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Abstract

The gravitational collapse of a minimally coupled scalar field in (d+ 1)-dimensional Anti-de Sitter

spacetime is examined via a collection of manuscripts that are, or are in the process of, being

published. First, the results of the numerical evolution of the 5-dimensional nonlinear Einstein

equations are used to construct a phase diagram of collapse behaviours, taking the mass and width

of the initial profile as parameters. Next, we test the limits of a family of perturbative solutions for

massless scalars with static boundary conditions in AdS4. Finally, we derive set of flow equations

for the time evolution of a massive scalar field in the perturbative description of AdS4 with time-

dependent boundary conditions.
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1 Introduction

As experimental research into quantum information, condensed matter, and nuclear physics con-

tinues to reach new levels of precision, progress in developing theoretical predictions in these fields

is hindered by a fundamental problem: in strong coupling regimes, the perturbative methods that

underpin theories such as Quantum Electrodynamics become invalid. This is because such systems

are highly nonlinear. While some progress is possible by employing numerical schemes such as

lattice approximations, analytical results remain beyond our current mathematical understanding.

In order to make progress, a new paradigm was required. By considering different coupling limits

of a single string theory, [1] established a holographic description between strongly-coupled gauge

theories and weakly-coupled gravitational theories in one higher dimension. Since its inception,

this duality has been further developed into a dictionary that relates the fields in the gravitational

theory to operators in the gauge theory. The Anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence allows strongly-coupled quantum processes to be reliably examined via geometric

quantities in the dual theory. This duality has become a standard tool for theoretical physicists

studying all kinds of dynamic processes in quantum theories, including the out-of-equilibrium dy-

namics of quantum theories at strong coupling.

The goal of this thesis is to leverage the AdS/CFT correspondence to study the dynamics of strongly

coupled quantum theories through their dual description as a weakly coupled gravitational theory.

To do so, we focus on minimally coupled scalar fields in Einstein-Hilbert gravity on AdS back-

grounds. Existing entries in the gauge/gravity dictionary will motivate the systems that are con-

sidered, and existing literature will point to areas within the topic that have yet to be explored.

The nonlinear stability of the theory will be studied via both numerical and analytical methods.

1



We will see that gravitational collapse in the bulk theory signals a phase transition in the dual

gauge theory, and so examining the dynamics of the collapse is tantamount to understanding time

dependent processes in the boundary theory.

This thesis embodies the results of three manuscripts that either have been, or are about to be,

submitted for publication. In chapter 2, we examine the limits of the nonlinear stability of AdS5

by examining the range of behaviours exhibited during nonlinear evolution by differing initial data

with static boundary conditions. Next, in chapter 3, we examine quasi-periodic solutions to the

perturbative description of a massless scalar field in AdS4, again with static boundary conditions.

Finally, in chapter 4 we consider the addition of a time-dependent source term on the conformal

boundary of the gravitational theory and derive the renormalization flow equations for the first

non-trivial order in the small-amplitude expansion. A discussion of the results follows in chapter 5.

However, before utilizing the correspondence to study any particular process, we first review the

main tenet of the gauge/gravity duality and its consequences: that there exists a fundamental

relationship between a conformal field theory in d-dimensions and a gravitational theory in (d+ 1)-

dimensions.

1.1 The AdS/CFT Correspondence

It was shown by [1] that a non-perturbative correspondence existed between superconformal field

theories and supergravity theories on various spacetimes. Although originally conjectured from the

perspective of string theory, more modern reviews of the gauge/gravity duality establish a gravita-

tional theory as arising from the strong coupling limit of a gauge theory; see [2] for a review. We will

use this paradigm to heuristically motivate the duality, as well as introduce relevant relationships

between quantities in either theory.
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1.1.1 Extra Dimensions In Gauge Theories

Although [1] was the first to establish explicitly a correspondence between a gravitational theory

in (d + 1)-dimensional AdS and a conformal field theory in d-dimensions, the concept of a holo-

graphic relationship between a gauge theory and a gravitational theory in one higher dimension was

conjectured earlier by [3] and [4] without relying solely on string theory.

For most gauge theories, there is a running of the coupling that dictates the evolution of the cou-

plings with energy. Therefore, the physics of the theory is local with respect to an extra dimension,

the energy. However, since many gauge theories suffer UV divergences at large energies, the size of

the extra dimension may be limited. In contrast, some supersymmetric theories have vanishing beta

functions; therefore, there is no running of the coupling. In this case, the energy scale is arbitrary

and the extra dimension of the theory has no bound.

The vanishing of the beta function also indicates that the conformal invariance of the theory is

unbroken; conformal invariance requires (among other things) that the theory remain invariant

under rigid scale transformations by a unitless constant a, such that xµ → axµ. Interpreting the

energy scale as an extra dimension, r, we require it to transform in the same way as energy, so that

r → r/a. The most generic metric that also obeys Poincaré plus scale symmetries is

ds2 =
a2

z2

(
ηµνdx

µdxν + dz2
)
, (1.1)

where z = a2/r. This is precisely the metric for the Poincaré patch of Anti-de Sitter space with

characteristic length a.

More than being an a posteriori observation, the gauge/gravity correspondence is in fact a much

deeper and more specific relationship. The derivation of the duality is thoroughly covered from the

full string theory perspective in, among others, [1,2,5,6]. For now, let us establish the duality that

will be most applicable to us: the duality between type IIb supergravity on AdS5×S5 and N = 4

supersymmetric Yang-Mills theory in (3 + 1)-dimensions.
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1.1.2 The AdS5×S5 Duality

Consider a stack of N coincident D3-branes in type IIb string theory (ten Minkowski dimensions),

each of which couple to gravity with strength gs. At weak coupling, gsN � 1, there are closed string

states as well as open strings that end on the branes and have an SU(N) super-Yang-Mills effective

action. At strong coupling, however, the branes curve the background and source an extremal

black-brane geometry [7], whose metric is

ds2 = f(r)−1/2ηµνdx
µdxν + f(r)1/2

(
dr2 + r2dΩ2

5

)
with f(r) = 1 +

4πgsN`
4
s

r4
, (1.2)

where the xµ span the worldvolume of the D3-branes, dΩ2
5 is the metric of the unit 5-sphere, and

`s is the length of the string.

Now we take the low-energy limit of the theories at either coupling limit. At weak coupling, the

open strings decouple from the closed strings, resulting in an SU(N) super-Yang-Mills gauge theory

on the brane worldvolume. In the gsN � 1 case, the low-energy limit corresponds to the near-

horizon limit, r → 0. In this limit, the 10D metric factors into the product AdS5×S5. To see this,

we define ` ≡ (4πgsN)1/4`s, so that f 1/2(r)→ `2/r2 in the near-horizon limit and (1.2) becomes

ds2 =
r2

`2
ηµνdx

µdxν +
`2

r2
dr2 + `2dΩ2

5 . (1.3)

Note that the branes are now located at the bottom of the infinite throat. Any states near the

horizon will be redshifted to low energies and any states in the asymptotic region will decouple

from states near the black branes; all that remains are closed string states, i.e. supergravity, on an

asymptotically AdS5 background. This motivates the duality we will examine in detail: the one

between scalar fields in AdS5×S5 and a supersymmetric SU(N) Yang-Mills gauge theory on the

boundary of AdS5.

Given that we now know what string theory we are working with, we can more directly relate the

dimensionless parameters of the string theory (i.e. the string coupling gs and AdS scale in string
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units, `/`s) to the dimensionless parameters of the CFT (i.e. the Yang-Mills coupling gYM and

colour number N). By examining the D3-brane Lagrangian, we are able to relate gYM and gs

through 4πgs = g2
YM . Altogether,

4πgs = g2
YM ∼

λ

N
and

`

`s
= (4πgsN)1/4 ∼ λ1/4 , (1.4)

where λ is the ’t Hooft coupling λ ≡ gsN = g2
YMN . To remove stringy corrections to the geometry,

`/`s � 1 so that the AdS length is much larger than the string length. Furthermore, string

interactions are suppressed when gs � 1. Thus, the bulk theory approaches classical Einstein-

Hilbert gravity when N � λ� 1.

By considering other superstring avatars, such as M-theory1, we are able to establish similar dualities

between gravitational and conformal field theories. In particular, the M-theory equivalent of D2-

branes, M2-branes, are used – along with corresponding coupling limits – to establish a duality

between a gravitational bulk theory on AdS4×S7 and a CFT in (2 + 1)-dimensions [1]. In fact,

many such dualities can be constructed through applying different compactifications and/or sources

in the extra dimensions, each of which describes a different type of CFT on the boundary. For a

review of other types of holographic constructions, see e.g. [9, 10].

1.2 The Gauge/Gravity Dictionary

With the existence of the duality now motivated, we turn to what kind of predictions arise from the

correspondence. In particular, we wish to establish what physical quantities in either theory can

be related through the AdS/CFT correspondence. In fact, many such relations arose from efforts

to find counterexamples to the correspondence in the hopes of disproving it. Instead, each attempt

confirmed the AdS/CFT correspondence and became an entry in the so-called dictionary. Here we

will provide a few example cases to motivate how quantities on either side of the correspondence

can be related.

1M-theory is the strong-coupling limit of type IIa superstring theory on 11D spacetime, and can be mapped to
the other 10D superstring theories through choices of compactifications and length/coupling dualities [8].
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Symmetries

Consider the symmetries present in the AdS5×S5 bulk theory. A (p+2)-dimensional Anti-de Sitter

space can be presented by the hyperboloid X2
0 + X2

p+2 −
∑p+1

i=1 X
2
i = R2 in a (p + 3)-dimensional

space with the metric

ds2 = −dX2
0 − dX2

p+2 +

p+1∑
i=1

dX2
i . (1.5)

The choice of X0 = R cosh ρ cos τ , Xp+2 = R cosh ρ sin τ , and Xi = R sinh ρΩi with i = 1, . . . , p+1,

0 ≤ ρ, 0 ≤ τ ≤ 2π, and
∑

i Ωi = 1 covers the hyperboloid exactly once, and is known as global

coordinates. In these coordinates, the metric on AdSp+2 is

ds2 = R2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

)
. (1.6)

A common coordinate redefinition of tanx = sinh ρ maps spatial infinity to x = π/2, and allows

(1.6) to be written as

ds2 =
R2

cos2 x

(
−dτ 2 + dx2 + sin2 x dΩ2

)
. (1.7)

Another common parameterization of AdS is a set of coordinates that cover half of the hyperboloid

(1.5), known as Poincaré coordinates. These set X0 = (1 + z2(R2 + ~x2 − t2))/2z, Xp+2 = Rzt,

Xp+1 = (1− z2(R2 − ~x2 + t2))/2z, and X i = Rzxi, with i = 1, . . . , p, z > 0, and ~x ∈ Rp. Thus, the

metric of AdSp+2 in the Poincaré patch description is

ds2 = R2

(
d2z

z2
+ z2(−dt2 + d~x2)

)
. (1.8)

From the description as the hyperboloid in (1.5), AdSp+2 has the isometry SO(2, p + 1), and is

homogeneous and isotropic [6]. The global coordinate representation helps us to interpret the

maximal compact subgroup of SO(2, p+ 1), SO(2)× SO(p+ 1), as constant translations in τ plus
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rotations of Sp. Likewise, the Poincaré coordinates describe the symmetries of AdS in terms of

the Poincaré transformation on (t, ~x) plus the dilatation transformation (t, ~x, z) → (ct, c~x, c−1z)

for z > 0. Finally, invariance under special conformal transformations makes the Poincaré patch

description of AdS fully invariant under conformal coordinate transformations.

In particular, a bulk theory on AdS5×S5 has SO(2, 4) × SO(6) symmetry. The N = 4 super-

Yang Mills theory on the boundary of this space has an SO(2, 4) isometry from its conformal

invariance, as well as SU(4) ' SO(6)2 R-symmetry that relates the six scalar fields and four

fermions of the theory [1]. Therefore, the spatial isometries of the bulk space are interpreted

as global symmetries of the boundary theory. Additionally, the supersymmetries inherent in the

original type IIb superstring theory remain unbroken by the strong/weak coupling limits. Hence,

the gauge/gravity correspondence conserves the symmetries of both theories.

Observables

Besides matching symmetry groups and relating dimensionless parameters, the AdS/CFT corre-

spondence is able to produce more physically relevant relationships involving observables in either

theory. One such concrete example comes from relating the asymptotic behaviour of bulk fields

to the expectation values of operators in the boundary theory: a bulk field in Poincaré AdS with

metric (1.1) has leading-order value φ(0) as z → 0 (i.e. as the conformal boundary is approached)

and acts as a source for an operator O on the boundary. Furthermore, by examining the next-to-

leading order contribution to the bulk field, φ(1), it can be shown that the expectation value of the

operator is given by 〈O〉 ∝ φ(1) [11]. In § 1.3.1, we use the gauge/gravity duality to calculate the

mass dimension of the boundary operator O.

Another such example is the quark anti-quark potential in the boundary theory. In the gauge

theory, this can be calculated via the Wilson loop W (C), where C is the closed loop connecting the

quark worldlines. The bulk interpretation of the Wilson loop is the extremized proper area of a

string worldsheet anchored on C and extending into z > 0 [12].

2At the level of the Lie algebras.
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Entanglement Entropy

A significant utilization of the gauge/gravity duality comes from its unique ability to relate quantum

characteristics of the gauge theory to geometric ones in the bulk. Among the most quantum of all

characteristics is the spatial distribution of quantum correlations within a system, given by the

entanglement entropy. For a given subsystemM of a local field theory with reduced density matrix

ρM, the entanglement entropy is given by the Von Neumann entropy SM = −TrρM ln ρM. In

practice, M is a spatial region that is bounded by the entangling surface ∂M.

In the strong coupling limit, calculating the entanglement entropy can be prohibitively difficult.

However, using the AdS/CFT correspondence it has been shown that SM is given by a quarter

of the area of the minimal surface at constant time in the bulk that is anchored on ∂M [13].

Further properties of the entanglement entropy were subsequently shown to also have dual geometric

descriptions in the bulk [14].

Partition Functions

Since the underpinning of the AdS/CFT correspondence is taking different limits of the same theory,

it is natural that the partition functions of either limit must still agree. We have already seen in

§ 1.1.2 that the weak coupling limit of the type IIb string theory is supergravity (SUGRA) in the

bulk, while the strong coupling limit gives a supersymmetric (SUSY) Yang-Mills gauge theory on

the boundary. The gauge/gravity duality allows us to relate the two limits of the partition function:

e−SSUGRA ≈ Zstring ' Zgauge = e−WSUSY , (1.9)

where W is the generating functional for connected Green’s functions in the gauge theory.

Consider a massive bulk field φ(~x, z) that takes the value φ0(~x) on the conformal boundary. We then

solve the bulk equations of motion away from the boundary (i.e. z > ε) subject to Dirichlet boundary

conditions. The leading term in the epsilon expansion of the bulk field is φ(~x, z = ε) ∼ ε∆
±
φ0(~x),

where the scaling dimension ∆± will be explicitly derived below. By definition, SSUGRA is extremized
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by this solution and so (1.9) becomes [15,16]

lim
ε→0

(
SSUGRA [φ(~x, z)]

)∣∣∣
φ(~x,ε)→φ0(~x)

'
〈∫

ddxφ0(~x)O(~x)

〉
CFT

, (1.10)

where O is the corresponding operator in the CFT. We will see that bulk scalar fields play an

important role in the dual description of the thermalization of a CFT, as well as being a useful tool

to study the nonlinear stability of AdS itself.

Black Holes

Another important ingredient of the AdS/CFT correspondence was first mentioned in §1.1.2: black

holes. As discussed previously, the weak coupling limit of the N D3-branes produced an extremal

black-brane geometry given by (1.3), which is the Poincaré patch description of AdS. Since the

interaction cross-section of the branes with low-energy states in the bulk shrinks to zero, the ef-

fective geometry for these states is Anti-de Sitter. When discussing black holes in the AdS/CFT

correspondence, we are referring to black holes embedded within an AdS geometry.

The connection between black hole physics and thermodynamics was noted by [17], and has been

thoroughly examined since then. For a review of the thermodynamic properties of black holes,

see [18–20]. It suffices for our purposes to highlight a few key features of the thermodynamic

properties of black holes, and thereby motivate a correspondence between black holes in the bulk

theory and a gauge theory in thermal equilibrium on the boundary.

By considering quantum effects near the event horizon, it can be shown that black holes in AdS

emit particles whose thermal spectrum is equivalent to a black body of temperature [21,22]

TH =
(`2 + 2r2

H)

2πrH`2
, (1.11)

where rH is the size of the event horizon. When the black hole is placed in a geometry with a

conformal boundary, it will be in thermal equilibrium with its Hawking radiation, and a stationary

observer at asymptotic infinity will observe a black body spectrum corresponding to the tempera-
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ture TH [23]. The black hole will have positive specific heat, and therefore be thermodynamically

stable, for ` � rH so that TH ' rH/π`
2 [24]. Black holes with event horizons that are small com-

pared to the AdS radius are akin to black holes in asymptotically flat spacetimes in that they are

thermodynamically unstable.

Now consider the partition function for a thermal system in contact with a heat reservoir at tem-

perature β−1. The quantum partition function involves the trace over the eigenvectors of the

Hamiltonian,

Z = Tr e−βH =

∫
dq 〈q| exp(−βH)|q〉 . (1.12)

The trace then reduces to a sum over only the periodic states [25]

Tr e−βH =

∫
dq

∫ q′(β)=q

q′(0)=q

[dq′] e−SE [q′] =

∫
[dq]P e

−SE [q] , (1.13)

where SE is the Euclidean action. Equivalently, we may sum over all states but impose the period-

icity condition τ ∼ τ + β.

As an example, we place a quantum theory on the background of Schwarzschild black hole in

asymptotically flat spacetime. After Wick rotating t→ iτ , the metric is

ds2 = +

(
1− 2GM

r

)
dτ 2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
d−1 . (1.14)

Note that within the horizon r < 2GM , the metric of (1.14) is no longer Euclidean but instead is

diag(−−++), unlike the Lorentz signature metric where the time and radial position change roles

without changing the signature. Taking the near-horizon limit, we see that the metric develops

a conical singularity. To resolve the singularity at r = rH , we require that the Euclidean time

be periodic such that τ ∼ τ + 2πrH [26]. By matching this condition on τ with the one from
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finite-temperature quantum system, we can see that

black hole: τ ∼ τ + 2πrH

CFT: τ ∼ τ + β

 β ∼ 2πrH ⇒ T ∼ 1/2πrH . (1.15)

Therefore, the temperature of the thermalized CFT is equal to the Hawking temperature of the

black hole.

A non-trivial check of this duality comes from a comparison of the entropies of the two systems. In

the bulk, the Bekenstein-Hawking relationship relates the entropy of a 5D black hole to the surface

area of the horizon [17]

SBH =
A

4G(5)
∼
r3

+`
5

g2
s`

8
s

∼ T 3
H`

11

g2
s`

8
s

∼ N2T 3
H`

3 , (1.16)

where we have used the fact that the gravitational constant scales as G(d) ∼ g2
s`
d−2
s as well as (1.4).

On the other hand, the entropy of a 4D gauge theory with temperature TH in the limit of weak

coupling3 is [2]

SYM ∼ N2T 3
H`

3 . (1.17)

This agreement shows that the gauge theory possesses enough states to match the entropy of black

holes in AdS5.

1.3 Gravitational Collapse of Scalar Fields

The picture thus far is this: using the AdS/CFT correspondence, we are able to study strongly-

coupled gauge theories through their holographic dual, which is a gravitational theory in Anti-

de Sitter space with a conformal boundary. We have also seen that black hole solutions in the

3In the strong coupling limit, the Yang-Mills degrees of freedom are interacting and the entropy calculation is not
straightforward. However, the weak coupling limit can be smoothly interpolated to the strong coupling limit via a
numerical factor that does not affect our comparison [2].
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bulk correspond to thermal states in the boundary theory, and were able to derive the equilibrium

temperature of the thermal system by examining the Hawking temperature of the black hole. These

results concern stationary systems; indeed, equilibrium and near-equilibrium dynamics of thermal

gauge theories have holographic descriptions that are already understood (see [27], etc. for reviews).

But what about the dynamics of the thermalization?

Consider some gauge theory that is subjected to a homogeneous injection of energy on a very short

time scale such that it is instantaneously far from equilibrium. The subsequent evolution towards

a new equilibrium state is known as a quench. Quenches can result in thermal states, meta-stable

configurations, or may never equilibrate [28]. For example, the infall of a spherical shell of matter

(scalar field) in AdS is used as a model for the quench of a coherent state in a gauge theory. The

radial position of the shell in the bulk acts as a scale to measure the typical separation of entangled

excitations [29]. As the shell falls towards the origin, one of two things can happen: if the shell has a

high enough mass density, a black hole forms which signals the thermalization of the gauge theory;

if the shell does not collapse, it can pass through itself and begin expanding. Once the shell reaches

the AdS boundary, the matter is reflected (under appropriate boundary conditions) and begins the

infall again. This cycle of bounces is the holographic dual of so-called revivals in the quantum

theory [30, 31], and has been used to help explain results from cold atom experiments [32, 33].

The negative curvature of AdS allows for states that do not immediately thermalize to oscillate

around the minimum of an effective potential, undergoing repeated gravitational focusing with each

oscillation. Therefore, unlike in asymptotically flat space, thermalization can occur at long times

with respect to the light crossing time. One may also wish to investigate other non-equilibrium

processes, for example the spontaneous breaking of a discrete symmetry in the boundary CFT. The

holographic dual description is the evolution from a bulk black hole to a hairy black hole [34, 35].

However, the focus of the work in this thesis will be to study the dynamics of thermalization from

a coherent state via the collapse of a scalar field.
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1.3.1 Scalar Fields in Holographic AdSd+1

To determine the solution for a massive scalar field φ(~x, z) in AdSd+1 space, we begin with the

(non-canonically normalized) bulk action for the free field

S[φ] = −G
(d+1)

2

∫
dd+1x

√
−g
(
gAB∂Aφ∂Bφ+ µ2φ2

)
+ SEH , (1.18)

where G(d+1) is the (d+ 1)-dimensional Newton’s constant and SEH is the Einstein-Hilbert action.

We choose Poinaré patch coordinates and use the metric in (1.1) to describe the background geom-

etry. When integrating (1.18) by parts we must be careful to retain any surface terms since, unlike

for flat spacetimes, they will not go to zero. With this is mind, we find that

S[φ] = −G
(d+1)

2

∫
dd+1x

√
−g φ

(
−�+ µ2

)
φ− G(d+1)

2

∫
∂AdS

ddx
√
−γ gzBφ ∂Bφ , (1.19)

with �φ = (−g)−1/2∂A(
√
−g gAB∂B)φ and γ equal to the induced metric on the boundary. Taking

φ(~x, z) to be of the form φ(~x, z) = exp(ikµx
µ)fk(z), the wave equation becomes

0 =
1

`2

(
z2k2 − zd∂z(z−d∂z) +m2`2

)
fk(z) . (1.20)

The solutions to (1.20) are Bessel functions. To motivate two additional entries in the AdS/CFT

dictionary, it suffices to examine only their behaviour as we approach the conformal boundary at

z = 0. Near this boundary, the Bessel functions scale like a power law in z. Substituting fk(z) ∝ z∆

into the equation above gives

0 =
(
k2z2 −∆(∆− d) + µ2`2

)
z∆ . (1.21)

Or, in the limit z → 0,

µ2`2 = ∆(∆− d) ⇒ ∆± =
d

2
±
√
d2

4
+ µ2`2 . (1.22)
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N.B. requiring that the energy of the scalar field be real means that the factor inside the square root

of (1.22) is either positive or zero4. The mass-squared must then be µ2`2 ≥ −d2/4, a restriction

known as the Breitenlohner-Freedman bound [37].

Of the two values permitted by (1.22), only ∆+ remains positive for any number of dimensions.

Therefore, near the boundary this contribution goes like z∆+
φ0(~x) and remains finite as z → 0.

We will refer to solutions with this type of boundary scalar as normalizable solutions in subsequent

chapters. Conversely, the second solution goes like z∆−φ0(~x) near the boundary, and if ∆− < 0 this

contribution diverges. These are known as the non-normalizable solutions.

We can now use the scaling of φ(~x, z) near the boundary to derive the scaling dimension of O(~x),

which tells us how relevant that operator remains with renormalization group flow. First, note that

the induced metric on a cut-off surface placed at z = ε in (1.19) is

ds2
∣∣∣
z=ε

=
`2

ε2
ηµνdx

µdxν = γµνdx
µdxν , (1.23)

and that the coupling between the field and the operator given in (1.10) is more correctly written in

terms of a limit of a bulk interaction. The non-vanishing part of φ near the boundary contributes

lim
ε→0

∫
z=ε

ddx
√
γ φ(~x, z = ε)O(~x, ε) = lim

ε→0

∫
∂AdS

ddx

(
`

ε

)d (
ε∆
−
φ0(~x)

)
O(~x, ε) . (1.24)

Since the action must be finite as ε → 0, we have that O(~x, ε) ∼ εdε−∆−O0(~x) = εd−∆−O0(~x) =

ε∆
+O0(~x), where O0(~x) is the operator in the CFT. Thus, the value of ∆+ determines the rescaling

of the operator under the scaling symmetry of the CFT [38].

Our primary application of the AdS/CFT correspondence will be to examine in detail various

processes in the bulk given that we have a dictionary to translate the solutions to the boundary

gauge theory. In particular, we wish to consider the thermalization of states of the CFT through

their dual description of the formation of a black hole in the bulk. In this case, the spacetime

4An equivalent restriction is that ∆± ∈ R since operators in a CFT with complex scaling dimensions violate the
unitarity condition of the theory [36].
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metric will initially be described by global AdS but will evolve into a Schwarzschild metric once

collapse has occurred. By solving for the evolution of metric functions that interpolate between

these two solutions, we are able to track the process of gravitational collapse. Note that our

discussion above has been written in terms of the boundary behaviour of the scalar field in Poincaré

coordinates, which were introduced in (1.8). In order to examine the behaviour of a CFT when

energy is not allowed to disperse, a more suitable choice of coordinates is global coordinates, which

were introduced in (1.7). As we approach the conformal boundary in the bulk – corresponding to

x → π/2 in global coordinates – one may choose a new radial coordinate θ ≡ x − π/2 so that the

boundary limit in global AdS is equivalent to θ → 0. Expanding the scalar field in this regime gives

the same power law falloff as the Poincaré coordinates, but this time with respect to θ.

