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Abstract

The development of hadron machines is one of the main areas of focus in accelerator
technology and is specifically called out as a priority in the high energy physics 10-
year plan[70]. The trend for future accelerators is to move towards very high-intensity
high-power accelerators to be used as proton drivers for secondary particles, target
stations, and high-energy accelerators. These accelerators require lower beam losses
and more stringent beam controls to maintain typical loss levels and meet specific
final beam distributions.

This study focuses on the recently documented coupling resonance in the
Spallation Neutron Source (SNS) accumulator ring. It was previously demonstrated
that certain beam configurations resulted in a loss of independent control of the on-
target transverse beam profiles[12]. This is an issue for SNS production operations.
Yet there has not been a robust experimental exploration of the coupling resonance
aimed at understanding the effect on the evolution of the beam distribution. The
SNS is an ideal facility for this exploration.

We studied the coupling experimentally using traditional wire scanners and a
novel Electron Scanner. We demonstrated coupling in both the RMS size and beam
profile that was correlated with the tune split. The coupling started at low intensity
and had an inverse relationship with intensity; indicating that it is not a Montague
resonance. We modeled one experiment using a realistic self-consistent particle-in-cell
simulation in PyORBIT. We demonstrated strong coupling that was very sensitivity

to the tune split. By comparing fringe field models, we demonstrated that fringe fields
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are the source of the resonance. Our final experiment focused on mitigating the effects
during operations. We used the Electron Scanner to demonstrate that the most recent
production settings produced no coupling. Further mitigation of the resonance should
not be necessary, provided that the tunes remain split. Additionally, we calibrated
the newly installed Electron Scanner by measuring the undeflected electron beam,
the Twiss parameters, and establishing a benchmark with the wire scanner emittance
station. In conclusion, this dissertation constitutes a significant advancement to the
overall knowledge of equal tune resonances in circular particle accelerators, especially

the effect on the beam profiles.
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Chapter 1

Introduction

Particle accelerators were developed to investigate the fundamental properties of
matter. Since their origins, the development of accelerators has been driven by their
application to other areas of research. More powerful accelerators have facilitated an
increased understanding of the world. However, as the technology has developed and
become more recognized, accelerators have also been applied to various other fields,
including medical physics and food sanitation. Modern accelerators have reached a
level of development where they are starting to be used as proton drivers for secondary
particles, target stations, and other applications. These applications are collectively
referred to as accelerator driven systems (ADSs). Accelerators used in ADSs push
the frontiers of accelerator physics. The trend for future accelerators is to continue
increasing beam intensity, beam power, and machine reliability. With these increases,
tighter control restraints are required in order to maintain acceptable safety levels
and achieve more advanced technical objectives. Specifically, these new applications
require lower beam losses and more stringent beam controls to maintain typical loss
levels and meet specific final beam distributions. Therefore, the development of
hadron machines for use in ADSs is one of the main areas of focus in accelerator
technology and is specifically called out as a priority in the high energy physics 10-
year plan[70].



The Spallation Neutron Source (SNS) is the most powerful pulsed spallation
neutron source in the world. One of the accelerator requirements is to maintain
a specific uniform beam distribution on the final target. This uniform distribution
reduces peak particle densities, which are associated with increasing target lifetimes.
For this specific reason, the SNS was designed to allow independent control of the
transverse beam distributions. However, a resonance in the accumulator ring has
been associated with a reduction of control in certain beam configurations. The goals
of the proposed thesis are to characterize the fourth-order coupling resonance in the
SNS ring, and to design and test mitigation methods.

This chapter is devoted to creating a general framework for this study, including
reviewing the history of the field and establishing the objectives of this study. In
Section 1.1 we introduce the key concepts in accelerator beam dynamics associated
with this work. In Section 1.2 we review existing research into resonances. In Section
1.3 we introduce the SNS and discuss how this work benefits the SNS operations. In
Section 1.4, we introduce the three goals of this study. Finally, in Section 1.5, we

discuss the organization of this study.

1.1 Understanding Beam Dynamics

When designing an experiment using only a few low-energy particles traveling short
distances in a low quality vacuum, the ability to control the path of the particles is
not an issue. As various technologies developed, higher beam energies and greater
number densities brought into question the internal dynamics and collective motion

of the beam.

1.1.1 Space Charge Forces

Traditionally, the effects of Coulomb repulsion, or space charge, have been negligible

compared with those of the external focusing fields due to the low number density



of particles being accelerated. With the accelerator advancements of the 1950s,
including strong focusing[9] and the parameterization of the transverse equations
of motion[10], it became possible to design and build facilities that had greater
particle densities and higher beam energies. It was not until this time that it became
necessary for accelerator physicists to incorporate intra-beam dynamics into their
machine designs.

Until recently, space charge effects were considered a problem mainly for linear
accelerators, where particle densities are higher and particle velocities are lower. With
the latest generation of modern accelerators, whose construction began around the
end of the century, it was recognized that space charge effects could be significant in
synchrotrons as well, due to both the high beam intensities and the periodic nature
of the system. Though the beam particle densities are lower in synchrotrons than in
linacs, longer storage times and tighter beam loss constraints result in more stringent
requirements on beam control. It is now widely accepted that controlling the beam
loss in high intensity hadron machines requires a firm understanding of the space
charge effects.

One particular space charge effect that is problematic for the most recent
generation of high intensity machines is space-charge-induced coupling in the
transverse planes, which compromises the independent control of the transverse beam
distributions. It is desirable in any modern synchrotron to have independent control
of the transverse planes. The reasons are two-fold: 1) A lack of precise beam control
in each plane can lead to undesirable beam loss and radiation; and, 2) Beam targets
and interaction point regions often have separate tightly constrained specifications

for the beam configuration, such as size or peak density, in each plane.

1.1.2 Resonances

Forces external to the designed accelerator lattice can cause resonances within the

beam when they occur at regular intervals in the beam motion. When resonances are



not properly anticipated or mitigated, they can result in a loss of control of the beam
dynamics, including a complete loss of the beam. The most common and dangerous
source of resonances are the physical imperfections of the lattice. While physical
imperfections cannot be avoided, the beam parameters can be selected to reduce the
effects of these errors. A more detailed presentation of resonances will be presented

in Chapter 3.

1.2 History of Resonances

Prior to modern accelerators, resonances were studied extensively in the context
of classical mechanics. Resonances were later applied to accelerators as beam
dynamics became an important topic for accelerator design and development. The
first applications were solely focused on resonances induced by alignment errors
and non-linearities in design lattice elements. As accelerator beam intensities
increased, the focus shifted away from more common and well-documented lower
order lattice resonances towards higher order lattice resonances and space charge

induced resonances.

1.2.1 Lattice Resonances

In 1958, Courant and Snyder officially published their seminal paper parameterizing
betatron oscillations and applying the theory of resonances to circular accelerators[10].
Primarily focused on lattice errors and unstable beam configurations, Courant and
Snyder derived integer and half-integer resonances, as well as second-order coupling
resonances. They generally expanded these resonances to higher orders and discussed
cases of instability arising from sum resonances.

In the period surrounding this research, other scientists around the world both
expanded on present theories and devised various other methods for analytically

deriving resonances. Moser used the method of isoenergetic reduction, which allowed



him to address rational tune values[67]. Schoch reproduced the work of Moser using
periodic kicks in 1955 and later applied the method of “slowly varying amplitude and
phase” to derive resonances and concluded with remarks regarding the construction
of the CERN Proton Synchrotron (PS)[83]. Hagedorn extended Moser’s work to two-
dimensional systems[28] and then applied that work to betatron oscillations with the
help of Schoch [29].

In 1976, Guignard would publish an essential guide to all coupled resonances, in
which he would analytically derive the coupling coefficient, bandwidth and growth
rates of resonances[27]. Two years later Guignard applied this research by examining
the effects of various sources of perturbations, using the CERN Intersecting Storage
Rings as an example[26].

In addition to analytical theories, lattice resonances have a long history of
experimental studies. Of particular interest to our research are studies focusing
on higher order resonances. In 1971, Morton and Spencer needed to optimize the
luminosity of the Stanford Linear Accelerator Complex storage ring, SPEARI[66].
This was achieved through the use of several skew quadrupoles placed in the lattice to
minimize the quadrupolar coupling, created from rotational alignment errors present
in the lattice quadrupoles. Several decades later Safranek discussed using this same
methodology to minimize coupling when he presented a new design and measurement
of a low emittance lattice for the SPEAR storage ring[79].

In his text Accelerator Physics, Lee presented experimental results collected from
the Indiana University Cyclotron Facility Cooler Ring as an example of linear coupling
resonances[55]. In the IUCF, the primary source of the resonance was a solenoid used
for cooling, however quadrupole tilt and orbit deviations in sextupoles were not ruled
out. Independent control of the beam tunes were obtained by using skew quadrupoles.

Lee continued to explain that while sextupoles are traditionally associated with
third order resonances, all higher order multipoles are capable of nonlinearities that,
while usually negligible, can produce other higher order resonances under the right

circumstances. In 1973, Ohnuma published results stating that sextupoles in the



Main Ring at the National Accelerator Laboratory were inducing a fourth order
resonance[68]. The tune of the beam was selected to avoid the traditional third order
resonances associated with sextupoles. However, they had not expected that second
order effects of the strong sextupoles would produce intense fourth order resonances.
This was discovered by noting the strength of the resonance and the dependence
on the sextupole settings. Ohnuma cites private correspondence with Ruggiero as
stating similar effects were being studied at SLAC’s Positron-Electron Project and
the ongoing development of Brookhaven National Laboratory’s ISABELLE. All three
accelerators would rely on strong sextupoles for long term beam storage during normal

operations.

1.2.2 General Developments in Space Charge Resonances

In 1968, Montague published on the fourth-order non-linear coupling resonances which
now bear his name[65]. Montague’s work focused on the effects of tune-dependent
coupling between the transverse planes of motion due to space charge. While others
published on space charge effects, this work described the first resonances induced by
space charge forces.

Sacherer was another early researcher in this area and was known for his 1968
dissertation describing the effects of space charge forces on the beam envelope
equations for circular accelerators and outlining key modes of oscillation[78]. The
works of Montague and Sacherer contributed significantly to the understanding of
space charge related beam dynamics problems in high intensity accelerators.

Other early works in this area were two papers by Lee and Riabko, the first of
which developed a Hamiltonian formulation for a charged-particle beam[57] and the
second of which used this Hamiltonian to further investigate the critical envelope
mismatch needed for halo formation in space-charge dominated beams|76]. Later,
Lee and Okamoto expanded on their previous works by deriving equations of motion

for space-charge dominated beams in synchrotrons[56]. Fedotov and Gluckstern



also published papers on halo formation from the alternative perspective of an
analytical derivation of the effect from beam mismatch[17] and from an analysis
of numerical simulations of stationary beam distributions using non-ideal smooth
focusing lattices[24].

In 2001, Galambos, Danilov and Holmes demonstrated that simulations could
reproduce experimental results when space-charge effects were taken into account[23,
47]. These publications provided a necessary link between experiment and theory.
Cousineau, Holmes, and Lee later investigated the effects of lattice structure and
finite momentum spread on the resonance behavior through simulations[13]. In her
thesis, Cousineau related these simulations to experimental results and investigated

the collective motion of the beam[11].

1.2.3 Hoffman at GSI

Among the first synchrotron facilities to present research on space charge coupling
was the GSI Helmholtz Center for Heavy Ion Research (GSI) in Germany. The
SIS18 booster was added to the GSI facility in 1990. Unlike the SNS, the SIS18 is a
rapid-cycling synchrotron, whereby the particle energy is increased while increasing
the magnetic fields to maintain a fixed particle orbit. Hofmann, Franchetti, and
others have extensively studied the presence of coupling in the SIS18 booster through
analytic calculations and simulations. Hofmann’s analytical work is typically based
on static Kapchinskij-Vladimirskij (KV) beams[53] which linearize the equations of
motion and allow analytic solutions to be determined[33]. These solutions often rely
heavily on RMS values to describe the beam and are unable to take into account
more realistic beam distributions. Of particular interest to our research, Hofmann
and Franchetti presented theory and simulations on the coherent resonance coupling
due to space charge in synchrotrons with tunes allowing for Montague resonance[39].

Fedotov, Holmes and Gluckstern presented the results of simulation studies looking



at higher order beam modes driven by space charge coupling resonance, including

Montague resonances, in the early SNS lattice design[18].

1.2.4 Sakai at KEK and Hotchi at J-PARC

Montague resonances are particularly relevant in high intensity small tune split
facilities like the SIS18 and the SNS. Another facility of this type is the rapid cycling
synchrotron at Japan’s High Energy Accelerator Research Organization (KEK). In
2000, Sakai reported a similar coupling effect in the KEK booster and stated that
the problem limited their ability to achieve higher intensities[80]. In 2001, Sakai
confirmed that the intensity limiting effect was due to space charge[81].

In the years that followed KEK was combined with other facilities and recom-
missioned in 2007 as the Japan Proton Accelerator Research Complex (J-PARC).
The facility commissioning publication included single particle tracking simulations
of the beam storage mode[49]. It found multiple sources for third and fourth order
resonances, including an octupole field component in the main magnets and the
same second-order effect of the sextupoles as noted by Ohnuma[68]. In 2015, Hotchi
indicated that they had moved the operational tune parameters onto the second order

difference resonance to avoid more serious multipole resonances[48].

1.2.5 Meétral at CERN

In 2005, Métral published on a series of space charge studies conducted at the CERN
PS[64]. One study conducted between 2002 and 2004 focused on intensity-dependent
emittance transfer between the two transverse planes due to a Montague resonance.
This study compared experimentally measured emittances during resonance crossing
to those of simulations of the same. While the study had great success, they only
addressed the beam in terms of emittance and failed to describe the change in
profile due to the resonance. This same topic has been brought up in discussions

of the Working Group A: Beam Dynamics in High-Intensity Circular Machines at



the International Committee for Future Accelerators’ (ICFA) Workshop on High
Intensity and High Brightness Hadron Beams (HB). In 2012, this working group
noted that experiments and simulations regarding the Montague resonance were still
being conducted at the CERN PS[20]. In 2014, the same working group discussed
moving the CERN PS Booster (PSB) tune onto the Montague Resonance[51]. After
over a decade of experiments and simulations, the Montague resonance is still a topic

for discussion regarding both the CERN PS and PSB.

1.3 The Spallation Neutron Source

Located at Oak Ridge National Laboratory, the SNS is the world’s most intense
pulsed neutron spallation source. The SNS accelerator is a 1.4+ MW proton driver
that produces 700 ns pulses of approximately 104 protons at energies around 1 GeV.
To accomplish this, the SNS linac accelerates minipulses of 10''H~ to 1 GeV and
accumulates them in the 248 m circumference SNS ring. The accumulated beam is
transported through a final beam line to a liquid mercury target for neutron spallation.
In order to prevent excessive damage to the stainless steel target shell during beam
operations, the on-target beam requirements, such as the beam size and peak density,
are very tightly controlled. Deviation from these parameters can lead to a shortened
lifetime of the target.

In addition to the very high beam intensities, the SNS has flexibility in generating
beam configurations, and it boasts an extensive suite of beam diagnostics. Moreover,
the space charge coupling phenomenon is routinely observed at the SNS[12] at
the design lattice settings, and presents a challenge for satisfying the on-target
beam parameter requirements during operations while also minimizing beam losses.
Specifically, when space charge coupling becomes a significant effect, it impairs the
ability to control the beam size and configuration independently in each plane,
resulting in unpredictable final beam distributions. As new applications require

the development of very high intensity hadron accelerators to be used as proton



drivers for secondary particles, target stations, and high-energy accelerators, the beam
requirements of these facilities become even more stringent.

As shown, the problem of space-charge-induced coupling in synchrotrons has been
approached mainly through theoretical or semi-analytic works that assume idealized
conditions for the lattice and utilize primarily RMS beam parameters. The results of
these studies, while insightful, are not directly applicable to machine scenarios where
the lattices are complex and the parameters of interest are not well described by RMS
quantities. Some experimental studies have been conducted at CERN and J-PARC,
however there has yet to be a robust experimental exploration of the space charge
coupling phenomenon aimed at understanding the effect of space-charge-induced
coupling on the evolution of the full beam distribution. This topic is the target

of the proposed thesis.

1.4 Objectives

This dissertation will focus on advancing our knowledge of this resonance beyond
RMS parameterization and will answer the more complex question of how the beam
distributions are effected. These results will be of particular interest to any future
high intensity hadron machines that seek control over specific beam distributions.

The specific goals of this dissertation are as follows.

1.4.1 Goal No. 1

Due to the strict beam loss requirements, high-intensity hadron accelerators fre-
quently have specific beam requirements that go beyond RMS parameters. The
second goal of this dissertation is to expand the understanding of this resonance
beyond the RMS-based parameterizations currently used for coupling resonances.
This will be accomplished by experimentally measuring the effects of the resonance

on the beam distribution using the electron scanner. The electron scanner is located

10



in the accumulator ring and is a device capable of providing profiles in the horizontal
and vertical planes during the accumulation and storage of the beam. The electron
scanner is unique to the SNS and it will allow us to provide an unprecedented view

of the effects of the resonance.

1.4.2 Goal No. 2

As the history of resonances has shown, determining the sources of beam dynamics are
not always as straightforward as they appear. Coupling resonances have been known
to be caused by rotated quadrupoles, first and second order effects of sextupoles,
octupole field components and even space charge. The first goal of this dissertation

is to establish the source of the resonance in the SNS.

1.4.3 Goal No. 3

The original objective for this research has always been to mitigate the coupling
effect for regular facility operations. The third and final goal of this dissertation is
to investigate mitigation of the coupling effect. Due to the inherent flexibility of the
SNS lattice, we have a range of tunes accessible to accomplish this goal, specifically
@, = [6—7] and @, = [4—7]. The current production tune was chosen largely because
it avoids resonances that would induce large beam losses. At the time that this tune
point was selected, the effects of this coupling were unknown. It was suggested that
future studies should be conducted to determine the full effect of the coupling[16],
but this work was not carried out prior to this study.

This final goal will require development of a lattice to split the SNS tune beyond
the measured stop band for the coupling. Constraints determining a feasible lattice
configuration include, but are not limited to, staying within the prescribed magnet
field ranges, maintaining reasonably small beta functions to avoid increased beam

loss, meeting the design requirements of the dispersion free bending achromats, and

11



avoiding other known resonances. The new tune point will need to be experimentally

tested in the accelerator for the production beam configuration to check for coupling.

1.5 Organization

Chapter 1 provides historical background, highlights publications of interest, and
explains the relevance and objectives of this research. Chapter 2 introduces the
accelerator physics concepts necessary to understand the work presented. Chapter 3
provides an overview of the essential theory of resonances, focusing on coupling
resonances and how they apply to the SNS. Chapter 4 describes recent developments
of the electron scanner, specifically application development, measurement of local
lattice parameters, and profile benchmark. Chapter 5 presents a study of stored
beams using both wire scanners and the electron scanner. Chapter 6 presents a
study of SNS production-style beams using primarily the electron scanner. Chapter 7
presents a study using modern accelerator software to simulate the study of stored
beams presented in Chapter 5. Chapter 8 summarizes the results of this research and

presents any final thoughts.
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Chapter 2

Theory of Beam Dynamics

In Chapter 2, we will review basic particle accelerator physics. The objective of
this Chapter is to provide background knowledge to those that might not be readily
familiar with the principle theories required to understand the work presented in this
dissertation.

Initially, we will describe single particle motion in accelerators. Specifically, in
Section 2.1, we will discuss the passage of particles through a series of magnets and
drift sections, collectively referred to as elements, via transportation matrices. The
simplest representation of an accelerator is a series of elements, which is referred to as
a lattice. In Section 2.2, we will discuss the motion of the particles around the ideal
or reference orbit via Hill’s Equation. From the solution to Hill’s equation, we are
able to derive the motion of the particles in phase space. This leads to the definition
of emittance, tune and the Twiss parameters.

Building on single particle dynamics, we describe the collective motion of the
beam in real space and phase space. In Section 2.3, we introduce the concept of the
beam envelope as it describes the collective motion of the particles and allows us to
describe the overall size of the beam. In Section 2.4, we define the emittance in terms

of the beam distribution. In Section 2.5, we discuss how the Twiss parameters can
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be transported through the accelerator lattice. Finally, in Section 2.6, we introduce

space charge, or the effects of Coulomb repulsion.

2.1 Matrix Formulation for Lattice Elements

The transportation of a particle beam through an accelerator is, in many regards,
analogous to the transportation of light through a series of optics. Each element
within the accelerator lattice uses magnetic fields to bend the path of each particle
in the beam. We describe the current state of each particle with the horizontal
and vertical betatron phase space coordinates or betatron state vectors. These are
generically written as (x, '), where x represents the position of the particle in either of
the transverse directions, and 2’ represents the derivative of the position with respect
to the position in the lattice, s. These betatron state vectors allow us to write the
particle’s future state as the matrix multiplication of the effect of the lattice element

and the current state:

=m- (2.1)

where m is the transportation matrix for a given lattice element. The transportation
matrix describes how the lattice element effects the path of the particle. The

transportation matrix for a drift element is equal to
MDyify = (2.2)
0

where [ is the length of the drift space. Unlike traditional optics, most accelerator
elements do not have the same effect in both transverse directions. Due to the

geometry of the magnetic field, a quadrupole focuses in one direction and defocuses
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in the opposite direction. The transportation matrices for a quadrupole magnet are

coS (\/fl) \/—% sin (\/Kl)

VR (VR cos (VET) >

mFocusing Quadrupole —

and

cosh (lﬁ) \/‘1?‘ sinh <l\/m>
VIE sinh (1/IKT)  cosh (1y/]K])

(2.4)

MDefocusing Quadrupole =

where K is the focusing function and [ is the length of the element. In the thin lens
approximation, as [ — 0, we find that the transportation matrix for both elements

can be written as

1 0
MQuadrupole = (25)
~1/f 1
where f is the focal length of the quadrupole. The focal length is defined as
f = lim ﬁ, where f < 0 is a focusing quadrupole and f > 0 is a defocusing
quadrupole.

The simplest example of a focusing lattice is the FODO lattice, which consists of
alternating pairs of focusing and defocusing quadrupoles separated by drift spaces.
If the drift lengths are properly selected, then the overall effect of the alternating
quadrupoles will focus the beam in both transverse directions. Figure 2.1 shows an
example of a simple FODO lattice. The top portion of the graphic shows the FODO
lattice as a ray diagram from a traditional optics lattice. The middle portion of
the graphic shows the focusing function along the length of the FODO lattice. The
focusing and defocusing quadrupoles are represented by blocks of equal height and
width but opposite sign. The bottom portion of the graphic shows the evolution of
the transverse phase space as the beam advances through the FODO lattice. The
beam is shown to be initially diverging, focused by the first quadrupole, converging

until the second quadrupole, reaching a beam waist at the second quadrupole, and
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Traditional Optics Schematic

Accelerator Optics Schematic

b

Phase Space Diagrams

Figure 2.1: Example of a FODO Lattice in traditional and accelerator optics
schematics with the relative phase space diagrams.
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diverging afterwards. It is possible to expand the transportation matrices to handle
both transverse dimensions at the same time in a 4-dimensional matrix. This also
allows for the inclusion of coupling effects. The transportation matrices of complex
lattices are all typically handled within accelerator simulation software, along with

realistic beam dynamics.

