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Abstract

We investigate a class of Kac—Moody algebras previously not considered. We refer to
them as n-extended Lorentzian Kac—Moody algebras defined by their Dynkin diagrams
through the connection of an A, Dynkin diagram to the node corresponding to the
affine root. The cases n = 1 and n = 2 correspond to the well-studied over- and
very-extended Kac—Moody algebras, respectively, of which the particular examples
of E19 and Eq; play a prominent role in string and M-theory. We construct closed
generic expressions for their associated roots, fundamental weights and Weyl vectors.
We use these quantities to calculate specific constants from which the nodes can
be determined that when deleted decompose the n-extended Lorentzian Kac—Moody
algebras into simple Lie algebras and Lorentzian Kac—Moody algebra. The signature
of these constants also serves to establish whether the algebras possess SO(1, 2) and/or
SO(3)-principal subalgebras.

Keywords Lorentzian Kac—-Moody algebras - Infinite dimensional Lie algebras -
Root and weight lattices - M-theory

Mathematics Subject Classification 17B67 - 81R10 - 81T30

1 Introduction

The symmetry algebras relevant in the formulation of fundamental theories in particle
physics have become increasingly complex over the years. While finite dimensional
Lie algebras are sufficient for the characterisation of local gauge symmetries describ-
ing three of the four known fundamental forces in nature, it was noticed well over
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thirty years ago that infinite dimensional Kac—Moody algebras [1] are needed for an
adequate description in the context of some string and conformal field theories [2—4].
For some string theories, type II superstring theories or M-theory [5], a particular type
of Lorentzian Kac—Moody algebras has turned out to be especially relevant [6—11],
providing an alternative approach to treating M-theories as gauged supergravities in
dimensions D > 4 by means of the embedding tensor as carried out, for instance, in
[12-15].

In general, from a mathematical point of view the understanding of Kac—Moody
algebras is still partially incomplete [1]. However, based on their Dynkin diagrams,
that encode the structure of their corresponding Cartan matrices, see, e.g. [16], many
subclasses have been fully classified. The best-known and studied subclasses are
semisimple Lie algebras of finite or affine type characterised by finite connected
Dynkin diagrams. Their Cartan matrices are positive definite in the former and posi-
tive semi-definite in the latter case. In addition, hyperbolic Kac—Moody algebras have
also been fully classified [17]. In terms of their connected Dynkin diagrams they are
defined by the property that the deletion of any one node leaves a possibly discon-
nected set of connected Dynkin diagrams each of which is of finite type, except for at
most one affine type. Their Cartan matrices are nonsingular with exactly one negative
eigenvalue, i.e. they are Lorentzian.

While Ey is ahyperbolic Kac-Moody algebra [18], E11 is not [19], which, partially
motivated by string theory, led to the study of a larger class of Kac—Moody algebras
that are also Lorentzian [20,21]. In [21], these algebras were characterised in terms
of their connected Dynkin diagrams such that the deletion of at least one node leaves
a possibly disconnected set of connected Dynkin diagrams each of which is of finite
type, except for at most one affine type. This definition is obviously more general than
the one for hyperbolic Kac—-Moody algebras, including them as subcases.

Of these algebras, a particular type is very distinct. Referring to Dynkin diagrams
of the affine algebras as extended, the over-extended Dynkin diagrams consist of
connecting a node to the affine root and the very-extended ones of connecting another
new node to this new root. Here, we study root lattices resulting from Dynkin diagrams
for which these extensions are continued by adding successively nodes to the previous
ones and refer to them as n-extended Dynkin diagrams. Our notation is such thatn = 0
corresponds to the extended system, n = 1 to the over-extended system, n = 2 to
the very-extended system and n > 2 to new systems previously not studied. As we
shall see below, these algebras occur naturally in the decomposition of the over- and
very-extended systems, for instance the decomposition of the over-extended algebra
D17 contains a 5-extended Eg-algebra.

When decomposing the n-extended algebras, we encounter reduced Dynkin dia-
grams which consist of an A,-Dynkin diagram with an A,-Dynkin diagram attached
to the mth node. We denote the corresponding algebras by Aﬁnm) We study the cor-
responding weight lattices in more detail with a special focus on the case in which an
Ap-Dynkin is attached to the middle node of A, referring to it as Aﬁ").

Our manuscript is organised as follows: In Sect. 2, we recall some known facts about
the extended, over-extended and very-extended root lattices to establish our notations
and conventions. In Sect. 3, we define the new n-extended Lorentzian algebras and
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construct their roots, fundamental weights and Weyl vectors. In Sect. 4, we discuss
the necessary criteria for the occurrence of SO(1, 2) and SO(3) principal subalgebras.
In Sect. 5, we compute a special set of constants obtained from the inner product of
the Weyl vector and a fundamental weight, whose overall signs provide necessary and
sufficient conditions for the occurrence of SO(1, 2) and SO(3) principal subalgebras
and the decomposition of the n-extended Lorentzian algebras, which are then studied
in detail in Sect. 6. Section 7 contains a similar analysis to the one in Sects. 5 and 6
for the Aﬁ"’m)-algebras. Our conclusions are stated in Sect. 8.

2 Preliminaries, extended, over-extended and very-extended root
lattices

Before we present our extended version of the Lorentzian Kac—-Moody algebra, we
recall some of the known results on the extended, over-extended and very-extended
root lattices to establish our conventions and notations. There exist various types of
choices to define the corresponding root spaces, especially with regard to the selection
of the inner product in the corresponding vector space [22,23]. Here, we adopt most
of the conventions used and introduced in [2,21,24].