Following [39], we begin by writing the metric of asymptotic AdSd+1 in Schwarzschild-like coordi-

nates

ds2 =
`2

cos2 (x/`)

(
Ae−2δdt2 + A−1dx2 sin2 (x/`) dΩd−1

)
, (1.25)

where x ∈ [0, π/2) and x = π/2 corresponds to the conformal boundary. The metric functions

A(t, x) and δ(t, x) are functions of only two variables due to the spherical symmetry. We will

hereafter work in units of the AdS length scale, setting ` = 1. The Einstein and Klein-Gordon

equations for the minimally-coupled scalar field φ(t, x) are

Gab + Λgab = 8π

(
∇aφ∇bφ−

1

2
gab
(

(∇φ)2 + µ2φ2
))

and
1√
−g

∂a
√
−g gab∂bφ− µ2φ = 0 . (1.26)

The canonical equations of motion are [40]

∂tφ = Ae−δΠ , ∂tΦ = ∂x
(
Ae−δΠ

)
, and ∂tΠ =

∂x
(
ΦAe−δ tand−1(x)

)
tand−1(x)

− µ2e−δφ

cos2(x)
, (1.27)
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where the momentum is Π(t, x) = A−1eδ∂tφ and Φ(t, x) ≡ ∂xφ. The metric functions obey

∂xδ = −(Π2 + Φ2) sin(x) cos(x) , A = 1− 2M sin2(x)

(d− 1) tand−1(x)

∂xM = tand−1(x)

[
A(Π2 + Φ2)

2
+

µ2φ2

2 cos2(x)

]
,

(1.28)

with the mass function M(t, x) subject to the conservation equation ∂tM(t, x = π/2) = 0. The

value of δ(t, x) at either boundary is set by a gauge choice. Finally, the spherical symmetry of the

system requires that Φ(t, 0) = 0. Without imposing extra conditions at the outer boundary, there

are two classes of solutions for φ(t, x) based on their scaling as x→ π/2. For now, we consider only

the normalizable class, i.e. solutions that scale as (cos x)∆+
near the conformal boundary.

Expanding the scalar field and metric functions in terms of some (small) constant ε:

φ(t, x) =
∞∑
j=0

ε2j+1φ2j+1(t, x) , A(t, x) = 1−
∞∑
j=1

ε2jA2j(t, x) , δ(t, x) =
∞∑
j=1

ε2jδ2j(t, x) . (1.29)

At linear order, the gravitational system obeys

∂2
t φ1 =

(
(d− 1)

sin(x) cos(x)
∂x + ∂2

x −
µ2

cos2(x)

)
φ1 ≡ −Lφ1 . (1.30)

Separating the time and position dependence, we seek the normalized eigenfunctions ej(x) that

satisfy Lej(x) = ω2
j ej(x). These are the Jacobi polynomials:

ej(x) = kj cos∆±(x)P
( d
2
−1,∆±− d

2
)

j (cos (2x)) . (1.31)

The eigenvalues have the simple form ωj = 2j + ∆±, with ∆± given by (1.22).

Solutions to the linearized equations of motion are stable at all times [41]. However, beyond linear

order there are instabilities atO(ε3) due to secular terms, which are terms that grow larger with time.

These terms cannot be removed by frequency shifts and arise from resonances in the spectrum of

the scalar fields [42]. Various resummation [43] and multi-scale techniques [44] have been developed
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to describe the growth of such terms within the perturbative description. These methods will be

used in chapters 3 and 4 to absorb the resonant terms into renormalized integration constants.

The end point of the evolution of nonlinear bulk scalar fields can be generally categorized into

either stable (those that resist gravitational collapse over long5 time scales) or unstable (those that

collapse immediately or at the perturbative timescale) configurations. In exploring these solutions,

we will find a rich landscape of behaviours that lie between these more simple classifications.

1.3.2 Nonlinear Stability & Instability

Before focusing solely on the collapse of generic scalars in Anti-de Sitter space, it is worth noting that

the stability of AdSd+1 has also been probed previously in several ways. Soliton solutions – a general

class of localized field configurations – can be constructed in asymptotically-AdS4 spacetime [45].

When solitons were given charges in AdS5, their evolution exhibited phase transitions, such as the

development of black hole solutions with scalar hair, that are indicative of spontaneous symmetry

breaking in the boundary theory [46]. A similar type of field configuration is known as an oscillon.

These too are localized, long-lived scalar field configurations generic to all background curvatures,

but have time-dependent profiles [47]. It should be noted that these scalar field solutions were

constructed by numerical methods. Indeed, finding numerical solutions to the nonlinear Einstein

equations for a given field profile is a common practice; for a review on the methods used to construct

such solutions, see [48].

In general, asymptotically-AdS spacetime admits a variety of stable solutions [49, 50]. So-called

boson star solutions are stationary, perturbatively stable, complex scalar field solutions [51]. Since

the AdS5×S5 action is invariant under the global phase transformation φ → exp(−iθ)φ, boson

stars carry a conserved charge, Q. For small values of Q, boson star solutions are related to oscillon

solutions [52]. They can be constructed from both massive and massless fields in asymptotically-

AdS spacetimes [53]. More recently, stable boson star solutions have been described in terms of a

5The definition of “long” is somewhat subjective, but generally taken as many multiples of the light-crossing time.
In the limit of ε→ 0, however, collapse never occurs.
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multi-oscillator description, wherein the scalar field is written as an infinite sum over normal modes

with non-integer frequencies [54]. Interestingly, studies of the evolution of massless scalars in AdS3

found that a critical mass existed below which black holes would not form and above which static

black hole solutions were supported [55]. However, the black holes formed by the collapse may or

may not support scalar hair [56–59]. For a review of the stability of AdS3, see [60].

Gravitational instability has been studied in more general contexts than the ones we will focus on

here. Preliminary examinations of the onset of instability in a gravitational theory coupled to a

scalar field focused on the case of a flat background geometry. For generic initial data parameterized

by p, [61] observed the following critical phenomena for spherically-symmetric solutions:

• If collapse is guaranteed for values p > p∗, then as p → p∗, black holes can be created with

masses M ∝ |p−p∗|γ. The critical exponent γ is independent of initial conditions and depends

only on the type matter. For a spherically symmetric, massless scalar field, γ ≈ 0.37.

• Just before the formation of the event horizon, the spacetime approaches a scale-invariant

solution – the critical solution – that is also independent of the initial conditions.

These characteristics are collectively known as Choptuik scaling, and are found in all critical grav-

itational collapses, independent of geometry, initial conditions, or boundary conditions [62–64].

Choptuik scaling of critical solutions for scalars in AdS is also well established [65,66].

The most influential examination of the nonlinear stability of AdS4 was undertaken in [67], which

found that it was generically unstable to any perturbation with amplitude ε > 0. This was particu-

larly surprising given that it was well known that flat spacetime required a minimum energy density

for a black hole to form. It was further demonstrated that generic massless scalars in AdSd+1 would

collapse for all d ≥ 3 [68, 69]. However, as we discuss below in § 1.3.4, this was not the complete

picture.

Universal scaling of the horizon size (and therefore mass) was confirmed for critical data, as was scale

invariance just before collapse [70]. For the critical amplitudes ε0 > ε1 > ε2 such that rH(εi) = 0, the

difference in horizon formation times between successive critical values follows tH(εi+1)− t(εi) ≈ π,
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the light-crossing time.

1.3.3 A Perturbative Description

In most cases, analytic solutions for the full evolution of critical scalars in AdSd+1 are not possible

– the exception being AdS3 [71–74]. However, stable data are often able to be written in terms

of one or more spatial eigenfunctions of AdSd+1, including the examples discussed in § 1.3.2. The

turbulent transfer of energy to short length scales that precedes gravitational collapse is sufficiently

nonlinear that an analytical solution does not remain valid for all times. A perturbative theory,

however, is able to capture the weak nonlinearity of the system over timescales of t ∼ ε−2.

Recall the expansion described by (1.29). At first order in ε, a linearized equation of motion for the

leading contribution to the scalar field has solutions that are given by sums over the normal modes

of AdSd+1 (after imposing Dirichlet conditions at the conformal boundary). The backreaction on

the metric is described by the O(ε2) equations for A2 and δ2, which are integrals involving the

first-order solution φ1. At O(ε3), there is an inhomogeneous equation for the third order part of

the scalar field

∂2
t φ3 + Lφ3 = S(3)(φ1, A2, δ2) . (1.32)

As described by [67], the source S(3) contains resonant contributions that cannot be removed by

frequency shifts. Resonant contributions that grow with time are known as secular terms, and are

responsible for eventually triggering collapse by shifting the energy spectrum to high frequencies.

Because such secular terms appear beyond linear order, this effect is described as weakly turbu-

lent. Further investigation into the direct cascades of energy to higher modes confirmed that the

appearance of resonant terms in S(3) only when coherent phase conditions were met [75–77].

While scalar field with initial profiles that are dominated by a single linear eigenmode are nonlinearly

stable, the same cannot be said for mutli-mode initial data, i.e. data comprised of the addition of

one or more eigenmode. In this case, the presence of the extra modes allow for resonances to occur
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and secular growth to lead to collapse at times of t ∼ ε−2. In order to better understand how these

solutions maintained stability for times t < ε−2, [44] introduced a multi-scale technique wherein a

“slow time” τ = ε2t governed the transfer of energy between modes. This Two-Time Formalism,

or TTF, produced analytic expressions for the absorption of secular terms into the definition of

renormalized amplitude and phase variables [78–80]. Families of quasi-periodic solutions that extend

previous TTF configurations further expanded the space of perturbatively stable solutions [81–84].

Testing the limits of quasi-periodic solutions for massless scalar fields is the topic of the work

presented in chapter 3.

1.3.4 The Landscape of Solutions

The presence of perturbatively stable solutions within the TTF description spurred the search for

initial data that remained stable within the full, nonlinear theory. Generic initial data for a scalar

field with initial width σ takes the form

φ(t = 0, x) = 0 , Π(t = 0, x) = ε exp

(
−tan2(x)

σ2

)
. (1.33)

Varying the width of the pulse and the mass of the field, it was found that “islands of stability”

existed within the space initial data where collapse would not occur below some threshold amplitude

(see figure 1.1 for one such example) [39, 85–87]. Developing a fuller picture of these islands of

stability is a subject of ongoing research, and is one of the goals of the work presented in chapter 2.

While the majority of existing literature uses Gaussian initial data in AdS4 and AdS5 with Dirichlet

boundary conditions, more recent examinations of stability islands have included multi-oscillator

constructions and Neumann boundary conditions [88, 89].

It is also worth noting as a matter of completeness that scalar field perturbations are not the only

type of instabilities that have been considered. Localized, self-gravitating solutions to the Einstein-

Maxwell equations in a vacuum are known as geons, and have long lifetimes with respect to the

characteristic periods of the system [90]. The excitation of a single (scalar) geon mode is stable in
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Figure 1.1: Horizon size xH and horizon formation time tH as a function of amplitude in AdS5 for a
massive scalar field with σ = 2 in (1.33). Instead of the periodic, discontinuous behaviour, there is some
minimal value εmin below which black holes do not form. Used with permission from [39].

Anti-de Sitter space; however, any combination of two or more such modes becomes unstable [91].

This complements the conjecture that the stability islands in the space of scalar field data may

be anchored by linear modes. In asymptotically-AdS4 spacetimes, stable geon solutions can be

constructed numerically [92,93]. AdS is unstable against all vector geon modes [94].

1.3.5 Driven Scalars

We have previously limited our discussion to the normalizable scalar field solutions, as these are

responsible for the weakly turbulent instabilities that lead to gravitational collapse. In general,

the linearized equations of motion (1.30) admit two types of solutions with two different scaling

behaviours near the boundary. The second set of solutions, which scale as z∆− as z → 0, are known

as non-normalizable solutions and are not restricted to integer frequencies. These solutions can

couple to time-dependent terms on the boundary, thereby carrying energy into the bulk, and are

known as driven, or pumped, scalar fields.

The emergence of new phases in a Conformal Field Theory as a function of driving frequency is
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known as Floquet dynamics [95, 96]. The holographic dual to such a system is described by the

driving of a massless, complex, bulk scalar field by a time-dependent boundary term. The vacuum

bulk solution corresponds to a Floquet condensate on the boundary. Such solutions exhibit both

stable and unstable evolution over the space of initial data, with the unstable data branching into

two possible endpoints: the formation of a black hole in the bulk theory, or a horizonless, pulsating,

late-time solution [97, 98]. For real scalar fields subject to monotonically increasing boundary

conditions, both stable and unstable data exist; however, unstable data can result in either a black

hole solution, or a limiting cycle. When periodic boundary conditions are considered, dynamically

stabilized big crunch singularities are possible for sufficiently high driving frequencies [99].

Despite constructing stable and unstable numerical solutions for driven scalars, analytic solutions

to the perturbative description of weakly turbulent instabilities has yet to extend beyond leading

order in the backreacton with the metric [100]. Capturing O(ε3) instabilities in these driven scalar

systems is the focus of the work in chapter 4.

1.4 Summary

We have now seen how the AdS/CFT correspondence establishes a duality between strongly-coupled

gauge theories and weakly-coupled gravitational theories in one extra dimension. Using this cor-

respondence, various dynamical processes in strongly-coupled gauge theories can be explored via

the collapse of scalar fields in Anti-de Sitter spacetime. Furthermore, we have seen that the end

state of the theory depends on the initial profile of the scalar field, and that a large variety of both

stable and unstable phenomena are possible. However, a better understanding of the islands of

stability in the full theory, as well as the limits of the perturbative description, is still required.

Similarly, the incorporation of time dependent boundary conditions into a perturbative theory for

the weakly turbulent instabilities remains an outstanding issue. The work collected in this thesis

aims to address these issues.

The following chapters each contain a manuscript that is focused on research into one of the areas
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described above. After a brief discussion of how each project contributes to the resolution of these

issues, the contributions of the authors are laid out. The work itself is then presented. A discussion

of how these works contribute to a better understanding of gravitational collapse in Anti-de Sitter

space follows in chapter 5.
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2 Nonlinear Evolution of Massive Scalar Fields in

Anti-de Sitter Spacetime

As mentioned in §1.3.2, within the space of initial data for massive scalar fields in AdSd+1 there are

islands of stability for Gaussian momentum profiles where collapse does not occur for sufficiently

small perturbations. Examining the dependence of the end state (stable, unstable, or otherwise) on

the initial conditions has been the goal of previous works, such as [39, 101] and others. However,

the limit of small but non-perturbative amplitudes requires significant computing resources and has

only recently become computationally accessible. The goal of the work presented here is to leverage

the computing resources available through Westgrid and Compute Canada to examine the broadest

possible range of initial parameters.

2.1 Contributions of Authors

The research covered in this work built upon on the numerical solving methods first utilized as

part of [39, 101] to examine nonlinear instabilities in the full Einstein/Klein-Gordon system of

massive scalars in AdSd+1. The goal of this work was to expand the space of initial data being

considered and thereby chart the islands of stability. Previous work had identified these islands and

commented on the transition regions between stable and unstable configurations, but had avoided

the computationally costly simulations required for cases on the “shoreline.”

My role involved running multiple, simultaneous simulations over different heterogeneous computing

clusters through the Westgrid network of the Compute Canada consortium. I was responsible for

24



roughly 184 core years6 worth of simulations over the course of this work.

To perform the data analysis required, I wrote new plotting programs that interfaced with existing

data types while also providing extensions specifically for this project. For example, code for plotting

the horizon formation time tH against the amplitude of the perturbation ε was rewritten in python

with a range of fitting options for critical data above a specified tfit (see plots and insets in figure 2.4

along with fitting parameters in table 2.1). I also programmed and performed all of the convergence

tests included in appendix 2.A that verified the evolution of the data. Of particular importance was

discerning the reliability of the solutions for irregular data. In figures 2.A.4 and 2.A.5, the order of

convergence Q is calculated for irregular data. These tests help to validate important observations

of chaotic evolution, even for massless scalars.

As is common for these types of projects, all members of the collaboration were equally involved in

the interpretation of the data, as well as the late stages of editing. Authors are listed alphabetically

and it is understood that all members contribute equally to the publication.

6From the Compute Canada website: “a core year is the equivalent of running computations on a CPU core
constantly for a period of one year.”
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We diagram the behavior of 5-dimensional anti-de Sitter spacetime against horizon formation in the

gravitational collapse of a scalar field, treating the scalar field mass and width of initial data as free

parameters, which we call the stability phase diagram. We find that the class of stable initial data

becomes larger and shifts to smaller widths as the field mass increases. In addition to classifying

initial data as stable or unstable, we identify two other classes based on nonperturbative behavior.

The class of metastable initial data forms a horizon over longer time scales than suggested by the

lowest order perturbation theory at computationally accessible amplitudes, and irregular initial

data can exhibit non-monotonic and possibly chaotic behavior in the horizon formation times. Our

results include evidence for chaotic behavior even in the collapse of a massless scalar field.
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2.2 Introduction

Through the anti-de Sitter spacetime (AdS)/conformal field theory (CFT) correspondence, string

theory on AdS5 × X5 is dual to a large N conformal field theory in four spacetime dimensions

(R × S3 when considering global AdS5). The simplest time-dependent system to study in this

context is the gravitational dynamics of a real scalar field with spherical symmetry, corresponding

to the time dependence of the expectation value of the zero mode of a single trace operator in the

gauge theory. Starting with the pioneering work of [67–70], numerical studies have suggested that

these dynamics may in fact be generically unstable toward formation of (asymptotically) AdSd+1

black holes even for arbitrarily small amplitudes. While perhaps surprising compared to intuition

from gravitational collapse in asymptotically flat spacetimes, the dual picture of thermalization of

small energies in a compact space is more expected. In terms of the scalar eigenmodes on a fixed

AdS background, the instability is a cascade of energy to higher frequency modes and shorter length

scales (weak turbulence), which eventually concentrates energy within its Schwarzschild radius. In

a naive perturbation theory, this is evident through secular growth terms.

However, some initial scalar field profiles lead to quasi-periodic evolution (at least on the time

scales accessible via numerical studies) at small but finite amplitudes; even early work [67,91] noted

that it is possible to remove the secular growth terms in the evolution of a single perturbative

eigenmode. A more sophisticated perturbation theory [42,44,78–80,82,102–107] supports a broader

class of quasi-periodic solutions that can contain non-negligible contributions from many modes,

and other stable solutions orbit the basic quasi-periodic solutions [82]. Stable solutions exhibit

inverse cascades of energy from higher frequency to lower frequency modes due to conservation

laws following from the high symmetry of AdS (integrability of the dual CFT). Stable behavior

also appears in the full non-perturbative dynamics for initial profiles with widths near the AdS

length scale [52,108,109]; however, analyses of the perturbative and full dynamics in the literature

have not always been in agreement at fixed small amplitudes. For example, some perturbatively

stable evolutions at finite amplitude actually form black holes in numerical evaluation of the full
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dynamics [41,44,81]. Understanding the breakdown of the approximations used in the perturbative

theory, as well as its region of validity, is an active and important area of research [83,110–113].

Ultimately, the main goal of this line of inquiry is to determine whether stability or instability

to black hole formation (or both) is generic on the space of initial data, so the extent of the

“islands of stability” around single-mode or other quasi-periodic solutions and how it varies with

parameters of the physics on AdS are key questions of interest. The biggest changes occur in theories

with a mass gap in the black hole spectrum, such as AdS3 and Einstein-Gauss-Bonnet gravity in

AdS5, which cannot form horizons at small amplitudes. While small-amplitude evolution in AdS3

appears to be quasi-periodic [31, 60], there is some evidence to point toward late-time formation

of a naked singularity in AdS5 Einstein-Gauss-Bonnet gravity [101, 114] (along with a power law

energy spectrum similar to that at horizon formation). Charged scalar and gauge field matter [115]

also introduces a qualitative change in that initial data may lead to stable evolution or instability

toward either Reissner-Nordström black holes or black holes with scalar hair.

In this paper, we extend the study of massive scalar matter initiated in [39, 85]. Specifically, using

numerical evolution of the full gravitational dynamics, we diagram classes of gravitational collapse

behavior as a function of scalar field mass and initial scalar profile width, which we call a stability

phase diagram in analogy to a phase diagram for phases of matter. This is the first systematic study

of behavior for classes of initial data in AdS gravitational collapse using two tuning parameters.

By considering the time to horizon formation as a function of the initial profile’s amplitude at

finite amplitude, we identify several different classes of behavior and indicate them on the phase

diagram. Finally, we analyze and characterize these different behaviors, presenting evidence for

chaotic behavior, including the first evidence for chaotic behavior in the horizon formation time of

massless scalar collapse, which has no length scale other than the AdS radius. Throughout, we work

in AdS5, due to its relevance to strongly coupled gauge theories in four dimensions and because

previous literature has indicated massless scalars lead to greater instability than in AdS4 (the main

other case considered), which makes the effects of the scalar field mass more visible.

We note briefly two caveats for the reader. First, horizon formation always takes an infinite amount
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of time on the AdS conformal boundary due to the usual time dilation effects associated with

horizons; this agrees with the understanding of thermalization in the CFT as an asymptotic process.

Horizon formation times discussed in this paper correspond to an approximate notion of horizon

formation that we will describe below, but alternate measures of thermalization may be of interest.

Second, the black holes we discuss are smeared on the compact X5 dimensions of the gravitational

side of the duality, as in most of the literature concerning stability of AdS, and we are particularly

interested in small initial amplitudes that lead to black holes small compared to the AdS scale. As

described in [116–118], small black holes in this situation suffer a Gregory-Laflamme-like instability

toward localization on X5 (which may in fact lead to formation of a naked singularity). At the same

time, certain light stable solutions for charged scalars (boson stars) are stable against localization on

X5 [119]. We therefore provisionally assume that the onset of the Gregory-Laflamme-like instability

occurs only at horizon formation, not at any point of the earlier horizon-free evolution.

The plan of this paper is as follows: in section 2.3, we review the time scales associated with horizon

formation with an emphasis on the behavior of massive scalars and briefly discuss our methods.

Then, in section 2.4, we present the phase diagram of different stability behaviors, and an attempt

at heuristic analytic understanding appears in 2.5. We close with a discussion of our results.

2.3 Review

In this section, we review results on the stability of scalar field initial data as well as our methods

(following the discussion of [39]).
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2.3.1 Massive scalars, stability, and time scales

As in most of the literature, we work in Schwarzschild-like coordinates, which have the line element

(in asymptotic AdSd+1)

ds2 =
1

cos2(x)

(
−Ae−2δdt2 + A−1dx2 + sin2(x)dΩd−1

)
(2.1)

in units of the AdS scale. In these coordinates, a horizon appears at A(x, t) = 0, but reaching

zero takes an infinite amount of time (measured either in proper time at the origin or in conformal

boundary time); following the standard approach, we define a horizon as having formed at the

earliest spacetime point (as measured by t) where A drops below a specified threshold defined in

§2.3.2 below. Of course, horizon formation represents a coarse-grained description since the pure

initial state of the dual CFT cannot actually thermalize; a more precise indicator of approximate

thermalization may be the appearance of a power law energy spectrum (exponentially cut off) in

the perturbative scalar eigenmodes. This indicator is tightly associated with horizon formation

(though see [101,114] for some counterexamples).

A key feature of any perturbative formulation of the gravitational collapse is that deviations from

A = 1, δ = 0 appear at order ε2, where ε is the amplitude of initial data. As a result, horizons can

form only after a time t ∼ ε−2; in the multiscale perturbation theory of [42,44,78–80,82,103,105–107],

there is in fact a scaling symmetry ε → ε′, t → t(ε/ε′)2 that enforces the proportionality tH ∝ ε−2,

where tH is the (approximate) horizon formation time for unstable initial data at small amplitude.

At this point, it is worth making a small clarification. If the collapsing matter takes the form of a

well-defined pulse, horizon formation occurs when the pulse nears the origin. For massless matter,

that means that the tH is piecewise continuous as a function of ε; each continuous “step” has

approximately constant tH and is separated from the next step by a time of approximately π, the

light crossing time for a round trip from the origin to the boundary of AdS. Massive matter does not

reach the boundary, so the steps are not always separated by π, and may in fact not be separated
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(d) Irregular initial data for σ = 1.1

Figure 2.1: Classes of initial data for massless scalars and initial width σ. Blue dots represent horizon
formation; red triangles indicate a lower limit for tH . Red curves in subfigures 2.1b,2.1c are tH = aε−2 + b
matched to largest two amplitudes in the curve.

at all if the pulse spreads out in radius. In any case, though, the width of the steps decreases

drastically as amplitude decreases, so it becomes very difficult to find the transition amplitudes

numerically. In fact, adjacent amplitudes in a numerical sample are typically multiple steps apart

once the evolution is already long, which justifies using the perturbative scaling tH ∝ ε−2.

Based on the perturbative scaling relation, initial data can be divided into several classes with

respect to behavior at low amplitudes, as illustrated in figure 2.1 for massless scalars. Stable initial

data evolves indefinitely without forming a horizon. In practice, we identify this type of behavior in
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numerical evolutions by noting rapid horizon formation at high amplitude with a vertical asymptote

in tH just above some critical amplitude. In our numerical results, we see a sudden jump at the

critical amplitude to evolutions with no horizon formation to a large time tlim, possibly with a

small window of amplitudes with large tH just above the critical amplitude. In a few cases, we

have captured a greater portion of the asymptotic region. See figure 2.1a. Unstable initial data, in

contrast, forms a horizon at all amplitudes following the perturbative scaling relation tH ∝ ε−2 as

ε→ 0. In our analysis, we will verify this scaling by fitting tH to a power law as described in section

2.3.2 below; if we limit the fit to smaller values of ε, the scaling becomes more accurate. Figure 2.1b

shows unstable data. The red curve is of the form tH = aε−2 + b with a, b determined by matching

the curve to the data for the largest two amplitudes with tH ≥ 60 (not a best fit); note that the

data roughly follows this curve. The categorization of different initial data profiles with similar

characteristic widths into stable and unstable is robust for massless and massive scalars [39]; small

and large width initial data are unstable, while intermediate widths are stable. One of the major

results of this paper is determining how the widths of initial data in these “islands of stability” vary

with scalar mass.