2.2 Hill’s Equation

Accelerator lattices are designed so that a particle with the design energy and
coordinates passes directly through the center of all lattice elements. This path is
called the reference orbit. In a real accelerator, there is no ideal particle following the
reference orbit. Each particle in the distribution oscillates about the reference orbit.
In circular accelerators the reference orbit must be closed. Figure 2.2 shows how
the curvilinear coordinates follow the reference orbit. For small oscillations about the
reference orbit, it is possible to use well-established formulas for periodic motion, such
as Hill’s Equation, adapted for accelerators. In the absence of space charge forces,

Hill’'s Equation for transverse particle motion in an accelerator lattice is written as
z"(s) + K. (s) z(s) =0 (2.6)

where x is the amplitude of the oscillation from the reference orbit along either of
the transverse axes (horizontal or vertical), s is the distance along the reference orbit,
the primes denote derivatives with respect to s, and K,(s) is the focusing function
of the accelerator lattice. The focusing function is periodic in s for periodic lattices,
such as circular accelerators[55, 88]. Hill’'s Equation defines the betatron oscillations
of particles around the reference orbit. As discussed in the previous section, we
can determine the motion of individual particles through any portion of beamline

by multiplying the individual transfer matrices, K,(s), of each lattice element. For
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Figure 2.2: Curvilinear coordinate system (z, 9, $) for the equations of motion in
circular particle accelerators. The reference orbit is shown in black and the particle’s
orbit is shown in blue.
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stable motion in circular accelerators, we seek solutions of the form
z(s) = Aw(s) cos(¢(s) + ) (2.7)

where A and § are the constants of integration determined by the initial conditions,
w(s) is an amplitude function required to have the same period as the lattice, and
1(s) is the phase advance function equivalent to /K, (s) s. By inserting this general

solution into Hill’s Equation, we find

[A K,(s) w(s) + A w"(s) — A w(s) ¥?(s)] cos(v(s) + )
—[A w(s) ¢¥"(s) — 2A w'(s) ¢'(s)]sin(¥(s) + 0) = 0. (2.8)

We can now solve the sine and cosine terms independently. The sine term yields the

phase advance equation,
c

V) = s (2.9
where ¢ is a constant of integration. After substituting our new formula for ¢(s), the
cosine term yields the betatron envelope equation,

w(s) |w”(s) + c w(s)| = . (2.10)

We will revisit the betatron envelope equation in Section 2.3.
Upon reexamining the general solution in Equation 2.7, we find that it can also

be rewrite as

z(s) = w(s) [Al cos(s) + Ag sin(s) (2.11)
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where we have chosen to expand the cosine, and replace both of the constants of

integration, A and ¢, with A; and A,. The derivative of the new general form is

#'(s) =[ A1 w/(s) + A ¥(s) w(s)] cosy(s)

+[A2 w'(s) — Ay ¥'(s) w<s)} sin(s). (2.12)

We can apply initial conditions to determine the constants of integration. We state
that z(s = s9) = zo and 2'(s = s9) = 2. Additionally, the phase advance, ¥(s),
is measured with respect to some initial location and we are free to assume that
(s = s9) = 0. Therefore, cost)(sg) = 1 and sint)(sg) = 0. Applying these initial

conditions, we find that

(2.13)

from Equation 2.11, and
Ay = (2.14)

from Equation 2.12. We can reinsert these definitions into the general solution and

its derivative, Equations 2.11 and 2.12. This can be written as the following matrix

equation
w(s)w’(s) . w2(s) .
o(s) | cos(s) — % sin ¢ (s) % sin () 2
/ - 1+|:w(s):f (S):| . w(s)w'(s) . : ’
2'(s) — i siny(s)  cosy(s) + =E T siny(s) T

(2.15)
where the phase advance from sy to s is determined by ¥ (s) = fs‘z cds [w*(s). In
Equation 2.15, we find that w?(s) is always scaled by the constant of integration c.
Therefore, it is customary in accelerator physics to define more fundamental variables

and rewrite the equation. The new variables are

(2.16)



and
dpg
(3) 1 iS)

(2.17)

where a(s) can be simplified to —[w(s) w'(s)] /c by inserting the definition of B(s).

By rewriting Equation 2.15 in terms of these new variables, we find that

x(s) _ [ cos Y(s) 4+ a(s) siny(s) B(s) siny(s) [ ™o
z'(s) _%z)(g) sin(s) cos(s) — a(s) siny(s) x
(2.18)

We can see that it also makes sense to define v = (1 + a2) /3. We refer to «, 3,
and 7y collectively as the Twiss or Courant-Snyder Parameters. These are not related
to the Lorentz factor, 7, or relativistic speed, f. The updated general solution in

Equation 2.7 becomes

z(s) = A'\/B(s) cos (1#(3) + 5) (2.19)

where A’ is the updated constant of integration that incorporates ¢, ((s) is the
betatron function of the lattice, ¢(s) is the phase advance of the particle, and ¢ is
the constant of integration for the particle’s phase. We would now like to determine
the constant of integration, A’, in terms of the Twiss parameters. We find that the

derivative of the updated general solution in Equation 2.19 is

Z'(s) = A’ﬁ@ cos <w(s) + 5) — A'\/f(s) sin <w(s) + 5) P (s). (2.20)

Using a(s) = —f/(s)/2 and ¢/(s) = 1/6(s), this simplifies to become

a(s)z(s) + B(s)2'(s) = —A'\/B(s) sin(@/)(s) + 5) P (s). (2.21)

We can then square Equations 2.19 and 2.21 and add them. This produces the

following formula for the constant of integration
e=vy2’+2ars + 2" (2.22)
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where we define e = A’?. This is referred to as the Courant-Snyder invariant, but is
most commonly known as the emittance. The phase space area enclosed within the
Courant-Snyder invariant is equal to we, where the 7 is frequently included in the
units as [rmm-mrad]. Figure 2.3 shows the phase space ellipse for the particle. The

final general solution to Hill’s equation is

x(s) = v/ez Be(s) cos (@/}x(s) + 5) (2.23)

where €, and § are constants of integration, 1, (s) is the betatron phase, and ,(s) is
the betatron amplitude function[92]. The quantity €, represents the total phase space
area intercepted by the particle, and is conserved in the absence of nonlinearities in
the lattice[15]. The betatron amplitude function describes the effect of the various
focusing magnets on the path of the particle, and is sensitive to the strength and
arrangement of magnets in the lattice. As the particles proceed from element to
element, they undergo a phase advance, A, along their phase space trajectory.
Figure 2.4 shows an example of the phase advance of the individual particle and
the rotation of the beam in phase space as the beam is transported through the
lattice. The total phase advance of a particle per lattice period is called the tune.
For circular accelerators, the tune is defined as the total phase space advance per
complete revolution around the circumference of the accelerator and is defined as
A, (8o — Sg) 1 ds

onrQI:TE% B.(5)

(2.24)

As we will discuss throughout this study, the transverse tunes play a critical role in

accelerator beam dynamics.
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Figure 2.3: Phase space ellipse

Figure 2.4: The transverse phase space of the beam as it advances through the
lattice from s; to s5. The rotation of the phase space ellipse is shown in blue and the
particle’s location is shown in red.
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2.3 Envelope Equations

The discussion has so far been limited to single particle dynamics. However, we need
to understand the beam as an ensemble. By considering the path of the particles
that lie along the furthest edges of the beam at each location, we can write a similar
system of equations that describe the entire beam ensemble. Figure 2.5 shows the
beam envelope relative to the path of individual particles within the beam. To find
the extremum of the stable closed orbit motion defined by Equation 2.23, we can set
coS (zﬂx(s) + 5) = 41. Thus, we find that the envelope of an ensemble of particles is
defined by

Ra(s) = £y/E /B, (5) (2.25)

where R,(s) is the envelope radius of the beam. We can quickly see that the overall
size of the beam depends only on the emittance, or phase space area, and the betatron
function at any particular location[55, 93]. If we interpret the beam envelope, R,(s),

as being represented by the RMS of the beam, then we find that

xRMS(S>2

ERMS = 5(5) (2-26)

If we insert the envelope radius given in Equation 2.25 into the betatron envelope

equation given in Equation 2.10, we find

52

R!(s) + K.(s) Ry(s) — R—Z =0 (2.27)

where K, is the focusing function, R, is the envelope radius, and ¢, is the emittance.

It can be shown that the beam envelope oscillates at roughly twice the particle tune[8].
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Figure 2.5: Example of a beam envelope in a periodic lattice. The beam envelope
is represented by the two solid black lines at the extremes of the orbit, and the three
blue inner lines demonstrate the variation in the orbit for different values of 9.
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2.4 RMS Emittance

Additionally, when we need to discuss the beam as an ensemble of particles, we can
define the emittance in terms of the beam distribution. We can write the average

position and velocity of the beam distribution as

(x) = /:Ep(:r,x') dx dz’ (2.28)

and

(z) = /x’p(a:,x') dx da’ (2.29)

where p(x,z’) is the normalized distribution function. The RMS widths of the beam

distribution can then be written as

ﬁ:/@-@ﬁM%@mw' (2.30)

and

o2 = /(:r' — (&))? pla, 2') dx da’. (2.31)

Additionally, the correlation between the position and velocity is
ag:/@—mﬂy—wmmwmmﬂ (2.32)
Using these definitions of the beam distribution, we can write the RMS emittance as
ERMS = (/0202 — 02 . (2.33)

This section is used for a practical application later in this study. RMS beam
measurements are used to calculate the wire scanner emittance measurements and
errors by using the Least Squared Model (LSM). The results are presented in
Section 4.4. In Sections A.3 and A.4, we review the mathematics behind determining

the errors of the initial beam distribution and the Twiss parameters, respectively.
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2.5 Twiss Transport

Liouville’s Theorem states that the phase space area of the beam is constant provided
that the lattice elements are linear transformations[55, 93]. Therefore the emittance
of the beam is conserved in a linear lattice. We can describe the phase space of the
beam at any point along the accelerator lattice using the Twiss parameters. It now
becomes important to know how to transport the Twiss parameters, and therefore
the phase space ellipse, through the accelerator lattice. We can use a general solution
of Hill’'s Equation and the constant emittance to determine transportation matrices
that will advance the Twiss parameters from one location in the lattice to the next.

In this section, it is essential to remember that the Twiss parameters, focusing
function, and matrix transportation elements are all functions of the lattice position.
In order to simplify the notation, we will use the notation £(sg) = Sy and K(s) = K.
If we assume the initial conditions of z(s = 0) = xy and 2/(s = 0) = xy, then we can

rewrite the general matrix transportation as
z(s) = C(s)xg + S(s) x (2.34)

where C(s) and S(s) are functions of the position along the reference orbit, s. We

can use the derivative of the solution to create the following matrix equation

= . (2.35)

x C'(s) S'(s) x
where C'(s) and S’(s) are the derivatives of the functions C'(s) and S(s) with respect
to s, respectively. This equation allows us to advance the betatron state vector from
position sy to s. As an example, Equations 2.3 and 2.4 show the transportation
matrices for a focusing and defocusing quadrupole, respectively. We also know that

the transportation matrix is invertible. This means that we can use matrix algebra
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to find the following equation for xy(z,x’) and xj(z, 2)

Zo B 1 S'(S) —S(s) | .
) ~|C(s)S"(s) — C'(s) S(s)] —C'(s) C(s) o] (2.36)

Additionally, we know that the phase space area of the beam must remain constant.
Therefore, the determinant of the transformation matrix must equal one for any single

element or series of elements. The emittance at the initial position, sq, is
€ ="0zs+200T0T) + Po T} (2.37)
If we substitute the simplified form of Equation 2.36 into Equation 2.37, then we find

£ =Y :S'(3)2 x? —25'(s) S(s) x 2’ + S(s)? x’Q]

+2aqg [—8'(s) C'(s) 22 + (S'(s) C(s) + S(s) c’(s)> v’ — S(s) C(s) x'Q]

+6o :0'(s>2 22— 20"(5) O(s)z o' + C(s)? x’2] . (2.38)

We can rearrange this equation so that it looks like the formula for the emittance at

the final position, s.

e = :’yo S§'(s)2 — 200 S'(5) C"(s) + By c’<s>2] 22

=270 5'(5) S(5) + 200 (8'(5) C(s) + S(5) C'(5)) = 280 C'(5) C(s)| 2’

+ :%5(3)2 — 20y 5(s) O(s) + 500(3)2] o’ (2.39)

Recalling that the emittance is a constant, we can compare the emittance formula at
the final position, Equation 2.39, with the emittance formula for the initial position,
Equation 2.37. After examining the coefficients of the beam distribution terms, we

can see that the Twiss parameters at the initial position can be transported to the
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final position using

B(s) Bo
a(s) | =M- | o (2.40)
V(s) "o

where the T'wiss transportation matrix is defined as

C(s)? —2C(s)S(s) S(s)?
M=| —C(s)C(s) C5)Ss)+C)S(s) ~S()S's) |- (24
C'(s)? —2C"(s) S'(s) S'(s)?

This Twiss transportation equation is used in Section 4.3.2 to determine the
Twiss parameters at the locations of the Electron Scanner. The value of 3 is known
at the two nearest quadrupoles, located at sy and s;. The top row of the Twiss

transportation equation can be written out as
B =C(s)* By — 2 C(s)S(s) ag + S(s)* Y. (2.42)

Substituting the definition of v, we find the following equation for ay

o — Bo C(s) S(s) £ +/B1Bo S(s)? — S(s)*
’ S(s)? '

(2.43)

This allows us to use the knowledge of 3 at the initial and final location and the
transportation matrix between the locations to determine the value of ay.
The general error function is:
p
of
Af (21, Toy o 1) =
[ (@1, @ 7= oz,

i=1

)2Ax?. (2.44)

Therefore, the error for our calculated oy parameter is

o 805() 2 9 80&0 2 9
Moo=\ [(Ga) A+ (55 ) A (2.45)
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where we are only focusing on the error contributions from the measured g values. As
discussed in Section 4.3, we rely on an established accelerator simulation application
to calculate the transportation matrix. We are making the assumption that the major
error contributions will come from the newly measured [ values. This is a reasonable
assumption as this application has been used in numerous other studies to successfully

compare simulated results to experimental results.

2.6 Effects of Space Charge

At higher intensities, internal forces, specifically Coulomb repulsion, become non-
negligible compared to external fields and can no longer be neglected. Here the
beam dynamics become significantly more complicated than the single particle
dynamics previously discussed. Fortunately, the original Hill’s Equation presented

in Equation 2.6 can be modified to include space charge, resulting in
(E”(S) + KHC(‘S) 113(8) = FSpace Charge (246)

where Fspace Charge ¢ Beam Intensity/ 332, The space charge term is also dependent
on the particle’s location within the beam distribution[15]. The specific form of
Hill’s Equation is now dependent on the beam distribution and can be challenging
to solve analytically even for simple cases. Examining the general form of the
equation, we can see that the space charge term provides a net defocusing effect that
is present throughout the transportation process[55]. This defocusing effect produces
a downward shift in the transverse tunes of each particle. This is known as the space

charge tune shift and is defined as

1
AV:(: = 4— %BI(S) AKSpace Charge dS (247)
m
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where AKgpace charge 18 the defocusing effect of the space charge forces. In certain
idealized beam distributions, the space charge term is independent of the particle
location and, therefore, all of the particles experience the same defocusing effect.
However, in realistic beams, all particles experience defocusing effects of varying
strengths depending on the beam distribution and the particle’s location. Typically,
the particles near the center of the beam experience larger tune shifts than the
particles on the edges of the beam. The result is a spread in the distribution of
single particle tunes. This effect is called the Laslett or incoherent space charge tune
shift. Figure 2.6 shows an example of the typical space charge tune shift seen at the
SNS. The space charge tune shift provides us with a figure of merit for understanding
the relative strength of space charge in accelerators. Intense beams can suffer from
large space charge tune shifts that can shift the beam into a resonance region. The

sources and effects of resonances will be the focus of Chapter 3. [15, 54, 55, 89]
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Figure 2.6: Tune space diagram demonstrating the effect of space charge on the
SNS beam distribution. The nominal SNS tune point is shown as a red point and the
typical SNS space charge tune spread is shown as a blue triangle.
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Chapter 3

Theory of Resonances

In order to put this study into context within an accelerator, it becomes necessary
to describe the fundamental theory of resonances. This chapter will be devoted to
this task and is structured as follows. In Section 3.1 we review the general theory
of resonances. In Section 3.2 we discuss lattice resonances, including effects from
fringe fields, and how they apply to the SNS. In Section 3.3 we discuss the Montague
resonance, or the space charge resonance, and how it might apply to the SNS. Finally,
in Section 3.4, we describe the resonances in the tune space around the nominal SNS

tune point.

3.1 Overview

Our discussion in Chapter 2 focused on ideal lattices and the theory of transporting
charged particle beams. The assumption was made that each element in the lattice
was manufactured and installed to exact design specifications. The linear terms in
the external forces were designed into the accelerator through lattice elements, such
as the focusing quadrupoles, and were accounted for in the focusing function, K(s).
In the presence of additional forces not included in the designed lattice, the quasi-
harmonic motion of the beam becomes a driven harmonic system with one or more

resonant frequencies. The driving force of this system can be the result of any number
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of sources, e.g. lattice imperfections, space charge forces, etc. For instance, in the
case of a dipole magnet error, a small kick is imparted on the beam once per turn.
Therefore, the particles experience the same momentum kick on every turn if the
tune of the beam is an integer. The result is called an integer tune resonance and will
cause large beam losses within a few revolutions. It has been well established that
integer and half integer tunes should be avoided in lattice designs due to the universal
prevalence of the driving sources and the dangerous nature of these resonances. We
will discuss both dipole and quadrupole field errors in Section 3.2. [15, 55, 78, 88, 92]

A resonance occurs when the frequency of the external force approaches the
natural frequency of the system. When these frequencies are equal, particles can
become trapped in resonant islands or forced outside of the dynamic aperture and lost.
Therefore, resonances are associated with a loss of control over the beam dynamics.
Before discussing specific sources and resulting resonances, we begin with a general
derivation of resonances for nth-order multipole perturbations.

In the context of ring dynamics, it is convenient to use Floquet’s coordinates
to help simplify the examination of transverse resonances. Floquet’s coordinates
normalize the transverse oscillations and allow us to think of the independent
coordinate in the ring as cyclical. We transform from our standard coordinate system
(u, s) to Floquet’s coordinates (w, ¢) by using

_u(s) _ [ ds
w(p) = =] 3@ (3.1)

The ideal transverse motion of particles is described by Hill’s equation in Equation 2.6.
Resonances occur from perturbations to Hill’s equation. We can think of these
perturbations in the ring as adding a driving term to Hill’s equation. The source
of the driving term determines the dependence, if any, on the position of the particle.

These perturbations can be summed, and the revised Hill’s equation becomes
w” + 1/5)70 w = Z P (p)w" Tyt (3.2)
n,r
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where w(y) and v(yp) each describe either of the transverse coordinates, v, is the
unperturbed tune for the w direction, n and r are integers indicating the order of the
perturbing force in each of the transverse coordinates, and P,,(¢) is the strength of
the coupling term. When r = 1, the perturbation does not couple the motion. This
equation can also be written for the v direction.

Here we look to simplify and rewrite Hill’s equation to find specific conditions
that produce resonances. Examining the perturbations, we find that the strength of

the perturbation is cyclical and can be written as a Fourier series,
Poi(p) = anrmeimw- (3.3)
m

Additionally, for Hill’s equation to remain valid, we expect the perturbations to
be small. Therefore, a valid first-order approximation would be to assume that
the transverse coordinates in the perturbing terms are equal to the unperturbed
coordinates. In Equation 2.23, we showed that the solution to Hill’s equation is
sinusoidal. This can be rewritten as the sum of exponential terms with arbitrary

constants. Therefore, we find that

W mwp T = E Wyeitvwoe (3.4)
[l|<n—1
r—1  ,r—1 __ 1qQUy,0
VT Ry = E Ve : (3.5)
lgl<r—1

Finally, we substitute Equations 3.3, 3.4, and 3.5 into Equation 3.2 to find

w’ + V2

QW= Z P W, Vq el em+lvwotqreo) (3.6)
Therefore, the perturbation will resonate with the motion of the beam if (m+1 vy, o+

qVy0) = Vyp- This can be simplified as (I—1) vy, 0+q 0 = —m. Likewise, the motion

in the v direction resonates if (m + lvy0 +q140) = V0. This can be simplified as
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lvwo + (¢ — 1)vyg = —m. Therefore, the condition governing the occurrence of

resonances can be generalized as

Ny Vyp + Ny Vy =D (3.7)

where n,, n,, and p are integers. Resonances are referred to by their order, which is
defined as |n,| + |n,|. The order of the resonance indicates the multipole term that
causes the resonance. The strength of the resonance decreases rapidly with increasing
order, and so, except in long term storage rings, we are typically only concerned with
resonances up to the 5th order. Ultimately, it is impossible to completely avoid
resonances. Accelerator physicists focus first on the lower order resonances during
design and development. These have the largest impact on the beam dynamics and
need to be accounted for first. The effects of higher order resonances are often
the source of beam studies, such as this one, after the machine is commissioned.
Figure 3.1 shows resonance diagrams. The second resonance diagram emphasizes the
impossibility of avoiding all higher order resonances.[26, 55, 65, 83, 92]

Resonances can affect the transverse planes independently or they can couple
the betatron oscillations between the transverse planes. This coupling is especially
evident for field errors of higher order multipoles, where the field strength in one
plane may depend on the beam position in the alternate plane[93]. Depending on
the relative signs of n, and n,, these resonances are either called sum (same sign) or
difference (opposite sign) resonances. Sum resonances can result in large beam loss
and are specifically avoided in lattice designs. Difference resonances typically do not
result in a direct beam loss but rather couple the transverse planes in an exchange
of energy, where the sum of the total energy remains constant[15, 92]. Difference

resonances are often present and can impact the beam evolution.
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Figure 3.1: Resonance diagrams with low order resonances, first through fourth
order, on the top and high order resonances, first through eight order, on the bottom.
First order resonances are shown as the black framed box, second order resonances
are shown with solid red lines, third order resonances are shown with small-dashed
blue lines, and fourth order resonances are shown with long-dashed green lines. All
higher order resonances are shown with thin black lines. The nominal SNS tune point
is shown as a red point and the typical SNS space charge tune spread is shown as a
black triangle.
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3.2 Lattice Resonances

In this section, we will discuss the most common driving terms present in all
accelerators. Specifically, we will discuss dipole errors in Section 3.2.1, quadrupole

errors in Section 3.2.2; and fringe fields in Section 3.2.3.

3.2.1 Dipole Errors

Dipole magnets are used in accelerators to curve the path of the beam. An error in
the integrated strength of a dipole creates in an extra kick in the orbit of the beam.
The result of this kick is that the beam is bumped into a different orbit, which may
or may not be closed. We can represent the erroneous kick with the addition of a

delta function to closed orbit Hill’s equation, Equation 2.6. This produces

y' + K(s)y(s) = (s —s0) 0 (3.8)

where 6 is the strength of the dipole error at sy. This shift in the orbit can also be

shown through the betatron state vector before and after the kick.

Yo Yo
Y Before = Y After — . (39)

Yo — 0 Yo
If the orbit of the particle is to remain closed, then this relationship must be true after
each consecutive revolution. The added shift would otherwise result in lost particles.

Therefore,

Yo Yo
M = (3.10)
Yo Yo — 0
where the matrix M is the transportation matrix for one turn. The transportation

matrix for sg — s was previously defined in Equation 2.18. The transportation matrix
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for one turn is defined as

CcoS 2mv + o sin 27y B sin 2wy
M = oy (3.11)
— ;?0 sin 27y Ccos 2wy — qg sin 2wy

where ¢ — 27v, and oy and () are the Twiss parameters at syo. Using double angle
trigonometry identities and basic algebra, we are able to show that the solution to

Equation 3.10 is

Bo 6

Yo Sl COS TV
— sin v . (312)
i =2 (sinmv — apcos )

In the denominator of the position and the momentum, we have sin 7. Therefore, the
betatron state vector will become infinite for any tune that is an integer. Figure 3.2
examines the phase space diagrams for two cases where the particle sees a dipole error.
The first case assumes that the tune is an integer and we can see that the effects of
the kick add each turn. This illustrates how a dipole error results in a dangerous
resonance for beam with an integer tune. The second case assumes that the tune is
a half integer and we can see that the effect of the dipole error is mitigated. We will

see in the next section why half integer tunes are also avoided.

3.2.2 Quadrupole Errors

Quadrupoles are the most common magnets in every accelerator. They are used to
focus the beam as it is transported along the beamline. An error in the integrated
strength of a quadrupole results in a focusing error, shifting the betatron function
from the design or ideal. This error is equivalent to inserting an extra quadrupole

into the lattice. The transportation matrix for this new quadrupole is

1 0
MError = (313>

—k(Sl) d81 1
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Figure 3.2: Effect of a dipole error on a beam with an integer tune (top) and a half
integer tune (bottom). A reference particle is shown as a red circle traveling along an
orbit in phase space indicated with blue arrows, with the effects of the dipole errors
shown as orange arrows.
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where k represents the quadrupole error in an element of length ds; located at s;.
Therefore the new single turn transportation matrix becomes the ideal transportation
matrix times the transportation matrix for the quadrupole error. Hill’s Equation can

be rewritten to include the extra focusing term as

" + [Ko(s) + k(s)] u(s) =0 (3.14)

where K represents the focusing function from the ideal lattice. [55]

By examining the transportation matrix, we can see that the quadrupole error
exerts an added momentum kick on each particle during each pass through the lattice
at s1. This kick is equal to Ay’ = —k(s1) yds;. Therefore, each particle experiences
a kick proportional to its distance from the y-axis. Particles above and below the
y-axis experience kicks in opposite directions. This effect can be seen in Figure 3.3.
Beams with a tune that is a multiple of the half integer will experience momentum
kicks that add each turn and produce large beam loss. This explains why accelerators
are also designed to avoid the half integer resonance.

