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Abstract: This work introduces a quantum K-Nearest Neighbor (K-NN) classifier algorithm. The
algorithm utilizes angle encoding through a Quantum Random Access Memory (QRAM) using n
number of qubit addresses with O(log(n)) space complexity. It incorporates Grover’s algorithm and
the quantum SWAP-Test to identify similar states and determine the nearest neighbors with high
probability, achieving O(+/mm) search complexity, where m is the qubit address. We implement a
simulation of the algorithm using IBM’s Qiskit with GPU support, applying it to the Iris and MNIST
datasets with two different angle encodings. The experiments employ multiple QRAM cell sizes
(8, 16, 32, 64, 128) and perform ten trials per size. According to the performance, accuracy values
in the Iris dataset range from 89.3 £ 5.78% to 94.0 £ 1.56%. The MNIST dataset’s mean binary
accuracy values range from 79.45 £ 18.84% to 94.00 £ 2.11% for classes 0 and 1. Additionally, a
comparison of the results of this proposed approach with different state-of-the-art versions of QK-NN
and the classical K-NN using Scikit-learn. This method achieves a 96.4 + 2.22% accuracy in the
Iris dataset. Finally, this proposal contributes an experimental result to the state of the art for the
MNIST dataset, achieving an accuracy of 96.55 & 2.00%. This work presents a new implementation
proposal for QK-NN and conducts multiple experiments that yield more robust results than previous
implementations. Although our average performance approaches still need to surpass the classic
results, an experimental increase in the size of QRAM or the amount of data to encode is not achieved
due to limitations. However, our results show promising improvement when considering working
with more feature numbers and accommodating more data in the QRAM.

Keywords: QRAM; quantum machine learning; quantum classification; quantum K-Nearest Neighbor

MSC: 68Q12

1. Introduction

Machine learning (ML) is a set of algorithms and tools used to acquire information or
optimize actions based on data [1]. It has witnessed substantial recent growth, primarily
due to its versatile applications across diverse industries [2]. ML techniques, encompassing
classification [3,4], prediction [5,6], and data generation [7,8], have been instrumental in
tasks such as image classification [9,10], forecasting financial systems [11], and generating
text through natural language processing [12].

These technological advancements demand substantial computational capacity and
optimal performance is expensive. Working with large datasets in deep learning and natural
language processing necessitates significant computational resources, thus motivating ex-
ploration into different paradigms, such as quantum computing. Quantum algorithms have
shown the potential to be exponentially more efficient than classical algorithms for some
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problems. Various domains of computer science may benefit from quantum algorithms
and their properties. ML stands out due to the potential for performance improvements
through reducing the temporal or spatial complexity for important subroutines [13,14].
Classical data may be encoded in quantum states, for example, through qubit rotations.
These encodings enable the study of quantum machine learning (QML) algorithms us-
ing classical benchmark datasets. Several algorithms have been proposed in this new
paradigm.These include quantum principal component analysis [15,16], quantum Support
Vector Machines [17], quantum nearest-neighbor classification [18,19], and quantum neural
networks [20,21]. The variety of algorithms in QML showcases the richness and potential
of this emerging field.

ML consists of three main approaches: supervised learning, unsupervised learning,
and reinforcement learning. This study focuses on an example of supervised learning [22,23].
The goal is to train an ML algorithm that employs a labeled dataset to label a data point
from outside the training set but sampled from the same underlying distribution. This
approach is known as classification, and it can be performed by the K-Nearest Neighbor
(K-NN) [24] algorithm based on a similarity or distance metric. The method is one of the
best-known classification algorithms in supervised learning [25]. It is also possible to use a
K-NN for unsupervised learning tasks. Based on the theory provided in [14], Quantum
Nearest Neighbors is almost quadratically more efficient than the classical analog, even
with sparse data, which is useful when working with large amounts of data in a short time.

This work describes a novel Quantum K-Nearest Neighbor (QK-NN) algorithm based
on data stored in a Quantum Random Access Memory (QRAM) [26-28]. The QRAM
incorporates address and data qubits, leveraging quantum superposition. Each data cell
represents a leaf of a binary tree, indexed by the address qubits. Our method computes
the required distance metric based on the SWAP-Test, which offers a similarity metric for
comparing two quantum states. We use Grover’s algorithm [26,29-32] to efficiently identify
states with high similarity scores by utilizing an oracle. Quantum states from the labeled
dataset are analyzed using the SWAP-Test [33,34] via a mid-circuit measurement. This
allows our quantum oracle to search for the state with the highest similarity to an unlabeled
test example. It is important to note that our results, as is typical with quantum algorithms,
are probabilistic. The proposed approach involves storing a sample, or the entire dataset,
in QRAM. Properly speaking, our K-NN is not trained; rather, it references the labeled
dataset at inference time. In keeping with standard ML parlance, we refer to the data used
as “training” data. In the work presented here, we use the Iris dataset (distributed with
Scikit-learn [35]) and MNIST [36] as the demonstrators. The experiment format involves
creating different sizes of QRAM to store subsets of the dataset until reaching a maximum
of 128, which is the feasible capacity for simulation. Also, with the size of 128, different
numbers of nearest neighbors are considered, considering the maximum of 13 neighbors.
Preprocessing is conducted on the datasets to assess the classification capability of our
QK-NN proposal, taking into account information loss and working with two datasets with
different types of features and several attributes.

Note, that a noiseless quantum computer is considered in this work, as the circuit
depths would be prohibitive on a noisy device. The implementation and development
are intended to be added to a model with noise or hardware when the capacity to handle
the required depth becomes available. However, dealing with the limitations of NISQ
devices is beyond the scope of this work. Given these constraints, the experiments are
conducted via classical quantum computer simulation. By studying performance trends
with an increasing qubit count, it is possible to speculate about the potential usefulness
of this approach as quantum computers push beyond classical regimes. It is important to
note that these speculations are based on the current understanding and may change as the
field evolves.

The structure of the rest of the paper is as follows: Section 2, describes prior and
related work. Section 3 describes the conceptual design and implementation details of our
quantum classifier algorithm. Section 4 describes the experimental results from a Qiskit
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simulation of a quantum computer. Then, Section 5 discusses our results. Finally, Section 6
presents the conclusions and offers some directions for future research.

2. Related Work

Multiple studies of quantum K-NNs exist in the literature. Here, we review the most
recent results, and those contributions closest to this work.

In [26], a recommendation system employing a Quantum K-NN leveraging Grover’s
algorithm for data processing is proposed, utilizing the Hamming distance instead of the
SWAP-Test for a similarity metric. This system includes a classical database constructed
using basis encoding and two sampled quantum states for comparison using the quantum
algorithm. Additionally, an auxiliary qubit is incorporated to probabilistically amplify rec-
ommended elements via Grover’s algorithm, thereby enhancing recommendation accuracy.