The root lattice A for a Lorentzian Kac—-Moody algebra g consists of two parts.
The first, Ag, is spanned by the simple roots «;, i = 1, ..., r, of the semisimple Lie
algebra g with rank r. The second is the self-dual Lorentzian lattice 1! equipped
with the inner product

zow=—z"w —z w" 2.1

for z, w € M1 of the form z = (zT,z7), w = (w*, w™). There are two primitive
null vectors in ITH1, that will be important below, k = (1, 0), k = (0, —1), with
k-k =k-k =0,k-k = 1and two vectors = (k + IE) of length 2. An extended, or affine,
root lattice is obtained by adding to the set of simple roots the negative of the highest
root 0 := Zle n;a;, with Kac labels n; € N. Here, we add the modified negative
highest root ag = k — @ to obtain a differently extended root lattice Ag, = Ag @ TT!1.
Adding to this set of roots the root «_1 = — (k + IE), we obtain the over-extended
root lattice Ag_ | = Ag, ® ! and adding the root «_» = k — (E + Z) produces
the very-extended root lattice Ag_, = Ag | ® !, Here ¢, ¢ are two primitive null
vectors in the second self-dual Lorentzian lattice.

We summarise these properties in the following Table 1.

To study the decomposition of the algebras, we require the explicit forms and some
properties of the fundamental weights. First, we report them for the extended, over-
extended and very-extended Lie algebras. Denoting the fundamental weight vectors
of the semisimple Lie algebra g as )Llf ,i =1,...,r, the authors of [21] constructed
the fundamental weights for the over-extended and very-extended algebras as

=i g K =F -k 3%, =k 22
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Table 1 Extended, over-extended and very-extended Lie algebras, root lattices, extensions and partial
Dynkin diagrams

Algebra Root lattice Added root Dynkin diagram Expl.
— 1,1 — e (0)
2 Agy=Ag®TI ap=k—0 o Eg
- L1 - k cio— o — =
g 1 Ag | =Agy @11 a_| = (k+k) O?i o% a:] Eg’ =Ej
— 1,1 — o — o _ 2) _
g 5 Ag , =Ag BT ay=k—(t+7) TR T a0 Tt Eg) = Eyy
_ e+e e+0
W= il Ay =k—k+ e M=k W= 23)
respectively, withi = 1, ..., r. Using an inner product of Lorentzian type as defined

in (2.1), these weights satisfy the orthogonality relations

)»;-)~()[j=8,‘j, i,j=-1,0,1,...,r, 2.4
A}J-aj:&j, i,j=-2,—-1,0,1,...,r, 2.5)

with o; being simple roots of the appropriate root spaces. The corresponding Wey!
vectors p, defined as the sum over all fundamental roots, are then obtained as [2]

,
p° = ijzpf+h1€—(1+h)k, (2.6)
j=—1
d - e+0
pl= D hj=p k= (At k= (=)=, @7
j==2

respectively, with & denoting the Coxeter number and p/ the Weyl vector of the finite
dimensional semisimple Lie algebra.

3 n-Extended root lattices, weight lattices and Weyl vectors

Let us now enlarge these systems further and define the extended algebras g_,, with
root lattices comprised of the root lattice Ag, of the rank r semisimple Lie algebra g
extended by n copies of the self-dual Lorentzian lattice IT"!

Ag_nzAgGBH}’l@...@]'[’llsl_ (3.1
Each of the root spaces I1 ll )1 ,i =1,...,nis equipped with two null vectors k; and
ki with k; - ki = k; - k; = 0, k; - k; = 1 and two vectors =+ (k; + k;) of length 2. The
simple root systems then consist of the r simple roots «; of the semisimple Lie algebra
g, the modified affine root g and n-extended roots v—_;, i = 1,...,n
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o™ = {al,...,ar,aozkl—e,a_l =—(k1+121),...,a_j

= kj,]—(kj +I€j)}, (3.2)
for j =2, ..., n. Using the orthogonality relation
x}’”. W =8, i j=-n01,...,r, (3.3)

together with kf’l) = Z]__n K_l ;") Kl.;l = Aﬁ”) . )»5»”), we construct the n +r + 1

fundamental weights )Ll(") of the n-extended weight lattice Ag_, as

W= e i=1,r, (3.4)
_ 1 <& _
W=k =k = Y [k 1 - k] (3.5)
n i=2
A=k, (3.6)
1 & _
2 = DI LEICES B 3.7
=2
_ 2 _
2 = (n—2)(k2—k2)— =N i+ (1= D], (3.8)
n i=3

n

1 _ 3 i}
A = =) ky — ko k3 —2k3) — =Y [k 1— k], (3.9
Y=—t =3 —k+k-2k) -3 [k+@+1-Dk], (9

i=4
-1
AT@:-(nH—@)Z [ki + (1 — i)k;]
i=2
-0,
+— ;[k,+(n+1—z)kz], (3.10)
(I—Z) n —1 ~
=—— [k + A =dk]+} [k + 1 -]
i=2 i=2
+1 =0 k. G.11)
i=(

Summing up these weights, we derive the Weyl vector for the n-extended system
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-
p(n) — Z A

jm—n
n .
- h n+1-2i
_ ot _ h ontl=20),
= o/ +hky (l+h)k1+§2[(n+ - )k,
=
1= ) Qh+n(l —i)) -
Lot ’)(2 + l))k,}. (.12)
n

For n = 1 and n = 2, the expressions reduce to the previously known formulae in
(2.6) and (2.7), respectively.

