
Letters in Mathematical Physics (2020) 110:1689–1710
https://doi.org/10.1007/s11005-020-01272-2

n-Extended Lorentzian Kac–Moody algebras

Andreas Fring1 · Samuel Whittington1

Received: 16 December 2019 / Revised: 25 January 2020 / Accepted: 12 February 2020 /
Published online: 3 March 2020
© The Author(s) 2020

Abstract
We investigate a class of Kac–Moody algebras previously not considered. We refer to
themasn-extendedLorentzianKac–Moody algebras defined by theirDynkin diagrams
through the connection of an An Dynkin diagram to the node corresponding to the
affine root. The cases n = 1 and n = 2 correspond to the well-studied over- and
very-extended Kac–Moody algebras, respectively, of which the particular examples
of E10 and E11 play a prominent role in string and M-theory. We construct closed
generic expressions for their associated roots, fundamental weights and Weyl vectors.
We use these quantities to calculate specific constants from which the nodes can
be determined that when deleted decompose the n-extended Lorentzian Kac–Moody
algebras into simple Lie algebras and Lorentzian Kac–Moody algebra. The signature
of these constants also serves to establish whether the algebras possess SO(1, 2) and/or
SO(3)-principal subalgebras.

Keywords Lorentzian Kac–Moody algebras · Infinite dimensional Lie algebras ·
Root and weight lattices · M-theory

Mathematics Subject Classification 17B67 · 81R10 · 81T30

1 Introduction

The symmetry algebras relevant in the formulation of fundamental theories in particle
physics have become increasingly complex over the years. While finite dimensional
Lie algebras are sufficient for the characterisation of local gauge symmetries describ-
ing three of the four known fundamental forces in nature, it was noticed well over
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thirty years ago that infinite dimensional Kac–Moody algebras [1] are needed for an
adequate description in the context of some string and conformal field theories [2–4].
For some string theories, type II superstring theories or M-theory [5], a particular type
of Lorentzian Kac–Moody algebras has turned out to be especially relevant [6–11],
providing an alternative approach to treating M-theories as gauged supergravities in
dimensions D ≥ 4 by means of the embedding tensor as carried out, for instance, in
[12–15].

In general, from a mathematical point of view the understanding of Kac–Moody
algebras is still partially incomplete [1]. However, based on their Dynkin diagrams,
that encode the structure of their corresponding Cartan matrices, see, e.g. [16], many
subclasses have been fully classified. The best-known and studied subclasses are
semisimple Lie algebras of finite or affine type characterised by finite connected
Dynkin diagrams. Their Cartan matrices are positive definite in the former and posi-
tive semi-definite in the latter case. In addition, hyperbolic Kac–Moody algebras have
also been fully classified [17]. In terms of their connected Dynkin diagrams they are
defined by the property that the deletion of any one node leaves a possibly discon-
nected set of connected Dynkin diagrams each of which is of finite type, except for at
most one affine type. Their Cartan matrices are nonsingular with exactly one negative
eigenvalue, i.e. they are Lorentzian.

While E10 is a hyperbolicKac–Moody algebra [18], E11 is not [19], which, partially
motivated by string theory, led to the study of a larger class of Kac–Moody algebras
that are also Lorentzian [20,21]. In [21], these algebras were characterised in terms
of their connected Dynkin diagrams such that the deletion of at least one node leaves
a possibly disconnected set of connected Dynkin diagrams each of which is of finite
type, except for at most one affine type. This definition is obviously more general than
the one for hyperbolic Kac–Moody algebras, including them as subcases.

Of these algebras, a particular type is very distinct. Referring to Dynkin diagrams
of the affine algebras as extended, the over-extended Dynkin diagrams consist of
connecting a node to the affine root and the very-extended ones of connecting another
new node to this new root. Here, we study root lattices resulting fromDynkin diagrams
for which these extensions are continued by adding successively nodes to the previous
ones and refer to them as n-extended Dynkin diagrams. Our notation is such that n = 0
corresponds to the extended system, n = 1 to the over-extended system, n = 2 to
the very-extended system and n > 2 to new systems previously not studied. As we
shall see below, these algebras occur naturally in the decomposition of the over- and
very-extended systems, for instance the decomposition of the over-extended algebra
D17 contains a 5-extended E8-algebra.

When decomposing the n-extended algebras, we encounter reduced Dynkin dia-
grams which consist of an Ar -Dynkin diagram with an An-Dynkin diagram attached
to the mth node. We denote the corresponding algebras by Â(n,m)

r . We study the cor-
responding weight lattices in more detail with a special focus on the case in which an
An-Dynkin is attached to the middle node of Ar referring to it as Â

(n)
r .

Ourmanuscript is organised as follows: In Sect. 2, we recall some known facts about
the extended, over-extended and very-extended root lattices to establish our notations
and conventions. In Sect. 3, we define the new n-extended Lorentzian algebras and
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construct their roots, fundamental weights and Weyl vectors. In Sect. 4, we discuss
the necessary criteria for the occurrence of SO(1, 2) and SO(3) principal subalgebras.
In Sect. 5, we compute a special set of constants obtained from the inner product of
the Weyl vector and a fundamental weight, whose overall signs provide necessary and
sufficient conditions for the occurrence of SO(1, 2) and SO(3) principal subalgebras
and the decomposition of the n-extended Lorentzian algebras, which are then studied
in detail in Sect. 6. Section 7 contains a similar analysis to the one in Sects. 5 and 6
for the Â(n,m)

r -algebras. Our conclusions are stated in Sect. 8.

2 Preliminaries, extended, over-extended and very-extended root
lattices

Before we present our extended version of the Lorentzian Kac–Moody algebra, we
recall some of the known results on the extended, over-extended and very-extended
root lattices to establish our conventions and notations. There exist various types of
choices to define the corresponding root spaces, especially with regard to the selection
of the inner product in the corresponding vector space [22,23]. Here, we adopt most
of the conventions used and introduced in [2,21,24].

The root lattice � for a Lorentzian Kac–Moody algebra g consists of two parts.
The first, �g, is spanned by the simple roots αi , i = 1, . . . , r , of the semisimple Lie
algebra g with rank r . The second is the self-dual Lorentzian lattice �1,1 equipped
with the inner product

z · w = −z+w− − z−w+ (2.1)

for z, w ∈ �1,1 of the form z = (z+, z−), w = (w+, w−). There are two primitive
null vectors in �1,1, that will be important below, k = (1, 0), k̄ = (0,−1), with
k ·k = k̄ · k̄ = 0, k · k̄ = 1 and two vectors± (

k + k̄
)
of length 2. An extended, or affine,

root lattice is obtained by adding to the set of simple roots the negative of the highest
root θ := ∑r

i=1 niαi , with Kac labels ni ∈ N. Here, we add the modified negative
highest root α0 = k−θ to obtain a differently extended root lattice�g0 = �g ⊕�1,1.
Adding to this set of roots the root α−1 = − (

k + k̄
)
, we obtain the over-extended

root lattice �g−1 = �g0 ⊕ �1,1 and adding the root α−2 = k − (
� + �̄

)
produces

the very-extended root lattice �g−2 = �g−1 ⊕ �1,1. Here �, �̄ are two primitive null
vectors in the second self-dual Lorentzian lattice.