Another quantum version of the K-NN classifier is proposed in [29]. In this paper,
the entire dataset was incorporated into a quantum circuit. The best cases were compared
using the Hamming distance and sorted accordingly with a quantum operator.

Reference [37] introduces a QK-NN algorithm based on Mahalanobis distance, which
is a multivariate generalization of the square of a standard Z score, i.e., how many standard
deviations a point is away from the mean. The authors propose to store the Mahalanobis
distance between states in QRAM. They then sample from the collection to obtain the K
nearest neighbors using Grover’s algorithm.

In [38] the authors introduce a new similarity measure named “polar distance,” in-
spired by the polar coordinate system and quantum properties. This measure considers
both angular (phase) and modulus (length) information, with an adjustable weight parame-
ter tailored to specific datasets, they use a classical binary search with the Grover algorithm.
The complexity time is O(+/m) .

In [39] the authors present a quantum circuit for K-NN classification that quantizes
both neighbor and K value selection processes simultaneously. Their algorithm utilizes
least squares loss and sparse regularization to identify the optimal K values and K nearest
neighbors. It employs a novel quantum circuit that combines quantum phase estimation,
controlled rotation, and inverse phase estimation techniques.

Reference [40] utilizes the SWAP-Test to compute scalar products between feature
vectors encoded according to the Mottonen method, representing amplitude encoding in
quantum states. This work is the most direct comparison of our proposed QK-NN model
due to the similarities between the SWAP-Test and the Grover algorithm because it applies
the Quantum Minimization Algorithm (QMA) to determine the K closest neighbors for
each test vector. This method also involves employing Grover’s algorithm to find the
closest neighbor and conducting a specific number of SWAP-Test iterations. Likewise, a
similar QMA process is used to enhance accuracy. The time complexity of the Quantum
K-NN algorithm is O(nm(k + log(d))) where n is the training set size, m is the test set size,
k is the number of clusters and d is the space dimension, enabling a potential speed-up
for large vector dimensions. Therefore, the number of SWAP-test iterations and QMA
iterations influences the efficiency of the QK-NN algorithm.

Finally, Ref. [41] has various K-NN approaches, relying on the inner product and Eu-
clidean distance calculations to identify the nearest neighbor or class centroid. Specifically,
the focus is on the utilization of Euclidean distance. While using QRAM and the SWAP-test
is mentioned, an intermediate measurement is lacking. Instead, Amplitude Estimation (AE)
is employed, similar to the algorithm proposed in reference [38], albeit without QRAM.
Their proposal is notable for its scaling of the number of queries, which is proportional to

@) (mlog(M)) rather than M.

Our Contribution

Our results are comparable to recent state-of-the-art quantum algorithms, see, for
example, [38] with an accuracy of 95.82% and [29] which found an accuracy of 94.66%. The
notable points of this work are as follows:
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*  Our primary novelty is in the combination of high-performing quantum subroutines
along with an empirical study of scaling performance with available qubit count for
the QRAM.

e Weillustrate how mid-circuit measurements in the SWAP-Test as an oracle support
Grover’s algorithm, which achieves high accuracy in identifying similar states.

¢  The algorithm allows for the creation of a quantum circuit for a subset of data with a
spatial complexity of O(log(n)) and a temporal complexity of O(y/m).

e We conducted a series of experiments with ten seeds to demonstrate the benefits of
our proposal on the Iris and MNIST datasets, aiming to highlight the limitations of
our QK-NN approach.

*  We have enhanced the state-of-the-art experimental results using the MNIST dataset,
achieving a notable performance of 94.00% =+ 2.11.

*  We provide repeatable numerical experiments through a structured workflow on
the Iris and MNIST datasets. Our code is available online (https://github.com/
MaldoAlberto/QKnn, accessed on 21 April 2024).

3. Materials and Methods

This section presents the methods employed in this research. Our QK-NN consists
of three primary steps. First, we utilize QRAM for intermediate storage and implement
the SWAP-Test for a similarity metric. Second, we employ Grover’s algorithm to find the
solution with the highest similarity with high probability. Finally, classical post-processing
reads the address of the QRAM to determine the identities of the K-NN classes. Each point
is described in more detail below.

3.1. Review of the Classical K-NN Algorithm

The classical K-NN classification algorithm is widely used in supervised learning [27,28].
It utilizes two datasets: a training set, where each sample has an associated label and a test
set that contains unlabeled samples we wish to classify. For each example from the test
set, the algorithm deploys a similarity metric, e.g., a distance metric in feature space (see
Section 3.5) to compare the example to each member of the training set. Labels are selected
according to a voting rule over K of the nearest neighbors in metric distance space, where
the parameter K is an odd hyperparameter so that one class is always more significant than
the other according to the pigeonhole principle.

For illustration, Figure 1 describes two classes in our training set, represented as blue
and green circles. The method determines which class an unknown example, represented
by a red point in Figure 1, belongs to. The distance metric is applied between the unlabeled
example and the samples in the training set. With K = 5, the nearest neighbor set is
observed to contain two green circles and three blue circles. Therefore, by majority vote,
the unknown example is classified as blue.

Init Data Calculate distance with k =5 Find the most
nearest neighbors voted class
New Sample
Class@ cl Class@
A Class@ A C@iéz A Class@
% o iU
50 olg o x|l®® ° |9®e ¢ @
o0 | o | e@®
® o ° 0% o °
e o o [ ® e o o
® o e o e o
X axis

X axis .

(a) (b) (c)

Figure 1. Example of K-NN when K = 5: (a) An unknown instance (orange circle). (b) Find the
K = 5 nearest neighbors. (c) Determine which class predominates by our voting rule (in this case,
majority vote).
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The steps of a classical K-NN are listed in Algorithm 1.

Algorithm 1 Classical K-NN

1: Designate a labeled training set and an unlabeled test set.
2: for each event in the test set do
3: for each event in the training set do
Compute the distance between the test event and the training event.

end for

Sort the events in the training set by metric distance.

Choose the K nearest neighbors to the test event.

The class with highest number of nearest neighbors among the K selected examples
is assigned to the test event.
9: end for

3.2. Quantum Data Encoding and Preprocessing

In order to utilize a quantum computer to analyze classical data, we must first encode
the data as quantum information. To conduct this we apply the transformation ¥ : @ — H,
where # is the Hilbert space with terms [¥(©)) = |[(6p)), |¢(61), ..., |p(0x)) [42,43]. To
represent classical data in a state vector, a set of |0)®" qubits is transformed using a unitary
matrix U(6) to obtain [¥(®))[42]. Algorithms may use select from basis, amplitude, angle,
or arbitrary encoding. The algorithm in this paper demonstrates an angle encoding scheme,
but in principle, other parameterized circuit methods may also be successful.

