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We consider the local thermodynamics of the de Sitter state in the  gravity. The local temperature, which
is the same for all points of the de Sitter space, is , where H is the Hubble parameter. It is twice
larger than the Gibbons–Hawking temperature of the cosmological horizon, . The local tem-
perature is not related to the cosmological horizon. It determines the rate of the activation processes, which
are possible in the de Sitter environment. The typical example is the process of the ionization of the atom in
the de Sitter environment, which rate is determined by temperature . The local temperature deter-
mines the local entropy of the de Sitter vacuum state, and this allows to calculate the total entropy inside the
cosmological horizon. The result reproduces the Gibbons–Hawking area law, which corresponds to the Wald
entropy, . Here, K is the effective gravitational coupling, . In the local thermody-
namic approach, K is the thermodynamic variable, which is conjugate to the Ricci scalar curvature . The
holographic connection between the bulk entropy of the Hubble volume and the surface entropy of the cos-
mological horizon supports the suggestion that the de Sitter quantum vacuum is characterized by the local
thermodynamics with the local temperature . The local temperature  of the de Sitter vac-
uum suggests that the de Sitter vacuum is locally unstable towards the creation of matter and its further heat-
ing. The decay of the de Sitter vacuum due to such processes determines the quantum breaking time of the
space-times with positive cosmological constant.
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1. INTRODUCTION
The  gravity in terms of the Ricci scalar  is

one of the simplest geometrical models, which
describes the dark energy and de Sitter expansion of
the Universe [1–7]. It was used to construct an infla-
tionary model of the early Universe—the Starobinsky
inflation, which is controlled by the  contribution
to the effective action. This class of models,

, was also reproduced in the so-
called -theory [8], where q is the 4-form field intro-
duced by Hawking [9] for the phenomenological
description of the physics of the deep (ultraviolet) vac-
uum (here the sign convention for  is opposite to that
in [2]). The Starobinsky model is in good agreement
with the observations. However, despite the observa-
tional success, the theory of Starobinsky inflation is
still phenomenological. Due to a rather small mass
scale M compared with the Planck scale it is difficult
to embed the model into a ultraviolet (UV) complete
theory [10–12].

In this paper we do not discuss the problem of the
UV-completion. We consider the de Sitter stage of the
expansion of the Universe, and use the  gravity
for the general consideration of the local thermody-
namics of the de Sitter state. The term “local” means
that we consider the de Sitter vacuum as the thermal
state, which is characterized by the local temperature.
This consideration is based on observation, that mat-
ter immersed in the de Sitter vacuum feels this vacuum
as the heat bath with the local temperature ,
where  is the Hubble parameter. This temperature is
twice larger than the Gibbons–Hawking one, and it
has no relation to the cosmological horizon. The exis-
tence of the local temperature suggests the existence of
the other local thermodynamic quantities, which par-
ticipate in the local thermodynamics of the de Sitter
state. In addition to the local entropy density  and
local vacuum energy density , there are also the local
thermodynamic variables related to the gravitational
degrees of freedom.
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The  theory demonstrates that the effective
gravitational coupling  (it is the inverse Newton
constant, ) and the scalar curvature  are
connected by equation . This suggests that

 and  are the thermodynamically conjugate vari-
ables [13, 14]. This pair of the gravitational variables is
similar to the pair of the electrodynamic variables,
electric field E and electric induction D, which partic-
ipate in the thermodynamics of dielectrics.

Example of the influence of the de Sitter vacuum to
the matter immersed into this vacuum is provided by
an atom in the de Sitter environment. As distinct from
the atom in the f lat space, the atom in the de Sitter
vacuum has a certain probability of ionization. The
rate of ionization is similar to the rate of ionization in
the presence of the thermal bath with temperature

 [15–17]. The same temperature determines
the other activation processes, which are energetically
forbidden in the Minkowski spacetime, but are
allowed in the de Sitter background, see also [18, 19].
That is why it is natural to consider the temperature

 as the local temperature of the de Sitter vac-
uum. Although the local temperature is twice larger
than the Gibbons–Hawking temperature assigned to
the horizon, , there is the certain con-
nection between the local thermodynamics and the
thermodynamics of the event horizon. It appears that
the total entropy of the volume  bounded by the
cosmological horizon coincides with the Gibbons–
Hawking entropy, . This
demonstrates that the local thermodynamics in the
(3 + 1) de Sitter is consistent with the global thermo-
dynamics assigned to the cosmological horizon,
although the origin of such bulk-surface correspon-
dence is not very clear.