We summarise these properties in the following Table 1.
To study the decomposition of the algebras, we require the explicit forms and some

properties of the fundamental weights. First, we report them for the extended, over-
extended and very-extended Lie algebras. Denoting the fundamental weight vectors
of the semisimple Lie algebra g as λ

f
i , i = 1, . . . , r , the authors of [21] constructed

the fundamental weights for the over-extended and very-extended algebras as

λoi = λ
f
i + niλ

o
0, λo0 = k̄ − k, λo−1 = −k, (2.2)
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Table 1 Extended, over-extended and very-extended Lie algebras, root lattices, extensions and partial
Dynkin diagrams

Algebra Root lattice Added root Dynkin diagram Expl.

g0 �g0 = �g ⊕ �1,1 α0 = k − θ · · · ◦
αi

− •
α0

E(0)
8

g−1 �g−1 = �g0 ⊕ �1,1 α−1 = − (
k + k̄

) · · · ◦
αi

− ◦
α0

− •
α−1

E(1)
8 ≡ E10

g−2 �g−2 = �g−1 ⊕ �1,1 α−2 = k − (
� + �̄

) · · · ◦
αi

− ◦
α0

− ◦
α−1

− •
α−2

E(2)
8 ≡ E11

λv
i = λ

f
i + niλ

v
0, λ

v
0 = k̄ − k + � + �̄

2
, λv−1 = −k, λv−2 = −� + �̄

2
, (2.3)

respectively, with i = 1, . . . , r . Using an inner product of Lorentzian type as defined
in (2.1), these weights satisfy the orthogonality relations

λoi · α j = δi j , i, j = −1, 0, 1, . . . , r , (2.4)

λv
i · α j = δi j , i, j = −2,−1, 0, 1, . . . , r , (2.5)

with αi being simple roots of the appropriate root spaces. The corresponding Weyl
vectors ρ, defined as the sum over all fundamental roots, are then obtained as [2]

ρo =
r∑

j=−1

λ j = ρ f + hk̄ − (1 + h)k, (2.6)

ρv =
r∑

j=−2

λ j = ρ f + hk̄ − (1 + h)k − (1 − h)
� + �̄

2
, (2.7)

respectively, with h denoting the Coxeter number and ρ f the Weyl vector of the finite
dimensional semisimple Lie algebra.

3 n-Extended root lattices, weight lattices andWeyl vectors

Let us now enlarge these systems further and define the extended algebras g−n with
root lattices comprised of the root lattice �g0 of the rank r semisimple Lie algebra g
extended by n copies of the self-dual Lorentzian lattice �1,1

�g−n = �g ⊕ �
1,1
1 ⊕ · · · ⊕ �1,1

n . (3.1)

Each of the root spaces �
1,1
i , i = 1, . . . , n is equipped with two null vectors ki and

k̄i with ki · ki = k̄i · k̄i = 0, ki · k̄i = 1 and two vectors ± (
ki + k̄i

)
of length 2. The

simple root systems then consist of the r simple roots αi of the semisimple Lie algebra
g, the modified affine root α0 and n-extended roots α−i , i = 1, . . . , n
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α(n) := {
α1, . . . , αr , α0 = k1 − θ, α−1 = − (

k1 + k̄1
)
, . . . , α− j

= k j−1 − (
k j + k̄ j

)}
, (3.2)

for j = 2, . . . , n. Using the orthogonality relation

λ
(n)
i · α

(n)
j = δi j , i, j = −n, 0, 1, . . . , r , (3.3)

together with λ
(n)
i = ∑r

j=−n K
−1
i j α

(n)
j , K−1

i j = λ
(n)
i · λ(n)

j , we construct the n + r + 1

fundamental weights λ
(n)
i of the n-extended weight lattice �g−n as

λ
(n)
i = λ

f
i + niλ

(n)
0 , i = 1, . . . , r , (3.4)

λ
(n)
0 = k̄1 − k1 + 1

n

n∑

i=2

[
ki + (n + 1 − i)k̄i

]
, (3.5)

λ
(n)
−1 = −k1, (3.6)

λ
(n)
−2 = −1

n

n∑

i=2

[
ki + (n + 1 − i)k̄i

]
, (3.7)

λ
(n)
−3 = 1

n
(n − 2)(k2 − k̄2) − 2

n

n∑

i=3

[
ki + (n + 1 − i)k̄i

]
, (3.8)

λ
(n)
−4 = 1

n
(n − 3)(k2 − k̄2 + k3 − 2k̄3) − 3

n

n∑

i=4

[
ki + (n + 1 − i)k̄i

]
, (3.9)

...

λ
(n)
−� = 1

n
(n + 1 − �)

�−1∑

i=2

[
ki + (1 − i)k̄i

]

+ (1 − �)

n

n∑

i=�

[
ki + (n + 1 − i)k̄i

]
, (3.10)

= (1 − �)

n

n∑

i=2

[
ki + (1 − i)k̄i

] +
�−1∑

i=2

[
ki + (1 − i)k̄i

]

+(1 − �)

n∑

i=�

k̄i , (3.11)

Summing up these weights, we derive the Weyl vector for the n-extended system
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ρ(n) =
r∑

j=−n

λ j

= ρ f + hk̄1 − (1 + h)k1 +
n∑

i=2

[(
h

n
+ n + 1 − 2i

2

)
ki

+ (n + 1 − i)(2h + n(1 − i))

2n
k̄i

]
. (3.12)

For n = 1 and n = 2, the expressions reduce to the previously known formulae in
(2.6) and (2.7), respectively.

Having found a generic expression for the Weyl vector ρ(n), we can now deter-
mine the generalisation of the Freudenthal–de Vries strange formula by computing its
square. For a semisimple Lie algebra g with rank r , it is well known to be, see, e.g.
[16,25] and references therein,

(
ρ f

)2 = h

12
dimg =h(h + 1)r

12
. (3.13)

Adirect calculationusing expression (3.12) yields thegeneralisation for then-extended
algebras

ρ(n) · ρ(n) = h(h + 1)r + n(n2 − 1)

12
− h(h + n)(1 + n)

n
, (3.14)

for n ≥ 1. For n = 1 this corresponds to the expression found in [21] for the over-
extended case.