A priori, there are other possible types of behavior, at least beyond the first subleading order

in perturbation theory, that is, at finite ε. Metastable initial data collapses with tH ∝ ε−p with

p > 2 at small but not arbitrarily small amplitudes (or another more rapid growth of tH with

decreasing amplitude). We will find this type of behavior common on the “shoreline” of islands of

stability where stable behavior transitions to unstable. As we will discuss further below, metastable

behavior may or may not continue as ε → 0; in principle, as higher order terms in perturbation

theory become less important, the behavior may shift to either stable or unstable as described above.

In principle, initial data that is stable at third order in perturbation theory but unstable at higher

order could have metastable scaling even in the ε → 0 limit, though our numerical study cannot

address this case. We in fact find circumstantial evidence in favor of the different possibilities. In

the case that the ε→ 0 behavior is perturbatively unstable, the perturbative scaling tH ∝ ε−2 only

appears for larger tH than the typical unstable case; it may therefore be reasonable for the reader
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to consider metastable initial data as part of a second order transition between unstable and stable

classes of initial data. Figure 2.1c shows metastable initial data that continues to collapse to times

tH ∼ 0.6tlim but more slowly than ε−2; note that tH for collapsed evolutions at small amplitudes

lies significantly above the curve tH = aε−2 + b (which is determined as in figure 2.1b). There was

one additional type of behavior identified by [39], which was called “quasi-stable” initial data at

the time since the low-amplitude behavior was not yet clear. We find here that these initial data

are typically stable at small amplitude but exhibit irregular behavior in tH as a function of ε, so

we will denote them as irregular initial data; irregular behavior may be strongly non-monotonic or

even exhibit some evidence of chaos. Figure 2.1d shows an example of irregular initial data. Later,

we will see more striking examples of this behavior for massive scalars.

We emphasize that we are not claiming that metastable or irregular behavior persist to arbitrarily

small amplitudes (though a priori metastable behavior could). In that sense, the multiscale per-

turbation theory suggests that the only two classes of stability behavior are stable and unstable

with tH ∝ ε−2 scaling as ε → 0. However, it is also important to understand physics outside the

perturbative regime, and classifying the behavior of AdS when higher-order or nonperturbative ef-

fects contribute is still of interest. For example, it is clear that metastable initial data (as defined

precisely below) does not exhibit perturbatively unstable behavior for tH values as small as other

unstable initial data, even in the cases where it may at all. This may help understanding the break-

down of the multiscale perturbation theory. Similarly, irregular initial data leads to qualitatively

different behavior even visually and suggests that nonperturbative dynamics are important. It is in

the spirit of looking beyond the multiscale perturbation theory that we call metastable and irreg-

ular initial data independent classes of behavior, even if they are not quite on the same standing

as perturbatively stable or unstable classes. This paper presents the first systematic mapping of

where these distinct behaviors appear.
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2.3.2 Methods

For spherically symmetric motion, the Klein-Gordon equation for scalar mass µ can be written in

first order form as

φ,t =Ae−δΠ, Φ,t =
(
Ae−δΠ

)
,x
, (2.2)

Π,t =
(Ae−δ tand−1(x)Φ),x

tand−1(x)
− e−δµ2φ

cos2(x)
, (2.3)

where Π is the canonical momentum and Φ = φ,x is an auxiliary variable. The Einstein equation

reduces to constraints, which can be written as

δ,x =− sin(x) cos(x)(Π2 + Φ2) (2.4)

M,x = (tan(x))d−1

[
A

(Π2 + Φ2)

2
+

µ2φ2

2 cos2(x)

]
, (2.5)

A =1− 2
sin2(x)

(d− 1)

M

tand(x)
, (2.6)

where the mass function M asymptotes to the conserved ADM mass at the boundary x = π/2. We

will restrict to d = 4 spatial dimensions. Since results are robust against changes in the type of

initial data [39], we can take the initial data to be a Gaussian of the areal radius in the canonical

momentum and trivial in the field. Specifically,

Π(t = 0, x) = ε exp

(
−tan2(x)

σ2

)
, φ(t = 0, x) = 0. (2.7)

The width σ and field mass µ constitute the parameter space for our stability phase diagram.

We solve the Klein-Gordon evolution equations (2.2,2.3) and Einstein constraint equations (2.4,2.5)

numerically using methods similar to those of [109] on a spatial grid of 2n+1 grid points; we discuss

the convergence properties of our code in the appendix. We denote the approximate horizon position

xH and formation time tH by the first point such that A(xH , tH) ≤ 27−n. In detail, we evolve the

system in time using a 4th-order Runge-Kutta stepper and initially use a 4th-order Runge-Kutta
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spatial integrator at resolution n = 14. If necessary, we switch to a 5th-order Dormand-Prince

spatial integrator and increase resolution near horizon formation. Due to time constraints, we do

not increase the resolution beyond n = 21 for any particular calculation; if a higher resolution would

be required to track horizon formation for a given amplitude, we exclude that amplitude.

To determine the stability class of initial data with a given width σ, we allow evolutions to run to

a maximum time of tlim = 500 in AdS units, so tlim is a lower limit for tH for amplitudes that do

not form a horizon within that time. Normally, however, if the initial data appears unstable, we

only evolve amplitudes with tH . 0.6tlim; this is partly to save computational resources and partly

to distinguish stable evolutions from collapsing ones. For unstable or metastable initial data, we

find the best fit of the form tH = aε−p + b to evolutions with tH > tfit, where tfit is a constant time

chosen such that amplitudes with evolutions that last longer are usually roughly perturbative;7 in

practice, tfit = 60 gives results close to the perturbative result p = 2 for evolutions expected to be

unstable from the literature, but we will also consider tfit = 80, 100 as described below. In other

words, since a given amplitude ε may be in the perturbative scaling regime for one set of initial

data but nonperturbative for another, we compare initial data at similar horizon formation times

(addressing the onset of perturbative behavior). Choosing tfit as above gives consistent values of

the fit parameters for the three values of tfit for the largest and smallest initial data widths, which

are unstable.

2.4 Phase Diagram of Stability

Here we give our main result, the phase diagram of stability classes as a function of initial profile

width and scalar mass, along with a more detailed discussion of the scaling of horizon formation

time with amplitude for varying initial data.

The stability phase diagram for spherically symmetric scalar field collapse in AdS5, treating the

7The power law plus constant fits the leading and first subleading contribution to tH in a perturbative expansion
in ε, and we have found that the subleading term is typically not negligible in the computationally accessible regime.
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Figure 2.2: Stability phase diagram as a function of initial data width σ and scalar mass µ. Blue
diamonds represent stable initial data, orange circles unstable initial data, green triangles metastability,
and red squares irregular behavior.

width σ of initial data and scalar field mass µ as tunable parameters, appears in figure 2.2. Each

(µ, σ) combination that we evolved numerically is indicated by a point, with blue diamonds and

orange circles representing stable and unstable initial data respectively. The metastable class is

represented by green triangles, while the irregular class are represented by red squares. Note that

the graph has been divided into two regions with different scales, separated by a break: 0 ≤ µ ≤ 1

is pictured on the bottom, while 5 ≤ µ ≤ 20 is pictured on the top. At a glance, two features of the

stability phase diagram are apparent: as µ increases, the island of stability moves toward smaller

values of σ and takes up a gradually larger range of σ. To be specific, the stable class of initial data

is centered at σ = σ̄ ∼ 1.4 and has a width of ∆σ ∼ 0.7 for µ = 0, 0.5, with σ̄ ∼ 1.2 for µ = 1. ∆σ

increases to ∼ 1.1, and the island of stability is centered at σ̄ ∼ 0.9 for µ = 5, 10, while ∆σ ∼ 1.2

for µ = 15, 20 with the stable class centered at σ̄ ∼ 0.8. Note that the transition between “light

field” and “heavy field” behavior occurs for µ > 1 in AdS units.

The metastable and irregular classes appear at the shorelines of the island of stability, the boundary

between unstable and stable classes. In particular, the slope of the power law tH ∼ ε−p as ε → 0

increases as the width moves toward the island of stability, leading to metastable behavior. We find

metastability at the large σ shoreline for all µ values considered and also at the small σ shoreline
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for several scalar masses. It seems likely that metastable behavior appears in only a narrow range

of σ for larger µ, which makes it harder to detect in a numerical search, leading to its absence in

some parts of the stability phase diagram. We find irregular behavior at the small σ shoreline for

every mass and at the large σ boundary for large µ, closer to stable values of σ than metastable

initial data. This class of initial data includes a variety of irregular and non-monotonic behavior, as

detailed below. Evidence for chaotic behavior especially becomes more prominent at larger values

of µ, as we will discuss below.

2.4.1 Metastable versus unstable initial data

While stable and irregular initial data are typically apparent by eye in a plot of tH vs ε, distinguishing

the unstable from metastable classes is a quantitative task. As we described in section 2.3.2, we find

the least squares fit of tH = aε−p + b to all evolutions with tH > tfit for the given (µ, σ), running

over values tfit = 60, 80, 100. Using the covariance matrix of the fit, we also find the standard

error for each fit parameter. We classify a width as having unstable evolution if the best fit value

of p is within two standard errors of p = 2 for tfit = 60, 80 or one standard error for tfit = 100

(due to a smaller number of data points, the standard errors for tfit = 100 tend to be considerably

larger). In contrast, we classify a width as having metastable evolution if the best fit p is statistically

significantly different from 2 (in that the best fit value is more than 2 standard errors from p = 2

for tfit = 60, 80 and more than 1 standard error from p = 2 for tfit = 100). This indicates that

either further subleading contributions in a perturbative expansion of tH are non-negligible in this

regime for metastable initial data or that possibly metastable initial data are stable at the first

nontrivial order in perturbation theory. Considering larger values of tfit helps to ensure that the

leading perturbative terms do not come to dominate for particular initial profile at the smallest

computationally accessible amplitude values. In the case that the fit to tH = aε−p + b has large

reduced χ2 or is sensitive to fitting algorithm, the data is not well-described by our fitting function,

so we classify it as irregular (see the next subsection).

The fits tH = aε−p + b allow us to explore the time scale of horizon formation across the stability
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Figure 2.3: Coefficient a from the fit tH = aε−p + b as a function of width σ using tfit = 60. Shows data
for µ = 0 (green diamonds), 0.5 (red triangles), 1 (yellow stars), 5 (black circles), 10 (cyan squares), 15
(magenta Y), and 20 (blue circles). The orange line is the best power law fit.

phase diagram, for example through a contour plot of one of the coefficients vs σ and µ. In most

cases, this has not been informative, but an intriguing feature emerges if we plot the normalization

coefficient a vs σ for unstable initial data at small σ, as shown in figure 2.3 for tfit = 60. By eye,

the coefficient is reasonably well described by the fit a = (32.0 ± 0.3)σ−(2.01±0.02) (values following

± are standard errors of the best fit values) independent of scalar field mass. This is not born out

very well quantitatively; the reduced χ2 for the fit is χ2/d.o.f.= 180, indicating a poor fit. However,

the large χ2 seems largely driven by a few outlier points with large scalar mass, so it is tempting

to speculate that the gravitational collapse in this region of parameter space is driven by gradient

energy, making all fields effectively massless at narrow enough initial σ. The picture is qualitatively

similar if we consider the parameter a for tfit = 80, 100 instead.

Several examples of metastable behavior appear in figure 2.4. These figures show both data from

the numerical evolutions (blue dots and red triangles) and fits of the form tH = aε−p + b for points

with tH > tfit = 60 (magenta curves). The best fit parameters are given in table 2.1 along with

the standard errors (listed following ± for the fit values) and χ2 values. The insets show the fit

region with a log-log scale and an additional line (red) showing an ε−2 power law normalized to fit
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Figure 2.4: Metastable behavior: blue dots represent horizon formation and red triangles a lower limit on
tH . Magenta curves are fits tH = aε−p + b over the shown range of amplitudes. Insets show the fit region
with log-log scale; note that the fit is not strictly a power law, so the fits are not straight lines. See table
2.1 for best fit parameters. Red lines in insets are ε−2 power laws normalized to the tH of the smallest
amplitude shown.

the smallest amplitude shown in the inset. It is visually clear that tH grows faster than ε−2 for all

these examples as ε decreases in the fit region (there is a significant constant offset in figure 2.4d).

Figures 2.4a,2.4b demonstrate behavior typical of most of the instances of metastable initial data

we have found; specifically, the initial data continue to collapse through horizon formation times of

tH ∼ 0.6tlim but with p significantly greater than the perturbative value of p = 2. Note that the

evolutions of figure 2.4b have been extended to larger values of tH to demonstrate that the evolutions
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a p b χ2/d.o.f.

µ = 15, σ = 1.5 0.10± 0.01 2.33± 0.05 −27± 4 0.7736

µ = 5, σ = 1.7 0.91± 0.06 2.07± 0.02 −33± 2 0.5070

µ = 0, σ = 1.8 0.06± 0.02 4.3± 0.2 30± 5 1.502

µ = 0.5, σ = 1.7 (tH < 0.4tlim) (4± 32)× 10−45 73± 5 70± 2 5.409

(tH > 0.72tlim) 0.02± 0.03 5.6± 0.8 260± 20 1.078

Table 2.1: Best fit parameters for the cases shown in figure 2.4 restricting to tH > tfit = 60 and as
noted. Listed errors (± values) are standard errors. χ2/d.o.f. is the reduced χ2 value used as a measure
of goodness-of-fit.

continue to collapse to somewhat smaller amplitude values. Figure 2.4b is also of interest because

its best fit value p ≈ 2.07 ± 0.02 is approximately as close to the perturbative value as several

stable sets of initial data but has a smaller standard error for the fit, so the difference from the

perturbative value is more significant (again, the value following the ± is the standard error).

Figure 2.4c shows metastable evolution to tH . 0.6tlim but then a sudden jump to stability until

t = tlim. In the figure, the fit has been extended to the largest non-collapsing amplitude, which

demonstrates that there is no collapse over a time period significantly longer than the fit predicts.

This example argues that metastable data may in fact become stable at the smallest amplitudes.

On the other hand, figure 2.4d shows a similar jump in tH to values tH < tlim; evolution at lower

amplitudes shows metastable scaling with p ≈ 5.6±0.8 for 360 < tH < tlim. The figure also shows a

metastable fit with larger reduced χ2 at larger amplitudes corresponding to tfit < tH < 0.4tlim. So

this is another option: metastable behavior may transition abruptly to metastable behavior with

different scaling (or possibly even perturbatively unstable behavior) at sufficiently small amplitudes.

It is also reasonable to classify this case as irregular due to the sudden jump in tH ; we choose

metastable due to the clean metastable behavior at low amplitudes.

Our point of view is that initial data in the metastable class is distinct from the unstable class at

finite amplitudes corresponding to tfit < tH < 300; they take longer to collapse at a fixed small

value of ε than would be expected by the perturbative scaling. An alternate point of view is to ask

whether we can determine if a given set of initial data is perturbatively unstable in the ε→ 0 limit.
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We have already seen that metastable initial data does not follow the perturbative scaling when fit

to tH = aε−p + b, the first two terms of the perturbative expansion. However, it is possible that a

perturbative description applies but requires a further subleading term. To test this hypothesis, we

fit unstable and metastable initial data to tH = aε−p + b + cε2; as described earlier in this section,

we determine if p is within two standard errors of the perturbative value p = 2 (or one standard

error for tfit = 100).

The unstable class of initial data is instructive. For the new fits of unstable initial data, p is

statistically equal to 2, and the new values of a, p, b are consistent with the values from the old

fits to within two standard errors (or sometimes slightly more). The fit value of c is uniformly

within a standard error of zero, and, for the amplitude values in the fit region, the ε2 term is small

compared to the constant and ε−2 terms. What is more, for some unstable initial data near the

island of stability, the original tH = aε−p + b fits for tfit = 60 have p > 2 statistically; on the other

hand, the new fits have p = 2 within statistical error. In other words, the perturbative expansion

is still valid but requires more terms. Part of the metastable class of initial data also behaves in

this manner and could therefore be reasonably considered to be perturbatively unstable. Of the

metastable initial data we found, these are σ = 1.9 for µ = 0, σ = 0.8 and 1.9 for µ = 0.5, σ = 0.7

for µ = 1, σ = 1.7 for µ = 5, σ = 0.155 for µ = 10, σ = 0.11 and 1.5 for µ = 15, and σ = 1.5

for µ = 20. In addition, µ = 1, σ = 1.8 and µ = 10, σ = 1.7 initial data have similar behavior,

but p is not statistically consistent with 2 for any of the fit regions, though it is closer than in the

original fits. On the other hand, the other metastable initial data (σ = 0.85 and 1.8 for µ = 0,

σ = 1.7 and 1.8 for µ = 0.5, σ = 1.45 for µ = 10, and σ = 1.4 for µ = 20) show no evidence

for perturbative behavior. Specifically, p remains statistically larger than 2 for all fits, the ε2 term

in the new fit is roughly the same magnitude as the other terms, and the a, p, b values in the new

fits are not statistically consistent with the original fits. To check if perturbative scaling might be

masked by numerical errors, we have also fit these remaining metastable data (σ = 0.85, 1.8 for

µ = 0, σ = 1.8 for µ = 0.5, σ = 1.8 for µ = 1, σ = 1.45, 1.7 for µ = 10, and σ = 1.4 for µ = 20)

with tH = aε−p + bε−1 + c. Of these, only the µ = 1, σ = 1.8 and µ = 10, σ = 1.7 initial data have
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best fit p values statistically consistent with p = 2. However, except for µ = 1, σ = 1.8 initial data,

the best fit p values are all further from p = 2 in absolute terms (usually substantially); the main

effect of including the ε−1 term is to increase the standard error on the best fit for p. Therefore,

it is not clear that potential numerical errors alone can be responsible for the observed deviation

from perturbative scaling. We would also point out that, even if the extra ε−1 term turns out to be

important for these initial data, the fact that it is only important at the boundary of the island of

stability indicates a change in behavior for these mass/width combinations as compared to those

farther from the stable region. This justifies a separate classification related to the slower entry

of these mass/width combinations into the perturbative regime (as measured by horizon formation

time).

2.4.2 Irregular behaviors

We have found a variety of irregular behaviors at the transition between the metastable and stable

classes which we have classified together as irregular initial data; however, it may be better to

describe them as separate classes. The stability phase diagram 2.2 indicates that the irregular class

extends along the “inland” side of the small σ shoreline and at least part of the large σ shoreline

of the island of stability. What is not clear from our evolutions up to now is whether each type

of behavior appears along the entire shoreline or if they appear in pockets at different scalar field

masses. Examples of each type of behavior that we have found appear in figure 2.5.

The first type of irregular behavior, shown in figure 2.5a, is monotonic (tH increases with decreasing

ε as usual), but it is not well fit by a power law. In fact, this behavior would classify as metastable by

the criterion of section 2.4.1 in that the power law of the best fit tH = aε−p+b is significantly different

from p = 2, except for the fact that the reduced χ2 value for the fit is very large (greater than 10)

and also that different fitting algorithms can return significantly different fits, even though the data

may appear to the eye like a smooth power law. In any case, this type of behavior apparently

indicates a breakdown of metastable behavior and hints at the appearance of non-monotonicity. So

far, our evolutions have not demonstrated sudden jumps in tH typical of stability at low amplitudes,
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Figure 2.5: Irregular behavior: blue dots represent horizon formation and red triangles a lower limit on
tH .

however.

Figure 2.5b exemplifies non-monotonic behavior in the irregular class. This type of behavior, which

was noted already by [52], involves one or more sudden jumps in tH as ε decreases, which may be

followed by a sudden decrease in tH and then resumed smooth monotonic increase in tH . There are

suggestions that this type of initial data is stable at low amplitudes due to the usual appearance

of non-collapsing evolutions, but it is worth noting that these amplitudes could instead experience

another jump and decrease in tH , just at tH > tlim. Finally, [39] studied this type of behavior in

some detail, denoting it as “quasi-stable.”
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Some irregular initial data demonstrates evidence of chaotic behavior, in that tH appears to be

sensitive to initial conditions (ie, value of amplitude) over some range of amplitudes. This type of

behavior appears over the range of masses (see figure 2.1d for a mild case for massless scalars), but

it is more common and more dramatic at larger µ. Figures 2.5c,2.5d represent the most extreme

behavior of this type among the initial data that we studied with collapse at tH < 50 not very far

separated from amplitudes that do not collapse for t < tlim along with an unpredictable pattern of

variation in tH . This type of evidence for chaotic behavior has been seen previously in the collapse

of transparent but gravitationally interacting thin shells in AdS [120] as well as in the collapse of

massless scalars in AdS5 Einstein-Gauss-Bonnet gravity [101,114]; these references speculated that

the tH vs ε curve is fractal. In both cases, this type of behavior is hypothesized to be due to the

transfer of energy between two infalling shells, with horizon formation only proceeding when one

shell is sufficiently energetic. In the latter case, the extra scale of the theory (given by the coefficient

of the Gauss-Bonnet term in the action) leads the single initial pulse of scalar matter to break into

two pulses.

We should therefore ask two questions: does this irregular behavior show evidence of true chaos,

and is a similar mechanism at work here? We note first that [114] found evidence (using a modified

box test) that the tH vs ε curve has a non-integer fractal dimension for plots visually similar to

our figures 2.5c,2.5d. Here, to quantify the presence of chaos, we examine the difference in time

evolution between similar initial conditions (nearby amplitudes), which diverge exponentially in

chaotic systems. Specifically, any quantity ∆ should satisfy |∆| ∝ exp(λt) for Lyapunov coefficient

λ. Our characteristic will be the upper envelope of the Ricci scalar at the origin per light crossing

time, R̄(t). We consider three sets of irregular initial data: a massless scalar of width σ = 1.1

with amplitudes ε = 1.02, 1.01, 1.00 (see figure 2.1d), a µ = 5 massive scalar of width σ = 0.34 and

ε = 3.52, 3.51, 3.50, and a µ = 20 scalar of width σ = 0.19 and ε = 6.98, 6.95, 6.92 (figure 2.5d). We

also calculated determined the Lyapunov coefficient for unstable initial data with µ = 0.5, σ = 0.3,

and ε = 1.22, 1.20, 1.18 for comparison.

Figure 2.6 details evidence for chaotic evolution in the µ = 5, σ = 0.34 case; figure 2.6a shows our

44



(a) Upper envelope of Ricci scalar at origin (b) log |∆| vs. tmid

Figure 2.6: Left: The upper envelope of the Ricci scalar for amplitudes ε1 = 3.50 (blue circles), ε2 = 3.51
(red triangles), and ε3 = 3.52 (green squares) for µ = 5, σ = 0.34. Right: log(|∆12|) and best fit (blue
circles and line) and log(|∆23|) and best fit (red squares and line), calculated as a function of the midpoint
tmid of the time interval.

characteristic function R̄(t) for the amplitudes ε1 = 3.50, ε2 = 3.51, and ε3 = 3.52. By eye, R̄

shows noticeable differences after a long period of evolution. These are more apparent in figure

2.6b, which shows the log of the differences ∆ab ≡ R̄εa − R̄εb , along with the best fits. Although

there is considerable noise — or oscillation around exponential growth — in the differences (leading

to R2 values ∼ 0.2, 0.26 for the fits), the average slope gives Lyapunov coefficient λ = 0.007 (within

the error bar of each slope), and each slope differs from zero by more than 3 standard errors. One

interesting point is that the tH vs ε curve in figure 2.5b does not appear chaotic to the eye, even

though it shows some of the mathematical signatures of chaos at least for ε1 < ε < ε3 (the visible

spike in tH is at ε ∼ 3.57).

The story is similar for the massless and µ = 20 cases we studied, which exhibit λ values that differ

from zero by at least 1.9 standard errors; see table 2.2. This is a milder version of the behavior

noted by [101,114,120], especially for the µ = 5 case studied. One thing to note is that the strength

of oscillation in log(|∆|) around the linear fit increases with increasing mass, so that the two best fit

Lyapunov exponents for µ = 20 are no longer consistent with each other at the 1-standard deviation

level. We should note, however that the unstable initial data with µ = 0.5, σ = 0.3 also exhibits a
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λ average λ

µ = 0, σ = 1.1 ∆12 0.011± 0.005 0.011

∆23 0.011± 0.005

µ = 0.5, σ = 0.3 ∆12 0.021± 0.0007 0.022

∆23 0.024± 0.001

µ = 5, σ = 0.34 ∆12 0.006± 0.002 0.007

∆23 0.007± 0.002

µ = 20, σ = 0.19 ∆12 0.046± 0.009 0.032

∆23 0.019± 0.007

Table 2.2: Best fit Lyapunov coefficients λ for adjacent amplitude pairs and average λ value for each µ, σ
system studied. Standard errors are given following ± signs.

(a) µ = 5, σ = 0.34, ε = 3.51 (b) µ = 0.5, σ = 0.3, ε = 1.20

Figure 2.7: Trajectories in Π(x = 0), φ(x = 0) phase space for one irregular and one unstable evolution.
Trajectories are shown for t < 50.

statistically positive Lyapunov exponent, though we should note that the value of λ quoted in table

2.2 includes the time shortly before horizon formation, which does increase λ somewhat (though

not more than the quoted error).

Since the Lyapunov coefficients do not distinguish the irregular and unstable cases, we also consider

the phase space trajectories of the evolutions. Following [121], we consider the trajectory of evolu-

tions in Π and φ evaluated at the origin for t ≤ 50 in figure 2.7. Neither the µ = 5, σ = 0.34, ε = 3.51

46



(figure 2.7a) or µ = 0.5, σ = 0.3, ε = 1.20 (figure 2.7b) trajectories close, though there is a clear dif-

ference. Specifically, the former trajectory is visually disorganized (that is, strongly varying orbits)

with very rapid motion (seen in the gap between points on the trajectory between plotted time

steps). Meanwhile, the latter motion is comparatively regular, typical of quasi-periodic motion.

Figure 2.7a is typical of turbulence and clearly shows that these evolutions are nonperturbative,

even though tH is large (well into the perturbative regime for unstable initial data).

To sum up, we have identified irregular initial data that shows evidence of chaotic behavior. Specif-

ically, several of the tH vs ε curves appear qualitatively similar to analogous plots in [101,114,120],

which were demonstrated to have fractal-like behavior (including fractional fractal dimension in one

case). Furthermore, a number of cases of irregular initial data (and some unstable) have positive

Lyapunov exponents; phase space trajectories for irregular initial data show very rapid motion typ-

ical of turbulence, while unstable initial data have more regular trajectories. Taken together, this

is strong evidence for chaotic behavior for some irregular initial data, similar to that discussed in

other studies of gravitational collapse in AdS. Furthermore, this is the first evidence of chaos in the

tH vs ε curve for gravitational collapse of a massless scalar in AdS to our knowledge.

