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The Cottingham formula expresses the electromagnetic part of the mass of a particle in terms of the 
virtual Compton scattering amplitude. At large photon momenta, this amplitude is dominated by short 
distance singularities associated with operators of spin 0 and spin 2. In the difference between proton 
and neutron, chiral symmetry suppresses the spin 0 term. Although the angular integration removes 
the spin 2 singularities altogether, the various pieces occurring in the standard decomposition of the 
Cottingham formula do pick up such contributions. These approach asymptotics extremely slowly because 
the relevant Wilson coefficients only fall off logarithmically. We rewrite the formula in such a way that 
the leading spin 2 contributions are avoided ab initio. Using a sum rule that follows from Reggeon 
dominance, the numerical evaluation of the e.m. part of the mass difference between proton and neutron 
yields mQED = 0.58 ± 0.16 MeV. The result indicates that the inelastic contributions are small compared 
to the elastic ones.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The fact that proton and neutron nearly have the same mass 
is understood since the 1930s, as consequence of an approximate 
symmetry: isospin [1]. For a long time, it was taken for granted 
that the symmetry is broken only by the e.m. interaction – the 
Cottingham formula [2] did explain the size of the observed mass 
differences with �I = 2, mπ+ −mπ0 for instance. For �I = 1, how-
ever, in particular for mp −mn , the fact that the charged particle is 
lighter than the neutral one remained mysterious [3–5].

In 1975, Gasser and Leutwyler [6] pointed out that the mystery 
disappears if the popular conviction, according to which the strong 
interaction conserves isospin, is dismissed. They showed that a co-
herent picture of isospin breaking can be reached within the Quark 
Model, provided the masses of the two lightest quarks are not only 
very small but also very different. At that time, the experimental 
results on deep inelastic scattering were consistent with the scal-
ing laws of Bjorken [7]. Evaluating the Cottingham formula with 
the scarce experimental information available then, they concluded 
that the elastic contributions dominate over the inelastic ones and 
arrived at the estimate mQED = 0.7 ± 0.3 MeV [6].

Walker-Loud, Carlson and Miller [8] claimed that the analysis 
in [6] is incorrect and instead arrived at mQED = 1.30(03)(47). This 
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paper triggered renewed interest and several authors investigated 
the matter [9–12]. We will briefly discuss the results obtained in 
these works below. Some of the claims made in [8] are rectified in 
Appendix E of [13] and in [14,15].

A thorough account of our recent work on the subject with the 
technical details of the calculation is given in [16]. The aim of the 
present paper is to describe the basic ideas underlying our analysis 
and the conclusions drawn from it.

Cottingham formula. We denote the e.m. self-energy of the par-
ticle by mγ . As shown by Cottingham [2], it is determined by the 
spin averaged forward Compton scattering amplitude,

T μν(p,q) = i

2

∫
d4x eiq·x〈p|T jμ(x) jν(0)|p〉 . (1)

Current conservation, Lorentz invariance and symmetry under 
space reflection imply that T μν can be expressed in terms of two 
functions T1(ν, q2), T2(ν, q2) that only depend on ν = p · q/m and 
q2 (m is the mass of the particle). We use the notation of [13]:

T μν(p,q) = (qμqν − gμνq2)T1(ν,q2) (2)

+ 1

m2
{(pμqν + pνqμ)p · q − gμν(p · q)2

− pμpνq2}T2(ν,q2) .
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The Cottingham formula represents mγ as an integral over the 
four components of the photon momentum q. In the rest frame 
of the particle, the analytic properties of the time-ordered prod-
uct allow one to perform a Wick rotation that turns the path of 
integration in the variable q0 from the real axis into the imagi-
nary axis, q0 = i Q 4 [2,13]. The variable ν coincides with q0 and 
thus becomes purely imaginary. Identifying Q 1, Q 2, Q 3 with the 
space components of the physical momentum, we have q2 = −Q 2, 
where Q is the length of the euclidean four-vector Q μ . The Cot-
tingham formula then takes the form of an integral over euclidean 
space:

mγ = e2

2m(2π)4

∫
d4 Q

Q 2
φ ,

φ = 3Q 2T1 + (2Q 2
4 + Q 2)T2 , (3)

where T1, T2 are to be evaluated at ν = i Q 4, q2 = −Q 2.