4 SO(1, 2) and SO(3) principal subalgebras

As the class of Lorentzian Kac–Moody algebras is very large, several attempts have
been made in seeking for further properties that distinguish between different sub-
classes. One such property that has turned out to be very powerful when analysing
integrable systems based on finite or affine Kac–Moody algebras [26,27], as well as
the structure of Kac–Moody algebras themselves, is the feature of possessing a prin-
cipal SO(3)-subalgebra [28]. In terms of the generators in the Chevalley basis Hj ,
Ei , Fi , obeying the standard commutation relations [Hi , Hj ] = 0, [Ei , Fj ] = δi j Hi ,
[Hi , E j ] = Ki j E j , [Hi , Fj ] = −Ki j Fj with K denoting the Cartan matrix, the prin-
cipal SO(3)-generators

J3 =
r∑

i=1

Di Hi , J+ =
r∑

i=1

ni Ei , J− =
r∑

i=1

ni Fi , Di :=
r∑

j=1

K−1
j i , (4.1)
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satisfy
[
J+, J−

] = J3,
[
J3, J±

] = ±J±. The Hermiticity properties E†
i = Fi , H

†
i =

Hi are inherited by the generators J+ and J− as J †+ = J− when ni ∈ R. The SO(3)-
commutation relation

[
J+, J−

] = J3 is satisfied when ni = √
Di .

In the case of the Lorentzian Kac–Moody algebras, the analogue of the SO(3)-
principal subalgebra is a SO(1, 2)-principal subalgebra [21,24] with generators

Ĵ3 = −
r∑

i=1

D̂i Hi , Ĵ+ =
r∑

i=1

pi Ei , Ĵ− =
r∑

i=1

qi Fi , D̂i :=
r∑

j=1

K−1
j i , (4.2)

satisfying
[
Ĵ+, Ĵ−

]
= − Ĵ3,

[
Ĵ3, Ĵ±

]
= ± Ĵ± and being Hermitian when piqi =

|pi |2 = −D̂i . Thus, a necessary and sufficient condition for the existence of a SO(3)-
principal subalgebra or a SO(1, 2)-principal subalgebra is Di > 0 or D̂i < 0 for all
i , respectively.

We argue further that a necessary condition for an extended algebra g−n to possess
a SO(3)-principal subalgebra and a SO(1, 2)-principal subalgebra is that there exists
a k ∈ S = {−n, . . . , 0, 1, . . . , r} such that Dk = ∑r

j=−n K
−1
jk = 0. We may then

decompose the index set S as S̃ = S\{k} = S1 ∪ S2, such that Ki j = 0 for all
i ∈ S1, j ∈ S2 and Ki ′k 
= 0, K j ′k 
= 0 for two specific i ′ ∈ S1 and j ′ ∈ S2. Thus,
removing the node k from the connected Dynkin diagram g−n will decompose it into
two connected diagrams such that two generators indexed by i ∈ S1 and j ∈ S2 will
commute. Thus, when Di > 0 for i ∈ S1 and Dj < 0 for j ∈ S2 we can formulate two
commuting principal subalgebras with generators {J3, J±} and { Ĵ3, Ĵ±}. For instance,
we have

[
J3, Ĵ+

]
=

∑

i∈S1, j∈S2
Di

√
−D̂ j

[
Hi , E j

]

=
∑

i∈S1, j∈S2
Di

√
−D̂ j Ki j E j = 0, (4.3)

and similarly for the other generators. This commuting structure extends to the SO(3)
and SO(1, 2) Casimir operators

C = J3 J3 − J+ J− − J− J+, and Ĉ = Ĵ3 Ĵ3 − Ĵ+ Ĵ− − Ĵ− Ĵ+, (4.4)

respectively. So that we have SO(3) ⊕ SO(1, 2) with [C, Ĉ] = 0.
Computing the inner products of the generators in the adjoint representation, as

carried out, for instance, in [24], yields

(J3, J3) = ρ(n) · ρ(n) > 0, and (J±, J±) = ρ(n) · ρ(n) > 0, (4.5)

( Ĵ3, Ĵ3) = ρ(n) · ρ(n) < 0, and ( Ĵ±, Ĵ±) = −ρ(n) · ρ(n) > 0. (4.6)

Thus, identifying the signatures of ρ(n) · ρ(n) serves as a necessary condition for the
existence of the respective principal subalgebras. Using the generalised Freudenthal–
de Vries strange formula (3.14) for a given semisimple Lie algebra g with rank r , the
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Fig. 1 Maximum values of n for g−n with rank r to possess a SO(1, 2)-principal subalgebra from the
necessary condition ρ2 < 0 versus the necessary and sufficient condition Di < 0, ∀i

maximal value of nmax for g−n to possess a SO(1, 2)-principal subalgebras is easily
determined from the inequalities in (4.6). Using relation (3.14) with a given rank, we
compute for the exceptional semisimple Lie algebras

E6 : nmax = 23, E7 : nmax = 17, E8 : nmax = 14. (4.7)

For the Ar and Dr algebras we present the results in Fig. 1 for different values of r .
We observe from Fig. 1 that for Ar and Dr with r ≥ 24, no n-extended algebra

exists that possesses a SO(1, 2)-principal subalgebras. This agrees with the findings
in [3] for n = 1. For r < 24, such a possibility exists, but ρ2 < 0 implies it does not
exist when n > 12 and n > 16, for Ar and Dr , respectively.1 As the criterion (4.6)
is only necessary, but not sufficient, let us compute the values for D(n)

i to obtain the
more restrictive necessary and sufficient information.

5 Expansion coefficients of the diagonal principal subalgebra
generator

Having constructed the expressions for all fundamental weights and the Weyl vec-
tor, we can evaluate the expansion coefficients Di directly from the definition (4.1).
Focussing here on the case for which the finite semisimple part is simply laced, so that
all roots have length 2, the inverse Cartan matrix is symmetric and acquires a simple
form in terms of the fundamental weights λ

(n)
i as K−1

j i = λ
(n)
j · λ

(n)
i . Therefore, the

constants

1 For the over- and very-extended cases, our results differ mildly in one case from a typo in [21], where it

was stated that also the over-extended A(1)
16 possess a SO(1, 2)-principal subalgebras.
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Table 2 Kac labels, exponents and Coxeter number for the simply laced Lie algebras

Kac labels ni Exponents ei Coxeter number h

Ar 1, . . . , 1 1, 2, 3, . . . , r r + 1

Dr 1, 2, 2, . . . , 2, 1, 1 1, 3, 5, . . . , 2r − 5, 2r − 3, r − 1 2r − 2

E6 1, 2, 2, 3, 2, 1 1, 4, 5, 7, 8, 11 12

E7 2, 2, 3, 4, 3, 2, 1 1, 5, 7, 9, 11, 13, 17 18

E8 2, 3, 4, 6, 5, 4, 3, 2 1, 7, 11, 13, 17, 19, 23, 29 30

D(n)
k =

r∑

j=−n

K−1
k j = ρ(n) · λ

(n)
k , k = −n, . . . ,−1, 0, 1, . . . , r , (5.1)

can be computed either by using the generic expressions for the weight vectors (3.4)–
(3.11) and Weyl vectors (3.12) or by directly inverting the Cartan matrix as in (5.1).
From the generic expressions, we derive general formulae for the expansion coeffi-
cients

D(n)
i = D f

i + ni D
(n)
0 , and

D(n)
− j = (n − j + 1)