Having found a generic expression for the Weyl vector o, we can now deter-
mine the generalisation of the Freudenthal-de Vries strange formula by computing its
square. For a semisimple Lie algebra g with rank r, it is well known to be, see, e.g.
[16,25] and references therein,

N2 ho h(h+ Dr
Yy = = N e Nt
(p ) = 12dlmg 7 (3.13)

A direct calculation using expression (3.12) yields the generalisation for the n-extended
algebras

) -,0(") _ h(h + Dr +nn?>—1) _ hth+n)(1 +n)’

3.14
12 n ( )

0

for n > 1. For n = 1 this corresponds to the expression found in [21] for the over-
extended case.

4 SO(1, 2) and SO(3) principal subalgebras

As the class of Lorentzian Kac—-Moody algebras is very large, several attempts have
been made in seeking for further properties that distinguish between different sub-
classes. One such property that has turned out to be very powerful when analysing
integrable systems based on finite or affine Kac—Moody algebras [26,27], as well as
the structure of Kac—Moody algebras themselves, is the feature of possessing a prin-
cipal SO(3)-subalgebra [28]. In terms of the generators in the Chevalley basis H;,
E;, F;, obeying the standard commutation relations [H;, H;] = 0, [E;, F;] = §;; H;,
[H;, E;] = K;;Ej, [H;, F;] = —K;;jF; with K denoting the Cartan matrix, the prin-
cipal SO(3)-generators

r r r r
J3=ZDiHi, J+=ZniEi, J—=ZniFi, D; i=ZKj_,»l, 4.1)
i=1 i=1 i=1 j=1
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n-Extended Lorentzian Kac—-Moody algebras 1695

satisfy [J4, J_] = J3, [J3, J+.] = £J. The Hermiticity properties E;f = F, Hl.T =
H; are inherited by the generators J; and J_ as JI = J_ when n; € R. The SO(3)-
commutation relation [J+, J_] = J3 is satisfied when n; = «/D;.

In the case of the Lorentzian Kac—Moody algebras, the analogue of the SO(3)-
principal subalgebra is a SO(1, 2)-principal subalgebra [21,24] with generators

r r r r
— > DiH;, By =) piEi. Jo=Y qF. Di=)Y K;'. 42
i=1 i=1 i=1 j=1

satisfying [f+, Jl] = —J, [fg, fi] = +J; and being Hermitian when p;q; =
| pi |2 = —ﬁi. Thus, a necessary and sufficient condition for the existence of a SO(3)-
principal subalgebra or a SO(1, 2)-principal subalgebra is D; > 0 or Di < 0 for all
i, respectively.

We argue further that a necessary condition for an extended algebra g_,, to possess
a SO(3)-principal subalgebra and a SO(1, 2)-principal subalgebra is that there exists
akeS={n,...,0,1,...,r} such that Dy = > " ]k = 0. We may then

j=—n
decompose the index set S as S = S\{k} = S1 U S8, such that K;; = 0 for all
i €81,j€Sand Kig #0, K # 0 for two specific i’ € Sy and j' € S,. Thus,
removing the node k from the connected Dynkin diagram g_, will decompose it into
two connected diagrams such that two generators indexed by i € S7 and j € S; will
commute. Thus, when D; > Ofori € Sy and D; < Ofor j € §; we can formulate two

commuting principal subalgebras with generators {J3, J+} and {J3, J+}. For instance,
we have

[J3, J+] _ Ziesl’jesz Di\/-D; [Hi, E]
=§;ghﬁ&Dhﬁly&ﬂQ=0, (4.3)

and similarly for the other generators. This commuting structure extends to the SO(3)
and SO(1, 2) Casimir operators

C=hhs—Jid_—J_Jp, and C=hJ3—J 0 —J_Jg, (4.4)
respectively. So that we have SO(3) @ SO(1, 2) with [C, C‘] =0.

Computing the inner products of the generators in the adjoint representation, as
carried out, for instance, in [24], yields

(J3,J3) = p™ - p™ >0, and (Ji, Jx) = p™ - p™ >0, (4.5)
(J3,J3) = p™ - p™ <0,  and (Ju, Jy) = <") p™ >0.  (4.6)

Thus, identifying the signatures of p - p serves as a necessary condition for the
existence of the respective principal subalgebras. Using the generalised Freudenthal—
de Vries strange formula (3.14) for a given semisimple Lie algebra g with rank r, the
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nmax
15+ = .
= e 6 o o o o o o
° [ .Ar(ﬂz<0)
107 e e B
. = D, (p° <0
° " « A, D;i<0, ¥V
[ ] [ ]
o = A A « D, (Di<0, Vi)
57 A A *
A A& o o+ o A
> & * A = e
¢ & & & A ® & o o o
5 10 5 T

Fig. 1 Maximum values of n for g_, with rank r to possess a SO(1, 2)-principal subalgebra from the
necessary condition p2 < 0 versus the necessary and sufficient condition D; < 0, Vi

maximal value of npyax for g_, to possess a SO(1, 2)-principal subalgebras is easily
determined from the inequalities in (4.6). Using relation (3.14) with a given rank, we
compute for the exceptional semisimple Lie algebras

Ee: nmax =23, E7: nmax =17, Eg: nmax = 14. 4.7)

For the A, and D, algebras we present the results in Fig. 1 for different values of r.