The mechanism underlying the possibly chaotic behavior seems somewhat different or at least weaker

than the two-shell or Einstein-Gauss-Bonnet systems. When examining the time evolution of the

mass distributions of these data, we see a single large pulse of mass energy that oscillates between

the origin and boundary without developing a pronounced peak. However, there is also apparently

a smaller wave that travels across the large pulse. We can see this by comparing snapshots of the

mass distribution at different times, as in figure 2.8. In the massless case examined, this wave

deforms the pulse, leading to a double-shoulder appearance seen at two times in figure 2.8a. In the

µ = 5, σ = 0.34 case, the secondary wave is more like a ripple, usually smaller in amplitude but more

sharply localized, as toward the right side of the main pulse in figure 2.8b. So the chaotic behavior

may be caused by the relative motion of the two waves, rather than energy transfer between two

shells. In this hypothesis, a horizon would form when both waves reach the neighborhood of the

origin at the same time.
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(a) µ = 0, σ = 1.1, ε = 1.01, at times t = 60 (solid
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Figure 2.8: Radial derivative of the mass function at the indicated time for two systems that show evidence
of chaos. Note the appearance of a secondary wave on top of the main pulse. (µ, σ, ε) as indicated.

As a note, we have run convergence tests on several sets of irregular initial data and find that

our calculations are convergent overall, as expected (even at lower resolution than we used). In

particular, the massless scalar evolutions studied in table 2.2 are convergent already at resolution

given by n = 12 (note that we typically start at n = 14); we also observe convergent behavior

for the µ = 5 evolutions discussed in table 2.2. We have therefore validated that nonmonotonic

behavior and even evidence of chaos occurs. The only caveat may be for some of the apparently

initial data with scalar mass µ = 20, which nonetheless appear well-behaved according to other

indicators. The reader may or may not wish to take them at face value but should recall that we

have presented other chaotic initial data with rigorously convergent evolutions. See the appendix

for a more detailed discussion.

2.5 Spectral analysis

As we discussed in the introduction, instability toward horizon formation proceeds through a turbu-

lent cascade of energy to shorter wavelengths or, more quantitatively, to 1st-order scalar eigenmodes
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with more nodes. Inverse cascades are typical of stable evolutions. Therefore, understanding the

energy spectrum of our evolutions, both initially and over time, sheds light on the behavior of the

self-gravitating scalar field in asymptotically AdS spacetime, providing a heuristic analytic under-

standing of the stability phase diagram.

The (normalizable) eigenmodes ej are given by Jacobi polynomials as

ej(x) = κj cosλ+(x)P
(d/2−1,

√
d2+4µ2/2)

j (cos(2x)) (2.8)

(κj is a normalization constant) with eigenfrequency ωj = 2j + λ+ and λ+ = (d +
√
d2 + 4µ2)/2

in AdSd+1 for j = 0, 1, . . . (see [6, 122] for reviews). Including gravitational backreaction, we define

the energy spectrum

Ej ≡
1

2

(
Πj

2 − φjφ̈j
)
, (2.9)

where

Πj =
(√

AΠ, ej

)
, φj = (φ, ej) ,

φ̈j =
(
cotd−1(x)∂x

[
tand−1(x)AΦ

]
− µ2 sec2(x)φ, ej

)
, (2.10)

and the inner product is (f, g) =
∫ π/2

0
dx tand−1(x)fg. The sum of Ej over all modes is the conserved

ADM mass.

2.5.1 Dependence on mass

The most visibly apparent feature of the stability phase diagram of figure 2.2 is that the island of

stability both expands and shifts to smaller widths as the scalar mass increases. As it turns out,

the energy spectrum of the Gaussian initial data (2.7) provides a simple heuristic explanation.

It is well established both in perturbation theory and numerical studies that initial data given by

a single scalar linear-order eigenmode is in fact nonlinearly stable, and the spectra of many quasi-
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(b) Best fit gaussian and zeroth eigenmode.

Figure 2.9: Left: Spectra of the best fit gaussians (2.7) to the j = 0 eigenmode for masses µ = 0 (blue
circles), 0.5 (yellow squares), 1 (empty orange circles), 5 (green diamonds), 10 (empty cyan squares), 15
(upward red triangles), and 20 (downward purple triangles). Right: an overlay of the best fit Gaussian and
e0 eigenmode for µ = 0 (solid blue is best fit, orange dashed is eigenmode) and µ = 20 (solid green, red
short dashes).

periodic solutions are also dominated by a single eigenmode. As a result, we should expect Gaussian

initial data that approximates a single eigenmode (which must be j = 0 due to lack of nodes) to

be stable. To explore how this depends on mass, we find the best fit values of ε, σ for the j = 0

eigenmode for each mass that we consider (defined by the least-square error from the Gaussian to a

discretized eigenmode); this is the “best approximation” Gaussian to the eigenmode. Then we find

the energy spectrum of that best-fit Gaussian; these are shown in figure 2.9a. From the figure, it is

clear that the j = 0 eigenmode is closer to a Gaussian at larger masses. That is, other eigenmodes

contribute less to the Gaussian’s spectrum at higher masses (by several orders of magnitude over

the range from µ = 0 to 20). Simply put, the shape of the j = 0 eigenmode is closer to Gaussian at

higher masses, which suggests that the island of stability should be larger at larger scalar field mass.

Figure 2.9b compares the j = 0 eigenmode and best fit Gaussian for µ = 0 and 20; on inspection,

there is more deviation between the eigenmode and Gaussian for the massless scalar.

In addition, the best-fit Gaussian width decreases from σ ∼ 0.8 for a massless scalar as the mass

increases. At µ = 20, the best-fit width is σ ∼ 0.31. This suggests that Gaussians that approximate

the j = 0 mode well enough are narrower in width at higher masses. An interesting point to

note is that the island of stability for µ = 0, 0.5 is actually centered at considerably larger widths
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Figure 2.10: Initial (t = 0) energy spectra for the indicated evolutions. In order, these represent stable,
unstable, metastable, monotonic irregular, non-monotonic irregular, and chaotic irregular initial data.

than the best-fit Gaussian. This may not be surprising, since the best-fit Gaussians at low masses

actually receive non-negligible contributions from higher mode numbers; moving away from the

best-fit Gaussian can actually reduce the power in higher modes. For example, the stable initial

data shown in figure 2.10a below has considerably less power in the j = 2 mode.

2.5.2 Spectra of different behaviors

A key question that one might hope to answer is whether the stability class of a given (µ, σ) can

be determined easily by direct inspection of the initial data without requiring many evolutions at

varying amplitudes. The initial energy spectra for examples of each class, including monotonic,

non-monotonic, and apparently chaotic irregular behaviors, are shown in figure 2.10. These spectra

are taken from among the smallest amplitudes we evolved in order to minimize backreaction effects.

Unfortunately, the initial energy spectra do not seem to provide such a method for determining the

stability class. Very broadly speaking, stable and metastable (µ, σ) correspond to initial spectra that

drop off fairly quickly from the j = 0 mode as j increases, while unstable and irregular behaviors
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Figure 2.11: The time dependence of the energy spectra as a fraction of the total ADM mass for the
indicated µ, σ, ε. Lower panels show the lowest 7 modes (in colors cyan, red, purple, green, yellow, brown,
and gray respectively). Upper panels show cumulative energy to mode j = 0, 1, 2, 4, 8, 16, 32 (in colors blue,
orange, brown, yellow, aqua, red, and magenta).

tend to have roughly constant or even slightly increasing spectra up to j = 5 or 10. However, figure

2.10d shows that some irregular initial data have spectra that decrease rapidly after a small increase

from j = 1 to j = 2. Kinks in the spectrum are more prevalent for widths of the AdS scale or

larger, while spectra for smaller widths tend to be smoother.
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2.5.3 Evolution of spectra

While the initial spectrum for a given (µ, σ) pair does not have predictive value regarding the future

behavior as far as we can tell, the time dependence of the spectrum throughout the evolution of

the system is informative. Figure 2.11 shows the time-dependence of spectra for examples of the

stable, unstable, metastable, and chaotic irregular classes. In each figure, the lower panel shows the

fraction Ej/MADM in each mode up to j = 6, while the upper panel shows the cumulative fraction∑
j Ej/MADM to the mode 2k with k = 0 to 5.

The difference between stable evolution in figure 2.11a and unstable evolution in figure 2.11b is

readily apparent. As the evolution proceeds, we expect a cascade of energy into higher mode

numbers, but inverse cascades to lower modes can also occur. The stable evolution shows a slow

pattern of cascades and inverse cascades, in fact. On the other hand, the unstable evolution shows

a nearly monotonic cascade of energy into the highest modes along with a simultaneous cascade

of energy into the lowest modes (therefore depleting intermediate modes). These are common

observations in the literature and are included here for completeness.

The metastable evolution shown in figure 2.11c is interesting in light of the stable and unstable

spectra. The amplitude shown is from the “unstable” portion of figure 2.4d, the part consistent

with the perturbative scaling tH ∼ ε−2. However, the spectrum shows a similar pattern of slow

cascades and inverse cascades to the stable initial data example, though on a somewhat faster time

scale in this case. While perhaps surprising, this is in keeping with the similarities noted between the

initial spectra in figures 2.10a and 2.10c. We have also checked that the time-dependent spectrum

at a higher amplitude with tH ∼ 100 follows the same pattern as 2.11c; in fact, it looks essentially

the same but simply ends at an earlier time. This lends some credence to the idea that metastable

initial data is stable at lowest nontrivial order in perturbation theory, with instability triggered by

higher-order corrections. Alternately, the instability could be caused by an oscillatory singularity in

the perturbative theory, as discussed in [106, 110–112] in the case of two-mode initial data. These

divergences do not appear in the energy spectrum.
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Figure 2.12: Spectra at time t ≈ 71 for µ = 0, σ = 1.1 for the two amplitudes given. ε = 1.01 forms a
horizon at tH ≈ 71.1, ε = 1.02 at tH ≈ 248.0.

Figure 2.11d shows the time-dependence of the spectrum in an irregular evolution, specifically

µ = 20, σ = 0.19 at ε = 6.95, which is in the chaotic region of the tH vs ε plot in figure 2.5d.

There is rapid energy transfer among modes, including cascades out of and inverse cascades into

mode numbers j ≤ 32 over approximately a light-crossing time. It is easy to imagine that horizon

formation might occur at any of the cascades of energy into higher modes, leading to seemingly

random jumps in tH as a function of amplitude.

Finally, the time-evolved energy provides another possible measure of approximate thermalization

in the dual CFT; namely, the spectrum should approach an (exponentially cut-off) power law at

thermalization. In most cases, this occurs shortly before horizon formation, but there are exceptions,

such as the late time behavior of initial data below the critical mass for black hole formation in

Einstein-Gauss-Bonnet gravity [114]. When there is evidence of chaotic behavior, it is particularly

interesting to know if the spectra for similar amplitudes approach a power law at similar times even

if horizons form at very different times. Figure 2.12 shows the energy spectra for two amplitudes

in the chaotic region of the tH vs ε plot for µ = 0, σ = 1.1. Figure 2.12a is the spectrum just

before horizon formation for ε = 1.01, while figure 2.12b is the spectrum at approximately the same

time for ε = 1.02, which is very long before horizon formation. In this example, we see that the

spectrum does approach a power law for the evolution that is forming a horizon, while the other

evolution demonstrates a more rapid decay (typically fit by a power law times an exponential in the
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literature). Therefore, this example suggests that a power law spectrum may yield similar results

to horizon formation as a measure of thermalization in the dual CFT.

2.6 Discussion

For the first time, we have presented the phase diagram of stability of AdS5 against horizon for-

mation, treating the scalar field mass µ and width σ of initial data as free parameters. In addition

to mapping the location of the so-called “island of stability,” we have gathered evidence for two

non-perturbative classes on the “shorelines” of the island, the metastable and irregular classes.

While these must either exhibit stability (no collapse below some critical amplitude) or instability

(collapse at arbitrarily small but finite amplitude) as the amplitude ε → 0, they are distinguished

by their behavior at computationally accessible (finite) amplitudes. While perturbatively unstable

evolutions obey tH ∝ ε−2 as ε→ 0 (and show evidence of this behavior at finite ε), metastable initial

data follows tH ∝ ε−p for p > 2 over a range of amplitudes ε > 0. The irregular class is characterized

by horizon formation times tH that are not well described by a power law and sometimes exhibit

non-monotonicity or even evidence of chaos. Both of these classes appear across the range of µ

values that we study and at both small- and large-width boundaries of the stable class of initial

data.

At this time, it is impossible to say whether metastable initial data is stable or unstable as ε→ 0 (or

if all metastable data behaves in the same way in that limit). Our numerical evolutions include cases

in which the lowest amplitudes jump either to metastable scaling with smaller p or to evolutions

that do not collapse over the timescales we study. We did find evidence that many metastable

profiles move toward perturbatively unstable scaling (tH ∝ ε−2) as ε→ 0 but more slowly than the

initial data that we have classified as unstable. It is also possible that some metastable initial data

is stable in the perturbative theory (ie, to ε3 order in a perturbative expansion) but not at higher

orders. We emphasize once again, however, that our interest and therefore our classification is in

small but finite ε behavior (which is by definition not strictly in the perturbative regime).
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The irregular class seems likely to be (mostly) stable at arbitrarily small amplitudes based on our

numerical evolutions, though we have not found a critical amplitude for monotonic irregular initial

data. The irregular initial data includes the “quasi-stable” initial data described in [39, 52], which

has a sudden increase then decrease in tH as ε decreases as well as evidence for chaotic behavior.

In fact, we have found evidence for weakly chaotic behavior for non-monotonic initial data in the

form of a small but nonzero Lyapunov coefficient and in the phase space trajectory. Both non-

monotonicity and chaos become stronger and more common at larger scalar masses; however, we

have also found evidence of chaotic behavior for the massless scalar including in the tH vs ε curve.

To our knowledge, this is the first evidence of chaos in this relationship for spherically symmetric

massless scalar collapse in AdS, which is particularly interesting because there is only one physically

meaningful ratio of scales, σ as measured in AdS units.

While we have emphasized the appearance of new behaviors outside perturbation theory, metastable

and irregular initial data are interesting potential subjects for analysis in the multiscale perturbation

theory. A key question is if they demonstrate any unusual behavior there or map directly onto the

stable or unstable classes.

Aside from the ultimate stability or instability of metastable and irregular initial data, several ques-

tions remain. For one, black holes formed in massive scalar collapse in asymptotically flat spacetime

exhibit a mass gap for initial profiles wider than the Compton wavelength 1/µ [123]. Whether this

mass gap exists in AdS is not clear, and it may disappear through repeated gravitational focusing

as the field oscillates many times across AdS; investigating this type of critical behavior will likely

require techniques similar to those of [124]. Returning to our stability phase diagram, the physical

mechanism responsible for chaos that seems to occur for some irregular initial data is not yet clear.

Is it some generalization of the same mechanism as found in the two-shell system? Also, would

an alternate definition of approximate thermalization in the dual CFT, such as development of a

power-law spectrum, lead to a different picture of the stability phase diagram? Finally, the big

question is whether there is some test that could be performed on initial data alone that would

predict in advance its behavior? So far, no test is entirely successful, so new ideas are necessary.
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Appendix

2.A Convergence Testing

Due to the large number of evolutions we have carried out, it is not computationally feasible to test

all of them for convergence. Therefore, we have checked several interesting cases of irregular initial

data, which are the most curious. These are carried out by evolving the initial data with a base

resolution n = 14 and again at n = 15, 16 with commensurate time steps, as described in [39]. In the

cases indicated, we evaluated the order of convergence at lower resolutions. We remind the reader

that the order of convergence Q is the base-2 logarithm of the ratio of L2 errors (root-mean-square

over all corresponding grid points) between successive pairs of resolutions. We also note that the

initial data is defined analytically, so Q can appear poor at t = 0 since the errors are controlled by

round off; in some cases, Q is therefore undefined and not plotted.

First, we carried out convergence tests for mass µ = 0.5, width σ = 1, and amplitude ε = 1.12,

which is monotonic irregular initial data presented in figure 2.5a. This amplitude collapses with

tH ∼ 88. Figure 2.A.1a shows the (L2 norm) order of convergence for the field variable φ, the mass

function M , and the metric functions A, δ. While the order of convergence is initially poor and even

negative, all these variables show approximately fourth order convergence for times t & 70. The

reason for the initially poor convergence is that the error between successive resolutions is already

given by (machine limited) round off. As a demonstration, we tested the order of convergence with

base resolution n = 12, as shown in figure 2.A.1b. The variables show order of convergence Q & 3

already at this resolution for most of the evolution, losing convergence only for t > 80, where we
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Figure 2.A.1: Convergence results for µ = 0.5, σ = 1, ε = 1.12 showing order of convergence Q vs time
for φ,M,A, δ (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively).
Left: Resolutions n = 14, 15, 16 used. Right: Resolutions n = 12, 13, 14 used.

see approximately 4th-order convergence in the n = 14 resolution computations.

Two of the authors have discussed the convergence properties of evolution for the nonmonotonic

irregular initial data with µ = 20, σ = 0.1, ε = 11.74, which is in an amplitude region of increased

tH surrounded by smaller values, in detail in [39]. In short, the variables φ,M,A, δ all exhibit fourth

order convergence, as does Π2(t, 0), and the conserved mass actually has 6th order convergence.

Initial data for µ = 15, σ = 0.2 is also nonmonotonic, as shown in figure 2.A.2a. While we have not

analyzed all aspects of the convergence, we see from the remainder of figure 2.A.2 that φ,M,A, δ

exhibit convergent behavior at better than second order for ε = 7.42 (figure 2.A.2b, second-largest

value of tH in figure 2.A.2a) and ε = 7.40 (figure 2.A.2c, adjacent amplitude in figure 2.A.2a). It

is important to note that the larger amplitude also has the larger horizon formation time, contrary

to the usual monotonic behavior. In other words, we have validated the nonmonotonicity of this

initial data through convergence testing.

It is most crucial to validate the convergence of chaotic evolutions. In table 2.2, we noted that
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Figure 2.A.2: Convergence results for µ = 15, σ = 0.2. Left: tH vs ε. Middle & Right: order of
convergence vs time for φ,M,A, δ (blue thin solid line, green dashed line, red dash-dotted line, cyan thick
solid line, respectively) for indicated amplitudes.

0 50 100 150 200 250
t

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Q

(a) ε = 1.02

0 10 20 30 40 50 60 70
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Q

(b) ε = 1.01

0 100 200 300 400 500
t

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Q

(c) ε = 1.00

Figure 2.A.3: Convergence results for µ = 0, σ = 1.1 for listed amplitudes showing order of convergence
Q vs time for φ,M,A, δ (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,
respectively); resolutions n = 12, 13, 14.

the Ricci scalar at the origin has nonzero Lyapunov exponent at almost the 2 sigma level for

amplitudes ε = 1.02, 1.01, 1.00 for µ = 0, σ = 1.1. We show the results of convergence tests for

these amplitudes in figure 2.A.3; because these are longer evolutions, we consider the convergence

at the lower resolutions n = 12, 13, 14. After a transient start-up period, these are all convergent

with Q > 2.5 for all variables considered at all times; for most of the time, the order of convergence

is Q > 3.5. It is worth noting that one of the amplitudes does not form a horizon through t = 500.

These convergence tests validate both the nonmonotonic nature of the evolution (tH ≈ 248, 71 and
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Figure 2.A.4: Convergence results for µ = 5, σ = 0.34 for listed amplitudes showing order of convergence
Q vs time for φ,M,A, δ (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,
respectively); resolutions n = 14, 15, 16.

> 500 for ε = 1.02, 1.01, 1.00 respectively) and also the calculation of the Lyapunov coefficient.

Also in table 2.2, we found a nonzero Lyapunov exponent for µ = 5, σ = 0.34 at amplitudes

ε = 3.52, 3.51, 3.50. The results of convergence tests for these amplitudes appear in figure 2.A.4.

For t & 20, these evolutions exhibit convergent behavior with Q > 3.5 (and always Q > 2). At

early times, the apparent poor convergence is again due to the errors being dominated by round-off;

we have carried out additional convergence tests (not shown) and verified that these evolutions are

already convergent with order of convergence close to Q = 4 at base resolutions n = 12 for t . 20.

Again, convergence tests validate chaotic behavior for these initial data.

Initial data with µ = 1, σ = 1 is chaotic over a narrow range of amplitudes. We have carried out

convergence testing for amplitudes ε = 1.15, 1.14, which are the two amplitudes with tH < 100

between amplitudes with tH & 150 in figure 2.A.5a. The order of convergence was poor for these

amplitudes in our initial tests with base resolution n = 14 because the error between resolutions

was dominated by round-off, similar to the convergence tests we discussed above for µ = 0.5, σ = 1.

In subsequent tests with lower resolutions n = 11, 12, 13, we find an order of convergence Q ∼ 4

for most of the evolutions (and always Q > 3). It is important to note again that our evolutions

exhibit convergence while showing horizon formation at a later time for a larger amplitude in this

case, again validating the nonmonotonic behavior.
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Figure 2.A.5: Convergence results for µ = 1, σ = 1. Left: tH vs ε. Middle & Right: order of convergence
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respectively); resolutions n = 11, 12, 13.
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Figure 2.A.6: Order of convergence vs time for φ,M,A, δ (blue thin solid line, green dashed line, red
dash-dotted line, cyan thick solid line, respectively) for µ = 20, σ = 0.19 and indicated amplitudes.

Finally, we ran convergence tests for the chaotic initial data with µ = 20, σ = 0.19 for ε = 6.95, 6.92,

with tH ≈ 65.5, 40.8 respectively. As shown in figure 2.A.6, the simulations are close to fourth order

convergence for most of the evolution, but there are periods where the order of convergence for

evolution and constraint variables becomes negative. This of course leads to the concern that the

evolutions should have collapsed during those periods and extend into an “afterlife” evolution.
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We have therefore evolved these amplitudes through these regions (approximately t = 30 − 40 for

ε = 6.95 and t = 18 − 30 for ε = 6.92) at high resolution (n = 18). If the evolutions are truly in

an afterlife, this higher resolution calculation may include horizon formation. We do not observe

this. Another tell-tale of would-be horizon formation is a decrease in the timestep size by an order

of magnitude or more followed by an increase. We monitor the timestep size every 500 timesteps

through this evolution but do not observe a decrease in timestep size by more than a factor of 2.

As a result, we believe the values of tH found are reliable, though the reader may wish to consider

them with some caution. In other words, while convergence testing is the gold standard to validate

our numerical evolutions, there are other indicators of reliability, which these evolutions satisfy. It

is also worth noting that the rapid energy transfer characteristic of figure 2.11d for ε = 6.95 begins

immediately and is therefore seen in a convergent region of the evolutions, particularly for t . 14.

Nonetheless, we emphasize that we have found convergent evolutions for irregular initial data at

scalar masses from µ = 0 to 20. It is important to note that we have validated nonmonotonic

behavior in plots of tH vs ε. Convergence testing also specifically validates the evolutions used to

find a nonzero Lyapunov coefficient (at nearly the 2σ level) for massless scalar collapse.
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3 Perturbative Stability of Massless Scalars in AdS4

Having examined the collapse of massive scalars fields in AdS5, we now wish to explore the pertur-

batively stable solutions for massless scalars. These solutions resist gravitational collapse and give

analytic descriptions of the direct and inverse energy cascades that must be balanced for stability

to be achieved.

The Two-Time Formalism (TTF) allows for renormalization flow equations that absorb secular

terms into renormalized integration constants in the first-order solution for the scalar field. These

flow equations become algebraic under a quasi-periodic (QP) ansatz for the amplitudes and phases.

While the TTF theory technically involves an infinite sum of terms, by truncating the series to

a finite jmax value, numerical values for the amplitudes and phases can be calculated. How the

truncation value affects the space of solutions, and the limits of the solution space itself, remains

to be addressed.

3.1 Contributions of Authors

In this collaboration, QP solutions to (3.19) were found numerically through programs initially

written by N. Deppe, but later expanded and developed by myself. In particular, I developed code

to achieve the tail fitting and seeding procedure detailed in appendix 3.A that allowed for solutions

to (3.19) to be developed for jmax values of several hundred – almost an order of magnitude greater

than the solutions previously found in the literature. Implementation of the high temperature

perturbation method outlined in 3.5 was done using code I developed, as was the procedure of
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reoptimization that allowed for the high temperature solution to be projected back to the QP

solution surface at various frequencies. Finally, I developed the constant-T solution finding method

using a Newton-Raphson solver. Evolution of the solutions was based on numerical methods initially

developed by N. Deppe, then further developed by me. All data management and analysis was done

using programs I wrote.

Much of the numerical work for this project was done using the University of Winnipeg’s tesla

server, where CPU hours are not tracked. However, for larger systems increased computing power

was required, which necessitated transferring all code to Compute Canada’s new Cedar cluster.

Once there, I used 5.43 CPU years’ worth of computing power to run evolutions and analysis of the

results. Finally, I have written the manuscript, with input from the other authors, that appears

here.

As is common for these types of projects, all members of the collaboration were equally involved in

the interpretation of the data, as well as the late stages of editing. Authors are listed alphabetically

and it is understood that all members contribute equally to the publication.
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We examine a family of numerical solutions in the Two-Time Formalism (TTF) description of

massless scalars in AdS4 parameterized by the dimensionless parameter T . Numerical solutions can

only be found by truncating a sum over frequency components to some finite number. However,

any numerical solution must be robust against an increase in the number of frequencies. We

extensively verify the robustness of such solutions against truncation, and over a range of T . We

find that solutions with low values of T are in general robust as the number of modes is increased,

while solutions with higher values of T are not. Finally, we examine the evolution of possible

quasi-periodic solutions within the TTF description and show that low-T solutions maintain their

quasi-periodicity while higher T solutions do not.
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3.2 Introduction

The question of the nonperturbative stability of (d+1)-dimensional Anti-de Sitter spacetime against

horizon formation has been examined extensively, both as a question of mathematical physics and

given its application to the AdS/CFT correspondence; see reviews such as [125]. Beginning with the

seminal work of [67], others (including [64, 68–70, 126]) have repeatedly demonstrated the generic

instability of spherically symmetric AdSd+1 gravity minimally coupled to a scalar field. The primary

driver of the instability in the fully nonlinear system is the turbulent flow of energy to short length

scales. However, [58, 87, 108] and others have shown that some initial conditions in asymptotically

AdS spacetimes resist gravitational collapse; these conditions form islands of stability in the space

of initial data. As these islands of stability continue to be explored, more subtle behaviours continue

to be identified, particularly along the “shorelines” [39,86,88,120]. Within the stability islands are

various solutions created from exciting a single linear mode, known as oscillons or breathers for real

scalars [50,58,64,67], boson stars for complex scalars (on a fixed metric) [52,108], and geons in pure

gravity [49,91].