The addition of the error element produces a shift in the tune. We can determine
the tune shift from quadrupole errors by calculating the difference between the tune

of the ideal lattice and the tune of the new lattice. The tune shift is

Av = % B(s1) k(s1) dsy (3.15)

where 3 is the betatron function at the location of the quadrupole error. The fact
that a shift in the quadrupole strength results in a shift in the tunes has a practical
application that will be utilized in Section 4.3.1. We will incrementally change the
current of specific quadrupoles and measure the tune shift. This will allow us to

calculate the value of the betatron function at the location of the changing quadrupole.
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Figure 3.3: Effect of a quadrupole error on a beam with a half integer tune. A
reference particle is shown as a red circle traveling along an orbit in phase space
indicated with blue arrows, with the effects of the quadrupole errors shown as orange
arrows.
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3.2.3 Fringe Fields

When introducing accelerator theory, it is customary to assume that the fields of
all quadrupoles drop to zero immediately outside of the magnet and that the field
within is at a constant strength. This is known as a hard edge field distribution. The
effective length is defined as

B [ g(s)ds

l ective — 316
Effect " (3.16)

where ¢ is the gradient of the quadrupole field, and gg is the field gradient in the
middle of the quadrupole. This effective length is larger than the quadrupole core
length. The intention is that the integrated strength of the quadrupole is the same.
The real field extends past the core and gradually falls to zero. A more accurate model
of fringe fields is the trapezoidal field approximation. Figure 3.4 illustrates different
fringe field models compared to a realistic field. A hard edge model is generally used
during lattice design because it quickly applies the correct integrated strength. After
the general design is determined, more realistic fringe fields are used to refine the
designed lattice. Finally, once the quadrupoles are manufactured, these fields are
measured for comparison with the design model and for use in realistic computer
simulations.[92]

The fringe field of a quadrupole has been shown to produce octupole-like
momentum kicks[58, 61]. Fringe fields are considered an important contributor to
SNS beam dynamics because the quadrupole magnet aperture is comparable to
the quadrupole magnet length[71]. Additionally, the leading-order of the relative
momentum deflection scales with the emittance and inversely with the effective
magnet length[91]. The SNS beam size is large and the magnets are relatively short.
Therefore, the octupole kick experienced by the beam due to the quadrupole fringe
field is large compared to other facilities. The fact that quadrupole fringe fields
produce a fourth order multipole perturbation could be a potential source of the

equal tune coupling resonance in the SNS accumulator ring.
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Figure 3.4: The most common quadrupole fringe field models compared to the
measured field. The hard edge model is shown in red, the trapezoidal model is shown
in gold, and the measured field is shown in blue.
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3.3 Montague Resonances

As we illustrated in Section 3.1, the perturbations to Hill’s equation are driven by
e??. Due to the nature of this resonance driving force, the dominant condition for
difference resonances will always arise for p = 0. Therefore, the resonance condition of
greatest importance becomes n, v, +n, v, = 0. For beams with small tune separation,
n, must equal —n,. The case of n, = 1 and n, = —1 leads to a linear resonance. We
excluded this by the design of the accelerator and the selection of coordinate axes to
eliminate xy cross terms. Effectively, we assume that the coordinate axes of the beam
distribution are oriented such that they are in alignment with the coordinate axes
of the accelerator lattice. The next resonance, n, = 2 and n, = —2, is historically
referred to as the Montague resonance[65]. The Montague resonance is a fourth
order difference resonance that is typically driven by space charge, and the resonance
condition is written as

2v, — 21, =0. (3.17)

We discussed previously that the strongest driving terms for resonances of order N
are terms of the Nth multipole. Therefore, a fourth order multipoles will provide
the strongest driving term for a fourth order resonance. We can generalize the
transverse beam distribution as a two-dimensional Gaussian. The space-charge of
this distribution produces the necessary multipole terms to drive the resonance.[65]
The beam is particularly sensitive to the Montague resonance because the frequency
of the beam envelope is roughly twice the particle tune[8]. The original work by
Montague was based on single particle models with static beam distributions. It
has been shown in recent works that a more comprehensive self-consistent model is
required to account for the strong collective effects that are present[36, 42, 62].

The system of focus for this study is the equal tune coupling resonance. One
possible source is the Montague resonance, which can be described as the coupling of
two independent oscillators through space charge forces. As previously stated, this is a

particular fourth order difference resonance driven by space charge and is represented
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by 2v, — 2y, = 0. It was initially investigated by Montague[65] and Sacherer|[78].
Later, it was analytically expanded by Hofmann[33-37, 40-42] and others[62, 63, 77].
It has been the focus of several simulation studies primarily by Hofmann[34, 35, 38]
and it has been briefly studied experimentally by Sakai[80, 81] and Metral[62, 63].
The primary mathematical framework used to describe space-charge-dependent
transverse coupling in a collection of particles is the Vlasov Equation. The Vlasov
Equation is a partial differential equation derived by applying Liouvilles theorem to
the continuity equation. Liouvilles theorem states that the volume of a phase space

element does not change in Hamiltonian motion. The Vlasov Equation is

_0f oHOf _OHOf
ot 0q; Op;  Op; 0q;

(3.18)

where f is the number of particles in the phase space volume, H is the Hamiltonian,
and ¢; and p; are the phase space coordinates of both transverse planes[88]. Due to the
complex nature of the Vlasov Equation, analytic solutions often use highly simplified
static beam distributions and require idealized lattice configurations to have easily
interpretable results[33]. Therefore, it is common to rely on simulations to solve the
Vlasov Equation for realistic beam distributions and lattices.

Montague’s original research was based on a single particle approach using a static
Gaussian distribution to define the space charge potential. This approach neglects
the effects of the time-varying collective space charge forces. Hofmann replaced the
single particle approach of Montague by a self-consistent KV beam distribution and
used the Vlasov Equation to describe the beam dynamics[37]. The transverse KV
beam distribution is composed of particles on the shell of a 4-dimensional ellipsoid.
Due to the geometry of the distribution, all of the particles feel an identical space
charge focusing. Therefore, all of the particles have the same space charge tune shift
and external forces will not deform the distribution. This simplified self-consistent
beam distribution allows collective beam effects to be studied. Hofmann studied the

coherent frequencies and stability properties of KV beams under Montague resonance
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with different focusing constants. He showed that space-charge-dominated beams are
able to develop coupling between the transverse planes without the presence of lattice
errors to drive the coupling[33]. While this work is a useful analytic approach that
provides a basic understanding of the beam dynamics, it is difficult to generalize to
more realistic beam distributions.

Later, Hofmann utilized simulations of waterbag distribution beams in realistic
lattices to investigate the effects of the Montague resonance in more realistic
situations. The waterbag distribution is a uniform distribution of particles in both
transverse phase spaces. Unlike the KV distribution, the waterbag distribution can
be deformed by external forces and displays a tune spread due to the varying effects
of space charge forces. Through simulations, Hofmann found that a static waterbag
model predicted only half the maximum emittance exchange of the self-consistent
waterbag model. This was due to the absence of a coherent response. Among other
results, Hofmann showed that the maximum growth rates of the resonance are roughly
proportional to the space charge tune shift[34].

Hofmann posed the question of whether the effects of Montague resonances
would be important in the evolution of the SNS beam. Additionally, he called for
further more systematic studies of the Montague resonance[34]. Based on recent
experimental observations|[12], one possible explanation is that the effects of the
Montague resonance influence the evolution of the SNS beam for certain beam

configurations.

3.4 SNS

Both of the transverse tunes in SNS are approximately 6.2 and have been indicated
on the resonance diagrams in Figure 3.1 along with the approximate space charge
tune shift. The first concern in designing the lattice is that the beam does not cross
the nearest integer resonance. The space charge tune shift is approximately ~0.15 .

Therefore, the horizontal and vertical tunes should not be set below ~6.15 without
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careful study. This sets the lower bounds of the working space. The working space
is sufficiently far away from the half integer to avoid concerns of any second order
resonances. However, the quarter integer resonances bound the tune on the upper
edges at 6.25. Additionally, the selected tune point is only Av ~ 0.03 away from the
equal tune resonance, which bounds the tune on the left. At the time the working
point was selected, it was believed that this would not be a problem.[30, 31] The
focus of the proposed thesis is to investigate the effects of the coupling resonance on
the SNS beam through experiments and realistic simulations, and determine whether

the source is due to fringe field effects or a Montague resonance.
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Chapter 4

Electron Scanner

The Electron Scanner is a novel diagnostic device in the final stages of development
at the SNS. Several other facilities have proposed similar devices. However, electron
beam profile monitors are uncommon even in experimental beam facilities and our
device is unique for a major production accelerator. Our Electron Scanner has
only been used for preliminary studies for device development. Therefore, it was
necessary to calibrate the experimental results prior to use in a dedicated beam physics
study. This chapter will be devoted to the task of calibration and is structured as
follows. In Section 4.1, we introduce background information regarding the Electron
Scanner, including the history, theory, and present limitations. In Section 4.2, we
discuss the analysis package. This includes providing an overview of the analysis
methodology and results in Section 4.2.1, detailing the efforts to calibrate the RMS
size by measuring the scale and rotation of the electron beam in Section 4.2.2,
and performing consistency checks on the data in Section 4.2.3. In Section 4.3,
we determine the lattice parameters at the location of the Electron Scanner. This
includes measuring the betatron functions at nearby quadrupoles in Section 4.3.1,
and propagating the Twiss parameters to the Electron Scanner in Section 4.3.2. The

results from Sections 4.2 and 4.3 are used in Section 4.4 to establish an emittance
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benchmark using the wire scanners. Finally, in Section 4.5, we summarize the status

of the Electron Scanner and the contributions made to its development.

4.1 Introduction

The Electron Scanner is a non-destructive beam profile monitor located in the
Accumulator Ring. Figure 4.1 shows the locations of the Electron Scanner and
Ring-to-Target Beam Transport (RTBT) Wire Scanners. The Electron Scanner is
composed of two identical devices within a meter of each other, one to measure each
of the transverse profiles (horizontal and vertical). Figure 4.2 shows the Electron
Scanner as it is installed in the SNS Accumulator Ring. The Electron Scanner uses
a time-homogeneous low-energy electron beam to scan the transverse planes of the
proton beam. As we will discuss later in this section, it has several unique and
valuable characteristics in comparison to traditional diagnostic devices.

There are two primary concepts for using the deflection of a low-energy electron
beam to measure the profiles of high intensity beams. The earliest involved using the
deflection of a fixed electron beam[72]. In this method, the electron beam projects
a loop onto a screen. The size and rate of change of the loop allow you to measure
the charge distribution of the high intensity beam. In 1993, Tsyganov advanced
the design by sweeping an electron beam across the path of the circulating proton
beam[90]. This likewise deflects the electron beam and the derivative of the projected
curve with respect to the undeflected curve allows you to determine the beam profile.
However, Tsyganov’s electron beam swept through the beam at an angle of 90 degrees
and, therefore, the exact beam profile could not be uniquely determined. The original
design was intended for the Superconducting Super Collider, which was never built.
This design later became the basis of the SNS design.

In 2005, the SNS Beam Instrumentation and Accelerator Physics groups conducted
a feasibility study with researchers from Budker Institute of Nuclear Physics in

Novosibirsk, Russia[l]. The study investigated the possibility of using a low-energy
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Figure 4.1: Schematic layout of the SNS High-Energy Beam Transport (HEBT),
Accumulator Ring, and Ring-to-Target Beam Transport (RTBT) with key diagnostic
devices indicated. The Electron Scanner, indicated in red, is located in the

Accumulator Ring. The four wire scanners used in these studies, indicated in blue,
are located in the RTBT.
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Figure 4.2: Image of the Electron Scanners located in the Accumulator Ring. The
Electron Scanner in the foreground (horizontal pipe) collects the vertical profiles and
the Electron Scanner in the background (vertical pipe) collects the horizontal profiles.
The proton beam circulates in the Accumulator Ring from the right side of the image
to the left. Image courtesy of J. Fazekas.
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electron beam probe to measure profiles of the high-intensity SNS proton beam.
The study used computer simulations of the diagnostic setup to determine whether
accurate profiles of the realistic proton beam distribution could be measured with an
electron beam profile monitor. The paper examined two methods of measuring beam
profiles: tomography for 2D reconstruction and 1D profile reconstruction. The study
concluded that it was feasible to use an electron scanner for profile measurements
in the SNS Accumulator Ring. The final device uses the more direct 1D profile
reconstruction discussed later in this section.

The feasibility study was extended in 2007 by Logachev who expanded the theory,
ran numerical simulations, and began development of an instrument for use in the
SNS[60]. In 2008, Logachev calculated the necessary lattice elements for an SNS
Electron Scanner and demonstrated experimental results in the SNS Accumulator
Ring[59]. Blokland was responsible for rotating the SNS electron beam, which allowed
the profiles to be calculated from the derivative of the beam curve[4]. This was one
of the main advancements to the SNS design over previous designs.

The SNS Beam Instrumentation team became the primary owner after the
installation of the Electron Scanner. Over the next few years, improvements were
made to the Electron Scanner hardware, data collection, analysis package, and
results[2, 4, 5].

The Electron Scanner obtains profiles by passing an electron beam diagonally
across the SNS Accumulator Ring beam pipe. In the absence of the proton beam, the
electron beam projects a slanted line on the projection screen. As the circulating
proton beam passes the diagnostic device, the electron beam is deflected in the
presence of the electromagnetic field of the proton beam. The path, whether deflected
or undeflected, is then projected across a pair of wires that serve as beam markers.
These markers create gaps in the electron beam, providing a scale for the size of the
beam. The beam is finally projected onto a fluorescent screen and an image of the
projection is captured. This process is shown in Figures 4.3. Figure 4.4 demonstrates

the deflection of the electron beam due to proton beams of various intensities.
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Figure 4.3: A schematic diagram of the Electron Scanner at the SNS[4]. The electron
beam, shown as green lines, is emitted from the electron gun (1) and is deflected
across the beam pipe by the deflection scan system (2). The dipole correctors (3)
and quadrupole magnets (4) serve to properly focus the beam across the path of the
proton beam (5). The deflected electron beam then forms an image on the projection
screen (6), which is captured as the measurement for analysis.

o4
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Mid Intensity Proton Beam High Intensity Proton Beam

Figure 4.4: Unprocessed Electron Scanner images demonstrating the deflection of
the electron beam, shown in yellow, for different proton beam intensities. The marker
cutouts can be clearly seen in the first image. These examples are taken from image
slices 5, 11, 14, and 19 of turn 840 in the production tune case with skew quadrupoles
discussed in Chapter 6, respectively. See Section 4.2.1 for details about the images
and analysis methodology.
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By tilting the electron beam, we add a z-component to the path of the beam which
allows the 1D profile reconstruction. Specifically, the transverse profile is derived from
the size of the deflection along the projection with respect to the undeflected beam([1].
A summary of this process is shown in Figure 4.5. The distribution of the proton
beam is related to the deflection of the electron beam by

de e (z,y)
— - dg 4.1
dx /Lmv2 € Y (4.1)

0

where e, m, and v are the electron charge, mass and velocity, respectively, d(z,y) is
the proton beam density distribution, and 6 is the deflection of the electron beam
with respect to the undeflected electron beam. The proton beam density is related
to the electric field of the beam by Maxwell’'s Equation:

OE, OE
é(x,y) = 60(% + O_yy) (4.2)

where E is the electric field of the proton beam.

The Electron Scanner has several advantages over traditional wire scanners. The
first advantage is the non-destructive nature of the Electron Scanner. This allows
us to collect data parasitically to regular production operations. This means that
the Electron Scanner could become a helpful diagnostic tool for regular use during
operations in the future. Second, the Electron Scanner has the ability to capture
20 ns slices of the accumulating 700 ns proton beam. Due to this time resolution, we
are capable of capturing profiles of the beam at different longitudinal positions. This
is especially useful because the SNS beam is not always uniformly distributed along
the longitudinal axis. Examining many profiles together can provide a more detailed
understanding of the longitudinal profile and how it evolves. This differs from the SNS
wire scanners which sum along the longitudinal length of the beam by measuring the
integrated charge induced by the full length of the beam pulse. Additionally, the short

scan time means that any variation in transverse profiles can be studied across the
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Figure 4.5: (Left) The electron beam is deflected diagonally across the path of the
circulating proton beam. (Center) The fields of the passing proton beam deflect the
electron beam, which is then projected onto the phosphorous screen. (Right) The
derivative of this projection provides the reconstructed transverse beam profile.[2]
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longitudinal length of the beam. Third, each Electron Scanner profile represents the
profile from within a single proton beam pulse. A wire scanner profile is composed of
numerous data points that are each from separate proton beam pulses. Therefore the
Electron Scanner is capable of detecting pulse-to-pulse variations that a wire scanner
cannot. It is important to remember that each Electron Scanner slice is captured
from a separate accumulating beam. These three advantages over traditional wire
scanners make the Electron Scanner a unique and powerful diagnostic tool.

The main limiting factors of the SNS Electron Scanner are the high voltage
transformer and the beam pipe aperture sizes. The amount of voltage used effects the
size of the deflection of the electron beam for a given proton beam intensity. The high
voltage transformer arcs around 60 kV. This limits the peak proton beam intensity
that can be scanned before the deflection of the electron beam goes off the screen.
The apertures determine what view the Electron Scanner has into the SNS beam
pipe. Therefore, the apertures limit the maximum size of the proton beam that can
be scanned[5]. The Electron Scanner beam pipes were rotated from the ideal angle
in order to maximize the size of the aperture. The vertical aperture has a tighter
restriction on the beam size than the horizontal. This limitation caused problems for
our vertical measurements in Chapter 6. Additionally, given these limitations and
the prototype nature of the hardware, the device expert was needed to optimally

configure the device before each experimental shift.

4.2 Analysis Package

The analysis package is built in LabVIEW and allows users to rapidly process raw
images and produce finished root mean square (RMS) sizes and beam profiles. This
is especially important due to the size of the datasets frequently produced by the
Electron Scanner. These frequently contain 300 to 800 raw images per experimental
configuration. The study presented in this study is the first use of the device and

software for any non-development purpose. Therefore it is important to present an
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example of each major step of the analysis package and some of the main image

artifacts that were documented during this research.

4.2.1 Methodology

The methodology of the analysis package follows the same procedure outlined as the
theory discussed in Section 4.1. The general procedure is to determine the path of
the beam from the raw images, calculate a spline curve from this data, calculate
the derivative of the spline curve and fit a second spline curve along the derivative.
The second spline curve is the beam profile. The following screenshots illustrate the
specific steps taken to produce final data.

Figure 4.6 shows an unprocessed image from the Electron Scanner imported
into LabVIEW. The electron beam, shown in yellow, is overlaid with a user-defined
starting line, shown in green. This starting line is used to quickly locate an initial
location within the beam to start the analysis. The two voids near either end of the
projection are the beam marker locations. The beam markers are 60 mm apart. We
will use the projected spacing to indicate whether the undeflected electron beam was
parallel as it passed through the circulating proton beam. The edges of the beam
are created by the edge of the projection screen, which is 85 mm in diameter. In
Section 4.2.2, we will discuss these beam markers and edges as references for the scale
of the beam size.

Figure 4.7 shows how the analysis package uses the initial starting line to locate
the path of the electron beam and creates initial slices, shown in blue. These initial
slices are used to determine the direction of the beam.

Figure 4.8 shows how the analysis package follows the entire path of the electron
beam and slices it across the width of the beam. The intensity of the image along
each slice is fit to a Gaussian curve. The peak of each Gaussian curve, shown in black,

is used to define the center of the electron beam along the path.
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Figure 4.6: Unprocessed Electron Scanner image with the electron beam, shown
in yellow, and the user-defined overlay line, shown in green, to indicate the starting
area.

Figure 4.7: Electron Scanner image where the initial analysis slices, shown in blue,
define the algorithm’s starting area.
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Figure 4.8: Processed Electron Scanner image with analysis slices, shown in blue.
Gaussian peaks, shown in black, are used to represent the center of the electron beam.
The inset shows how the analysis follows the path through the right-hand bend.
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Figure 4.9 shows how the analysis package fits a spline curve, shown in red, through
the set of Gaussian peaks, shown in green. This spline curve is used to calculate a
smoother set of points representing the path of the projected beam. This results in
a reduction of noise in the final profile after the derivative of the path is taken. The
spline fit technique also allows the projection of the beam to be traced through the
cutouts made by the electron scanner beam markers.

Figure 4.10 shows the final profiles produced by the analysis package. The
derivative of the spline curve with respect to the undeflected beam is shown in blue.
The final beam profile, shown in green, is produced by fitting a spline curve to this
derivative. The derivative of the raw Gaussian peaks is shown in red. The noise
reduction benefits of utilizing a spline fit to represent the data prior to taking the
derivative are obvious by comparing the final profiles.

Figure 4.11 demonstrates four types of artifacts occasionally seen during data
collection. The top left image contains a large bright spot at the right edge of the
beam path. This is likely an artifact of the electron gun producing off energy or “free”
electrons that are not properly accelerated. These free electrons do not follow the
design path through the proton beam and can create bright spots on the phosphor
screen. The analysis package can compensate for some bright spots, depending on
the size and location. This only presents a problem if the deflection of the beam
spreads into the bright spots. Otherwise the bright spots occur in the beam floor
and can be ignored. The top right image contains an off-screen beam path. This
happens when the proton beam intensity increases enough to create a large deflection
in the electron beam. The analysis package compensates by directly connecting the
two path segments along the edge of the image. If the off-screen path length is small,
then this will have a minimal effect on the profile. However, this generally becomes a
reoccurring and increasing problem for accumulating beams. The bottom left image
contains a ghost beam path. It is unclear what causes this problem. One possibility
is a ripple in the high voltage power supply. In general, the ghost path is fainter than

the correct path and the analysis package has no problem analyzing the image. The
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Figure 4.9: Processed Gaussian peaks, shown in green, are used to find a spline
curve, shown in red. The inset shows a close up of the image focusing on the left-
hand beam marker gap.
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Figure 4.10: Final beam profile from the Electron Scanner, shown in green, is the
spline fit of the derivative of the processed spline curve, shown in blue. The derivative
of the Gaussian peaks without the benefits of the noise reducing spline fit is shown
in red for comparison.
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Free Electrons Off-Screen Path

Ghost Path Broken Path

Figure 4.11: Several unprocessed Electron Scanner images demonstrating various
types of documented artifacts. These examples are taken from turn 495 slice 14,
turn 885 slice 16, and turn 720 slices 18 and 19 in the equal tune case without skew
quadrupoles discussed in Chapter 6, respectively.



bottom right image contains a broken beam path. It is also unclear what causes these
discontinuities. One possibility is an arc that rapidly drops the high voltage, creating
a different level of deflection and a break in the path. If the break in the path is small,
then the analysis package usually resolves the path reasonably well, although small
discontinuities are inevitable. In this specific example, the bottom images occurred
in series. Whether they are actually related is unclear from the data on hand. Both
the ghost beam path and broken beam path artifacts have been seen independent of
each other. The analysis package is capable of tracing the beam path through some
of these artifacts due to the robustness of the methodology and algorithm. However,
in over 70% of cases, beam slices with artifacts are discarded and the adjacent slices
are averaged to approximate the lost profile. This substitution generally works, but
it is not capable of resolving repeating issues, such as large beam deflection off screen
due to high intensity beams.

The Electron Scanner is capable of collecting 40 profiles within the longitudinal
period of the Accumulator Ring. Figure 4.12 shows an example of how these can be
combined to create a 3D rendering of the 1D profiles of the beam. This 3D rendering
allows us to quickly see the variation in transverse profiles across the whole bunch
length. Additionally, by comparing multiple 3D renderings, we are able to quickly
determine whether the beam is changing longitudinally. Figure 4.13 is a composite of
multiple Electron Scanner 3D renderings showing the proton beam at various points
during accumulation[3]. This can quickly present the full evolution of the proton
beam. This is especially useful for demonstrating multi-turn effects, such as coupling
or RF bunching.

In addition to creating 3D renderings of profiles, we have the ability to sum
the profiles longitudinally within a single bunch. This produces a single-turn sum
profile similar to profiles produced by the wire scanners. We will use these Electron
Scanner sum profiles for two additional purposes. First, we will use this sum profile
to calculate the RMS size. Second, we will assemble an evolution of the transverse

beam profile over the duration of the experiment using the sum profiles. Thus, each
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Figure 4.12: A 3D Electron Scanner rendering of a single turn of low intensity
proton beam.

Figure 4.13: A set of 3D Electron Scanner renderings of a high-intensity proton
beam during accumulation at turns 50, 100, 200, 300, 400, 500 and 600[3].
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profile evolution will display the change in profile during both the accumulation and
storage of the beam. However, the profile evolution will only present the sum of the
bunch and will not show any longitudinal dynamics. Both the RMS size and profile

evolutions are used throughout Section 5.4 and Chapter 6.

4.2.2 Calibration

In this section, we discuss calibration of the electron beam scale in the Electron
Scanner analysis package. Without references for the scale, the Electron Scanner
images would have no ability to describe the absolute size of the beam. This would
limit the device to providing only general profile shapes or qualitative data. There
are two parts to properly scaling the Electron Scanner data.

The first part is determining the exact rotation of the undeflected beam. While the
angle of the rotation is expected to be 45°, the rotation of the horizontal and vertical
devices needed to be measured. This value is necessary for properly determining the
derivative of the deflected beam with respect to the undeflected beam. The derivative
is deformed without an accurate understanding of the path of the undeflected beam.

The second part is determining the scale of the image, or the equivalent physical
size of each pixel in the device images. As we mentioned before, the Electron Scanner
was designed with two references, the beam markers and edges. The electron beam
edges provide the definitive reference as to the size of the screen and, therefore,
the size of the projected electron beam. The beam markers provide a reference for
the alignment of the electron beam across the path of the circulating proton beam.
The Electron Scanner quadrupoles are responsible for properly focusing the beam
across the pipe. If the path of the electron beam is not parallel across the pipe,
then the projected image will be scaled from the actual size. If the electron beam
is diverging, then the projected image will provide a profile wider than at the point
of the deflection. If the electron beam is converging, then the projected image will

provide a profile narrower than at the point of deflection. Therefore, the relative

68



scaling for the beam is important to the overall calibration. Figure 4.14 illustrates
the effects of diverging and converging electron beams.