Operator product expansion. The asymptotic behaviour of the in-
tegrand in formula (3) is controlled by the operator product ex-
pansion [17–22]. The leading contributions are determined by the 
Wilson coefficients of the operators of lowest dimension, which 
carry either spin 0 or spin 2. The explicit expressions [21–23] show 
that the contributions from T1 and T2 both diverge – the for-
mula (3) must be regularized, e.g. by cutting the integral off with 
Q 2 ≤ �2. We denote the regularized version of mγ by m�

γ .
Since the operators of spin 2 are of anomalous dimension, their 

contributions to the asymptotic behaviour of T1 and T2 involve a 
negative fractional power of ln Q 2, so that asymptotics sets in only 
very slowly. The key observation in our evaluation of the Cotting-
ham formula is that the spin 2 contributions to T1 and T2 are the 
same – apart from the sign and a factor of 2. In the amplitude

T̄ (ν,q2) = T1(ν,q2) + 1
2 T2(ν,q2) , (4)

the leading short distance singularities of spin 2 drop out. Accord-
ingly, this amplitude approaches asymptotics much more rapidly 
than the individual terms. The advantage of replacing T1 with T̄
also shows up in the asymptotic behaviour of the integrand in 
(3): the divergence stems from the first term in the decomposition 
φ = 3Q 2 T̄ − 1

2 (Q 2 − 4Q 2
4 )T2. The angular integration suppresses 

the second when Q 2 → ∞.

Dispersion relations. The amplitudes T̄ (ν, −Q 2) and T2(ν, −Q 2)

obey fixed-Q 2 dispersion relations in the variable ν . The imaginary 
parts are determined by the structure functions:

ImT̄ = π F̄/2x Q 2 , ImT2 = π 2m2x F2/Q 4 ,

F̄ = F L + 2m2x2 F2/Q 2 , (5)

with x = Q 2/2 m ν and F L ≡ F2 − 2xF1. Regge asymptotics implies 
that T2 obeys an unsubtracted dispersion relation, while T̄ requires 
a subtraction:

T̄ (ν,−Q 2) = T̄ el(ν,−Q 2) + S̄(−Q 2)

+ (Q 2 + 4ν2)

xth∫
0

dx
m2 F̄ (x, Q 2)

(Q 2 + m2x2)(Q 4 − 4m2x2ν2 − iε)
,

T2(ν,−Q 2) = T el
2 (ν,−Q 2) +

xth∫
0

dx
4m2 F2(x, Q 2)

Q 4 − 4m2x2ν2 − iε
. (6)

The elastic parts, T̄ el and T el
2 , are unambiguously determined by 

the nucleon form factors [6,13,15]. In the dispersion integrals, we 
have replaced the variable of integration with ν ′ = Q 2/(2 m x). The 
2

upper limit represents the boundary of the inelastic region, xth =
Q 2/(Q 2 + 2mMπ + M2

π ).
Note that we are not subtracting the dispersion integral for T̄

at ν = 0, but at ν = i
2 Q . This simplifies the analysis further, as 

it implies that, for ν = i Q 4, the subtracted integral picks up the 
factor (Q 2 − 4Q 2

4 ), so that the angular average suppresses that 
part as well.

Renormalization. In the framework of QCD+QED, the mass of a 
particle is determined by the bare parameters that occur in the 
Lagrangian and the cutoff used to regularize the theory. If the 
electromagnetic interaction is turned off, only the QCD coupling 
constant, the quark masses and the cutoff are relevant. To order 
e2, the e.m. interaction changes the mass not only by the regu-
larized version of equation (3), but in addition by the contribution 
�m� , which arises from the change in the bare parameters needed 
for the mass of the particle to stay finite when the cutoff is re-
moved: the bare quantities depend on the cutoff as well as on e. 
The e.m. contribution to the mass is given by

mQED = lim
�→∞ {m�

γ + �m�} . (7)

Decomposition of the Cottingham formula. With our decomposi-
tion of the Compton amplitude, the renormalized Cottingham for-
mula consists of four parts [16]:

mQED = mel + mF̄ + mF2 + mS̄ . (8)