(
j − 1

2
− h

n

)
, i = 1, . . . , r; j = 0, . . . , n, (5.2)

for the semisimple Lie algebraic and extended part, respectively. We abbreviated
D f
i := ρ f · λ f

i . For the over-extended and very-extended algebras, the expressions in
(5.2) become, for instance,

Do−1 = −h, Do
0 = −(2h + 1), Do

i = D f
i + ni D

o
0, (5.3)

Dv−2 = 1

2
(1 − h), Dv−1 = −h,

Dv
0 = −3

2
(h + 1), Dv

i = D f
i + ni D

v
0 . (5.4)

The fundamental Weyl vectors ρ f , Coxeter numbers h and Kac labels ni are algebra
specific and well known, see, e.g. [29]. We list them here for convenience in Table 2.
Also the Weyl vectors are known in these cases in terms of the simple roots

Ar : ρ f =
r∑

i=1

i

2
(r − i + 1)αi , (5.5)

Dr : ρ f =
r−2∑

i=1

[
ir − i(i + 1)

2

]
αi + r(r − 1)

4
(αr−1 + αr ), (5.6)

E6 : ρ f = 8α1 + 11α2 + 15α3 + 21α4 + 15α5 + 8α6, (5.7)
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E7 : ρ f = 1

2
(34α1 + 49α2 + 66α3 + 96α4

+75α5 + 52α6 + 27α7), (5.8)

E8 : ρ f = 46α1 + 68α2 + 91α3 + 135α4 + 110α5

+84α6 + 57α7 + 29α8. (5.9)

Hence, we compute the terms D f
i in the general expressions for the expansion coef-

ficients (5.2) as

Ar : D f
i = i

2
(r − i + 1), i = 1, . . . , r

Dr : D f
r−1 = D f

r = r(r − 1)

4
, D f

j = jr − j( j + 1)

2
, j = 1, . . . , r − 2

E6 : D f
1 = 8, D f

2 = 11, D f
3 = 15, D f

4 = 21, D f
5 = 15, D f

6 = 8,

E7 : D f
1 = 17, D f

2 = 49

2
, D f

3 = 33, D f
4 = 48,

D f
5 = 75

2
, D f

6 = 26, D f
7 = 27

2
,

E8 : D f
1 = 46, D f

2 = 68, D f
3 = 91, D f

4 = 135, D f
5 = 110,

D f
6 = 84, D f

7 = 57, D f
8 = 29. (5.10)

Evidently, all constants D f
i for all semisimple Lie algebras are positive. For the over-

extended algebras, we obtain therefore

A(1)
r : Do−1 = −(r + 1), Do

0 = −(2r + 3),

Do
i = i

2
(r − i + 1) − (2r + 3) (5.11)

D(1)
r : Do−1 = 2 − 2r , Do

0 = 3 − 4r , Do
1 = 2 − 3r ,

Do
j = ( j − 8)r − j( j + 1)

2
+ 6, (5.12)

Do
r−1 = Do

r = r(r + 1)

4
+ 3 − 4r ,

E (1)
6 : Do−1 = −12, Do

0 = −25, Do
1 = −17, Do

2 = −89,

Do
3 = −110, Do

4 = −154, (5.13)

Do
5 = −185, Do

6 = −267,

E (1)
7 : Do−1 = −18, Do

0 = −37, Do
1 = −57,

Do
2 = −99

2
, Do

3 = −78, Do
4 = −100, (5.14)

Do
5 = −147

2
, Do

6 = −48, Do
7 = −47

2
,

E (1)
8 : Do−1 = −30, Do

0 = −61, Do
1 = −15,
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Do
2 = −359, Do

3 = −580, Do
4 = −658,

Do
5 = −927, Do

6 = −1075, Do
7 = −1346, Do

8 = −1740, (5.15)

with i = 1, . . . , n, j = 2, . . . , n − 2 and for the very-extended algebras we compute

A(2)
r : Dv−2 = − r

2
, Dv−1 = −(r + 1), Dv

0 = −3

2
(r + 2),

Dv
i = r

2
(i − 3) + i

2
(1 − i) − 3, (5.16)

D(2)
r : Dv−2 = 3

2
− r , Dv−1 = 2 − 2r ,

Dv
0 = 3

2
− 3r , Dv

1 = 1

2
− 2r ,

Dv
j = ( j − 6)r − j( j + 1)

2
+ 3,

Dr−1 = Dr = r(r + 1)

4
+ 3

2
− 3r , (5.17)

E (2)
6 : Dv−2 = −11

2
, Dv−1 = −12, Dv

0 = −39

2
,

Dv
1 = Dv

6 = −23

2
, Dv

2 = −28,

Dv
3 = Dv

5 = −24, Dv
4 = −75

2
, (5.18)

E (2)
7 : Dv−2 = −17

2
, Dv−1 = −18, Dv

0 = −57

2
, Dv

1 = −40,

Dv
2 = −65

2
, Dv

3 = −105

2
,

Dv
4 = −66, Dv

5 = −48, Dv
6 = −31, Dv

7 = −15, (5.19)

E (2)
8 : Dv−2 = −29

2
, Dv−1 = −30, Dv

0 = −93

2
,

Dv
1 = −47, Dv

2 = −143

2
, Dv

3 = −95,

Dv
4 = −144, Dv

5 = −245

2
x, Dv

6 = −102,

Dv
7 = −165

2
, Dv

8 = −64. (5.20)

with i = 1, . . . , n, j = 2, . . . , n − 2.
From these expressions, we find directly the maximal value of n for g−n with rank r

to possess a SO(1, 2)-principal subalgebra from the necessary and sufficient condition
Di < 0, ∀i . For the exceptional Lie algebras, we obtain

E6 : nmax = 5, E7 : nmax = 6, E8 : nmax = 7. (5.21)
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For Ar and Dr , the results are reported in Fig. 1. Comparing these exact values to those
resulting from the analysis of the necessary condition ρ2 < 0 shows consistency, but
also that the latter values are much more restrictive.

6 Direct decomposition of n-extended Lorentzian Kac–Moody
algebras

As argued above, when a constant D(n)
k vanishes we can potentially, simultaneously

find a SO(1, 2)-principal subalgebras and a SO(3)-principal subalgebra. This requires,
however, that the D(n)

i for i belonging to the two separate index sets S1 and S2 are of
definite sign. If that is not the case, the algebra can be decomposed further. To identify
when either of these scenarios occurs, we can set our solutions in (5.2) to zero and
solve for n, i, j , with the only meaningful solutions being those for which n, i ∈ N

and i ≤ n, j ≤ n.
For the extended parts of the Dynkin diagrams, we easily find from (5.2 )

D(n)
− j = 0, for j = 1 + 2h

n
. (6.1)

For a given value of n, there can only be a finite number of solutions due to the
restriction j ≤ n. Using the Coxeter numbers from Table 2, we find the solutions

A(n)
r : D(n)

i = 0 for

(n, r , j) = (3, 2, 3), (4, 1, 2), (4, 3, 2), (4, 5, 4), (5, 4, 3), . . . (6.2)

D(n)
r : D(n)

i = 0 for

(n, r , j) = (4, 4, 4), (5, 6, 5), (6, 4, 3), (6, 7, 5), (7, 8, 5), . . . (6.3)

and for the exceptional Lie algebras the only possible solutions are

E (n)
6 = E ( j−1)

6 
 L 
 An− j for (n, j) = (6, 5), (8, 4), (12, 3), (24, 2), (6.4)

E (n)
7 = E ( j−1)

7 
 L 
 An− j for (n, j) = (9, 5), (12, 4), (18, 3), (36, 2),(6.5)

E (n)
8 = E ( j−1)

8 
 L 
 An− j for

(n, j) = (10, 7), (12, 6), (15, 5), (20, 4), (30, 3), (60, 2). (6.6)

We denote the Lorentzian root corresponding to the node that needs to be deleted by
L .

