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We revisit the limits on R-parity violation in the minimal supersymmetric standard model. In particular,
we focus on the high-scale supersymmetry scenario in which all the sparticles are in excess of the
inflationary scale of approximately 1013 GeV, and thus no sparticles ever come into thermal equilibrium.
In this case, the cosmological limits, stemming from the preservation of the baryon asymmetry that have
been previously applied for weak-scale supersymmetry, are now relaxed. We argue that even when
sparticles are never in equilibrium, R-parity violation is still constrained via higher dimensional operators
by neutrino and nucleon experiments and/or insisting on the preservation of a nonzero B − L asymmetry.
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I. INTRODUCTION

Operators which violate baryon and/or lepton number
represent a two-edged sword for beyond the Standard
Model (SM) physics. On the one hand, some degree of
baryon or lepton number violation is necessary in order to
account for the observed baryon asymmetry of the
Universe. As is well known, these C- and CP-violating
interactions must be out of equilibrium to generate a
nonzero asymmetry. An out-of-equilibrium decay, for
example, can generate a baryon or lepton asymmetry if
the C-, CP-, and B- and/or L-violating decay occurs at a
temperature significantly below the mass of the decaying
particle [1,2]. A simple rule of thumb condition on the
mass,M, of the decaying particle isM > y2MP, where y is
the coupling leading to the decay and MP is the (reduced)
Planck mass,M2

P ¼ 1=ð8πGNÞ. In the case that the decay is
purely lepton number violating, as in leptogenesis [3], the
lepton asymmetry must be converted at least in part to a
baryon asymmetry with sphaleron processes [4,5].
However, sphaleron mediated interactions violate Bþ L
while conserving B − L and hence require a nonzero B − L
asymmetry to be generated. Most importantly, since the
B − L conserving sphaleron processes remain in equilib-
rium up to the time of the electroweak phase transition, any

other process in equilibrium which violates another combi-
nation of B and L would lead to the complete washout of
any baryon or lepton asymmetry independent of its origin.
This allows one to place strong constraints on any possible
B- and/or L-violating operators [6–12].
These constraints are particularly important in super-

symmetric models with R-parity violation (RPV) [13].
Indeed, R-parity is usually imposed in supersymmetric
models to avoid fast baryon and lepton number violating
interactions which could lead to rapid proton decay. Limits
on proton stability are satisfied if new interactions violated
either B or L. However, if these interactions remain in
equilibrium at the same time as sphalerons are in equilib-
rium, they would wash away any baryon asymmetry [9,10]
despite proton stability. One should bear in mind, that these
bounds can be evaded if there is a residual lepton number
conservation [14,15], or if the lepton asymmetry is stored in
an SM SUð2Þ singlet such as the right-handed electron
[15,16], or other flavor asymmetries [14,17,18]. However,
the washout can be affected by slepton mixing angles [19].
Unfortunately, the absence of a supersymmetry signal at

the LHC [20] means that the scale of supersymmetry
remains unknown. While naturalness can be used to argue
for supersymmetry at or near the weak scale [21], the
supersymmetry breaking scale may turn out to be much
larger. The order parameter for supersymmetry breaking is
related to the gravitino mass,m3=2, and in minimal anomaly
mediated supersymmetry breaking models [22–24], the
gravitino mass is typically several hundred TeV to
Oð1Þ PeV. In these models, gaugino masses are loop
suppressed with respect to the gravitino mass, and scalar
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masses may be considerably lighter. In models of split
supersymmetry [25] and in models of pure gravity media-
tion [26], the gravitino mass and scalar masses may lie
beyond the PeV scale. In models of high-scale supersym-
metry [27–29], the gravitino and sparticle masses may be
even higher. When the gravitino mass is Oð1Þ EeV, a new
window opens up for gravitino dark matter when all of the
sparticle masses (except the gravitino mass) lie above the
inflationary scale of approximately 1013 GeV [30–32].
However, without some degree of RPV, it is hard to
imagine experimental tests to detect EeV gravitino dark
matter when all sparticle masses are > 1013 GeV.
In high-scale supersymmetry, the limits on RPV are

relaxed as the supersymmetric particles were never in the
thermal bath and could not participate in interactions that
wash out the baryon asymmetry. Therefore, some amount
of RPV is acceptable, and if present, RPVoperators would
render the lightest supersymmetric particle, the gravitino in
this case, unstable. If long lived, the decay products may
provide a signature for an EeV gravitino [32]. A smoking
gun signal could occur from EeV monochromatic neutrinos
observable by IceCube and/or ANITA [33,34]. This, in fact
is a generic prediction, because given the milder assump-
tions on RPV couplings, high-scale supersymmetric sce-
narios are more naturally R-parity violating, allowing more
general UV completions where R-parity conservation is not
necessary. This compares with weak-scale supersymmetry
where RPV couplings need to be significantly suppressed,
that either requires an additional suppression mechanism or
strongly suggests that R-parity is conserved.
In deriving the limits on RPV parameters, we distinguish

between two cases depending on whether or not the gravi-
tino is the dark matter. The limits on RPV parameters are
generally stronger when the gravitino lifetime is required
to be long enough so as to allow for gravitino dark matter.
When these limits are not satisfied, an alternative to
gravitino dark matter is required in high-scale supersym-
metric models.
In this note, we discuss the cosmological limits on the

RPV interactions in high-scale supersymmetry models
where all sparticles are assumed to have never been in
chemical equilibrium with the SM particles. Thus, we are
able to derive new constraints on RPVoperators in models
of high-scale supersymmetry. The outline of the paper is as
follows: in Sec. II, we review previous cosmological
constraints on generic higher-dimension operators that
arise from the preservation of the baryon asymmetry. In
Sec. III, we review and update experimental limits arising
from neutrino masses, nucleon decay, and n − n̄ oscilla-
tions. Specific RPV interactions are discussed in Sec. IV,
and we derive new limits for high-scale supersymmetry
which are then compared with those from weak-scale
supersymmetry. Finally, we also discuss limits that arise
from including the gravitino. A summary of our results is
given in Sec. V.

II. COSMOLOGICAL LIMITS

Our constraints on RPV interactions are derived from the
requirement that B − L violating interactions are not in
equilibrium simultaneously with sphaleron processes when
they are operative. The sphaleron rate is estimated at next-
to-leading order in Refs. [35–37], and sphaleron processes
are in thermal equilibrium at temperatures

Tc ≲ T ≲ Tsph; ð1Þ

where Tsph ≃ 1012 GeV and Tc ≃ 160 GeV is the critical
temperature of the electroweak phase transition [38]. Thus,
if there is a B − L violating process in thermal equilibrium
at some time when the temperature T satisfies (1), any
baryon/lepton number asymmetry is washed out unless it is
regenerated after the electroweak phase transition. As noted
earlier, there are exceptions to this very general criterion
[14–18]. Nevertheless, we are interested in deriving general
bounds and to preserve a nonzero asymmetry, we will
require all B − L violating processes to be decoupled in
the range given by (1). In practice we can distinguish two
cases depending on the temperature dependence of the
B-=L-violating rate, ΓBL. Assuming that ΓBL ∝ T2D−7 (see
below), we require the B-=L-violating rate to be less than
the Hubble expansion rate, ΓBL < H at T ¼ Tc for D ≤ 4
(corresponding to relevant or marginal operators) [case (a)],
while for D > 4 (corresponding to irrelevant operators), it
is necessary for ΓBL < H at T ¼ Tsph [case (b)].