While the nonperturbative physics of AdS instability requires numerical study, the perturbative

formulation is purely analytical and encapsulates the weakly turbulent physics at O(ε3) in a small-

amplitude expansion. The linear-order system is simply a massless scalar in global AdS whose

solution is written as a sum over the spatial eigenfunctions of AdS. At this order, the scalar field is

stable for all times. The next-to-leading order in the expansion – O(ε3) for the scalar field – gives

an equation of motion for the scalar field that is sourced by the scalar’s backreaction with non-

trivial metric functions. It is at this order that resonant sources terms arise which grow with time

and invalidate the perturbative description. When only a single eigenmode is excited, resonances

can be removed by frequency shifts; however, multimode data contain resonances that cannot be

removed this way [91]. For fields constructed from multiple excited eigenmodes, the secular growth

of resonant terms triggers the onset of instability [60,91,110,127].

To describe the secular growth, the amplitude and phase of each eigenmode are allowed to flow with
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respect to time. Applying renormalization techniques to these new slowly-varying amplitudes and

phases leads to a ladder of coupled first-order ordinary differential equations describing the flow.

There are several equivalent methods to arrive at the flow equations: the Two-Time Formalism

(TTF) – wherein the slow time τ = ε2t is the flow parameter [44] – a renormalization-like formalism

[42,78], and time averaging procedure [78,80]. TheO(ε3) resonances are then controlled by absorbing

the secular terms into the renormalized amplitudes and phases.

In order to numerically solve the flow equations for a general scalar field, one naturally must

truncate the mode expansion at a maximum eigenmode number jmax. By taking a quasi-periodic

(QP) ansatz for the amplitude and phase variables, we are guaranteed a stable solution. These

QP solutions, like all other solutions in the TTF description, have constant energy E and particle

number N , and families of solutions are parameterized by a unit-less “temperature” parameter

T = E/N [44, 82]. Understanding the bounds of the space of QP solutions allows us to better

understand how to construct more general long-lived scalar fields. QP solutions are special in

that the time-dependence of each mode is harmonic, so QP solutions satisfy algebraic equations.

The first family of low-temperature solutions is found by directly solving these algebraic equations.

High temperature solutions were purportedly found by [82] through repeatedly perturbing low-

temperature solutions up to a maximum temperature of Tmax = 2jmax + d.

In this work, we ask when QP solutions to the truncated TTF theory extend to the full untruncated

theory. We explore the space of high temperature solutions using established perturbative methods,

and solutions are tested against various choices of jmax. We then examine the stability of both classes

of solutions through indicators such as the scalar curvature and energy transfer among eigenmodes.

This work is organized as follows: we begin in § 3.3 with a review of the linearized solutions for a

minimally coupled, massless scalar field in AdSd+1, as well as the renormalization flow equations

that govern the time evolution of the amplitudes and phases in the TTF theory. In § 3.4, we find

quasi-periodic solutions in AdS4 by numerically solving a set of algebraic equations and establish

the bounds of low-temperature QP solutions. We then consider methods of probing the space of

QP solutions to include high-temperature solutions in § 3.5, and examine the evolution of all QP
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solutions within the perturbative theory in § 3.6. We end with a discussion of results in § 3.7.

3.3 Minimally Coupled Scalar Fields in AdSd+1

Consider a spherically-symmetric, asymptotically AdSd+1 spacetime with characteristic curvature

L = 1. Written in Schwarzschild-like coordinates, the metric is given by

ds2 =
1

cos2(x)

(
−Ae−2δdt2 + A−1dx2 + sin2(x)dΩd−1

)
, (3.1)

where the radius x ∈ [0, π/2] and −∞ < t <∞. A minimally-coupled, massless scalar field φ(t, x)

is subject to the following Einstein and Klein-Gordon equations:

Gab + Λgab = 8π

(
∇aφ∇bφ−

1

2
gab(∇φ)2

)
(3.2)

0 =
1√
−g

∂a
√
−g gab∂bφ . (3.3)

The canonical equations of motion for the scalar field are

∂tφ = Ae−δΠ, ∂tΦ = ∂x(Ae
−δΠ), and ∂tΠ =

∂x
(
ΦAe−δ tand−1(x)

)
tand−1(x)

, (3.4)

where the canonical momentum is Π(t, x) = A−1eδφ and Φ(t, x) ≡ ∂xφ is an auxiliary variable. In

terms of these fields, (3.2) reduces to

∂xδ = −
(
Π2 + Φ2

)
sin(x) cos(x), (3.5)

∂xA =
d− 2 + 2 sin2(x)

sin(x) cos(x)
(1− A)− A sin(x) cos(x)(Π2 + Φ2) . (3.6)
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3.3.1 Linearized Solutions

The linearized scalar field solutions come from expanding in terms of a small amplitude

φ(t, x) =
∞∑
j=0

ε2j+1φ2j+1(t, x), A(t, x) = 1−
∞∑
j=1

ε2jA2j(t, x), δ(t, x) =
∞∑
j=1

ε2jδ2j(t, x). (3.7)

Under this expansion, the O(ε) terms give the linearized equation of motion for the scalar field

∂2
t φ1 + L̂φ1 = 0 where L̂1 ≡ −

1

tand−1(x)
∂x
(
tand−1(x)∂x

)
. (3.8)

The eigenfunctions of L̂ satisfy L̂ej = ω2
j ej, where ωj = 2d+ j and

ej(x) = kj cosd(x)P
( d
2
−1, d

2
)

j (cos(2x)) with kj =
2
√
j!(j + d− 1)!

Γ(j + d
2
)

. (3.9)

Note that the normalizations are chosen such that

〈ei, ej〉 ≡
∫ π

2

0

dx eiej tand−1(x) = δij . (3.10)

By expanding the scalar field functions in terms of the eigenbasis given in (3.9) and substitut-

ing into (3.8), we find that the time-dependent functions c
(2j+1)
n (t) = 〈φ2j+1(t, x), en(x)〉 satisfy

c̈
(1)
j + ω2

j c
(1)
j = 0. The general solution for the scalar field is can then be written as a sum over

eigenfunctions with time-independent amplitude and phase variables

φ1(t, x) =
∞∑
j=0

Aj cos (ωjt+Bj) ej(x) . (3.11)

As discussed in [42, 78, 106], the integer nature of the mode frequencies mean that the spectrum is

fully resonant. In general, secular growth caused by resonances cannot be absorbed by frequency

shifts, and therefore result in secular terms: resonant contributions that grow rapidly with time and

induce collapse. These resonant terms appear at O(ε3) and can be expressed in terms of a source
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S(t) such that

φ̈3 + L̂φ3 = S(t) ≡ 2(A2 − δ2)φ̈1 + (Ȧ2 − δ̇2)φ̇1 + (A′2 − δ′2)φ′1 , (3.12)

where A2, δ2 are the leading-order contributions to the metric functions in (3.7) that are determined

by the O(ε2) backreaction of the metric. Projecting onto the ej(x) basis, the source term is

c̈
(3)
j + ω2

j c
(3)
j = Sj . (3.13)

To describe the growth of secular terms, [78] used renormalization techniques to absorb secular

contributions into the O(ε2) contributions to amplitudes and phases from (3.11). In particular,

a set of renormalization flow equations were found that determined the time derivatives of the

amplitudes and phases. As explained in [78], this procedure also allows for explicit expressions for

the source term Sj to be calculated on resonance. These resonances occur for specific combinations

of the frequencies found in Sj, such that the frequency of the `th mode is equal to either ωi+ωj+ωk,

ωi−ωj−ωk, or ωi +ωj−ωk. After direct calculation of the source terms in each of these cases, [78]

showed that the source terms naturally vanished for both the ω` = ωi+ωj+ωk and ω` = ωi−ωj−ωk

channels. It was only for ω` = ωi + ωj − ωk that S(t) 6= 0.

3.3.2 Two-Time Formalism

The Two-Time Formalism (TTF) introduces a second time scale, the slow time τ = ε2t, that dictates

the evolution of the amplitude and phase variables. In terms of τ , the scalar field is

φ(t, x) = ε

∞∑
j=0

Aj(ε
2t) cos

(
ωjt+Bj(ε

2t)
)
ej(x) , (3.14)

where Aj(τ) and Bj(τ) now contain both O(1) and O(ε2) contributions. In this description, the

next non-trivial order in the equations of motion include gravitational self-interactions of the scalar

field, and provides source terms for the time derivatives of Aj and Bj. Following the renormalization
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procedure of [42] the derivatives of the `th amplitudes and phases are given by

−2ω`
ε2

dA`
dt

=

`≤i+j∑
i 6=`

∑
j 6=`

Sij(i+j−`)`AiAjAi+j−` sin (B` +Bi+j−` −Bi −Bj) , (3.15)

−2ω`A`
ε2

dB`

dt
= T`A

3
` +

∑
i 6=`

Ri`A
2
iA`

+

`≤i+j∑
i 6=`

∑
j 6=`

Sij(i+j−`)`AiAjAi+j−` cos (B` +Bi+j−` −Bi −Bj) . (3.16)

NB. The remaining non-vanishing resonance condition allows us to write ωk = ωi + ωj − ω` above.

The coefficients Ti, Rij, Sijk are calculated directly from integrals over the product of eigenmodes.

Computationally, we find it more convenient to write these in terms of auxiliary coefficients with

greater symmetry properties (as shown in [106]). The explicit expressions for these integrals in the

interior gauge, in which δ(t, x = 0) = 0, are given in appendix 3.B.

Using a complex amplitude of the form Aj(τ) = Aj exp(−iBj) in (3.14) allows us to combine

equations (3.15) and (3.16) into a single equation

−2iω`
A`
dτ

= T`|A`|2A` +
∑
i 6=`

Ri`|Ai|2A`+
`≤i+j∑
i 6=`

∑
j 6=`

Sij(i+j−`)`AiAjĀi+j−` , (3.17)

where Ā denotes the complex conjugate. It was further demonstrated by [79] that the TTF theory

resulted in a set of conserved quantities: the energy of the system, E, and particle number, N . The

simultaneous conservation of both E and N imply the existence of inverse energy cascades that

must balance direct cascades, thereby providing a mechanism through which two-mode data could

remain stable.
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3.4 Quasi-periodic Solutions in AdS4

The stability of the solutions to (3.17) can be examined using a quasi-periodic (QP) ansatz for the

complex amplitude

Aj = αje
iβjτ , (3.18)

where αj, βj ∈ R. Substituting (3.18) into (3.14) allows us to relate the QP modes αj and βj to the

amplitude/phase modes via Aj = 2αj, Bj = βjτ . The time dependence in (3.17) is removed via the

condition βj = β0 + j(β1 − β0), leaving β0 and β1 as unknown parameters. Considering modes of

(3.14) up to some jmax, the QP ansatz results in a set of jmax + 1 algebraic equations for jmax + 3

unknowns

2ω`α`β` = T`α
3
` +

∑
i 6=`

Ri`α
2
iα`+

`≤i+j∑
i 6=`

∑
j 6=`

Sij(i+j−`)`αiαjαi+j−` . (3.19)

As shown in [80, 82], the TTF is invariant under two U(1) transformations which lead to the

conserved quantities

E = 4
∑
j

ω2
jα

2
j and N = 4

∑
j

ωjα
2
j . (3.20)

The energy E is the perturbative form of the exactly conserved energy in the system. The other

quantity, N , is interpreted as the particle number because the contribution per mode has one fewer

power of the frequency compared to the energy. Together, these definitions allow for two of the

free parameters to be fixed. Families of solutions can be examined by fixing α0 = 1 and sampling

a range of α1 values in the range α1 � α0. The families of solutions can be distinguished by their

“temperature”, or energy per particle number T = E/N8.

Practically speaking, finding solutions to the jmax equations that arise from (3.17) requires truncat-

8Note that the temperature T is distinct from the source coefficients Ti that appear in (3.16), (3.17), and (3.19).
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ing the series at a finite value jmax < ∞. Then, one of the free parameters (either α1 or T ) is set

and used to generate seed values so that (3.17) can be solved using a Newton-Raphson solver (see

appendix 3.A for more details). Within a space spanned by {α1, . . . , αjmax} we can imagine a surface

that represents all possible QP solutions. For a set of seed values, solving (3.19) with fixed α1 (T )

is tantamount to moving along lines of constant α1 (T ) until the solution surface is intersected9.

For this reason, we refer to solving the QP equation (3.19) given seed values for [α2, . . . , αjmax ] and

one fixed value as projecting back to the solution surface.

3.4.1 Persistence at Large jmax

The question of edge effects in determining the robustness of a particular solution is important to

investigate. For instance, if a particular solution to (3.19) is found for some α1 when jmax = 50,

does this continue to be a solution when we consider more modes, say jmax = 250? By following the

methods outlined in appendix 3.A, we are able to start with a low jmax solution and incrementally

increase the number of modes being considered up to several hundred. This method was found to

be more successful, given the optimization algorithms being used, than other seeding methods.

As an example, consider solutions to (3.19) with the conditions α0 = 1.0 (since all QP solutions are

defined up to an overall scale, α0 = 1.0 is taken to always be true) and α1 = 0.2, which corresponds

to a temperature of T ' 3.146. In figure 3.1a, we present an overlay of QP solutions generated by

successive solving, fitting, and seeding from jmax = 50 to jmax = 500 for a family of QP solutions.

Similar high jmax solutions were confirmed for α1 ≤ 0.442 and are shown in figure 3.1b.

When examining the range of α1 values that yield low temperature QP solutions, it was found

that any small jmax QP solution could be extended to large jmax with proper seeding and sufficient

computing power; that is, there seem to be no solutions that exist at low jmax that cease to exist

at high jmax. However, a hard limit exists at the maximum α1 value of α1 = 0.442, corresponding

to a temperature of T ' 4.643. Above this limit, no QP solutions can be found by directly solving

9For low temperatures, the same QP solution is found whether travelling along lines of constant α1 or T . For
higher temperatures, however, this picture becomes more complicated.
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peratures of 3.116 . T . 4.531.

Figure 3.1: Energy spectra for various low temperature QP solutions.

(3.19), even with jmax values as low as jmax = 50. Conversely, there is no lower limit to α1 values;

as α1 → 0 with αj > αj+1, the TTF solution approaches the well-known single-mode solution.

3.5 High Temperature Perturbations

In [82], additional QP solutions were found by repeatedly perturbing away from existing solutions:

the addition of some energy δE corresponds to the changes αj → αj + uj and βj → βj + θ1 + ωjθ2.

The perturbed quantities are given by the system of linear equations

δE = 4
∑
j

ω2
jαjuj (3.21)

δN = 4
∑
j

ωjαjuj = 0 (3.22)

0 = ω` (α`(θ1 + ω`θ2) + β`u`) + 6T`α
2
`u` + 2

∑
i 6=`

Ri`(α
2
iu` + 2αiα`u`)

+ 2

`≤i+j∑
i 6=`

∑
j 6=`

Sij(i+j−`)` [uiαjαi+j−` + ujαiαi+j−` + αiαjui+j−`] . (3.23)
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Therefore, by solving (3.21)-(3.23) for {uj, θ1, θ2}, the existing QP solution can be updated and the

process can be repeated.

For a standard QP solution with α1 = 0.2, the initial temperature is T ' 3.146. By applying the

high temperature perturbation method described above, we are able to increase the temperature

of the solution. However, this process must be examined with some scrutiny; applying repeated

perturbations to a known solution does not guarantee the final result remains a valid solution. To

investigate this further, we have implemented two high temperature solvers, both of which increment

the energy of the system using (3.21)-(3.23) and are able to use the updated values of αj and βj as

seeds to solve (3.19) using a Newton-Raphson solver.

The projection used by the first solver follows the form used in [82] and takes an input α1 value

when projecting to the QP solution surface, while the second holds the temperature of the solution

fixed during projection. To hold the temperature fixed, we use the definition of T and the freedom

to rescale the αj such that α0 = 1 to solve for α1 via

α2
1 =

1

ω1(T − ω1)

(
ω0(ω0 − T ) +

∑
j≥2

ωj(ωj − T )α2
j

)
(3.24)

It can easily be seen that α1 will become singular when T = ω1 = 5 in AdS4. Since we are inputting

a value for the temperature T instead of a α1, we are still solving a system of jmax + 1 equations

for jmax + 1 unknowns.

3.5.1 Projections at Constant α1

Let us first consider the results of the α1 projection method, shown in figure 3.2. We have fixed

the perturbation amount δE to 1% of the energy of the initial solution. Beginning with an α1 =

0.44 solution with low jmax, we apply repeated energy perturbations and project back to the QP

solution surface with a frequency of once per 5 temperature iterations (see appendix 3.C for further

discussion on projection frequency and energy perturbation value). Figure 3.2a shows the resulting

values of α1 and T during these perturbations. We see that α1 approaches an attractor solution of

76



α1 ' 0.43 with T ' 4.3. The energy perturbations between projections are insufficient to escape this

local minimum, thus repeated projections return the same solution. However, when the projection

frequency is decreased to once every 20 iterations, the resulting QP solution is able to bypass the

attractor solution (variations of the projection frequency and energy perturbations are discussed in

appendix 3.C). Note that as the iteration number increases, we actually see a decrease in α1 value

while the temperature continues to increase. At iteration 150 in figure 3.2b, there is a cusp in α1

and a discontinuity in the temperature. After several hundred iterations, α1 becomes negative.

(a) Applying repeated energy perturbations to an
initial QP solution with α1 = 0.44, then projecting
back to the QP surface every five iterations.

(b) Beginning with the same α1 = 0.44 QP solu-
tion, the same process of energy perturbations are
applied, this time projecting back to the QP surface
every 20 iterations.

Figure 3.2: The results of projecting a jmax = 50, α1 = 0.44 solution back to the QP surface at various
frequencies during high temperature perturbations. Colour changes indicate that the solution has been
projected back to the QP surface.

Let us examine the energy spectra of these solutions. In figure 3.3a we see that when we choose a

high projection frequency, the resulting energy spectra do not deviate far from the initial solution

(using the α1 projection method) in either shape or temperature, but rather approach an attractor

solution. The temperature of this attractor solution is robust against increases in jmax, as shown

in table 3.1.

When the projection frequency is decreased, the solution is able to pass the attractor in temperaure.

However, as seen in figure 3.3b, projections back to the QP surface give α1 < 0 and an energy
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jmax T Iterations

50 4.30344575697724e+00 350

75 4.30344544264076e+00 210

100 4.30344544023857e+00 540

150 4.30344544024198e+00 280

200 4.30344544023915e+00 300

Table 3.1: The temperature of the attractor solution for various jmax values. Also included is the number
of iterations applied (projecting back to the solution surface with constant α1 after every five iterations).

spectrum that is no longer a smooth10 function of j (c.f. spectra of iterations 120 and 180). This

in itself is not necessarily a breakdown of the quasi-periodic nature of the solution. However, upon

examining the condition number of the matrix formed by (3.21)-(3.23), we find that in fact the

problem becomes ill-conditioned. This results in a absolute value of ui that is greater than αi;

that is, the perturbative condition required to derive the system of linear equations (3.21)-(3.23)

breaks down. For many prospective high-temperature solutions, this break-down of the perturbative

condition is signalled by the loss of a smooth energy spectrum due to the values of αj becoming

negative.

10Here we appeal to the colloquial meaning of “smooth” instead of a strictly mathematical meaning, since Ej is a
function of a discrete variable.
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(a) Energy spectra when projecting back to the QP
solution surface every 5 iterations for an initial
α1 = 0.44, QP solution (see figure 3.2a for tem-
perature and α1 as a function of iteration).
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Figure 3.3: Comparing energy spectra of high-temperature perturbations of an α1 = 0.44 QP solution that
have been projected back to the QP surface at different frequencies.

3.5.2 Projections at Constant Temperature

We again use a series of small energy perturbations to seek high-temperature QP solutions, this

time using a constant-temperature projection method at regular intervals. Starting from a standard

α1 = 0.44 QP solution, we apply successive perturbations to increase the temperature. After five

increments, the temperature is calculated and used as the input to the second nonlinear solver. This

ensures that the temperature is not changed when projecting back to the QP solution surface. The

seed values were projected back to the QP solution surface when goal temperatures of T = 5.5, 6.0,

and 7.0 were reached (or at the first perturbation when these temperatures were exceeded). The

resulting spectra for each temperature goal over several choices of jmax are shown in figure 3.4. It is

worth noting that we did not include the spectra for jmax = 250 solutions with goal temperatures

of T = 6.0 and 7.0 because the fixed-temperature projection failed to find a solution.

Recall that solutions must be robust in the limit of jmax →∞ in order to be considered solutions to

the full TTF theory. While the upper panel of figure 3.4 suggests that solutions with temperatures
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Figure 3.4: For each panel, a goal temperature (top right of plot) is set. Beginning with α1 = 0.44
QP solutions with jmax = 50, 100, 150, 200, 250 repeated energy perturbations are applied. After five energy
perturbations, the data is projected back to the QP surface at constant T . When the goal temperature is
either reached or exceeded for the first time, the data is again projected back at constant temperature.
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at or near T = 5.5 can be constructed in the large-jmax limit, we do not find evidence that low jmax

solutions with T = 6.0, 7.0 extend to the full theory.

3.5.3 Building High-Temperature Solutions

In figure 3.4 we see that QP solutions with smooth spectra exist for goal temperatures of T = 6.0

and 7.0 when jmax = 50 but cease being smooth as jmax increases and the temperature is held

constant. It is therefore reasonable to ask whether high temperature, low jmax QP solutions can

be extended to higher jmax by using a fitting procedure to generate seed values for the fixed-α1

Newton-Raphson solver. In figure 3.5, instead of fitting αj values for modes [jmax − 30, jmax − 10]

(as outlined in appendix 3.A), we have applied the fitting method to final 5 modes and used the

result to generate seed values for a solution with jmax + 5 modes. This method was successful in

finding QP solutions with substantially higher temperatures than the previous seeding method.

However, the solutions were not robust with the addition of extra modes. Instead, the distribution of

energy in the resulting spectra becomes increasingly concentrated in high-j modes with the addition

of as few as five extra modes. As we seed in figure 3.5, fitting the tail of the jmax = 75, T ' 27

and producing seed values for a jmax = 80 solution resulted in a QP solution with T ' 38 after

projecting back to the QP surface with constant α1. Because these solutions were not robust as

jmax was increased, they do not provide evidence of solutions to the untruncated theory at those

temperatures.

In [82], it was suggested that QP solutions should exist in a continuous region of temperature

space T ∈ [Tmin, Tmax] = [d, 2jmax + d]. To produce high-temperature solutions, successive energy

perturbations could be applied to a low-temperature solution with a low frequency of projecting

back to the QP surface. However, we have found that the high temperature solutions produced using

regular projections back to the solution surface are not robust as jmax increases and therefore do no

constitute physical solutions. In further pursuit of high temperature QP solutions, we investigated

additional methods for generating these solutions.
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Figure 3.5: Beginning with the jmax = 75, T ' 27 solution (grey left-tri), a fit is applied to the final
five modes to generate seed values that are used in the fixed-α1 Newton-Raphson solver find the next QP
solution. The procedure is repeated to generate the jmax = 80, T ' 38 (green up-tri), jmax = 85, T ' 48
(yellow down-tri), jmax = 90, T ' 57 (red diamonds), and jmax = 95, T ' 67 (blue circles) QP spectra.

First, we considered applying a similar fitting technique to a T ' 5.4 QP solution as that which was

used to extend low-temperature QP solutions. In this case, values were taken from the middle11 of

high temperature solutions with jmax = 50 and fit with an exponential function (see figure 3.A.2

for a similar procedure with tail values) to produce 10 new modes, {αfit}. We then inserted the

new values αfit with the existing data so that αj = 〈αj<jmid , αfit, αj>jmid〉. The result was to extend

the data by 10 modes and slightly increase the temperature, thereby providing a good seed for the

constant-temperature nonlinear solver. However, no solutions were found by the Newton-Raphson

solver, starting either with jmax = 50, T > 5.5 data, or jmax = 200, T ' 5.5 data.

Next, we considered perturbing up to an intermediate temperature 5.5 � Tint < Tmax before

attempting to project back to the QP surface using the Tint data as seed values. In particular, we

11Typically at jmax/2, where the power law scaling has not been affected by edge effects.
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repeatedly perturbed a T ' 4.5 solution using the method described in § 3.5 to a temperature of

Tint = 20 without projecting back to the QP surface at any point. For jmax . 100, projection back

to the solution surface finds a new solution with T < Tint that – much like the spectra shown in

figure 3.3b – loses its smooth profile. Under evolution within the TTF theory (discussed below),

the fractional energy in the low-frequency modes oscillates rapidly over several orders of magnitude

during the evolution and the Ricci scalar reaches values O(106); these solutions are almost certainly

not quasi-periodic. The same result is found for high-temperature solutions created by fitting tail

data (see figure 3.5 for example spectra). Finally, for jmax ≥ 100, projection back to the QP

solution surface once T = Tint fails entirely. Thus, we did not find evidence for QP solutions with

temperatures above T ' 5.5.

3.6 Time Evolution of Quasi-Periodic Solutions

The weakly turbulent behaviour of the scalar field in the TTF is captured by the O(ε2) renor-

malization group flow equations (3.15)-(3.16). Having identified different families of quasi-periodic

solutions, we wish to evolve these solutions within the TTF description. Furthermore, we may

also be able to identify previously inaccessible solutions by evolving a QP solution within the TTF

framework before attempting to project back to the QP surface. To achieve these aims, we use

numerical methods first described by [111] and take both low-temperature and high-temperature

QP solutions as initial data.

