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Nested quantum annealing correction
Walter Vinci1,2,3, Tameem Albash2,3,4 and Daniel A Lidar1,2,3,5

We present a general error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an
arbitrarily large number of physical qubits. Given any Ising model optimization problem, the encoding replaces each logical qubit
by a complete graph of degree C, representing the distance of the error-correcting code. A subsequent minor-embedding step then
implements the encoding on the underlying hardware graph of the quantum annealer. We demonstrate experimentally that the
performance of a D-Wave Two quantum annealing device improves as C grows. We show that the performance improvement can
be interpreted as arising from an effective increase in the energy scale of the problem Hamiltonian or, equivalently, an effective
reduction in the temperature at which the device operates. The number C thus allows us to control the amount of protection
against thermal and control errors, and, in particular, to trade qubits for a lower effective temperature that scales as C− η, with η⩽ 2.
This effective temperature reduction is an important step towards scalable quantum annealing.
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INTRODUCTION
Quantum annealing (QA) attempts to exploit quantum
fluctuations to solve computational problems faster than it is
possible with classical computers.1–7 As an approach designed
to solve optimisation problems, QA is a special case of adiabatic
quantum computation (AQC),8 a universal model of quantum
computing.9–12 In AQC, a system is designed to follow the
instantaneous ground state of a time-dependent Hamiltonian
whose final ground state encodes the solution to the problem of
interest. This results in a certain amount of stability, as the system
can thermally relax to the ground state after an error, as well as
resilience to errors, as the presence of a finite energy gap
suppresses thermal and dynamical excitations.13–18

Despite this inherent robustness to certain forms of noise, AQC
requires error correction to ensure scalability, just like any
other form of quantum information processing.19 Various
error-correction proposals for AQC and QA have been
made,20–33 but an accuracy-threshold theorem for AQC is not
yet known, unlike in the circuit model (e.g., ref. 34). A direct AQC
simulation of a fault-tolerant quantum circuit leads to many-body
(high weight) operators that are difficult to implement23,24 or
myriad other problems.12 Nevertheless, a scalable method to
reduce the effective temperature would go a long way towards
approaching the ideal of closed-system AQC, where quantum
speedups are known to be possible.9,35–37

Motivated by the availability of commercial QA devices
featuring hundreds of qubits,38–41 we focus on error correction
for QA. There is a consensus that these devices are significantly
and adversely affected by decoherence, noise and control
errors,42–49 which makes them particularly interesting for the
study of tailored, practical error-correction techniques. Such
techniques, known as quantum annealing correction (QAC)
schemes, have already been experimentally shown to significantly
improve the performance of quantum annealers,26,30–32 and they
are theoretically analysed using a mean-field approach.33

However, these QAC schemes are not easily generalisable to
arbitrary optimisation problems, as they induce an encoded graph

that is typically of a lower degree than the qubit-connectivity
graph of the physical device. Moreover, they typically impose a
fixed code distance, which limits their efficacy.
To overcome these limitations, here we present a family of

error-correcting codes for QA, based on a ‘nesting’ scheme, that
has the following properties: (1) it can handle arbitrary Ising model
optimisation problem; (2) it can be implemented on present-day
QA hardware; and (3) it is capable of an effective temperature
reduction controlled by the code distance. Our ‘nested quantum
annealing correction’ (NQAC) scheme thus provides a very general
and practical tool for error correction in quantum optimisation.
We test NQAC by studying antiferromagnetic complete graphs

numerically, as well as on a D-Wave Two (DW2) processor
featuring 504 flux qubits connected by 1,427 tunable composite
qubits acting as Ising-interaction couplings, arranged in a
non-planar Chimera-graph lattice50 (complete graphs were also
studied for a spin glass model in ref. 51). We demonstrate that our
encoding schemes yield a steady improvement for the probability
of reaching the ground state as a function of the nesting degree,
even after minor-embedding the complete graph onto the
physical graph of the quantum annealer. We also demonstrate
that NQAC outperforms classical repetition code schemes that use
the same number of physical qubits.

