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Abstract

The gravitational collapse of a minimally coupled scalar field in (d 4 1)-dimensional Anti-de Sitter
spacetime is examined via a collection of manuscripts that are, or are in the process of, being
published. First, the results of the numerical evolution of the 5-dimensional nonlinear Einstein
equations are used to construct a phase diagram of collapse behaviours, taking the mass and width
of the initial profile as parameters. Next, we test the limits of a family of perturbative solutions for
massless scalars with static boundary conditions in AdS,. Finally, we derive set of flow equations
for the time evolution of a massive scalar field in the perturbative description of AdS, with time-

dependent boundary conditions.
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1 Introduction

As experimental research into quantum information, condensed matter, and nuclear physics con-
tinues to reach new levels of precision, progress in developing theoretical predictions in these fields
is hindered by a fundamental problem: in strong coupling regimes, the perturbative methods that
underpin theories such as Quantum Electrodynamics become invalid. This is because such systems
are highly nonlinear. While some progress is possible by employing numerical schemes such as
lattice approximations, analytical results remain beyond our current mathematical understanding.
In order to make progress, a new paradigm was required. By considering different coupling limits
of a single string theory, [1] established a holographic description between strongly-coupled gauge
theories and weakly-coupled gravitational theories in one higher dimension. Since its inception,
this duality has been further developed into a dictionary that relates the fields in the gravitational
theory to operators in the gauge theory. The Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence allows strongly-coupled quantum processes to be reliably examined via geometric
quantities in the dual theory. This duality has become a standard tool for theoretical physicists
studying all kinds of dynamic processes in quantum theories, including the out-of-equilibrium dy-

namics of quantum theories at strong coupling.

The goal of this thesis is to leverage the AdS/CFT correspondence to study the dynamics of strongly
coupled quantum theories through their dual description as a weakly coupled gravitational theory.
To do so, we focus on minimally coupled scalar fields in Einstein-Hilbert gravity on AdS back-
grounds. Existing entries in the gauge/gravity dictionary will motivate the systems that are con-
sidered, and existing literature will point to areas within the topic that have yet to be explored.

The nonlinear stability of the theory will be studied via both numerical and analytical methods.
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We will see that gravitational collapse in the bulk theory signals a phase transition in the dual
gauge theory, and so examining the dynamics of the collapse is tantamount to understanding time

dependent processes in the boundary theory.

This thesis embodies the results of three manuscripts that either have been, or are about to be,
submitted for publication. In chapter 2, we examine the limits of the nonlinear stability of AdSs
by examining the range of behaviours exhibited during nonlinear evolution by differing initial data
with static boundary conditions. Next, in chapter 3, we examine quasi-periodic solutions to the
perturbative description of a massless scalar field in AdS,, again with static boundary conditions.
Finally, in chapter 4 we consider the addition of a time-dependent source term on the conformal
boundary of the gravitational theory and derive the renormalization flow equations for the first

non-trivial order in the small-amplitude expansion. A discussion of the results follows in chapter 5.

However, before utilizing the correspondence to study any particular process, we first review the
main tenet of the gauge/gravity duality and its consequences: that there exists a fundamental
relationship between a conformal field theory in d-dimensions and a gravitational theory in (d+ 1)-

dimensions.

1.1 The AdS/CFT Correspondence

It was shown by [1] that a non-perturbative correspondence existed between superconformal field
theories and supergravity theories on various spacetimes. Although originally conjectured from the
perspective of string theory, more modern reviews of the gauge/gravity duality establish a gravita-
tional theory as arising from the strong coupling limit of a gauge theory; see [2] for a review. We will
use this paradigm to heuristically motivate the duality, as well as introduce relevant relationships

between quantities in either theory.



1.1.1 Extra Dimensions In Gauge Theories

Although [1] was the first to establish explicitly a correspondence between a gravitational theory
in (d + 1)-dimensional AdS and a conformal field theory in d-dimensions, the concept of a holo-
graphic relationship between a gauge theory and a gravitational theory in one higher dimension was

conjectured earlier by [3] and [4] without relying solely on string theory.

For most gauge theories, there is a running of the coupling that dictates the evolution of the cou-
plings with energy. Therefore, the physics of the theory is local with respect to an extra dimension,
the energy. However, since many gauge theories suffer UV divergences at large energies, the size of
the extra dimension may be limited. In contrast, some supersymmetric theories have vanishing beta
functions; therefore, there is no running of the coupling. In this case, the energy scale is arbitrary

and the extra dimension of the theory has no bound.

The vanishing of the beta function also indicates that the conformal invariance of the theory is
unbroken; conformal invariance requires (among other things) that the theory remain invariant
under rigid scale transformations by a unitless constant a, such that x* — ax*. Interpreting the
energy scale as an extra dimension, r, we require it to transform in the same way as energy, so that

r — r/a. The most generic metric that also obeys Poincaré plus scale symmetries is

2
ds* = a_2 (Nuwdz"dz” + d2?) | (1.1)
2

where z = a?/r. This is precisely the metric for the Poincaré patch of Anti-de Sitter space with

characteristic length a.

More than being an a posteriori observation, the gauge/gravity correspondence is in fact a much
deeper and more specific relationship. The derivation of the duality is thoroughly covered from the
full string theory perspective in, among others, [1,2,5,6]. For now, let us establish the duality that
will be most applicable to us: the duality between type IIb supergravity on AdS;xS® and N = 4

supersymmetric Yang-Mills theory in (3 + 1)-dimensions.



1.1.2 The AdS;xS° Duality

Consider a stack of N coincident D3-branes in type IIb string theory (ten Minkowski dimensions),
each of which couple to gravity with strength g,. At weak coupling, g;N < 1, there are closed string
states as well as open strings that end on the branes and have an SU(N) super-Yang-Mills effective
action. At strong coupling, however, the branes curve the background and source an extremal
black-brane geometry [7], whose metric is

A g N0
+

ds® = f(r)_1/27]#,,dx“dx” + f(?“)l/2 (dr2 + TQng) with  f(r)=1 (1.2)

r

where the # span the worldvolume of the D3-branes, d)2 is the metric of the unit 5-sphere, and

s is the length of the string.

Now we take the low-energy limit of the theories at either coupling limit. At weak coupling, the
open strings decouple from the closed strings, resulting in an SU(N) super-Yang-Mills gauge theory
on the brane worldvolume. In the g,N > 1 case, the low-energy limit corresponds to the near-
horizon limit, » — 0. In this limit, the 10D metric factors into the product AdS;xS°. To see this,

we define £ = (47g,N)"/*4,, so that f1/2(r) — £?/r? in the near-horizon limit and (1.2) becomes

r? , P
ds?® = ﬁnuyda:”dx + ﬁdr2 + (2dS2 . (1.3)
Note that the branes are now located at the bottom of the infinite throat. Any states near the
horizon will be redshifted to low energies and any states in the asymptotic region will decouple
from states near the black branes; all that remains are closed string states, i.e. supergravity, on an
asymptotically AdSs background. This motivates the duality we will examine in detail: the one

between scalar fields in AdS;xS°® and a supersymmetric SU(N) Yang-Mills gauge theory on the
boundary of AdSs.