3.2.1. Angle Encoding

Angle encoding uses N classical features as rotation angles for n qubits, where
n < N < 2n [42,43] (each qubit may, in principle, support two rotations). A general en-
coding using single-qubit parameterized gates with one qubit per feature, U(#), may be
written as [42,43]:

n=N .
s, = @ U(6”), M
i=1

where j indexes examples, 0; is the corresponding classical data, and i indexes qubits. Our
method chooses parameterized rotation gates about Y or Z on the Bloch sphere—RY () or
RZ(0), respectively, for the data encoding, defined in Equations (2) and (3):

0 0

cos5 —siny
RY(0) = 5 2 ), 2
() < sin% cos% > @

RZ(6) = ( e 't 0 ) 3)

The quantum circuits encoding n features in n qubits are shown in Figure 2. In the
case of RZ gates, we must prefix the circuit with a Hadamard gate (H) to transform the
basis from {|0), |1)} to {|+),|—)}-
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%0 —{Ry (610]) P Rz (00])
q: q1:

Ry (0[1]) Rz (0[1])
92 Ry (0]2]) 92 Rz (8]2])
Ry (0[n —1]) Rz (0[n —1])

In-1": qn-1:

G : Ry (6[n]) n : Rz (6[n])

Figure 2. Illustration of the quantum circuits for angle encoding (a) using RY gates, and (b) using RZ
gates (prefixed by a Hadamard gate, H).

3.2.2. Preproccesing

Datasets may contain numerical or categorical values. We convert binary categorical
values into 7t or 27, generating complete or zero-rotation gates. In the event of multiple
classes, it is appropriate to use a “one-hot” encoding method, which requires more qubits.
Standard classical machine learning practices such as k-fold cross-validation, leave-one-out,
or hold-out data selection may be employed in constructing training and testing datasets.
To verify the proposed model’s classification accuracy when applied to unlabeled data,
k-fold cross-validation, and hold-out samples should be made using random shulffles.

Our initial preprocessing step is to determine the necessary number of features, de-
noted as N. We choose here to assign one qubit per feature. In other cases, due to limitations
on qubit availability in contemporary hardware, dimensionality reduction techniques such
as principal component analysis (PCA) [44] may be needed. Angle encoding requires
angles between 0 and 7t when using RY gates, and between 0 and 27t when using RZ
gates. Therefore, normalization might be necessary depending on the dataset and quantum
rotation gates utilized.

3.3. QRAM

A storage array, an address register, and an output register define classical RAM. Each
cell within the array corresponds to a distinct numeric address. Upon initialization, the
register holds the address of a memory cell, and subsequently, the content is transferred to
the output register. QRAM shares the fundamental components of classical RAM, with the
distinction that qubits comprise the address and output registers [27]. Through address
superposition, QRAM can access multiple memory cells simultaneously. The address
register may effectively store 2™ values, where m is the number of qubits in the register, as
shown in Equation (4):

1 25N o en QRAM 1 2D

N ]; oyEN == N ]§) |j)| Data j), 4)
where j indexes the data in the QRAM and |Data;) is the m-qubit content of the j-th memory
cell [27]. The address structure may be represented as a binary tree as shown, for example,
in Figure 3, which shows an example encoding for the QRAM of three qubits. The state of
go is |0), and the states g1 and g, are |[+) = %(\0) + 1)), giving a probability of § for each
of the states |000), |001), |010) and |011). This encodes binary values as values 0, 1, 2, and
3, respectively.
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Qubit Address Superposition states
o ----—--—-—————————-———- 40)
91 - ————] [0) [1)
1A 1A2 1H2 1M2
Q2 — -~ | (lJ) | ll) I(lJ) | 1|)
1/V4|000) 1/¥4|001) 1/v4|010) 1/V4|011)

Figure 3. A QRAM example encoding four address values with three qubits.

The QRAM address size is constrained to base-two values such as 2, 4, 8, 16, 32, 64,
128, and so forth. If the classical data indices do not fill the vector, the remaining cells are
padded with zero-values.

3.3.1. Encoding the Dataset in QRAM

To encode the training dataset, we begin with m address qubits initialized into |4)®™,
an ancilla qubit in |0), and N = n data qubits (Here, we assume we have an equal number
of data qubits and features. If this is not practical, we may use dimensionality reduction
techniques to reduce the required qubit count or different encoding schemes) initialized
into |0)®N. Note, that given a fixed number of features N, increasing the number of qubits
for QRAM increases the address space and the number of training events we may encode.
The full QRAM with address qubits, our ancilla (for operations) and the training data
qubits is [+)©™|0)|0)*N or |+)“™|0)*N+1. The encoding procedure involves preparing all
of the qubits, and then executing an operation on the address block to prime the ancilla
followed by an operation on the data qubits according to the state of the ancilla in a loop
over all of the training data. We will explain these operations individually in the following
paragraphs and then explain how the combined circuit is constructed.

To build the addresses for the linked data blocks, we employ the Multicontrolled X
(MCX) gate, as described in [31]. We will write MCX,;, to indicate the number of control
qubits m. In this work, m also refers to the number of address qubits available. An example
MCX;;, is the MCX;, which is the Toffoli gate (or CCX gate). It involves two control qubits
and one target qubit that activates upon meeting the conditions of the control qubits. By
default, the control qubits are set to the state |1), and we apply an X gate if we need the
state |0). This MCX then prepares the ancillary qubit. The address values are derived from
a binary value representing a basis encoding. For example, cell 2 is 0b10, or |10), meaning
that the MCX gate will be applied with qubit 0 in the state |1) and qubit 1 in the state |0).
We can write this operation generally in Expression (5):

MCXm [H®m‘0> ® |0>ancilla}r (5)

to indicate how the address block and ancilla are prepared.

The prepared ancilla qubit then activates the controlled rotation gates RY or RZ (using
one or the other depending on the chosen encoding), to encode the correctly addressed
training example, as described in Expression (6):

P N P N
Z 2CRY(xij)H¢>ancﬂla‘0>;’g}N]/ or 2 Z CRZ(xij)H¢>ancillaH®N|0>i®N]/ (6)
i=0j=0 i=0 j=0

where p is the size of the training dataset, N is the number of features (and N = n qubits in
the data register), x;; provides the value of feature j in example i, CRY is a controlled-RY,
and CRZ is a controlled-RZ. If p < 2™ — 1, the complex conjugate of the element of the test
set to be compared is added to the empty cell address. Otherwise, the MCX and X gates
used to generate the binary state are reapplied to avoid affecting other states.
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See Figure 4 for an illustration of the address and data encoding combined into a
circuit for two data examples.

|address,) : X @
|address,) : @
|ancilla) : 1
|datay) : Ry (4.4) Ry (6)
|datay) : ’?y@ ’mm
|datay) : ’E(m ’mﬁ
|datag) : ’mm @1 5)
(@)
|addressy) @
|address,) : @
lancilla) : ?
|datay) : —{H] Ry (4.4) Rz (6)
oty - {51 %6 2]
|datay) @ @m @W
|datas) : —@ ’E(m @1 5)
(b)

Figure 4. A sample of QRAM with the angle encoding of the RY and RZ for qubit address |01) and
[11). (a) QRAM using CRY gates. (b) QRAM using CRZ gates.