While the first term collects the elastic contributions, the second 
and third ones represent the contributions from the integrals oc-
curring in the dispersion relations for T̄ and T2. In the first three 
parts, the limit � → ∞ can be taken – the explicit expressions 
involve integrals over the elastic form factors and structure func-
tions of the nucleon [16]. The divergence resides in the fourth 
term, which contains the contributions from subtraction function 
and renormalization,

mS̄ = lim
�→∞

⎧⎪⎨
⎪⎩N

�2∫
0

dQ 2 Q 2 S̄(−Q 2) + �m�

⎫⎪⎬
⎪⎭ , (9)

where the constant N stands for 3αem/8πm.

Asymptotic behaviour of the subtraction function. The operator 
product expansion implies that S̄ falls off in proportion to 1/Q 4

when Q 2 becomes large, while �m� grows logarithmically with 
�. For mS̄ to stay finite, the leading contributions must match:

S̄(−Q 2) → C

Q 4
, �m� → −NC ln

�2

μ2
. (10)

The constant C is related to the matrix elements of the lowest 
dimensional operators of spin 0.

In the following, we consider the difference between proton 
and neutron, without explicitly indicating this in the notation: we 
write T̄ for T̄ p−n and likewise for S̄ , C , F̄ , T2, . . . In the proton-
neutron mass difference, we work to first order in the isospin 
breaking parameters mu − md and e2 and neglect contributions of 
O [e2(mu −md)]. The constant C can then be expressed in terms of 
the proton matrix elements of ūu − d̄d:

C = 4mu − md

9
〈p|ūu − d̄d|p〉 . (11)

The same matrix element also determines the leading contribution 
to the QCD part of the mass difference [24]:
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mQCD = mu − md

2m
〈p|ūu − d̄d|p〉 {1 + O (mu − md)} . (12)

The crude estimate mQCD ≈ −2 MeV and the known quark
mass ratios imply that C is tiny: with the lattice result
ms/mud = 27.23(10) [25] and the value of the ratio Q ≡√

(m2
s − m2

ud)/(m
2
d − m2

u) = 22.1(7) extracted from η-decay [26], 
we obtain C ≈ 6 · 10−4 GeV2. The approximate chiral symmetry of 
the Standard Model very strongly suppresses the asymptotic be-
haviour of S̄ .

The expression (11) for the constant C receives corrections 
from higher orders of the perturbation series. These imply that 
the Cottingham formula contains subleading divergences propor-
tional to ln ln � – for details, we refer to [16]. Since chiral sym-
metry suppresses the entire contribution from the region where 
perturbation theory applies, the corresponding effects in the renor-
malized mass difference are tiny and can be neglected. Setting 
μ̄ ≡ exp(− 1

2 )μ, the expression for �m� in (10) differs from 

−NC
∫ �2

0 dQ 2 Q 2/(μ̄2 + Q 2)2 only by terms of order μ2/�2. The 
contribution to mQED that arises from the subtraction function can 
thus be written in the form [16]

mS̄ = N

∞∫
0

dQ 2 Q 2
{

S̄(−Q 2) − C

(μ̄2 + Q 2)2

}
. (13)

This distinguishes our evaluation of the Cottingham formula from 
those in the literature [8–12], where the integral as well as the 
counter term are evaluated at a finite value of the cutoff around 
�2 ≈ 2 GeV2. This would be legitimate if asymptotics were reached 
at such a low scale, but for the subtraction function used in these 
references, that is not the case.

Role of spin 2 operators: S̄ versus S1 . Traditionally, the subtraction 
function is identified with a multiple of S1(q2) ≡ T1(0, q2). Asymp-
totically, Q 4 S1 approaches the same constant C as Q 4 S̄ , but this 
happens much more slowly: in contrast to S̄ , the function S1 does 
pick up spin 2 contributions [21] and these are not proportional to 
the lightest quark masses. This implies that, in the pre-asymptotic 
region, the two subtraction functions behave quite differently. In 
S1, it takes extremely large values of Q 2 for the spin 0 term to fi-
nally win over those of spin 2. When working with a low cutoff, 
this affects the result for the mass difference quite substantially – 
see below.