Given that we now know what string theory we are working with, we can more directly relate the
dimensionless parameters of the string theory (i.e. the string coupling gs and AdS scale in string

4



units, ¢/{s) to the dimensionless parameters of the CFT (i.e. the Yang-Mills coupling gy, and
colour number N). By examining the D3-brane Lagrangian, we are able to relate gy, and g

through 4mg, = g%,,;. Altogether,

A /
dmg, = g%M ~ N and 7 = (47rgSN)1/4 ~ )\1/4, (1.4)

where \ is the 't Hooft coupling A = g,N = ¢2,,N. To remove stringy corrections to the geometry,
(/ls > 1 so that the AdS length is much larger than the string length. Furthermore, string
interactions are suppressed when g, < 1. Thus, the bulk theory approaches classical Einstein-

Hilbert gravity when N > A > 1.

By considering other superstring avatars, such as M-theory!, we are able to establish similar dualities
between gravitational and conformal field theories. In particular, the M-theory equivalent of D2-
branes, M2-branes, are used — along with corresponding coupling limits — to establish a duality
between a gravitational bulk theory on AdS;xS” and a CFT in (2 + 1)-dimensions [1]. In fact,
many such dualities can be constructed through applying different compactifications and/or sources
in the extra dimensions, each of which describes a different type of CFT on the boundary. For a

review of other types of holographic constructions, see e.g. [9, 10].

1.2 The Gauge/Gravity Dictionary

With the existence of the duality now motivated, we turn to what kind of predictions arise from the
correspondence. In particular, we wish to establish what physical quantities in either theory can
be related through the AdS/CFT correspondence. In fact, many such relations arose from efforts
to find counterexamples to the correspondence in the hopes of disproving it. Instead, each attempt
confirmed the AdS/CFT correspondence and became an entry in the so-called dictionary. Here we
will provide a few example cases to motivate how quantities on either side of the correspondence

can be related.

I'M-theory is the strong-coupling limit of type Ila superstring theory on 11D spacetime, and can be mapped to
the other 10D superstring theories through choices of compactifications and length/coupling dualities [8].



Symmetries

Consider the symmetries present in the AdS;xS° bulk theory. A (p+ 2)-dimensional Anti-de Sitter
space can be presented by the hyperboloid X§ + X2 , — >0 ' X2 = R? in a (p + 3)-dimensional

space with the metric
p+1

ds? = —dX3 — dX2 .+ Z dx?. (1.5)

The choice of Xy = Rcoshp cosT, X,yo = Rcoshp sinT, and X; = RsinhpQ; withi=1,...,p+1,
0<p, 0<7<2m and ), Q =1 covers the hyperboloid exactly once, and is known as global

coordinates. In these coordinates, the metric on AdS, s is
ds* = R* (- cosh? p dr® + dp? + sinh® p ) . (1.6)

A common coordinate redefinition of tanz = sinh p maps spatial infinity to x = 7/2, and allows

(1.6) to be written as

2
ds® =

(—d7* + do* + sin® z dQ?) . (1.7)

cos? x

Another common parameterization of AdS is a set of coordinates that cover half of the hyperboloid
(1.5), known as Poincaré coordinates. These set Xy = (1 + 2*(R* 4+ 7% — %)) /22, X,42 = Rzt,
XPHl = (1 - 22(R? — 7% +1?)) /22, and X' = Rza', withi=1,...,p, 2 > 0, and Z € RP. Thus, the

metric of AdS, s in the Poincaré patch description is

d2
ds* = R? ( — + 22(—dt? + d:)?2)> : (1.8)

From the description as the hyperboloid in (1.5), AdS,;2 has the isometry SO(2,p + 1), and is
homogeneous and isotropic [6]. The global coordinate representation helps us to interpret the

maximal compact subgroup of SO(2,p+ 1), SO(2) x SO(p + 1), as constant translations in 7 plus



rotations of SP. Likewise, the Poincaré coordinates describe the symmetries of AdS in terms of
the Poincaré transformation on (¢,Z) plus the dilatation transformation (¢,7,2) — (ct,cZ, c12)
for z > 0. Finally, invariance under special conformal transformations makes the Poincaré patch

description of AdS fully invariant under conformal coordinate transformations.

In particular, a bulk theory on AdS;xS® has SO(2,4) x SO(6) symmetry. The N = 4 super-
Yang Mills theory on the boundary of this space has an SO(2,4) isometry from its conformal
invariance, as well as SU(4) ~ SO(6)* R-symmetry that relates the six scalar fields and four
fermions of the theory [1]. Therefore, the spatial isometries of the bulk space are interpreted
as global symmetries of the boundary theory. Additionally, the supersymmetries inherent in the
original type IIb superstring theory remain unbroken by the strong/weak coupling limits. Hence,

the gauge/gravity correspondence conserves the symmetries of both theories.
Observables

Besides matching symmetry groups and relating dimensionless parameters, the AdS/CFT corre-
spondence is able to produce more physically relevant relationships involving observables in either
theory. Omne such concrete example comes from relating the asymptotic behaviour of bulk fields
to the expectation values of operators in the boundary theory: a bulk field in Poincaré AdS with
metric (1.1) has leading-order value ¢(® as z — 0 (i.e. as the conformal boundary is approached)
and acts as a source for an operator O on the boundary. Furthermore, by examining the next-to-
leading order contribution to the bulk field, ¢(!); it can be shown that the expectation value of the
operator is given by (O) oc (V) [11]. In §1.3.1, we use the gauge/gravity duality to calculate the

mass dimension of the boundary operator O.

Another such example is the quark anti-quark potential in the boundary theory. In the gauge
theory, this can be calculated via the Wilson loop W(C), where C is the closed loop connecting the
quark worldlines. The bulk interpretation of the Wilson loop is the extremized proper area of a

string worldsheet anchored on C and extending into z > 0 [12].

2At the level of the Lie algebras.



Entanglement Entropy

A significant utilization of the gauge/gravity duality comes from its unique ability to relate quantum
characteristics of the gauge theory to geometric ones in the bulk. Among the most quantum of all
characteristics is the spatial distribution of quantum correlations within a system, given by the
entanglement entropy. For a given subsystem M of a local field theory with reduced density matrix
pm, the entanglement entropy is given by the Von Neumann entropy Sy = —TrpymInpa. In

practice, M is a spatial region that is bounded by the entangling surface OM.

In the strong coupling limit, calculating the entanglement entropy can be prohibitively difficult.
However, using the AdS/CFT correspondence it has been shown that Sy is given by a quarter
of the area of the minimal surface at constant time in the bulk that is anchored on OM [13].
Further properties of the entanglement entropy were subsequently shown to also have dual geometric

descriptions in the bulk [14].
Partition Functions

Since the underpinning of the AdS/CFT correspondence is taking different limits of the same theory,
it is natural that the partition functions of either limit must still agree. We have already seen in
§ 1.1.2 that the weak coupling limit of the type IIb string theory is supergravity (SUGRA) in the
bulk, while the strong coupling limit gives a supersymmetric (SUSY) Yang-Mills gauge theory on
the boundary. The gauge/gravity duality allows us to relate the two limits of the partition function:

e_SSUGRA ~ 7

—Wsusy
string = Zgauge €

) (1.9)

where W is the generating functional for connected Green’s functions in the gauge theory.