For the parts of the Dynkin diagrams corresponding to semisimple Lie algebras
also the expressions for ρ f need to be treated case-by-case. We find

A(n)
r : D(n)

i = 0 for i = r + 1

2
± 1

2

√

r2 − 6r − 4n − 11 − 8(1 + r)

n
, (6.7)

D(n)
r : D(n)

i = 0 for i = r − 1

2
±

√

r2 − 9r − 2n + 25

4
+ 8(1 − r)

n
. (6.8)
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Table 3 Decomposition of the n-extended algebras A(n)
r

A(1)
16 = Â(1)

13 
 L2 
 A2 A(1)
18 = Â(1)

11 
 L2 
 A6 A(1)
19 = Â(1)

11 
 L2 
 A16

A(2)
12 = Â(2)

11 
 L2 A(2)
13 = Â(2)

9 
 L2 
 A3 A(2)
18 = Â(2)

7 
 L2 
 A10

A(3)
12 = Â(3)

11 
 L A(3)
14 = Â(3)

7 
 L2 
 A6 A(3)
38 = E(1)

6 
 L2 
 A32

A(4)
11 = Â(4)

9 
 L2 
 A1 A(4)
13 = Â(4)

7 
 L2 
 A5 A(4)
27 = E(2)

6 
 L2 
 A21

A(5)
24 = E(3)

6 
 L2 
 A18 A(6)
11 = Â(6)

9 
 L2 
 A1 A(6)
23 = E(4)

6 
 L2 
 A17

A(7)
13 = Â(7)

7 
 L2 
 A5 A(8)
11 = Â(8)

11 
 L A(8)
23 = E(6)

6 
 L2 
 A17

A(10)
14 = Â(10)

7 
 L2 
 A6 A(10)
24 = E(8)

6 
 L2 
 A18 A(13)
12 = Â(13)

11 
 L2

A(14)
13 = Â(14)

9 
 L2 
 A3 A(14)
27 = E(12)

6 
 L2 
 A21 A(19)
18 = Â(19)

7 
 L2 
 A10

A(26)
38 = E(24)

6 
 L2 
 A32 A(34)
16 = Â(34)

13 
 L2 
 A2 A(38)
18 = Â(38)

11 
 L2 
 A6

A(54)
26 = Â(54)

9 
 L2 
 A16

For the over- and very-extended algebras, the only solutions are

A(1)
r : r = 16, i = 7, 10; r = 18, i = 6, 13; r = 26, j = 5, 22, (6.9)

A(2)
r : r = 12, i = 6, 7; r = 13, i = 5, 9; r = 18, j = 4, 15,

D(1)
r : r = 17, j = 13; r = 18, j = 12; r = 20, j = 11 ; r = 39, j = 9,

D(2)
r : r = 13, j = 10; r = 14, j = 9; r = 25, j = 7. (6.10)

There are no solutions for the E-series on this part of theDynkindiagram.The complete
list of solution with corresponding decomposition is presented in Tables 3 and 4. We
observe that in the reduced part, we also obtain some algebras that are not of the
n-extended form as described above. To refer to them, we introduce the notation
Â(n,m)
r labelling an Ar -Dynkin diagram with n roots successively attached to the

mth node in form of an An-algebra. The special case of the n-extended symmetric
Dynkin diagram with n roots attached to the middle node of Ar we denote by Â(n)

r .
Some of the Â(n,m)

r -algebras are equivalent to the n-extended versions of the E-series.
We have Â(n+2,3)

5 ≡ E (n−2)
6 , Â(1,4)

n ≡ E (n−7)
7 and Â(1,3)

n ≡ E (n−8)
8 . We also have

the symmetries Â(n,m)
r = Â(n,r+1−m)

r = Â(r+1−m,m)
n+m = Â(m−1,m)

r+n+1−m . In the resulting
decomposition, we also encounter algebras that decompose further by possessing
Lorentzian roots on their extended legs of the corresponding Dynkin diagrams. We
mark them in bold in Tables 3 and 4. The precise way in which they decompose is
reported below in Tables 6 and 7.

6.1 Reduced system versus n-extended versions

We shall now discuss how to express quantities, such as roots, weights, Weyl vectors
and determinants of the Cartan matrix, related to the full n-extended lattices in terms
of those obtained from the reduced versions and vice versa. We follow here largely
the reasoning presented in [21], however, with the key difference that the node to be
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1702 A. Fring, S. Whittington

Table 4 Decomposition of the n-extended algebras D(n)
r

D(1)
17 = E(5)

8 
 L 
 D4 D(1)
18 = E(4)

8 
 L 
 D6 D(1)
20 = E(3)

8 
 L 
 D9

D(1)
39 = E(1)

8 
 L 
 D30 D(2)
13 = E(4)

7 
 L 
 A3 D(2)
14 = E(3)

7 
 L 
 D5

D(2)
25 = E(1)

7 
 L 
 D18 D(3)
13 = Â(1,5)

10 
 L 
 D5 D(3)
16 = Â(1,5)

9 
 L 
 D9

D(4)
11 = Â(1,6)

13 
 L2 D(4)
12 = Â(1,6)

11 
 L 
 D4 D(4)
14 = Â(1,6)

10 
 L 
 D7

D(4)
21 = E(2)

7 
 L 
 D15 D(5)
11 = Â(1,7)

13 
 L 
 A21 D(5)
81 = E(1)

8 
 L 
 D76

D(6)
13 = Â(1,5)

12 
 L 
 D6 D(6)
52 = E(2)

8 
 L 
 D47 D(7)
43 = E(3)

8 
 L 
 D38

D(8)
11 = Â(1,7)

16 
 L 
 A21 D(8)
13 = Â(1,5)

14 
 L 
 D6 D(8)
17 = E(6)

7 
 L 
 D11

D(8)
39 = E(4)

8 
 L 
 D34 D(9)
37 = E(5)

8 
 L 
 D32 D(10)
11 = Â(1,8)

19 
 L2

D(10)
36 = E(6)

8 
 L 
 D31 D(11)
12 = Â(1,6)

18 
 L 
 D4 D(13)
14 = Â(1,5)

19 
 L 
 D7

D(14)
36 = E(10)