In contrast to the mass itself, mQED depends on the renormal-
ization scale μ: the splitting into a contribution from QCD and one 
from QED is a matter of convention. In the decomposition (8), the 
parameter μ resides in mS̄ and enters through the term �m� in 
(10). The above estimate for the size of the constant C shows, how-
ever, that the sensitivity of mS̄ to μ is extremely weak: increasing 
the scale by a factor of 2 increases the value of mQED by about 1 
keV. For definiteness, we set μ = 2 GeV.

Reggeon dominance. The behaviour of the Compton amplitude 
in the limit q = λ ̄q, λ → ∞ is controlled by the operator product 
expansion, which implies that both T̄ and T2 tend to zero in this 
limit. The gluons as well as the quarks reggeize, however [27–32]: 
in the limit where ν becomes large while q2 is kept fixed, only T2
disappears, T̄ diverges.

In the Compton amplitudes of proton and neutron, the leading 
terms stem from singlet contributions due to Pomeron exchange, 
but in the difference between the two, these drop out: the dom-
inating contributions to T̄ stem from the exchange of the leading 
Reggeon with IC = 1+ , which we refer to as the a2. It generates 
a Regge pole in the angular momentum plane which moves along 
the trajectory α(t). In the forward direction, only the value at t = 0
3

matters: at fixed q2, the contribution from the a2 grows with the 
power να :

T̄ R(ν,q2) = −π β(q2)

sinπα
{(−s)α + (−u)α} , (14)

where α stands for α(0) and the variables s = m2 + 2mν + q2, 
u = m2 − 2mν + q2 represent the square of the centre of mass 
energy in the s- and u-channels, respectively. The value of α is 
experimentally well determined from the high energy behaviour 
of hadronic cross sections and is in the vicinity of α ≈ 0.55 – the 
uncertainties in α are too small to affect our results.

Reggeization implies that the dispersion relation for T̄ requires 
a subtraction. We assume that the Reggeons fully determine the 
asymptotic behaviour [4,6,13],

lim
ν→∞ (T̄ − T̄ R) = 0 , (15)

and that the remainder disappears sufficiently fast for the differ-
ence T̄ − T̄ R to obey an unsubtracted dispersion relation. We refer 
to this assumption as Reggeon dominance.

A nonzero limiting value in (15) would represent a fixed pole in 
T̄ at α = 0. We do not know of a physical phenomenon that could 
produce such a term – neither causality, nor the short-distance 
singularities, nor the Reggeons generate terms of this sort. The 
presence of a fixed pole would mean that the high energy be-
haviour of the Compton amplitude is not understood.

For T2, the contribution from the Reggeons tends to zero in 
proportion to να−2. The generally accepted assumption that this 
amplitude obeys an unsubtracted dispersion relation immediately 
implies that it also obeys the Reggeon dominance condition (15). 
Note, however, that the expansion of the dispersion integral for T2
in inverse powers of ν contains a term proportional to 1/ν2. As 
pointed out by Damashek and Gilman [33] and, independently by 
Dominguez et al. [34], this term corresponds to a fixed pole in T2, 
at α = 0 (there is an analogous term also in T̄ , but it represents a 
fixed pole with α = −2 and is at most of academic interest).

Sum rule. Elitzur and Harari [4] pointed out that if the exchange 
of Reggeons correctly describes the asymptotic behaviour in the 
limit ν → ∞ at fixed q2, then the subtraction function obeys a sum 
rule which fully determines it through the cross section of lepton-
nucleon scattering. The sum rule relevant for our decomposition 
of the Compton amplitude exclusively involves the structure func-
tion F̄ . At small values of x, this quantity is dominated by Reggeon 
exchange:

F̄ R = b(Q 2)x1−α , b(Q 2) = 2Q 2(α+1)β(−Q 2) . (16)

In the difference F̄ − F̄ R , the leading term cancels out. As demon-
strated in [16], the sum rule for S̄ can be brought to the form:

Q 2 S̄(−Q 2) =
xth∫
0

dx
F̄ (x, Q 2) − F̄ R(x, Q 2)

x2
− b(Q 2)