A. Thermal equilibrium constraints

Here, we focus on high-scale supersymmetry scenarios
in which all superpartners with the exception of the
gravitino have masses greater than the inflationary scale
(inflaton mass). As a result, these particles were not
produced during reheating and were never in thermal
equilibrium. To describe particle interactions in a thermal
bath we can use effective operators consisting of only SM
particles [9]. These can be written as

LD ¼ OD

MD−4
D

; ð2Þ

whereMD represents an effective heavy particle mass scale,
and OD is an operator with mass dimension D. Then, the
reaction rate of such an interaction is given by

ΓD ∼ cD

�
T
MD

�
2ðD−4Þ

T; ð3Þ

with a prefactor cD which collectively denotes numerical
factors arising from the phase space volume and thermal
integration for the corresponding reaction. The expressions
for cD are given in Table I. This rate should be compared
with the Hubble scale H ¼ 0.33g1=2� T2=MP ≡ T2= eMP.
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As there are only SM particles in the thermal bath, the
number of relativistic degrees of freedom, g� ¼ 427=4, andeMP ≃ 7.04 × 1017 GeV. Thus, our limits on MD (which
contain all couplings in addition to the heavy mass scale)
become

MD > ðcD eMPT2D−9
c Þ 1

2ðD−4Þ D < 4; ð4Þ

MD > ðcD eMPT2D−9
sph Þ 1

2ðD−4Þ D > 4: ð5Þ

Next, we consider the reaction rate ΓD, which can be
expressed more accurately as

ΓD ¼ N2T
32π4n0

Z
∞

0

ds s3=2σð2 → kÞK1ð
ffiffiffi
s

p
=TÞ; ð6Þ

where σð2 → kÞ is the 2 → k scattering cross section, K1 is
a modified Bessel function, n0 ¼ Nζð3ÞT3=π2 is the initial
particle number density with ζð3Þ ≃ 1.202, and N the
number of degrees of freedom for the initial state particle.
Note we have neglected the difference between Fermi and
Bose statistics, and all of the initial and final state particles
are assumed to be massless. The cross sections are propor-
tional to sD−5 for the operators with D ≥ 4, and thus we
obtain

Z
∞

0

ds s3=2sD−5K1ð
ffiffiffi
s

p
=TÞ

¼ 22ðD−3ÞT2D−5ΓðD − 3ÞΓðD − 2Þ; ð7Þ

where Γ is the Gamma function. A concrete form of
σð2 → kÞ depends on, for example, the spinor and deriva-
tive structures of corresponding operators. However, since
listing a complete set of B − L breaking operators is not the
aim of this paper, we only keep track of a typical phase
space volume factor in the following argument. Thus, we
may write

σð2 → kÞ ≃ 1

2s
jMð2 → kÞj2Φk; ð8Þ

where Φk is the k-body phase space volume which is
approximately given as

Φk ≃
1

8π

�
s

16π2

�
k−2

; ð9Þ

with k ≥ 2.1

For theD ¼ 3, 4 operators, one-to-two processes are also
possible. When we parametrize the decay width for a
particle with mass M to two Dirac fermions by

Γð1 → 2Þ≡ λ2

8π
M; ð10Þ

with a generic coupling λ, the reaction rate for D ¼ 3, 4
becomes

ΓD ≃
N

2π2n0
MT2Γð1 → 2Þ ¼ λ2

16ζð3Þπ
M2

T
; ð11Þ

and thus we have c3, c4ðdecayÞ ¼ λ2=ð16ζð3ÞπÞ. For a
two-to-two process with quartic coupling λ, we find

ΓD ≃
λ2N

128ζð3Þπ3 T; ð12Þ

where c4ðscatteringÞ ¼ λ2N=ð128ζð3Þπ3Þ for two-to-two
processes.2

Table I summarizes the decay width and cross sections
along with the coefficients cD which are used to limit MD
for each operator, and where ψ ;ϕ;D symbolically denote a
fermion, scalar, and covariant derivative, respectively.

TABLE I. Cross sections and prefactors in the reaction rates are
shown for each operator with effective mass scale MD. Although
we do not consider dimension six operators when applying
cosmological limits, as they do not violate B − L, we show them
in the table for completeness. For D ¼ 3, 4, we denote λ as a
generic coupling constant and M as the mass of the decaying
particle. We have neglected factors of N related to the number of
degrees of freedom of incoming states and used Maxwell-
Boltzmann statistics in the thermal average.

D Operator Γð1 → 2Þ cD

3 ϕ3 λ2

8πM
λ2

16ζð3Þπ
4 ϕψ2 λ2

8πM
λ2

16ζð3Þπ

D Operator σð2 → kÞ cD

4 ϕ4 1
16π

λ2

s
(k ¼ 2) λ2

128ζð3Þπ3
5 ψ2ϕ2 1

16π
1
M2

5

(k ¼ 2) 1
16ζð3Þπ3

6 ψ4 1
16π

s
M4

6

(k ¼ 2) 3
2ζð3Þπ3

7 ψ4ϕ 1
16πð4πÞ2

s2

M6
7

(k ¼ 3) 9
2ζð3Þπ5

ψ4D 1
16π

s2

M6
7

(k ¼ 2) 72
ζð3Þπ3

9 ψ6 1
16πð4πÞ4

s4

M10
9

(k ¼ 4) 2700
ζð3Þπ7

10 ψ6ϕ 1
16πð4πÞ6

s5

M12
10

(k ¼ 5) 28350
ζð3Þπ9

1We implicitly assume the s-channel type decomposition for
multiparticle final state diagrams. For more details, see, e.g.,
Ref. [39].

2This result differs from that in [10] by a factor of 6=π2ð2Þ for
the decay (two-to-two) processes that result from our approxi-
mation of using Maxwell-Boltzmann statistics in the thermal
average.
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Again, in the table we omit prefactors in the cross sections
coming from the kinematics and coupling structure. For
dimension seven operators involving a covariant derivative,
we consider only derivative terms, since they are dominant
compared to the terms with a gauge boson. The resultant
limits on the operators are summarized in Table II where
q; lðlcÞ; h symbolically represent quark, lepton (charge
conjugate of a lepton field), and the SM Higgs fields,
respectively.

III. LABORATORY LIMITS

In addition to the cosmological limits discussed above,
there are of course a variety of laboratory limits on baryon
and lepton number violating operators which we summa-
rize in this section. We will concentrate on limits from
neutrino masses (on lepton number violating operators) and
nucleon decay limits.