Consider a massive bulk field ¢(7, z) that takes the value ¢¢(Z) on the conformal boundary. We then
solve the bulk equations of motion away from the boundary (i.e. z > €) subject to Dirichlet boundary
conditions. The leading term in the epsilon expansion of the bulk field is ¢(Z, 2z =€) ~ AF ®o(T),

where the scaling dimension A* will be explicitly derived below. By definition, Ssygra is extremized



by this solution and so (1.9) becomes [15, 16]

lim (Ssvrana [6(7, Z)])L@,EH%@) ~ < / e ¢0(g7)0(f)>CFT , (1.10)

where O is the corresponding operator in the CFT. We will see that bulk scalar fields play an
important role in the dual description of the thermalization of a CF'T, as well as being a useful tool

to study the nonlinear stability of AdS itself.
Black Holes

Another important ingredient of the AdS/CFT correspondence was first mentioned in §1.1.2: black
holes. As discussed previously, the weak coupling limit of the N D3-branes produced an extremal
black-brane geometry given by (1.3), which is the Poincaré patch description of AdS. Since the
interaction cross-section of the branes with low-energy states in the bulk shrinks to zero, the ef-
fective geometry for these states is Anti-de Sitter. When discussing black holes in the AdS/CFT

correspondence, we are referring to black holes embedded within an AdS geometry.

The connection between black hole physics and thermodynamics was noted by [17], and has been
thoroughly examined since then. For a review of the thermodynamic properties of black holes,
see [18-20]. Tt suffices for our purposes to highlight a few key features of the thermodynamic
properties of black holes, and thereby motivate a correspondence between black holes in the bulk

theory and a gauge theory in thermal equilibrium on the boundary.
By considering quantum effects near the event horizon, it can be shown that black holes in AdS
emit particles whose thermal spectrum is equivalent to a black body of temperature [21,22]

(% +2r%)

Ty =
a 2 2

(1.11)

where rg is the size of the event horizon. When the black hole is placed in a geometry with a
conformal boundary, it will be in thermal equilibrium with its Hawking radiation, and a stationary

observer at asymptotic infinity will observe a black body spectrum corresponding to the tempera-



ture Ty [23]. The black hole will have positive specific heat, and therefore be thermodynamically
stable, for £ < ry so that Ty ~ ry/mf* [24]. Black holes with event horizons that are small com-
pared to the AdS radius are akin to black holes in asymptotically flat spacetimes in that they are

thermodynamically unstable.

Now consider the partition function for a thermal system in contact with a heat reservoir at tem-
perature 37!. The quantum partition function involves the trace over the eigenvectors of the

Hamiltonian,

Z=Tre P = / dg (q| exp(—BH)|q) (1.12)

The trace then reduces to a sum over only the periodic states [25]

7' (B)=q ,
q'(0)=¢

where Sg is the Euclidean action. Equivalently, we may sum over all states but impose the period-

icity condition 7 ~ 7 + (3.

As an example, we place a quantum theory on the background of Schwarzschild black hole in

asymptotically flat spacetime. After Wick rotating ¢ — 7, the metric is

2GM 2GM\
d32:+<1— (i )d72+<1— (i ) dr® 4+ r2dQ3 . (1.14)

Note that within the horizon r < 2GM, the metric of (1.14) is no longer Euclidean but instead is
diag(— — ++), unlike the Lorentz signature metric where the time and radial position change roles
without changing the signature. Taking the near-horizon limit, we see that the metric develops
a conical singularity. To resolve the singularity at r = rg, we require that the Euclidean time

be periodic such that 7 ~ 7 + 27ry [26]. By matching this condition on 7 with the one from

10



finite-temperature quantum system, we can see that

black hole: 7~ 7+ 27ry
f~2mry = T ~1/27ry. (1.15)

CFT: 7~7+40

Therefore, the temperature of the thermalized CFT is equal to the Hawking temperature of the
black hole.

A non-trivial check of this duality comes from a comparison of the entropies of the two systems. In
the bulk, the Bekenstein-Hawking relationship relates the entropy of a 5D black hole to the surface
area of the horizon [17]

A 3 ES T3 611
AGO) g8 g2l8

~ N?T} 3 (1.16)

where we have used the fact that the gravitational constant scales as G@ ~ ¢2(?=2 as well as (1.4).
On the other hand, the entropy of a 4D gauge theory with temperature 7% in the limit of weak

coupling?® is [2]
Syn ~ N°Tp . (1.17)

This agreement shows that the gauge theory possesses enough states to match the entropy of black

holes in AdSs.

1.3 Gravitational Collapse of Scalar Fields

The picture thus far is this: using the AdS/CFT correspondence, we are able to study strongly-
coupled gauge theories through their holographic dual, which is a gravitational theory in Anti-

de Sitter space with a conformal boundary. We have also seen that black hole solutions in the

3In the strong coupling limit, the Yang-Mills degrees of freedom are interacting and the entropy calculation is not
straightforward. However, the weak coupling limit can be smoothly interpolated to the strong coupling limit via a
numerical factor that does not affect our comparison [2].
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bulk correspond to thermal states in the boundary theory, and were able to derive the equilibrium
temperature of the thermal system by examining the Hawking temperature of the black hole. These
results concern stationary systems; indeed, equilibrium and near-equilibrium dynamics of thermal
gauge theories have holographic descriptions that are already understood (see [27], etc. for reviews).

But what about the dynamics of the thermalization?

Consider some gauge theory that is subjected to a homogeneous injection of energy on a very short
time scale such that it is instantaneously far from equilibrium. The subsequent evolution towards
a new equilibrium state is known as a quench. Quenches can result in thermal states, meta-stable
configurations, or may never equilibrate [28]. For example, the infall of a spherical shell of matter
(scalar field) in AdS is used as a model for the quench of a coherent state in a gauge theory. The
radial position of the shell in the bulk acts as a scale to measure the typical separation of entangled
excitations [29]. As the shell falls towards the origin, one of two things can happen: if the shell has a
high enough mass density, a black hole forms which signals the thermalization of the gauge theory;
if the shell does not collapse, it can pass through itself and begin expanding. Once the shell reaches
the AdS boundary, the matter is reflected (under appropriate boundary conditions) and begins the
infall again. This cycle of bounces is the holographic dual of so-called revivals in the quantum
theory [30,31], and has been used to help explain results from cold atom experiments [32, 33].
The negative curvature of AdS allows for states that do not immediately thermalize to oscillate
around the minimum of an effective potential, undergoing repeated gravitational focusing with each
oscillation. Therefore, unlike in asymptotically flat space, thermalization can occur at long times
with respect to the light crossing time. One may also wish to investigate other non-equilibrium
processes, for example the spontaneous breaking of a discrete symmetry in the boundary CFT. The
holographic dual description is the evolution from a bulk black hole to a hairy black hole [34, 35].
However, the focus of the work in this thesis will be to study the dynamics of thermalization from

a coherent state via the collapse of a scalar field.
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1.3.1 Scalar Fields in Holographic AdS;.,

To determine the solution for a massive scalar field ¢(Z, z) in AdSy,1 space, we begin with the

(non-canonically normalized) bulk action for the free field

G(d+1)

Sl¢] = — 5 /dde V=9 (92040050 + 11*¢*) + Sgw , (1.18)

where GV is the (d + 1)-dimensional Newton’s constant and Sgy is the Einstein-Hilbert action.
We choose Poinaré patch coordinates and use the metric in (1.1) to describe the background geom-
etry. When integrating (1.18) by parts we must be careful to retain any surface terms since, unlike

for flat spacetimes, they will not go to zero. With this is mind, we find that

(d+1)