RESULTS
Nested quantum annealing correction
In QA, the system undergoes an evolution governed by the
following time-dependent, transverse-field Ising Hamiltonian:

H tð Þ ¼ A tð ÞHX þ B tð ÞHP; tA 0; tf½ �; ð1Þ
with, respectively, monotonically decreasing and increasing
‘annealing schedules’ A(t) and B(t). The ‘driver Hamiltonian’
HX ¼ -

P
iσ

x
i is a transverse field whose amplitude controls the

tunnelling rate. The solution to an optimisation problem of
interest is encoded in the ground state of the Ising-problem
Hamiltonian HP, with
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where the sums run over the weighted vertices V and edges ε
of a graph G ¼ V; εð Þ, and σx;zi denotes the Pauli operators
acting on qubit i. The D-Wave devices use an array of
superconducting flux qubits to physically realise the system
described in Equations (1) and (2) on a fixed ‘Chimera’ graph
(Figure 1) with programmable local fields {hi}, couplings {Jij} and
annealing time tf.

39–41

For closed systems, so-called eigenstate steering52 or shortcuts
to adiabaticity53 can keep a system in its ground state, but they
typically require either knowledge of the final ground state or the
addition of auxiliary counterdiabatic fields whose determination
may be overly complicated. The adiabatic theorem for closed
systems54,55 guarantees that if the system is initialised in the
ground state of H(0) =A(0)HX, a sufficiently slow evolution relative
to the inverse minimum gap of H(t) will take the system with
high probability to the ground state of the final Hamiltonian
H(tf) = B(tf)HP. Dynamical errors then arise because of diabatic
transitions, but they can be made arbitrarily small via boundary
cancellation methods that control the smoothness of A(t) and
B(t), as long as the adiabatic condition is satisfied.56–58 Specifically,

it was shown in ref. 58 that for annealing functions with infinite
smoothness (belonging to the so-called Gevrey class) the error can
be made exponentially small in the total runtime tf. This means
that in particular the probability of Landau–Zener transitions is
exponentially suppressed, although of course tf is still controlled
by an inverse (cubic) power of the minimum gap. We shall assume
that the problem of Landau–Zener transitions is addressed by
such boundary cancellation methods (although the experiments
we describe below do not include such methods, as we had no
control over the smoothness of A(t) and B(t)) and focus here on
addressing the errors that occur in open systems. For the latter,
specifically a system that is weakly coupled to a thermal
environment, the final state is a mixed-state ρ(tf) that is close to
the Gibbs state associated with H(tf) if equilibration is reached
throughout the annealing process.18,59,60 In the adiabatic limit, the
open-system QA process is thus better viewed as a Gibbs
distribution sampler. The main goal of QAC is to suppress the
associated thermal errors and to restore the ability of QA to act as
a ground-state solver. In addition, QAC should suppress errors due
to noise-driven deviations in the specification of HP.

25

Error correction is achieved in QAC by mapping the
logical Hamiltonian H(t) to an appropriately chosen encoded

Figure 1. Illustration of the nesting scheme. In the left column, a C-degree nested graph is constructed by embedding a KN into a KC×N, with
N= 4 and C= 1 (a and b) and C= 4 (c and d). Red, thick couplings are energy penalties defined on the nested graph between the (i, c) nested
copies of each logical qubit i. The right column shows the nested graphs after ME on the DW2 Chimera graph. Brown, thick couplings
correspond to the ferromagnetic chains introduced in the process.
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Hamiltonian H tð Þ:
H tð Þ ¼ A tð ÞHX þ B tð ÞHP; tA 0; tf½ �; ð3Þ