3.4. Grover’s Algorithm

Grover’s algorithm aims to search for a value within an unstructured database of size
p. Classical algorithms, whether deterministic or probabilistic, require inspecting at least
£ values with a time complexity of O(p) to achieve a probability of finding the value of
interest exceeding 50%. In contrast, Grover’s algorithm can retrieve the desired value in
O(,/p) steps [45].

Our goal is to find which of the p examples in our training set have the highest
similarity to a test event using an unstructured search. To run Grover’s quantum algorithm,
in general, we begin with initial state [y) = H®"|0) and an oracle, U,,, that operates as

shown in Equation (7).
_ [ pify#Fw
where w is the value being searched for.

We next consider a function f that takes a proposed solution ¢, and returns f(¢) = 0
if p # wand f(¢) = 1 for p = w. Then the oracle is expressed as shown in Equation (8):

Uolx) = (=1)/Wx). (®)

This transformation means that the amplitude of the |w) state becomes negative over
the states, as is described in [26,29-31]. Then, using a reflection operation referred to as
a “diffuser” [26,29-32] causes the positive values to move to an amplitude of 0 and the
negative values to move to an amplitude of 1, as shown in Equation (9):

2[y) (| — Iy = H*"(2]0)(0] — Iy)H"", ©)

where [1) is the uniform superposition of states and Iy is the identity matrix of dimension
N. Since 2|yp) (1| — Iy is a reflection about |¢),2]0) (0| — Iy is a reflection about |0). The
Grover diffuser is implemented in a quantum circuit using a phase-shifting operator that
negates the ground state [32].
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3.5. SWAP-Test

An important subroutine of the K-NN algorithm is to calculate the distance metric
between two examples. The classical algorithm frequently employs the Euclidean distance
for this metric, as defined in Equation (10) [34]:

m

la—b| = /) (a; —b;)? (10)

i=1

where i indexes a sum over features, and a and b are two examples.

In quantum computing, a similar metric may be derived using the inner product to
find the state overlap, denoted as F = |(i | ¢)|?>. A quantum subroutine known as the
SWAP-Test [34] can compute this between two pure states |¢) and |¢). For our purposes,
|) and |¢) are the states generated by our encoding algorithm for two examples. The
SWAP-Test, illustrated in Figure 5 for a three-qubit example, in general, requires a minimum
of 2n + 1 qubits: one ancilla qubit and n each for the two states being compared: |¢), |¢).

0+ —{H]-o—{H[HA
)
19)

measure : 1

0

Figure 5. The quantum circuit for the SWAP-Test on two states, each encoded into one qubit.

The quantum circuit for the SWAP-Test consists of an ancilla initialized to the state
|0), and qubits to hold the states |i) and |¢). A Hadamard gate is first applied to the
ancilla qubit. Subsequently, a controlled SWAP operation is performed, with the ancilla
qubit as the control. Finally, another Hadamard gate is applied to the ancilla, and then it is
measured. The measurement of the ancilla qubit is repeated s times to obtain the fidelity
between the two states. The quantum state after running the gates in the circuit, but before
measurement, is expressed in Equation (11):

S0} 9) + 1)) + 511 (1918) — 1)) ay)

Following the measurement, the probability of the first qubit being found in the |1) state is
3 — 31{¢|$)|>. When the probability of finding |0) is 100%, it indicates that the two states
are identical; however, if the probability is 50% |0) and 50% |1), it signifies that the states
are orthogonal. Note, that to estimate the error on the overlap to within a factor of €, we
require O(1/€?) copies of the state.

When our states require more than one qubit for encoding the controlled-SWAP
follows a specific pair-wise pattern. We maintain the same ancilla for control and create a
sequential cascade with different target qubits: one from |¢) and one from |¢), as depicted
in Figure 6. Each pair of qubits, matched by index, undergoes a controlled SWAP operation,
with the ancilla qubit consistently serving as the control. The circuit begins and ends with
Hadamard gates applied to the ancilla qubit [33].
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Figure 6. Example of a SWAP-Test with multiple qubit states.

3.6. Quantum K-NN

The QK-NN is based on three critical components: data storage in QRAM, the similar-
ity metric from the SWAP-Test quantum circuit, and utilizing Grover’s algorithm to select
the most similar states with high probability, as shown in Figure 7, which combines all the
elements of our approach into one circuit. Theoretically, we should run Grover’s algorithm
/P times to search the QRAM for the matching similarity event. However, we empirically
found good results with many fewer calls. We found searching /m times to produce a
set of nearest neighbors, where m is the number of qubit addresses in the QRAM, to be
effective. The result of each run is a probabilistic estimate of the most similar event from
the training dataset. It is not guaranteed to be unique and +/m calls are not guaranteed to
find the K most similar events. We empirically observe in the experiments discussed below
that the algorithm samples from the events in a way consistent with the performance of
other KNN implementations.

Select an address with

probability 1/vn Run Amplitude Amplification

Save the training set in QRAM on the nearest states

Measure
the states

Address

Train set

Encoding
Test set Test data
Swap Test
Flag

Encode an element Similarity test
of the test set
in QRAM Separate nearer states from other states

Figure 7. Overview of the quantum circuit for the K-nearest neighbors algorithm.
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The performance of the proposed classifier is assessed through a mean accuracy metric

computed from R runs. We propagate statistical uncertainties from shot noise through the
average to the end results.

The QK-NN algorithm is presented step-by-step in Algorithm 2.