We observe from Fig. 1 that for A, and D, with r > 24, no n-extended algebra
exists that possesses a SO(1, 2)-principal subalgebras. This agrees with the findings
in [3] for n = 1. For r < 24, such a possibility exists, but p> < 0 implies it does not
exist when n > 12 and n > 16, for A, and D,, respectively.l As the criterion (4.6)
is only necessary, but not sufficient, let us compute the values for Df") to obtain the
more restrictive necessary and sufficient information.

5 Expansion coefficients of the diagonal principal subalgebra
generator

Having constructed the expressions for all fundamental weights and the Weyl vec-
tor, we can evaluate the expansion coefficients D; directly from the definition (4.1).
Focussing here on the case for which the finite semisimple part is simply laced, so that
all roots have length 2, the inverse Cartan matrix is symmetric and acquires a simple
form in terms of the fundamental weights AE") as K ﬁl = A;") . )LE"). Therefore, the
constants

! For the over- and very-extended cases, our results differ mildly in one case from a typo in [21], where it
was stated that also the over-extended A(llﬁ) possess a SO(1, 2)-principal subalgebras.
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Table 2 Kac labels, exponents and Coxeter number for the simply laced Lie algebras

Kac labels n; Exponents e; Coxeter number &
Ay ..., 1 1,2,3,...,r r+1
D, 1,2,2,...,2, 1,1 1,3,5,...,2r=5,2r—=3,r —1 2r—2
Eg 1,2,2,3,2,1 1,4,5,7,8,11 12
E7 2,2,3,4,3,2,1 1,5,7,9,11,13,17 18
Eg 2,3,4,6,5,4,3,2 1,7,11,13,17,19, 23,29 30

r
(n) —1 (n)
DM = Kg'=p" WY k=-n...,-1,01,.. .7, (5.1
j=—n

can be computed either by using the generic expressions for the weight vectors (3.4)—
(3.11) and Weyl vectors (3.12) or by directly inverting the Cartan matrix as in (5.1).
From the generic expressions, we derive general formulae for the expansion coeffi-
cients

Dl.(”) = Dl.f +niD("), and

i—1 h

p™ :(n—j+1)(]———), i=1,...rj=0,....n, (52
J 2 n

for the semisimple Lie algebraic and extended part, respectively. We abbreviated

Dif = pl- )»if . For the over-extended and very-extended algebras, the expressions in
(5.2) become, for instance,

D’ =—h, D§=-@Qh+1), Df=D/+nDg (5.3)
1
3 .
Dy =—3(+1), D= D/ +n;D}. (5.4)

The fundamental Weyl vectors p/, Coxeter numbers 4 and Kac labels n; are algebra
specific and well known, see, e.g. [29]. We list them here for convenience in Table 2.
Also the Weyl vectors are known in these cases in terms of the simple roots

r N
l
A pl = Z S =i+ Do, (5.5)
i=1
=2 ii +1) rr—1)
D,: pl = Z |:ir - i|o{,~ + =@+, (5.6)
i=l1
Es: p! = 8a; + 1lay + 1503 + 21au + 1505 + 8w, (5.7)
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1698 A.Fring, S. Whittington

1
E;: pf = 5(340[1 + 49wy + 66a3 + 96014

+75a5 + 5206 + 27a7), (5.8)
Eg : p! = 46a; + 68as + 913 + 13504 + 1105
+84ag + 5707 + 29as. (5.9)

Hence, we compute the terms Dif in the general expressions for the expansion coef-
ficients (5.2) as

o . .
A,:Dizz(r—l+l), i=1,...,r
-1 : i(j+1
r(r )’ pf— iy dUT )’
4 J 2
.pnf f_ f_ f_ f_ f_
E¢: Dy =8, D, =11, D3y =15, Dy =21, Dy =15, Dg =3,

p,:p!/ =D/ = j=1...,r=2

49
E7: D] =17, D-”:E, p{ =33, D] =48,

75 27
Dg”z? D/ =26, D{:T,
Ey: D] =46, D] =68, D{ =91, D] =135, D/ =110,
D/ =84, D] =57, D{ =29. (5.10)

Evidently, all constants Dltf for all semisimple Lie algebras are positive. For the over-
extended algebras, we obtain therefore

AV D = —(r+1), D§=-Qr+3),
D¢ = %(r—i+1)—(2r+3) (5.11)
DV D% =2-2r, D§=3—4r, D =2-73r,
Dj:(j—S)r—eré, (5.12)
e=pp=""10 054
E" D% =12, D§ =25 D} =—17, Dy = —89,
D§ = —110, D§ = —154, (5.13)

DS = —185, Dg = —267,
Eél) : D%, = —18, D§ = =37, D = —57,

99
147 47
D¢ =—— D?=-48, D = ——,
5 2 6 7 2

(M
E{" : D, = =30, D} = -61, D} = —15,
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n-Extended Lorentzian Kac—-Moody algebras 1699

D = —359, DY = —580, DY = —658,
D¢ = —927, D¢ = —1075, DY = —1346, D} = —1740, (5.15)

withi =1,...,n,j=2,...,n—2 and for the very-extended algebras we compute
2) . v __C v v__é
Ar . D72 = 2, D71 = (r + 1), DO = 2(r +2),
D' =i+ la—i-3 (5.16)
) 2 ’ '
3
D? D, = 37 DY, =2-2r,
3 1
Dy == —3r, D} = = —2r,
2 2
. JG+1D
D} = (j = 6)r = == 43,
rir+1) 3
Dr—l = = 4 + 5 — 3}’" (5.17)
11 39
(2) v v v
E7: =——, DY, =-12, Djy = ——,
6 -2 B -1 0 3
23
Dy = D¢ = 5 Dy = -28,
v v v 75
D3 = Ds = =24, D) = 5 (5.18)
17 57
EY . DY, = —= D!y =~18, Dj=—= Dj =40,
65 105
Dy=——, Dy=——",
2 2 3 2
D] = —66, D = —48, D¢ = —31, D] = —15, (5.19)
29 93
EY D', =-= D'y =-30, D} = ——,
2 2
143
D} = —47, D} = — D3 = —95,
245
DX = —144, Dg = —TX, Dg =—102,
165
D] = — Dg = —64. (5.20)

withi=1,...,n,j=2,...,n—2.