A. Neutrino mass constraints

We can derive a lower bound on the mass scale M5 used
in the dimension five (Weinberg) operator, ðLTC ·HÞ×
ðL ·HÞ=M5, in addition to the cosmological bound in
Eq. (5), from the upper bound on the sum over the neutrino
masses,

P
i mνi < 0.15 eV (95% CL) [40]. In addition, we

can derive an upper bound onM5 from neutrino oscillation
data. To be more concrete, in the following discussion we
assume that the heaviest neutrino mass is given by mν ¼
v2=M5 where v ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
GF

q
≃ 174 GeV is the vacuum

expectation value of the SM Higgs field.3

Since the sign of the squared neutrino mass difference
cannot be determined from atmospheric neutrino observa-
tions, the neutrino mass ordering can either be the normal
hierarchy (NH) or the inverted hierarchy (IH). The NH
spectrum is defined by the neutrino mass ordering given by

mν3 > mν2 > mν1 , whereas the IH spectrum is given by
mν2 > mν1 > mν3 . The central values for the experimen-
tally determined mixing angles and squared mass
differences are [41]4

sin2θ12 ¼ 0.307; sin2θ23 ¼ 0.542ðNHÞ;
0.536ðIHÞ; sin2θ13 ¼ 2.18 × 10−2;

m2
S ≡m2

ν2 −m2
ν1 ¼ 7.53 × 10−5 eV2;

m2
A ≡ jm2

ν3 −m2
ν2 j ¼ 2.53 × 10−3 eV2ðNHÞ;

2.44 × 10−3 eV2ðIHÞ: ð13Þ

For the neutrino masses, there is only one free parameter in
each case, namely, the lightest neutrino mass which we
denote mν0. Then, each mass spectrum is given by

NH∶ mν1 ¼ mν0; mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν0 þm2
S

q
;

mν3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þm2
S þm2

ν0

q
; ð14Þ

IH∶ mν1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A −m2
S þm2

ν0

q
;

mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þm2
ν0

q
; mν3 ¼ mν0: ð15Þ

The limit
P

i mνi < 0.15 eV sets an upper bound, mν0 ≲
4.16 × 10−2 eV (3.24 × 10−2 eV) corresponding to the
heaviest neutrino mass, mν3ðν2Þ ≃ 6.59 × 10−2 eV (5.91×
10−2 eV) for the NH (IH) case. In both cases, we obtain
M5 ≳ 1014.7 GeV. This constraint is listed in the first line of
Table II.
On the other hand, neutrino oscillations imply nonzero

neutrinomasseswhich gives an upper bound toM5, assuming
that the only source for generating neutrino masses is the
dimension five operator. To obtain a conservative limit, we
take mν0 ¼ 0 in both cases, and then the heaviest mass
becomesmν3ðν2Þ ≃ 5.10 × 10−2 eV (4.94 × 10−2 eV) for the

TABLE II. Cosmological and laboratory limits on baryon and/or lepton number violating operators. The cosmological limits assume
the SM value of g� ¼ 427=4 as appropriate for high-scale supersymmetry.

D Operator ΔB ΔL

Cosmological limits

Laboratory limitscase (a) case (b)

5 llhh 0 2 M5 > 108.6 GeV M5 > 1013.5 GeV M5 > 1014.7 GeV
6 qqql 1 1 none none M6 > 1015.8 GeV
7 ψ4hðqqqlch; etc:Þ B − L M7 > 104.5 GeV M7 > 1012.6 GeV M7 > 1011.1 GeV

ψ4DðqqqlcD; etc:Þ B − L M7 > 104.8 GeV M7 > 1013.0 GeV M7 > 1010.1 GeV
9 qqqqqq 2 0 M9 > 103.8 GeV M9 > 1012.6 GeV M9 > 105.9 GeV

qqqlll 1 3 M9 > 103.8 GeV M9 > 1012.6 GeV M9 > 105.6 GeV
10 qqqlclclch 1 −3 M10 > 103.5 GeV M10 > 1012.5 GeV M10 > 105.1 GeV

3Note that the Yukawa coupling, y, has been absorbed into the
definition of M5, so that if the Weinberg operator arises from a
right-handed neutrino mass and the see-saw mechanism then
M5 ¼ MR=y2.

4For sin2θ23, we are using fits in the second octant.
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NH (IH) case. It turns out that in both cases we need M5 ≲
1014.8 GeV to explain the neutrino oscillation data, provided
thedimension five operator is thedominant contribution to the
neutrino masses.5 The combined upper and lower limits
point to a unique value in the range of 1014.7 GeV≲M5≲
1014.8 GeV, though one needs to bear in mind that M5 is an
effective mass parameter for the heaviest neutrino that
includes all relevant couplings.

B. Nucleon decays

Clearly, most baryon number violating operators can be
constrained by proton or neutron decay. Since the dimen-
sion six operator qqql does not violate B − L, there is no
cosmological limit from the preservation of the baryon
asymmetry. On the other hand, as baryon number is
violated, the nucleon lifetime can be used to derive a
lower bound on M6.
In general, there are four types of such operators

[42–44],6

Oð1Þ
ijkl ¼ Gð1Þ

ijklðd̄ciαPRCūcTjβÞðQT
kγC · LlÞϵαβγ; ð16Þ

Oð2Þ
ijkl ¼ Gð2Þ

ijklðQT
iαC ·QjβÞðūckγPRCēcTl Þϵαβγ; ð17Þ

Oð3Þ
ijkl ¼ Gð3Þ

ijklðQT
iαC ·QjβÞðQT

kγC · LlÞϵαβγ; ð18Þ

Oð4Þ
ijkl ¼ Gð4Þ

ijklðd̄ciαPRCūcTjβÞðūckγPRCēcTl Þϵαβγ; ð19Þ

where i, j, k, l and α, β, γ are flavor and color indices,
respectively, and the SUð2Þ product is denoted as A · B ¼
ϵabAaLBbL (ϵ12 ¼ ϵ123 ¼ 1), i.e., QTC · L ¼ uTCPLe−
dTCPLν. All fermions are defined as four component
spinors, and the SUð2Þ doublets include the chiral projec-
tion PL as appropriate. The flavor dependent Wilson

coefficients are represented by GðnÞ
ijkl (n ¼ 1, 2, 3, 4), whose

flavor structure depends on the underlying theory. Instead
of specifying a concrete flavor structure, we assume that
there are neither any degenerate parameters (i.e., no
accidental cancellations) nor large hierarchies among the
different flavor entries.
For proton decay involving a charged antilepton in the

final state, the strongest limit arises from the decay mode
p → eþπ0, which is given by τp→eπ > 1.6 × 1034 years
[46]. The relevant operators for this decay channel are

Gð1Þ
1111ðd̄cPRCūcTÞðuTCPLeÞ;

− 2Gð2Þ
1111ðdTCPLuÞðūcPRCēcTÞ;

− 2Gð3Þ
1111ðdTCPLuÞðuTCPLeÞ;

Gð4Þ
1111ðd̄cPRCūcTÞðūcPRCēcTÞ; ð20Þ

where the flavor mixing from the CKMmatrix is neglected.
The decay width of this process is given by