2

G(d+1)

St =~ [ d1ay=g6 (-0 s¥) 6 -

/ do/ T g Poopo,  (L19)
0AdS

with O¢ = (—g)™"204(/—g g*205)¢ and 7 equal to the induced metric on the boundary. Taking

@(Z, ) to be of the form ¢(Z, 2) = exp(ik,z*) fi(2), the wave equation becomes

1

0=—

7 (K7 = 210.(:710.) + m*(?) fi(2) (1.20)

The solutions to (1.20) are Bessel functions. To motivate two additional entries in the AdS/CFT
dictionary, it suffices to examine only their behaviour as we approach the conformal boundary at
z = 0. Near this boundary, the Bessel functions scale like a power law in z. Substituting fi(z) oc 22

into the equation above gives

0= (k2> — AA —d) + p°0?) 22 (1.21)
Or, in the limit z — 0,
292 + d d?
P =AMA=d) = AT =Rl (1.22)
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N.B. requiring that the energy of the scalar field be real means that the factor inside the square root

4

of (1.22) is either positive or zero?. The mass-squared must then be p?¢?> > —d?/4, a restriction

known as the Breitenlohner-Freedman bound [37].

Of the two values permitted by (1.22), only A* remains positive for any number of dimensions.
Therefore, near the boundary this contribution goes like ZA+QZ50(I_") and remains finite as z — 0.
We will refer to solutions with this type of boundary scalar as normalizable solutions in subsequent
chapters. Conversely, the second solution goes like 22~ ¢o(Z) near the boundary, and if A~ < 0 this
contribution diverges. These are known as the non-normalizable solutions.

We can now use the scaling of ¢(Z, z) near the boundary to derive the scaling dimension of O(Z),
which tells us how relevant that operator remains with renormalization group flow. First, note that
the induced metric on a cut-off surface placed at z = € in (1.19) is

£2

ds? = e—znm,dx“dx” = Y datdz”, (1.23)

and that the coupling between the field and the operator given in (1.10) is more correctly written in

terms of a limit of a bulk interaction. The non-vanishing part of ¢ near the boundary contributes

d
lim / Ao /7 O(F, 2 = O(F,¢) =lim [ dia ({) (EA‘%(@) O(Z,e). (1.24)
€0 ) =c dAdS

e—0 €

Since the action must be finite as ¢ — 0, we have that O(Z,€) ~ €l Oy(T) = €12 Oy(T) =
2 O(Z), where Oy(F) is the operator in the CFT. Thus, the value of AT determines the rescaling

of the operator under the scaling symmetry of the CET [38].

Our primary application of the AdS/CFT correspondence will be to examine in detail various
processes in the bulk given that we have a dictionary to translate the solutions to the boundary
gauge theory. In particular, we wish to consider the thermalization of states of the CFT through

their dual description of the formation of a black hole in the bulk. In this case, the spacetime

4An equivalent restriction is that AT € R since operators in a CFT with complex scaling dimensions violate the
unitarity condition of the theory [36].
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metric will initially be described by global AdS but will evolve into a Schwarzschild metric once
collapse has occurred. By solving for the evolution of metric functions that interpolate between
these two solutions, we are able to track the process of gravitational collapse. Note that our
discussion above has been written in terms of the boundary behaviour of the scalar field in Poincaré
coordinates, which were introduced in (1.8). In order to examine the behaviour of a CFT when
energy is not allowed to disperse, a more suitable choice of coordinates is global coordinates, which
were introduced in (1.7). As we approach the conformal boundary in the bulk — corresponding to
x — m/2 in global coordinates — one may choose a new radial coordinate § = x — 7/2 so that the
boundary limit in global AdS is equivalent to # — 0. Expanding the scalar field in this regime gives

the same power law falloff as the Poincaré coordinates, but this time with respect to 6.

Following [39], we begin by writing the metric of asymptotic AdS;;; in Schwarzschild-like coordi-
nates

62

2 _
ds” = cos? (x /1)

(Ae 2dt* + A~ da? sin® (z/€) dQ") | (1.25)

where x € [0,7/2) and © = 7/2 corresponds to the conformal boundary. The metric functions
A(t,z) and d(t,z) are functions of only two variables due to the spherical symmetry. We will
hereafter work in units of the AdS length scale, setting ¢ = 1. The Einstein and Klein-Gordon
equations for the minimally-coupled scalar field ¢(t, x) are

1

Dur/—q ™0y — 12 = 0. (1.26
7= V=990 — 1i°¢ (1.26)

Gap + Agap = 87 (Va¢vb¢ - %gab< (V(b)z - ,u2¢2)) and

The canonical equations of motion are [40]

Oy (PAetan®(z))  p2e ¢
tan?=1(z)  cos?(z)’

o = Ae I, 0 =0, (Ae’lI), and 9ll= (1.27)
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where the momentum is I1(¢,7) = A~'e?0;¢p and ®(t,z) = 9,¢. The metric functions obey

0,6 = —(I1* + ®?)sin(x) cos(z), A=1-—

2M sin(x)
(d—1)tan®*(z)
A(II2 + ?) (262
2 T3 cos?(x)

(1.28)

0, M = tan®!(x)

with the mass function M (t,z) subject to the conservation equation 0,M(t,x = 7/2) = 0. The
value of §(t, z) at either boundary is set by a gauge choice. Finally, the spherical symmetry of the
system requires that ®(¢,0) = 0. Without imposing extra conditions at the outer boundary, there
are two classes of solutions for ¢(¢, x) based on their scaling as  — /2. For now, we consider only

AT

the normalizable class, i.e. solutions that scale as (cosz)® near the conformal boundary.

Expanding the scalar field and metric functions in terms of some (small) constant e:

o(t,x) = i i (t, ), Alt,r)=1-— iGZjAgj(t, z), o(t,x)= i € 89;(t, ). (1.29)
Jry =1 j=1

At linear order, the gravitational system obeys

(d—-1)
sin(x) cos(x)

O} = ( 0, + 02 M—Q) ¢1=—L¢y . (1.30)

 cos?(z)

Separating the time and position dependence, we seek the normalized eigenfunctions e;(z) that

satisfy Le;(x) = w?e;(z). These are the Jacobi polynomials:

d_ A% _d
ej(z) = k; cos®™ (x)Pj(2 bATY)

(cos (2z)) . (1.31)

The eigenvalues have the simple form w; = 2j + A%, with A* given by (1.22).

Solutions to the linearized equations of motion are stable at all times [41]. However, beyond linear
order there are instabilities at O(€*) due to secular terms, which are terms that grow larger with time.
These terms cannot be removed by frequency shifts and arise from resonances in the spectrum of

the scalar fields [42]. Various resummation [43] and multi-scale techniques [44] have been developed
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to describe the growth of such terms within the perturbative description. These methods will be

used in chapters 3 and 4 to absorb the resonant terms into renormalized integration constants.

The end point of the evolution of nonlinear bulk scalar fields can be generally categorized into
either stable (those that resist gravitational collapse over long® time scales) or unstable (those that
collapse immediately or at the perturbative timescale) configurations. In exploring these solutions,

we will find a rich landscape of behaviours that lie between these more simple classifications.