From these expressions, we find directly the maximal value of n for g_,, with rank r
to possess a SO(1, 2)-principal subalgebra from the necessary and sufficient condition
D; < 0, Vi. For the exceptional Lie algebras, we obtain

E¢g: npmax =5, E7: nmax =6, Eg: nmax = 7. (5.21)
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1700 A. Fring, S. Whittington

For A, and D, the results are reported in Fig. 1. Comparing these exact values to those
resulting from the analysis of the necessary condition p> < 0 shows consistency, but
also that the latter values are much more restrictive.

6 Direct decomposition of n-extended Lorentzian Kac-Moody
algebras

As argued above, when a constant D( ") yanishes we can potentially, simultaneously
find a SO(1, 2)-principal subalgebras and a SO(3)-principal subalgebra. This requires,
however, that the Dl.(") for i belonging to the two separate index sets S1 and S, are of
definite sign. If that is not the case, the algebra can be decomposed further. To identify
when either of these scenarios occurs, we can set our solutions in (5.2) to zero and
solve for n, i, j, with the only meaningful solutions being those for which n,i € N
andi <n, j <n.
For the extended parts of the Dynkin diagrams, we easily find from (5.2 )

2h
DT}:O, for j =1+ —. 6.1)
n

For a given value of n, there can only be a finite number of solutions due to the
restriction j < n. Using the Coxeter numbers from Table 2, we find the solutions

A® D™ =0 for

(n,r,j)=0@,2,3),4,1,2),4,3,2),4,5,4),(5,4,3), ... (6.2)
Df”) : Dl.(") =0 for
(n,r,j)=(4,4,4),(,6,5),(6,4,3),(6,7,5),(7,8,5), ... (6.3)

and for the exceptional Lie algebras the only possible solutions are

EP =EJ D oLoA,; for (n,j)=1(6,5),(8,4),(12,3),(24,2), (6.4)
EW =EV ™V oLoA,; for (n,j)=(9,5),(12,4),(18,3),(36,2),(6.5)
EMN =EY ™V oLoA, ; for
(n, j) = (10,7), (12, 6), (15, 5), (20, 4), (30, 3), (60, 2). (6.6)
We denote the Lorentzian root corresponding to the node that needs to be deleted by
L.

For the parts of the Dynkin diagrams corresponding to semisimple Lie algebras
also the expressions for p/ need to be treated case-by-case. We find

11 8(1

AW D™ = fori = & :I:—\/r2—6r—4n—ll—ﬂ, (6.7)
! 2 2 n
—1 25 8(1—

p™:p™ =0 fori:rz j:\/ 9r—2n+Z+M. (6.8)
n
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Table 3 Decomposition of the n-extended algebras Ag”)

Al =AY o120 4,
e
Y O

A =AY o120 4
A =EQ o120 Ars
AD =AP o120 As
A%LO) = A;lo) oL%o Ag
A§134) = A;M) oL%o A3z
AR —EH o126 A3

AEIS) = Ag'l) oL%o Ag
AR = AP o120 a5
AQ = AP o 12 0 Ag
A =AW o120 45
A® AP o120 4
A Ao

AR —E® o126 A4
A§174) = Eglz) oL%o Arq
A§364) = A%") oL%o Ar

Al =AY o120 Ag
AR = AP o120 Ay
AD = EP o120 A3
AP —EP o120 4y
AR —EP o120 45
AY —E® 012041
A A 12
AR =AM o 126 449
AR A o 126 44

54 2 (54
AR =AY o L2 6 A

For the over- and very-extended algebras, the only solutions are

AV =16,i=7,10; r =18,i =6,13;r =26, j = 5,22, (6.9)
AP =12,i=6,7, r=13,i =5,9; r =18, j =4, 15,

DYV r=17,j=13;r=18,j=12; r=20,j=11;r =39, j =9,
DP:r=13,j=10; r=14,j=9; r =25,j =7. (6.10)

There are no solutions for the E-series on this part of the Dynkin diagram. The complete
list of solution with corresponding decomposition is presented in Tables 3 and 4. We
observe that in the reduced part, we also obtain some algebras that are not of the
n-extended form as described above. To refer to them, we introduce the notation
A™™ labelling an A,-Dynkin diagram with n roots successively attached to the
mth node in form of an A,-algebra. The special case of the n-extended symmetric
Dynkin diagram with n roots attached to the middle node of A, we denote by Aﬁ").
Some of the A £”’m)—algebras are equivalent to the n-extended versions of the E-series.
We have Aé}1+2,3) = Eé”_z), AS,M) = E;"_7) and 421’3) = Eén_g). We also have
the symmetries A" = AT = AU lmmm) A%;}rl@m In the resulting
decomposition, we also encounter algebras that decompose further by possessing
Lorentzian roots on their extended legs of the corresponding Dynkin diagrams. We
mark them in bold in Tables 3 and 4. The precise way in which they decompose is
reported below in Tables 6 and 7.