Figure 4.15 shows the user interface developed for simultaneously measuring both
the rotation and scale of the undeflected beam. The software has been integrated
into the analysis package. When an Electron Scanner image is loaded, this screen
allows future users to check the beam calibration. The user can use the beam marker
indicators, shown in yellow, and the beam edge indicators, shown in blue, to quickly
indicate the correct locations on the image. The distances and angles are measured
and the results returned on the right hand side.

In order to confirm that the values were not changing during the experiments,
multiple measurements needed to be made. Measurements were made prior to and
following data collection for each of the five Electron Scanner configurations studied
in Section 5.4. Specifically, we used the first image captured, image 0 of turn 5, and
the last image captured, image 39 of turn 395. The experiment calibration always
involves tuning a temporal offset to place the initial bunch in the center of the scan
period. This is to ensure that the proton beam is not accidentally split between two
Electron Scanner data sets. It also guarantees that there should never be any proton
beam present during these images. The results of the measurements are shown in
Table 4.1.

In each measurement, the scale of the image is calculated by using the known
distance between the edges of the beam divided by the measured distance using the
calibration screen. As previously stated, the phosphorous screen forms the edge of
the beam and is known to be 85 mm in diameter. The scale factor has the units
of mm per pixel. The angle of the rotation of the beam is determined by the angle
of the beam markers with respect to the horizontal axis of the image. The angle
is calculated by the placement of the markers in the calibration screen and has the

units of radians. The statistical error of each measurement was calculated using the
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Figure 4.14: Schematic diagrams of the Electron Scanner showing the effect of
focusing errors. The properly focused electron beam is shown as green lines. The
diverging and converging electron beams are shown as purple lines.
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Figure 4.15: Electron Scanner beam calibration screen. The undeflected electron beam is shown in dark purple and the
user placed indicators are shown in blue and yellow. The circle was added to the screenshot to show the relative position
of the edge of the phosphorous screen.
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Table 4.1: Measurements of the rotation and scale of the undeflected Electron
Scanner beams

Horizontal Vertical
Experimental Case Scale Angle Scale Angle
Tune Intensity [mm /px] ] [mm /px] [°]

Turn 5 - Slice 0

Equal Low 0.1381 36.64 0.1384 71.54
Equal Mid 0.1378 36.86 0.1385 71.36
Equal Normal 0.1374 36.81 0.1384 71.52
Mid Normal 0.1373 36.88 0.1386 71.63
Split Normal 0.1373 36.70 0.1393 71.20
Average 0.1376 36.78 0.1386 71.45
Standard Deviation 3.19E-04 0.0930 3.38E-04 0.1523
Turn 395 - Slice 39
Equal Low 0.1379 36.59 0.1385 71.36
Equal Mid 0.1371 36.92 0.1387 71.60
Equal Normal 0.1372 36.63 0.1383 71.47
Mid Normal 0.1371 36.79 0.1395 71.47
Split Normal 0.1374 36.89 0.1395 71.51
Average 0.1373 36.76 0.1389 71.48
Standard Deviation 3.01E-04 0.1335 5.06E-04 0.0773
Combined Data
Average 0.1375 36.77 0.1388 71.47
Standard Deviation 3.32E-04 0.12 4.50E-04 0.12
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standard deviation:

(4.3)

where x; is the data point, Z is the average, and N is the number of data points.
The final scale factor used by the LabVIEW Electron Scanner analysis package is
determined by:

ALabVIEW = (Scale X tan (HRotation) (44)

where agca1e 18 the scale factor measured from the beam edge, Orotation 18 the rotation
of the beam measured from the beam markers, and ap.,vigw is the final scale factor

used in LabVIEW. The error for the final scale factor is:

2
AaLabVIEVV = (Aa'Scale X tan (9R0tation)) +

1/2 (4.5)
(aScale X SeC2 (eRotation) X A‘9Rotation)2

where AfORrotation and Aaseale are the errors previously determine from the standard
deviation of the beam marker and edge data points, respectively, and Aapa,view
is the error of the final scale factors used by LabVIEW. The final LabVIEW scale
factors were found to be 0.103 + 5.1E-4 mm/px for the horizontal Electron Scanner
and 0.414 + 3.2E-3 mm/px for the vertical Electron Scanner. Using these results,
the horizontal and vertical projected marker spaces were measured as 63.1 mm and
62.8 mm, respectively. The actual beam marker spacing on both the horizontal and
vertical devices is 60 mm. This is equivalent to a ~ 5% correction in the width of the

beam profile.
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4.2.3 Confirming Data

We needed to confirm that the Electron Scanner produced viable data for our
experiments prior to examining our main results. We used the integrated charge and
centroid position measurements from the Electron Scanner data to check the overall
consistency and reliability of the measurements. These figures serve as a sanity check
for the Electron Scanner data. The integrated charge curve shows the calculated area
under the profile at each turn in the evolution. The centroid position curve shows the
calculated center of the profile for each turn in the evolution relative to the centroid
marker. The centroid marker position can be changed but remains fixed for each
individual dataset.

Figures 4.16 and 4.17 show the integrated charge and centroid position for the
three nominal intensity beam configurations in Section 5.4. Figures 4.18 and
4.19 show the integrated charge and centroid position for the three equal-tune beam
configurations in Section 5.4. For this experiment, we expect the charge to increase
until turn 100 when accumulation stops and remain almost constant during storage.
This confirms that the Electron Scanner captured the entire beam in each profile slice.
If the integrated charge had had a consistent decrease over the storage period, that
would have signaled that either the beam had large losses or that the beam had moved
or spread outside of the Electron Scanner apertures. In this experiment, we expect the
centroid to remain approximately stationary and not to exhibit any sudden changes.
After the accumulation period, the centroid positions remain stationary. These figures
indicate that the data captured and processed by the Electron Scanner is consistent
with our expectations for nominal beam evolution.

Figures 4.20 and 4.21 show the integrated charge and centroid position for all
of the production-style configurations from Chapter 6. The integrated charge
measurements are almost identical for the four cases until the higher beam intensities.
Additionally, the four cases show minimal centroid jitter with a small consistent shift

of a few millimeters in the centroid position during the entire accumulation. This is a
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Figure 4.16: Comparison of the integrated charge curves for the split tune (red),
middle split tune (blue), and equal tune (black) configurations for experiment three
in the Simple Accumulation Experiments. The horizontal and vertical data are shown
with 'A' and '@' points, respectively.
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Figure 4.17: Comparison of the centroid position curves for the split tune (red),
middle split tune (blue), and equal tune (black) configurations for experiment three
in the Simple Accumulation Experiments. The horizontal and vertical data are shown
with 'A' and '@' points, respectively.
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Beam Intensity vs. Turns
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Figure 4.18: Comparison of the integrated charge curves for the equal-tune low
intensity (gold), mid intensity (green), and full intensity (purple) configurations for
experiment three. The horizontal and vertical data are shown with 'A' and '@' points,
respectively.
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Figure 4.19: Comparison of the centroid position curves for the equal-tune low
intensity (gold), mid intensity (green), and full intensity (purple) configurations for
experiment three. The horizontal and vertical data are shown with 'A' and '@' points,
respectively.
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Figure 4.20: Comparison of the integrated charge for all configurations of the prod-
uction-style experiment. The configurations without skew quadrupoles are shown
with solid dark colored lines and the configurations with skew quadrupoles are shown
with dashed light colored lines. The equal-tune configurations are shown in red and
the production-tune configurations are shown in blue.
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Figure 4.21: Comparison of the centroid position for all configurations of the prod-
uction-style experiment. The configurations without skew quadrupoles are shown
with solid dark colored lines and the configurations with skew quadrupoles are shown
with dashed light colored lines. The equal-tune configurations are shown in red and
the production-tune configurations are shown in blue.
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nominal shift due to the injection kicker waveform and increasing beam intensity. The
discontinuities present in the production tune case with skew quadrupoles are due to
changes in the Electron Scanner device settings during the experiment. We originally
believed that it would be necessary to collect data at multiple device settings. On-
shift analysis of the data demonstrated that this was not necessary. Therefore, it was
not repeated and the other three cases were collected with a single device setting.
Overall, the integrated charge and centroid position measurements confirm that
the beam parameters evolved as we expected for each experiment. This allows us to
separate any physical effects demonstrated in later chapters from the possibility of

diagnostic device related issues.

4.3 Lattice Parameters

In Section 4.2, we determined scaling factors for the Electron Scanner measurement
of the RMS beam sizes. These scaling factors help adjust the measured beam profile
and account for effects of the Electron Scanner. However, a single measurement
of the RMS beam size only provides a limited understanding of the beam. It is a
measurement, of the physical width of the beam at a single location and does not
allow us to understand how the beam will transport. As discussed in Section 2.2,
the emittance is a more accurate description of the beam as it represents the full
phase space area of the beam. Measurement of the emittance requires a series of
carefully spaced diagnostic devices to measure the RMS sizes at multiple locations.
These devices act as an emittance measurement station by observing the rotation of
the beam in phase space, as described in Section A.2. The Electron Scanner has only
one location to measure the RMS size of each of the transverse planes. Therefore, the
Electron Scanner is not capable of independently measuring the transverse emittances
of the beam. However, we can simultaneously make measurements with the Electron
Scanner and other diagnostic devices to appropriately gauge the emittances of the

beam and establish a benchmark. This benchmark will allow us to translate the
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Electron Scanner’s measured RMS beam sizes to emittances, under the assumption

that the T'wiss parameters remain relatively constant with respect to the benchmark.

In order to establish an emittance to benchmark, we can calculate the emittance

based on the maximum size of the beam envelope:
g = "= (4.6)

where z,,,; is the RMS beam size and [ is the betatron function. This relationship
was introduced in Section 2.4. It allows the beam emittance, or total phase space
area, to be calculated from the maximum physical size of the beam envelope and local
betatron function. In order to use this relationship, we must first know the lattice
parameters at the locations of the Electron Scanner.

We know that the tune of the beam is determined by the specific magnet settings
of the entire lattice. As discussed in Section 3.2.2, the change in tune, or tune shift,

for a distributed magnetic focusing gradient error can be calculated by:

1
Av= j’{ B(s1) k(s1) dsy (@7)

where [3(s1) and k(s;) are the beta function and small perturbation to the focusing
function at the location sy, respectively. For the instance where we are intentionally

varying a single quadrupole, we can reduce this equation to:

Av = ﬁ <5(31)> AKI (4.8)

where ([3(s1)) is the beta function at the location of the quadrupole and AK1 is the

change in the integrated quadrupole strength. Solving for <ﬂ (31)>, we arrive at:

<5> - 4WAAI’;1. (4.9)
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This equation tells us that we can measure the horizontal and vertical beta functions
at a specific location by varying the strength of the magnetic field. The change in
magnetic fields will result in a small shift in the tune of the beam. The slope of the
data, or the change in tunes over the change in integrated magnet strength, will allow
us to calculate the betatron value. However, this technique only allows measurement
of the betatron values in the presence of an independently controllable magnet.

The Electron Scanner is located in a drift between two quadrupoles, QH_D13
and QV_A01. This is shown in Figure 4.22. Each major quadrupole in the ring
has an accompanying trim quadrupole capable of providing minor adjustments to
the magnetic fields. These trim quads are often used for small changes to the tune
of the beam. We will measure the betatron function at the location of the two
trim quadrupoles by varying the trim quadrupole magnet settings and recording the
horizontal and vertical tunes.

Then we will be able to propagate the Twiss parameters to the location of the
Electron Scanner using matrix transformations. These Twiss parameters will allow
us to estimate the emittance of the beam from measurements of the RMS size.
With estimates of the emittances at the Electron Scanner, we can benchmark these
measurements with the more veteran diagnostic devices, the RTBT wire scanners.

In Section 4.3.1, we measure the beta functions at QH_D13 and QV_A01 using
the trim quadrupoles. Then, in Section 4.3.2, we calculate the alpha parameter
at QH_D13 and propagate the Twiss parameters from QH_D13 downstream to the

Electron Scanner.

4.3.1 Beta Measurement

In this section we discuss the data collection, and analysis for measuring the betatron
function at QH_D13 and QV_A01. Key parameters for these quadrupoles are located
in Table 4.2[31]. Quadrupole QH_D13 is upstream of the Electron Scanner. It is

a standard 30Q58 SNS design quadrupole. This nomenclature refers to the magnet

80



Accumulator Ring

f_u:-ﬁ [T xm

Electron Scanner %
.

' N
'f \
|
AN

o
QTV_A01 QTH_D13 1
[t
L2 T ~olals
5 53655 %‘-U!E' gl &
< =2EEE A LEIELE o
Wl —_—
- Tlr‘_ %% 1 =y 17
_ Llj.__ _|"'._.'u

Circulating Proton Beam

Figure 4.22: Schematic layout of the SNS with an inset showing the lattice optics
around the Electron Scanner. The locations of the two Electron Scanner devices are
shown in a blue box. The locations of the closest quadrupoles, QH_D13 and QV_A01,

are shown in green boxes.

Table 4.2: Definition of Quadrupoles

QH D13 QV_A01
Length ] 0.673 0.500
Strength  [1/m’] 0.662489425185 0.531517639759
Field Factor [T/A] 0.001554 0.003123
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having an aperture of 30 cm, a core length of 58 cm, and producing a quadrupole field.
The trim quadrupole windings are rated for a maximum current of 40 A. Quadrupole
QV_A01 is downstream of the Electron Scanner. It is a standard 21Q40 SNS design
quadrupole with an aperture of 21 cm and a core length of 40 cm. The trim quadrupole
windings are rated for a maximum current of 19 A. Each trim quadrupole is capable
of both positive and negative current, allowing for a small correction to the magnetic
field strength of the parent quadrupole. We are capable of calculating the magnetic
field produced by a specific current using known field conversion factors for each of
the quadrupoles.

The experimental procedure for measuring the lattice parameters was as follows.
This experiment had a single trim quadrupole power supply connected to QTV_A01
and another trim quadrupole power supply connected to QTH_D13. We started with
both trim quadrupoles set to zero. Then we injected a clean single mini-pulse and
extended the ring storage time to 150 turns. We used the injection kickers to create
a large offset for clearer BPM measurements. BPM turn-by-turn data was collected
for 11 settings for QTV_A01 and 15 settings for QTH_D13 over the full range of the
trim quadrupole windings. The tune was measured for each setting.

The measurements of the g functions at D13 and AO1 are shown in Figures 4.23
and 4.24.  The fits are calculated using a linear fit with Python’s SciPy Library.
SciPy’s Orthogonal Distance Regression Package (ODR) [52] allows direct fitting of
real data with errors. To determine the statistical error for the tune measurements,
we collected a sample of eleven tune measurements for the same beam configuration.
We then calculated the standard deviation of the horizontal and vertical tunes. The
statistical errors for the tunes are Av = (0.000121, 0.000089). To determine the error
for the magnetic field strength, we needed to convert the current to the strength of

the magnetic field using

AB = a Al (4.10)
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Figure 4.23: Measurement of the horizontal and vertical beta values for QH_D13,
respectively.
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Horizontal Measurement of Beta for A01
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Figure 4.24: Measurement of the horizontal and vertical beta values for QV_A01,
respectively.
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where a is the known field factor. Both trim quadrupoles are operated by 40 A power
supplies. The error on the output current is 0.1% of the full range of the power supply.
Using Al = 0.4 Amps and the field conversion factors in Table 4.2, we found AB =
0.000622 T for QH_D13 and 0.000121 T for QV_AO01.

The final measured horizontal and vertical beta values for QH_ D13 were 5, =
28.280 m £ 0.164 m and §, = 7.271 m £ 0.083 m, respectively. The final measured
horizontal and vertical beta values for QV_A01 were 8, = 2.084 m + 0.161 m and
By = 13.247 m £ 0.075 m, respectively.

4.3.2 Propagating Lattice Parameters

In the previous section, we measured the [ values at the center of the quadrupoles.
In this section, we use those values to calculate the remaining Twiss parameters and
propagate them from the quadrupoles to the Electron Scanner. We will rely on the
theory of accelerator optics previously explained in Section 2.2. The first step of the
process is to determine the positions of the important lattice elements. The second
step will be to determine the a value at the center of the QH_D13 quadrupole. Finally,
we will be able to quickly propagate those Twiss parameters to the locations of the
Electron Scanner.

There is an accurate model of the SNS lattice design developed using a
common accelerator application known as the Methodical Accelerator Design (MAD)
program[50]. The known information about each lattice element is entered into the
MAD lattice file. This information includes, but is not limited to, the type, position,
strength, and name of each element. We are able to produce a complete model
of the Accumulator Ring lattice using MAD. This model is necessary for executing
many common particle simulation programs. Additionally, MAD produces tables
and figures with the positions and predicted lattice parameters for each element.
The horizontal and vertical MAD model and measured lattice parameters for each

lattice element in the region of the Electron Scanner can be found in Tables 4.3
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and 4.4, respectively. Figures 4.25 and 4.26 show the beta and alpha MAD model
and measured values for each lattice element in the region of the Electron Scanner,
respectively.

Another important addition to Tables 4.3 and 4.4 is the inclusion of the center
of the quadrupoles, shown in green. MAD lists the location of each element as the
end of the element. Hence, both MAD trim quadrupole elements appear after the
position for the center of the quadrupoles. This is an important point as the [ values
were measured at the center of the two quadrupoles, D13 and A01. Assuming that
the values were for the end of the quadrupoles would result in vastly different and
incorrect results.

Our next step is to use the measured beta functions at the two quadrupoles to
calculate the complete Twiss parameters (3, «, ) at the location of the upstream
quadrupole, QH_D13. All of these calculations were performed using Mathematica
and the final results are shown in Tables 4.3 and 4.4. The lattice elements between
the two quadrupoles are the drift space between the quadrupoles and half of
each quadrupole. This process was repeated for both the horizontal and vertical
dimensions. The only change necessary was to swap the quadrupole matrix used
(i.e. quadrupoles which focus in one dimension, defocus in the other). As previously
shown, drift spaces are a function of only the length of space. The drift length
can be calculated by taking the distance between the centers of the quadrupoles
and subtracting half of the quadrupole lengths. This distance is equal to 6.8635 m.
Quadrupoles are a function of their length and field strength, which are both known
and found in Table 4.2. Using this information, we can establish the transportation

matrices,

MTransfer = TMHalf of QV_A01 * ™MDrift * " Half of QH_D13 (4-11)

where m represents the transport matrix of each element. Using Equations 2.40 and
2.41, we can use the transportation matrix to calculate the Twiss transportation

matrix. This will allow us to relate the Twiss parameters at QH_D13 to those at
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Table 4.3: Horizontal Lattice Parameters Around The Electron Scanner

No. Element Name Position [m] MAD Parameters Experimental Parameters
Bz [m] ag [1] By [m] ag (1]
525 QTV_D12 193.276 17.937 -7.114
526 \AY 193.698 24.454 -8.329
Center of D13 194.035 28.312 -2.848 28.280 £+ 0.164 —2.701 £0.133
527 QTH_D13 194.371 28.099 3.467
539 IPM1 197.009 13.031 2.244
—Vertical Electron Scanner— 199.155 5.531 1.250 4.970 £ 0.495 1.214 £ 0.037
540 Q13D_K 199.313 5.148 1.177
541 IPM2 199.313 5.148 1.177
—~Horizontal Electron Scanner— 199.691 4.325 1.002 3.814 4+ 0.448 0.947 4+ 0.053
542 Q13D_L 199.692 4.324 1.002
554 Q1U 201.234 2.336 0.287
—Center of A01- 201.484 2.297 -0.129 2.084 £ 0.161 —0.218 £ 0.089
555 QTV_A01 201.734 2.469 -0.563
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Table 4.4: Vertical Lattice Parameters Around The Electron Scanner

Element Position MAD Parameters Experimental Parameters
No.
Name [m] By [m] ay [1] By [m] ay [1]
525 QTV_D12 193.276 12.647 4.573
526 \AY 193.698 9.096 3.842
Center of D13 194.035 7.280 1.690 7.271 +0.083 1.671 +0.018
527 QTH_D13 194.371 6.706 0.057
539 IPM1 197.009 7.445 -0.338
—Vertical Electron Scanner— 199.155 9.585 -0.659 9.742 £0.071 —0.674 + 0.009
540 Q13D_K 199.313 9.795 -0.682
541 IPM2 199.313 9.795 -0.682
—Horizontal Electron Scanner— 199.691 10.333 -0.739 10.506 £ 0.070 —0.754 £ 0.010
542 Q13D_L 199.692 10.333 -0.739
554 Q11U 201.234 12.968 -0.970
—Center of A01- 201.484 13.026 0.742 13.247 + 0.075 0.758 £ 0.013
555 QTV_A01 201.734 12.242 2.358
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Figure 4.25: Horizontal (red) and vertical (blue) betatron functions for the lattice
elements around the Electron Scanner. Measurements and errors are shown in purple.
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Figure 4.26: Horizontal (red) and vertical (blue) alpha functions for the lattice
elements around the Electron Scanner. Measurements and errors are shown in purple.
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QV_A01 using

TQV,A01 = Mryiss Transfer * TQH,D13 (412)

where T is the array of Twiss parameters (3, a, ) and M is the Twiss transportation
matrix generated using Miyansfer Matrix from QH.D13 to Qv_Ao1- As is discussed in Sec-
tion 2.2, this matrix equation can be reduced by substituting the definition of ~.
Using our knowledge of Squ p13 and Bqv_ao1, we can solve the first row as a quadratic
equation of aqu p13. We can check the two results for a by calculating both values of
~v and comparing them to the value predicted by our MAD model. We now know [,
a, v at QH_D13 and are prepared to calculate the lattice parameters at the Electron
Scanner positions.

The Twiss parameters at the Electron Scanner positions can be calculated using

(% = MDrift : MHalf of D13 * | & (413>
v Electron Scanner v Center of D13

where M is the Twiss transportation matrix. The horizontal and vertical Twiss
parameters at the Electron Scanner positions are presented in blue in Tables 4.3
and 4.4, respectively. We confirm that the calculated value for Sqyv a01 matches the
measured value to show that our math is correct.

As discussed in Section 2.5, the errors for these Twiss parameters can be easily

calculated with Equation 2.45:

f\? f\?
Af = \/(3—) AB(%)H,DIS + (3—) Aﬁév,Am (4'14)

8BQH,DB aﬁQVAOl

where f is the equation to find any given Twiss parameter, Bqu p13 and Bqv_ao1 are the
measured betatron functions, and ABqu p1s and ABqv a1 are the calculated errors
for the betatron measurements. The errors for the horizontal and vertical Twiss

parameters at QH_D13, the Electron Scanner positions, and QV_A01 are located in
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Table 4.5: Twiss Parameters

B o Y
] [1] [1/m] [°]
Horizontal
WS20 6.572 0.827 0.256 -7.34
WS21 13.476 -1.477 0.236 6.29
WS23 16.834 -1.813 0.255 6.17
WS24 7.374 0.891 0.243 -7.02
HARP30 61.595 0.132 0.017 -0.12
ES 4.325 1.002 0.463 -13.71
Vertical
WS20 15.751 -1.648 0.236 6.00
WS21 7.488 0.88 0.237 -6.82
WS23 7.036 0.825 0.239 -6.82
WS24 15.806 -1.647 0.235 5.97
HARP30 21.923 1.544 0.154 -4.04
ES 9.585 -0.659 0.150 3.98

Tables 4.3 and 4.4, respectively. Table 4.5 shows a comparison of the Electron Scanner

Twiss parameters with the harp and wire scanner Twiss parameters from MAD.

4.4 Wire Scanner Benchmark

In this section we will perform the final step of our calibration of the Electron Scanner.
Once complete, this will allow the Electron Scanner to be used regularly in physics
studies. The last step of our process is to use wire scanner emittance measurements
that are taken in parallel to our Electron Scanner measurement to establish an
emittance benchmark. As we did for the general profile calibration in Section 4.2.2, we
will be using the five configuration cases presented in Section 5.4 for the emittance

benchmark. This will allow us to establish our benchmark across multiple tunes,
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beam intensities and at different points during the beam accumulation and storage.
In this Section, we will not discuss the specific experimental configurations or the
physics behind any of the data presented. We will only use the data as a tool for
developing the benchmark. We will find a common multiplicative factor to scale the
initial horizontal and vertical Electron Scanner emittances to the trusted wire scanner
emittances.

The wire scanners are common diagnostics in accelerators around the world. At
the SNS, we have various applications developed to assist in calculating emittances
from wire scanner profiles. For this work, emittance calculations were performed
using both the standard application and the Least Square Method (LSM). The LSM
was important as it easily extends to allow a calculation of the emittance errors.
The LSM process is discussed in Section A.3 and the Twiss errors are calculated in
Section A.4.

Now that we have determined the Twiss parameters at the Electron Scanner, we
can easily use this information and the RMS beam size measurements to calculate
the emittances, as explained in Section 4.3. For each benchmark case, we collected
Electron Scanner data from turn 5 to turn 395 in intervals of 10 turns. For the same
cases, we collected wire scanner data at turns 100 and 400. In order to compare
the data from the Electron Scanner with the wire scanner data, we interpolated and
extrapolated the values at the relevant turns. For turn 100, we averaged the RMS
beam sizes at turns 95 and 105. For turn 400, we used a straight line extrapolation
of the RMS beam sizes from turns 385 and 395. Based on the analysis of the beam
dynamics presented later in Section 5.4, these are reasonable approximations for both
cases. The horizontal and vertical Electron Scanner RMS beam sizes and both the
Electron Scanner and wire scanner emittances are presented in Tables 4.6 and 4.7,
respectively. Figure 4.27 shows how the initial Electron Scanner emittances compare
to the wire scanner emittances.