1.3.2 Nonlinear Stability & Instability

Before focusing solely on the collapse of generic scalars in Anti-de Sitter space, it is worth noting that
the stability of AdS,.1 has also been probed previously in several ways. Soliton solutions — a general
class of localized field configurations — can be constructed in asymptotically-AdS, spacetime [45].
When solitons were given charges in AdSs, their evolution exhibited phase transitions, such as the
development of black hole solutions with scalar hair, that are indicative of spontaneous symmetry
breaking in the boundary theory [46]. A similar type of field configuration is known as an oscillon.
These too are localized, long-lived scalar field configurations generic to all background curvatures,
but have time-dependent profiles [47]. It should be noted that these scalar field solutions were
constructed by numerical methods. Indeed, finding numerical solutions to the nonlinear Einstein
equations for a given field profile is a common practice; for a review on the methods used to construct

such solutions, see [48].

In general, asymptotically-AdS spacetime admits a variety of stable solutions [49,50]. So-called
boson star solutions are stationary, perturbatively stable, complex scalar field solutions [51]. Since
the AdS;xS° action is invariant under the global phase transformation ¢ — exp(—i6)¢, boson
stars carry a conserved charge, (). For small values of (), boson star solutions are related to oscillon
solutions [52]. They can be constructed from both massive and massless fields in asymptotically-

AdS spacetimes [53]. More recently, stable boson star solutions have been described in terms of a

5The definition of “long” is somewhat subjective, but generally taken as many multiples of the light-crossing time.
In the limit of € — 0, however, collapse never occurs.
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multi-oscillator description, wherein the scalar field is written as an infinite sum over normal modes
with non-integer frequencies [54]. Interestingly, studies of the evolution of massless scalars in AdSs
found that a critical mass existed below which black holes would not form and above which static
black hole solutions were supported [55]. However, the black holes formed by the collapse may or

may not support scalar hair [56-59]. For a review of the stability of AdSs, see [60].

Gravitational instability has been studied in more general contexts than the ones we will focus on
here. Preliminary examinations of the onset of instability in a gravitational theory coupled to a
scalar field focused on the case of a flat background geometry. For generic initial data parameterized

by p, [61] observed the following critical phenomena for spherically-symmetric solutions:

e If collapse is guaranteed for values p > p*, then as p — p*, black holes can be created with
masses M o |p—p*|?. The critical exponent v is independent of initial conditions and depends

only on the type matter. For a spherically symmetric, massless scalar field, v =~ 0.37.

e Just before the formation of the event horizon, the spacetime approaches a scale-invariant

solution — the critical solution — that is also independent of the initial conditions.

These characteristics are collectively known as Choptuik scaling, and are found in all critical grav-
itational collapses, independent of geometry, initial conditions, or boundary conditions [62—64].

Choptuik scaling of critical solutions for scalars in AdS is also well established [65,66].

The most influential examination of the nonlinear stability of AdS, was undertaken in [67], which
found that it was generically unstable to any perturbation with amplitude € > 0. This was particu-
larly surprising given that it was well known that flat spacetime required a minimum energy density
for a black hole to form. It was further demonstrated that generic massless scalars in AdS;,; would
collapse for all d > 3 [68,69]. However, as we discuss below in § 1.3.4, this was not the complete

picture.

Universal scaling of the horizon size (and therefore mass) was confirmed for critical data, as was scale
invariance just before collapse [70]. For the critical amplitudes ¢y > €; > €5 such that rg(e;) = 0, the

difference in horizon formation times between successive critical values follows ty(€;41) — t(€;) =~ ,
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the light-crossing time.

1.3.3 A Perturbative Description

In most cases, analytic solutions for the full evolution of critical scalars in AdSy,; are not possible
— the exception being AdS3 [71-74]. However, stable data are often able to be written in terms
of one or more spatial eigenfunctions of AdS,, 1, including the examples discussed in §1.3.2. The
turbulent transfer of energy to short length scales that precedes gravitational collapse is sufficiently
nonlinear that an analytical solution does not remain valid for all times. A perturbative theory,

however, is able to capture the weak nonlinearity of the system over timescales of ¢ ~ €2,

Recall the expansion described by (1.29). At first order in €, a linearized equation of motion for the
leading contribution to the scalar field has solutions that are given by sums over the normal modes
of AdSy41 (after imposing Dirichlet conditions at the conformal boundary). The backreaction on
the metric is described by the O(e?) equations for Ay and d,, which are integrals involving the
first-order solution ¢;. At O(€?), there is an inhomogeneous equation for the third order part of

the scalar field

07 63+ Lops = S (01, As, 03) . (1.32)

As described by [67], the source S®) contains resonant contributions that cannot be removed by
frequency shifts. Resonant contributions that grow with time are known as secular terms, and are
responsible for eventually triggering collapse by shifting the energy spectrum to high frequencies.
Because such secular terms appear beyond linear order, this effect is described as weakly turbu-
lent. Further investigation into the direct cascades of energy to higher modes confirmed that the

appearance of resonant terms in S® only when coherent phase conditions were met [75-77].

While scalar field with initial profiles that are dominated by a single linear eigenmode are nonlinearly
stable, the same cannot be said for mutli-mode initial data, i.e. data comprised of the addition of

one or more eigenmode. In this case, the presence of the extra modes allow for resonances to occur

19



and secular growth to lead to collapse at times of t ~ ¢72. In order to better understand how these
solutions maintained stability for times ¢ < ¢~2, [44] introduced a multi-scale technique wherein a
“slow time” 7 = €2t governed the transfer of energy between modes. This Two-Time Formalism,
or TTF, produced analytic expressions for the absorption of secular terms into the definition of
renormalized amplitude and phase variables [78-80]. Families of quasi-periodic solutions that extend
previous TTF configurations further expanded the space of perturbatively stable solutions [81-84].
Testing the limits of quasi-periodic solutions for massless scalar fields is the topic of the work

presented in chapter 3.

1.3.4 The Landscape of Solutions

The presence of perturbatively stable solutions within the TTF description spurred the search for
initial data that remained stable within the full, nonlinear theory. Generic initial data for a scalar

field with initial width o takes the form

o2

p(t=0,2)=0, [I(t =0,z) = € exp (_tanQ(x)) : (1.33)

Varying the width of the pulse and the mass of the field, it was found that “islands of stability”
existed within the space initial data where collapse would not occur below some threshold amplitude
(see figure 1.1 for one such example) [39,85-87]. Developing a fuller picture of these islands of
stability is a subject of ongoing research, and is one of the goals of the work presented in chapter 2.
While the majority of existing literature uses Gaussian initial data in AdS, and AdSs with Dirichlet
boundary conditions, more recent examinations of stability islands have included multi-oscillator

constructions and Neumann boundary conditions [88,89].

It is also worth noting as a matter of completeness that scalar field perturbations are not the only
type of instabilities that have been considered. Localized, self-gravitating solutions to the Einstein-
Maxwell equations in a vacuum are known as geons, and have long lifetimes with respect to the

characteristic periods of the system [90]. The excitation of a single (scalar) geon mode is stable in
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Figure 1.1: Horizon size xg and horizon formation time tg as a function of amplitude in AdSs for a
massive scalar field with o = 2 in (1.33). Instead of the periodic, discontinuous behaviour, there is some
minimal value €y below which black holes do not form. Used with permission from [39].