8 
 L 
 D31 D(16)
13 = Â(1,6)

23 
 L 
 D5 D(16)
37 = E(12)

8 
 L 
 D32

D(19)
39 = E(15)

8 
 L 
 D34 D(20)
16 = Â(1,5)

26 
 L 
 D9 D(20)
21 = E(18)

7 
 L 
 D15

D(24)
13 = Â(1,8)

33 
 L 
 A3 D(24)
43 = E(20)

8 
 L 
 D38 D(26)
14 = Â(1,7)

34 
 L 
 D5

D(34)
52 = E(30)

8 
 L 
 D47 D(48)
25 = Â(1,5)

54 
 L 
 D18 D(64)
17 = Â(1,11)

76 
 L 
 D4

D(64)
81 = E(60)

8 
 L 
 D76 D(68)
18 = Â(1,10)

79 
 L 
 D6 D(76)
20 = Â(1,9)

86 
 L 
 D9

D(152)
39 = Â(1,7)

160 
 L 
 D30

removed from the full n-extended Dynkin diagram is not identified as the one that
decomposes the system into finite and affine diagrams, but rather the node � for which
D(n)

� = 0. The former node might in fact not even exist for the cases considered here.
Moreover, these two types of nodes are always different. Our construction applies to
all n-extended lattices.

We denote roots and weights related to the n-extended lattice as the above by αi , λi
for i ∈ S = {−n, . . . , 0, 1, . . . , r} and weights and roots related to the reduced system
as α̃i , λ̃i for i ∈ S̃ = S\{�} = S1∪ S2. The root related to the node � can then be
expressed as

α� = x − ν, with ν := −
∑

i∈S̃ K�i λ̃i , (6.11)

where the vector x is defined by the orthogonality properties x · α̃i = x · ν = 0.
Consequently, we have K�� = α2

� = 2 = ν2 + x2 and the fundamental weights can
be expressed as

λ� = x

x2
, λi = λ̃i +

(
ν · λ̃i

)
λ�. (6.12)

Summing up the fundamental weights to construct the Weyl vector then yields a
relation between the Weyl vectors in the two respective systems

ρ =
∑

i∈S
λi = λ� +

∑

i∈S̃
λi = ρ̃ + (1 + ν · ρ̃) λ�. (6.13)
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Next, we relate the determinants of theCartanmatrices for the two systems. Employing
Cauchy’s expansion theorem for bordered matrices, see, e.g. [30], we have

det K = K�� det K̃ −
∑

i, j∈S̃
K�i (adjK̃ )i j K j�, (6.14)

where adjK̃ denotes the adjugate matrix of K̃ , i.e. the transpose of its cofactor matrix.
Recalling that (adjK̃ )i j = K̃−1

i j det K̃ , K̃−1
i j = λi · λ j and K�� = 2, relation (6.14)

can be re-expressed as

det K =
(
2 − ν2

)
det K̃ . (6.15)

To illustrate the working of this formula and at the same time to check our expressions
from above for consistency, we present explicitly two examples from Tables 3 and 4.

Example D(1)
17 = E (5)

8 
L
D4 :With ν = λ
D4
1 +λ

E (5)
8−5 ,

(
λ
D4
1

)2 = 1,

(
λ
E (5)
8−5

)2

= 4/5,

we compute ν2 = 9/5. Furthermore, we calculate the determinants det K
D(1)
17

= −4,

det K
E (5)
8

= −5, det KD4 = 4 and hence confirm formula (6.15).

Example D(2)
25 = E (1)

7 
 L 
D18 :With ν = λ
D8
1 +λ

E (1)
7−1 ,

(
λ
D8
1

)2 = 1,

(
λ
E (1)
7−1

)2

= 0,

we compute ν2 = 1. We also calculate the determinants det K
D(2)
25

= −8, det K
E (1)
7

=
−2, det KD18 = 4 and hence confirming once more formula (6.15).

6.2 Decomposition of the very-extendedD25-algebra aka k28

Let us now elaborate further on the last example. As is clear from the above, the
construction of extended Dynkin diagrams, or equivalently the corresponding Cartan
matrices, of Lorentzian Kac–Moody algebras can be carried out in many alternative
ways. As a detailed example, we present now the case of the very-extended D25-
diagram, that is the D(2)

25 -algebra in our notation. It has the following Dynkin diagram:

•

��

α−2•�� α−1•�� α0

•α1
��
��•

α2
•
α3

•
α4

•
α5

◦
α6

•
α7

•
α8

•
α9

•
α10

•
α11

•
α12

•
α13

•
α14

•
α15

•
α16

•
α17

•
α18

•
α19

•
α20

•
α21

•
α22

•��
��
α23

•α24
•
α25

D(2)
25 -Dynkin diagram on the root lattice for D25 ⊕ �1,1 ⊕ �1,1

The algebra belongs to the special class of hyperbolic Kac–Moody algebras singled
out by Gaberdiel et al. [21], which posses at least one node that when removed leaves
a set of disconnected Dynkin diagrams of finite type with at most one being of affine
type. Indeed, when removing the node corresponding to the root labelled by α6, we are
left with a disconnected diagram of which one corresponds to the finite dimensional
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1704 A. Fring, S. Whittington

D19-algebra and the other to the affine E (0)
7 -algebra. The corresponding root space is

constructed as indicated in (3.2).
Here,we are especially interested in the construction of the reducedDynkin diagram

corresponding to E (2)
7 
 D18. Instead of representation (3.2), we may also represent

the roots as

β1 := α8 + �, βi := αi+7, i = 2, . . . , 18, (6.16)

γi := αi , i = 1, . . . , 4, γ5 := α0, γ6 := α−1, γ7 := α−2, γ0 := α5 − k̄,

(6.17)

γ−1 := −(k + k̄) − �, γ−2 := −(� + �̄). (6.18)

Using the standard rules for the construction of Dynkin diagrams, we obtain the same
diagram as above:

•

��

γ7•�� γ6•�� γ5

•γ1
��
��•

γ2
•
γ3

•
γ4

•
γ0

•
γ−1

•
γ−2

•
β1

•
β2

•
β3

•
β4

•
β5

•
β6

•
β7

•
β8

•
β9

•
β10

•
β11

•
β12

•
β13

•
β14

•
β15

•��
��
β16

•β17

•
β18

E (2)
7 
 D18-Dynkin diagram on the root lattice for E (0)

7 ⊕ �1,1 ⊕ �1,1 ⊕ D18

The construction differs form the previous one in the sense that we have not used the
standard representation for the over-extended and very-extended root, but have now
linked the very-extended root γ−2 of E (2)

7 with a simple root β1 of the semisimple
Lie algebra D18. Deleting now �̄ has the effect that the two links connecting γ−2 are
severed so that this algebra decomposes into E (1)

7 ⊕�1,1 ⊕ D18. Thus, γ−2 = −� has
become a separate disconnected root of zero length γ−2 · γ−2 = �2 = 0. In addition,
we obtain two separate disconnected Dynkin diagrams for the over-extended algebra
E (1)
7 and the semisimple Lie algebra D18:

•γ7•�� γ6•�� γ5

•γ1
��
��•

γ2
•
γ3

•
γ4

•
γ0

•
γ−1

•−� •
β1

•
β2

•
β3

•
β4

•
β5

•
β6

•
β7

•
β8

•
β9

•
β10

•
β11

•
β12

•
β13

•
β14

•
β15

•��
��
β16

•β17

•
β18

Reduced Dynkin diagram of D(2)
25 = E (1)

7 
 L 
 D18

We also notice that the root α� = α7 for which D� = 0 is different from the root
α6 that need to be chosen for the very-extended root lattice to reduce to an affine and
a finite Kac Moody algebra.