α xα
th

−
xth∫
0

dx
m2 F̄ (x, Q 2)

Q 2 + m2x2
. (17)

In [6], the violations of Bjorken scaling were ignored: it was 
assumed that for Q 2 → ∞, the structure function F̄ tends to 
(2xH1 + F2)x2m2/Q 2, where H1 and F2 only depend on x. One 
readily checks that the sum rule (17) then indeed reduces to the 
relation between the operator matrix element C and the structure 
functions given in (5.2), (5.3), (13.14) of [6]. Scaling would imply 
that the last term on the r.h.s. of (17) tends to zero ∝ 1/Q 4. The 
scaling violations merely make it disappear less rapidly, in propor-
tion to 1/Q 2/(ln Q 2)1+d2 with d2 > 0 [16].
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Elastic contributions. In recent years, the precision to which the 
elastic form factors are known has increased significantly [35–38]. 
The results obtained with the three parametrizations of [35–37]
are in the range

mel = 0.75 ± 0.02 MeV . (18)

Note that the amplitudes used in the literature often have kine-
matic zeros – this can make it difficult not only to sort out the 
asymptotic behaviour, but also to identify the elastic part of the 
dispersive representation (“Born term”) with the contribution gen-
erated by the one-particle intermediate state [13,15]. In [12], for 
instance, it is assumed that the amplitude T̂ = q2T1 + ν2T2 sat-
isfies the asymptotic condition (15). That assumption, however, 
requires q2T1 to contain a fixed pole which compensates the one 
in ν2T2 and hence violates Reggeon dominance.

Structure functions, parton distributions. For the numerical eval-
uation of the dispersion integrals and of the sum rule for the 
subtraction function, we need a representation for the difference 
between the structure functions of proton and neutron, and not 
only for the relatively well explored quantity F2, but also for the 
longitudinal component F L , which is known less well. In the reso-
nance region (W < 3), we make use of the parametrizations of the 
structure functions in [39–43]. For W > 3 and low photon virtual-
ities (Q 2 < 1), we invoke the Regge representation of Alwall and 
Ingelman (AI) [44].

At higher values of Q 2, the DGLAP equations [45–47] for the 
parton distribution functions (PDFs) provide a strong constraint for 
the analysis of the data: at leading order in αs , these equations 
imply that F L is given by an integral over F2. A vast amount of 
PDFs is available [48,49] and APFEL Web [50,51] provides a flexible, 
user-friendly tool for the evaluation of the corresponding structure 
functions. Since the quark masses mu and md are tiny, the u- and 
d-distributions in the neutron must be very close to the d- and 
u-distributions in the proton, respectively. As emphasized e.g. in 
[52], this ensures that the u- and d-distributions can separately 
be determined by using neutral and charged current data on the 
proton – scattering on deuterons or heavier nuclei is not needed 
to sort out the difference between the u- and d-distributions of 
the proton.

As mentioned above, the behaviour in the Regge region (x
small) is dominated by the singlet part of the distributions. This 
implies that the u- and d-distributions must approach one another 
when x → 0. While the available data strongly constrain the singlet 
part at small x, the non-singlet PDFs are much less well deter-
mined. The same applies to the non-singlet structure function F̄
which plays a central role in our work.

Since reggeization involves sums to all orders of perturbation 
theory, it is not a simple matter to analyze the behaviour at small 
x in the framework of the DGLAP equations (for a review of the 
problems encountered in this endeavour, we refer to [53]). In par-
ticular, the requirement that the u- and d-distributions must ap-
proach one another in the Regge limit and that their difference 
yields a contribution to F̄ that falls off with b(Q 2)x1−α , α ≈ 0.55
imposes nontrivial theoretical constraints. A coherent parametriza-
tion of the PDFs that is consistent not only with the data, but also 
with these constraints, yet needs to be found.