3.6.1 Low-temperature QP data

Let us consider the evolution of a “typical” QP solution: a solution to (3.19) with α1 = 0.2 and

jmax = 100, corresponding to a temperature of T ' 3.146. Choosing an amplitude of ε = 0.01 (note

that the TTF equations are invariant under A(τ)→ εA(τ/ε2) and so the value of ε does not change

the physics), figure 3.6 shows the evolution of the fraction of the total energy per mode. We see

that energy in the lowest-j modes remains constant over the duration of the evolution, while the
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fraction in the highest-j modes increases after t ' 300. Similar behaviour is observed for higher

jmax solutions and over values of 0.2 ≤ α1 ≤ 0.44. Given the scale of the energy in the modes

j ≥ 96, the growing energy fractions in these modes can mainly be attributed to numerical errors

rather than direct energy cascades.
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Figure 3.6: Fraction of the total energy in each mode during evolution of an α1 = 0.2, jmax = 100, QP
solution with ε = 0.01.

We may also ask: does a given quasi-periodic solution remain unique under evolution? That is,

will the solution project back to itself during its evolution? To answer this, we evolve the same

low-temperature, QP solution and take the spectra at different times as seed values for projecting

back to the QP surface. We see that seed values taken from data with t > 0 are projected back

to themselves (using the constant α1 Newton-Raphson method) at all times during the evolution,

and that the resulting solutions solve the QP equation (3.19) to a high degree of accuracy (see

figure 3.7).

In an effort to find new QP solutions, we consider an alternative method for finding solutions

that may not be accessible through established seeding methods. We pad a given quasi-periodic

solution with extra modes that are initially set to zero and project back to the QP solution surface.

Upon amplitude-phase evolution via (3.15)-(3.16), the energy in the lower-j modes will flow into

the higher-j modes. This may lead to new quasi-periodic solution with the same temperature but

larger jmax. In figure 3.8, we construct initial data from a known jmax = 100, T ' 3.14 solution by

padding the data with zeros up to jmax = 200. As in the case of unpadded QP solution, the fraction
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Figure 3.7: Left: Projecting a low-temperature solution back to the QP surface with constant α1 during
its evolution. Arrows are oriented from amplitude/phase seed values (circles) to QP surface projections
(pentagons). Right: the L2-norms of the errors between solutions at t ' 0.0, 0.2, 0.5, 1.0, 2.0, 2.5 (red
diamond, green cross, blue square, yellow triangle, magenta circle, blue diamond).

of the total energy in the first four modes does not vary significantly during the evolution and the

highest modes accumulate some numerical error before levelling off. Despite the somewhat normal

profile of the spectra of padded QP solution (shown in figure 3.8c) and the relatively low value

of the Ricci scalar (see figure 3.8d), we find that the Newton-Raphson solver – both constant-α1

and constant-T – is not able to project back to the QP surface when the evolved QP solution is

used as seed data. To check whether the failure to project back to the QP surface is due to the

addition of too many extra modes, we also investigated incrementally adding a small number of

modes. Beginning with the same jmax = 100 QP solution, we padded with only five modes. Despite

a QP solution with jmax = 105 already being known, the evolution did not result in the padded

solution approaching the known solution.
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Figure 3.8: The evolution of the padded QP solution for α1 = 0.2 and jmax = 200, with amplitude ε = 0.27
over t ∈ [0, 25].

3.6.2 High-Temperature QP Data

We now apply the same amplitude-phase evolution procedure to higher temperature QP data. First,

we consider a QP solution with jmax = 100 and T ' 5.4. Such a solution was demonstrated in

figure 3.4 to be robust as jmax increased. In figure 3.9 we show the fractional energy per mode

during evolution. Because of the initial profile of solutions with these temperatures, there is a much

higher fraction of the total energy in the higher modes; therefore, the accumulation of numerical

errors that were present in low-temperature solutions are not as significant. Close inspection of

figure 3.9, shows small oscillations in the fractional energy of the high frequency components of the
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scalar field. However, these oscillations are not sufficient to produce a qualitative change in the full

energy spectrum, as shown in the left pane of figure 3.10. Examination of the absolute value of the

scalar curvature at the origin in the right pane of figure 3.10 shows that the large initial value of |R|

oscillates rapidly during evolution. Since the TTF description is inherently stable, the curvature will

never become infinite; however, large values of curvature with rapid oscillations are good indicators

of instability. It would be interesting to use such a solution as initial data for evolution in the fully

nonlinear system to test if stability is maintained over the perturbative timescale.
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Figure 3.9: Examining the energy per mode during the evolution of a T ' 5.4 QP solution with ε = 0.1
over t ∈ [0, 425]. Ej for j = 0, 1, 2, 3 (purple, green, blue, orange) is on the left, Ej for j = 96, 97, 98, 99
(purple, green, blue, orange) is on the right.

87



0 20 40 60 80 100
j

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
j
/
E

0

t =0.000, T=5.3921e+00

t =100.000, T=5.3921e+00

t =200.000, T=5.3921e+00

t =300.000, T=5.3921e+00

t =400.000, T=5.3921e+00

0 100 200 300 400

t

3000

4000

5000

6000

7000

|R
(x

=
0
,t

)|
Figure 3.10: The evolution of the energy spectrum (left) and upper envelope of the Ricci scalar (right)
for a T ' 5.4 QP solution with ε = 0.1 over t ∈ [0, 425].

Figure 3.11: A T ' 5.4 QP solution shown in figure 3.10 is padded with 100 extra modes and evolved
with ε = 0.1 over t ∈ [0, 100]

As in the case of low-temperature QP solutions, we wish to expand the space of possible solutions

by padding high temperature solutions with extra modes that are initially set to zero. To do

so, we consider padding a T ' 5.4 QP solution from jmax = 100 to jmax = 200 with αj = 0

for j > 99. Figure 3.11 demonstrates that after evolving in time there are indications of large

scale energy transfer amongst modes with higher frequencies. Interestingly, the magnitude and

oscillation frequency of the Ricci scalar at the origin is significantly decreased compared to the
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Figure 3.12: Overlay of the known T ' 5.4 solution for jmax = 200 (thick red line) with the spectra in
figure 3.11.

jmax = 100, T ' 5.4 solution. When compared against the known solution of the same temperature

when jmax = 200, figure 3.12 indicates that the padded solution may not approach the known QP

solution and instead may have produced a distinct, isothermal, but non quasi-periodic, solution.

3.7 Discussion

We have explored the space of quasi-periodic solutions within the perturbative description of a

massless scalar field in AdS4. Using the conserved quantities E and N , we constructed families of

quasi-periodic solutions that were distinguished by the temperature T = E/N for different choices

of the truncation value jmax. We have demonstrated that low temperature QP solutions, i.e. those

that are clearly accessible by solving (3.19) for a given α1 such that α1 < α0 = 1, can be extended

to arbitrarily large jmax values, and therefore constitute solutions to the TTF theory. We have

also examined high temperature QP solutions, which are found by perturbing low temperature

solutions by δE while keeping N fixed. We found that high temperature solutions were robust

against increasing jmax only for temperatures T . 5.5. We also applied several alternative methods

for generating high temperature QP solutions. However, we were not able to find evidence of

any solutions that could be extended to the untruncated TTF system. We constructed low-jmax

solutions with T � 5.5, but found that they were not robust with increasing jmax and therefore

were not true solutions. Rather, only solutions with temperatures T . 5.5 could be extended to
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large jmax values. The nature of this temperature threshold is not totally understood. It may be

due to numerical limitations with the Newton-Raphson solving method, or it may be a physical

limitation of the quasi-periodic ansatz.

By construction, TTF solutions are stable against gravitational collapse and therefore evolution

within the TTF description will not produce a singularity. However, there are several indicators

for instability in the fully nonlinear theory: the value of the Ricci scalar at the origin, the growth

higher-order contributions to the lapse function δ, and rapid growth/oscillations in the energy of

high frequency modes. With these indicators in mind, we have shown that low temperature QP

solutions constructed from directly solving (3.19) did produce oscillations in R, however they did

not exhibit other behaviour – such as the rapid transfer of energy from low- to high-frequency

components – that would suggest instability in the fully nonlinear theory. At late times in their

TTF evolution, these solutions project back to the QP surface without altering their energy spectra.

In an effort to find QP solutions through extensions of known solutions, we constructed seed data

from low temperature QP solutions that had been padded with extra, zero-energy modes. However,

attempting to project back to the solution surface resulted either in solutions that were not robust

as jmax was increased, or failure to find any solution at all. When these data were taken as initial

conditions for evolution within the TTF description, no new solutions were found as a result of the

evolution. Instead, the inclusion of extra modes caused an isothermal drift away from the known

QP seed solution and the Newton-Raphson solver was not able to project the data back to the QP

surface. In such cases, the scalar curvature became oscillatory with values ranging up to 20 times

the initial curvature. Padding T ' 5.4 QP solutions with zero-energy modes once again produced

an isothermal drift during evolution and did not converge towards the known QP solution for that

temperature and number of modes. These solutions, however, exhibit slow oscillations of scalar

curvature over a narrow range of values, hinting at stability over perturbative timescales in the

nonlinear theory.

With respect to the overall stability of AdS4, as well as the interpretation of stable data in the bulk

as non-thermalizing states in the boundary theory, we did not find evidence of families of quasi-
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periodic solutions with high temperatures that are robust against increasing jmax. It is important

to note that we have focused entirely on solutions where the dominant energy contribution is in

the j = 0 mode. Other configurations are possible where the dominant energy contribution is in

the jr mode, with r 6= 0. As shown in [82], QP solutions for temperatures in certain ranges are

degenerate in the value of r. It may be that the observed temperature limit for QP data we have

seen is an indication that the r = 0 family of solutions no longer dominates, and instead the correct

quasi-periodic solution is one of the r 6= 0 families. Now that we have established the tools required

to examine this possibility, it will be a focus of future research. Also to be considered in the future

is the use of QP solutions as initial data for evolution within the fully nonlinear theory in order to

help establish a more precise expression for the perturbative timescale tp. With this, we can create

hybrid evolutions for massless scalar field collapses that use TTF methods for evolutions when t < tp

before changing to fully nonlinear methods for t ≥ tp. This would decrease the computational power

required to study such collapses without compromising the accuracy of the simulation.
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Appendix

3.A Seeding Methods For Non-Linear Solvers

To generate seed values for the αj with j ≥ 2, [82] used the exponential relation

αj ∼
3e−µj

2j + 3
(3.25)

in AdS4, where µ = ln(3/5α1). However, as jmax increased, the seed values diverged significantly

from the true solutions (see figure 3.A.2 for a comparison between known QP αj values, the seeds

generated by (3.25), and the result of the fitting procedure). Although this profile was sufficient

for low jmax solutions, above jmax & 150, (3.25) no longer provided an adequate starting guess. To

overcome this problem, we applied an exponential fit to the tail values of a known QP solution with

lower jmax. As explained below, this exponential fit was used to extrapolated the data to a higher

jmax.

To err on the side of caution, the αj with j ∈ [jmax − 30, jmax − 10] were used from each QP solution

to provide more accurate seed values when increasing jmax by 25. See figure 3.A.1 for a comparison

of seed values generated by tail fitting to actual QP solutions. The solutions found using this

method of seeding versus those found from the seeding given in (3.25) had relative differences on

the order of 10−14.
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Figure 3.A.1: Fitting the tail of the jmax = 175 spectrum to construct a seed for jmax = 200 at fixed
α1 = 0.2. Also included is actual QP spectrum for jmax = 200.

3.B Auxiliary Integrals For Calculating the T,R, S Coeffi-

cients

The auxiliary coefficients X, Y,W,W ∗, A, and V allow the symmetries of the T,R and S coefficients

to be more easily recognized and therefore reduce the number of total calculations involved in deter-

mining (3.32) - (3.34). These auxiliary coefficients are written simply in terms of the eigenfunctions

in (3.9) and their derivatives. Explicitly, they are

Xijk` =

∫ π/2

0

dx e′i(x)ej(x)ek(x)e`(x) sin(x) cos(x) (tan(x))d−1 (3.26)

Yijk` =

∫ π/2

0

dx e′i(x)ej(x)e′k(x)e′`(x) sin(x) cos(x) (tan(x))d−1 (3.27)

Wijk` =

∫ π/2

0

dx ei(x)ej(x) sin(x) cos(x)

∫ x

0

dy ek(y)e`(y) (tan(y))d−1 (3.28)

W ∗
ijk` =

∫ π/2

0

dx e′i(x)e′j(x) sin(x) cos(x)

∫ x

0

dy ek(y)e`(y) (tan(y))d−1 (3.29)

Aij =

∫ π/2

0

dx e′i(x)e′j(x) sin(x) cos(x) (3.30)

Vij =

∫ π/2

0

dx ei(x)ej(x) sin(x) cos(x) . (3.31)
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(a) α1 = 0.2 QP solutions for jmax ∈ [25, 100]. (b) α1 = 0.2 QP solutions for
jmax ∈ [140, 200].

Figure 3.A.2: A comparison of seeds predicted by (3.25) to known QP solution. Also included for
comparison are the results of fitting the QP solutions to a generic exponential fit.