defined over a set of physical qubits N larger than the number of
logical qubits N ¼ Vj j. Note that HP also includes penalty terms, as
explained below. The logical ground state of HP is extracted from
the encoded system’s state ρ tfð Þ through an appropriate
decoding procedure. A successful error-correction scheme should
recover the logical ground state with a higher probability
than a direct implementation of HP or with a higher probablilty
than a classical repetition code using the same number of physical
qubits N. Because of practical limitations of current QA devices
that prevent the encoding of HX, only HP is encoded in QAC. In the
future, it may be possible to circumvent this limitation using
coupling to ancilla qubits.61 At present, it results in a tradeoff, as it
requires us to optimise the penalty strength, and may also result
in a need to optimise the nesting degree, as without encoding HX

the minimum gap may shrink relative to the unencoded problem.
To allow for the most general N-variable Ising optimisation

problem, we now define an encoding procedure for problem
Hamiltonians HP supported on a complete graph KN. The first step
of our construction involves a ‘nested’ Hamiltonian ~HP that is
defined by embedding the logical KN into a larger KC×N. The
integer C is the ‘nesting degree’, and it controls the amount of
hardware resources (qubits, couplers and local fields) used to
represent the logical problem. ~HP is constructed as follows. Each
logical qubit i (i= 1, …, N) is represented by a C-tuple of encoded
qubits (i, c), with c= 1, …, C. The ‘nested’ couplings ~J i;cð Þ; j;c0ð Þ and
local fields ~h i;cð Þ are then defined as follows:

~J i;cð Þ; j;c0ð Þ ¼ Jij ; 8c; c0; i≠ j; ð4aÞ

~h i;cð Þ ¼ Chi ; 8c; i; ð4bÞ

~J i;cð Þ; i;c0ð Þ ¼ - γ; 8c≠c0: ð4cÞ
This construction is illustrated in the left column of Figure 1. Each
logical coupling Jij has C2 copies ~J i;cð Þ; j;c0ð Þ , thus boosting the
energy scale at the encoded level by a factor of C2. Each local field
hi has C copies ~h i;cð Þ; the factor C in Equation (4b) ensures that the
energy boost is equalised with the couplings. For each logical
qubit i, there are C (C− 1)/2 ferromagnetic couplings ~J i;cð Þ; i;c0ð Þ of
strength γ40 (to be optimised), representing energy penalties
that promote agreement among the C encoded qubits, i.e., that
bind the C-tuple as a single logical qubit i.
The second step of our construction is to implement the fully

connected problem ~HP on the given QA hardware, with a
lower-degree qubit-connectivity graph. This requires a minor
embedding (ME).62–66 The procedure involves replacing each
qubit in ~HP by a ferromagnetically coupled chain of qubits, such
that all couplings in ~HP are represented by inter-chain couplings.
The intra-chain coupling represents another energy penalty that
forces the chain qubits to behave as a single logical qubit. The
physical Hamiltonian obtained after this ME step is the final
encoded Hamiltonian HP . We can minor-embed a KC×N nested
graph representing each qubit (i, c) as a physical chain of length
L ¼ CN=4d e þ 1 on the Chimera graph.62 This is illustrated in the
right column of Figure 1. The number of physical qubits necessary
for a ME of a KC×N is Nphys

C ¼ CNL� C2N2=4.
At the end of a QA run implementing the encoded Hamiltonian

HP and a measurement of the physical qubits, a decoding
procedure must be used to recover the logical state. For the sake
of simplicity, we only consider majority vote decoding over both
the length-L chain of each encoded qubit (i, c) and the C-encoded
qubits comprising each logical qubit i (decoding over the length-L
chain first, and then over the C-encoded qubits, does not affect
performance; Supplementary Information S1). The encoded and
logical qubits can thus be viewed as forming repetition codes

with, respectively, distance L and C. Other decoding strategies are
possible wherein the encoded or logical qubits do not have this
simple interpretation: e.g., energy minimisation decoding, which
tends to outperform majority voting.31 In the unlikely event of a
tie, we assign a random value of +1 or − 1 to the logical qubit.