Here we extended the thermodynamic consider-
ation to the  gravity. Using the local thermody-
namics with , we obtained the general result
for the total entropy inside the horizon, Sbulk =

 = Shor, where  is the effective
gravitational coupling. This is in agreement with the
global thermodynamics of de Sitter cosmological
horizon, which provides the further support for the
local thermodynamics with the local temperature

 in the de Sitter vacuum in the (3 + 1)-
dimensional spacetime.

2. THERMODYNAMICS 
OF THE DE SITTER STATE

2.1. Local de Sitter Temperature

We consider the de Sitter thermodynamics using
the Painlevé–Gullstrand (PG) form [20, 21], where
the metric in the de Sitter expansion is

(1)
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Here, the shift velocity is . This metric is
stationary, i.e., does not depend on time, and it does
not have the unphysical singularity at the cosmologi-
cal horizon. That is why it is appropriate for consider-
ation of the local thermodynamics both inside and
outside the horizon.

Now let us consider an atom at the origin, r = 0.
The atom is the external object in the de Sitter space-
time, which is playing the role of the detector (or the
role of the static observer) in this spacetime. The elec-
tron bounded to an atom may absorb the energy from
the gravitational field of the de Sitter background and
escape from the electric potential barrier. If the ioniza-
tion potential is much smaller than the electron mass
but is much larger than the Hubble parameter,

, one can use the nonrelativistic quantum
mechanics to estimate the tunneling rate through the bar-
rier. The corresponding radial trajectory  is obtained
from the classical equation ,
where  is the Doppler shift:

(2)

The integral of  over the classically forbidden

region, , gives the ionization
rate

(3)

This is equivalent to the thermal radiation with tem-
perature , see also [17].

The same local temperature describes the process
of the splitting of the composite particle with mass 
into two components with , which is also
not allowed in the Minkowski vacuum [15, 22–24]. In
the limit , the rate of such decay of the com-

posite particle is . The

similar processes take place in the so-called Cosmo-
logical Collider [18, 19], where the new particle cre-
ated by the Hawking radiation plays the role of the
external object which produces the heavy particles.
Here there are two different physical processes, which
are described by different temperatures. The Hawking
radiation from the de Sitter vacuum is determined by
the Hawking temperature  of the cosmological
horizon, while the further process—the splitting of the
created particles—is determined by the local tempera-
ture .

Moreover, the local temperature  also
determines the process of the Hawking radiation from
the cosmological horizon and the Gibbons–Hawking
temperature . The reason is that in the
Hawking process, two particles are coherently created:
one particle is created inside the horizon, while its
partner is simultaneously created outside the horizon.
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The rate of the coherent radiation of two particles,

each with energy E, is . However, the

observer can detect only the particle created inside the
horizon. For this observer the creation rate

 is perceived as  =

 with the Gibbons–Hawking temperature

.
On the contrary, in the local process of the decay of

the atom, which is not related to the cosmological
horizon, only single particle (electron) is radiated
from the atom. This process is fully determined by the

local temperature, .

2.2. From Local Temperature to Local Entropy
Since the de Sitter state serves as the thermal bath

for matter, it is not excluded that the de Sitter quantum
vacuum may have its own temperature and entropy
[25]. If so, then the quasi-equilibrium states of the
expanding Universe is described by two different tem-
peratures: the temperature of the gravitational vacuum
and the temperature of the matter degrees of freedom
[26]. In this section we discuss the pure de Sitter vac-
uum without the excited matter ignoring for the
moment the thermally activated creation of matter
from the vacuum. The excitation and thermalization
of matter by the de Sitter thermal bath will be dis-
cussed in Section 4.

If the vacuum thermodynamics is determined by
the local activation temperature , then in the
Einstein gravity with cosmological constant the vac-
uum energy density is quadratic in temperature:

(4)

This leads to the free energy density of the de Sitter
vacuum, , which is also qua-
dratic in T, and thus the entropy density  in the de
Sitter vacuum is linear in :

(5)

The temperature T and the entropy density  are the
local quantities which can be measured by the local
static observer.