In our calculation, we rely on the solutions of the DGLAP equa-
tions constructed by Alekhin, Blümlein and Moch (ABM) [52,54,55]
in the region x > 0.01. At smaller values of x, we assume that F̄ is 
dominated by the Reggeon a2, not only at small photon virtualities, 
but also at higher values of Q 2. We determine the residue b(Q 2)

by smoothly matching the two parametrizations around x = 0.01. 
In the region W > 3, Q 2 > 1, we estimate the uncertainty in our 
representation for the structure functions F̄ p−n and F p−n

2 at 30%. 
For details, we refer to [16].
4

Inelastic contributions. The most striking aspect of our numeri-
cal result is that the two terms mF̄ and mF2 turn out to be tiny: 
mF̄ + mF2 = −0.004(1) MeV. As discussed above, the angular in-
tegration suppresses the integrands of these quantities at large 
values of Q 2, but the numerical result shows that the suppres-
sion is very efficient also in the low energy region. We conclude 
that – in our decomposition of the Compton amplitude – only 
the elastic contribution mel and the term mS̄ from the subtraction 
function play a significant role. Note that this statement holds in-
dependently of the assumptions used to determine the subtraction 
function. Since the various attempts at evaluating the Cottingham 
formula arrive at very similar values for the elastic part, the dis-
crepancies in the results for the mass difference mainly come from 
the term mS̄ , i.e. from the fact that the parametrizations used for 
the Compton amplitude yield different representations for the sub-
traction function S̄ .

Contribution from the subtraction function. It is straightforward 
to evaluate the sum rule for S̄ with the two representations of 
F̄ (x, Q 2) and b(Q 2) we are using below and above Q 2 = 1 GeV2, 
respectively and to calculate the corresponding contribution to mS̄
with (13). Isospin conservation prevents the most prominent fea-
ture in the low energy region, the �(1232), to make a significant 
contribution. Moreover, the regions below and above a centre of 
mass energy of 3 GeV contribute with opposite sign – within er-
rors, they cancel: mS̄(Q 2 < 1 GeV2) = −0.034(68) MeV. Note that 
the error is twice as large as the central value. It is dominated 
by the uncertainties in the resonance region and is of systematic 
nature, as it stems from the simplification used in the data analy-
sis of Bosted and Christy [42,43]: the ratio R = σL/σT is assumed 
to be the same for proton and neutron. In the region where the 
Pomeron dominates, this holds to good accuracy, but we need the 
difference between the two, where Pomeron exchange drops out.

At Q 2 = 1 GeV2, where the representations AI and ABM meet, 
the results for the contributions to S̄ from W > 3 GeV agree within 
errors: the two entirely different sources match, both in sign and 
in size. In order to interpolate between the values of Q 2 where the 
ABM results provide significant information and the region where 
asymptotics sets in, we make use of the Generalized Vector Dom-
inance Model of Sakurai and Schildknecht [56], parametrizing the 
subtraction function in terms of the contributions from ρ , ω and 
φ. In the difference between proton and neutron, only the off-
diagonal terms survive:

S̄VMD(−Q 2) = 1

m2
ρ + Q 2

{
cω

m2
ω + Q 2

+ cφ

m2
φ + Q 2

}
. (19)

The asymptotic condition (10) requires the two terms in the 
bracket to nearly cancel: cω + cφ = C . This leaves a single parame-
ter free, say cω . Fitting the parametrization in the range between 2 
and 3.5 GeV2, we obtain cω = −0.74(49) GeV2. We have checked 
that the outcome for mS̄ is neither sensitive to the specific form 
of the interpolation nor to the range used in the fit. Numerically, 
this yields mS̄ (Q 2 > 1 GeV2) = −0.13(9) MeV. Together with the 
contributions from low virtualities, this yields

mS̄ = −0.17(16) MeV . (20)

Because asymptotic freedom fixes the asymptotic behaviour of 
the subtraction function, the parametrization obtained within Gen-
eralized Vector Meson Dominance contains a single free parameter. 
Instead of fixing it to the results obtained with the ABM solution 
of the DGLAP equations, we can dismiss the experimental informa-
tion available for W > 3, Q 2 > 1 altogether and determine the free 
parameter with a fit to the results obtained for Q 2 < 1. This yields 
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mS̄ = −0.12(21) MeV: the central value stays well within the esti-
mated uncertainty and the error only increases by about 30%. This 
indicates that our result is not sensitive to the input used in the 
region where the non-singlet contributions to the structure func-
tions are not yet known well.