Free energy
Using a mean-field analysis that reduces the model to an
equivalent classical one by using the Suzuki-Trotter formula
(see refs 67,68 for an early similar analysis of the Sherrington–
Kirkpatrick model in a transverse field), and similar to the
approach pursued in ref. 33 we can compute the partition
function associated with the nested Hamiltonian A tð ÞHX þ B tð Þ~HP

for the case with uniform antiferromagnetic couplings. This leads
to the following free-energy density in the low temperature and
thermodynamic limits (Supplementary Information S2):

βF ¼ C2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ=C½ �2 þ 2γBðtÞm½ �2

q
- γBðtÞm2

� �
ð5Þ

where m is the mean-field magnetisation. There are two key
noteworthy aspects of this result. First, the driver term is rescaled
as A tð Þ/C - 1A tð Þ. This shifts the crossing between the A and
B annealing schedules to an earlier point in the evolution and is
related to the fact that QAC encodes only the problem
Hamiltonian term proportional to B(t). Consequently, the
quantum critical point is moved to earlier in the evolution, which
benefits QAC, as the effective energy scale at this new point is
higher.33 Second, the inverse temperature is rescaled as β/C2β.
This corresponds to an effective temperature reduction by C2, a
manifestly beneficial effect. The same conclusion, of a lower
effective temperature, is reached by studying the numerically
computed success probability associated with thermal
distributions (Supplementary Information S3). We shall
demonstrate that this prediction is born out by our experimental
results, although it is masked to some extent by complications
arising from the ME and noise.

NQAC results
The hardness of an Ising optimisation problem, using a QA device,
is controlled by its size N, as well as by an overall energy scale α.45

The smaller this energy scale, the higher the effective temperature
and the more susceptible QA becomes to (dynamical and thermal)
excitations out of the ground state and misspecification noise on
the problem Hamiltonian. This provides us with an opportunity to
test NQAC. As in our experiments we were limited by the largest
complete graph that can be embedded on the DW2 device, a K32
(see Supplementary Information S4 for details), we tuned the
hardness of a problem by studying the performance of NQAC as a
function of α via HP/αHP, with 0oα⩽ 1. Note that we did not
rescale γ; instead, γ was optimised for optimal post-decoding
performance (see Supplementary Information S5). It is known that,
for the DW2, intrinsic coupler control noise can be taken to be
Gaussian with s.d. σ~ 0.05 of the maximum value for the
couplings.48 Thus, we may expect that, without error correction,
Ising problems with αt0.05 are dominated by control noise.
We applied NQAC to completely antiferromagnetic (hi= 0 ∀ i)

Ising problems over K4 (Jij= 1 ∀ i, j), and K8 (random Jij∈ [0.1, 1]
with steps of 0.1) with nesting up to C= 8 and C= 4, respectively.
We denote by PC(α) the probability to obtain the logical ground
state at energy scale α for the C-degree nested implementation
(see Supplementary Information S1 for the data collection
methods). The experimental QA data in Figure 2 (left) shows a
monotonic increase of PC(α) as a function of the nesting degree C
over a wide range of energy scales α. As expected, PC(α) drops
from PC(1) = 1 (solution always found) to PC(0) = 6/16 (random

Nested quantum annealing correction
W Vinci et al

3

Published in partnership with The University of New South Wales npj Quantum Information (2016) 16017



sampling of 6 ground states, where 4 out of the 6 couplings are
satisfied, out of a total of 16 states).
Note that P1(α) (no nesting) drops by ~ 50% when α~ 0.1, which

is consistent with the aforementioned σ~ 0.05 control noise level,
whereas P8(α) exhibits a similar drop only when α~ 0.01. This
suggests that NQAC is particularly effective in mitigating the two
dominant effects that limit the performance of quantum
annealers: thermal excitations and control errors. To investigate
this more closely, the middle panel of Figure 2 shows that the data
from the left panel can be collapsed via PC αð Þ/PC α=μCð Þ, where
μC is an empirical rescaling factor discussed below (see also
Supplementary Information S6). This implies that P1(μCα)≈PC(α),
and hence that the performance enhancement obtained at
nesting degree C can be interpreted as an energy boost
α/μCα with respect to an implementation without nesting.
The existence of this energy boost is a key feature of NQAC, as

anticipated above. Recall (Equations (4a)–(4c)) that a nested graph
KC×N contains C2 equivalent copies of the same logical coupling Jij.
Hence, a degree-C nesting before ME can provide a maximal
energy boost μmax