Anti-de Sitter space; however, any combination of two or more such modes becomes unstable [91].
This complements the conjecture that the stability islands in the space of scalar field data may
be anchored by linear modes. In asymptotically-AdS, spacetimes, stable geon solutions can be

constructed numerically [92,93]. AdS is unstable against all vector geon modes [94].

1.3.5 Driven Scalars

We have previously limited our discussion to the normalizable scalar field solutions, as these are
responsible for the weakly turbulent instabilities that lead to gravitational collapse. In general,
the linearized equations of motion (1.30) admit two types of solutions with two different scaling
behaviours near the boundary. The second set of solutions, which scale as z*~ as z — 0, are known
as non-normalizable solutions and are not restricted to integer frequencies. These solutions can

couple to time-dependent terms on the boundary, thereby carrying energy into the bulk, and are

known as driven, or pumped, scalar fields.

The emergence of new phases in a Conformal Field Theory as a function of driving frequency is
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known as Floquet dynamics [95,96]. The holographic dual to such a system is described by the
driving of a massless, complex, bulk scalar field by a time-dependent boundary term. The vacuum
bulk solution corresponds to a Floquet condensate on the boundary. Such solutions exhibit both
stable and unstable evolution over the space of initial data, with the unstable data branching into
two possible endpoints: the formation of a black hole in the bulk theory, or a horizonless, pulsating,
late-time solution [97,98]. For real scalar fields subject to monotonically increasing boundary
conditions, both stable and unstable data exist; however, unstable data can result in either a black
hole solution, or a limiting cycle. When periodic boundary conditions are considered, dynamically

stabilized big crunch singularities are possible for sufficiently high driving frequencies [99].

Despite constructing stable and unstable numerical solutions for driven scalars, analytic solutions
to the perturbative description of weakly turbulent instabilities has yet to extend beyond leading
order in the backreacton with the metric [100]. Capturing O(e?) instabilities in these driven scalar

systems is the focus of the work in chapter 4.

1.4 Summary

We have now seen how the AdS/CFT correspondence establishes a duality between strongly-coupled
gauge theories and weakly-coupled gravitational theories in one extra dimension. Using this cor-
respondence, various dynamical processes in strongly-coupled gauge theories can be explored via
the collapse of scalar fields in Anti-de Sitter spacetime. Furthermore, we have seen that the end
state of the theory depends on the initial profile of the scalar field, and that a large variety of both
stable and unstable phenomena are possible. However, a better understanding of the islands of
stability in the full theory, as well as the limits of the perturbative description, is still required.
Similarly, the incorporation of time dependent boundary conditions into a perturbative theory for
the weakly turbulent instabilities remains an outstanding issue. The work collected in this thesis

aims to address these issues.

The following chapters each contain a manuscript that is focused on research into one of the areas
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described above. After a brief discussion of how each project contributes to the resolution of these
issues, the contributions of the authors are laid out. The work itself is then presented. A discussion
of how these works contribute to a better understanding of gravitational collapse in Anti-de Sitter

space follows in chapter 5.
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2 Nonlinear Evolution of Massive Scalar Fields in

Anti-de Sitter Spacetime

As mentioned in §1.3.2, within the space of initial data for massive scalar fields in AdSy,; there are
islands of stability for Gaussian momentum profiles where collapse does not occur for sufficiently
small perturbations. Examining the dependence of the end state (stable, unstable, or otherwise) on
the initial conditions has been the goal of previous works, such as [39,101] and others. However,
the limit of small but non-perturbative amplitudes requires significant computing resources and has
only recently become computationally accessible. The goal of the work presented here is to leverage
the computing resources available through Westgrid and Compute Canada to examine the broadest

possible range of initial parameters.

2.1 Contributions of Authors

The research covered in this work built upon on the numerical solving methods first utilized as
part of [39,101] to examine nonlinear instabilities in the full Einstein/Klein-Gordon system of
massive scalars in AdSgy1. The goal of this work was to expand the space of initial data being
considered and thereby chart the islands of stability. Previous work had identified these islands and
commented on the transition regions between stable and unstable configurations, but had avoided

the computationally costly simulations required for cases on the “shoreline.”

My role involved running multiple, simultaneous simulations over different heterogeneous computing

clusters through the Westgrid network of the Compute Canada consortium. I was responsible for
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6

roughly 184 core years® worth of simulations over the course of this work.

To perform the data analysis required, I wrote new plotting programs that interfaced with existing
data types while also providing extensions specifically for this project. For example, code for plotting
the horizon formation time tg against the amplitude of the perturbation € was rewritten in python
with a range of fitting options for critical data above a specified ¢;; (see plots and insets in figure 2.4
along with fitting parameters in table 2.1). T also programmed and performed all of the convergence
tests included in appendix 2.A that verified the evolution of the data. Of particular importance was
discerning the reliability of the solutions for irregular data. In figures 2.A.4 and 2.A.5, the order of
convergence () is calculated for irregular data. These tests help to validate important observations

of chaotic evolution, even for massless scalars.

As is common for these types of projects, all members of the collaboration were equally involved in
the interpretation of the data, as well as the late stages of editing. Authors are listed alphabetically

and it is understood that all members contribute equally to the publication.

SFrom the Compute Canada website: “a core year is the equivalent of running computations on a CPU core
constantly for a period of one year.”
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We diagram the behavior of 5-dimensional anti-de Sitter spacetime against horizon formation in the
gravitational collapse of a scalar field, treating the scalar field mass and width of initial data as free
parameters, which we call the stability phase diagram. We find that the class of stable initial data
becomes larger and shifts to smaller widths as the field mass increases. In addition to classifying
initial data as stable or unstable, we identify two other classes based on nonperturbative behavior.
The class of metastable initial data forms a horizon over longer time scales than suggested by the
lowest order perturbation theory at computationally accessible amplitudes, and irregular initial
data can exhibit non-monotonic and possibly chaotic behavior in the horizon formation times. Our

results include evidence for chaotic behavior even in the collapse of a massless scalar field.
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2.2 Introduction

Through the anti-de Sitter spacetime (AdS)/conformal field theory (CFT) correspondence, string
theory on AdSs x X° is dual to a large N conformal field theory in four spacetime dimensions
(R x S® when considering global AdS5). The simplest time-dependent system to study in this
context is the gravitational dynamics of a real scalar field with spherical symmetry, corresponding
to the time dependence of the expectation value of the zero mode of a single trace operator in the
gauge theory. Starting with the pioneering work of [67-70], numerical studies have suggested that
these dynamics may in fact be generically unstable toward formation of (asymptotically) AdSgy1
black holes even for arbitrarily small amplitudes. While perhaps surprising compared to intuition
from gravitational collapse in asymptotically flat spacetimes, the dual picture of thermalization of
small energies in a compact space is more expected. In terms of the scalar eigenmodes on a fixed
AdS background, the instability is a cascade of energy to higher frequency modes and shorter length
scales (weak turbulence), which eventually concentrates energy within its Schwarzschild radius. In

a naive perturbation theory, this is evident through secular growth terms.