Γðp → eþπ0Þ ¼ mp

32π

�
1 −

m2
π

m2
p

�
2

ðjALj2 þ jARj2Þ; ð21Þ

where mpðmπÞ is the proton (pion) mass. The amplitudes
are defined as7

AL ¼ Gð1Þ
1111hπ0jðudÞRuLjpi − 2Gð3Þ

1111hπ0jðudÞLuLjpi;
ð22Þ

AR ¼ −2Gð2Þ
1111hπ0jðudÞLuRjpi þ Gð4Þ

1111hπ0jðudÞRuRjpi;
ð23Þ

where we have used the notation

ðudÞΓuΓ0 ¼ ϵαβγðuTαCPΓdβÞPΓ0uγ; ð24Þ

with Γ;Γ0 ¼ L, R, and α, β, γ are SUð3Þ color indices

[48]. Then, by takingGð1;2;3;4Þ
1111 ∼ 1=M2

6 and the hadronmatrix
elements hπ0jðudÞL;RuL;Rjpi ∼ −hπ0jðudÞL;RuR;Ljpi ∼
0.1 GeV2 [48], we obtainM6 > 1015.8 GeV. This constraint
is listed in the second line of Table II. If someof the dimension
six operators are absent, this constraint is somewhat relaxed.
For instance, whenOð1Þ is the sole operator mediating proton
decay, the limit reduces to M6 > 1015.5 GeV.
A similar procedure can be applied for the operators

whose mass dimension is greater than six.
(1) Dimension seven operators: The qqqlch type oper-

ators may be regarded as a dimension six operator
where the Wilson coefficient, estimated as ∼v=M3

7,
leads to the limitM7 ≳ 1011.1 GeV. In the same way,
the qqqlcD type operators may be regarded as
dimension six operators with the Wilson coefficient
∼ΛQCD=M3

7 with ΛQCD ≃ 300 MeV [41], and thus
we obtain M7 ≳ 1010.1 GeV. It should be noted that
for dimension seven operators, there are additional
operators that violate B − L, such as ðecTCL ·HÞ×
ðLTC · LÞ.8 It is also known that all dimension seven

5If there is another source for the neutrino masses and the
dimension five operator is not dominant, then this upper limit
does not apply, and M5 can be as large as possible, e.g., MP.6Our definition of these operators is identical to that of
Ref. [45] after arranging SUð2Þ and spin indices appropriately.

7Note that in the specific case of SU(5), proton decay mediated
by X and Y gauge bosons only involves Gð1Þ and Gð2Þ [47].

8There also exist operators involving more than two Higgs
doublets or covariant derivatives (equivalently, gauge field
strength), which we do not discuss here.
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operators that violate either baryon or lepton num-
ber, violate B − L as well. For more on all such
operators, see Refs. [49–51].

(2) Dimension nine operators: The qqqlll operator may
also induce nucleon decays. For instance, the oper-
ator ðLTC · LÞðecTCPLdcÞðQ̄ · CQ̄TÞ causes n →
eþe−ν which has the lifetime constraint τn→eþe−ν >
2.8 × 1032 years [52]. Then, we obtain M9 >
105.6 GeV where we have estimated the decay width
as Γðn → eþe−νÞ ≃ α2hm

5
n=ð256π3M10

9 Þ (by only
taking into account the phase space volume) with
the hadron matrix element αh ≃ −0.0144 GeV3

[53].9 The qqqqqq type of operators, especially
uddudd, are constrained by n − n̄ oscillation. Fol-
lowing Refs. [57,58], the n − n̄ mixing time can be
written as τn−n̄ ≃ 1=δm with

δm ∼
1

M5
9

jψð0Þj2; ð25Þ

where ψð0Þ denotes the neutron wave function at
the origin, which is typically ψð0Þ ∼ Λ3

QCD. The
current constraint τn−n̄ > 2.7 × 108 s [59] sets the
limit M9 > 105.9 GeV.

(3) Dimension ten operators: For instance, ðLTC ·
LÞðecTCPLdcÞðQ̄ ·HucÞ induces the nucleon decay
n → eþe−ν whose decay width may be evaluated as
Γn→eþe−ν≃α2hm5

nv2=ð256π3M12
10Þ, and thus we obtain

M10 > 105.1 GeV.
Finally let us reiterate that for operators of mass

dimension higher than seven there exist many baryon
and/or lepton number violating operators which are not
listed in Table II. Though the D ¼ 7, 9, 10 operators in
Table II are just examples, it is sufficient for our purpose
since such higher dimensional operators would usually
involve more undetermined parameters compared to lower
dimensional ones, and thus the detailed constraints are
strongly model dependent. For instance, some operators
that violate lepton number, but conserve baryon number,
can be constrained by neutrinoless double beta decay [60],
while the limit strongly depends on the form of the
operators. Nevertheless, when we assume that baryon
and lepton numbers are violated at the same scale, and
that there is no large hierarchy between the mass scales of
baryon and lepton number violation, the constraints onMD
from nucleon decays are in most cases stronger than those
from neutrinoless double beta decay (see, e.g., Ref. [61].)

IV. R-PARITY VIOLATING INTERACTIONS

We now discuss the limits on RPV interactions using the
results obtained in the previous sections. The RPV super-
potential is given by

WRPV ¼ Wð2Þ
RPV þWð3Þ

RPV; ð26Þ

Wð2Þ
RPV ¼ μ0iHu · Li; ð27Þ

Wð3Þ
RPV ¼ 1

2
λijkLi · LjEc

k þ λ0ijkLi ·QiDc
k þ

1

2
λ00ijkU

c
iD

c
jD

c
k:

ð28Þ

The explicit Lagrangian including soft supersymmetry
breaking terms is shown in the Appendix. We will first
review the bounds derived in the case of weak-scale
supersymmetry [10] and contrast them with bounds
obtained in high-scale supersymmetry. These bounds are
derived from both the cosmological preservation of the
baryon asymmetry and the experimental limits on baryon
and/or lepton number violating processes including proton
decay. We will also comment on the limits on the RPV
parameters when we require a sufficiently long-lived
gravitino as the dark matter.
In general, the RPVmass parameter μ0i depends on lepton

flavor, but here we omit the flavor dependence for
simplicity and take μ0i ≡ μ0. (For a more detailed discussion,
see, e.g., [62,63].) Since lepton number is not conserved, L
and Hd cannot be distinguished, and thus there is a field
basis dependence in defining L andHd fields. For instance,
if L → ð1 − ϵ2Þ1=2Lþ ϵHd and Hd → ð1 − ϵ2Þ1=2Hd − ϵL
with ϵ ¼ μ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ μ02

p
and μ is the μ-parameter in the

minimal supersymmetric SM (MSSM) superpotential, we
can eliminate the bilinear RPV term at the expense of
generating trilinear RPV terms, such as yuϵLLEc and
ydϵQLDc. For simplicity and since observables do not
depend on the choice of basis, we will work in the basis that
explicitly keeps the bilinear term (27) given in WRPV.