Algorithm 2 Quantum K-NN

PN DT e

10:

11:

12:

13:

14:

15:

16:
17:

18:
19:

: Designate a labeled training set and an unlabeled test set.
: Apply angle encoding to the features of both datasets.

for each event in the test set do
for1... \/m (Grover iterations) do
for S shots do
Load the training set into QRAM.
Initialize the oracle qubit to the state |—).
Compute the SWAP-Test between the test event and training data encoded
as a superposed state in the data qubits portion of the QRAM.
Apply an intermediate Measure in the SWAP-Test qubit.
Apply the X-gate to the oracle qubit when the intermediate measurement of
the SWAP-Test is 0.
Apply the transposed complex-conjugate of the QRAM and the diffuser to
the address qubits.
Measure the QRAM address qubits.
end for
The states measured in the address qubits of the QRAM should be converted
from binary to decimal to compute the index of the example in the dataset.
Record the index of most similar state after S shots of the circuit. Note, that if
we find an empty address we throw the result out and repeat the iteration.
end for
Sort and select the K nearest neighbor candidates with the highest similarity scores
as compared to the test event.
Vote over the K candidates to find the class of the current test event.
end for

3.7. Utilization Procedure Summary

To summarize this section, for our first step, we preprocess the dataset classically and

divide it into training and test sets. This preprocessing step involves any necessary dimen-
sionality reduction and/or normalization of variables for encoding purposes. Subsequently,
the data are transferred to a QRAM and subjected to the SWAP-Test with an intermediate
measurement in the SWAP-Test qubit. Following this, Grover’s algorithm is utilized on
the SWAP-Test value to ascertain the indices of the samples with the highest probability of
overlap with the test sample, thereby identifying the K nearest neighbors. This method is
depicted in Figure 8, where the five basic steps are as follows:

1.

2.

Define the dataset: A dataset is selected and divided into (labeled) train and (unla-
beled) test sets.

Execute required preprocessing: Any required classical preprocessing to utilize the
features of the events is applied at this stage.

Run the Quantum K-NN: The proposed quantum nearest neighbor algorithm, gener-
ated by a test on QRAM, with high overlap events selected using Grover’s algorithm,
is employed next.

Perform postprocessing: This step consists of measuring the set of address qubits of
the QRAM memory and selecting the nearest neighbors.

Compute the accuracy: After each example is labeled we can compute the accuracy of
the algorithm.

It is important to highlight that when obtaining states with higher probability, only

the top-k states activated with a 1 are considered of interest. Subsequently, these states
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are sorted in descending order until reaching k neighbors. This process entails a time
complexity of O(y/n), where m represents the number of address qubits used in Grover
iterations, and k denotes the number of iterations required for the selection process. In
this selection process, only half of the results are utilized, from which half of the states are
chosen as the k neighbors.

Preprocessing Quantum K-NN

Classical preprocessing Encoding to

Dataset Number of Quantum

variables
Split Trainset
and Testset

Similitude

Fidelity using

Postprocessing —

Grover's
Algorithm

Intermediate
measurement

Select states [ Measurement

Accuracy & YT
probability

Address

Figure 8. The proposal described in five blocks, labeled: Dataset, Preprocessing, Quantum K-NN,
Postprocessing and Accuracy.

4. Experimental Results

We performed a series of simulated experiments (all experiments are conducted via
classical simulation of a noiseless quantum computer) using the IBM Qiskit [46] framework
on the Iris Dataset [47] and MNIST Dataset [36]. The Iris dataset with 150 events distributed
over three classes (iris Setosa, iris Virginica, and iris Versicolor, each with 50 samples) and
four features per example. In the case of the MNIST Dataset, there are 183 events of two
classes (0 and 1) with two features, for example.

The QRAM for event index and feature encoding was built with either the CRY or the
CRZ angle encoding, depending on the experiment, as described in Section 3.3.1, where
each rotation represents a feature of each event.

We used a hold-out 70-30% validation method to obtain a training set of 105 samples,
with 45 samples for the test set for the Iris Dataset and 128 train set samples, with 55 samples
for the test set for the MNIST Dataset. Each experiment was run with state vector simulation
and then sampled with 10,000 shots. We repeated each experiment for ten trials or runs.
The set of training events was re-drawn with new random seeds for each trial. The same
set of events was used across all algorithms for each given limit set by the QRAM size
under consideration in any given trial run, i.e., we choose a trial dataset, repeat all the
different configurations of the classifier, and then choose a new trial dataset for a total of
ten trials. The Qiskit Aer employs the GPU-based simulator among other features too.
These variables are illustrated in Figure 9, identifying the variables and actions performed
in each experiment.
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Variables and characteristics of the experiments

Input

Dataset
List of 10 seeds Qubits Address
Measurement
save to dict

train set size (%) to ::ﬁtttr;riile;iset

Type of encoding

Use the seed Save accuracy
to simulate giskit to a list
Minimum number backend

of QRAM address

Number of features

v ey Execute Qiskit Aer Print the
in CPU or GPU mean accuracy

of QRAM address metric
Number of trials

10,000 shots

Figure 9. The list of variables and characteristics of the experiments conducted in the input, during
the experiment, and post-processing for its output.

4.1. Experiments

We created two groups of experiments to characterize the performance of the algorithm.
The first group varied QRAM size—which, in turn, varied the size of the training dataset—and
compared several different encoding strategies for both the classical and quantum K-NNs.
Note, that the classical K-NNs used the same restricted-size dataset to match the events
loadable into the QRAM. The results from the first group may be found in Tables 1 and 2
for Iris Dataset and Table 3 for MNIST Dataset. The second group varied the K-value for the
nearest neighbors algorithm with QRAM fixed and studied different classical and quantum
encoding strategies. The results from the second group may be found in Table 4.

When the addressable size of the QRAM exceeded the number of events in the total
training sample, in the case of the Iris dataset, as a post-processing step, we ignored
experiments that returned an index for the highest similarity between 105 and 127 and
simply repeated the experiment. We used the same PCA transform on the data in all cases
when it was applied. Note, that the label “PCA = 1" on any column in the tables means the
results in that column are from the dataset compressed to one feature by the PCA algorithm
(shown in Figure 10).

For the MNIST dataset used in our proposal, we use only classes 0 and 1, following
a series of preprocessing steps illustrated in Figure 11. Firstly, we normalize the dataset
from 0 to 255 to a range of 0 to 1 and apply filter data if the pixel value must be greater
than 0.75; otherwise, it is 0. Next, image resizing using the bilinear method transforms
the original 28 x 28 image to 16 x 16. Subsequently, an average pooling of size 6 x 6 is
applied, resulting in a 2 x 2 image.
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Histogram of feature 1 of the Iris Dataset Histogram of feature 2 of the Iris Dataset
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Figure 10. Robustness distribution of the 4 pixels resulting from the preprocessing of classes 0 and 1.
Input
o Resize 28x28 Pooling
If Xjj > 0.75 Bilinear to with kerr:gle::6
tenpXjj= 16x16
28x28 2x2
i = pixel of the image width position,
j = pixel of the image height position
Figure 11. Preprocessing for MNIST dataset.
An analysis reveals that pixels 0 and 1 and 2 and 3 tend to have a similar data
distribution. Therefore, we only use the data from pixels 1 and 2, as depicted in Figure 12.
Histogram of feature 1 of the 2x2 reduced image of MNIST Dataset Histogram of feature 2 of the 2x2 reduced image of MNIST Dataset
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Figure 12. Robustness distribution of the 4 pixels resulting from the preprocessing of classes 0 and 1.
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4.1.1. Experiments Group 1