In terms of these coefficients, the TTF source terms are given by

T` =
1

2
ω2
`X```` +
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Y```` + 2ω4

`W```` + 2ω2
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∗
```` − ω2

` (A`` + ω2
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Sijk` = −1

4
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1

ωi + ωj
+

1

ωi − ωk
+

1

ωj − ωk

)
(ωiωjωkX`ijk − ω`Yi`jk)

− 1
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(
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− 1
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(ωiωjω`Xkij` − ωkYikj`) . (3.34)
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3.C Frequency of Solution Checking

The frequency of applying the nonlinear solver to project back down to the QP solution surface is

an important part of ensuring that the perturbative method remains applicable. If QP solutions

are perturbed by too large an energy, or for too many iterations, the intermediate solutions may not

be close enough to the solution surface to provide an adequate seed value. Such was the concern

when examining the purported high-temperature solutions from existing sources.

For example, consider the process of applying perturbations of δE = 0.01% up to some intermediate

temperature without projecting back to the QP surface, then projecting back every 100 iterations

until a maximum temperature is reached. Starting with the QP solution corresponding to α1 = 0.2,

the lower panel of figure 3.C.1 shows the result of repeated perturbations of δE = 0.01% that are

not projected back the to QP surface.
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Figure 3.C.1: Left: the result of unchecked perturbations of a jmax = 50 QP solution up to an intermediate
temperature before switching to regular checking. Right: the same procedure is applied to a jmax = 150 QP
solution.

The behaviour of the spectra differ for the low and high jmax cases. For the jmax = 50 solutions, the

spectra in the lower panel of the figure can be remain smooth through more than 27,000 iterations

of δE perturbations. When a temperature of approximately 17 is reached, the spectrum is used
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as a seed value for the nonlinear solver and a smooth solution is found. Continuing with the same

δE, but reapplying the nonlinear solver produces mixed results; the temperatures of increasing

iterations do not increase monotonically, but do always project back to a solution with nearly the

same temperature. However, the spectra themselves are no longer smooth by iteration 3,100. As

discussed in § 3.5.1, loss of smoothness is merely indicative of a change of sign in the alpha values;

however, this is also accompanies a breakdown of the perturbative conditions in §3.5. Because only

a small number of modes are considered, numerical solutions are still found by the Newton-Raphson

solver but no longer represent physical states. Continuing this procedure, we find that the solver

fails to find a solution even at the modest temperature of T ' 38.

The behaviour of the jmax = 150 solutions is consistent with their lower-mode number counterparts,

albeit more pronounced. We see that kinks in the spectrum develop even when the nonlinear solver

has not been applied. The intermediate solution used as a seed for the nonlinear solver did not

project back to a nearby temperature, instead falling from T ' 14.2 to T ' 4.3. As the perturbative

procedure continued, projection back to the QP surface was only possible in for a short time before

no solutions could be found.
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4 Perturbative Descriptions of Driven Instabilities

in AdS

We have now seen how renormalization flow equations that arise in the TTF allow for secular terms

to be absorbed into the definitions of the slowly varying amplitude and phases variables over the

perturbative timescale. However, we have only considered gravitational systems whose holographic

duals are constrained to instantaneous quenches so far. To better understand more general systems,

we wish to extend the perturbative description of gravitational collapse in AdSd+1 from massless

scalars with static boundary conditions to include all allowed masses (both positive and negative

mass-squared), as well as time-dependent driving terms on the conformal boundary. This is the

focus of the following project: to derive a perturbative theory for a more general class of scalar

fields and to examine the effects of time-dependent sources for the fields. As the sole author on this

work, all contributions were mine.
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We extend the study of the non-linear perturbative theory of weakly turbulent energy cascades in

AdSd+1 to include solutions of driven systems, i.e. those with time-dependent sources on the AdS

boundary. This necessitates the activation of non-normalizable modes in the linear solution for the

massive bulk scalar field, which couple to the metric and normalizable scalar modes. We determine

analytic expressions for secular terms in the renormalization flow equations for any mass, and for

various driving functions. Finally, we numerically evaluate these sources for d = 4 and discuss what

role these driven solutions play in the perturbative stability of AdS.

4.1 Introduction

Nonlinear instabilities in Anti-de Sitter space have been the subject of examinations on several

grounds in addition to the holographic description of quantum quenches via the AdS/CFT corre-

spondence [10, 125], including general stability of maximally-symmetric solutions in general rela-

tivity [49, 67, 128], and the study of the growth of secular terms in time-dependent perturbation

theories [43,129]. Numerical studies in holographic AdS show that the eventual collapse of a scalar

field into a black hole in the bulk (which is dual to the thermalization of the boundary theory) is

generic to any finite sized perturbation [67–69], but can be avoided or delayed for certain initial

conditions [39, 83, 86, 88]. The mechanism of collapse in such systems is described as a weakly

98

http://arxiv.org/abs/1912.07143


turbulent energy cascade to short length scales. These dynamics can be captured by a non-linear

perturbation theory at first non-trivial order through the introduction of a second, “slow time”

that describes energy transfer between the fundamental modes. This is known as the Two-Time

Formalism (TTF) [44] and yields a renormalization flow equation that allows for the absorption of

secular terms into renormalized amplitudes and phases [42,78,106,107]. Therefore, stability against

a perturbation of order ε is maintained over time scales of t ∼ ε−2.

Conventional examinations of perturbative stability using TTF have focused on the reaction of

the bulk space to some initial energy perturbation, and have aimed to study the balance between

direct and inverse energy cascades [82, 111, 112, 130, 131]. Furthermore, numerical examinations

of “pumped” scalars and their implications for thermalization of the dual theory have also been

examined [30, 97, 98, 100, 132, 133]. However, extensions of the perturbative description to include

time-dependent sources – corresponding to a driving term on the boundary of the bulk space –

remain unaddressed.

With this in mind, we examine the effects that a time-dependent source on the conformal boundary

has on the non-linear perturbative theory. The introduction of a driving term on the boundary

means that we must include a second class of fundamental modes with arbitrary frequencies. Since

these solutions will have non-finite inner products over the bulk space, they are known as non-

normalizable. Non-normalizable modes couple to both the source on the boundary and the regular

normalizable modes to bring energy into the system, where direct and inverse energy cascades

proceed over perturbative time scales.

To capture these dynamics, we expand the fields in powers of a small perturbation and isolate the

secular terms that appear at third order in ε. Only modes whose frequencies satisfy certain reso-

nance conditions will contribute terms that cannot be absorbed by simple frequency shifts. The form

of the resonant terms depends on the specific physics of the system, as well as possible symmetries

between frequencies. Finally, by evaluating the resonant third-order interactions when combina-

tions of normalizable and non-normalizable modes are activated, we can write renormalization flow

equations for the slowly varying amplitudes and phases.
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This paper is organized as follows: section § 4.2 involves a brief discussion of how we arrive at the

third order source term, as well as additional considerations due to the time-dependent boundary

condition. As an exercise – and to provide explicit expressions for the resonant contributions when

the scalar field has non-zero mass – § 4.3 examines the secular terms in the case of a massive

scalar field in AdSd+1 with any mass-squared, up to and including the Breitenlohner-Freedman

mass [37]: m2
BF ≤ m2. We demonstrate the natural vanishing of two of the three resonances,

and then examine the effects of mass-dependence on the non-vanishing channel. Whenever values

are calculated, the choice of d = 4 is implied as to draw the most direct comparison to existing

literature. In section § 4.4, we extend the boundary conditions to include a variety of periodic

boundary sources that couple to non-normalizable modes in the bulk. For each choice of boundary

condition, we derive analytic expressions for applicable resonances and evaluate these expressions for

different ranges of scalar field masses. Finally, in § 4.5 we discuss the implications of non-vanishing

resonances on the competing energy cascades, and the implications for the perturbative stability of

such systems. For completeness, we include details of our derivation of the general source term in

appendix 4.A, as well as a complete list of possible resonance channels and their resulting secular

terms in appendix 4.B for the case of two, equal frequency non-normalizable modes.

4.2 Source Terms and Boundary Conditions

Let us first consider a minimally coupled, massive scalar field coupled to a spherically symmetric,

asymptotically AdSd+1 spacetime in global coordinates, whose metric is given by

ds2 =
L2

cos(x)

(
−A(t, x)e−2δ(t,x) dt2 + A−1(t, x) dx2 + sin2(x) dΩ2

d−1

)
, (4.1)
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where L is the AdS curvature (hereafter set to 1), and the radial coordinate x ∈ [0, π/2). The

dynamics of the system come from the Einstein and Klein-Gordon equations:

Gµν + Λgµν = 8π

(
∇µφ∇νφ−

1

2
gµν
(
∇ρφ∇ρφ+m2φ2

))
and ∇2φ−m2φ = 0 , (4.2)

with the cosmological constant for AdS given by Λ = −d(d− 1)/2.

Perturbing around static AdS, the scalar field is expanded in odd powers of epsilon

φ(t, x) = εφ1(t, x) + ε3φ3(t, x) + . . . (4.3)

and the metric functions A and δ in even powers,

A(t, x) = 1 + ε2A2(t, x) + . . . (4.4)

δ(t, x) = ε2δ2(t, x) + . . . . (4.5)

We choose to work in the boundary gauge, where δ(t, π/2) = 0, for reasons that we discuss below.

At linear order, φ1 satisfies

∂2
t φ1 + L̂φ1 = 0 where L̂ ≡ 1

µ
(µ′∂x + µ∂2

x)−
m2

cos2(x)
, (4.6)

and µ ≡ tand−1(x). The general solution for (4.6) in the bulk is a linear combination of the

eigenfunctions Φ±I (x), whose frequencies ωI are arbitrary. Examining each function’s scaling when

x → π/2, we see that Φ+
I is normalizable and goes as (cosx)∆+

while Φ−I is non-normalizable and

goes as (cosx)∆− . We denote the positive (negative) root of ∆(∆− d) = m2 as ∆+(∆−).

For an arbitrary frequency, requiring regularity at the origin means that we must choose the linear

combination [122]

EI(x) = KI (cos(x))∆+

2F1

(
∆+ + ωI

2
,
∆+ − ωI

2
, d/2; sin2(x)

)
, (4.7)
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that solves the eigenvalue equation

L̂EI(x) = ω2
IEI(x) . (4.8)

For special integer values of the frequencies ωI = ωi = 2i + ∆+ with i ∈ Z+, the functions Φ±i (x)

are individually regular at the origin. In this case, the normalizable part of the solution in (4.7)

can be written as

EI(x) = ei(x) = ki (cos(x))∆+

P
(d/2−1,∆+−d/2)
i (cos(2x)) , (4.9)

with the Jacobi polynomials P
(a,b)
n (x) providing an orthogonal basis so that 〈ei(x), ej(x)〉 = δij when

ki = 2

√
(i+ ∆+/2)Γ(i+ 1)Γ(i+ ∆+)

Γ(i+ d/2)Γ(i+ ∆+ − d/2 + 1)
. (4.10)

For consistency with other frequency values, we choose to write the non-normalizable contributions

in the general form of (4.7).

The interpretation of the driving term through the AdS/CFT dictionary is the addition of a time-

dependent part of the boundary Hamiltonian. Therefore, the presence of non-normalizable modes

corresponds to pumping energy in and out of the system. We will find it useful when calculating

the third-order source term – which requires a triple sum over first-order modes – to be able to

separate the contributions from either kind of mode. To that end, we write the first-order part of

the scalar field as a sum over both normalizable and non-normalizable modes:

φ1(t, x) =
∑
I

cI(t)EI(x)

=
∑
j

aj(t) cos (ωit+ bi(t)) ej(x) +
∑
α

Āα cos
(
ωαt+ B̄α

)
Eα(x) . (4.11)

The values of Āα and B̄α will be set by the driving term. This informs our choice of working in the
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boundary gauge; the time t is the proper time measured on the boundary, as well as the time scale

of oscillations from the driving term. In the simplest example, the driving term on the boundary is

a single, periodic function

φ1(t, π/2) = A cosωt . (4.12)

In this case, (4.11) collapses into a single term so that

∑
α

Āα cos(ωαt+ B̄α)Eα(π/2) = A cosωt ⇒ Āω Eω(π/2) = A and B̄ω = 0 . (4.13)

Generalizing the boundary condition to a sum over Fourier modes would set further Āα and B̄α to

non-zero values.

Without specifying whether frequencies or basis functions have been chosen to be either normalizable

or non-normalizable for the time being, we can show that the O(ε3) part of the scalar field satisfies

the equation

φ̈3 + L̂φ3 = S = 2(A2 − δ2)φ̈1 + (Ȧ2 − δ̇2)φ̇1 + (A′2 − δ′2)φ′1 +m2A2φ1 sec2 x . (4.14)

Following the steps outlined in appendix 4.A, we project (4.14) onto the basis of normalizable modes

since all non-normalizable contributions have been fixed by theO(ε) boundary condition. Employing

an ubiquitous time-dependent solution cI(t) = aI cos(ωIt+ bI) = aI cos θI with I ∈ {i, α}, we find

that the source term for the `th mode is
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S` =
1

4

∞∑
I,J,K
K 6=`

aIaJaKωK
ω2
` − ω2

K

[
Z−IJK`(ωI + ωJ − 2ωK) cos(θI + θJ − θK)

− Z−IJK`(ωI + ωJ + 2ωK) cos(θI + θJ + θK) + Z+
IJK`(ωI − ωJ + 2ωK) cos(θI − θJ + θK)

− Z+
IJK`(ωI − ωJ − 2ωK) cos(θI − θJ − θK)

]
+

1

2

∞∑
I,J,K
I 6=J

aIaJaKωJ
(
HIJK` +m2VJKI` − 2ω2

KXIJK`

) [ 1

ωI − ωJ
(

cos(θI − θJ − θK)

+ cos(θI − θJ + θK)
)
− 1

ωI + ωJ

(
cos(θI + θJ − θK) + cos(θI + θJ + θK)

)]
− 1

4

∞∑
I,J,K

aIaJaK

[ (
2ωJωKXIJK` +m2VIJK`

)
cos(θI + θJ − θK)

−
(
2ωJωKXIJK` −m2VIJK`

)
cos(θI − θJ − θK) +

(
2ωJωKXIJK` +m2VIJK`

)
cos(θI − θJ + θK)

−
(
2ωJωKXIJK` −m2VIJK`

)
cos(θI + θJ + θK)

]
+

1

4

∞∑
I,J

aIaJa`ω`

[
Z̃−IJ`(ωI + ωJ − 2ω`) cos(θI + θJ − θ`)− Z̃−IJ`(ωI + ωJ + 2ω`) cos(θI + θJ + θ`)

+ Z̃+
IJ`(ωI − ωJ + 2ω`) cos(θI − θJ + θ`)− Z̃+

IJ`(ωI − ωJ − 2ω`) cos(θI − θJ − θ`)
]

− 1

4

∞∑
I,J

a2
IaJ

[
HIIJ` +m2VJII` − 2ω2

JXIIJ`

](
cos(2θI − θJ) + cos(2θI + θJ)

)
− 1

2

∞∑
I,J

a2
IaJ

[
HIIJ` +m2VJII` − 2ω2

JXIIJ` + 4ω2
Iω

2
JPJ`I + 2ω2

I (MJ`I +m2QJ`I)

]
cos θJ . (4.15)

Note that sums and restrictions on indices must be interpreted as sums and restrictions on frequen-

cies when any of the modes is non-normalizable, since ωα 6= 2α + ∆+ in general.

As mentioned above, the growth of resonant terms with time, i.e. secular growth, at O(ε3) can be

absorbed into the time-dependent part of the scalar field at that order [43]. Thus, (4.14) tells us

that

c̈
(3)
` (t) + ω2

` c
(3)
` (t) = S

(3)
` cos (ω`t+ ϕ`) , (4.16)
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where S
(3)
` is a polynomial in aI determined by evaluating the resonant contributions from (4.15),

and ϕ` is some combination of the bI . To obtain the renormalization flow equations, we can

rewrite the amplitudes and phases in terms of renormalized integration constants that exactly

cancel the secular terms at each instant. Doing so yields the renormalization flow equations for the

renormalized constants [42]

2ω`
ε2

da`
dt

= −S(3)
` sin (b` − ϕ`) (4.17)

2ω`a`
ε2

db`
dt

= −S(3)
` cos (b` − ϕ`) . (4.18)

Note that the amplitudes and phases evolve with respect to the “slow time” τ = ε2t. In practice, once

these flow equations can be written down, the perturbative evolution of the system is determined

up to a timescale of t ∼ ε−2.

To determine the exact form of S
(3)
` , we must consider all combinations of the frequencies {ωI , ωJ , ωK}

that satisfy the resonance condition

ωI ± ωJ ± ωK = ±ω` . (4.19)

As an exercise, we first derive the resonant contributions when the boundary source is zero, and

therefore only normalizable modes are present. These results agree numerically with previous work

on normalizable modes for massless scalars in the interior time gauge (δ(t, 0) = 0) [134]. The

definitions of the functions Z, H, X, etc. in (4.15) differ slightly from other works – in part because

of the gauge choice, and in part because of a desire to separate out mass-dependent terms – and so

are given explicitly in appendix 4.A.
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4.3 Resonances From Normalizable Solutions

Consider the case where each of the basis functions are given by normalizable solutions. The possible

combinations of frequencies that satisfy (4.19) can be separated into the three distinct cases:

ωi + ωj + ωk = ω` (+ + +) (4.20)

ωi − ωj − ωk = ω` (+−−) (4.21)

ωi + ωj − ωk = ω` (+ +−) . (4.22)

Note that the (+ + +) and (+ − −) resonances produce restrictions on the allowed values of the

indices {i, j, k}, as well as on values of the mass, since ωi = 2i+∆+. In the first case, the indices are

restricted by i+ j + k = `−∆+, and so ∆+ must be an integer and greater than ` for resonance to

occur. Similarly, the (+ − −) resonance condition becomes i− j − k = `+ ∆+, which is resonant

for any integer value of ∆+. We will see that these two resonance channels will non-trivially vanish

whenever their respective resonance conditions are satisfied. This is in agreement with the results

shown for the massless scalar in the interior time gauge (as they must be, since the choice of time

gauge should not change the existence of resonant channels). Here we include the expressions for

the naturally vanishing resonances, choosing to explicitly express the mass dependence.

4.3.1 Naturally Vanishing Resonances: (+ + +) and (+−−)

Resonant contributions that come from the condition ωi + ωj + ωk = ω` contribute to the total

source term via

S` =
∞∑
i=0

∞∑
j=0

∞∑
k=0︸ ︷︷ ︸

ωi+ωj+ωk=ω`

Ωijk` aiajak cos (θi + θj + θk) + . . . , (4.23)
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where the ellipsis denotes other resonances. Ωijk` is given by

Ωijk` = − 1

12
Hijk`

ωj(ωi + ωk + 2ωj)

(ωi + ωj)(ωj + ωk)
− 1

12
Hikj`

ωk(ωi + ωj + 2ωk)

(ωi + ωk)(ωj + ωk)
− 1

12
Hjik`

ωi(ωj + ωk + 2ωi)

(ωi + ωj)(ωi + ωk)

− m2

12
Vijk`

(
1 +

ωj
ωj + ωk

+
ωi

ωi + ωk

)
− m2

12
Vjki`

(
1 +

ωj
ωi + ωj

+
ωk

ωi + ωk

)
− m2

12
Vkij`

(
1 +

ωi
ωi + ωj

+
ωk

ωj + ωk

)
+

1

6
ωjωkXijk`

(
1 +

ωj
ωi + ωk

+
ωk

ωi + ωj

)
+

1

6
ωiωkXjki`

(
1 +

ωi
ωj + ωk

+
ωk

ωi + ωj

)
+

1

6
ωiωjXkij`

(
1 +

ωi
ωj + ωk

+
ωj

ωi + ωk

)
− 1

12
Z−ijk`

(
ωk

ωi + ωj

)
− 1

12
Z−ikj`

(
ωj

ωi + ωk

)
− 1

12
Z−jki`

(
ωi

ωj + ωk

)
. (4.24)

The second naturally vanishing resonance comes from the condition ωi − ωj − ωk = ω`, and con-

tributes to the total source term via

S` =
∞∑
j=0

∞∑
k=0

Γ(j+k+`+∆+)jk` ajaka(j+k+`+∆+) cos
(
θ(j+k+`+∆+) − θj − θk

)
+ . . . , (4.25)

where

Γijk` =
1

4
Hijk`

ωj(ωk − ωi + 2ωj)

(ωi − ωj)(ωj + ωk)
+

1

4
Hjki`

ωk(ωj − ωi + 2ωk)

(ωi − ωk)(ωj + ωk)
+

1

4
Hkij`

ωi(ωj + ωk − 2ωi)

(ωi − ωj)(ωi − ωk)

− 1

2
ωjωkXijk`

(
ωk

ωi − ωj
+

ωj
ωi − ωk

− 1

)
+

1

2
ωiωkXjki`

(
ωk

ωi − ωj
+

ωi
ωj + ωk

− 1

)
+

1

2
ωiωjXkij`

(
ωj

ωi − ωk
+

ωi
ωj + ωk

− 1

)
+
m2

4
Vjki`

(
ωj

ωi − ωj
+

ωk
ωi − ωk

− 1

)
− m2

4
Vkij`

(
ωi

ωi − ωj
+

ωk
ωj + ωk

+ 1

)
− m2

4
Vijk`

(
ωi

ωi − ωk
+

ωj
ωj + ωk

+ 1

)
+

1

4
Z−kji`

(
ωi

ωj + ωk

)
− 1

4
Z+
ijk`

(
ωk

ωi − ωj

)
− 1

4
Z+
jki`

(
ωj

ωi − ωk

)
. (4.26)

Building on the work done with massless scalars, we are able to show numerically that (4.24) and

(4.26) continue to vanish for massive scalars (m2 ≥ m2
BF ) in the boundary gauge; thus, the dy-

namics governing the weakly turbulent transfer of energy are determined only from the remaining

resonance channel. When non-normalizable modes are introduced, we will see that naturally vanish-
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ing resonances are not present and so the total third-order source term is the sum over all resonant

channels.

4.3.2 Non-vanishing Resonance: (+ +−)

The first non-vanishing contributions arise when ωi + ωj = ωk + ω`. This contribution can be split

into three coefficients that are evaluated for certain subsets of the allowed values for the indices,

namely

S` = T`a
3
` cos(θ` + θ` − θ`) +

∞∑
i 6=`

Ri` a
2
i a` cos(θi + θ` − θi)

+
∞∑
i 6=`

∞∑
j 6=`

Sij(i+j−`)` aiaja(i+j−`) cos(θi + θj − θi+j−`) , (4.27)

where the coefficients are given by

Sijk` = −1

4
Hkij`

ωi(ωj − ωk + 2ωi)

(ωi − ωk)(ωi + ωj)
− 1

4
Hijk`

ωj(ωi − ωk + 2ωj)

(ωj − ωk)(ωi + ωj)
− 1

4
Hjki`

ωk(ωi + ωj − 2ωk)

(ωi − ωk)(ωj − ωk)

− 1

2
ωjωkXijk`

(
ωj

ωi − ωk
− ωk
ωi + ωj

+ 1

)
− 1

2
ωiωkXjki`

(
ωi

ωj − ωk
− ωk
ωi + ωj

+ 1

)
+

1

2
ωiωjXkij`

(
ωi

ωj − ωk
+

ωj
ωi − ωk

+ 1

)
− m2

4
Vijk`

(
ωi

ωi − ωk
+

ωj
ωj − ωk

+ 1

)
+
m2

4
Vjki`

(
ωk

ωi − ωk
− ωj
ωi + ωj

− 1

)
+
m2

4
Vkij`

(
ωk

ωj − ωk
− ωi
ωi + ωj

− 1

)
+

1

4
Z−ijk`

(
ωk

ωi + ωj

)
+

1

4
Z+
ikj`

(
ωj

ωi − ωk

)
+

1

4
Z+
jki`

(
ωi

ωj − ωk

)
, (4.28)

Ri` =

(
ω2
i

ω2
` − ω2

i

)(
Yi``i − Yi`i` + ω2

` (Xi`i` −X`i`i)
)

+

(
ω2
i

ω2
` − ω2

i

)(
H`ii` +m2Vii`` − 2ω2

iX`ii`

)
−
(

ω2
`

ω2
` − ω2

i

)(
Hi`i` +m2V`ii` − 2ω2

iXi`i`

)
− m2

4
(Vi`i` + Vii``) + ω2

i ω
2
` (Pii` − 2P``i)

− ωiω`Xi`i` −
3m2

2
V`ii` −

1

2
Hii`` + ω2

`Bii` − ω2
iM``i −m2ω2

iQ``i , (4.29)

108



and

T` =
1

2
ω2
`

(
X```` + 4B``` − 2M``` − 2m2Q```

)
− 3

4

(
H```` + 3m2V````

)
. (4.30)

Following the form of (4.17) - (4.18), these resonant terms set the evolution of the renormalized

integration coefficients to be [78]

2ω`
ε2

da`
dt

= −
∞∑
i 6=`

∞∑
j 6=`

Sij(i+j−`)` aiaja(i+j−`) sin(b` + b(i+j−`) − bi − bj) , (4.31)

2ω`a`
ε2

db`
dt

= −T`a3
` −

∞∑
i 6=`

Ri` a
2
i a`

−
∞∑
i 6=`

∞∑
j 6=`

Sij(i+j−`)` aiaja(i+j−`) cos(b` + b(i+j−`) − bi − bj) . (4.32)

To examine the effects of non-zero masses on R, S, and T , we evaluate (4.28)-(4.30) for tachyonic,

massless, and massive scalars in figure 4.1. The result is a vertical shift in the coefficient value that

is proportional to the choice of mass-squared. By inspection, there is an indication that this shift

increases with increasing ` values; however, a numerical fit of the data would be needed to claim

this definitively.

4.4 Resonances From Non-normalizable Modes

Now let us consider the excitation of non-normalizable modes by a driving term on the boundary

of AdS. Having set ω` to be a normalizable mode, we may ask what restrictions exist on our choices

for the other frequencies, {ωi, ωj, ωk}. Aside from the trivial case where all modes are normalizable,

we could imagine that one of the modes is non-normalizable. However, this would violate the

resonance condition (4.19); thus, at least two modes must be non-normalizable. When three non-

normalizable modes exist, there are two possibilities: first, that any combination of generically

non-integer frequencies gives a non-integer value and so does not contribute a secular term when
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Figure 4.1: Evaluating (4.28)-(4.30) over different values of m2 for ` ≤ 10. Sij(i+j−`)` is denoted by
filled circles connected by dash-dotted lines; Ri` is denoted by filled triangles connected by solid lines; T`
is denoted by large Xs connected by dotted lines. Different values of m2 are denoted by the colour of each
series.

projected onto the ω` basis; second, some particular combination of the non-normalizable frequencies

gives an integer frequency, in which case there are resonant contributions to S
(3)
` . Therefore, the

pertinent question is what resonances are possible when two of {ωi, ωj, ωj} are non-normalizable?

Because this choice breaks some of the symmetries that contributed to the previous expressions

for resonance channels, the resonance conditions must be re-examined starting from the source

expression (4.15).

Before proceeding further, an important consideration is what the effect of non-normalizable modes

are on the perturbative expansion that leads to the source equations. Since non-normalizable

solutions do not have well-defined norms, we do not know a priori that the inner products described

in appendix 4.A are still finite. To investigate this, consider the generic expression for the second-

order metric function

A2 = −ν
∫ x

0

dy µ
(

(φ̇1)2 + (φ′1)2 +m2φ2
1 sec2 x

)
, (4.33)
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in the limit of x→ π/2, and let the scalar field φ1 be given by a generic superposition of normalizable

and non-normalizable eigenfunctions as in (4.11). Ignoring the time-dependent contributions, we

find that

lim
x̃→0

A2(x̃ ≡ π/2− x) = x̃−ξ

(
2x̃2+d

2− ξ
− x̃d(1 + (∆−)

2
)

ξ

)
, (4.34)

where we have defined ξ =
√
d2 + 4m2. In the massless case, ξ = d and all powers of x̃ are

non-negative; thus, the limit is finite. For tachyonic masses, m2
BF < m2 < 0 so that 0 < ξ < d

and the limit is again finite. However, when m2 > 0, part of the limit diverges. In order for

the boundary to remain asymptotically AdS, counter-terms in the bulk action would be required

to cancel such divergences – a case we will not address presently. Furthermore, for masses that

saturate the Breitenlohner-Freedman bound, the limit would have to be re-evaluated. We will

therefore restrict our discussion to m2
BF < m2 ≤ 0 to avoid these issues. A similar check on the

near-boundary behaviour of δ2 shows that the gauge condition δ2(t, π/2) = 0 remains unchanged by

the addition of non-normalizable modes given the same restrictions on the mass of the scalar field.

With these restrictions in mind, let us now examine the resonances produced by the activation of

non-normalizable modes.

4.4.1 Two Non-normalizable Modes with Equal Frequencies

As a first case, let us assume that the two non-normalizable modes have equal, constant, and

arbitrary frequencies, ω (and therefore amplitudes Āω). The resonance condition (4.19) will only

be satisfied when one of {ωI , ωJ , ωK} are normalizable. In particular, we find that the following

combinations are resonant:

ωi − ωj + ωk − ω` = 0 ⇒ either ωi or ωk is normalizable (4.35)

ωi + ωj − ωk − ω` = 0 ⇒ either ωi or ωj is normalizable (4.36)

ωi − ωj − ωk + ω` = 0 ⇒ either ωj or ωk is normalizable. (4.37)
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When any of these resonance conditions is met, the remaining normalizable mode will have a

frequency equal to ω`, collapsing all sums over frequencies so that

S` = T ` a`Ā
2
ω cos(θ`) + . . . , (4.38)

where the amplitudes of the non-normalizable modes Āω are set by the choice of boundary condition.

Collecting the appropriate terms in (4.15) and evaluating each possible resonance, we find that

T ` =

[
1

2
Z−`ωω`

(
ω

ω` + ω

)
+

1

2
Z+
`ωω`

(
ω

ω` − ω

)
+H`ωω`

(
ω2

ω2
` − ω2

)
−Hω`ω`

(
ω2
`

ω2
` − ω2

)
−m2V`ωω`

(
ω2
`

ω2
` − ω2

)
+m2Vωω``

(
ω2

ω2
` − ω2

)
+ 2Xωω``

(
ω2ω2

`

ω2
` − ω2

)
− 2X``ωω

(
ω4

ω2
` − ω2

)]
ω 6=ω`

+ ω2
`Xωω`` − ω2X``ωω −

3

2
m2V``ωω −

1

2
m2Vωω`` −

1

2
Hωω`` + ω2

` Z̃
+
ωω` − 2ω2ω2

`P``ω

− ω2
(
ω2
`P``ω −B``ω

)
. (4.39)

Notice that the terms in the square braces only contribute when ω 6= ω`. Beginning from (4.15),