6.1 Reduced system versus n-extended versions

We shall now discuss how to express quantities, such as roots, weights, Weyl vectors
and determinants of the Cartan matrix, related to the full n-extended lattices in terms
of those obtained from the reduced versions and vice versa. We follow here largely
the reasoning presented in [21], however, with the key difference that the node to be
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Table 4 Decomposition of the n-extended algebras Dﬁ")

1 5
D) =EY oLoDy

1 1
DSy = E{" o L o D3y

2 1
DZ =EV oLoDyg
@ _ 406 2

DY =A% L

4 2
DSV =EP oLoDys

6) _ A(L5)
D3 = A7 o Lo Dg

DB —ALD o Lo 42
DY) =E{Y oL oDy

DY = E? o L o Dy
DY =E{M o L o Dy
D =E{™ o LoDy
DY ALY oL oA,
DY —EJY o Lo Dy
DEY —ESY o Lo Dy

D\Y = E(Y o L o Dg
D3 = EY o Lo as
DY =AY o Lo Ds
pW =A% LoD,
Dﬁ) = 5(113’7) oLo A%
D) = EY o LoDy
D =AY oL oDg
DY) = EY o LoDy,
DV =AY o LoDy
DL =AY o 1 o Ds
D2 = AlkY o Lo Dy
DY —EQY o L o D3g
D ALY oL oDy
DI = AL o Lo Dg

DY) = EY o Lo Dy
D% = EY o LoDs
DY =AY oL oDy
D = AP oLoD;
DY) = E{Y o Lo Dyg
D) = EY o Lo Dsyg
p® —E o LoDy
o0 = A0 o 12
DY =AY oL oDy
DY — kM o Lo D3y
DY —EM™ o Lo D5
D29 AL o Lo Ds
D§34) = A;lﬁ’ll) O Lo Dy

(76) _ 21,9
Dyy” =Agg” ¢ Lo Dy

(152) A7)
D3y =Ajgp ©L o D3o

removed from the full n-extended Dynkin diagram is not identified as the one that
decomposes the system into finite and affine diagrams, but rather the node ¢ for which
Dé") = 0. The former node might in fact not even exist for the cases considered here.
Moreover, these two types of nodes are always different. Our construction applies to
all n-extended lattices.

We denote roots and weights related to the n-extended lattice as the above by «;, A;
fori e~S ={-n, oo 0, 1, ..., r}and weights and roots related to the reduced system

as @, A; fori € § = S\{¢} = S1U $3. The root related to the node ¢ can then be
expressed as

ag=x—v, with vi=—3 Kk, (6.11)
l
where the vector x is defined by the orthogonality properties x - &; = x - v = 0.

Consequently, we have K¢y = oa% = 2 = v? 4 x? and the fundamental weights can
be expressed as

x ) -
he=5 k= dit (veR)he (6.12)

Summing up the fundamental weights to construct the Weyl vector then yields a
relation between the Weyl vectors in the two respective systems

p= di=ht+Y ri=p+A+vp) A (6.13)
ieS ieS
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Next, we relate the determinants of the Cartan matrices for the two systems. Employing
Cauchy’s expansion theorem for bordered matrices, see, e.g. [30], we have

det K = Kypdet K — ) Kyi(adjK);j K jo. (6.14)
i,jes
where adjK denotes the adjugate matrix of K, i.e. the transpose of its cofactor matrix.

Recalling that (adjk)ij = Igﬁl det K, 15[71 = A; - Aj and K¢ = 2, relation (6.14)
can be re-expressed as ' '

det K = (2 - v2> det K. (6.15)

To illustrate the working of this formula and at the same time to check our expressions

from above for consistency, we present explicitly two examples from Tables 3 and 4.
®) )\ 2

Example D\ = E& o LoDy : Withv = 2244275, (/\{)4) =1, < B ) = 4/5,

we compute v = 9/5. Furthermore, we calculate the determinants det K p = —4,
17
det KE<5) = —5, det Kp, = 4 and hence confirm formula (6.15).
8

) Y 2
Example DY = EV o Lo Dyg : Withv = 225 4257, (x?s) =1, ( = ) =0,
we compute v2 = 1. We also calculate the determinants det K D(g) = —8,detK g =
7
—2, det Kp,; = 4 and hence confirming once more formula (6. 15)

6.2 Decomposition of the very-extended D;s-algebra aka kjg

Let us now elaborate further on the last example. As is clear from the above, the
construction of extended Dynkin diagrams, or equivalently the corresponding Cartan
matrices, of Lorentzian Kac—Moody algebras can be carried out in many alternative
ways. As a detailed example, we present now the case of the very-extended Djs-
diagram, that is the D;? -algebra in our notation. It has the following Dynkin diagram:

a3 03 o4 o5 Q Q7 Qg 09 o]Q0]] 02 X304 1501607 018 X9 (20 2] X422

D(zé) -Dynkin diagram on the root lattice for Dys @ I1 Llgnl!

The algebra belongs to the special class of hyperbolic Kac—Moody algebras singled
out by Gaberdiel et al. [21], which posses at least one node that when removed leaves
a set of disconnected Dynkin diagrams of finite type with at most one being of affine
type. Indeed, when removing the node corresponding to the root labelled by og, we are
left with a disconnected diagram of which one corresponds to the finite dimensional
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Dig-algebra and the other to the affine Eéo) -algebra. The corresponding root space is

constructed as indicated in (3.2).