The first group of experiments is performed using a QRAM memory of sizes 8, 16, 32,
64, and 128, for the case of the Iris dataset with non-zero occupied cells up to 105 examples.
For all experiments in group one, we set K = 1. The number of qubits required for each
experiment depends on the size of the QRAM and may be expressed by Equation (12):

3+ m+2n, (12)

where three is a constant value for all the required ancilla qubits, m is the number of address
qubits, encoding 2™ different example addresses in QRAM, and 7 is the number of features
per sample in both the train and test sets. Therefore, for Iris dataset experiments, the
single-feature (PCA-reduced) circuit used 12 qubits, while 18 qubits were required to use
four features. The MNIST dataset experiments have 183 events of two classes, 0 and 1, of
two features that require 14 qubits.

Table 1 displays the mean accuracy achieved over 10 runs with various QRAM sizes
with the Iris dataset. It shows the QKNN with RY encoding and two classical counterparts:
one using the Euclidean distance on raw features and one using PCA to reduce the set
of features to a single feature. The classical and quantum datasets were matched and the
sampling was fixed for each trial at each QRAM size. The quoted uncertainties include
statistical uncertainty from dataset sampling, and the quantum result includes state vector
sampling, propagated through the calculation.

Table 1. Here, we show the results for experiment group one, part one of the Iris Dataset. The QRAM
size controls the number of examples in the training set for both the classical and quantum algorithms,
and sample draws were shared across algorithms for each experimental trial. For all experiments in
group one, we set K = 1. All values are in percent.

Mean Accuracy (%) for K =1 NN’s Using the Iris Dataset

QRAM Size Classical Classical rca=1 RY
8 87.6 £7.20 84.4+6.67 89.3+5.78
16 91.3+4.62 88.7 £4.27 89.8 £ 6.04
32 95.3 +3.42 87.1+5.33 92.2 +5.33
64 95.8 +2.93 90.4 +2.58 93.8 +3.38
128 96.4 £2.22 90.2 £222 94.0 £ 1.56

Table 2 expands the results by including the RZ encoding, as well as considering the
cases where we used PCA to reduce the data to a single feature.

Table 2. Here, we show the results for experiment group one, part two of the Iris Dataset. The QRAM
size controls the number of examples in the training set for both the classical and quantum algorithms
and sample draws were shared across algorithms for each experimental trial. For all experiments in
group one, we set K = 1. All values are in percent.

Mean Accuracy (%) for K =1 NN’s Using the Iris Dataset

QRAM Size RZ RY rca=1 RZ vca-=1
8 89.1£6.0 68.7 +10.93 69.1 +104
16 90.7 £ 6.04 71.8 £12.09 73.8 £5.69
32 93.8 +2.67 77.3 +4.09 77.8 +5.33
64 93.6 +2.44 79.8 +4.18 77.6 +3.42
128 929 +2.04 784136 79.3 +4.36

Table 3 presents the results of the MNIST dataset using the same process and method-
ology explained in Table 1. In this case, only the classical version and the RY and RZ
rotation encodings are employed, as they operate with two features.
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Table 3. Here, we show the results for experiment group one of the MNIST Dataset. The QRAM size
controls the number of examples in the training set for both the classical and quantum algorithms,
and sample draws were shared across algorithms for each experimental trial. For all experiments in
group one we set K = 1. All values are in percent.

Mean Accuracy (%) for K =1 NN'’s Using the MNIST Dataset

QRAM Size Classical RY RZ
8 87.09 + 14.11 79.6 +-18.25 79.45 1+ 18.84
16 96.73 + 1.96 87.27 +8.36 90.18 +7.13
32 97.09 +2.18 93.82 +4.29 96.73 +1.53
64 95.82 +£2.11 93.64 +3.45 95.27 +2.33
128 96.55 +2.00 9291 +2.04 94.00 +2.11

Table 4. Here, we show the results for experiment group two for the Iris dataset. All values are
in percent.

Mean Accuracy (%) for the K=1, 3,5, 7,9, 11-NN’s Using the Iris Dataset

K Value Classical Classical rca=1 RY RZ RY rca=1 RZ pca-1
1 96.4 +£2.22 90.2+222 94.0 £1.56 929 +2.04 784+ 3.6 79.3+4.36
3 973+ 142 93.1+249 942 +222 944 +244 83.31+4.22 83.3+4.44
5 97.3 + 1.60 94.7 £1.96 940+ 1.8 96.0 £2.22 84.41+222 83.8 +£2.89
7 97.8 £0.89 944 +222 95.7 £2.04 96.0 £ 1.77 84.9 +3.11 85.1 +£3.64
9 98.0 + 0.80 94.7 +£2.40 95.7 £2.04 95.8 +1.24 89.0 +2.22 86.2+24
11 97.3+19 95.3 £2.09 95.6 £1.33 96.4 +1.51 84.0 +3.11 84.7 +£2.93

4.1.2. Experiments Group 2

The second group used a fixed QRAM memory with 128 cells (occupied with 105 train
events in the Iris dataset) and varied the K value for nearest-neighbor voting. The results,
which use 1 to 11 nearest neighbors, are presented in Table 4 for the Iris data set and Table 5
for the MNIST dataset. Changing K does not change the number of qubits required for the
quantum algorithms, instead, it changes the number of times the circuit is run. For K > 1,
we run the circuit K times and vote over the returned values in a classical post-processing
step. Note, that the oracle is not guaranteed to return a unique result on each call.

Table 5. Here, we show the results for experiment group two for the MNIST dataset. All values are
in percent.