Numerical result. Collecting the various contributions and using 
the experimental value of the proton-neutron mass difference, the 
parts due to the e.m. interaction and to the difference between mu

and md become

mQED = 0.58 ± 0.16 MeV , mQCD = −1.87 ∓ 0.16 MeV . (21)

The result for mQCD yields a more precise estimate for the leading 
Wilson coefficient: C = 5.7(1.1) ·10−4 GeV2, but the corresponding 
shift in our results is negligibly small.

The conclusions reached in [6] are thus confirmed: mQED is 
dominated by the elastic contribution. The uncertainty in the old 
result, mQED = 0.7(3) MeV, is reduced by about a factor of two.

It is not difficult to understand why the inelastic contributions 
are so small: (a) the angular integration suppresses the contribu-
tions from the dispersion integrals, (b) if Q 2 is large, the subtrac-
tion functions of proton and neutron are nearly the same – in the 
chiral limit, there is no difference, (c) in the region where Reggeon 
exchange dominates, the leading term, the Pomeron, is the same, 
(d) isospin symmetry ensures that the most important resonance, 
the �(1232), contributes equally to proton and neutron and (e) the 
elastic contributions also dominate the chiral perturbation series of 
the Compton amplitude: the leading terms exclusively contribute 
to the elastic part - inelastic processes merely generate higher or-
der corrections (for a recent analysis of the subtraction function in 
χPT, we refer to [57]).

Comparison with lattice results. The determination of mQED on a 
lattice is a very demanding goal. While the numbers in [58] cluster 
around mQED ≈ 0.7 MeV, in agreement with our result, the values 
1.00(7)(14) MeV [59], 1.03(17) [60] and 1.53(25)(50) MeV [61]
are higher than ours. Adding statistical and systematic errors in 
quadrature, the various lattice results differ from the outcome of 
our calculation by less than two standard deviations. In the frame-
work we are relying on, values like mQED = 1 MeV or even higher 
require sizeable positive contributions from mS̄ – this is not com-
patible with Reggeon dominance.

Comparison with other dispersive calculations. The main difference 
between our analysis and the work reported in [8–11] is that, 
there, the subtraction function is not calculated, but parametrized 
with an ansatz in terms of its value at Q 2 = 0 (taken from exper-
iment) and a scale m0 that specifies the momentum dependence. 
Moreover, in these models, the parametrization is applied to S1
rather than to S̄ . As discussed above, the asymptotic behaviour 
of S1 picks up contributions from operators with spin 2, which 
fall off only extremely slowly. Since chiral symmetry suppresses 
the coefficient C of the leading asymptotic term, it starts dom-
inating S1 only if Q 2 becomes very large. This implies that the 
parametrization used in these models does not behave properly in 
the pre-asymptotic region, which does make a significant contri-
bution to mS̄ .

The mismatch with the asymptotics disappears if the ansatz 
in [9] is assumed to be valid for S̄ rather than S1. The central 
value obtained for mQED then drops to about 0.7 MeV, in agree-
ment with what we find. The uncertainties in the result for mQED, 
however, are much larger than ours, not only because the experi-
mental values of the magnetic polarizabilities of proton and neu-
tron, which play a key role in those models, are subject to large 
errors, but also because the result is quite sensitive to the shape 
of the parametrization used for low values of Q 2.
5

Summary. We have applied the Reggeon dominance hypothesis 
to the electromagnetic part of the proton-neutron mass difference. 
The uncertainty in our final result, mQED = 0.58 ± 0.16 MeV, stems 
from a careful estimate of the errors coming from the different ex-
perimental data sets used in the calculations. While this confirms 
the old result [6], which also relies on Reggeon dominance, recent 
evaluations of the Cottingham formula [8–12] yield central values 
around 1 MeV or even higher. The difference stems from the short 
distance singularities associated with operators of spin 2 that are 
neglected in those references. The lattice determinations do not yet 
yield conclusive results, but the method is gradually improved. In 
the long run, these will achieve comparable accuracy and thereby 
put Reggeon dominance to a very stringent test.
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