C ¼ Cηmax
, with ηmax = 2. This simple argument

agrees with the reduction of the effective temperature by C2 based
on the calculation of the free energy (Equation (5)). The right panel
of Figure 2 shows μC as a function of μmax

C , yielding μC~Cη with
η≈1.37 (purple circles). To understand why ηoηmax, we

performed simulated quantum annealing (SQA) simulations
(see Supplementary Information S7 for details). We observe in
Figure 2 (right) that without ME and control errors the boost scaling
matches μmax

C (blue stars). When including ME and control errors, a
performance drop results (red triangles). Both factors thus
contribute to the sub-optimal energy boost observed
experimentally. However, the optimal energy boost is recovered
for a fully thermalised state with a sufficiently large penalty
(see Supplementary Information S3). To match the experimental
DW2 results using SQA, we replace the Choi ME designed for full
Chimera graphs62 by the heuristic ME designed for Chimera graphs
with missing qubits,63,64 and achieve a near match (yellow triangles)
(see Supplementary Information S4 for more details on ME).

Performance of NQAC versus classical repetition

Recall that Nphys
C ¼ CNL is the total number of physical qubits used

at nesting degree C; let Cmax denote the highest nesting
degree that can be accommodated on the QA device for a
given KN—i.e., CmaxNL⩽Ntoto (Cmax+1)NL, where Ntot is the
total number of physical qubits (504 in our experiments). Then,

MC ¼ Nphys
Cmax

=Nphys
C

j k
is the number of copies that can be imple-

mented in parallel. For NQAC at degree C to be useful, it must be

Figure 2. Experimental and numerical results for the antiferromagnetic K4, after encoding, followed by ME and decoding. Left: DW2 success
probabilities PC(α) for eight nesting degrees C. Increasing C generally increases PC(α) at fixed α. Middle: rescaled PC(αμC) data, exhibiting data
collapse. Right: scaling of the energy boost μC versus the maximal energy boost μmax

C , for both the DW2 and SQA. Purple circles: DW2 results.
Blue stars: SQA for the case of no ME (i.e., for the problem defined directly over KC×N and no coupler noise). Red up-triangles: SQA for the Choi
ME62 (for a full Chimera graph), with σ= 0.05 Gaussian noise on the couplings. Yellow right-triangles: SQA for the DW2 heuristic ME63,64 (applied to
a Chimera graph with eight missing qubits) with σ= 0.05 Gaussian noise on the couplings. The flattening of μC suggests that the energy boost
becomes less effective at large C. However, this can be remedied by increasing the number of SQA sweeps (Supplementary Information S3), fixed
here at 104. Thus, the lines represent best fits to only the first four data points, with slopes 0.98, 0.91, 0.62 and 0.69, respectively. In all panels,
Nphys∈ [8,288].

Figure 3. Random antiferromagnetic K8: experimental and numerical results. Left: success probabilities PC(α) for four nesting degrees. Middle:
success probabilities P′C αð Þ adjusted for classical repetition. Right: numerical results for SQA simulations with 20,000 sweeps, σ= 0.05 Gaussian
noise on the couplings and with the Choi embedding, showing five nesting degrees. Inset: scaling of the energy boost μC versus the maximal
energy boost μmax