Mean Accuracy (%) for the K=1, 3, 5,7, 9, 11-NN’s Using the MNIST Dataset

K Value Classical RY RZ
1 96.55 + 2.00 9291 +2.04 94.00 +2.11
3 98.00 4= 0.98 95.09 £ 2.73 94.18 +1.89
5 98.55 £+ 0.87 95.27 +1.82 95.64 +1.45
7 98.36 + 0.98 95.82 +1.38 96.36 + 1.45
9 98.00 4= 0.98 96.18 = 1.02 96.36 + 1.09
11 97.82 +0.87 96.55 £ 0.98 96.36 = 1.09

4.1.3. Experiments Limitation

The experiments conducted on our proposal are subject to Qiskit 1.0.x and Qiskit Aer
version 0.14.0.1, which use GPU support—considering an NVIDIA GeForce RTX 4090 with
an AMD Ryzen 9 7950X 16-core processor and 128 GB of RAM—to identify the times and
capacities, a Grover iteration is made by varying the QRAM memory values ranging from 3
qubit addresses to 8, starting from 1 feature up to 9. Furthermore, in giskit implementation,
use the method transpile with the following characteristics optimization_level equal to 3,

and the basis_gates=["cx,” “rz,” “x,” “sx”], where we use the same basis gates that use
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the IBM Quantum Hardware in its platform. Those characteristics consider the number of
2 qubit gates and the depth of the QK-NN circuits to identify the limitations in processing
capabilities through an iteration of our proposed circuit with an example of the MNIST
dataset, repeating each combination ten times as shown in Tables 6 and 7. Experimental
evidence in Figures 13 and 14 demonstrates that as the number of cells increases, the
number of iterations increases by one for the SWAP-Test with higher probability. In other
words, our algorithm shows that the states increase their probability even with more
memory cells by increasing the number of iterations of \/m addresses qubits.

Table 6. Here, we show part one of the results for experiments about the time considering different
numbers of qubit addresses and features.

Mean Execution Time (s) for 3 to 6 Qubit Address, and 1 to 8 Features Samples.

Number
of
Qubits 3 4 5 6
Number
of
Features
1 0.04+0.04 0.06 £0.00 0.214+0.00 0.90 +0.01
2 0.054+0.07 0.07 +£0.00 0.24+0.01 0.87 +0.03
3 0.05+0.06 0.07+0.00 0.244+0.00 0.87 £0.00
4 0.05+0.06 0.08 +0.00 0.54+0.00 1.97 £ 0.01
5 0.07 +0.06 0.174+0.00 0.56 +0.00 2.07£0.01
6 0.08 +0.06 0.18 +0.00 0.61+0.00 2.57 +0.01
7 0.09 +0.06 0.204+0.00 0.814+0.00 453 4+0.01
8 0.09 +0.02 0.28£0.00 1.611+0.01 12.44 +0.02

Table 7. Here, we show part two of the results for experiments about the time considering different

numbers of qubit addresses and features.

Mean Execution Time (s) for 7 to 9 Qubit Address, and 1 to 8 Features Samples.

Number
of
Qubits . 8 9
Number
of
Features
1 3.70+0.03 16.07 £2.15 64.82 +11.98
2 3.83+0.03 15.154+0.15 133.18 +9.65
3 8.04 +0.03 31.98 +0.10 129.41 +0.63
4 8.02+0.03 33.52+0.17 146.42 +0.70
5 9.60 + 0.83 42.36 +0.22 226.21 +£20.13
6 13.41 +0.06 83.98 + 15.58 526.88 + 12.55
7 30.81 +0.04 225.30 £ 3.87 -
8 12.44 +£0.02 - -
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Example of QK-NN with multiple iterations Grover using 8 QRAM cells
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Example of QK-NN with multiple iterations Grover using 8 QRAM cells with the states activated by the SWAP-Test
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Figure 13. Probability histograms of QK-NN experiments with eight memory cells with Grover’s
iterations from 1 to 3. (a) Consider all the states. (b) Consider the probability of states when the

SWAP-Test qubit equals one.
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Example of QK-NN with multiple iterations Grover using 32 QRAM cells with the 5 states with the highest probability
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Figure 14. Probability histograms of QK-NN experiments with eight memory cells with Grover’s
iterations from 1 to 6. (a) Consider all the higher 16 states when the SWAP-Test qubit equals one.
(b) Consider the probability of the higher five states when the SWAP-Test qubit equals one.

5. Discussion

This paper introduces a QKNN algorithm that utilizes Grover’s algorithm to accel-
erate event comparison. The dataset is encoded using a QRAM, and the Grover oracle
is constructed via a SWAP-Test intermediate measurement. The algorithm evaluation is
presented in Tables 1-5 where we find competitive performance across various QRAM
(encoded dataset) sizes and encoding strategies.

The experiments show that the behavior of the proposed circuit with different pre-
processing for encoding offers performance similar to the classical algorithm using the
Euclidean distance implemented by the Scikit-learn library [35]. The quantum results are
within statistical uncertainty of the classical results for any given experiment, but consis-
tently slightly lower across experiments. Both quantum encoding approaches performed
roughly equally well across experiments.

When considering different QRAM sizes, if the total encodable training set was small,
all classifiers had poor accuracy. However, when training set sizes approached a quarter
of the available training data, we found good performance, as displayed in Tables 1-3.
When considering different numbers of neighbors, we find optimal performance by K = 3
or 5, with a precise determination obscured by statistical uncertainties, as presented in
Tables 4 and 5. In general, we find performance increasing with the qubit counts, both as
available to QRAM and as available for encoding features; the PCA-reduced as the Pooling
experiments underperform the exact feature encoding.

It is not surprising to find approximate parity on accuracy given the simplicity of
the dataset. It is difficult to measure any performance advantage at this stage in terms
of wall-clock timing, but the dataset encoding has logarithmic scaling in the quantum
case versus linear in the classical, and a polynomial advantage in best-match search time.
The quantum algorithm performance likely has large constant factors to contend with,
and we are not considering the cost of loading the dataset into QRAM which is daunting.
However, it is reasonable to hypothesize the scaling performance advantages inherent in
the technique could manifest some problems on future quantum computers.

Our results may be compared to two recent implementations of a QKNN using the Iris
dataset. First, in [38], the algorithm uses a polar distance metric, and instead of a QRAM
with Grover’s algorithm, it employs amplitude estimation. It achieves an accuracy of
around 95%, roughly independent of K for K between one and 13. The authors performed
30 ten-fold cross-validation experiments for a training set size of 135 (re-drawn 10 times).
The second approach, detailed in [29], is based on the Hamming distance and a sorting
algorithm. It achieves an accuracy of 94.66% for K = 100. The authors used a “leave
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one out” training strategy, creating an effective training set size of 149, and repeated their
experiments 50 times. The accuracy comparison between our algorithm and these recent
state-of-the-art results is summarized in Table 8.

Table 8. Here, we present an accuracy comparison across the different methods discussed in this
paper with Iris dataset. The QK-NN polar distance result is from [38] and the QK-NN sorting result
is from [29]. The training data prescription is different in those works, making an exact comparison
into a subtle task. They also do not present uncertainties. All values are in percent.