2.3. Gibbs–Duhem Relation

The  dependence of vacuum energy on tempera-
ture suggests the modification of the thermodynamic
Gibbs–Duhem relation for quantum vacuum and to
the reformulation of the vacuum pressure. The con-
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ventional vacuum pressure  obeys the equation of
state  and enters the energy momentum tensor
of the vacuum medium in the form:

(6)

In the de Sitter state the vacuum pressure is negative,
.

This pressure  does not satisfy the standard
thermodynamic Gibbs–Duhem relation,  +
Pvac, because the right hand side of this equation is
zero. The reason for that is that in this equation we did
not take into account the gravitational degrees of free-
dom of quantum vacuum. Earlier it was shown, that
gravity contributes with the pair of the thermodynam-
ically conjugate variables: the gravitational coupling

 and the scalar Riemann curvature , see

[8, 27, 28]. The contribution of the term  to ther-
modynamics is similar to the work density [29–32].

The quantities  and  can be considered as the
local thermodynamic variables, which are similar to
temperature, pressure, chemical potential, number
density, spin density, etc., in condensed matter phys-
ics. Indeed, since the de Sitter spacetime is maximally
symmetric, its local structure is characterized by the
scalar curvature alone, while all the other components
of the Riemann curvature tensor are expressed via :

(7)

That is why the scalar Riemann curvature as the covar-
iant quantity naturally serves as one of the thermody-
namical characteristics of the macroscopic matter [33,
34]. Another argument is related to the so-called
Larkin–Pikin effect [35]. This is the jump in the num-
ber of degrees of freedom, when the fully homoge-
neous state is considered. One has the extra parame-
ters, which are space independent, but participate in
thermodynamics [36–38]. The same concerns the
constant electric and magnetic fields in vacuo, which
add three more degrees of freedom. These constant
fields are mutually independent, in contrast to the
spacetime-dependent fields connected by the Maxwell
equations [37]. The scalar curvature  in the de Sitter
vacuum, which is constant in space-time, also serves
as such thermodynamic parameter. Then the gravita-
tional coupling  serves as the analog of the
chemical potential, which is constant in the full equi-
librium.

The new thermodynamic variables, which come
from the gravity, and Eq. (5) for the entropy density
allow us to introduce the corresponding Gibbs–
Duhem relation for de Sitter vacuum, which has the
conventional form:

(8)
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This equation is obeyed, since ;
; and , which

supports the earlier proposal that  and  can be
considered as the thermodynamically conjugate vari-
ables [27, 28].

The Equation (8) can be also written using the
effective vacuum pressure, which absorbs the gravita-
tional degrees of freedom:

(9)
Then the conventional Gibbs–Duhem relation is sat-
isfied:

(10)
The equation (10) is just another form of writing

the Gibbs–Duhem relation (8). But it allows to make
different interpretation of the de Sitter vacuum state.
The introduced effective de Sitter pressure  is posi-
tive, , and satisfies equation of state

, which is similar to matter with the same equa-
tion of state. As a result, due to the gravitational
degrees of freedom, the de Sitter state has many com-
mon properties with the non-relativistic Fermi liquid,
where the thermal energy is proportional to , and
also with the relativistic stiff matter with  intro-
duced by Zel’dovich [39].

2.4. Hubble Volume Entropy versus Entropy
of the Cosmological Horizon

Using the entropy density in Eq. (5), one may find
the total entropy of the Hubble volume —the vol-
ume surrounded by the cosmological horizon with
radius :

(11)

where A is the horizon area. This Hubble-volume
entropy coincides with the Gibbons–Hawking
entropy of the cosmological horizon. However, here it
is the thermodynamic entropy coming from the local
entropy of the de Sitter quantum vacuum, rather than
the entropy of the horizon degrees of freedom.

Anyway, the relation between the bulk and surface
entropies in the local vacuum thermodynamics sug-
gests some holographic origin. Such bulk-surface cor-
respondence is valid only in the (3 + 1)-dimension.1
In the general d + 1 dimension of spacetime, the same
approach gives the factor  in the relation
between the entropy of the Hubble volume and the
Gibbons–Hawking entropy of the cosmological hori-

zon, . This may add to the peculiari-

ties of the  space dimension [40], where in par-

1 I thank the referee for this comment.
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ticular the mass dimension of the gravitational cou-
pling, , coincides with the mass dimension
of curvature, .