C , for both the DW2 and SQA. Yellow circles: DW2 results. Blue crosses and red up-triangles: SQA for the Choi ME with 10,000
(crosses) and 20,000 (up-triangles) sweeps, and with σ= 0.05 Gaussian noise on the couplings. The flattening of μC for C44 suggests that the
energy boost becomes less effective at large C, but increasing the number of sweeps recovers the effectiveness. The lines represent best fits to
only the first four data points, with respective slopes η/2 = 0.65, 0.75 and 0.85.
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more effective than a classical repetition scheme in which MC

copies of the problem are implemented in parallel. If a single
implementation has success probability PC(α), the probability to
succeed at least once with MC statistically independent
implementations is P0C αð Þ ¼ 1 - 1 - PC αð Þ½ �MC . It turns out that the
antiferromagnetic K4 problem, for which a random guess succeeds
with probability 6/16, is too easy (i.e., P0C αð Þ approaches 1 too
rapidly), and we therefore consider a harder problem: an
antiferromagnetic K8 instance with couplings randomly generated
from the set Jij∈ {0.1,0.2,…,0.9,1} (see Supplementary Information
S5 for more details and the data on this and additional instances).
Problems of this type turn out to have a sufficiently low success
probability for our purposes, and can still be nested up to C= 4 on
the DW2 processor.
Results for PC(α) are shown in Figure 3 (left), and again increase

monotonically with C, as in the K4 case. For each C, PC(α) peaks at a
value of α, for which the maximum allowed strength of the energy
penalties γ= 1 is optimal (γ41 would be optimal for larger α, as
shown in Supplementary Information S5; the growth of the
optimal penalty with problem size, and hence chain length, is a
typical feature of minor-embedded problems51). An energy-boost
interpretation of the experimental data of Figure 3 is possible for α
values to the left of the peak; to the right of the peak, the
performance is hindered by the saturation of the energy penalties.
Figure 3 (middle) compares the success probabilities P′C αð Þ

adjusted for classical repetition, where we have set Cmax = 4, and it
shows that P02 αð Þ > P01 αð Þ—i.e., even after accounting for classical
parallelism, C= 2 performs better than C= 1. However, we also find
that P04 αð Þ<P03 αð Þ⩽P02 αð Þ, and thus no additional gain results from
increasing C in our experiments. This can be attributed to the fact
that even the K8 problem still has a relatively large P1(α).
Experimental tests on QA devices with more qubits will thus be
important to test the efficacy of higher nesting degrees on harder
problems.
To test the effect of increasing C, and also to study the effect of

varying the annealing time, we present in Figure 3 (right) the
performance of SQA on a random K8 antiferromagnetic instance
with the Choi ME. The results are qualitatively similar to those
observed on the DW2 processor with the heuristic ME (Figure 3
(left)). Interestingly, we observe a drop in the peak performance at
C= 5 relative to the peak observed for C= 4. We attribute this to
both a saturation of the energy penalties and a sub-optimal
number of sweeps. The latter is confirmed in Figure 3 (right, inset),
where we observe that the scaling of μC with C is better for the
case with more sweeps—i.e., again μC~ Cη, and η increases with
the number of sweeps.

DISCUSSION
Nested QAC offers several significant improvements over previous
approaches to the problem of error correction for QA. It is a
flexible method that can be used with any optimisation problem,
and it allows the construction of a family of codes with arbitrary
code distance. We have given experimental and numerical
evidence that nesting is effective by performing studies with a
D-Wave QA device and numerical simulations. We have
demonstrated that the protection from errors provided by NQAC
can be interpreted as arising from an increase (with nesting
degree C) in the energy scale at which the logical problem is
implemented. This represents a very useful tradeoff: the effective
temperature drops as we increase the number of qubits allocated
to the encoding, and thus that these two resources can be traded.
Thus, NQAC can be used to combat thermal excitations, which are
the dominant sources of errors in open-system QA, and are the
bottleneck for scalable QA implementations, assuming that
closed-system Landau–Zener transitions have been suppressed
using other methods. We have also demonstrated that an

appropriate nesting degree can outperform classical repetition
with the same number of qubits, with improvements to be
expected when next-generation QA devices with larger numbers
of physical qubits become available. We, therefore, believe that
our results are of immediate and near-future practical use, and
constitute an important step towards scalable QA.

METHODS
For more details on the experimental and numerical methodologies used,
as well as for details on the mean-field calculation of the free energy as in
Equation 5; see Supplementary Information.
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