the representations Al and ABM meet,
the results for the contributions to S from W > 3 GeV agree within
errors: the two entirely different sources match, both in sign and
in size. In order to interpolate between the values of Q2 where the
ABM results provide significant information and the region where
asymptotics sets in, we make use of the Generalized Vector Dom-
inance Model of Sakurai and Schildknecht [56], parametrizing the
subtraction function in terms of the contributions from p, @ and
¢. In the difference between proton and neutron, only the off-
diagonal terms survive:

1 Co Co

S —-Q%) =
vmp(—Q7) m%—i—QZ mi+Q2+mé+Q2

(19)

The asymptotic condition (10) requires the two terms in the
bracket to nearly cancel: ¢, + ¢4 = C. This leaves a single parame-
ter free, say c. Fitting the parametrization in the range between 2
and 3.5 GeV?, we obtain c,, = —0.74(49) GeV2. We have checked
that the outcome for mg is neither sensitive to the specific form
of the interpolation nor to the range used in the fit. Numerically,
this yields m;(Q2 > 1 GeV?) = —0.13(9) MeV. Together with the
contributions from low virtualities, this yields

mg = —0.17(16) MeV . (20)

Because asymptotic freedom fixes the asymptotic behaviour of
the subtraction function, the parametrization obtained within Gen-
eralized Vector Meson Dominance contains a single free parameter.
Instead of fixing it to the results obtained with the ABM solution
of the DGLAP equations, we can dismiss the experimental informa-
tion available for W > 3, Q2 > 1 altogether and determine the free
parameter with a fit to the results obtained for Q2 < 1. This yields
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mgz = —0.12(21) MeV: the central value stays well within the esti-
mated uncertainty and the error only increases by about 30%. This
indicates that our result is not sensitive to the input used in the
region where the non-singlet contributions to the structure func-
tions are not yet known well.

Numerical result. Collecting the various contributions and using
the experimental value of the proton-neutron mass difference, the
parts due to the e.m. interaction and to the difference between m,
and my become

mQED=0.58iO.16 MeV , mQCD=—1.87:FO.]G MeV . (21)

The result for mgcp yields a more precise estimate for the leading
Wilson coefficient: C =5.7(1.1) - 10~4 GeV?, but the corresponding
shift in our results is negligibly small.

The conclusions reached in [6] are thus confirmed: mggp is
dominated by the elastic contribution. The uncertainty in the old
result, mqep = 0.7(3) MeV, is reduced by about a factor of two.

It is not difficult to understand why the inelastic contributions
are so small: (a) the angular integration suppresses the contribu-
tions from the dispersion integrals, (b) if Q2 is large, the subtrac-
tion functions of proton and neutron are nearly the same - in the
chiral limit, there is no difference, (c) in the region where Reggeon
exchange dominates, the leading term, the Pomeron, is the same,
(d) isospin symmetry ensures that the most important resonance,
the A(1232), contributes equally to proton and neutron and (e) the
elastic contributions also dominate the chiral perturbation series of
the Compton amplitude: the leading terms exclusively contribute
to the elastic part - inelastic processes merely generate higher or-
der corrections (for a recent analysis of the subtraction function in
x PT, we refer to [57]).

Comparison with lattice results. The determination of mggp on a
lattice is a very demanding goal. While the numbers in [58] cluster
around mqgp ~ 0.7 MeV, in agreement with our result, the values
1.00(7)(14) MeV [59], 1.03(17) [60] and 1.53(25)(50) MeV [61]
are higher than ours. Adding statistical and systematic errors in
quadrature, the various lattice results differ from the outcome of
our calculation by less than two standard deviations. In the frame-
work we are relying on, values like mqggp =1 MeV or even higher
require sizeable positive contributions from mg - this is not com-
patible with Reggeon dominance.

Comparison with other dispersive calculations. The main difference
between our analysis and the work reported in [8-11] is that,
there, the subtraction function is not calculated, but parametrized
with an ansatz in terms of its value at Q2 = 0 (taken from exper-
iment) and a scale mg that specifies the momentum dependence.
Moreover, in these models, the parametrization is applied to $;
rather than to S. As discussed above, the asymptotic behaviour
of S; picks up contributions from operators with spin 2, which
fall off only extremely slowly. Since chiral symmetry suppresses
the coefficient C of the leading asymptotic term, it starts dom-
inating S; only if Q2 becomes very large. This implies that the
parametrization used in these models does not behave properly in
the pre-asymptotic region, which does make a significant contri-
bution to ms.

The mismatch with the asymptotics disappears if the ansatz
in [9] is assumed to be valid for S rather than S;. The central
value obtained for mqggp then drops to about 0.7 MeV, in agree-
ment with what we find. The uncertainties in the result for mqgp,
however, are much larger than ours, not only because the experi-
mental values of the magnetic polarizabilities of proton and neu-
tron, which play a key role in those models, are subject to large
errors, but also because the result is quite sensitive to the shape
of the parametrization used for low values of Q2.
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Summary. We have applied the Reggeon dominance hypothesis
to the electromagnetic part of the proton-neutron mass difference.
The uncertainty in our final result, mgep = 0.58 +0.16 MeV, stems
from a careful estimate of the errors coming from the different ex-
perimental data sets used in the calculations. While this confirms
the old result [6], which also relies on Reggeon dominance, recent
evaluations of the Cottingham formula [8-12] yield central values
around 1 MeV or even higher. The difference stems from the short
distance singularities associated with operators of spin 2 that are
neglected in those references. The lattice determinations do not yet
yield conclusive results, but the method is gradually improved. In
the long run, these will achieve comparable accuracy and thereby
put Reggeon dominance to a very stringent test.
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