QK-NN QRAM Size QK-NN QRAM Size

Metric Classical K-NN  QK-NN Polar Distance QK-NN Sorting 128 with RY 128 with RZ
(This Proposal) (This Proposal)
Accuracy 96.4 +2.22 95.82 94.66 94.0 £1.56 92,9 +2.04

Our work presents a time complexity determined by the number of iterations in the
Grover algorithm and the reading of probability states subject to the Grover algorithm,
giving us a complexity of O(y/m). In the state of the art, it is observed that method [38]

has a complexity similar to ours with O (\/ mk) , implying a similar process of operations in

terms of efficiency. However, our work highlights the ability to achieve satisfactory results
with just one iteration, as evidenced in Figures 13 and 14. Additionally, our approach is
based on angle encoding using the QRAM, unlike amplitude encoding using heaps, which
is used in other methods. Consequently, the complexity of our work is determined by the
number of gates to be encoded, expressed as 2 * logon + loga M + t, where n represents the
number of qubits to be encoded, M denotes the number of parameters, and ¢ is the value
to be compared, and ours is 3 + 2 x n + m. Also, [29] O(knmp) is more complex when
working with a four-variable system, where k is the number of the classes, n and m are the
requirements to design the operator and sorting takes p time.

In the MNIST dataset, [41] presents a study that leverages the concept of QRAM
memory, assuming the provision of oracles, to minimize the number of oracle queries required.
They propose that they can achieve the accuracy level & using neural networks (NN) with a

scaling number of oracle queries, proportionate to O(v/M) = O ((1 —a) 5/ 41og((1 - 04)‘1))

for constant success probability. In contrast, the classical nearest-neighbor algorithm

—5/2

scales queries as O ((1 — ) ) In Table 9, we experimentally demonstrate the type of

experiment where we achieve the classification of this dataset and compare it with the
classical part, obtaining only a 2.55% difference in RZ encoding.

Figures 15 and 16 demonstrate that our circuit proposal maintains a consistent ratio
between the depth and the number of gates for two qubits. As we scale up the QK-NN
to 128, it becomes inefficient, experiencing an exponential increase, supported by Table 7,
where even with a size of 2 or 256 cells, having more than six features becomes impossible.
Therefore, dealing with a large dataset in the Qiskit 1.0.x version with GPU could be more
efficient. However, we conducted experiments with the MNIST dataset that support and
enrich the results of [40], which consider oracles and QRAM as a given.

We can define to what extent it is viable to perform a QK-NN algorithm through
simulation. Consider it a future work to address this process in real hardware, such as
using IBM Quantum processors. These processors would work with the same number of
gates if there is interaction between the qubits. Otherwise, the experiments will use extra
ancillary qubits and additional CX gates. We also consider it essential to implement these
results, taking into account the use of quantum hardware in robust projects, as in [48-50].
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Table 9. Here, we present an accuracy comparison across the different methods discussed in this
paper with the MNIST dataset. All values are in percent.

OK-NN QRAM Size 128 with  QK-NN QRAM Size 128 with
RY (This Proposal) RZ (This Proposal)

Accuracy 96.55 +2.00 9291 +£2.04 94.00 £2.11

Metric Classical K-NN

—9— Number of cx gates with 1 feature in the QRAM
—¥— Depth size with 1 feature in the QRAM

Number of cx gates with 7 features in the QRAM
—¥— Depth size with 7 features in the QRAM

Depth and 2-qubit gates in the implementation of QK-NN

10° 4

=
o
o

Quantity

=

o
rS
L

103 4

T T T T T T

3 4 5 6 7 8 9
Number of qubits

Figure 15. Depth and number of 2-qubit gates in different features and qubit address implementation
of the QK-NN.

Considering the work’s open-source nature, the code provided by this study can be
incorporated into the noisy simulation module using the Qiskit 1.0.X format to explore
the method’s application on real quantum hardware. It supports CPU and GPU, utilizing
CUDA 124, although this is not the study’s primary purpose.

—— 1 feature in the QRAM
—¥— 7 feature in the QRAM

Depth Vs Number of 2-qubit gates

105 4

Depth

104 1

103 4

103 104 10° 108
Number of 2-qubit gates

Figure 16. Depth VS number of 2-qubit gates
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6. Conclusions

The notable findings of this study in the Iris dataset include an accuracy of approx-
imately 94 & 1.6%, placing the performance of the proposed algorithm on par with the
classical K-NN version, which achieves an accuracy of approximately 96 4= 2.2% obtained
using the scikit-learn implementation. Additionally, the accuracy values are roughly equiv-
alent to the performance of recent quantum implementations such as one approach using
the polar distance metric with 95.82%, and another implementing a sorting algorithm
with 94.66%.

Regarding the MNIST dataset, classes 0 and 1 demonstrate an accuracy of 94.00 = 2.11%,
consistent with the classical result obtained using scikit-learn, registering 96.55 &= 2.00%.
This outcome underscores critical advancements in the state-of-the-art, presenting an
experimental milestone for this dataset. It leverages a QRAM memory and an oracle
integrated within a framework grounded in the quantum computing paradigm, such
as Qiskit.

Our work builds on the theoretical foundations presented in [14,16,17], and provides
a versatile framework capable of accommodating different training dataset sizes and
different encoding schemes. Furthermore, in frameworks such as Qiskit, using intermediate
measurements similar to dynamic circuits [51] while leaving other qubits unmeasured,
enables circuit processing and the application of Grover’s algorithm to identify states with
higher probabilities than those with identical fidelity.

Our method offers potential extensions by integrating the Hamming distance with
the fidelity metric. This would allow for the analysis of datasets with different data
types. Leveraging the ability of QRAM to accommodate different cell types, such as those
represented by RY and RZ, which interpret binary values as |0) and |1), opens avenues for
developing two different oracles. For example, one oracle could be based on the Hamming
distance, while the other could be based solely on the SWAP-Test, assigning specific qubits
from the training set and test set features to each distance metric.

The main limitations in the application of our approach on modern hardware are to
be found in available qubit count and noise levels. Here, we have considered noiseless
circuit simulation as a proxy for an anticipated blend of quantum error mitigation and
error correction on a small number of qubits. Scaling the exact classical simulation of
this algorithm to high qubit counts and circuit depths faces severe constraints. It is an
open question as to whether approximate circuit methods, such as tensor networks, could
produce equivalent results.

The natural next step is to consider more complicated problems with larger datasets
and more complex feature sets. We are releasing code that may be easily adapted to
such studies. It will be important to eventually understand if quantum machine learning
offers a provable performance advantage. This could be demonstrated in the future by
demonstrating strong scaling performance in qubit count for complex problems, or by
measuring significant complexity or wall-clock savings. The latter demonstration must
likely wait for better hardware performance and at least partial quantum error correction.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

QML Quantum Machine Learning
QORAM  Quantum Random Access Memory
K-NN K Nearest Neighbor

QK-NN  Quantum K Nearest Neighbor
PCA Principal Component Analysis
MCX Multi Controlled X
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