A. Limits on μ0

1. Weak-scale supersymmetry

As discussed above, there are strong constraints on
baryon and lepton number violating operators whose
induced interactions are simultaneously in equilibrium
with the sphaleron interactions. In the case of an R-parity
violating bilinear LHu term, one-to-two processes involv-
ing a Higgsino, lepton, and a gauge boson will be induced.
From Eq. (11), the thermally averaged rate at a temperature,
T for these lepton number violating interactions is given by
[10,32]

9This constraint was missing in Ref. [54], and an accurate
estimate has recently been given in Ref. [55] which also argues
that n → K0lþl−ν, induced by, for example, ðLTC · LÞ×
ðecTCPLdcÞðucTCPLdcÞ, is larger than n → lþl−ν in RPV
models, although this particular channel is not yet constrained
by experiments (see also Ref. [56]).
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Γ1→2 ¼
g2θ2T
16ζð3Þπ ≃ 0.016g2

μ02

m2
f

T; ð29Þ

where g is a gauge coupling, and θ ≃ μ0=mf is the mixing
angle induced by μ0 for a fermion with massmf. We require
that this lepton number violating interaction is out of
equilibrium. As such, we require the interaction rate (29)
is less than the Hubble rate, H ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�=90

p
T2=MP. This

implies that

μ02 < 20
ffiffiffiffiffi
g�

p T3

MP
; ð30Þ

where the fermions have a thermal mass, mf ∼ gT. We
further insist that any lepton number violating rate involv-
ing μ0 remains out of equilibrium while sphaleron inter-
actions are in equilibrium, i.e., between the weak scale Tc
and Tsph. As one can see, the limit (30) is strongest for T of
order the weak scale [case (a) corresponding toD ¼ 3]. For
weak-scale supersymmetry, the fermion can be either a
lepton or Higgsino, g� ¼ 915=4 and at Tc one obtains the
limit [10]

μ0 < 2.3 × 10−5 GeV: ð31Þ

For weak-scale supersymmetry, this limit translates
to ϵ≲ 2.3 × 10−7.
In general, the RPV bilinear term induces a nonzero

neutrino mass via a dimension five operator. The mixing
angle between neutrinos and the Higgsino is given by μ0=μ,
and through the Higgsino-Higgs-gaugino (wino or bino)
coupling, we obtain a dimension five operator of the form

L5 ≃
1

M5

νLνLhh;
1

M5

≃ ϵ2
g22M1 þ g21M2

M1M2ð1þ tan2βÞ ; ð32Þ

whereM1ðM2Þ are the bino (wino) masses and g2ðg1Þ is the
SUð2ÞLðUð1ÞYÞ gauge coupling.
In weak-scale supersymmetry models, the limit (31) is

stronger than the limit from neutrino masses [62,64] which
comes from the dimension five operator with the constraint
given in Table II. As one can see from Table II, the strongest
limit from a dimension five two-to-two process is obtained
by requiring the out-of-equilibrium condition to hold at the
highest possible scale, which in this case is Tsph [case (b)].
For weak-scale supersymmetry, the limit on M5 becomes

M5 >
ðc5TMPÞ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.33g1=2�
q ≈ 2.8 × 1013 GeV; ð33Þ

for T ¼ Tsph and g� ¼ 915=4 (the change in g� accounts for
the slight difference with respect to the limit in Table II).
This translates to the limit

μ0 < 1.9 × 10−7 GeV−1=2m̃1=2μð1þ tan2βÞ1=2=g
≈ 4.4 × 10−4 GeV; ð34Þ

for μ ∼M1 ∼M2 ∼ m̃ ∼ 100 GeV, and tan β ≈ 1. We
assume a generic gauge coupling g ∼ 0.6 throughout. In
this case, ϵ≲ 4.4 × 10−6.

2. High-scale supersymmetry

In the case of high-scale supersymmetry, we assume that
all sparticles are heavier than the inflationary mass scale
mI ∼ 3 × 1013 GeV, and we denote the typical sparticle
mass scale as m̃ > mI . As all sparticle masses are greater
than Tsph, there are no sparticles in the thermal bath when
sphalerons are in equilibrium and the limit from one-to-two
processes is not applicable. Nevertheless, the limit from the
effective dimension five operator is valid when the heavy
sparticles are integrated out. Since only Standard Model
particles are in the thermal bath, g� ¼ 427=4 and we can
use the limit onM5 from Table II [case (b)]. The limit on μ0
becomes

μ0 < 1.7 × 10−7 GeV−1=2m̃1=2μð1þ tan2βÞ1=2=g
≈ 6.6 × 1013 GeV; ð35Þ

for μ ∼M1 ∼M2 ∼ m̃ ∼ 3 × 1013 GeV, and tan β ≈ 1. In
this case, ϵ≲ 2.2.
As one can also see from Table II, the laboratory limit in

this case is in fact the strongest limit on μ0. Using
M5 > 5 × 1014 GeV, we obtain

μ0 < 4.5 × 10−8 GeV−1=2m̃1=2μð1þ tan2βÞ1=2=g
≈ 1.7 × 1013 GeV; ð36Þ

or ϵ≲ 0.57.

Note that if Wð2Þ
RPV is the only source of neutrino mass,

our previous limit on M5 < 1014.8 GeV translates into a
lower bound on μ0,

μ0 > 4 × 10−8 GeV1=2m̃1=2μð1þ tan2βÞ1=2=g
≈ 1.5 × 1013 GeV: ð37Þ

As discussed in Sec. III, the lower limit can be removed if
there is another source for generating neutrino masses that
can explain the neutrino oscillation data.

B. Limits on λ;λ0;λ00

1. D = 4, 5

The quartic couplings in Eq. (28) can lead to either one-
to-two processes (involving a scalar and two fermions) or
two-to-two processes (involving four scalars) which violate
baryon and/or lepton number. The rates for these processes
taken from Table I can be written as [10]
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Γ2→2 ¼
λ2y2T

128ζð3Þπ3 ≃ 2 × 10−4λ2y2T; ð38Þ

Γ1→2 ¼
λ2m2

0

16ζð3ÞπT ≃ 0.016λ2
m2

0

T
; ð39Þ

where λ is a generic RPV quartic coupling in (28) and
m0 < T is the scalar mass. The rate (38) depends on the
Standard Model Yukawa coupling y, because the baryon/
lepton number violating processes actually arise from a
cross term in the F-term in the scalar potential.
In weak-scale supersymmetry, these processes will be in

equilibrium unless λ is quite small, and the limit on λ is
derived by comparing these rates with the Hubble rate. This
yields the limits

λ < 1.2 × 10−6y−1 2 ↔ 2; ð40Þ

λ < 1.4 × 10−7 1 ↔ 2; ð41Þ

where we have evaluated the limit at T ∼m0 ∼ Tc in the
one-to-two rate.
Once again, in the case of high-scale supersymmetry,

when all sparticle masses are greater than the inflationary
scale, the above limits are no longer applicable as there are
no sparticles in the thermal bath at the time when sphaleron
interactions are in equilibrium. For the RPV bilinear term,
we were able to derive a limit on μ0 by integrating out the
heavy sparticles and setting a limit on the resulting
dimension five operator. One might think that one can
do the same for the quartic coupling, and form a dimension
six (four-fermion) operator and still set (weaker) limits on
the RPV quartic couplings. However, as shown in [42],
there are no B − L violating dimension six operators
involving only Standard Model fields.
There are, however, numerous laboratory and astrophysi-

cal constraints on the RPV quartic couplings which are
independent of the sphaleron processes [65–71]. For exam-
ple, some of the quartic couplings will contribute radiatively
to neutrino masses and neutrinoless double beta decay [65],
where these limits scale as λ < Oð10−3Þðm̃=100 GeVÞp for
p ¼ 1=2; 5=2, respectively. As one can see, in the high-scale
supersymmetric limit, the bounds on these couplings also
disappear. The same is true of collider limits [68] and
cosmological and astrophysical limits from the decay of the
lightest supersymmetric particle [69].
Furthermore, let us comment on the issue of radiatively

induced neutrino masses [72]. Possible radiative corrections
through the RPV couplings are summarized in Ref. [73],
where the relevant contribution in our case is the self-energy
diagrams (diagram 19 in that paper) involving μ0 and
B0ð≡BiÞ. The correction to the neutrino mass, δmν, is
proportional to μ0B0=m̃2. However, once all the Higgs boson
contributions are incorporated, one finds that δmν is sup-
pressed by ðv=m̃Þ2, and thus δmν may be written in terms of

the dimension five operator with a loop factor, i.e.,
ð16π2Þ−1ðLTC ·HÞðL ·HÞ=M5 with 1=M5 ∼ μ0B0=m̃4∼
μ02=m̃3. Therefore, the constraint from δmν is weaker than
that coming from the tree level (dimension five) operator.