We seek an emittance scale factor, ¢, that when the initial Electron Scanner

emittances are multiplied by ¢ should produce the values measured by the wire

92



Table 4.6: Horizontal Benchmark Emittances

. Scanner Wire Scanner Emittance
Case #f Electron Scanner RMS Size [mum] Emittance Emittance Scale Factor
Turn Turn Turn /7 mm mrad] /7 mm mrad] 8
05,385 105/395 100/400 i & i & -
Turn 100
1 8.094 8.128 8.111 15.211 15.069 0.99
2 8.123 8.310 8.217 15.609 15.115 0.97
3 6.439 6.644 6.542 9.894 10.051 1.02
4 6.858 6.517 6.688 10.340 9.242 0.89
5 8.003 7.660 7.832 14.181 12.996 0.92
Turn 400
1 8.125 8.075 8.050 14.983 15.084 1.01
2 8.182 8.175 8.172 15.439 15.306 0.99
3 6.549 6.564 6.572 9.985 9.897 0.99
4 7.181 6.974 6.871 10.914 11.682 1.07
5 7.320 7.314 7.311 12.359 10.583 0.86
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Table 4.7: Vertical Benchmark Emittances

) Scanner Wire Scanner Emittance Scale
Case # Electron Scanner RMS Size [mm] Emittance Emittance Factor
Turn Turn Turn
95/385 105/395 100/400 [ mm mrad] [ mm mrad] 3
Turn 100
1 8.041 8.115 8.078 6.808 3.011 0.44
2 8.453 8.591 8.522 7.577 3.079 0.41
3 11.644 10.985 11.315 13.356 9.836 0.74
4 11.256 11.361 11.309 13.342 10.123 0.76
5 9.014 10.169 9.592 9.598 6.195 0.65
Turn 400
1 7.712 7.704 7.700 6.186 3.079 0.50
2 8.404 8.386 8.377 7.321 3.961 0.54
3 11.775 11.549 11.436 13.644 10.081 0.74
4 10.177 10.784 11.088 12.826 8.023 0.63
5 10.447 10.986 11.256 13.217 8.959 0.68
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Scanners:

€ Wire Scanner — C € Electron Scanner- (415)

Therefore, the emittance scale factor can be defined by:

o € Wire Scanner o 6 Electron Scanner 4.1
c= - "5 € Wire Scanner - ( . 6)
€ Electron Scanner Z RMS, Electron Scanner

These emittance scale factors are shown as the final columns in Tables 4.6 and 4.7.
The emittance scale factor for each of the cases and the final average emittance scale
factors are presented in Table 4.8. The final Electron scanner emittance scale factors
are € Horizontal = 0.97 £ 0.043 and ¢ vertical = 0.61 £ 0.11. The scale factor allows
us to determine the measured systematic error in the emittance measurement and
the error of the scale factor is the statistical error about the systematic error. In
other words, the horizontal and vertical Electron Scanner emittance measurements
had a 3% and 39% systematic error, and 4.3% and 11% statistical error, respectively.
As was previously mentioned, the vertical diagnostic device has a larger aperture
restriction that resulted in a larger angle of rotation. Hence, we would expect that
the vertical measurements would have larger errors than the horizontal measurements.
However, the unpublished physics model previously predicted the systematic error in
the vertical direction to be less than 20%. This could indicate a problem with the
vertical measurements possibly related to the very small vertical emittance combined
with the small local vertical betatron function.

Figure 4.28 shows the benchmarked Electron Scanner emittances in comparison
to the wire scanner emittances. These emittance scale factors will allow future users
of the Electron Scanner to quickly equate their RMS beam size measurements to
emittances. The emittance of the beam is a more effective descriptor of the beam size
and allows for further insight into how the beam will transport through the entire

accelerator. Therefore, this is a useful tool for future physics studies at the SNS.
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Figure 4.27: Initial Electron Scanner emittances compared to wire scanner
emittances for all cases prior to benchmarking. The Electron Scanner emittances
are calculated using the measured the Twiss parameters and Electron Scanner RMS
values. The Electron Scanner data is shown with connecting lines and hollow data
points. The wire scanner data is shown as solid data points. The horizontal data is
shown with red triangles and the vertical data is shown with blue circles.
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4.5 Summary

The purpose of this Chapter was to introduce and calibrate the Electron Scanner
prior to use in a major physics study. In Section 4.1, we explained the basic
theory of the Electron Scanner and discussed its history and current limitations.
In Section 4.2, we discussed the analysis package. Specifically, we outlined the
methodology used, made measurements to calibrate the data, and confirmed the
integrity of our experimental data using the integrated charge and centroid position
measurements. In Section 4.3, we measured the betatron function at the adjacent
quadrupoles, QH_D13 and QV_A01. Then, using these measurements, we calculated
the Twiss parameters and errors at the quadrupoles and the Electron Scanner
positions. These Twiss parameters were essential to relating measurements of the
beam with the Electron Scanner to those made with other diagnostic devices. Finally,
in Section 4.4, we benchmarked the Electron Scanner emittance measurements to
parallel measurements made using the Wire Scanner emittance measurement station.
The final Electron Scanner emittance scale factors are ¢ gorizontal = 0.97 & 0.043 and
€ Vertical = 0.61 = 0.11. This is equivalent to stating that the systematic errors in the
horizontal and vertical Electron Scanner emittance measurements were 3% and 39%,
and that the statistical errors were 4.3% and 11%, respectively. These values will
allow future users of the Electron Scanner to quickly translate their RMS beam size

measurements into emittances.

97



Table 4.8: Electron Scanner Emittance Scale Factors

Case # Horizontal Vertical

1 1.00 0.47

2 0.98 0.47

3 1.00 0.74

4 0.98 0.69

5 0.89 0.66

Final Emittance 0.97 0.61

Scale Factors

Standard Deviation 0.043 0.113
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Figure 4.28: Benchmarked Electron Scanner emittances compared to wire scanner
emittances for all cases. The Electron Scanner emittances are calculated using the
measured the Twiss parameters and Electron Scanner RMS values, and are scaled by
the final emittance scale factors. The Electron Scanner data is shown with connecting
lines and hollow data points. The wire scanner data is shown as solid data points.
The horizontal data is shown with red triangles and the vertical data is shown with
blue circles.
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Chapter 5

Simple Accumulation Experiments

In the process of investigating a documented physical effect with unknown origins, it
is best to reduce the complexity of the problem to isolate the key parameters. Our
initial motivation was to create an experiment with a simplified accumulation and
beam dynamics that would allow us to explore the effects of tune and intensity on
coupling. There have been three parts to the evolution of this experiment. In the first
part, we use a simplified accumulation-only configuration to study the effect of the
coupling on an accumulating beam using wire scanners. This dataset demonstrates
that the onset of the coupling was actually at a much lower beam intensity than
expected. In the second part, we continue to use wire scanners to observe the same
simplified accumulation configuration for the first portion of the experiment and then
stored the beam for the remainder of the turns. This dataset demonstrates a full
exchange of the emittances for the coupled case. Unfortunately, our data collection
was hampered by the large time consumption associated with running wire scanners.
In the third and final part, we re-examine a similar beam configuration while taking
advantage of the benefits of the Electron Scanner. This last dataset demonstrates
a strong coupling in both the RMS size and profile of the beam. This dataset also

demonstrated large amplitude oscillations for lower intensity beams.
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This chapter will be devoted to describing experiments with a simple accumulation
pattern and reviewing their results. The structure will be as follows. In Section 5.1,
we review the general parameters of the experiments. In Section 5.2, we review
the configuration and results of the accumulation-only experiment. In Sections 5.3
and 5.4, we review the configurations and results of the accumulation followed by
storage experiments using the wire scanners and the Electron Scanner, respectively.
Finally, in Section 5.5, we summarize the results of the three simplified accumulation

experiments.

5.1 General Beam Configuration

In this section, we review the general beam configuration of the experiments.
Each of the three experiments had similar accelerator configurations with the
exception of minor differences as noted in each experiment’s section. To simplify
the beam dynamics, we made the following changes to the nominal SNS production
configuration. First, we flat-topped the injection kickers to remove the effects of
injection painting. Next, we manually shorted the ring RF or placed it in stand-by
to remove any longitudinal effects. In order to make sure the beam remained clear of
the extraction gap, the beam was injected to fill only 39% of the ring circumference.
This is approximately half of the production injection fill length. Next, we used the
ring sextupoles to minimize the chromatic tune shift and better isolate the effects of
the space charge tune shift. Finally, we used the ring skew quadrupoles to eliminate
any signs of transverse lattice coupling seen by monitoring the turn-by-turn centroid

motion of a single bunch injected off the ideal path.

Tune The nominal betatron tunes of the SNS Accumulator Ring are v, = 6.23 and
v, = 6.20.
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Geometry During SNS production cycles, the size of the beam in the ring is
optimized to reduce losses throughout the ring while matching the on-target beam
requirements. The horizontal and vertical injection kickers are used to control the
beam size. The measured parameter for characterizing beam size are the injection
offsets. The nominal production values are approximately 30 mm and 30 mm|[31]. The
MAD beta values at the injection spot are (3, ~ 10.29, 8, ~ 11.06). Therefore, the
transverse emittances are approximately equal, € ~ x2/3. We describe the physical

profile of this beam as symmetric.

Energy and Intensity The nominal beam energy of the SNS ranges between
920 MeV and 980 MeV. The beam energy depends on the specific configuration of RF
cavities in the linac. The nominal beam intensity of the SNS ranges from 8e13 ppp to
1.3e14 ppp, or from 12.8 uC to 20.7 uC. The beam intensity depends on the number
of turns of accumulated beam and the specific chopping pattern, as well as other
parameters such as beam losses and beam current from the ion source. Both the
beam energy and the beam intensity typically remain constant during a production

cycle.

5.2 Experiment One: Accumulation-Only

In experiment one, we studied a beam with a simplified accumulation-only configura-
tion using wire scanners. This experiment was an initial exploration into the coupling
effect versus the tune and injection offset parameters. The specific experimental
configurations are presented in Section 5.2.1. The results of experiment one are

presented in Section 5.2.2.
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5.2.1 Configuration

An overview of the precise beam settings for experiment one are documented in
Tables 5.1, 5.2 and 5.3. To allow a simple and direct means of comparison, each case

in experiment one is assigned a case number in the configuration tables.

Tune We expected that the coupling effect would increase in strength as we
approached an equal tune based on previous work[12]. Therefore, we collected data
over a grid of tune points surrounding the (v, = 6.20, v, = 6.20) and (v, = 6.17, v, =

6.17) equal-tune points.

Geometry For coupled beams, a change in one transverse plane will affect the
opposite plane. The transverse planes of beams with low or no coupling remain
independent and unaltered by a change in the opposite plane. The primary sizes
investigated were approximately 25 mm by 25 mm, or “symmetric” beams, and 25

mm by 17 mm, or “asymmetric” beams.

Energy and Intensity The nominal beam energy during our experiment was
938.0 MeV for the two shifts where split tune datasets were collected and 932.9 MeV
for the shift where the equal tune datasets were collected. Our full accumulation
beam intensities varied between 3.02e13 ppp and 3.20e13 ppp, or 4.93 C and 5.13 uC
respectively. The ion source current was higher on the third shift. Our priority was
to match the beam intensities between data points across shifts. Therefore, all of
the equal tune cases have less turns of accumulation than the split tune cases. As
indicated in Tables 5.1, 5.2 and 5.3, the difference in accumulated turns ranges from
zero turns at low intensity to 50 turns at maximum beam intensity. Figure 5.1 depicts
the evolution of the beam intensity for the cases in experiment one.

During the final shift of experiment one, time allowed for data collection of one
extra beam configuration. From an on-shift analysis of the previous data collected, we

decided that studying the effects of storage on a highly coupled configuration would
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Table 5.1: Beam Configurations for Shift One of the Split Tune Cases for Experiment One

Primary Diagnostic Device Wire Scanners (WS20, WS21, WS23, WS24 located in the RTBT)
Shift Date

April 1st, 2013

Accumulation & Storage
Turns of Accumulation
Turns of Storage

Accumulation Only
50, 100, 150, 200, 250, 300, 350, 500

None
Case Number 1 2 3
Maximum Beam 3.08¢e13 ppp 3.05e13 ppp 3.08e13 ppp
Intensity 4.93 uC 4.89 uC 4.93 uC
Qq 6.23563 6.23389 6.17943
Qy 6.17249 6.17273 6.23898
AQ 0.06314 0.06116 -0.05955
Beam Tune Split Tune
Injection Kickers Flat-topped Waveform
X Injection Size 23.7 mm 24.6 mm 25.5 mm
Y Injection Size 23.6 mm 16.8 mm 25.8 mm
Beam Geometry Symmetric Asymmetric Symmetric
Beam Energy 938.0 MeV
Ring RF Stand-by
Ring Pattern Width 39%
Ring Chromaticity Zeroed

Linear Coupling Checked and, if necessary, removed with skew quadrupoles
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Table 5.2: Beam Configurations for Shift Two of the Split Tune Cases for Experiment One

Primary Diagnostic Device Wire Scanners (WS20, WS21, WS23, WS24 located in the RTBT)
Shift Date April 29th, 2013
Accumulation & Storage Accumulation Only
Turns of Accumulation 50, 100, 150, 200, 250, 300, 350, 500
Turns of Storage None
Case Number 4 5 6 7
Maximum Beam 3.07e13 ppp 3.03e13 ppp 3.06e13 ppp 3.05e13 ppp
Intensity 4.92 uC 4.85 uC 4.90 uC 4.89 uC
@y 6.17081 6.17095 6.20086 6.20250
Qy 6.19893 6.19822 6.16888 6.16807
AQ -0.02812 -0.02727 0.03198 0.03443
Beam Tune Split Tune
Injection Kickers Flat-topped Waveform
X Injection Size 25.7 mm 25.7 mm 25.7 mm 25.5 mm
Y Injection Size 24.2 mm 17.1 mm 17.2 mm 25.8 mm
Beam Geometry Symmetric Asymmetric Asymmetric Symmetric
Beam Energy 938.0 MeV
Ring RF Stand-by
Ring Pattern Width 39%
Ring Chromaticity Zeroed
Linear Coupling Checked and, if necessary, removed with skew quadrupoles
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Table 5.3: Beam Configurations for the Equal Tune Cases for Experiment One

Primary Diagnostic Device Wire Scanners (WS20, WS21, WS23, WS24 located in the RTBT)
Shift Date September 8th, 2013

Accumulation & Storage Accumulation Only

Turns of Accumulation 50, 100, 140, 180, 230, 270, 320, 450
Extended by 100

Turns of Storage None turns of storage for
each data point
Case Number 8 9 10 11 12
Maximum Beam 3.20e13 ppp 3.15el13 ppp 3.15e13 ppp 3.19¢13 ppp 3.17e13 ppp
Intensity 5.13 uC 5.05 uC 5.05 uC 5.11 uC 5.08 uC
Q. 6.19946 6.16842 6.17012 6.16980
Qy 6.19857 6.16991 6.17097 6.17081
AQ 0.00089 -0.00149 -0.00085 -0.00101
Beam Tune Equal Tune
Injection Kickers Flat-topped Waveform
X Injection Size 23.1 mm 23.6 mm 23.7 mm 22.9 mm 22.7 mm
Y Injection Size 16.8 mm 23.0 mm 16.9 mm 23.0 mm 22.8 mm
Beam Geometry Asymmetric Symmetric Asymmetric Symmetric Symmetric
Beam Energy 932.9 MeV
Ring RF Stand-by
Ring Pattern Width 39%
Ring Chromaticity Zeroed

Linear Coupling Checked and, if necessary, removed with skew quadrupoles
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Figure 5.1: Comparison of configurations for experiment one. The beam intensity is
shown on the vertical axis and the total number of turns are shown on the horizontal
axis. The split-tune accumulation-only configuration for cases 1 through 7 are shown
with a solid red line with '()' points. The equal-tune accumulation-only configuration
for cases 8 through 11 are shown with a solid black line with 'A' points. The
accumulation extended with storage configuration for case 12 is shown with dashed
blue lines with '1' points. Lines indicate the evolutionary path followed for each
data point, and markers indicate the relative location of data collection. Sloped lines
indicate periods of accumulation and flat lines indicate periods of storage.
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be the most informative use of the limited shift time. Therefore, case 12 uses the same
configuration as case 11 with the addition that 100 turns of storage were added prior
to each extraction to the wire scanners. For example, for the second data point in
case 11, the beam was accumulated for 100 turns and extracted for measurement. For
the same data point in case 12, the beam was accumulated for 100 turns, stored for
100 turns, and extracted for measurement. This is shown in Figure 5.1 by comparing
the configuration for cases 8 through 11 with the configuration for case 12. Storing
the beam in this manner allowed us to study the coupling effect with additional beam

evolution time.

5.2.2 Results

In this section we review the results of experiment one, where wire scanners were used
as the primary diagnostic device. Our main objective will be to examine the effects
of tune and beam geometry. In our final results, we will take an initial look at the
effects of storage using case 12.

The wire scanners and data processing are discussed in Appendix A. The wire
scanners allow us to collect profiles along the horizontal, vertical and diagonal
dimensions. The diagonal profile is generally used only for confirmation. With each
scan, we collect data from wire scanners 20, 21, 23, and 24 along the final section of
the RTBT, shown in Figure 4.1. Therefore, each scan provides us with two primary
profiles from each of the four wire scanner devices, or eight profiles. Data collection for
a typical beam configuration will require up to eight scans at various points during
the beam evolution. This equates to a potential sixty-four profiles for each of the
twelve cases. As discussed in Section A.2, we will use all of this data to determine
the transverse emittances. For examining the evolution of the transverse profiles, we
will only use the horizontal and vertical profiles from wire scanner 24.

A waterfall plot is a method of representing the evolution of the profile during

the experiment. The baseline of each profile collected is vertically offset from the
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horizontal axis in increments of 0.05. In this manner, the bottom profile represents the
earliest measurement in the evolution of the beam and the top profile represents the
last measurement in the evolution. Comparing horizontal and vertical waterfall plots
can provide insight into the evolution of the overall shape of the beam. Additionally,
waterfall plots from different beam configurations can be placed next to each other for
simple comparison of the evolution of the beam along one dimension. A particularly
useful tool is to lay the waterfall plots out in a grid based on the tunes of the various
configurations. In this layout, the horizontal tune of the configurations increases from
the left side of the page to right and the vertical tune increases from the bottom of
the page to top. The images along the diagonal always have approximately equal

tunes.

Accumulation-Only

Figures 5.2 and 5.3 show the horizontal and vertical waterfall plots for the symmetric
beam cases in experiment one, respectively. Figures 5.4 and 5.5 show the horizontal
and vertical waterfall plots for the asymmetric beam cases in experiment one,
respectively. These four figures represent the primary data collected for experiment
one as documented in Tables 5.1, 5.2, and 5.3. Each subfigure is appropriately marked
with case numbers to indicate the specific beam configurations. The common legend
indicates the number of turns accumulated for each profile. Legend entries with two
turns listed indicate the number of turns for the unequal tune cases followed by the
number of turns for the equal tune cases.

A cursory examination shows that the lower intensity profiles tend to have
variations in the placement and number of peaks. This is due to the placement
of individual bunches in phase space during accumulation, which is based on the
specific tunes and injection kicker waveforms. This difference is not due to coupling
and washes out due to the injection of additional bunches and the effect of strong
space charge forces.

A careful inspection will yield four important results from these figures:
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Figure 5.3: Vertical wirescan waterfall plots for the symmetric beam cases

experiment one.
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Figure 5.5: Vertical wirescan waterfall plots for the asymmetric beam cases in
experiment one.
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1. The evolution of beams with different tunes does not differ greatly for all cases
with unequal tunes. An example of this is depicted in Figure 5.6, which
compares case 1 (top) where Q = (6.24, 6.17) and case 7 (bottom) where
Q = (6.20, 6.17). Both cases represent expected beam evolutions for the
SNS, specifically a hollow beam is painted and filled by space charge during
the accumulation. Both cases have a symmetric geometry and have final
profiles that are flat-topped with similar widths and heights. The change in
horizontal tune of ~0.03 between the cases does not heavily impact the final
beam distribution. These beams would both be described as having uncoupled
transverse beam profiles because small changes to one transverse dimension,
such as tune or injection offset, will not yield a significant change in the opposite

transverse dimension.

2. The evolution of equal tune beams differs greatly from uncoupled beams. An
example of this is depicted in Figure 5.7, which compares case 7 (top) where
Q = (6.20, 6.17) and case 11 (bottom) where Q = (6.17, 6.17). In this example,
both cases also start with the symmetric beam geometry. We used case 7 in our
previous example and demonstrated how it appeared to be uncoupled. Cases 7
and 11 differ by the same amount of change in the horizontal tune, ~0.03, as
do cases 1 and 7, previously compared in Figure 5.6. While cases 1 and 7 share
similar evolutions and final beam profiles, there is a large change in the evolution
of the beam for case 11, which has equal tunes. There are two noteworthy
differences in the evolution of the equal tune beam. First, the final horizontal
profile is not flat-topped but rather peaked with tiered shoulders. Second, the
final vertical profile has broad trailing edges, which creates a much larger beam
footprint. Both of these differences represent problems for meeting the beam-

on-target specifications for peak beam density and beam size, respectively.

3. The evolution of beams with different injection offsets does not differ greatly

provided that neither case has equal tunes. An example of this is depicted
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Figure 5.6: Comparison of wirescan waterfall plots for two cases both with unequal
tunes.
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in Figure 5.8, which compares case 4 (top) with injection offsets of (25.7 mm,
24.2 mm) and case 5 (bottom) with injection offsets of (25.7 mm, 17.0 mm).
Both cases have an unequal tune of (6.17, 6.20) and represent expected beam
evolutions. Although the final profiles are slightly different, both are flat-topped
and of similar horizontal widths. The vertical widths are different as expected
due to the different vertical injection offsets. The difference in profiles is minimal
and is likely due to the difference in beam densities and, therefore, space charge

forces.

4. The evolution of equal tune beams are coupled. An example of this is depicted in
Figure 5.9, which compares case 8 (top) with injection offsets of (23.1 mm, 16.8
mm) and case 9 (bottom) with injection offsets of (23.6 mm, 23.0 mm). Both
cases have an equal tune of (6.20, 6.20). Therefore, our previous results with
equal tune beams imply that we should expect strong coupling to be present
in both cases. Note that the change in injection offsets between these cases is
comparable to the change in the previous example. In the previous example,
where the tunes were unequal, the change in final beam profile was minimal,
excluding the expected change in the width of the vertical profile. In this
example, where the tunes are equal, the vertical injection offset produces a
significant change in both transverse profiles. A common technique to meet
beam-on-target specifications is to alter the injection offsets in one or both
planes during production runs. If changing one injection offset alters the beam
in both planes, then the ability to meet beam-on-target specifications could
become compromised for equal tune beams. Therefore, this coupled response
presents a problem for regular operations where the injection offsets are altered

to meet the beam-on-target specifications.

An important reason for having a series of wire scanners is to measure the Twiss
parameters. A discussion of T'wiss parameters can be found in Section 2.2. A complete

description of how the wire scanner profiles are used to measure the Twiss parameters
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Figure 5.8: Comparison of wirescan waterfall plots for two cases with the same
unequal tunes but different beam geometries. The top case has a symmetric beam
geometry and the bottom case has an asymmetric beam geometry.
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Figure 5.9: Comparison of wirescan waterfall plots for two cases with the same
equal tunes but different beam geometries. The top case has an asymmetric beam
geometry and the bottom case has a symmetric beam geometry.
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Figure 5.10: Emittance evolutions for symmetric beam cases.
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can be found in Section A.2. For our experiment, the primary Twiss parameter of
concern are the transverse emittances, or the horizontal and vertical phase space
areas occupied by the beam. Each wire scanner dataset yields a horizontal and vertical
emittance. The change in these values during the experiment represents the evolution
of the transverse phase space area. Emittances are a valuable metric for comparison
because they provide more information than a simple one-dimensional projection,
like an individual wire scanner profile. Figure 5.10 depicts the emittance evolution
plots for the symmetric beam cases for experiment one. The profiles for these cases
were depicted in Figures 5.2 and 5.3. Figure 5.11 depicts the emittance evolution
plots for the asymmetric beam cases for experiment two. The profiles for these cases
were depicted in Figures 5.4 and 5.5. Figures 5.10 and 5.11 are appropriately marked
with the case numbers corresponding to the experimental configurations listed in
Tables 5.1, 5.2, and 5.3.

The expected behavior of beams at the SNS is that they are injected into the
ring to a specified size using the injection kickers and evolve with relatively constant
emittances. We do not expect the beam emittance to oscillate during the nominal

accumulation. There are three important results from these figures:

1. A cursory examination of both figures reveals that the cases with unequal tunes
evolve with relatively constant emittances, regardless of the beam geometry.
Additionally, the horizontal emittance is larger than the vertical emittance in
all asymmetric cases because we intentionally used a larger horizontal injection
offset to create a larger horizontal beam size. This implies that the cases with

unequal tunes evolve as expected and are free from coupling.