2.5. Hubble Volume versus the Volume of Universe,
and Thermal Fluctuations of de Sitter State

It is not excluded that our Universe is finite. Its vol-
ume  might be comparatively small, not much larger
than the currently observed Hubble volume  [41].

If the Universe is finite and if the de Sitter state rep-
resents the excited thermal state of the quantum vac-
uum, the thermal f luctuations of the deep quantum
vacuum may become important. According to
Landau–Lifshitz [42], the thermal f luctuations are
determined by the compressibility of the system and by
its volume. In case of the Universe with the volume ,
the f luctuations of the vacuum energy density are
given by [43]:

(12)

Here,  is the vacuum compressibility, i.e., the
compressibility of the fully equilibrium Minkowski
vacuum with . As for the quantum
fluctuations, their contribution to the vacuum energy
density is typically on the order of , where MPl is
the Planck mass. But in the equilibrium vacuum this
contribution is cancelled by the trans-Planckian
degrees of freedom due to thermodynamic Gibbs–
Duhem relation [37, 43]. On the other hand, the vac-
uum compressibility is determined by the Planck
energy scale, .

In the excited vacuum—the de Sitter state with the
temperature  and the energy density

—the relative magnitude of thermal
fluctuations is determined by the ratio of the Hubble
volume to the volume of the Universe:

(13)

The volume of the present Universe exceeds the Hub-
ble volume, , and thus the thermal f luctuations
of the vacuum energy density are still relatively small.

3. THERMODYNAMICS OF DE SITTER STATE 
IN  GRAVITY

3.1. Gibbs–Duhem Relation in  Gravity

Let us show that equation  remains
valid also in the  gravity, but with the gravita-
tional coupling determined as the thermodynamic
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conjugate to the curvature. In the  gravity the
action is:

(14)

The generalization of the modified Gibbs–Duhem
relation for the de Sitter states (i.e., for the states with
constant four-dimensional curvature) in the 
gravity is:

(15)

(16)

Here,  is the natural definition of the variable, which
is thermodynamically conjugate to the curvature ,
while  serves as the corresponding thermodynamic
potential. In the equilibrium de Sitter state the curva-
ture is determined by equation:

(17)

3.2. Entropy of Cosmological Horizon in Terms 
of Effective Gravitational Coupling

The value of the local entropy of the de Sitter state
 follows from Eq. (15), assuming that the local tem-

perature of the equilibrium dS states is .
Then the total entropy of the Hubble volume  is
given by the same Eq. (11):

(18)

But now  is the effective gravitational coupling in
Eq. (16). This generalization of the Gibbons–Hawk-
ing entropy was discussed in [8, 44–46]. But here it
was obtained using the local thermodynamics of the de
Sitter vacuum. This demonstrates that the local ther-
modynamics of the de Sitter vacuum is valid also for
the  gravity. The effective gravitational coupling

 serves as one of the thermodynamic variable of the
local thermodynamics. This quantity plays the role of
the chemical potential, which is thermodynamically
conjugate to the curvature , and it is constant in the
thermodynamic equilibrium state of de Sitter space-
time.

For illustration, we consider an example of the
modification of the gravitational coupling  in the de
Sitter environment. In the conventional Einstein grav-
ity, where , the de Sitter state has the
equilibrium value of the curvature,  =
‒12H2. Let us add the quadratic term to the Einstein
action [8, 44]:
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Then one obtains the following equations for the equi-
librium value of the curvature , the entropy of the
Hubble volume  and the equilibrium value of the
effective coupling K:

(20)

(21)

(22)

The equilibrium curvature in the de Sitter space  is
obtained from Eq. (17). It is the same as in Einstein
gravity, because the quadratic terms in Eq. (17) are
cancelled. The local entropy , which follows from
Eq. (15), is determined by the modified gravitational
coupling . As a result, the entropy of the Hubble vol-
ume in Eq. (21), which we identify with the entropy of
the horizon , is also determined by the modified
coupling . The latter is given by Eq. (22).