However, some initial scalar field profiles lead to quasi-periodic evolution (at least on the time
scales accessible via numerical studies) at small but finite amplitudes; even early work [67,91] noted
that it is possible to remove the secular growth terms in the evolution of a single perturbative
eigenmode. A more sophisticated perturbation theory [42,44,78-80,82,102—-107] supports a broader
class of quasi-periodic solutions that can contain non-negligible contributions from many modes,
and other stable solutions orbit the basic quasi-periodic solutions [82]. Stable solutions exhibit
inverse cascades of energy from higher frequency to lower frequency modes due to conservation
laws following from the high symmetry of AdS (integrability of the dual CFT). Stable behavior
also appears in the full non-perturbative dynamics for initial profiles with widths near the AdS
length scale [52,108,109]; however, analyses of the perturbative and full dynamics in the literature
have not always been in agreement at fixed small amplitudes. For example, some perturbatively

stable evolutions at finite amplitude actually form black holes in numerical evaluation of the full
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dynamics [41,44,81]. Understanding the breakdown of the approximations used in the perturbative

theory, as well as its region of validity, is an active and important area of research [83,110-113].

Ultimately, the main goal of this line of inquiry is to determine whether stability or instability
to black hole formation (or both) is generic on the space of initial data, so the extent of the
“islands of stability” around single-mode or other quasi-periodic solutions and how it varies with
parameters of the physics on AdS are key questions of interest. The biggest changes occur in theories
with a mass gap in the black hole spectrum, such as AdS; and Einstein-Gauss-Bonnet gravity in
AdSs, which cannot form horizons at small amplitudes. While small-amplitude evolution in AdSs
appears to be quasi-periodic [31,60], there is some evidence to point toward late-time formation
of a naked singularity in AdS; Einstein-Gauss-Bonnet gravity [101,114] (along with a power law
energy spectrum similar to that at horizon formation). Charged scalar and gauge field matter [115]
also introduces a qualitative change in that initial data may lead to stable evolution or instability

toward either Reissner-Nordstrom black holes or black holes with scalar hair.

In this paper, we extend the study of massive scalar matter initiated in [39,85]. Specifically, using
numerical evolution of the full gravitational dynamics, we diagram classes of gravitational collapse
behavior as a function of scalar field mass and initial scalar profile width, which we call a stability
phase diagram in analogy to a phase diagram for phases of matter. This is the first systematic study
of behavior for classes of initial data in AdS gravitational collapse using two tuning parameters.
By considering the time to horizon formation as a function of the initial profile’s amplitude at
finite amplitude, we identify several different classes of behavior and indicate them on the phase
diagram. Finally, we analyze and characterize these different behaviors, presenting evidence for
chaotic behavior, including the first evidence for chaotic behavior in the horizon formation time of
massless scalar collapse, which has no length scale other than the AdS radius. Throughout, we work
in AdS;, due to its relevance to strongly coupled gauge theories in four dimensions and because
previous literature has indicated massless scalars lead to greater instability than in AdS, (the main

other case considered), which makes the effects of the scalar field mass more visible.

We note briefly two caveats for the reader. First, horizon formation always takes an infinite amount
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of time on the AdS conformal boundary due to the usual time dilation effects associated with
horizons; this agrees with the understanding of thermalization in the CFT as an asymptotic process.
Horizon formation times discussed in this paper correspond to an approximate notion of horizon
formation that we will describe below, but alternate measures of thermalization may be of interest.
Second, the black holes we discuss are smeared on the compact X° dimensions of the gravitational
side of the duality, as in most of the literature concerning stability of AdS, and we are particularly
interested in small initial amplitudes that lead to black holes small compared to the AdS scale. As
described in [116-118], small black holes in this situation suffer a Gregory-Laflamme-like instability
toward localization on X® (which may in fact lead to formation of a naked singularity). At the same
time, certain light stable solutions for charged scalars (boson stars) are stable against localization on
X5 [119]. We therefore provisionally assume that the onset of the Gregory-Laflamme-like instability

occurs only at horizon formation, not at any point of the earlier horizon-free evolution.

The plan of this paper is as follows: in section 2.3, we review the time scales associated with horizon
formation with an emphasis on the behavior of massive scalars and briefly discuss our methods.
Then, in section 2.4, we present the phase diagram of different stability behaviors, and an attempt

at heuristic analytic understanding appears in 2.5. We close with a discussion of our results.

2.3 Review

In this section, we review results on the stability of scalar field initial data as well as our methods

(following the discussion of [39]).
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2.3.1 Massive scalars, stability, and time scales

As in most of the literature, we work in Schwarzschild-like coordinates, which have the line element

(in asymptotic AdSgy1)

1

cos?(x)

ds® =

(—Ae?dt* + A da® + sin’(2)dQ ") (2.1)

in units of the AdS scale. In these coordinates, a horizon appears at A(z,t) = 0, but reaching
zero takes an infinite amount of time (measured either in proper time at the origin or in conformal
boundary time); following the standard approach, we define a horizon as having formed at the
earliest spacetime point (as measured by t) where A drops below a specified threshold defined in
§2.3.2 below. Of course, horizon formation represents a coarse-grained description since the pure
initial state of the dual CF'T cannot actually thermalize; a more precise indicator of approximate
thermalization may be the appearance of a power law energy spectrum (exponentially cut off) in
the perturbative scalar eigenmodes. This indicator is tightly associated with horizon formation

(though see [101,114] for some counterexamples).

A key feature of any perturbative formulation of the gravitational collapse is that deviations from
A =1,6 = 0 appear at order €2, where ¢ is the amplitude of initial data. As a result, horizons can
form only after a time ¢t ~ €¢~2; in the multiscale perturbation theory of [42,44,78-80,82,103,105-107],

2

there is in fact a scaling symmetry ¢ — ¢, — t(¢/€’)? that enforces the proportionality tg o< €72,

where ty is the (approximate) horizon formation time for unstable initial data at small amplitude.

At this point, it is worth making a small clarification. If the collapsing matter takes the form of a
well-defined pulse, horizon formation occurs when the pulse nears the origin. For massless matter,
that means that the ty is piecewise continuous as a function of €; each continuous “step” has
approximately constant ty and is separated from the next step by a time of approximately 7, the
light crossing time for a round trip from the origin to the boundary of AdS. Massive matter does not

reach the boundary, so the steps are not always separated by 7, and may in fact not be separated
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Figure 2.1: Classes of initial data for massless scalars and initial width o. Blue dots represent horizon
formation; red triangles indicate a lower limit for ty;. Red curves in subfigures 2.1b,2.1c are ty = ae™2 +b
matched to largest two amplitudes in the curve.

at all if the pulse spreads out in radius. In any case, though, the width of the steps decreases
drastically as amplitude decreases, so it becomes very difficult to find the transition amplitudes
numerically. In fact, adjacent amplitudes in a numerical sample are typically multiple steps apart

once the evolution is already long, which justifies using the perturbative scaling tg o< € 2.

Based on the perturbative scaling relation, initial data can be divided into several classes with
respect to behavior at low amplitudes, as illustrated in figure 2.1 for massless scalars. Stable initial

data evolves indefinitely without forming a horizon. In practice, we identify this type of behavior in
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numerical evolutions by noting rapid horizon formation at high amplitude with a vertical asymptote
in ty just above some critical amplitude. In our numerical results, we see a sudden jump at the
critical amplitude to evolutions with no horizon formation to a large time t;,, possibly with a
small window of amplitudes with large ¢ty just above the critical amplitude. In a few cases, we
have captured a greater portion of the asymptotic region. See figure 2.1a. Unstable initial data, in
contrast, forms a horizon at all amplitudes following the perturbative scaling relation tg o< €2 as
e — 0. In our analysis, we will verify this scaling by fitting ¢; to a power law as described in section
2.3.2 below; if we limit the fit to smaller values of €, the scaling becomes more accurate. Figure 2.1b
shows unstable data. The red curve is of the form ¢ty = ae~2 4+ b with a, b determined by matching
the curve to the data for the largest two amplitudes with ¢z > 60 (not a best fit); note that the
data roughly follows this curve. The categorization of different initial data profiles with similar
characteristic widths into stable and unstable is robust for massless and massive scalars [39]; small
and large width initial data are unstable, while intermediate widths are stable. One of the major
results of this paper is determining how the widths of initial data in these “islands of stability” vary

with scalar mass.