2. The emittance evolution of equal tune beams differs greatly from uncoupled
split-tune beams. An example of this is depicted in Figure 5.12, which compares
case 5 (blue) with tunes of (6.17, 6.20) and case 8 (red) with tunes of (6.20,
6.20). There are a few noteworthy points to this result. The equal tune case

shows coupled oscillations between the two transverse planes. These coupled
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Figure 5.12: Comparison of the emittance evolutions for case 5 (blue) with tunes
of (6.17, 6.20) and case 8 (red) with tunes of (6.20, 6.20). Both beams have
asymmetric geometries. The horizontal emittances are indicated with '+' and the
vertical emittances are indicated with 'l'.
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oscillations damp during the beam evolution and appear to have a conserved
total emittance. While both cases start with an asymmetric beam geometry;,
the final equal-tune beam is almost symmetric with a larger vertical beam than
was intended. This demonstrates the effect of emittance exchange when moving

onto the equal tune resonance.

When this research was initially started, Montague resonances were thought to
be the source of the coupling. As discussed in Section 3.3, Montague resonances
are a coupling of equal tune beams due to space charge. This hypothesis
implied that the coupling would either start at high beam intensities or amplify
with increasing beam intensities, where space charge forces effects are stronger.
However, the results of this experiment demonstrate coupling that starts at
low intensity and dampens over time while the beam intensity is increasing.
This indicates that a Montague resonance is not the most likely source of the
coupling. This opened the question of what effect could create this coupling.
These results strongly influenced the configurations chosen for experiments two

and three.

. The emittance evolution of equal tune beams are similar between different
injection offsets. An example of this is depicted in Figure 5.13, which compares
case 10 (red) with injection offsets of (23.7 mm, 16.9 mm) and case 11 (blue)
with injection offsets of (22.9 mm, 23.0 mm). Both cases have an equal tune
of (6.17, 6.17) and, regardless of beam geometry, show clear damped coupling
between the transverse emittances. All of the unequal-tune symmetric cases
shown in Figure 5.10 started with equal emittances. This is to be expected as
the beams were designed to be symmetric using the injection offsets. However,
the equal-tune symmetric cases do not start with the same equal emittances
despite using the same injection offsets. Additionally, all of the equal tune
cases display a strong coupling with symmetric damped oscillations around the

conserved total emittance regardless of the beam symmetry. This result led
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Asymmetric Geometry vs. Symmetric Geometry
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Figure 5.13: Comparison of the emittance evolutions for case 10 (red) with injection
offsets of (23.7 mm, 16.9 mm) and case 11 (blue) with injection offsets of (22.9 mm,
23.0 mm). Both beams have the tunes (6.17, 6.17). The horizontal emittances are
indicated with '+' and the vertical emittances are indicated with 'l'.

125



us to the conclusion that the specific beam geometry does not play a strong
role in the evolution of coupled beams. Therefore, future experiments used
the asymmetric beam geometries to better facilitate Electron Scanner aperture

restrictions, as noted in Chapter 4.

Accumulation Extended With Storage

As discussed in Section 5.2.1, storage configuration one was an extension of
experiment one designed to make the best use of extra time on the third experiment
shift. This configuration extended each data point following accumulation by 100
turns of storage and was only used for case 12. Figure 5.14 compares the horizontal
and vertical profiles of case 11 (top), which had constant accumulation, and case 12
(bottom), which was extended with storage following accumulation. Cases 11 and
12 both have similar symmetric equal-tune configurations. While the profiles share
a strong resemblance, the profiles typically display smoother or more dilute features
after 100 turns of storage. The horizontal data has fewer and softer peaks, while the
vertical data has a single central peak with smooth trailing edges. The comparison of
these cases again demonstrates what we have already shown, that the coupling effect
rounds out the profile data and creates trailing edges.

Figure 5.15 compares the emittance evolutions of case 11 (blue), which had
constant accumulation, and case 12 (red), which was extended with storage following
accumulation. At low beam intensities, the coupling has a larger impact on the
stored beam and increased the split between transverse emittances. At high beam
intensities, the emittances have almost returned to the same values as the case without
storage. This implies that space charge forces dilute the coupling effect and are not
the instigator of the coupling. These results, combined with the previous results from

experiment one, led us to investigate low-intensity stored beams for experiment two.
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Figure 5.14: Comparison of the wirescan waterfall plots for the simplified
accumulation with extended storage case (bottom) and the corresponding simplified
accumulation-only case (top). The key for both figures indicates the number of
turns accumulated. Profiles in the bottom figures were stored for 100 turns following
accumulation.

127
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Figure 5.15: Comparison of the emittance evolution for the simplified accumulation
with extended storage case (red) and the corresponding accumulation-only case
(blue). The horizontal emittances are indicated with '+' and the vertical emittances
are indicated with 'l".
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5.3 Experiment Two: Accumulation Followed By
Storage Using Wire Scanners

Experiment one had two important outcomes that impacted future experiments.
The first result was that the coupling effect started at low beam intensities. The
second result was that the effects of the coupling were damped with increasing
beam intensities. Therefore, later experiments studied coupling by storing low
intensity beams. These results provide an initial contradiction to the hypothesis
that the coupling is caused by a Montague Resonance, which is driven by space
charge. Experiment two used traditional wire scanners to collect data at numerous
points along the evolution of two beam configurations. The specific experimental
configurations are presented in Section 5.3.1. The results of experiment two are

presented in Section 5.3.2.

5.3.1 Configuration

In the storage configuration used in experiment one, the first and second profiles are
not direct continuations of the same beam. The second profile was accumulated for
more turns prior to being stored for 100 turns. The evolutionary paths of the beams
are different. Therefore, we were only able to compare each profile from the stored
case (case 12) with the profile from the same configuration in the accumulation-only
results (case 11), which shared the same number of turns of accumulation.

In experiment two, we used a second method of storing the beam. For the first
50 turns, we accumulated the beam using the same simplified configuration used
in experiment one and then we stored the accumulated beam for up to 110 turns.
However, we collected several measurements during both accumulation and storage
of this beam.

In the new storage configuration, all of the profiles are connected along the same

evolutionary path. Therefore, we were able to directly compare all of the profiles
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Table 5.4: Beam Configurations for Experiment Two

Primary Diagnostic Device

Shift Date

Accumulation & Storage

Wire Scanners (WS20, WS21, WS23, WS24 located in the RTBT)
February 23rd, 2015

Turns of Accumulation

Accumulation Followed By Storage

10, 25, 50
Turns of Storage 10, 20, 30, 50 10, 20, 30, 40, 50, 80, 110
: . 3.33el2 ppp 3.12e12 ppp
Maximum Beam Intensity 0.53 jC 0.50 C
Q. 6.16997 6.19986
Qy 6.19872 6.19893
AQ -0.02875 0.00093
Beam Tune Split Tune Equal Tune
Injection Kickers Flat-topped Waveform
X Injection Size 25.8 mm 23.2 mm
Y Injection Size 17.1 mm 17.1 mm
Beam Geometry Asymmetric
Beam Energy 939.5 MeV
Ring RF Shorted
Ring Pattern Width 39%
Ring Chromaticity

Linear Coupling

Zeroed
Checked and, if necessary, removed with skew quadrupoles
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during both accumulation and storage. There were three consequences. First,
we were able to more closely examine the strong coupling effects during the early
evolution of the equal tune beam. Second, this provided us with the opportunity to
characterize the evolution of the coupling without the complication of increasing beam
intensity. Finally, comparing this new data with data from experiment one allowed
us to examine the impact of storage versus continued accumulation. An overview of
the beam configurations for experiment two are located in Table 5.4.

Additionally, starting with experiment two, we stopped placing the ring RF in
stand-by and started shorting it. The change was intended to ensure that there
were no effects present from the ring RF. The ring RF mostly impacts the beam by
longitudinally bunching the particles. Therefore, this change should not have had a

significant impact on the such a short time scale.

Tune The results of experiment one allowed us to reduce the number of tune points

studied in experiment two to one equal-tune point and one split-tune point.

Geometry Additionally, we learned from experiment one that it is easier to
distinguish the effects of coupling when comparing asymmetric emittances. With
symmetric or equal emittances, the concern was that the effects of low levels of
coupling might not be clearly distinguishable from the already equal emittances.
Therefore, we limited experiment two to the asymmetric beam geometry from

experiment one.

Energy and Intensity The nominal beam energy during experiment two was
939.5 MeV. This is 6.6 MeV higher than during experiment one. This is a nominal
change in beam energies between SNS productions periods and should not impact any
comparison between experiments. Our beam intensities were 3.33e12 ppp for the split
tune case and 3.12e12 ppp for the equal tune case, or 0.53 pC and 0.50 pC respectively.

It is important to note that these beam intensities are an order of magnitude less than
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in experiment one due to the fact that we are only accumulating one tenth the amount
of beam. Figure 5.16 compares the configurations for experiments one and two. The
reproducibility of this low intensity beam is demonstrated using the wire scanners at

turn 10 in Section A.1.

5.3.2 Results

Figure 5.17 shows the horizontal and vertical waterfall plots for the two beam cases
in experiment two. This figure represents the data collected for experiment two as
documented in Table 5.4. The split tune beam (top) follows the expected uncoupled
profile evolution, as previously shown with similar data in Section 5.2.2. The beam
maintains most of its hollowness during storage due to the low beam intensity
and a limited period of storage. In comparison, the equal tune beam (bottom)
displays strong coupling between the transverse profiles. This is most clearly seen
in Figure 5.18, which directly compares the profiles at three points during storage. In
order to make this direct comparison between the transverse profiles, we must adjust
the profiles to account for the strengths of the magnetic fields by scaling the widths of
the beams. We do this by multiplying the position values 1/+/3. At turn 80 (left), the
horizontal profile has a larger width than the vertical profile. This was determined
by the injection offsets. At turn 100 (middle), the profiles have almost equal widths.
At turn 130 (right), the horizontal beam is at a waist. The profiles exchanged widths
in approximately the period from turn 80 to turn 130.

Figure 5.19 shows the emittance evolution for the beam cases in experiment
two. The split tune emittances (top) are approximately constant and remain at the
intended sizes for the duration of the experiment. Using the emittances, we can see a
clear exchange of the equal tune emittances (bottom). The oscillation has a sinusoidal
nature, though it is difficult to determine the long term nature of the oscillations
without more turns of storage. Additionally, we are able to loosely compare the

equal-tune beam with a similar case from experiment one. Figure 5.20 shows the
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Figure 5.16: Comparison of configurations for experiments one and two. The beam
intensity is shown on the vertical axis and the total number of turns are shown on the
horizontal axis. The split-tune accumulation-only configuration for cases 1 through
7 of experiment one are shown with a solid red line with '()' points. The equal-tune
accumulation-only configuration for cases 8 through 11 of experiment one are shown
with a solid black line with 'A' points. The accumulation extended with storage
configuration for case 12 of experiment one is shown with dashed blue lines with "'
points. The stored beam configuration of experiment two is shown with a brown line
with 'O' points. Lines indicate the evolutionary path followed for each data point,
and markers indicate the relative location of data collection. Sloped lines indicate
periods of accumulation and flat lines indicate periods of storage.
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Figure 5.17: Comparison of the wirescan waterfall plots for experiment two. The
split tune beam is shown on top, and the equal tune beam is shown on bottom.
Each beam was accumulated for 50 turns, shown in color, and then stored, shown in
black. The numbers on the vertical axis indicate the turn when each measurement
was collected. To provide a relative scale for the evolution, each profile is vertically
offset by 0.02 times the turn number.
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Figure 5.18: Comparison of the transverse beam profiles at three points during
storage. Each beam was accumulated for 50 turns. The beams were stored for 30,
50, and 80 turns, respectively. These profiles have been scaled by the Twiss factor,
1/4/B, to account for the effects of the local magnetic fields and to allow for direct
comparison of the physical sizes.
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vertical emittances are indicated with 'W'.
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stored equal-tune emittance evolution from experiment two versus the accumulation-
only equal-tune emittance evolution from case 8 in experiment one. Both cases have
asymmetric geometries and the injection offsets of experiment two were chosen to be
very similar to those in experiment one. At turn 50, we can see that the emittances
for the two cases are almost equal. These similarities allow us to generally compare
the evolution of the beam under constant accumulation versus the evolution of the
beam under storage. We can see that the continued accumulation clearly dampens the
amplitude of the oscillation. It also slightly decreases the frequency of the oscillation.
Finally, the emittances of experiment two give us insight into what the low intensity

emittances for experiment one might have been.

5.4 Experiment Three: Accumulation Followed
By Storage Using The Electron Scanner

Experiment two confirmed that the coupling started at low beam intensities. It
demonstrated that the coupling could create a complete exchange of transverse
emittances. These results continue to support the theory that the coupling is not
caused by a Montague resonance. The main limitation of experiment two was the
large consumption of time required for data collection. Each wire scan took upwards
of four minutes to collect and required brief operator interaction between data points
to alter the number of turns of accumulation or storage. One of our main priorities
became extending the storage period. Therefore it was necessary for us to increase
the number of measurements, which required a more dynamic diagnostics device.
In experiment three, we repeat experiment two using the Electron Scanner as the
primary diagnostic.

As noted in Chapter 4, the Electron Scanner improves significantly on the time for
data collection. A brief summary of the explanation of how this is accomplished is as

follows. The Electron Scanner is located in the ring, allowing it to collect data during
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the evolution of the beam without requiring extraction to the target for each scan.
Therefore, we can set up the final beam configuration, including all accumulation and
storage, and the Electron Scanner is able to sweep through the evolution in one fluid
series of scans. This eliminates the need for any operator interaction during a full scan
of one evolution, which increases the speed of the scan. Additionally, the Electron
Scanner has a much faster rate of data collection. We take advantage of this by
collecting full longitudinal sweeps of the beam at much smaller intervals than we were
able to with the wire scanners. These two reasons increase the overall data collection
speed. Another benefit is that the non-destructive nature of the Electron Scanner
removes any concerns about creating large beam losses during scans. Together these
improvements make the Electron Scanner a far more dynamic device and the superior
choice for studies of the full evolution of the beam.

The most unique feature of the Electron Scanner is its ability to measure profiles
from numerous bunches during the evolution of the beam. These profiles can then be
combined to clearly show the evolution of the beam profile as a continuous curve. We
refer to these figures as profile evolutions. Data processing for the Electron Scanner

is discussed further in Chapter 4.

5.4.1 Configuration

In order to study a well-defined beam, we increased the beam accumulation to 100
turns and, taking advantage of the Electron Scanner’s rapid data collection, we
extended the storage to 300 turns. A complete longitudinal scan, consisting of 40
separate transverse profiles along a single bunch length, is collected every 10 turns
during accumulation and storage. The details of how the Electron Scanner works and
how the data is processed and presented are discussed in Chapter 4. An overview of
the beam configurations for experiment three are located in Table 5.5. The results of

experiment three are presented in Section 5.4.2.
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Table 5.5: Beam Configurations for Experiment Three

Primary Diagnostic
Device
Accumulation &
Storage
Shift Date

Electron Scanner (Located between QTH_D13 and QTV_A01 in the Ring)

Accumulation Followed By Storage
June 27th, 2015

Beam Tune

Split Tune Middle Split

Tune Equal Tune
Q. 6.20907 6.20044 6.19944
Qy 6.16866 6.19188 6.19781
AQ 0.04041 0.00856 0.00163
Injection Kickers Flat-topped Waveform
X Injection Size 17.3 mm 18.1 mm 17.9 mm
Y Injection Size 6.5 mm 7.2 mm 8.5 mm
Beam Geometry Asymmetric
Turns of
Accumulation 100
Turns of Storage 300
Scan Steps 40 longitudinal slices collected every 10 turns starting at turn 5
Nominal Medium Low
Maximum Intensity 7.42el2 ppp 7.51el2 ppp 7.60el2 ppp 4.36e12 ppp 2.29¢12 ppp
1.19 uC 1.20 uC 1.22 uC 0.70 uC 0.37 uC
Beam Energy 939.5 MeV
Ring RF Shorted
Ring Pattern Width 39%
Ring Chromaticity Zeroed

Linear Coupling

Checked and, if necessary, removed with skew quadrupoles
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Tune The equal tune was chosen to be the same as in experiment two. In order
to investigate the dependence on the tune split, we collected data for two split tune
cases by lowering the vertical tune. The most split tune case has a tune split almost

five times larger than the intermediate tune split case.

Geometry During experiment three, we required a smaller beam size than the
previous experiments in order to fit the entire beam into the apertures of the Electron
Scanner. The vertical aperture has tighter size limitations than the horizontal beam
due to misalignment of the vacuum beam pipe and a larger betatron function,
therefore we configured a much smaller vertical beam size. The measured Twiss
parameters at the Electron Scanner are (o, = 0.78,8, = 3.23,a, = —0.72,5, =
10.21), as discussed in Section 4.3.

Energy and Intensity The beam energy remained the same as in experiment
two. For the equal tune configuration, we collected data for two lower intensities
in addition to the nominal intensity. In order to preserve the other configuration
settings, we lowered the intensity by limiting the output current from the H™ source.
Figure 5.21 compares the configurations of experiment three in comparison with those

of experiments one and two.

5.4.2 Results

In this section we review the results of the third experiment focused on using the new
Electron Scanner. First, we will examine the effect of tune on the beam dynamics.

Then, we will examine the effect of beam intensity on the coupled beam.

Effect of Tune

Figure 5.22 shows the horizontal and vertical profile evolution for the split tune (top
row), middle split tune (middle row) and equal tune (bottom row) configurations.

These correspond to the first three cases of experiment three as documented in
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Figure 5.21: Comparison of configurations for experiments one, two, and three. The
beam intensity is shown on the vertical axis and the total number of turns are shown
on the horizontal axis. The split-tune accumulation-only configuration for cases 1
through 7 of experiment one are shown with a solid red line with '()' points. The
equal-tune accumulation-only configuration for cases 8 through 11 of experiment one
are shown with a solid black line with 'A' points. The accumulation extended with
storage configuration for case 12 of experiment one is shown with dashed blue lines
with 'J' points. The stored beam configuration of experiment two is shown with a
brown line with 'C' points. The three intensities of experiment three are shown with
solid lines with '@' points. The intensities are nominal (purple), mid (green), and
low (gold). Lines indicate the evolutionary path followed for each data point, and
markers indicate the relative location of data collection. Sloped lines indicate periods
of accumulation and flat lines indicate periods of storage.
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Table 5.5. The overall behavior of both split tune cases follow our understanding
of the nominal beam evolution. During accumulation, the horizontal profiles are
hollow due to the injection pattern defined by the flat-topped injection kickers and
the choice of betatron tunes. While the beam is stored, space charge forces cause the
horizontal profiles to dilute and the profiles become flat-topped after a few hundred
turns. Due to the small vertical injection offsets, the vertical profiles are seen as single
peaks with no discernible features. This implies that the coupling effect requires the
tune split to be less than ~0.009. This is generally considered a small tune split beam
and is far from the nominal working point of the SNS. These cases provide uncoupled
beams as references for our experiment. By contrast, the equal tune case shows
full oscillations of the beam shape. The horizontal profile starts hollow but quickly
becomes peaked midway through accumulation. It then proceeds to oscillate between
peaked and hollow during storage. The vertical profile, to a lesser extent due in part
to its limited size, also oscillates. The evolution indicates coupled beam dynamics that
are significantly different from the split tune configurations. This represents a unique
measurement of the profile evolution during the coupling. Prior to this research, no
published works ever considered profile shape change during coupling. The primary
focus of other works has always been on oscillations of the RMS size. There has
usually been an implicit assumption that either the profile shape was preserved or
that there was only a slow change in the shape. However, with this measurement, we
have documented a major shape change over the span of approximately 75 turns.
Figure 5.23 shows the evolution of the horizontal and vertical RMS beam
sizes for the split tune (top), middle split tune (middle) and equal tune (bottom)
configurations, as documented in Table 5.5. When comparing the RMS sizes, it is
important to remember that the betatron values at the location of the horizontal
and vertical ES apertures are not equal, as noted in Section 4.3. Additionally, the
horizontal emittance of the beam is designed to be larger than the vertical emittance.
Excluding the initial period of accumulation, the split tune and middle split tune RMS

sizes remain constant during beam storage from turn 100 to 400. This continues to
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fit our description for the evolution of uncoupled beams. For the equal tune case, we
see an exchange between the RMS sizes of the two planes within the first 50 turns.
By the time accumulation has stopped at turn 100, an oscillation has been created
between the transverse planes. This oscillation matches the oscillation seen in the
profile evolutions. From the RMS sizes, we can see that the oscillation dampens as

the storage continues.

Effect of Beam Intensity

Figure 5.24 shows the profile evolutions for the three equal tune configurations of
experiment three, as documented in Table 5.5. The full intensity figure (bottom)
represents the same equal-tune case presented in the previous section. The oscillations
of the profiles decrease with increasing beam intensity. Figure 5.25 shows the RMS
size evolutions for the three equal tune configurations in experiment three. Each of
the RMS size evolutions has been fit with an exponentially-damped sinusoid of the
following form:

f=Aexpt K sin(Bx 4+ C) + D. (5.1)

In this fit, A is the amplitude of the oscillation, B is the oscillation frequency, C is
the frequency offset, D is the amplitude offset and K is the damping coefficient. The
fits are started at the first data point in the storage period, turn 105. The results of
the fits are shown in Table 5.6.

Figure 5.26 shows that the oscillation period for these fits decreases with increasing
beam intensity. This result indicates that space charge forces dampen the oscillation
in the beam, contrary to our original theory that the coupling was due to a Montague
resonance.

As mentioned previously, the tune of the SNS beam is often changed during
production setup to minimize losses in the ring while optimizing the beam size
and shape on the target. The dynamics demonstrated in experiment three have

two important consequences. First, the beam no longer responds as expected to
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Table 5.6: Fit Parameters for the Three Equal Tune Cases

Horizontal Vertical

Beam Low Mid Full Low Mid Full
Intonsit [e12ppp] 2.29 4.36 7.60 2.29 4.36 7.60
Y [1C] 0.37 0.7 1.22 0.37 0.7 1.22
a 1.16 0.461 0.871 2.58 1.1 1.44

Fit b 0.0465 0.0624 0.0796 0.0463 0.059 0.0829
Parametors c 7.33 6.84 6.49 10.5 10.9 11.5
d 10.6 10.3 6.15 7.64 8.18 2.35

k 0.0026 0.0018 0.00859 0.00271  0.00209  0.00666
Period [Turns] 135.12 100.69 78.93 135.71 106.49 75.79
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systematic changes in the injection kickers. Second, the beam size and shape
can change significantly if the extraction location during the beam evolution is
altered. This could present an issue for satisfying beam-on-target requirements during

production runs.

5.5 Conclusions

In experiment one, we used wire scanners to collect data for twelve different simplified
accumulation beam configurations. We studied symmetric and asymmetric beams
across six general tune points. We compared the results as profiles and emittances.
We established nominal profile and emittance evolutions for split tune beams. We
demonstrated that one transverse beam size could be altered without impacting the
opposite transverse phase space in split tune beams. We established that equal tune
beams have significantly different evolutions than beams with split tunes. The final
equal tune profiles were peaked in the horizontal plane and had sloping edges in the
vertical plane. Additionally, we demonstrated that the transverse beam profiles of
equal tune beams were coupled. Any change to one plane would be carried over to
the opposite plane. Finally, the equal tune beams demonstrated damped coupled
oscillations between the two transverse emittances.

In experiment two, we used wire scanners to collect data for two different
accumulation-followed-by-storage beam configurations. We established the existence
of coupling at low intensities and documented coupling during storage. We showed
that the coupling could create a complete exchange of both the profiles and the
emittances during storage. By comparison with a similar beam configuration
from experiment one, we demonstrated that continued accumulation dampens the
amplitude and frequency of the oscillation.

In experiment three, we repeated experiment two using a new and more dynamic
diagnostic device, the Electron Scanner. We confirmed the previously documented

tune-dependent coupling effects. The new diagnostic device allowed us to collect more
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data. This in turn allowed us to document multiple oscillations of both the profiles
and the RMS beam sizes of an equal-tune beam at three different beam intensities. We
demonstrated that the beam size and shape can change significantly if the extraction
point is altered. Specifically, we presented the first experimental demonstration of
a major profile shape change in a short time period due to coupling. Additionally,
we were able to fit the stored beams with exponentially-damped sinusoids. The
fit parameters showed that the oscillation period decreased with increasing beam
intensity.

Our initial hypothesis was that the Montague resonance was the source of
the coupling. However, experiment one demonstrated that the coupling starts
much earlier than previously expected and dampens over time while the beam
intensity is increasing. Experiment two confirmed and expanded upon these results,
demonstrating that at low intensities the coupling could create a complete exchange
in the transverse planes. Experiment three demonstrated that space charge forces
damp the oscillations due to coupling in the beam. These results provided evidence
contradictory to the original hypothesis and support the argument that the coupling

is not due to a Montague resonance.
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Chapter 6

SNS Production-Style Experiment

In Chapter 5, we began our investigation into the coupling by studying a simplified
accumulation beam. Specifically, we simplified the injection process by removing
injection painting, which might have concealed the source of the coupling. We also
isolated the effects of space charge and tune split by using the sextupoles to reduce
the chromatic effects. We were able to demonstrate several important results through
three extensive experiments. First, the coupling was tied to an equal tune resonance.
This was the only result which matched our original hypothesis. Second, the beam
geometry did not have a significant impact on the coupling. Third, the effect of the
coupling decreased with increasing beam intensity. Finally, the coupling could create
full emittance exchange if the beam was stored at low intensities. Together these
results suggest that the coupling is not due to a Montague resonance.