The local entropy  changes sign for , while
the cosmological expansion is still described by the de
Sitter metric. However, the negative  requires the
negative parameter , which marks the instability
of such de Sitter vacuum [44].

4. LOCAL TEMPERATURE
AND DE SITTER DECAY

The extension of the thermodynamics to the 
gravity supports the idea that the de Sitter vacuum is
the thermal state with the local temperature .
On the other hand the nonzero local temperature of
the vacuum suggests that the de Sitter vacuum is
locally unstable towards the creation of thermal matter
from the vacuum by thermal activation. This is distinct
from the mechanism of creation of the pairs of parti-
cles by Hawking radiation from the cosmological hori-
zon, which may or may not lead to the decay of the
vacuum energy. There are still controversies concern-
ing the stability of the de Sitter vacuum caused by
Hawking radiation, see, e.g., [38, 47, 48] and refer-
ences therein.

To describe the decay of the vacuum due to activa-
tion and thermalization of matter, the extension of the
Starobinsky analysis of the vacuum decay [49–52] is
needed. The thermal exchange between the vacuum
and the excited matter generates the thermal relativis-
tic gas. The temperature of relativistic gas tends to
approach the temperature  of the de Sitter
heat bath. Then the matter energy density  tends to
approach the value , i.e., due to the heating in
the de Sitter thermal bath the matter energy density
tends to approach the local thermal equilibrium,
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, where the dimensionless parameter b
depends on the number of the massless relativistic
fields. The energy exchange between the vacuum heat
bath and matter can be described by the following
dynamical modification of the Friedmann equations
[53], where the dissipative Hubble friction equation

 is extended to

(23)
This equation describes the tendency of matter to
approach the local temperature of the vacuum,

. The extra gain of the matter energy, ,
must be compensated by the corresponding loss of the
vacuum energy:

(24)
Here we use for simplicity the conventional general

relativity with . This phenomeno-

logical description of the energy exchange between
vacuum and matter does not depend on the details of
the microscopic (UV) theory, and requires only the
condition for slow variation of the Hubble parameter,

.

Since the vacuum energy density is ,
one obtains from Eq. (24) the following time depen-
dence of the Hubble parameter and of energy
densities:

(25)

(26)
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Here,  is the Planck mass, , and
 is Planck time. We assume that ,

and thus .
Thus the thermal character of the de Sitter state

determines the process of its decay. The obtained
power law decay of H in Eq. (25) agrees with that
found in [54–58]. In [55–57] the parameter  is
related to the initial value of the Hubble parameter at
the beginning of inflation at t = 0:

(28)

This  corresponds to the scaleron mass M in
Starobinsky inflation. The time  is called
the quantum breaking time of space-times with posi-
tive cosmological constant [59, 60].
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5. CONCLUSIONS
The local thermodynamics of the de Sitter state in

the Einstein gravity gives rise to the Gibbons–Hawk-
ing area law for the total entropy inside the cosmolog-
ical horizon. Here we extended the consideration of
the local thermodynamics to the  gravity. We
obtained the same area law, but with the modified
gravitational coupling , which is in agree-
ment with the global thermodynamics. This supports
the suggestion that the de Sitter vacuum is the thermal
state with the local temperature , and that
the local thermodynamics is based on the thermody-
namically conjugate gravitational variables  and .
The variable  plays the role of the chemical poten-
tial, which is constant in the thermal equilibrium.

The local temperature  has the definite
physical meaning. It is temperature, which is experi-
enced by the external object in the de Sitter environ-
ment. In particular, this temperature determines the
local activation processes, such as the process of ion-
ization of an atom in the de Sitter environment. The
nonzero local temperature of the de Sitter state sug-
gests the thermal instability of this state due to the
thermalization of matter. The process of thermaliza-
tion of matter with the corresponding decay of the
vacuum energy density determines the quantum
breaking time of the space-times with positive cosmo-
logical constant.

The connection between the bulk entropy of the
Hubble volume, and the surface entropy of the cosmo-
logical horizon suggests a kind of the bulk-surface cor-
respondence, which may have the holographic origin
[61–63]. It would be interesting to check this corre-
spondence using the more general extensions of the
Einstein gravity and also different types of the general-
ized entropy [32, 64–66].
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