2. D= 6

Despite the weakening of most bounds on the RPV
quartic couplings, there remain limits on dimension six
operators which induce proton decay.10 Once again, since
these operators conserve B − L, there are no limits from the
sphaleron washout of the baryon asymmetry. Nevertheless,
proton decay is induced by d̃c exchange diagrams in the
RPV case [42], and only Oð1Þ type of operators can appear.
The corresponding Wilson coefficients are

Gð1Þ
ijkl ≃

X3
m;n¼1

λ00�jimλ
0
lknðm−2

d̃c
Þmn; ð42Þ

where the relation λ00ijk ¼ −λ00ikj is imposed by gauge
symmetry. By ignoring flavor mixing in the down-type
squark sector, we obtain

Oð1Þ
1111 ¼

1

M2
6

ðd̄c1PRCūcT1 ÞðQT
1C · L1Þ;

1

M2
6

∼
1

m̃2

X3
m¼1

λ00�11mλ
0
11m; ð43Þ

and thus the limit on M6 from Table II can be expressed as
the following limit on the quartic coupling:

����
X3
m¼1

λ00�11mλ
0
11m

���� < 2.3 × 10−5
�

m̃
3 × 1013 GeV

�
2

; ð44Þ

which updates the results given in Ref. [62].

3. D = 7

Dimension seven operators of the type, qqqlch, are
induced by involving trilinear couplings, i.e., Ad

ijhd · Q̃id̃
c
j

and μyd�ij h
†
u · Q̃id̃

c
j . Then, we have

Lð1Þ
7 ¼ Gð1Þ

7;ijklðL̄i · hddjÞðQT
l C ·QkÞ; ð45Þ

Lð2Þ
7 ¼ Gð2Þ

7;ijklðL̄i · h
†
udjÞðQT

l C ·QkÞ; ð46Þ

with coefficients

Gð1Þ
7;ijkl ≃ λ0�imjðm−2

Q̃
Þmm0Ad

m0n0 ðm−2
d̃c
Þn0nλ00�kln; ð47Þ

10See [74] for related discussion on proton decay constraints.
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Gð2Þ
7;ijkl ≃ λ0�imjðm−2

Q̃
Þmm0μ�ydm0n0 ðm−2

d̃c
Þn0nλ00�kln; ð48Þ

respectively, where μ is assumed to be complex. These
operators give rise to interaction rates which scale as

Γ7 ≃ c7ðλ0λ00Þ2
�
A2

m̃8

�
T7; ð49Þ

with c7 ¼ 9=2ζð3Þπ5 given in Table I, and A denotes an A
term. When compared to the Hubble rate, one sees that the
appropriate limit, evaluated at T ¼ Tsph [case (b)], gives

����
X3
m¼1

λ0�imjλ
00�
klm

���� < 290

�
m̃

3 × 1013 GeV

�
4
�
3 × 1013 GeV

jAd
0j

�
;

ð50Þ
����
X3
m;n¼1

λ0�imjy
d
mnλ

0�
klm

����
< 290

�
m̃

3 × 1013 GeV

�
4
�
3 × 1013 GeV

jμj
�
; ð51Þ

where ðm2
Q̃
Þij ∼ ðm2

d̃c
Þij ∼ m̃2δij and Ad

ij ¼ Ad
0δij, and we

have assumed that there is no flavor mixing in the soft
supersymmetry breaking terms. These cosmological limits
are stronger than the nucleon decay limits which are

����
X3
m¼1

λ0�1m1λ
00�
11m

���� < 107
�

m̃
3× 1013 GeV

�
4
�
3× 1013 GeV

jAd
0j

�
;

ð52Þ

����
X3
m;n¼1

λ0�1m1y
d
mnλ

0�
11m

����
< 107

�
m̃

3 × 1013 GeV

�
4
�
3 × 1013 GeV

jμj
�
; ð53Þ

and become very weak in the high-scale supersymmet-
ric limit.
Through the trilinear couplings Au

ijhu · Q̃iũcj and

μyu�ij h
†
d · Q̃iũcj , we also have

Lð3Þ
7 ¼ Gð3Þ

7;ijklðL̄i · huCd̄cTj Þðd̄cl Cd̄cTk Þ; ð54Þ

Lð4Þ
7 ¼ Gð4Þ

7;ijklðL̄i · h
†
dCd̄

cT
j Þðd̄cl Cd̄cTk Þ; ð55Þ

with coefficients

Gð3Þ
7;ijkl ≃ λ0�imjðm−2

Q̃
Þmm0Au

m0n0 ðm−2
ũc Þn0nλ00�kln; ð56Þ

Gð4Þ
7;ijkl ≃ λ0�imjðm−2

Q̃
Þmm0μ�yum0n0 ðm−2

ũc Þn0nλ00�kln; ð57Þ

and the constraints on Gð3Þ
7;ijkl and Gð4Þ

7;ijkl can be obtained in
the same way.

4. D = 9, 10

RPV interactions also induce n − n̄ oscillations via
dimension nine operators, which can be written in the
following form [71]:

L9 ⊃ G9;ijklmnðd̄ci PRCūcTj Þðd̄ckPRCūcTl Þðd̄cmPRCd̄cTn Þ: ð58Þ
There are two possible diagrams that produce this operator,
namely, via the A-term or gluino exchange. In each case, we
obtain

G9;ijklmnðA− termÞ≃
X

ss0tt0uu0

λ00�jisλ
00�
lktλ

00�
unmA00

s0t0u0

ðm2
ũcÞss0 ðm2

d̃c
Þtt0 ðm2

d̃c
Þuu0

; ð59Þ

G9;ijklmnðgluinoÞ ≃
X
m0n0

gs
M3

λ00�ijm0λ00�lkn0
ðm2

d̃c
Þm0mðm2

d̃c
Þn0n

; ð60Þ

where M3 is the gluino mass, gs is the QCD coupling, and
A00 is a soft mass parameter (see Appendix). The rate for
these processes can be approximated as

Γ9 ¼ c9λ006
�
A002

m̃12

�
T11; A − term; ð61Þ

Γ9 ¼ c9λ004g2s

�
1

m̃10

�
T11; gluino; ð62Þ

with c9 ¼ 2700=ζð3Þπ7 given in Table I. Then, once again
comparing to the Hubble rate at T ¼ Tsph, we obtain the
constraints as follows:

����
X
stu

λ00�jisλ
00�
lktλ

00�
unm

�
A00
stu

3 × 1013 GeV

�����
< 3.4 × 104

�
m̃

3 × 1013 GeV

�
6

; ð63Þ

jλ00�ijmλ00�lknj < 5.6 × 104
�

m̃
3 × 1013 GeV

�
5

; ð64Þ

whereM3 ∼ m̃ and ðm2
ũcÞij ≃ ðm2

d̃c
Þij ∼ m̃2δij. It is also true

that the above case (b) limit leads to a stronger bound than
the n − n̄ oscillation limits which are effectively absent,

����
X
stu

λ00�11sλ
00�
11tλ

00�
u11

�
A00
stu

3 × 1013 GeV

�����
< 7.7 × 1037

�
m̃

3 × 1013 GeV

�
6

; ð65Þ

jλ00�111λ00�111j < 1.3 × 1038
�

m̃
3 × 1013 GeV

�
5

: ð66Þ
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We also have dimension nine operators of the type qqqlll,
which can be expressed as

L9 ⊃ G9;ijklmnðLT
i C · LjÞðeckTCPLdcl ÞðucmTCPLdcnÞ; ð67Þ

G9;ijklmn≃
X

ss0tt0uu0
λsjkλ

0
itlλ

00
mnuðm−2

L̃
Þss0 ðm−2

Q̃
Þtt0 ðm−2

d̃c
Þuu0A0�

s0t0u0 :

ð68Þ
The decay n → Kll̄ν occurs through this operator, although
this particular channel has not been experimentally con-
strained. The decay n → ll̄ν happens through ðLTCi · LjÞ
ðeckTCPLdcl ÞðQ̄m · CQ̄T

nÞ in dimension nine. However, as
discussed in Ref. [55], such operators should be loop
suppressed. This may be understood by comparing with the
operator ðLT

i C · LjÞðeckTCPLdcl ÞðucmTCPLdcnÞ in which one
of the dc quarks should be an s quark because of SUð3Þ
color symmetry. A chiral flip is needed to avoid the
appearance of s quark. For instance, once the diagram
involves a Higgs boson loop, ðucmTCPLdcnÞmay be replaced
by yuyd=16π2 × ðQ̄m · CQ̄T

nÞ which is less restrictive for
the RPV couplings.
We may also construct a dimension ten operator of the

type qqqlclclch by looking at dimension nine operators. For
example, dcn in ðLT

i C · LjÞðeckTCPLdcl ÞðucmTCPLdcnÞmay be
replaced by md=v × ðCQ̄T

n ·HÞ to yield ðLTCi · LjÞ×
ðeckTCPLdcl ÞðQ̄n ·HucmÞ. However, for these higher dimen-
sional operators, the cosmological limit is much stronger
than the laboratory limits as seen in the dimension seven
operator case.

C. Limits from the gravitino

The limits on μ0 in high-scale supersymmetry from
Sec. IVA 2 are based solely on the preservation of the
baryon asymmetry and experimental limits on the neutrino
mass. However, if we insist that the lightest supersymmetric
particle, the gravitino, is relatively stable so that it can play
the role of darkmatter, we can derive a significantly stronger
limit on μ0 [32]. The presence of the RPVparameter μ0 opens
up channels for gravitino decay into neutrinos plus gauge/
Higgs bosons. The total decay rate is [32]

Γ3=2 ≃
ϵ2cos2βm3

3=2

16πM2
P

; ð69Þ

where ϵ ≈ μ0=μ ≈ μ0=mI and cos β ≈ 1=
ffiffiffi
2

p
. Demanding

that the gravitino lifetime exceeds the current age of the
Universe (τ3=2>4.3×1017 s) corresponds to a limit on μ0 <
0.03 GeV, for mI ¼ 3 × 1013 GeV and m3=2 ¼ 1 EeV.

Note that the upper limit on μ0 scales as mI=m
3=2
3=2. An even

more restrictive limit on μ0 is possible from the IceCube
constraints on the neutrino flux produced by the gravitino
decay [33]. In this case, we require a lifetime τ3=2 > 1028 s

which corresponds to a limit, μ0 < 2 × 10−7 GeV. As one
can see, these limits are far more restrictive than those from
baryon/lepton number conservation and neutrino masses.
While the quartic RPV couplings can also induce

gravitino decay, they do so only at the one-loop level.
As a consequence, the limit on a generic quartic coupling is
very weak. For example, writing a generic dimension six
operator as ðfffψμÞ=M2

6 with f and ψμ being SM fermions
and the gravitino, respectively, the corresponding cosmo-
logical limit on M6 from the preservation of B − L
asymmetry is

M6 > ðc6M̃PT3
sphÞ1=4 ≃ 1.3 × 1013 GeV; ð70Þ

with c6 ¼ 3=2ζð3Þπ3 given in Table I. The same dimension
six operator makes the gravitino unstable, and the gravitino
decay width into three SM fermions is estimated as

Γ3=2→3f ≃
m5

3=2

256π3M4
6

: ð71Þ

Assuming the gravitino lifetime is longer than the age of the
Universe gives rise to the lower bound

M6 > 5.3 × 1020 GeV

�
m3=2

EeV

�
5=4

ðτ3=2 > 4.3 × 1017 sÞ:

ð72Þ

Furthermore, the operator ðd̄cPRCūcTÞðd̄cγμψμÞ can be
induced at the one-loop level, with a suppression scale
M−2

6 ∼ jλ00j2A00=ð16π2m̃2MPÞ ∼ jλ00j2=ð16π2m̃MPÞ. From
the cosmological limit (70), this gives

jλ00j≲ 8.2 × 103; ð73Þ

when m̃ ∼mI ¼ 3 × 1013 GeV. Again imposing the grav-
itino lifetime limit (72), we obtain

jλ00j≲ 2 × 10−4
�
EeV
m3=2

�
5=4

: ð74Þ

In this case, the limit on the quartic coupling is only
competitive with the limit in (40) when the gravitino mass
begins to approach the inflationary scale, or when m3=2≳
0.002 ×mI . If instead we impose the IceCube gravitino
lifetime limit, τ3=2 > 1028 s [33], the generic constraint
becomes

M6 > 2.1 × 1023 GeV

�
m3=2

EeV

�
5=4

ðτ3=2 > 1028 sÞ; ð75Þ

and thus we obtain
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jλ00j≲ 5 × 10−7
�
EeV
m3=2

�
5=4

: ð76Þ

This limit is more stringent than (40) when m3=2≳
1.7 × 10−5mI.
Finally note that there may be additional RPVoperators

which are nonrenormalizable corrections to the super-
potential and the Kähler potential. These operators can
also contribute to the baryon number violating interactions.
For example, consider the operator in Eq. (2.72) of [62]
with coupling κ7. By introducing a supersymmetry break-
ing spurion superfield X (containing the Goldstino ψ), we
may write the corresponding term as

K ⊃
κ7
M2

P
Q ·Qdc†X†; ð77Þ

which gives ðκ7=M2
PÞðd̄cQÞ · ðψ̄QÞ. Then by identifying

M6 ¼ MP=
ffiffiffiffiffi
κ7

p
, the cosmological limit becomes

κ7 ≲ 3.4 × 1010. This will lead to a dimension nine operator
induced by gravitino exchange, which remains below the
Hubble rate so long as κ7 < 2.1 × 1011.11 However, this
operator could also lead to gravitino decay and using
Eq. (71), we can derive a much stronger limit, κ7<2×
10−5ðEeV=m3=2Þ5=2 for τ3=2 > 4.3 × 1017 s, and κ7<1.4×
10−10ðEeV=m3=2Þ5=2 for τ3=2 > 1028 s. We do not consider
these nonrenormalizable operators any further.