The next step in our investigation was to study the coupling of a beam with
the full SNS production-style configuration. In Chapter 6 we follow a similar
experimental procedure as described in Chapter 5, however, we use the most recent
SNS production settings. In doing so we return to the initial motivation of this
research, understanding, and mitigating the coupling effects seen during the regular
production operations. In addition to studying the effects of tune on the coupling,

we also study the effects of the skew quadrupoles.
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In Section 6.1 we review the differences between the simplified accumulation
experiment and the SNS production-style experiment. In Section 6.2 we review
the experimental results. Finally, in Section 6.3, we summarize the results
of the production-style experiment. This final experiment is essential to the

recommendations we will present in Chapter 8 for mitigating the coupling.

6.1 Configuration

In this section we discuss the variation in beam configuration between the simplified
accumulation experiments described in Chapter 5 and the final experiment described
here.  We specifically highlight the added complications present for an SNS
production-style beam.

In this experiment, we use the SNS production run configuration. The beam
is not stored. The injected beam intensity is ramped during the first 98 turns of
accumulation. The nominal SNS dual-plane injection painting is used to produce
a final beam with a flat-topped transverse profile with well-defined sides. The dual
harmonic ring RF is used to limit the spread of the beam longitudinally and produce a
final beam with a flat-topped longitudinal profile with well-defined sides. Finally, we
allow for a natural beam chromaticity by not using the ring sextupoles. An overview
of the precise beam settings for this experiment is documented in Table 6.1.

For this experiment, the beam size is larger and the final accumulated beam
intensity is an order of magnitude higher than in the previous Electron Scanner
experiment. Due to these changes, the vertical Electron Scanner had trouble viewing
the entire beam. This limitation caused problems for most of the data acquisition.
The horizontal aperture does not have the same restriction, as noted in Chapter 4.
Therefore, the horizontal Electron Scanner was able to capture the entire beam up
to turn 850. As a result of this, only the horizontal data will be presented. However,
any coupling effects seen in the horizontal RMS size and profile evolutions would be

mirrored in the vertical data.
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Table 6.1: Beam Configurations for Experiment Four

Primary Diagnostic

Electron Scanner (Located between QTH_D13 and QTV_A01 in the Ring)

Device
Accumulation & Production-Style Accumulation
Storage
Shift Date November 16th, 2015
Beam Tune Production Tune Equal Tune
Qz 6.20357 6.20432 6.16923 6.16398
Qy 6.15914 6.16233 6.16907 6.16666
AQ 0.04443 0.04199 0.00016 -0.00268

Injection Kickers

Beam Geometry
X Injection Size
Y Injection Size

Painted down from 100% to 48% in 1000 pseconds
following one minus the square root of the number of turns
Asymmetric
17.5 mm
8.8 mm

Turns of Accumulation

Ramped accumulation for 98 turns, followed by
Full intensity accumulation of up to 878 turns

Scan Steps 40 longitudinal slices collected every 10 turns starting at turn 5
Nominal
Maximum Intensity 4.4el13 ppp
7.0 uC
939.5 MeV

Beam Energy
Ring RF

Ring Pattern Width

Ring Chromaticity
Skew Quadrupoles

First Harmonic with an amplitude of 8.6kV and phase of 44.4°
Second Harmonic with an amplitude of 5.0kV and phase of -155.0
47%

Natural (Sextupoles Off)

On Off On Off

o
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Tune The production betatron tune was (v, = 6.20, v, = 6.16) with Av ~ 0.042.
We refer to this configuration as the production tune configuration. The second tune
for this experiment was selected to be (v, ~ v, = 6.17). We refer to this configuration

as the equal tune configuration.

Geometry The last production settings were for an injection size of (17.5 mm,
8.8 mm). The nominal production injection offset is cited as and expected to be
approximately (30 mm, 30 mm) [31]. However, the operators have strayed from this
expected beam during the production tune up. The smaller asymmetric production

beam is much closer to the simplified beam previously used in the Electron Scanner.

Energy and Intensity The nominal beam energy during our experiment was
939.5 MeV. The production beam had 878 turns of full intensity injected beam with
an additional 98 turns of ramping intensity beam. The final data presented goes
to turn 850, which equates to a final accumulated beam intensity of approximately
4.4e13 ppp or 7.0 uC. Figure 6.1 compares the configurations of this experiment with

the simplified accumulation configurations.

Skew Quadrupoles The nominal production configuration also consisted of several
skew quadrupoles correctors. As mentioned in Chapter 5, skew quadrupoles are
designed to allow the reduction of any lattice coupling that might be present. The
following skew quadrupoles correctors were set to -5.3 A, producing a field of -0.025
T: QSC_A01, QSC_A03, QSC_A05, QSC_A07, QSC_A09, and QSC_D09. These skew
quadrupoles were used during the initial SNS power up in 2006 - 2007 to correct for
x-y coupling believed to be caused by strong higher order multipole modes in the

injection region[74].
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Figure 6.1: Comparison of configurations for both simplified accumulation and
production-style experiments. The beam intensity is shown on the vertical axis
and the total number of turns are shown on the horizontal axis. The split-tune
accumulation-only configuration for cases 1 through 7 of experiment one are shown
with a solid red line with '()' points. The equal-tune accumulation-only configuration
for cases 8 through 11 of experiment one are shown with a solid black line with
'A'" points. The accumulation extended with storage configuration for case 12 of
experiment one is shown with dashed blue lines with 'J' points. The stored beam
configuration of experiment two is shown with a brown line with 'G' points. The
three intensities of experiment three are shown with solid lines with '@' points. The
intensities are nominal (purple), mid (green), and low (gold). The production-style
experiment configurations are shown with a solid yellow line with 'l' points. Lines
indicate the evolutionary path followed for each data point, and markers indicate the
relative location of data collection. Sloped lines indicate periods of accumulation and
flat lines indicate periods of storage.
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6.2 Results

In this section we review the experimental data for our production-style beam study.
First, in Section 6.2.1, we will examine the effects of tune on production-style beams.
We expect these results to parallel with those of experiment three in Section 5.4.2.
Finally, in Section 6.2.2, we will examine the effects of the skew quadrupoles on
production-style beams by comparing cases with and without skew quadrupoles for
both tunes. Our primary use of skew quadrupoles has been to remove linear coupling
in the single injected mini-pulse during configuration. The results of Chapter 5
indicate that the coupling is not caused by a Montague resonance. This raises the
question of whether the skew quadrupoles would be able to relieve linear lattice

coupling and, if not, what impact they were actually having on the coupling.

6.2.1 Effect of Tune

Figure 6.2 shows the horizontal RMS size evolution for both tune configurations
without skew quadrupoles for the production-style experiment. As we saw in
Section 5.4.2, the beam sizes are altered by the coupling. An equal tune configuration
will have a decreased horizontal beam size and an increased vertical beam size in
comparison to a split tune configuration with the same injection offsets. We see the
same trend with the production-style configurations. Additionally, both production-
style configurations display an expected slow increase in the RMS size during the
continued accumulation. This increase is due to the production-style injection kicker
waveform and increasing beam intensities during accumulation.

Figure 6.3 shows the horizontal profile evolutions for the same production-style
configurations. While the horizontal RMS sizes follow a similar evolution for both
tune configurations, the profile evolutions are not similar. The production tune
profiles maintain a small hollowness even at the end of the evolution. However,
the equal tune profiles become centrally peaked even at lower intensities. A similar

effect was demonstrated in Section 5.4.2, where the split tune configurations were
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Figure 6.2: Comparison of the RMS beam sizes for the production tune (dark
blue) and equal tune (dark red) configurations without skew quadrupoles for the
production-style experiment.
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on the top and the production tune case is shown on the bottom.
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shown to maintain the shape of their initial profile much longer than the equal tune

configurations.

6.2.2 Effect of Skew Quadrupoles

The skew quadrupoles are used in order to reduce any coupling present in the beam.
This correction is done by monitoring the turn-by-turn oscillations of a single injected
mini-pulse and adjusting the skew quadrupole strengths. It was our expectation that
using the skew quadrupoles would reduce the effects of linear lattice coupling seen in
the final distribution of the beam. The question becomes what effect they had on the
coupling in the production-style beams.

Figure 6.4 shows the RMS size evolution for the equal tune configurations with and
without skew quadrupoles. While the general evolution of the RMS size is similar,
the configuration with skew quadrupoles displays an additional level of coupling. This
coupling appears as a small damped oscillation about the configuration without skew
quadrupoles. Figure 6.5 compares the equal tune horizontal profile evolutions. We
can see that this additional coupling appears as a rapid change in the shape and peak
intensities of the profile evolution. In this experiment, the skew quadrupoles did not
eliminate the primary effects of the coupling. We still see a centrally peaked profile
at high intensities. This result is contrary to our expectations for the effects of the
skew quadrupoles. In fact, they complicated the evolution of the coupling by adding
a small damped oscillation. Additionally, the overall effect of the skew quadrupoles
on the beam evolution was minor compared to the overall impact of the tune change.

Figure 6.6 shows the RMS size evolution for the production tune configurations
with and without skew quadrupoles. The shifts in RMS sizes along the evolution
of the production tune configuration with skew quadrupoles is a result of trying
separate Electron Scanner configuration settings for different ranges of accumulating
proton beam intensity. This was the first dataset collected during the production-style

experiment. Prior to the shift, we made the decision that different settings would allow
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Figure 6.4: Comparison of the RMS beam sizes for both equal tune configurations
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us to best capture the beam over the wide range of proton beam intensities. On-shift
analysis showed us that this was not as helpful as we originally anticipated and that it
could be difficult to directly compare the beam at different Electron Scanner settings.
The other production-style experiment datasets were captured with a single Electron
Scanner setting. Despite the effects of the different Electron Scanner settings for
the configuration with skew quadrupoles, both cases follow similar trends of steady
increasing RMS sizes. Figure 6.7 compares the production tune horizontal profile
evolutions. Again, despite the effects of the different Electron Scanner settings, the
general shape of the profile is consistent throughout the accumulation of the beam.
We can see in comparisons of both the RMS size and profile evolutions that the skew

quadrupoles had little to no effect on the uncoupled production tune configuration.

6.3 Conclusions

In our final experiment, we used the Electron Scanner to study the production-
style beam. This experiment repeated the general procedure of the third experiment
presented in Chapter 5. We studied the same asymmetric beam geometry for four
total configurations, two different tunes both with and without skew quadrupoles.
The first tune configuration had a large tune split and was used during the last
production run. The second tune configuration was for an equal tune beam. We
compared the results through the evolution of horizontal RMS sizes and profiles.

It is important to note that the effects of the coupling were weaker due to
the combined impact of continued accumulation and the production-style injection
painting. Based on the results presented in Chapter 5, we expected the coupling to
decrease with continued accumulation. As shown in Figure 6.1, the production-style
beam intensities are generally much higher than those previously explored using the
Electron Scanner. Therefore, it is not surprising that the coupling effects continued to
tapper off at higher beam intensities. The production-style injection painting schema

was designed to create a flat-topped beam, as is seen in split-tune horizontal profiles
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shown in Figure 6.7. Therefore, it would not be surprising if the production-style
injection painting also masked some of the coupling later in accumulation, where
it deviates from the previously used flat-topped injection kickers. As we did not
explore the injection painting as an experimental parameter in Chapter 5, it is difficult
to separate the effect of changing the injection painting scheme from the effect of
continued accumulation.

In section 6.2.1, we showed that the equal-tune production-style beam quickly
became centrally peaked due to the coupling effect. Over the same period of
accumulation, the split-tune production-style beam remained slightly hollow. Both
tune configurations displayed the same slow increase in RMS beam sizes. Therefore
it is harder to determine whether the RMS beam sizes were coupled in the equal tune
configuration. As we showed in experiment one in Section 5.2.2 and in experiment
three in Section 5.4.2, continued accumulation at a high beam intensity dampens
the oscillations due to coupling. This implies that the coupling of the RMS beam
size for a high intensity accumulating beam may be difficult to detect under any
circumstance. This reinforces our rationale for having first studied a beam under
simplified accumulation configurations and using low intensity stored beams.

In section 6.2.2, we examined the effect of the skew quadrupoles. We expected the
skew quadrupoles to have a large impact on the evolution of the beam by removing
the coupling. We were able to show that the skew quadrupoles only produced small
damped oscillations in the coupled evolution of the beam. The subtle nature of this
coupling emphasizes the importance and unique diagnostic attributes of the Electron
Scanner. It is important to note that it is possible that the skew quadrupoles may
have simply been set incorrectly to remove the coupling. Without investigating an
array of skew quadrupole setting, we can not establish whether the skew quadrupoles
would have been capable of removing the coupling. Additionally, the decreased effect
of the skew quadrupoles may have been due to the effects of continue accumulation
and production-style injection offset. However, we did demonstrate that the skew

quadrupoles were capable of introducing a new coupling on a smaller scale than
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previously seen. This coupling created oscillations that were seen in the horizontal
RMS size and profile evolutions.

In summary, experiment four corroborates the primary results presented in the
first three experiments. The coupling is present at low intensities and has a strong
and quick impact on the evolution of equal tune beams. Additionally, the strength of
the coupling does not amplify with increasing beam intensity, but instead decreases.
This result continues to indicate that the source of the coupling is not a Montague
resonance. This experiment added insight by comparing the evolution of the coupling
with and without skew quadrupoles. Skew quadrupoles are normally used to remove
coupling of the single injected mini-pulse. We demonstrated that the use of skew
quadrupoles actually complicates the coupling present during the evolution of the
accumulating equal-tune beam. When skew quadrupoles are not used, the coupling
still impacts the evolution of the equal tune beam but the profile oscillations are

removed.
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Chapter 7

PyORBIT Simulations

This chapter is devoted to simulations of the simplified accumulation followed by
storage experiment conducted using the Electron Scanner in Section 5.4. This
experiment was chosen because it has a simplified configuration that should allow
it to be more easily and accurately simulated. Additionally, the Electron Scanner
should provide a rich source of data for comparison with simulations. In Section 7.1,
we will review several important aspects of particle accelerator simulations, such
as modeling space charge and fringe field effects. In Section 7.2, we will present the
specific configuration values used in these simulations. In Section 7.3, we will compare
the results from simulation with those from experiment. We will also present two brief
simulation studies into the dynamics of the coupling resonance. Finally, in Section 7.4,

we will conclude the important points from our efforts to simulate this experiment.

7.1 Background

The Python-based Objective Ring Beam Injection and Tracking (PyORBIT) is
a particle tracking code originally created and developed for use in designing,
optimizing, and understanding the SNS accumulator ring[22]. PyORBIT is a particle-
in-cell (PIC) tracking code that transports interacting macro-particle bunches through

a series of nodes representing optical elements, dynamic effects, and diagnostics that
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occur in the accelerator lattices[44, 69, 86]. PyORBIT is designed to provide realistic
self-consistent beam dynamics calculations in high-intensity rings[43]. In accelerator
physics, self-consistency refers to simulations where the distribution of particles is not
fixed, but evolves during the simulation.

PyORBIT is written in C++ and utilizes Message Passing Interface (MPI)[21]
protocols for parallel processing. PyORBIT is accessed through a python shell and
user-configured python scripts[85]. In each script, the user defines beam parameters,
such as particle species, beam energy, beam intensity, and the number of particle
per injected pulse. The user imports a realistic accelerator lattice, typically designed
using Methodical Accelerator Design (MAD)[25]. The user can then use PyORBIT to
import an externally created beam distribution, initiate a specified beam distribution,
or inject particles of a specified distribution on a turn-by-turn basis. The user then
defines the injection configuration, space charge dynamics, RF cavities, diagnostic
nodes, and other specialized nodes and distributes these appropriately in the lattice.
When the simulation has been properly configured, particles are transported through
the lattice and, if necessary, iterated according to the user’s script. Transportation
of the particles is carried out through second-order symplectic matrix multiplication
of all linear elements, where nonlinear effects are interpreted as kicks interspersed
between linear elements[45]. In computational physics, symplecticity refers to
simulations, or integrators, that maintain the long-term validity of the Hamiltonian
system. This requirement results in the determinant of the transportation matrix
equaling one, i.e. the conservation of phase space area[7]. Therefore, symplecticity
is essential for single particle tracking. However, space charge and impedance effects
are non-symplectic, so symplecticity can be less important for short PIC simulations.
Symplecticity can still play an important role in long PIC simulations where the
objective is error mitigation and management.

While there are a number of modules to simulate various dynamic effects, special
focus is given by the developers to the calculation of space charge forces. This is

due to the role space charge forces play as a collective effect in defining the overall
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beam dynamics. It is common to characterize accumulator rings and synchrotrons by
separating the longitudinal and transverse dynamics. At the SNS, our longitudinal
beam size is on the order of 100 m while our transverse beam size is on the order
of 10 cm. Additionally, the longitudinal tune is on the order of 10~3 while our
transverse tunes are roughly 6.2. Both the physical scale and the phase space
oscillation frequency are orders of magnitude different. Therefore, splitting these
dynamics is a reasonable approximation for the study of space charge effects.
PyORBIT has 2D, 2.5D and 3D space charge modules. Figure 7.1 illustrates how
the beam distribution is binned for each module. All of the modules are implemented
as a series of transverse kicks distributed between regular lattice elements. For the
2D module, the particles are binned in a 2D transverse rectangular grid using a
bilinear distribution assignment to adjacent mesh points. To reduce the number of
operations that are performed during each simulation, the method selected utilizes
fast Fourier transforms (FFT) for their computational speed. The FFT of the space
charge forces at the mesh points is obtained through the convolution of the FF'T of the
particle density with the force due to a unit charge. In order to avoid aliasing errors, a
sufficient number of mesh points must be used to ensure the FFT accurately represents
the charge distribution. Conducting beam pipe walls are imposed as a boundary
condition. The inverse FF'T provides the space charge forces on the mesh points. The
forces on the mesh points are then weighted based on the local longitudinal density
to account for bunching. Particle kicks are then obtained as a bilinear interpolation
of the forces at the mesh points to the location of the macroparticles.[32, 45, 75]
The 2.5D space charge module follows the same procedure as the 2D space charge
module, but replaces the single 2D grid with a series of 2D grids slicing the beam
longitudinally. After the charge is binned into each slice using the local longitudinal
charge density, the potential is solved on each slice using the same method as before.
The conducting beam pipe is used to connect the 2D potential slices into a 3D
potential grid. The final momentum kicks are then determined by interpolating in the

3D grid to the location of the macroparticle. We call this module '2.5D' because it is

171



2D Space Charge

2.5D Space Charge
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Figure 7.1: Diagrams of the 2D, 2.5D, and 3D particle-in-cell space charge modules.
The beam is shown in green, with a sample particle shown in black. The space charge
grid is shown in blue with grey lines.
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a hybrid of the 2D and full 3D modules. The 3D module computes the particles in a
full 3D grid using the same methodology used in the 2D module. The 2.5D and 3D
space charge modules have been shown to be in agreement with each other and with
analytic calculations[46]. Additionally, the 2.5D space charge module has been used
to accurately simulate and further understand the beam profile at the Los Alamos
Proton Storage Ring[23].

As previously mentioned, another important effect in the study of accelerators are

fringe fields. In MAD, fringe fields are calculated using

[ By(s)(Bo — By(s))
FINT _/ ) HGAD B2 ds (7.1)

—00

where FINT specifies the extent of the fringe fields to be modeled, HGAP refers
to half the gap distance between adjacent magnets, s is the perpendicular distance
measured from the entrance face of the magnet to the point in question, By (s) is the
magnitude of the fringing field on the magnetic mid-plane at a position s, and By
is the asymptotic value of B,(s) well inside the magnet entrance[6]. A value of zero
for FINT indicates that the software should use a hard-edge approximation of the
field. Other common values for FINT include 1/6 for a linear field drop off and 0.45
for a 'square-edged' non-saturating magnet.[19, 25] PyORBIT allows users to specify
which magnet types have fringe fields and calculates those fringe fields using a linear
field drop off.

Studies have been conducted demonstrating the modeling parameters necessary
to obtain numerical convergence[45, 85]. Furthermore, confidence has been estab-
lished that the PyORBIT code correctly simulates the beam transportation and
evolution[14, 46, 82, 85, 87]. However, with each new experiment, it is important
to confirm that the simulations agree with the data collected for a benchmark case.
Agreement between the simulated beam and an ample amount of measured profile

data is sufficient to provide confidence in the accuracy of the simulated results. This

will be an important part of our results section.
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7.2 Configuration

We are simulating the simplified accumulation followed by storage experiment
conducted using the Electron Scanner, which was presented in Section 5.4. We
followed the general configuration presented in that section with additional details as
noted below. The simulations include turn-by-turn injection, injection foil scattering,
symplectic nonlinear tracking through the ring lattice, RF bunching, and 3D space
charge modeling. Fringe field effects were used. An overview of the configurations for
the PyORBIT simulations are located in Table 7.1. The results of are presented in
Section 7.3.

Tune The experimentally measured tunes were used as initial parameters in the
MAD script to generate the accumulator ring lattice. The lattice and matching tunes
are used as the basis of the PyORBIT simulation. In order to check that the MAD
lattice produces the correct tunes, a simple PyORBIT simulation is run where a single
turn of beam is injected into the accelerator and stored for 300 turns. During this
storage, the Beam Position Monitor (BPM) diagnostic data is recorded. Analysis of
the beam oscillations recorded in the BPM data allows an accurate calculation of the
tunes modeled within PyORBIT. These tunes are then used to iteratively adjust the
MAD script until the PyORBIT simulations produce the correct tunes. During this
study, it was noted that the PyORBIT tunes around the equal tune resonance were
especially sensitive to unusually small variations in the initial MAD tunes. A brief

study of the sensitivity of the tune split is presented in Section 7.3.4.

Geometry The beam was simulated using the experimentally measured injection
offsets. An important aspect of beam injection in the SNS is properly modeling
the interaction of the beam with the injection foil. This was modeled using the full
scattering capabilities of the collimation module. This module takes into account
effects due to ionization energy loss, small angle coulomb scattering, Rutherford

scattering, and nuclear elastic and inelastic scattering.
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Table 7.1: Beam Configurations for PyORBIT Simulations

Accumulation & Storage

Accumulation Followed By Storage

Middle Split

Beam Tune Split Tune Equal Tune
Tune
QSim 6.209072 6.200439 6.199439
QySim 6.168656 6.191879 6.197816
AQSim 0.040416 0.008560 0.001623
Injection Kickers Flat-topped Waveform
X Waveform Amplitude 0.648 0.631 0.635
Y Waveform Amplitude 0.838 0.826 0.798
X Injection Offset 48.60 mm
Y Injection Offset 46.00 mm
Beam Geometry Asymmetric
Turns of Accumulation 100
Turns of Storage 300
Number of Macro Particle
Injected Per Turn 10,000
Nominal Medium Low
Maximum Intensity 7.42el12 ppp 7.51e12 ppp 7.60e12 ppp 4.36e12 ppp 2.29¢12 ppp
1.19 pC 1.20 puC 1.22 puC 0.70 uC 0.37 uC
Space Charge 3D Module with 256 x 256 transverse bins and 64 longitudinal bins
Beam Energy 939.5 MeV
Ring RF Shorted
Ring Pattern Width 39%
Ring Chromaticity Zeroed
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Energy and Intensity The beam was simulated with the experimentally measured
energy and intensities. The beam was accumulated for 100 turns and stored for an
additional 300 turns. This was simulated by injecting 10,000 macro particles per
turn and storing the approximately 10,000,000 particles in the final distribution for
an additional 300 turns. This number of macro particles is more than sufficient for
numerical convergence and provides a high resolution simulation. The space charge
interactions of the macro particles were modeled in 3D using 256 bins in each of the
transverse directions and 64 bins longitudinally. The default beam pipe in the space
charge module was set as circular with a radius of 110 mm. Collimation regions and

sections of beam pipe were modeled to remove stray particles.

7.3 Results

In this section we review the results of our simulations. First, we will examine the
effect of tune on the beam dynamics and attempt to establish a benchmark for the
simulations. Then, we will examine the effect of beam intensity on the coupled
beam. Finally, we will use the increased accessibility provided with simulations to
study the sensitivity of key parameters. An investigation into the importance of
fringe fields indicates the source of the resonance. Additionally, an investigation into
the sensitivity of the tune split demonstrates the difficulty of accurately modeling

resonances.

7.3.1 Effect of Tune

Prior to examining the results of new simulations around the resonance, it is important
to make sure that we are correctly modeling the dynamics outside of the resonance.
Outside of the resonance, we expect a strong agreement between simulation and

experiment in both the profile and emittance evolutions. Our expectations for how
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well we can model the resonance will be based on our ability to benchmark the split
tune cases.

Figure 7.2 shows the horizontal and vertical profile evolution for the split tune (top
row), middle split tune (middle row), and equal tune (bottom row) configurations.
This figure shows the simulated results corresponding to the experimental results
documented in Figure 5.22. For the split tune cases, the simulated horizontal profiles
show similar hollowness to what was seen experimentally, with the addition of a
few localized peaks. These localized peaks follow the placement of single minipulses
during their oscillation in phase space. This was also seen in low intensity wire scanner
profiles in Section A.1. Towards the end of the simulations, we do see the profiles fill
in as they did experimentally. The vertical profiles are narrow peaks, as we expected
based on the small vertical injection offsets. These dynamics fit the overall behavior
that we expect during nominal beam evolution.