Here, we are especially interested in the construction of the reduced Dynkin diagram
corresponding to E§2) ¢ Dig. Instead of representation (3.2), we may also represent
the roots as

Bri=a3+ L, B =7, i=2,...,18, (6.16)
vii=q, 1=1,...,4, ys: =0, Y6 :=0_1, V7 :=0_2, Y =05 —k,

(6.17)

ye1 = —(k+k)— €, y_o = —(L+0). (6.18)

Using the standard rules for the construction of Dynkin diagrams, we obtain the same
diagram as above:

Y1

Bis
Eéz) ¢ D1g-Dynkin diagram on the root lattice for E;O) entlen’! e Dy

The construction differs form the previous one in the sense that we have not used the
standard representation for the over-extended and very-extended root, but have now

linked the very-extended root y_, of Eéz) with a simple root 81 of the semisimple
Lie algebra Dig. Deleting now £ has the effect that the two links connecting y_; are
severed so that this algebra decomposes into Eél) @I @ Dig. Thus, y_» = —€ has
become a separate disconnected root of zero length y_s - y_» = £> = 0. In addition,
we obtain two separate disconnected Dynkin diagrams for the over-extended algebra

Egl) and the semisimple Lie algebra Dg:

B17

—/{
V2 V3 Y4 V0 V—l. B1 B2 B3 Ba Bs Bo B7 Bs Bo BroB11B12P13P14P15 é%

Bis

Y1
B 2 _
Reduced Dynkin diagram of D)5’ = E5 " ¢ L ¢ Dyg

We also notice that the root «y = a7 for which D, = 0 is different from the root
o that need to be chosen for the very-extended root lattice to reduce to an affine and
a finite Kac Moody algebra.

6.3 Examples for double and triple decompositions

As indicated in Tables 3 and 4 above, there exist also n-extended algebras for which
there are two or even three nodes, say ¢, £ and £” , for which Dy = Dy = Dyr = 0.
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We present here two examples of Dynkin diagrams that decompose on the semisimple
part as well as on the extended part. For instance, we have a triple decomposition for

E® o106 Ay
ALY EQ oLoAso L0 Ay
)
Asy o Lo Ay

for which the final disconnected Dynkin diagram is:

a_10
Y
o_g
o7
L ®asg
s

o4

GP o3
Eg s

oy
o

® 0000000000 000090909090 O
O] 03 3 04 5 O 07 Qg (X9 XU ]1¢X]1200]30 1401516070 18X 19020021 XX22(X23X24

Reduced Dynkin diagram of A&O) = Eé3) oLoAs0 LYo Agg

Similarly, Dgg) doubly decomposes as

(10)
D37 o Lo A3
DY A3o Lo EQ o LoDy

E{” o Lo D3

Further examples can be obtained from Tables 3 and 4 for the cases with bold entries.

7 Roots, weights, Weyl vectors and decomposition of the
A™™ _algebras

Since the A""™ -algebras occur naturally in the decomposition of the n-extended
Lorentzian Kac—-Moody algebras, we shall now discuss them in further detail, with
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particular emphasis on their decomposition. The corresponding Dynkin diagrams are
equivalent to those arising in the description of the so-called T}, , ,-singularities [31],

with the identification Agjr’;ill) = T,,.,. We represent the simple A" -roots in

terms of the r simple roots ¢; of the semisimple Lie algebra g and the Lorentzian
roots, with the m'™ root modified similarly as the affine root for the n-extended algebras

aym — oy + ky. Thus, the r + n simple Aﬁ"’m)-roots are represented as
a={ag, ..., %u—1,0; + k1, ity .., 0, |
= —ki—ki,...,0_j =kj_1 —kj —k;j}, (7.1)
with j =2, ..., n. Using the orthogonality relation
WG =8y, i j=—n, ., =11, (7.2)

together with )Ll("‘m) = Z’]’Z Iel.;l&j, I%;l = )»l("’m) . Ag"’m), we can construct the
n 4 r fundamental weights. We shall focus here on the case for which the extension is
attached onto the middle node Ai’;gx)l, so that m = h/2, and refer to them as Aﬁ").
We find in this case the fundamental weights

Sy _ o f 2n o () f .

)\.in —)\.i +mmm(l,h—1)<)»0" _)"h/2>’ l—l,...,r, (73)
- dn—j+1) : .

(n) (n) (n) f

A=A —(A — A ) =1,...,n, 7.4
=i —am gy Mo ) " (74)

where )»l.f are the fundamental weights of A, and A(()"), A(:'). are fundamental weights
for the n-extended Lorentzian Kac—Moody algebras as determined above in equations

(3.5), (3.11). The Weyl vector results therefore to

r

A h% 4+ 4n +4)
5 = A = gy y P A D (A(")—k'f). 7.5

Next, we compute the constants

2 .
AN An) "(n)_n(4+4n+h ) L. . l .
D" = A = h— —(h —
P = e an@ —py M DA =),
i=1,...,r, (7.6)
pO — s _ U= n = DIR +4j0 4 n) 4 nh(l = j)]
—J = 2n(h —4) — 8 ’
j=1,...,n (1.7)
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Table 5 Decomposition of the algebras Aﬁn) on the A,-leg of the Dynkin diagram