6.3 Examples for double and triple decompositions

As indicated in Tables 3 and 4 above, there exist also n-extended algebras for which
there are two or even three nodes, say �, �′ and �′′ , for which D� = D�′ = D�′′ = 0.
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We present here two examples of Dynkin diagrams that decompose on the semisimple
part as well as on the extended part. For instance, we have a triple decomposition for

E (8)
6 
 L2 
 A18

↗ ↘
A(10)
24 E (3)

6 
 L 
 A4 
 L2 
 A18
↘ ↗

A(5)
24 
 L 
 A4

for which the final disconnected Dynkin diagram is:

����������������

����������������

• •
α1 α2

•
α3

•
α4

•
α5

•
α6

•
α7

•
α8

•
α9

•
α10

•
α11

•
α12

•
α13

•
α14

•
α15

•
α16

•
α17

•
α18

•
α19

•
α20

•
α21

L •

•

•
•
•
•

α22α23α24
• •

•
•
•
•
•

E (3)
6

•

A4

α0

α−1

α−2

α−3

α−4

α−5

α−6

α−7

α−8

α−9

α−10

Reduced Dynkin diagram of A(10)
24 = E (3)

6 
 L 
 A4 
 L2 
 A18

Similarly, D(14)
36 doubly decomposes as

D(10)
36 
 L 
 A3

↗ ↘
D(14)
36 A3 
 L 
 E (6)

6 
 L 
 D31
↘ ↗

E (10)
8 
 L 
 D31

Further examples can be obtained from Tables 3 and 4 for the cases with bold entries.

7 Roots, weights, Weyl vectors and decomposition of the
Â(n,m)
r -algebras

Since the Â(n,m)
r -algebras occur naturally in the decomposition of the n-extended

Lorentzian Kac–Moody algebras, we shall now discuss them in further detail, with
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particular emphasis on their decomposition. The corresponding Dynkin diagrams are
equivalent to those arising in the description of the so-called Tp,q,r -singularities [31],

with the identification Â(r ,p+1)
p+q+1 ≡ Tp,q,r . We represent the simple Â(n,m)

r -roots in
terms of the r simple roots αi of the semisimple Lie algebra g and the Lorentzian
roots, with themth rootmodified similarly as the affine root for the n-extended algebras
αm → αm + k1. Thus, the r + n simple Â(n,m)

r -roots are represented as

α̂ = {α1, . . . , αm−1, αm + k1, αm+1, . . . , αr , α−1

= −k1 − k̄1, . . . , α− j = k j−1 − k j − k̄ j
}
, (7.1)

with j = 2, . . . , n. Using the orthogonality relation

λ
(n,m)
i · α̂ j = δi j , i, j = −n, . . . ,−1, 1, . . . , r , (7.2)

together with λ
(n,m)
i = ∑n+r

j=1 K̂
−1
i j α̂ j , K̂

−1
i j = λ

(n,m)
i · λ

(n,m)
i , we can construct the

n+ r fundamental weights. We shall focus here on the case for which the extension is
attached onto the middle node Â(n,�+1)

r=2�+1, so that m = h/2, and refer to them as Â(n)
r .

We find in this case the fundamental weights

λ̂
(n)
i = λ

f
i + 2n

nh − 4(n + 1)
min(i, h − i)

(
λ

(n)
0 − λ

f
h/2

)
, i = 1, . . . , r , (7.3)

λ̂
(n)
− j = λ

(n)
− j + 4(n − j + 1)

nh − 4(n + 1)

(
λ

(n)
0 − λ

f
h/2

)
, j = 1, . . . , n, (7.4)

where λ
f
i are the fundamental weights of Ar and λ

(n)
0 , λ(n)

− j are fundamental weights
for the n-extended Lorentzian Kac–Moody algebras as determined above in equations
( 3.5), (3.11). The Weyl vector results therefore to

ρ̂(n) =
r∑

j=−n, j 
=0

λ̂
(n)
i = ρ(n) − hλ

(n)
0 + n(h2 + 4n + 4)

2n(h − 4) − 8

(
λ

(n)
0 − λ

f
m

)
. (7.5)

Next, we compute the constants

D̂(n)
i = ρ̂(n) · λ̂

(n)
i = n(4 + 4n + h2)

16 + 4n(4 − h)
min(i, h − i) + i

2
(h − i),

i = 1, . . . , r , (7.6)

D̂(n)
− j = ρ̂(n) · λ̂

(n)
− j = ( j − n − 1)[h2 + 4 j(1 + n) + nh(1 − j)]

2n(h − 4) − 8
,

j = 1, . . . , n. (7.7)

123



n-Extended Lorentzian Kac–Moody algebras 1707

Table 5 Decomposition of the algebras A(n)
r on the Ar -leg of the Dynkin diagram

Â(2)
13 = Â(2)

11 
 L2 Â(4)
13 = Â(4)

9 
 L2 
 A21 Â(6)
13 = Â(6)

9 
 L2 
 A21

Â(13)
13 = Â(13)

11 
 L2 Â(2)
17 = Â(2)

9 
 L2 
 A23 Â(14)
17 = Â(14)

9 
 L2 
 A23

Â(1)
19 = Â(1)

13 
 L2 
 A22 Â(4)
19 = Â(4)

7 
 L2 
 A25 Â(7)
19 = Â(7)

7 
 L2 
 A25

Â(34)
19 = Â(34)

13 
 L2 
 A22 Â(3)
21 = Â(3)

7 
 L2 
 A26 Â(10)
21 = Â(10)

7 
 L2 
 A26

Â(1)
25 = Â(1)

11 
 L2 
 A26 Â(38)
25 = Â(38)

11 
 L2 
 A26 Â(2)
29 = Â(2)

7 
 L2 
 A210

Â(19)
29 = Â(19)

7 
 L2 
 A210 Â(6)
41 = E(4)

6 
 L2 
 A217 Â(8)
41 = E(6)

6 
 L2 
 A217

Â(1)
43 = Â(1)

9 
 L2 
 A216 Â(5)
43 = E(3)

6 
 L2 
 A218 Â(54)
43 = Â(54)

7 
 L2 
 A216

Â(10)
43 = E(8)