For the equal tune case, the coupling is not clearly visible in the horizontal profiles.
While we would have expected to see strong oscillations in the horizontal profiles,
this might be due to the large horizontal beam size. However, the vertical profile
demonstrates the same strong profile oscillation that is seen in the experiment. This
topic of matching the oscillations for the equal tune case will be discussed again when
we view the emittance profiles.

Figure 7.3 shows the evolution of the horizontal and vertical emittances for the
split tune (top), middle split tune (middle), and equal tune (bottom) configurations.
This figure shows the simulated results corresponding to the experimental results
documented in Figure 5.23. For the split tune cases, we see a strong agreement in the
evolution of the beam. Any difference in the value of the split tune emittances is due
to a discrepancy between the experimental and simulated injection offsets. In this
study, we allowed for small adjustments of the injection parameters to more closely
match the emittances in the split tune case. These injection parameters were then

used for the other configurations.
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Figure 7.2: Simulated profile evolutions for the split tune (top row), middle split
tune (middle row), and equal tune (bottom row) configurations. The horizontal
evolutions are shown on the left and the vertical evolutions are shown on the right.
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Figure 7.3: Emittance evolutions for the split tune (top), middle split tune (middle),
and equal tune (bottom) configurations. The simulations are shown with dash dotted
lines without points. The Electron Scanner data is shown with connecting lines and
hollow data points. The wire scanner data is shown as solid data points without
lines. The horizontal experimental data is shown with solid red lines with 'A', and
the vertical experimental data is shown with solid blue lines with '@".
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For the equal tune case, the simulations are clearly coupled but greatly under
predict the strength of the coupling. The experimental beam quickly reached and
oscillated about the equal tune equilibrium. The simulated beam emittances oscillated
close to the values of their split tune counterparts. The peaks of the oscillations
seem to start out aligned following storage and then proceed to slip out of phase
during storage. By general inspection, the amplitude of the simulated horizontal and
vertical emittance oscillations are approximately the same. However, the percent
oscillation of the vertical emittance is much larger than that of the horizontal
emittance. Experimentally, we see strong coupling in both profiles and emittances.
Additionally, the percent oscillations in horizontal and vertical emittances were very
close in experiment. This equalization of the emittances might account for why the
coupling was clearly visible in both experimental profiles, but only in the smaller

simulated vertical profile.

7.3.2 Effect of Beam Intensity

Figure 7.4 shows the horizontal and vertical profile evolution for the equal-tune low
intensity (top row), middle intensity (middle row), and nominal intensity (bottom
row) configurations. This figure shows the simulated results corresponding to the
experimental results documented in Figure 5.24. The full intensity figures (bottom
row) represent the same equal-tune case presented in the previous section. For the two
low intensity cases, the beam evolution is similar to what was seen experimentally.
There is a general hollowness in the profiles which periodically dilutes and reappears.
At low intensity the coupling was also difficult to detect in the experimental profiles.
Qualitatively, the simulated results demonstrate some of the same features as the
experimental results.

Figure 7.5 shows the horizontal and vertical profile evolution for the equal-
tune low intensity (top), middle intensity (middle), and nominal intensity (bottom)

configurations.  This figure shows the simulated results corresponding to the
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Figure 7.4: Simulated profile evolutions for the equal-tune low intensity (top row),
middle intensity (middle row), and nominal intensity (bottom row) configurations.
Horizontal evolutions are shown on the left and vertical evolutions are shown on the
right.
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Figure 7.5: Emittance evolutions for the equal-tune low intensity (top), middle
intensity (middle), and nominal intensity (bottom) configurations. The simulations
are shown with dash dotted lines without points. The Electron Scanner data is
shown with connecting lines and hollow data points. The wire scanner data is shown
as solid data points without lines. The horizontal data is shown in red with 'A' and
the vertical data is shown in blue with '@".
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experimental results documented in Figure 5.25. The nominal intensity figure
(bottom) represents the same equal-tune case presented in the previous section.
For the two low intensity cases, the simulations show strong coupling, but still
greatly underestimate the strength of the resonance. In the context of all three
beam intensities, it is easier to see how the simulations fail to follow the general
evolution of the resonance in the nominal intensity case. It is likely that if we could
better understand the short falls of the simulations at low intensity, then we would
be better able to model the nominal intensity case. As we did in Section 5.4.2,
we fit the emittances to a damped sinusoid. The fit results for the simulated three
equal tune cases are shown in Table 7.2. Figure 7.6 shows the oscillation period
for these fits decrease with increasing beam intensity. While the simulated and
experimental frequencies are not the same, this shows that the simulated results
follow the same trend as the experimental results. This supports the theory that this
is not a Montague resonance. In Section 7.3.4, we will investigate the sensitivity of
our simulations to the tune split. Those results imply that our simulations may not

be as far off from modeling the resonances as they might seem.

7.3.3 Sensitivity Study: Fringe Fields

Figure 7.7 shows the three equal tune simulations with (top) and without (bottom)
quadrupole fringe fields. By deactivating the effects of quadrupole fringe fields,
the coupling is effectively removed at all intensity levels. The remaining variations
in the emittances are small and, prior to turn 100, are likely due to the injection
process. Similar effects were seen experimentally in the emittances of both split tune
cases. This simple study indicates that the source of the resonance is the fringe fields.
Specifically, we know that the fringe fields are strong in the quadrupoles around the

injection region. This makes these magnets the most likely source of the resonance.
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Table 7.2: Fit Parameters for the Simulated Three Equal Tune Cases

Horizontal Vertical

Bearn Low Mid Full Low Mid Full
Itensit [e12ppp] 2.29 4.36 7.60 2.29 4.36 7.60
Y [1C] 0.37 0.7 1.22 0.37 0.7 1.22
a 0589 0932  0.734 0.77 1.254  0.626
i b 0.093 0112  0.139 0.091  0.113  0.140
Parametors c 16.67 1676 16.80 2.88 2.71 2.60
d 2.64 7.79 6.18 6.57 4.44 9.04

k 0.00266  0.00426  0.00652 0.00343  0.00566  0.00577
Period [Turns] 67.87 5611  45.15 68.70  55.68  44.77
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Figure 7.6: Simulated and experimental oscillation period versus beam intensity for
the equal tune cases in the experiment three. The horizontal parameters are shown in
red with 'A', and the vertical parameters are shown in blue with '()'. The simulations
are shown with dashed lines. The experiments are shown with solid lines.
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Figure 7.7: Simulated emittance evolutions for three equal-tune configurations with
quadrupole fringe field (top) and without quadrupole fringe fields (bottom). In each
figure, the nominal intensity case is shown with a solid line, the middle intensity case
is shown with a dashed line, and the low intensity case is shown with a dash dotted
line. The horizontal data is shown in red and the vertical data is shown in blue.
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Figure 7.8: Variations in the emittance evolution for small variations in the tune
split around the split tune configuration. The primary tune case is shown with a solid
line, the case with the raised vertical tune is shown with a dashed line, and the case
with the lowered vertical tune is shown with a dash dotted line. The horizontal data
is shown in red and the vertical data is shown in blue.
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7.3.4 Sensitivity Study: Tune Split

Figure 7.8 shows the variations in the emittance evolution for small variations in the
tune split around the split tune configuration.  Additional simulations were run
with the vertical tunes raised or lowered by 0.001. As this figure demonstrates, this
shift represents a change in the tune that is inconsequential in normal accelerator
beam dynamics. Each simulation is so similar to the others that the differences in
the emittance evolutions are imperceptible for the entire evolution of the beam.
Figure 7.9 shows the variations in the emittance evolution for small variations
in the tune split around the equal tune configurations for the low intensity (top),
middle intensity (middle), and nominal intensity (bottom) cases. For each intensity
case, additional simulations were run with the vertical tunes raised or lowered by
0.001. Unlike the split tune cases, small variations in the tune had a large impact
on the emittance evolution. This highlights the extreme sensitivity of the equal
tune resonance. This demonstrates that the simulations are modeling the resonance.
However, these simulations are very sensitive to the precise tune values around the
equal tune resonance. Additionally, it indicates that reasonable variations of the
tune split for each case could produce simulations that more accurately matched the

experimental results.

7.4 Conclusions

In summary, we used PyORBIT simulations to realistically model our final simplified
accumulation followed by storage experiment. The detailed profile and emittance
evolutions of the Electron Scanner provided an excellent source for comparison. We
began by benchmarking our simulations against experiment for the split tune cases. In
these cases, there was a general qualitative agreement between the profile evolutions,
and a strong quantitatively agreement between the emittance evolutions. Having

established the accuracy of the simulations outside of the resonance, we then used
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Figure 7.9: Variations in the emittance evolution for small variations in the tune
split around the equal tune configurations for the low intensity (top), middle intensity
(middle), and nominal intensity (bottom) cases. In each figure, the primary tune case
is shown with a solid line, the case with the raised vertical tune is shown with a dashed
line, and the case with the lowered vertical tune is shown with a dash dotted line.
The horizontal data is shown in red and the vertical data is shown in blue.
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PyORBIT to study the resonance. Our simulations supported our experimental
results by showing that the resonance is highly dependent on the tune split. The
degree of sensitivity was later shown to be larger than previously expected, with small
variations in tune producing significant changes in beam evolution. Additionally,
our simulations supported our experimental results by showing that the strength of
the coupling decreases with increasing beam intensity. Our simulations were able
to go beyond the experiments by indicating the source of the resonance. Through
inspection of the effects of the fringe fields, we were able to conclude that the most
likely source of the resonance is fringe fields from quadrupoles in the injection region.
Further investigation into this area might provide a better understanding of whether
the simulations actually deviate from the experiments. Specifically, based on the
high level of sensitivity to the tune split, we found that it is feasible to match the
simulations to the experimental results by using acceptable variations of the tune split
and injection offsets. Additionally, more insight might be gained by simulating the
fringe fields with different models or mapping the real fields. However, despite the
need for further study, this work determined that the source of the resonance within

the SNS accumulator ring are fringe field effects.
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Chapter 8

Conclusions

In this study, we have investigated the effect of coupling on high intensity particle
accelerator beams. The main focus has been the study of beam dynamics in the SNS
accumulator ring to understand a recently documented coupling resonance. Prior to
the start of this work, little was known regarding the coupling except that it could
compromise independent control of the on-target transverse beam profiles, which is
an essential part of configuring production operations. An initial exploration had
shown that the effect had a dependence on the beam intensity. Therefore, the initial
hypothesis was that the source was the space-charge-induced Montague resonance.
This would only be possible with equal whole tunes, like those near the current
production tune point. A key characteristic of a Montague resonance is an increase
in coupling with increasing space charge. Therefore, tune split and beam intensity
became the primary beam parameters studied. Specifically, we have gone beyond
the traditional RMS size parameterization and examined the change in beam profile.
We have studied the coupling experimentally for various beam configurations using
traditional wire scanners and a novel Electron Scanner. We have modeled the final
simplified accumulation experiment using a realistic self-consistent PIC simulation in
PyORBIT. Additionally, we have aided in the calibration of the Electron Scanner

recently installed in the SNS accumulator ring. There were three goals in this study:
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1. To expand the understanding of equal tune resonances beyond the currently

used RMS-based parameterizations,
2. To establish the source of the resonance in the SNS accumulator ring, and
3. To investigate mitigation of the coupling effect during normal SNS operations.

In conclusion, in fulfillment of the first goal, four unique experiments led to a
stronger understanding of the overall effects of equal tune resonances on accumulating
and stored beams. The most important discovery was that an equal tune resonance
produces coupling that effects not only the RMS size but also the beam profile. This
has important ramifications for facilities with specific beam profile requirements that
currently operate near the equal tune resonance. Two other key observations were:
the coupling has an inverse relationship with increasing beam intensity, whether the
increase is due to increased injected beam intensity or continued accumulation of
beam; and, the coupling is capable of creating full emittance exchange during periods
of storage with stronger coupling at lower intensities.

In fulfillment of the second goal, simulations were performed for several of
these configurations, providing the ability to control settings beyond those available
experimentally. The results of these simulations indicate that the most likely source of
the resonance is the fringe fields around the injection quadrupoles. These conclusions
are supported by the experimental results, which contradicted the hypothesis that a
Montague Resonance was the source of the coupling.

In fulfillment of the third and final goal, we studied a production-style split-tune
beam with and without skew quadrupoles. We confirmed that the most recent SNS
production settings produced no coupling, regardless of whether the skew quadrupoles
were used. Typically, the production tune varies during and between production runs
because the operators regularly optimize the machine for beam losses. The results
indicate that this configuration meets the requirements of the SNS operations group

for independent control of the transverse beam sizes and profiles. Therefore, we
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recommend using the production settings studied. Based on the research presented,
further mitigation of the resonance should not be necessary.

Additionally, we calibrated the SNS Electron Scanner and presented the results
of the first major physics study using this novel device.

In summary, we have accomplished the three objectives of this study. This study
constitutes an important and significant advancement to the overall knowledge of
equal tune resonances in circular particle accelerators, especially the effect on the
beam profiles in the SNS accumulator ring.

This work relied on existing hardware, software and analysis techniques employed
at the SNS. During the period of this study, I contributed to the continued
development of these tools. As the sole author of this work, my specific contributions
to this work were as follows.

I was responsible for designing and conducting each experiment. I was responsible
for making sure that any necessary preparations were made prior to each experiment
shift. During each shift, I controlled the beam configuration and collected data in
the SNS control room under the general supervision of the control room operators
and, usually during experiment setup, my advisers. For each experiment using the
Electron Scanner, I was joined by the technical expert for the initial setup of the
prototype device. Following each shift, I was responsible for completing data analysis
and presenting my work.

I was responsible for configuring and running all simulations. I was responsible
for developing representations of data for comparison with the experimental data.
I generated figures and tables. I received support from my primary adviser and a
committee member, and relied on existing MAD and PyORBIT models of the SNS
accumulator ring.

I was responsible for drafting all publications, including this dissertation. I
received regular feedback from my primary adviser regarding both the structure
and content of my work. I also occasionally received feedback from my committee

members, and external reviewers. Unless cited, I created all figures and tables.
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Appendix A

Wire Scanners

The accelerator contains a variety of diagnostic devices that provide information
regarding beam position, profile, and other parameters. This information is used
to optimize beam transport through the lattice and, ultimately, to meet the on-
target beam requirements. Due to stringent beam loss requirements, the diagnostic
devices in the accumulator ring must be non-interceptive. Consequently, the only
profile measurement device in the accumulator ring is the recently installed Electron
Scanner, which is still a prototype. The primary beam profile measurement devices
are located in the Ring-to-Target Beam Transfer (RTBT), which transports the
accumulated beam to the target. The RTBT contains multiple wire scanners and
a harp for measuring beam profiles. Figure 4.1 shows the relative position of the
Electron Scanner in the accumulator ring and the wire scanners in the RTBT. In
Appendix A, we review the wire scanners.

Wire scanners provide low noise transverse beam density profiles in the horizontal,
vertical, and sometimes diagonal planes. There are four wire scanners located near
the end of the RTBT beamline that are commonly used in our research. Figure A.1
shows one of the wire scanners in the RTBT. Together, these four wire scanners allow
us to measure the RMS emittance of the beam. Each wire scanner is composed of

three 100pm tungsten wires mounted under tension on a fork. The fork is mounted
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on an actuator that allows precise control of the position of the wires. The actuator
is mounted at 45° with respect to the beam to allow each wire to passes through
the center of the beam at different times. The profile signal is generated by the
emission of secondary electrons as the beam enters and exits the wire. Based on
nonlinearities in the fork and the precision of the stepper motor, the position error
of each measurement has been measured to be at most +0.15mm. The error in the
signal is less than 2% of the peak signal level[73]. Figure A.2 shows a set of typical
beam profiles acquired from each wire scanner.

The primary disadvantage of wire scanners is that they are not capable of collect-
ing the profile of a single accumulated pulse. Each data point is collected from one
pulse and therefore the final profile is an aggregate of multiple pulses. Additionally,
the wire scanners are limited to averages over the longitudinal distribution of the

beam.

A.1 Reproducibility of Wire Scanners at Low
Beam Intensity

During the course of this study, it has been necessary to collect beam profile
measurements at low beam intensities. In order to confirm that these beam profiles
were consistent, multiple profiles were taken for both split tune and equal tune
configurations at 10 turns of accumulated beam. Figure A.3 shows the split tune
case, and Figure A.4 shows the equal tune case. In both cases, individual injected
beam pulses can be seen overlapping in the same position. The specific placement of
pulses is due to the injection settings, and the horizontal and vertical tunes, which

govern the movement of the pulses in phase space.
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Figure A.1: Image of an RTBT Wire Scanner. Device image courtesy of S. Murray,
SNS.
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Figure A.2: Horizontal (left), vertical (center), and diagonal (right) profiles from
one wire scanner, as displayed in the data collection application called WireAnalysis.
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Figure A.3: Demonstration of the reproducibility of wire scanner beam profile
measurements at 10 turns of accumulation for the split tune configuration.
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Figure A.4: Demonstration of the reproducibility of wire scanner beam profile
measurements at 10 turns of accumulation for the equal tune configuration.
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A.2 WireAnalysis: Using Wire Scanner Data to
Calculate Twiss Parameters

An essential portion of this dissertation involves using the wire scanners to calculate
the transverse emittances. This section aims to demonstrate the necessary steps
using the WireAnalysis application. The example beam has a symmetric split-tune
configuration with 500 turns of accumulated beam. Figure A.5 demonstrates how
the application loads data that has been collected. The primary graphic shows the
horizontal, vertical, and diagonal profiles for each of the four RTBT wire scanners
that we used.

Figure A.6 shows the analysis screen where we will find a statistical RMS fit for
each profile. For each individual horizontal and vertical profile, we load the data
by clicking ”Analyze”. The raw data appears in red on the left. We then use 7V
Cute Below” to remove the floor, being careful to avoid removing the edges of the
profile. Selecting ”Statistical RMS” from the drop down, followed by ”Fit Current
Data Only” and ”Store Results” calculates the statistical RMS fit and stores it in
the data table. The data used for the statistical RMS fitting is shown on the right in
blue.

Once the fit has been calculated for each of the horizontal and vertical profiles,
we will be able to calculate the Twiss parameters. Figure A.7 shows the Twiss
fitting screen.  When loaded, they will appear as the user values in the top table.
The machine state containing all magnet strengths are loaded from the logger ID
contained in the data file. We then select the sequence of the dataset, in this case
the end of the RTBT, and select the element to calculate the T'wiss parameters at, in
this case RTBT_Diag:WS20. We run the solver until it converges upon a set of Twiss
parameters which fits the experimental data provided. These values can be stored and
plotted. In the results data table, the values we are looking for are the alphas, betas,
and emittances. As is demonstrated in this figure, we have analyzed two datasets

with the same tune value. Therefore the magnet settings should be equivalent and
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we can use the multiple data sets to find an average set of Twiss parameters. In the
case shown, the solved Twiss parameter are relatively similar, excluding the vertical
emittances. This makes sense as the two cases shown have different vertical injection
offsets and, therefore, different vertical emittances.

We then repeat the previous analysis procedure of loading the data, analyzing
the data, and loading the RMS sizes into the Twiss fit window. On the second
pass, we enter the averaged alpha and beta values into the ”Set Initial Twiss and
Limits” window. This allows us to fix the alpha and beta parameters of the beam
and instruct the WireAnalysis program to vary only the emittances in order to fit
the data. Figure A.8 shows what the Twiss fitting window looks like for multiple
beam profile measurements. The final results table at the bottom shows that each
of the alphas and betas remained fixed and the emittances were varied. These fitted
emittances will be used to show the evolution of the beam size during accumulation. In
this case, the beam profiles were collected for the same beam configuration where the
number of accumulated turns was increased from 50 turns to 250 turns in increments
of 50 turns. The fact that the emittances are approximately similar indicates that the
beam size remained constant during the accumulation, as we expected for a symmetric

split-tune beam configuration.

A.3 Derivation of Initial Beam Distribution with
Errors

Provided that we have measured the RMS beam size at multiple locations, we can
calculate the initial beam distribution parameters and their errors. This requires using
the Least Squared Method (LSM). The same application of the LSM was outlined in
a 2013 paper[84]. When we have the initial beam distribution and the related errors,
we can used them to calculate the Twiss parameters and their errors, as shown in

Section A .4.
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Figure A.8: WireAnalysis Twiss fitting screen after averaging

216



The single element advancement of the beam shown in Equation 2.1 can be written

for an N element array of elements as

=mW . (A.1)

where m(®) is the transport matrix for the N-th element. Therefore the position after
element N would be

T = mg\lf) - To + mg) - Xy (A.2)

This represents the new position of a single particle advanced through the series of

N elements. Next, square both sides and take the average
N N N N '
(a8) = (mi)))? - () +2-mi)) iy (oo -ag) + (miy)? - (e5)  (A3)

Therefore, the squared RMS beam size depends only on the initial beam distribution
parameters ((z2), (zo - z4), (z¢)) and the transport matrices, m™). We can build an
array of squared RMS beam sizes at different points in the beam transport calculated

from the same initial beam distribution parameters and each transport matrix.

ii (a?)
! =M-| (z-20) (A4)
2 (a?)

where
0 0 0 0
m)? 2-m-m  (m)?
1 1 1 1
(m{))? 2-m{)-mi) (mly)?

’ . (A.5)
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Now we can rearrange the equation to place all of our known quantities on one
side. This will allow us use our beam size measurements to determine our unknown

quantities, the initial beam distribution parameters. Using the LSM, we find that

" (3)
(wo-a) | =MT-W-M)"-MT-W- ) (A.6)
(zg) (22)
where
1
e o ) (A0
and

cov ((z5))
= | cov({zo-ap)) |- (A.8)

) cov ((x'2>)

We have introduced a diagonal weighting matrix W that represents the error in the

C=(MT-Ww-M)"

RMS size measurements. We have also introduced a covariance matrix C' where the
diagonal terms are the errors of the initial beam distribution parameters.

At this point, the covariance matrix C' can be calculated using the known
transportation matrix M and the weighted error matrix W. When we know C, we
will also know the errors of the initial beam distribution parameters from the diagonal
elements. After we have calculated C', we can calculate the initial beam distribution
parameters at the position sg. This beam distribution can then be transported to

other points in the lattice or used to calculate the T'wiss parameters.

A.4 Derivation of Twiss Parameters Errors

Now that we have the initial beam distribution and their errors, we can derive the

Twiss parameters and their errors. We begin by stating the Twiss parameters in
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terms of the initial beam distribution parameters

o 2
ERMS = \/(x%> A(xg) — (xo - xp)?, a= —%, B = ;;\0/[2 (A.9)

We see that each of these three functions can be written as a general function of the

initial beam distributions as such:

f=F(ad), (@), (wo - zp)). (A.10)

Therefore the error for each function can be defined as

P
of

Af ((x3), (zg cxp)) = ——)2Aa? A1l

U o). o)) = | 2o (A1)

where x; represents an array of the initial beam distribution parameters. The errors

for the T'wiss parameters are as follows:

(x/2>2cov<x2>2 + <x2>2(:ov<33/2)2

1 + 4(x - xl)zcov(az . :zcl)2
A3 @) — P (A1)

(- 2" )2cov(a?) 2 +4(x?) 2 (2 %) 2cov(z - )

+(z) 2z - x')cov(z'?)?

1
Aa =7 - A13
: (@)™ — (o 2)?) )
((x2><xl2> —2(z xl>2)200V<1‘2>2+4<$2>2<x . $,>QCOV<I . x,>2
Aj— % +(x*) cov(x ©) (A1)

() (@'2) — (- a')?)’
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A.5 Harp

The harp, shown in figure A.9, uses the same concepts as the wire scanners to collect
a beam profile. However, the harp is a fixed diagnostic that is comprised of 30 100-
pm tungsten wires uniformly distributed in each transverse plane. In the horizontal
plane, the wires are spaced 1.18 cm apart to measure the horizontal beam size of 17
cm FWHM. In the vertical plane, the wires are spaced 0.589 c¢m apart to measure
the vertical beam size of 4.8 cm FWHM. A third set of wires is mounted along the
diagonal. The wires in the harp collect data under SEM, the same physical principle
discussed for the wire scanners. Unlike the wire scanners, the harp is capable of
collecting full beam profiles from a single accumulated pulse. While the profiles have
a fixed resolution lower than the typical wire scanner resolution, the ability to view
a single accumulated pulse allows us to look for shot-to-shot variations in the beam
distribution. Additionally, the harp is located at the end of the RTBT immediately
before the target window and provides the closest beam profile to the on-target beam
distribution[73]. Similar to the wire scanners, the harp is limited to averaging over
the longitudinal distribution of the beam. Figure A.10 shows a set of typical beam

profiles acquired from the harp.
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Figure A.9: Image of the Harp located in the RTBT before the target window.
Device image courtesy of W. Blokland, SNS.
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Figure A.10: Horizontal (left), vertical (center), and diagonal (right) profiles from
the Harp, as displayed in the data collection application called WireAnalysis.
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