only terms in the square braces that are proportional to Z± are limited in this way; the remaining

terms have no such restriction. However, it can be shown that integral functions with permuted

indices are equal when the non-normalizable frequency equals the normalizable frequency. Upon

simplification, factors of ω2
` −ω2 are cancelled, and the overall contribution to T` from the terms in

the braces is zero. Thus, these terms are grouped with those that have natural restrictions on the

indices.

With the resonant contributions determined, the renormalization flow equations for two equal,

constant, non-normalizable frequencies follow from (4.17) - (4.18) and are

2ω`
ε2

da`
dt

= 0 and
2ω`a`
ε2

db`
dt

= −T `a`Ā2
ω . (4.40)

Qualitatively, we see that instead of both the amplitude and the phase running with respect to τ ,

only the phase changes in time. Indeed, (4.40) tells us that b` is a linear function of τ with a slope
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Figure 4.2: Left: Evaluating (4.39) when m2 = 0 for various choices of ω. Right: The behaviour of S`
for ω values near ω0.

that is determined by the O(ε3) physics encapsulated by T `.

Other resonant contributions become possible for more restrictive values of the non-normalizable

frequency, such as if ω is allowed to be an integer. These contributions are denoted by the ellipsis

in (4.38) and are listed in appendix 4.B. In figures 4.2 and 4.3, we evaluate (4.39) for ` < 10 over a

variety of ω values first for a massless scalar, then for a tachyonic scalar. For both values of mass-

squared, T` demonstrates power law-type behaviour as a function of ` with a leading coefficient that

is proportional to the non-normalizable frequency ω. We also see that the limit of (4.39) as ω → ω0

is well-defined in both cases.
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Figure 4.3: Left: Evaluating T ` for a tachyon with m2 = −1.0. Right: The behaviour of S` near
ω0 = ∆+ ≈ 3.7.

4.4.2 Special Values of Non-normalizable Frequencies

Let us now consider special values of non-normalizable frequencies that will lead to a greater num-

ber of resonance channels. While general non-normalizable frequencies do not require any such

restrictions, we will find it informative to examine these special cases as they possess more sym-

metry in index/frequency values than the case of equal non-normalizable frequencies, but less than

all-normalizable modes.

4.4.2.1 Add to an integer

First, we choose two of the modes to be non-normalizable with frequencies ω1 and ω2 that add to

give an integer: ω1 + ω2 = 2n where n = 1, 2, 3, . . . (note that the n = 0 case means that both ω1

and ω2 would need to be zero by the positive-frequency requirement and so would not contribute).

Furthermore, either frequency need not be an integer and therefore the difference |ω1 − ω2| will, in

general, not be an integer. In § 4.4.3, we examine the case when the difference of non-normalizable
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frequencies is an integer.

When we consider possible resonance channels, we see that resonances can be grouped into

(++) : ωi + 2n = ω` ∀ ` ≥ n (4.41)

(+−) : ωi − 2n = ω` ∀ n (4.42)

for any m2
BF < m2 < 0. However, for a massless scalar, we have an additional channel

(−+) : −ωi + 2n = ω` ∀ n ≥ `+ d . (4.43)

Adding the channels together, the total source term is

S` =
∑

ω1+ω2=2n

[
Θ (n− `− d)R

(−+)

(n−`−d)` Ā1Ā2 a(n−`−d) cos
(
θ(n−`−d) − θ1 − θ2

) ]
m2=0

+
∑

ω1+ω2=2n

Θ (`− n)R
(++)

(`−n)` Ā1Ā2 a(`−n) cos
(
θ(`−n) + θ1 + θ2

)
+
∑

ω1+ω2=2n

R
(+−)

(`+n)` Ā1Ā2 a(`+n) cos
(
θ(`+n) − θ1 − θ2

)
+ T ` Ā1Ā2 a` cos (θ`) (4.44)

where the Heaviside step function Θ(x) enforces the restrictions on the indices in (4.41) and (4.43)

and θ1 = ω1t+ B̄1, etc.

In the following expressions, the sum over all ω1, ω2 such that ω1 +ω2 = 2n is implied, and only the

restrictions on individual frequencies are included. Examining each channel in (4.44) individually,
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we find

R
(++)

i` = −1

4

∑
ω2 6=ω`

ω2

ω` − ω2

Z−i12` −
1

4

∑
ω1 6=ω`

ω1

ω` − ω1

Z−i21` −
1

8n
(ω` − 2n)Z−12i`

− 1

4

∑
ωi 6=ω1

1

ω` − ω2

[
ω1

(
Hi12` +m2V12i` − 2ω2

2Xi12`

)
+ (ω` − 2n)

(
H1i2` +m2Vi21` − 2ω2

2X1i2`

) ]
− 1

4

∑
ωi 6=ω2

1

ω` − ω1

[
ω2

(
Hi21` +m2V21i` − 2ω2

1Xi21`

)
+ (ω` − 2n)

(
H2i1` +m2Vi12` − 2ω2

1X2i1`

) ]
− 1

8n

∑
ω1 6=ω2

[
ω1H21i` + ω2H12i` +m2 (ω1V1i2` + ω2V2i1`)− (ω` − 2n)2 (ω1X21i` + ω2X12i`)

]
+

1

2

[
ω1ω2Xi12` + (ω` − 2n) (ω1X21i` + ω2X12i`)−

m2

2
(Vi12` + Vi21` + V12i`)

]
. (4.45)

The notation Xi12` corresponds to evaluating Xijk` with ωj = ω1 and ωk = ω2. Next, we find that

R
(+−)

i` = −1

4

[(ω` + 2n)

2n
Z−12i` + 2(ω` + 2n) (ω1X21i` + ω2X12i`)

− ω1

(ω` + ω2)

(
Hi12` +m2V12i` − 2ω2

2Xi12`

)
+

(ω` + 2n)

(ω` + ω2)

(
H1i2` +m2Vi21` − 2ω2

2X1i2`

)
− ω2

(ω` + ω1)

(
Hi21` +m2V21i` − 2ω2

1Xi21`

)
+

(ω` + 2n)

(ω` + ω1)

(
H2i1` +m2Vi12` − 2ω2

1X2i1`

)
− 2ω1ω2Xi12` +m2 (V12i` + Vi12` + Vi21`)

]
+

1

4

∑
ω2 6=ω`

ω1ω2(ω` + 2n)

ω` + ω2

(X21i` −X`i12)

+
1

4

∑
ω1 6=ω`

ω1ω2(ω` + 2n)

ω` + ω1

(X12i` −X`i12) . (4.46)
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When m2 = 0, we have contributions from

R
(−+)

i` =
1

4

∑
ω2 6=ω`

ω2

ω` − ω2

Z+
i12` +

1

4

∑
ω1 6=ω`

ω1

ω` − ω1

Z+
i21` +

1

4

∑
i 6=`

(
2n− ω`

2n

)
Z−12i`

+
1

4

∑
ω1 6=ωi

1

ωi − ω1

[
ω1

(
Hi12` − 2ω2

2Xi12`

)
− (2n− ω`)

(
H1i2` − 2ω2

2X1i2`

) ]
+

1

4

∑
ω2 6=ωi

1

ωi − ω2

[
ω2

(
Hi21` − 2ω2

1Xi21`

)
− (2n− ω`)

(
H2i1` − 2ω2

1X2i1`

) ]
− 1

8n

∑
ω1 6=ω2

[
ω1H21i` + ω2H12i` − 2 (2n− ω`)2 (ω1X21i` + ω2X12i`)

]
− 1

2

[
(2n− ω`) (ω1X21i` + ω2X12i`)− ω1ω2Xi12`

]
. (4.47)

NB. In (4.47) only, ωi = 2i + ∆+ = 2i + d since this term requires that m2 = 0 to contribute. We

maintain the same notation out of convenience, despite the special case. Finally,

T ` =
1

2
ω2
`

(
Z̃+

11` + Z̃+
22`

)
− 1

2

[
H11`` +H22`` +m2 (V`11` + V`22`)− 2ω2

` (X11`` +X22``)

+ 4ω2
`

(
ω2

1P``1 + ω2
2P``2

)
+ 2ω2

1M``1 + 2ω2
2M``2 + 2m2

(
ω2

1Q``1 + ω2
2Q``2

) ]
. (4.48)

In figure 4.4, we compute the total source term (modulo the amplitudes ai and Āα) for a tachyonic

scalar with n = 2. Figure 4.5 provides a comparison between the value of the source term for

a massless scalar between two choices of n: one that includes contributions from R
(−+)

i` and one

that does not. As expected, the source terms are symmetric in ω1 ↔ ω2, hence only ω1 ≤ n data

are shown. As a function of `, (4.44) starts near zero before becoming increasingly negative as `

becomes large. As a check for naturally vanishing channels, the absolute value of the sum of S` is

also plotted; however, there is no indication that any channel vanishes for any of the ω1, ω2 values

considered.

The renormalization flow equations include the sum of all the channels (none of which vanish
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Figure 4.4: Left: Source term values for a tachyonic scalar with m2 = −1.0 when the frequencies of
non-normalizable modes sum to 4.0. Right: The absolute value of the sum of the source terms for each
choice of ω1, ω2.

naturally), and are

2ω`
ε2

da`
dt

= −
∑

ω1+ω2=2n

[
Θ (n− `− d)R

(−+)

(n−`−d)` Ā1Ā2 a(n−`−d) sin
(
b(n−`−d) − B̄1 − B̄2

) ]
m2=0

−
∑

ω1+ω2=2n

Θ (`− n)R
(++)

(`−n)` Ā1Ā2 a(`−n) sin
(
b(`−n) + B̄1 + B̄2

)
−
∑

ω1+ω2=2n

R
(+−)

(`+n)` Ā1Ā2 a(`+n) sin
(
b(`+n) − B̄1 − B̄2

)
, (4.49)

and

2ω`a`
ε2

db`
dt

= −
∑

ω1+ω2=2n

[
Θ (n− `− d)R

(−+)

(n−`−d)` Ā1Ā2 a(n−`−d) cos
(
b(n−`−d) − B̄1 − B̄2

) ]
m2=0

−
∑

ω1+ω2=2n

Θ (`− n)R
(++)

(`−n)` Ā1Ā2 a(`−n) cos
(
b(`−n) + B̄1 + B̄2

)
−
∑

ω1+ω2=2n

R
(+−)

(`+n)` Ā1Ā2 a(`+n) cos
(
b(`+n) − B̄1 − B̄2

)
− T ` Ā1Ā2 a` . (4.50)
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Figure 4.5: Above: The value of (4.44) as a function of ` for a massless scalar with values of ω1 and ω2

chosen so that ω1 + ω2 = 4. Below: The same plot but with values chosen to satisfy ω1 + ω2 = 8.

4.4.3 Integer Plus χ

Finally, as an analogue to the case of only normalizable modes, let us consider non-normalizable fre-

quencies that differ from integer values by a set amount. To do so, we consider the non-normalizable
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frequencies to be shifted away from integer values by

ωγ = 2γ + χ , (4.51)

where γ ∈ Z+ (greek letters are chosen to differentiate these non-normalizable modes from nor-

malizable modes with integer frequencies, which use roman letters). We furthermore limit χ to be

non-integer12 and set m2 = 0 throughout. For this choice of non-normalizable frequencies there are

no resonant contributions from the all-plus channel, unlike the naturally vanishing resonance found

in § 4.3.1. Only when either ωi + ωγ = ωβ − ω`, or ωi + ωγ = ωβ + ω` with i + γ ≥ `, are resonant

terms present. Let us examine each case separately.

4.4.3.1 ωi + ωγ = ωβ − ω`

When the resonance condition ωi + ωγ = ωβ − ω` is met, the contribution to the source term is of

the form

S` =
∑
i 6=`

∑
γ 6=β

S
(1)

i(i+γ+`)γ` aiĀ(i+γ+`)Āγ cos
(
θi − θ(i+γ+`) + θγ

)
+
∑
β

R
(1)

β` a`Ā
2
β cos (θ` + θβ − θβ) + . . . , (4.52)

where

S
(1)

iβγ` =
1

4
Hβγi`

ωγ(ωi − ωβ + 2ωγ)

(ωβ − ωγ)(ωi + ωγ)
− 1

4
Hγβi`

ωβ(ωi + ωγ − 2ωβ)

(ωi − ωβ)(ωβ − ωγ)
− 1

4
Hγiβ`

ωi(ωγ − ωβ + 2ωi)

(ωi − ωβ)(ωi + ωγ)

+
1

2
ωiωγXβγi`

(
ωγ

ωi − ωβ
− ωi
ωβ + ωγ

+ 1

)
+

1

2
ωiωβXγβi`

(
ωi

ωβ − ωγ
+

ωβ
ωi + ωγ

− 1

)
+

1

2
ωβωγXiβγ`

(
ωβ

ωi + ωγ
− ωγ
ωi − ωβ

− 1

)
− 1

4
Z+
βγi`

(
ωi

ωi + ω`

)
+

1

4
Z−iγβ`

(
ωβ

ω` − ωβ

)
+

1

4
Z+
iβγ`

(
ωγ

ω` + ωγ

)
, (4.53)

12Indeed, for integer values of χ, the sum or difference of two non-normalizable modes could be an integer. This
would either be covered by the work in § 4.4.2.1, or be a slight variation of it.
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and

R
(1)

β` =
1

4
Z−`ββ`

(
ωβ

ω` + ωβ

)
+

1

4
Z+
`ββ`

(
ωβ

ω` − ωβ

)
+

1

2
H`ββ`

(
ω2
β

ω2
` − ω2

β

)
− 1

2
Hβ`β`

(
ω2
`

ω2
` − ω2

β

)

+Xβ`β`

(
ω4
`

ω2
` − ω2

β

)
− 1

2
ω2
βX`ββ`

(
ω2
` + ω2

β

ω2
` − ω2

β

)
− 1

2
H`ββ` + ω2

` Z̃
+
ββ` − 2ω2

βω
2
`P``β − ω2

βM``β .

(4.54)

4.4.3.2 ωi + ωγ = ωβ + ω`

Similarly, when the resonance condition ωi + ωγ = ωβ + ω` is met, the contribution to the source

term is

S` =
∑
i 6=`

∑
γ 6=β︸ ︷︷ ︸

i+γ≥`

S
(2)

i(i+γ−`)γ` aiĀ(i+γ−`)Āγ cos
(
θi − θ(i+γ−`) + θγ

)

+
∑
β

R
(2)

β` a`Ā
2
β cos (θ` + θβ − θβ) + . . . , (4.55)

where

S
(2)

iβγ` =
1

4
Hβγi`

ωγ(ωi − ωβ)

(ωβ − ωγ)(ωi − ωγ)
− 1

4
Hγβi`

ωβ(ω` − ωβ)

(ωβ − ωγ)(ωi − ωβ)
+

1

4
Hβiγ`

ωi(ωγ − ωβ)

(ωi − ωβ)(ωi − ωγ)

+
1

2
ωiωγXβγi`

(
ωγ

ωi − ωβ
− ωi
ωβ − ωγ

+ 1

)
+

1

2
ωiωβXγβi`

(
ωi

ωβ − ωγ
− ωβ
ωi − ωγ

− 1

)
+

1

2
ωβωγXiβγ`

(
ωβ

ωi − ωγ
− ωγ
ωi − ωβ

− 1

)
+

1

4
Z−iγβ`

(
ωβ

ω` + ωβ

)
+

1

4
Z+
iβγ`

(
ωγ

ω` − ωγ

)
− 1

4
Z+
βγi`

(
ωi

ωi − ω`

)
, (4.56)
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Figure 4.6: Left: Evaluating the source term (4.52) for various values of χ for ` < 10. Right: Evaluating
the source term (4.55) subject to i+ γ ≥ ` for the same values of χ and the same range of `.

and

R
(2)

β` =
1

4
Z−`ββ`

(
ωβ

ω` + ωβ

)
+

1

4
Z+
`ββ`

(
ωβ

ω` − ωβ

)
+

1

2
H`ββ`

(
ω2
β

ω2
` − ω2

β

)
− 1

2
Hβ`β`

(
ω2
`

ω2
` − ω2

β

)

+Xββ``

(
ω2
`

ω2
` − ω2

β

)
+

1

2
ω2
βX`ββ`

(
ω2
` + ω2

β

ω2
` − ω2

β

)
− 1

2
Hββ`` + ω2

` Z̃
+
ββ` − 2ω2

βω
2
`P``β − ω2

βM``β. (4.57)

Unlike the case with all normalizable modes where two of the three resonance channels naturally

vanished, both of the resonant channels contribute when the non-normalizable modes have frequen-

cies given by (4.51). Therefore, the renormalization flow equations will contain contributions from
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both channels:

2ω`
ε2

da`
dt

= −
∑
i 6=`

∑
γ 6=β

S
(1)

i(i+γ+`)γ` aiĀ(i+γ+`)Āγ sin
(
b` + B̄(i+γ+`) − bi − B̄γ

)
−
∑
i 6=`

∑
γ 6=β︸ ︷︷ ︸

i+γ≥`

S
(2)

i(i+γ−`)γ` aiĀ(i+γ−`)Āγ sin
(
b` + B̄(i+γ−`) − bi − B̄γ

)
, (4.58)

2ω`a`
ε2

db`
dt

= −
∑
β

R
(1)

β` a`Ā
2
β −

∑
β

R
(2)

β` a`Ā
2
β

−
∑
i 6=`

∑
γ 6=β

S
(1)

i(i+γ+`)γ` aiĀ(i+γ+`)Āγ cos
(
b` + B̄(i+γ+`) − bi − B̄γ

)
−
∑
i 6=`

∑
γ 6=β︸ ︷︷ ︸

i+γ≥`

S
(2)

i(i+γ−`)γ` aiĀ(i+γ−`)Āγ cos
(
b` + B̄(i+γ−`) − bi − B̄γ

)
. (4.59)

In figure 4.6, we evaluate both resonant contributions channels’ and plot their contributions for

various values of χ. In particular, we examine the values χ ∈ {π/6, . . . , 7π/6}. Again, there is no

indication of any channel vanishing naturally. Interestingly, both sources demonstrate anomalous

behaviour when χ ∼ 2 for reasons that are not immediately clear. The source term (4.52) is generally

more positive for larger χ except for χ = 2π/3, which is translated negatively with respect to the

source terms produced by other χ values. Again, when (4.55) is evaluated for χ = 2π/3, the result

differs significantly from other choices of χ: seemingly reflected through the x axis with respect

to other results. The significance of the choice χ = 2π/3 ∼ d/2 is possibly explained by the non-

normalizable modes being nearly equal to the normalizable ones. In this event, S` would contain

additional terms, such as those present in § 4.3. The departure of the χ = 2π/3 data from other

data sets is perhaps a signal of these missing resonances.
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4.5 Discussion

We have seen that the inclusion of a time-dependent boundary term in the holographic dual of a

quantum quench allows energy to enter the bulk spacetime through coupling with non-normalizable

modes. The dynamics of the weakly turbulent energy cascades that trigger instability were captured

by secular terms at third-order that could not be removed by frequency shifts alone. Using the

Two-Time Formalism, we have determined the renormalization group flow equations for the slowly

varying amplitudes and phases that are tuned to cancel the secular terms that give rise to instability.

Unlike when only normalizable modes are considered, the introduction of non-normalizable modes

results in no naturally vanishing resonance channels for the frequencies considered. The flow equa-

tions for a` and b` are now linear, since the non-normalizable amplitudes and phases are set by the

first-order boundary condition and thus remain constant. In practice, this means the evolution of

the system will be different than in the case where only normalizable modes are activated. Further-

more, periodic pumping of energy into and out of the bulk theory will undoubtably add interesting

dynamics to the evolution already observed for quasi-periodic solutions with static boundary con-

ditions [84].

With the renormalization flow equations established, future work will examine whether equilibrium

solutions can be derived. Then, general non-collapsing solutions will be constructed and their evo-

lution within the perturbative description will be examined. Comparisons to established numerical

pumped solutions in the full theory may be instructive in understanding the space of stable and

nearly-stable data.

Properties of the boundary CFT can also be determined from the perturbative theory in the bulk.

For instance, the AdS/CFT dictionary relates the leading coefficient of the normalizable modes of

the scalar field at the boundary to the expectation value of an operator 〈Oφ〉; the leading part of the

non-normalizable modes are related to a time-dependent driving term in the boundary Hamiltonian

s(t). The Ward identity for time translations gives the time dependence of the energy density in
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the CFT in terms of these quantities, and allows us to examine the evolution of the energy density

in boundary theory in terms of the leading contributions to bulk variables.
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Appendix

4.A Derivation of Source Terms For Massive Scalars

The derivation of the general expression for the O(ε3) source term for massive scalars closely follows

the massless case, particularly if one chooses not to write out the explicit mass dependence as was

done in [134]. However, since we have chosen to write our equations in a slightly different way –

and in a different gauge – than previous authors, one may find it instructive to see the differences in

the derivations. Below we have included the intermediate steps involved in deriving the third-order

source term S`.

Continuing the expansion of the equations of motion in powers of ε, we see that the backreaction

between the metric and the scalar field appears at second order in the perturbation,

A′2 = −µν
[
(φ̇1)2 + (φ′1)2 +m2φ2

1 sec2 x
]

+ ν ′A2/ν , (4.60)

which can be directly integrated to give

A2 = −ν
∫ x

0

dy µ
(

(φ̇1)2 + (φ′1)2 +m2φ2
1 sec2 x

)
. (4.61)

For convenience, we have also defined the functions

µ(x) = (tan x)d−1 and ν(x) = (d− 1)/µ′ . (4.62)
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Similarly, the first non-trivial contribution to the lapse (in the boundary time gauge) is

δ2 =

∫ π/2

x

dy µν
(

(φ̇1)2 + (φ′1)2
)
. (4.63)

Projecting each of the terms in (4.14) individually onto the eigenbasis {e`} will involve evaluating

inner products involving multiple integrals. To aide in evaluating these expressions, it is useful to

derive several identities. First, from the equation for the scalar field’s time-dependent coefficients

ci,

c̈i + ω2
i ci = 0 ⇒ ∂t

(
ċ2
i + ω2

i c
2
i

)
= ∂tCi = 0 . (4.64)

Next, from the definition of L̂,

L̂ej = − 1

µ

(
µe′j
)′

+m2 sec2 xej ⇒
(
µe′j
)′

= µ
(
m2 sec2 x− ω2

j

)
ej . (4.65)

By considering the expression (µe′iej)
′, we see that

(µe′iej)
′
=
(
m2 sec2 x− ω2

i

)
µeiej + µe′ie

′
j , (4.66)

which, after permuting i, j and subtracting from above, gives

[
µ(e′iejω

2
j − eie′jω2

i )
]′

(ω2
j − ω2

i )
= µm2 sec2 xeiej + µe′ie

′
j . (4.67)
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Using these identities, we evaluate each of the inner products and find that

〈δ2φ̈1, e`〉 = −
∞∑
i=0

∞∑
j=0
k 6=`

∞∑
k=0

ω2
kck

ω2
` − ω2

k

[ċiċj (Xk`ij −X`kij) + cicj (Yij`k − Yijk`)]

−
∞∑
i=0

∞∑
j=0

ω2
` c` [ċiċjPij` + cicjBij`] , (4.68)

〈A2φ̈1, e`〉 = 2
∞∑
i=0

∞∑
j=0
i 6=j

∞∑
k=0

ω2
kck

ω2
j − ω2

i

Xijk`

(
ċiċj + ω2

j cicj
)

+
∞∑
i=0

∞∑
j=0

ω2
j cj
(
CiPj`i + c2

iXiij`

)
, (4.69)

〈δ̇2φ̇1, e`〉 =
∞∑
i=0

∞∑
j=0
k 6=`

∞∑
k=0

ċk
ω2
` − ω2

k

[∂t (ċiċj) (Xk`ij −X`kij) + ∂t(cicj) (Yij`k − Yijk`)]

+
∞∑
i=0

∞∑
j=0

ċ` [∂t (ċiċj)Pij` + ∂t(cicj)Bij`] , (4.70)

〈Ȧ2φ̇1, e`〉 = −2
∞∑
i=0

∞∑
j=0

∞∑
k=0

ċkċjciXijk` , (4.71)

〈(A′2 − δ′2)φ′1, e`〉 = −2
∞∑
i=0

∞∑
j=0
i 6=j

∞∑
k=0

ck(ċiċj + ω2
j cicj)

ω2
j − ω2

i

Hijk` −m2

∞∑
i=0

∞∑
j=0

∞∑
k=0

cicjckVijk`

−
∞∑
i=0

∞∑
j=0

cj
[
c2
iHiij` + CiMj`i

]
, (4.72)

〈A2φ1 sec2 x, e`〉 = −2
∞∑
i=0

∞∑
j=0
i 6=j

∞∑
k=0

ck(ċiċj + ω2
j cicj)

ω2
j − ω2

i

Vjki`

−
∞∑
i=0

∞∑
j=0

cj
(
c2
iVjii` + CiQj`i

)
, (4.73)
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where the forms of X, Y, V, H, B, M, P, and Q are given by

Xijk` =

∫ π/2

0

dxµ2νe′iejeke` (4.74)

Yijk` =

∫ π/2

0

dxµ2νe′ie
′
jeke

′
` (4.75)

Vijk` =

∫ π/2

0

dxµ2νeieje
′
ke` sec2 x (4.76)

Hijk` =

∫ π/2

0

dxµ2ν ′e′ieje
′
ke` (4.77)

Bij` =

∫ π/2

0

dxµνe′ie
′
j

∫ x

0

dy µe2
` (4.78)

Mij` =

∫ π/2

0

dxµν ′e′iej

∫ x

o

dy µe2
` (4.79)

Pij` =

∫ π/2

0

dxµνeiej

∫ x

0

dy µe2
` (4.80)

Qij` =

∫ π/2

0

dxµνeiej sec2 x

∫ x

0

dy µe2
` . (4.81)

Note that, using integration by parts to remove the derivative from ν in the definitions of Hijk` and

Mij`, we can show that

Hijk` = ω2
iXkij` + ω2

kXijk` − Yij`k − Y`kji −m2Vkji` −m2Vijk` , (4.82)

Mij` = ω2
i Pij` −Bij` −m2Qij` . (4.83)

129



Collecting (4.68) - (4.73) gives the expression for S` = 〈S, e`〉:

S` =
∞∑
i,j,k
k 6=`

1

ω2
` − ω2

k

[
Fk(ċiċj) (Xk`ij −X`kij) + Fk(cicj) (Yij`k − Yijk`)

]

+ 2
∞∑
i,j,k
i 6=j

ckDij

ω2
j − ω2

i

[
2ω2

kXijk` −Hijk` −m2Vjki`

]
−
∞∑
i,j,k

ci

[
2ċj ċkXijk` +m2cjckVijk`

]

+
∞∑
i,j

[
F`(ċiċj)Pij` + F`(cicj)Bij` + 2ω2

j cj
(
c2
iXiij` + CiPj`i

)
− cj

(
c2
i (Hiij` +m2Vjii`) + Ci(Mj`i +m2Qj`i)

) ]
, (4.84)

where Fk(z) = ċkż−2ω2
kckz, Dij = ċiċj+ω

2
j cicj, and Ci = ċ2

i +ω2
i c

2
i . Additionally, we have combined

some integrals into their own expressions, namely

Z±ijk` = ωiωj (Xk`ij −X`kij)± (Yij`k − Yijk`) and Z̃±ij` = ωiωjPij` ±Bij` . (4.85)

Finally, using the solution for the time-dependent coefficients, ci(t) = ai(t) cos (ωit+ bi(t)) ≡

ai cos θi, we arrive at (4.15).

4.B Two Non-normalizable Modes with Equal Frequencies

Let us return to the case of two, equal, non-normalizable modes with frequency ω. Within the space

of resonant frequency values, there are frequencies that happen to satisfy ω = ω` numerically and

may produce extra resonances subject to restrictions on the normalizable frequency. These instances

were excluded from the discussion in § 4.4.1, and we address them here. When considering special
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integer values of ω each choice of ω below will contribute a T -type term to the total source:

T
(1)

i : ωi = ω` + 2ω ∀ ω ∈ Z+ (4.86)

T
(2)

i : ωi = ω` − 2ω ∀ ω ∈ Z+ such that ` ≥ ω (4.87)

T
(3)

i : ωi = 2ω − ω` ∀ ω ∈ Z+ such that ω ≤ `+ ∆+ , (4.88)

with ωi 6= ω` in each case. These special values contribute to the case of two, equal non-normalizable

modes via

S` = Ā2
ω T

(1)

(`+ω) a(`+ω) cos
(
θ(`+ω) − 2ωt

)
+ Ā2

ω T
(2)

(`−ω) a(`−ω) cos
(
θ(`−ω) + 2ωt

)
+ Ā2

ω T
(3)

(ω−`−∆+) a(ω−`−∆+) cos
(
2ωt− θ(ω−`−∆+)

)
(4.89)

under their respective conditions on the value of ω. The total resonant contribution for all possible

ω values is the addition of (4.89) and (4.38). Evaluating (4.15) in each case of the cases described

by (4.86) - (4.88), we find that

T
(1)

i =
1

2

[
Hiωω`

(
ω

ωi − ω

)
−Hωiω`

(
ωi

ωi − ω

)
+m2Vωωi`

(
ω

ωi − ω

)
−m2Viωω`

(
ωi

ωi − ω

)
− 2ω2Xiωω`

(
ω

ωi − ω

)
+ 2ω2Xωiω`

(
ωi

ωi − ω

)]
ωi 6=ω

− 1

2

[
Z+
iωω`

(
ω

ω` + ω

)]
ω` 6=ω

+
1

4
Z−ωωi`

(
ω` + 2ω

2ω

)
+

1

2
ω2Xiωω` −

m2

4
Vωωi`

− ωωiXωωi` −
m2

2
Viωω` , (4.90)
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T
(2)

i = −1

2

[
Hiωω`

(
ω

ωi + ω

)
+Hωiω`

(
ωi

ωi + ω

)
+m2Vωωi`

(
ω

ωi + ω

)
+m2Viωω`

(
ωi

ωi + ω

)
− 2ω2Xiωω`

(
ω

ωi + ω

)
− 2ω2Xωωi`

(
ωi

ωi + ω

)]
ωi 6=ω

− 1

2

[
Z−iωω`

(
ω

ω` − ω

)]
ω` 6=ω
− 1

4
Z−ωωi`

(
ω` − 2ω

ω

)
+

1

2
ω2Xiωω` +

m2

4
Vωωi`

+ ωωiXωωi` +
m2

2
Viωω` , (4.91)

and

T
(3)

i =
1

2

[
Hiωω`

(
ω

ωi − ω

)
−Hωiω`

(
ωi

ωi − ω

)
+m2Vωωi`

(
ω

ωi − ω

)
−m2Viωω`

(
ωi

ωi − ω

)
− 2ω2Xiωω`

(
ω

ωi − ω

)
+ 2ω2

iXωωi`

(
ω

ωi − ω

)
− Z+

iωω`

(
ω

ωi − ω

)]
ωi 6=ω

+
1

4
Z−ωωi`

(
2ω − ω`

2ω

)
+

1

2
ω2Xiωω` −

m2

4
Vωωi`

− ωωiXωωi` −
m2

2
Viωω` . (4.92)

These resonance channels can then be added into the right hand side of the equation for da`/dt in

(4.40).
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5 Conclusion

In this thesis, we have addressed several facets of scalar field collapse in Anti-de Sitter spacetime as

it relates to dynamical processes in strongly-coupled gauge theories. By considering a wide range

of Gaussian initial data in AdS5 in the nonperturbative (but small amplitude) regime, we have

mapped out the islands of stability for a real scalar of mass µ and width σ. In addition to stable

and unstable data, we have uncovered two new classes: those that exhibit metastability at finite

amplitudes and scale like tH ∝ ε−p for p > 2, and those that have non-monotonically increasing

horizon formation times with decreasing amplitude. There is evidence for weakly chaotic evolution

of data within the latter class, even for massless scalars. The root of the chaotic behaviour is

yet to be determined, however there are indications that self-interaction occurs between regions

of increased density produced by gravitational focusing. While similar chaotic evolutions have

been observed between thin shells of infalling matter, this is the first time it has been observed in

continuous initial data without higher-derivative couplings in the action. To determine the ultimate

fate of irregular and metastable data in the nonlinear theory as ε→ 0, greater computing power is

required; however, this is exactly the regime where the perturbative theory is applicable. Therefore,

future progress may be made by a combination of perturbative and nonlinear evolutions.

Next, we examined perturbatively stable solutions through the Two-Time Formalism. Using renor-

malization flow methods, the secular growth of resonant contributions was absorbed into amplitude

and phase variables so that the (massless) scalar field remained stable over perturbative timescales

of t ∼ ε−2. By introducing a quasi-periodic ansatz for the renormalized amplitudes, we found nu-

merical solutions to the truncated system characterized by the ratio of conserved quantities in the

theory, T = E/N . These solutions were tested for robustness against the choice of truncation value
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for different values of T . At this time, our results remain in tension with those in the literature, as

we were unable to verify the entire range of proposed solutions.

Since the islands of stability seem to be “anchored” near single-mode data, and since the TTF

description of the scalar field is a sum single modes weighted by time-dependent coefficients, it is

natural to consider whether all data within the islands of stability could be written in terms of

quasi-periodic TTF solutions. Any reduction in the space of QP solutions, such as a threshold

temperature Tth, would make this description less likely. Future work may include examining the

metastable and irregular data from nonlinear theory in the perturbative framework to see if existing

QP families of solutions can describe these initial conditions.

Ideally, scalar fields with amplitudes ε could be evolved with less computational cost using the TTF

framework over perturbative timescales, switching over to nonlinear evolution only when required.

However, predicting a value for when the perturbative theory begins to break down is not possible,

since we only know that the perturbative theory is valid when ε2t ∼ 1. An important future

contribution to the understanding of both the nonlinear and perturbative description of scalar field

collapse would be to compare the evolutions in either scheme to establish some time scale for the

applicability of the TTF.

Finally, we extended the TTF description to include massive scalars, as well as time dependent

boundary conditions. We saw that some of the symmetries that lead to the natural vanishing of two

of the three resonance channels were broken by the presence of mass-dependent terms. In such cases,

the renormalized amplitude and phase equations include contributions from multiple resonance

channels. The inclusion of non-zero boundary terms requires the activation of non-normalizable

modes. We explicitly calculated the O(ε3) source term for several choices of non-normalizable

frequencies, which – unlike normalizable modes – are not constrained to be fully integer. Because

energy enters the bulk through the boundary term, the evolution of such pumped systems will differ

qualitatively from adiabatic evolution. The focus of future work will be constructing equilibrium

solutions and analyzing their evolution. Like the more familiar massless scalars, there must exist

inverse energy cascades to balance the transfer of energy to short length scales, thereby providing
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stability against collapse. This has yet to be addressed in the literature.

As research continues into the stability of Anti-de Sitter space, we will develop a better under-

standing not only of gravitational collapse, but also of dynamical processes in the strongly-coupled

regimes of the dual theories. We have seen that even the simplest case, that of a minimally-coupled

scalar field, has uncovered a surprising breadth of phenomena. Constructing a holographic dual to

a realistic system, such as the high energy collision of heavy ions, introduces myriad complexities

that may produce even more intriguing results. With each new discovery, we will gain a greater

appreciation for curious relationship between gauge theories and higher-dimensional gravity.
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