V. SUMMARY

We have revisited the limits on RPV in the minimal
supersymmetric standard model, where the constraints
from laboratory experiments and the preservation of the
B − L asymmetry are discussed. In particular, we have
focused on the high-scale supersymmetry scenario in which
all the sparticles are in excess of the inflationary scale of
approximately 1013 GeV, and thus they were never in
equilibrium. Since the previously argued cosmological
limits in weak-scale supersymmetry assume that the spar-
ticles involved in the RPV interactions remain in equilib-
rium at Tc, those limits cannot be applied to the high-scale
supersymmetry case, and thus, the cosmological limits
from the preservation of a nonzero B − L asymmetry are
relaxed. Nevertheless, even when sparticles are never in
equilibrium, RPV couplings are still constrained through
higher dimensional operators.
Based on effective operators, we have reviewed and

updated the experimental and cosmological limits on B-
and/or L-violating processes, and then applied them for
RPV in the high-scale supersymmetry scenario. For dimen-
sion five operators, we have shown that the neutrino mass
constraints are stronger than the cosmological limit, while

for operators of mass dimension higher than seven, the
cosmological limit is stronger than the experimental limits.
Dimension six operators are only constrained by nucleon
decay experiments since there are no B − L violating
operators of dimension six. We have contrasted the limits
on RPV in high-scale supersymmetry with those in weak-
scale supersymmetry up to dimension ten operators and
shown that indeed a wider range of RPV couplings is
acceptable. This implies that unlike weak-scale supersym-
metry, high-scale supersymmetry can generically have
RPV with mild constraints on the couplings and imposing
an R-parity is not necessary. This then leads to the generic
prediction of an EeV gravitino decay.
We have also distinguished limits based on the assu-

mption of gravitino dark matter. In this case, the RPV
interactions lead to the possibility of gravitino decay. If
long lived, the gravitino may still provide a sufficient mass
density to make up the dark matter. Indeed, if very long
lived, present day decays may yet provide a signature. For
example, the RPV bilinear proportional to μ0 induces a
decay to neutrinos which could be seen in high energy
neutrino detectors [32]. If we require the presence of dark
matter today, or sufficiently long lived so as not to surpass
the existing experimental constraints, we obtain limits on μ0
which are far stronger than those from baryon/lepton
number violation. The RPV quartic couplings on the other
hand are better constrained by baryon/lepton number
violating rates. We also noted that our limits can be applied
to nonrenormalizable corrections in supergravity models,
with the most stringent limits arising from gravitino decay.
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APPENDIX: NOTATIONS AND LAGRANGIAN

We summarize the relevant Lagrangian we have used in
our discussion for the sake of completeness. Our notations
and conventions basically follow Appendixes A and B of
Ref. [62].12 In this appendix, we recall some useful

11Here we assume m3=2 < Tsph and estimate the reaction rate
as κ47T

9=M8
P which should be compared with H at T ¼ Tsph.

12We use different labeling for some fields, but there is an
obvious correspondence with Ref. [62]. For clarity, we also
denote the SUð2Þ products with a dot.
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relations when writing the operators in terms of SUð2ÞL
doublet fields, and then the relevant parts in the Lagrangian
are presented.
Four-component Dirac spinors for leptons are con-

structed as

e ¼
�

ψe

ψ̄ec

�
; ν ¼

�
ψν

ψ̄ν

�
; ðA1Þ

where the two-component Weyl spinor ψ i denotes the
corresponding fermionic part in superfields. Then, we may
write the SUð2ÞL product for the doublet L as

LT
i C · Lj ¼ νTi CPLej − eTi CPLνj; ðA2Þ

with i and j being the flavor indices. We also note that in
this notation PLec refers to the corresponding right-handed
field, i.e., ψec . We may define four component spinors for
quarks in the same manner.
The MSSM superpotential is given by

WMSSM ¼ μHu ·Hd þ yeijHd · LiEc
j þ ydijHd

·QiDc
j þ yuijHu ·QiUc

j ; ðA3Þ

where ye;u;d are the Yukawa coupling matrices. The RPV
trilinear couplings are given by

Wð3Þ
RPV ¼ 1

2
λijkLi · LjEc

k þ λ0ijkLi ·QjDc
k þ

1

2
λ00ijkU

c
iD

c
jD

c
k;

ðA4Þ

and the corresponding Lagrangian in terms of four-com-
ponent fermions becomes

LLiLjEc
k
¼−1

2
λijk½LT

i C ·LjẽckþecTk CL̃i ·Lj�þH:c:; ðA5Þ

LLiQjDc
k
¼ −λ0ijk½d̃ckQT

j C · Lj þ dck
TCL̃i ·Qj

þ dck
TCQ̃j · Li� þ H:c:; ðA6Þ

LUc
i D

c
jD

c
k
¼ − 1

2
λ00ijk½ũci ðdcjTCPLdckÞ þ d̃cjðuci TCPLdckÞ

þ d̃ckðuci TCPLdcjÞ� þ H:c:; ðA7Þ

where Q, L are quark, lepton doublets satisfying QTC·
L ¼ uTCPLe − dTCPLν, and λijk ¼ −λjik and λ00ijk ¼ −λ00jik
due to the gauge symmetry.
The soft supersymmetry breaking terms consist of the

RPV part,

−Lsoft
RPV ¼ 1

2
AijkL̃i · L̃jẽck þ A0

ijkL̃i · Q̃jd̃
c
k þ

1

2
A00
ijkũ

c
i d̃

c
j d̃

c
k

þ Bihu · L̃i þ m̃2
dih

†
dL̃i þ H:c:; ðA8Þ

while the R-parity conserved part is given by

−Lsoft ¼ ðm2
Q̃
ÞijQ̃†

i Q̃j þ ðm2
ũcÞijũc†i ũcj þ ðm2

d̃c
Þijd̃c†i d̃cj þ ðm2

L̃
ÞijL̃†

i L̃j þ ðm2
ẽcÞijẽc†i ẽcj þ ðAe

ijhd · L̃iẽcj þ Ad
ijhd · Q̃id̃

c
j

− Au
ijhu · Q̃iũcj þ H:c:Þ þ m̃2

dh
†
dhd þ m̃2

uh
†
uhu þ ðBhu · hd þ H:c:Þ þ 1

2
M1

¯̃B B̃þ 1

2
M2

¯̃
W3 W̃3þM2

¯̃Wþ W̃þ

þ 1

2
M3

¯̃ga g̃a; ðA9Þ

where Q̃ and L̃ are squark and slepton doublets, respectively.
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