6 
 L2 
 A218 Â(4)
49 = E(2)

6 
 L2 
 A221 Â(14)
49 = E(12)

6 
 L2 
 A221

Â(3)
71 = E(1)

6 
 L2 
 A232 Â(26)
71 = E(24)

6 
 L2 
 A232

Table 6 Decomposition of the algebras A(n)
r on the extended leg of the Dynkin diagram

Â(7)
7 = Â(4)

7 
 L 
 A2 Â(10)
7 = Â(3)

7 
 L 
 A6 Â(19)
7 = Â(2)

7 
 L 
 A16

Â(6)
9 = Â(4)

9 
 L 
 A1 Â(14)
9 = Â(2)

9 
 L 
 A11 Â(54)
9 = Â(1)

9 
 L 
 A52

Â(8)
11 = Â(3)

11 
 L 
 A3 Â(13)
11 = Â(2)

11 
 L 
 A10 Â(38)
11 = Â(1)

11 
 L 
 A36

Â(6)
13 = Â(4)

13 
 L 
 A1 Â(13)
13 = Â(2)

13 
 L 
 A10 Â(34)
13 = Â(1)

13 
 L 
 A32

Â(33)
15 = Â(1)

15 
 L 
 A31 Â(14)
17 = Â(2)

17 
 L 
 A11 Â(7)
19 = Â(4)

19 
 L 
 A2

Â(34)
19 = Â(4)

19 
 L 
 A2 Â(10)
21 = Â(3)

21 
 L 
 A6 Â(38)
25 = Â(1)

25 
 L 
 A36

Â(19)
29 = Â(2)

29 
 L 
 A16 Â(13)
31 = Â(3)

31 
 L 
 A9 Â(43)
31 = Â(1)

31 
 L 
 A41

Â(8)
41 = Â(6)

41 
 L 
 A1 Â(10)
43 = Â(5)

43 
 L 
 A4 Â(54)
43 = Â(1)

43 
 L 
 A52

Â(14)
49 = Â(4)

49 
 L 
 A9 Â(26)
71 = Â(3)

71 
 L 
 A22 Â(89)
79 = Â(1)

79 
 L 
 A87

Â(13)
111 = Â(9)

111 
 L 
 A3 Â(19)
127 = Â(7)

127 
 L 
 A11 Â(49)
239 = Â(5)

239 
 L 
 A43

The algebras decompose, for the same reasons as previously argued for the n-extended
algebras ,when the constants D̂(n) vanish. We determine

D̂(n)
i = 0, for i = n(4n + 4 + h2)

2n(h − 4) − 8
, h − n(4n + 4 + h2)

2n(h − 4) − 8
, (7.8)

D̂(n)
− j = 0, for j = h(h + n)

n(h − 4) − 4
, (7.9)

Thus, the only meaningful solutions, i.e. those for which i,∈ N, i ≤ r , to (7.8) give
rise to the decompositions on the leg of the Dynkin diagram corresponding to the
Ar -diagram as listed in Table 5.
On the extended leg of the Dynkin diagram, we find with j ∈ N, j ≤ n, the solutions
to (7.8) as reported in Table 6.

Finally, we consider the Â(n,m)
r -algebras in general. We will not present here a full

discussion of the weight lattices, the Weyl vectors and the constants D̂(n,m)
i as for
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Table 7 Decomposition of the algebras Â(n,m)
r that occur in Table 4

Â(1,5)
14 = Â(1,5)

12 
 L 
 A1 Â(1,7)
16 = Â(1)

13 
 L 
 A2 Â(1,8)
19 = Â(1,6)

13 
 L 
 A5

Â(1,6)
18 = Â(1)

11 
 L 
 A6 Â(1,5)
19 = Â(1,5)

10 
 L 
 A8 Â(1,6)
23 = Â(1,5)

10 
 L 
 A12

Â(1,5)
26 = Â(1)

9 
 L 
 A16 Â(1,8)
33 = E(4)

7 
 L 
 A21 Â(1,7)
34 = E(3)

7 
 L 
 A23

Â(1,5)
54 = E(1)

7 
 L 
 A45 Â(1,11)
76 = E(5)

8 
 L 
 A62 Â(1,10)
79 = E(4)

8 
 L 
 A66

Â(1,9)
86 = E(3)

8 
 L 
 A74 Â(1,7)
160 = E(2)

8 
 L 
 A150

the special Â(n)
r -case, but only list the decompositions of those cases that appear in

Table 4. Our results are reported in Table 7.
Â(n,m)
r -algebras that appear in Table 4 and are not reported in Table 7 do not decom-

pose. Thus, similarly as discussed in Sect. 6.3, we also obtain double decompositions
involving these type of algebras. For instance, we have

Â(1,7)
34 
 L 
 D5

↗ ↘
D(26)
14 A23 
 L 
 E (3)

7 
 L 
 D5
↘ ↗

D(2)
14 
 L 
 A23

as seen from Tables 4, 7 and (6.3).

8 Conclusions

We defined and investigated a new class of Kac–Moody algebras, referred to as
n-extended Lorentzian Kac–Moody algebras g−n . For the corresponding Dynkin dia-
grams, we constructed the associated root and weight lattices with generic expressions
for all simple roots α

(n)
i and fundamental weights λ

(n)
i . The latter were used to derive

closed expressions for the Weyl vectors ρ(n) for any value of n. The signatures of the
product ρ(n) · ρ(n), that is the generalisation of the Freudenthal–de Vries strange for-
mula, led to a necessary condition for the n-extended Lorentzian Kac–Moody algebras
to possess a SO(1, 2)-principal subalgebra. From the inner products of theWeyl vector
ρ(n) and the fundamental weights λ

(n)
i , we compute the expansion coefficients D(n)

i for
the J3-generator of the principal SO(1, 2) or SO(3) subalgebra. When these constants
vanish, the decomposition the corresponding Dynkin diagram can be reduced. For the
reduced diagrams, we analyse in detail whether Di > 0 or D̂i < 0 for all i , which
constitutes a necessary and sufficient condition for the existence of a SO(3)-principal
subalgebra or a SO(1, 2)-principal subalgebra, respectively. We derive explicit formu-
lae augmented by examples that allow to express quantities related to the n-extended
systems in terms of the reduced counterparts and vice versa. We provide complete
lists for all decompositions of the n-extended Lorentzian Kac–Moody algebras g−n .
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A similarly detailed analysis is presented for the A(n)
r -algebras, but for Â(n,m)

r 
= A(n)
r

we only report the decomposition for the cases appearing in the decomposition of g−n .
Besides the aforementioned applications in string theory, one may also apply the

constructions here in the context of classical and quantum integrable systems that are
formulated in terms of roots, weights or even directly in terms of principle subalgebras,
such as Toda theories [26] and Calogero–Moser–Sutherland systems. Even though it
was found that for some of the Toda theories based on Lorentzian root systems do not
pass the Painlevé test [32], and are therefore not integrable, the constructions presented
here suggest that they contain some integrable components and hence are candidates
for a systematic study of nonintegrable quantum field theories [33].
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