AR =AR or? AY 2 AW o120 42 AO ZAW 6120 42
A(1133) _ A;113) o L2 A%) _ Aéz) <>L2<>A§ A§174) _ A;“) <>L2<>A§
Al =AY 01?043 A = AP o120 a2 A=A o120 A
AGH Z A3 4126 42 A = AP o 20 A2 A0 _ 300 12 42
Agls) = Agll) oL?o A% Agg) = A(lgis) oL?0 A% Aézg) = A;z) oL2o A%O
AR =AM o126 A2 AP —EY 012042, AP —E® 612642,
A%) = Agl) oL%o A%ﬁ Ag) = EéB) oL%o A%g Af;) = A§54) oL%o A%ﬁ
AR —E® 0120643, AQ =EP 012043 AR =EMY 0120 43
A = EM 012042, AP —EPY 012043,

Table 6 Decomposition of the algebras Aﬁ”) on the extended leg of the Dynkin diagram

AP =i o Lo 4, AV = AP o Lo 46 A=A o Lo g
AO — A9 6 Lo A, A =A@ oL oAy APV = AV o Lo Asy
AW = AjY o Loas AN =AY o Lo AT = A1 o Lo s
A® = A9 o Lo a, AR = AQoLoayg ARV = A oLoax
AR =AY o Lo Ay, Ay) =47 oL ean Al = Afg o Lo 4

ACBH Z A9 o 1o 4, ALY A 1o g A = i o Lo asg
As” = A5 o Lo g Ay = A5 o Lo Ag AsY = A5 o Lo A
A® A9 o Loa, AD A9 1o 4, AGY =AW oLoas
AUD Z A9 1o ag A~ AD o Loy AR = Ay o Lo Ay
A0 _ 4O o 1o a5 ALY =A% o Lo Ay Agsg = Agig o Lo Ass

The algebras decompose, for the same reasons as previously argued for the n-extended
algebras ,when the constants D™ vanish. We determine

. n(n+4+h?) ) ndn + 4+ h?)

D™ =0, fori= , , (7.8)
i nth—4)—38 nth—4)—38
) h(h
H™ =0, for j= BEM (7.9)
J n(h—4) —4

Thus, the only meaningful solutions, i.e. those for which i, € N, i < r, to (7.8) give
rise to the decompositions on the leg of the Dynkin diagram corresponding to the
A,-diagram as listed in Table 5.

On the extended leg of the Dynkin diagram, we find with j € N, j < n, the solutions
to (7.8) as reported in Table 6.
Finally, we consider the A" -algebras in general. We will not present here a full

discussion of the weight lattices, the Weyl vectors and the constants ﬁi("’m) as for
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Table 7 Decomposition of the algebras Aﬁ”’m) that occur in Table 4

A(]’S) = A(I‘S) oLoAp A(llﬁj) = 14(113) oL oA A(ll)‘g) = A%ﬁ) o Lo As
ARY =4V o Lo ag AR = A5V oL o Ag ALY — AV oL oAy
AR =AM o Lo Ars ALY E(4)<>L<>A21 AND —EP oL oAy
A“ > E(”<>L<>A45 A“ W o EQ o Lo Ag A“ 0 D o Lo Ag
A(] 9 E(2)<>L<>A74 A(1 7 E(2)<>L<>A150

the special Aﬁn)-case, but only list the decompositions of those cases that appear in
Table 4. Our results are reported in Table 7.

A S"’m)—algebras that appear in Table 4 and are not reported in Table 7 do not decom-
pose. Thus, similarly as discussed in Sect. 6.3, we also obtain double decompositions
involving these type of algebras. For instance, we have

(1,7
A7 o LoDs
pi%® Ay o Lo EY o Lo Ds

D(z) o Lo A

as seen from Tables 4, 7 and (6.3).

8 Conclusions

We defined and investigated a new class of Kac—Moody algebras, referred to as
n-extended Lorentzian Kac—Moody algebras g_,,. For the corresponding Dynkin dia-

grams, we constructed the associated root and weight lattices with generic expressions
(n)

for all simple roots ;" and fundamental weights )\ﬁn). The latter were used to derive
closed expressions for the Weyl vectors p™ for any value of n. The signatures of the
product p™ . p@™ that is the generalisation of the Freudenthal-de Vries strange for-
mula, led to a necessary condition for the n-extended Lorentzian Kac—Moody algebras
to possess a SO(1, 2)-principal subalgebra. From the inner products of the Weyl vector
o' and the fundamental weights A;"), we compute the expansion coefficients Di(") for
the J3-generator of the principal SO(1, 2) or SO(3) subalgebra. When these constants
vanish, the decomposition the corresponding Dynkin diagram can be reduced. For the
reduced diagrams, we analyse in detail whether D; > 0 or D; < 0 for all i, which
constitutes a necessary and sufficient condition for the existence of a SO(3)-principal
subalgebra or a SO(1, 2)-principal subalgebra, respectively. We derive explicit formu-
lae augmented by examples that allow to express quantities related to the n-extended
systems in terms of the reduced counterparts and vice versa. We provide complete
lists for all decompositions of the n-extended Lorentzian Kac—Moody algebras g_;,.
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A similarly detailed analysis is presented for the A -algebras, but for A""™ # A™
we only report the decomposition for the cases appearing in the decomposition of g_,.

Besides the aforementioned applications in string theory, one may also apply the
constructions here in the context of classical and quantum integrable systems that are
formulated in terms of roots, weights or even directly in terms of principle subalgebras,
such as Toda theories [26] and Calogero—-Moser—Sutherland systems. Even though it
was found that for some of the Toda theories based on Lorentzian root systems do not
pass the Painlevé test [32], and are therefore not integrable, the constructions presented
here suggest that they contain some integrable components and hence are candidates
for a systematic study of nonintegrable quantum field theories [33].
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