A priori, there are other possible types of behavior, at least beyond the first subleading order
in perturbation theory, that is, at finite e. Metastable initial data collapses with tg oc €7 P with
p > 2 at small but not arbitrarily small amplitudes (or another more rapid growth of ¢y with
decreasing amplitude). We will find this type of behavior common on the “shoreline” of islands of
stability where stable behavior transitions to unstable. As we will discuss further below, metastable
behavior may or may not continue as ¢ — 0; in principle, as higher order terms in perturbation
theory become less important, the behavior may shift to either stable or unstable as described above.
In principle, initial data that is stable at third order in perturbation theory but unstable at higher
order could have metastable scaling even in the e — 0 limit, though our numerical study cannot
address this case. We in fact find circumstantial evidence in favor of the different possibilities. In
the case that the e — 0 behavior is perturbatively unstable, the perturbative scaling ¢ty oc €2 only

appears for larger ¢y than the typical unstable case; it may therefore be reasonable for the reader
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to consider metastable initial data as part of a second order transition between unstable and stable
classes of initial data. Figure 2.1c shows metastable initial data that continues to collapse to times

ty ~ 0.6t;, but more slowly than €2

; note that ¢y for collapsed evolutions at small amplitudes
lies significantly above the curve t; = ae=2 + b (which is determined as in figure 2.1b). There was
one additional type of behavior identified by [39], which was called “quasi-stable” initial data at
the time since the low-amplitude behavior was not yet clear. We find here that these initial data
are typically stable at small amplitude but exhibit irregular behavior in ¢y as a function of €, so
we will denote them as irreqular initial data; irregular behavior may be strongly non-monotonic or

even exhibit some evidence of chaos. Figure 2.1d shows an example of irregular initial data. Later,

we will see more striking examples of this behavior for massive scalars.

We emphasize that we are not claiming that metastable or irregular behavior persist to arbitrarily
small amplitudes (though a priori metastable behavior could). In that sense, the multiscale per-
turbation theory suggests that the only two classes of stability behavior are stable and unstable

with ty o< €72

scaling as € — 0. However, it is also important to understand physics outside the
perturbative regime, and classifying the behavior of AdS when higher-order or nonperturbative ef-
fects contribute is still of interest. For example, it is clear that metastable initial data (as defined
precisely below) does not exhibit perturbatively unstable behavior for ¢ty values as small as other
unstable initial data, even in the cases where it may at all. This may help understanding the break-
down of the multiscale perturbation theory. Similarly, irregular initial data leads to qualitatively
different behavior even visually and suggests that nonperturbative dynamics are important. It is in
the spirit of looking beyond the multiscale perturbation theory that we call metastable and irreg-
ular initial data independent classes of behavior, even if they are not quite on the same standing

as perturbatively stable or unstable classes. This paper presents the first systematic mapping of

where these distinct behaviors appear.
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2.3.2 Methods

For spherically symmetric motion, the Klein-Gordon equation for scalar mass p can be written in

first order form as

¢ =Ac”’ll, &= (Ae’I) (2.2)
Ao tapnd-1 5,2

I, _(Ae tani (2)®) e 'p’¢ ’ (2.3)
’ tan?=1(x) cos?(x)

where II is the canonical momentum and ® = ¢, is an auxiliary variable. The Einstein equation

reduces to constraints, which can be written as

8. = — sin(z) cos(z) (1% + ®?) (2.4)
o -1 (H2 + CI)Q) 12

M, = (tan(z))* " | A 7 T Teol (@) (2.5)

Ay ot M (2.6)

where the mass function M asymptotes to the conserved ADM mass at the boundary = = /2. We
will restrict to d = 4 spatial dimensions. Since results are robust against changes in the type of
initial data [39], we can take the initial data to be a Gaussian of the areal radius in the canonical

momentum and trivial in the field. Specifically,

o2

M(t = 0,7) = eexp (-taDQ(‘”)) b= 0,2) =0. (2.7)

The width ¢ and field mass p constitute the parameter space for our stability phase diagram.

We solve the Klein-Gordon evolution equations (2.2,2.3) and Einstein constraint equations (2.4,2.5)
numerically using methods similar to those of [109] on a spatial grid of 2™ +1 grid points; we discuss
the convergence properties of our code in the appendix. We denote the approximate horizon position
ry and formation time ty by the first point such that A(xy,ty) < 277" In detail, we evolve the

system in time using a 4th-order Runge-Kutta stepper and initially use a 4th-order Runge-Kutta
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spatial integrator at resolution n = 14. If necessary, we switch to a 5th-order Dormand-Prince
spatial integrator and increase resolution near horizon formation. Due to time constraints, we do
not increase the resolution beyond n = 21 for any particular calculation; if a higher resolution would

be required to track horizon formation for a given amplitude, we exclude that amplitude.

To determine the stability class of initial data with a given width o, we allow evolutions to run to
a maximum time of t;,, = 500 in AdS units, so t;,, is a lower limit for ¢y for amplitudes that do
not form a horizon within that time. Normally, however, if the initial data appears unstable, we
only evolve amplitudes with tg < 0.6%5,,; this is partly to save computational resources and partly
to distinguish stable evolutions from collapsing ones. For unstable or metastable initial data, we
find the best fit of the form ¢y = ae™? + b to evolutions with ¢ty > t4;;, where ts; is a constant time
chosen such that amplitudes with evolutions that last longer are usually roughly perturbative;” in
practice, ty; = 60 gives results close to the perturbative result p = 2 for evolutions expected to be
unstable from the literature, but we will also consider ¢s; = 80,100 as described below. In other
words, since a given amplitude ¢ may be in the perturbative scaling regime for one set of initial
data but nonperturbative for another, we compare initial data at similar horizon formation times
(addressing the onset of perturbative behavior). Choosing tf; as above gives consistent values of
the fit parameters for the three values of ¢;;, for the largest and smallest initial data widths, which

are unstable.

2.4 Phase Diagram of Stability

Here we give our main result, the phase diagram of stability classes as a function of initial profile
width and scalar mass, along with a more detailed discussion of the scaling of horizon formation

time with amplitude for varying initial data.

The stability phase diagram for spherically symmetric scalar field collapse in AdSs, treating the

"The power law plus constant fits the leading and first subleading contribution to ¢y in a perturbative expansion
in €, and we have found that the subleading term is typically not negligible in the computationally accessible regime.
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Figure 2.2: Stability phase diagram as o function of initial data width o and scalar mass p. Blue
diamonds represent stable initial data, orange circles unstable initial data, green triangles metastability,
and red squares irregular behavior.

width o of initial data and scalar field mass ;1 as tunable parameters, appears in figure 2.2. Each
(i1, 0) combination that we evolved numerically is indicated by a point, with blue diamonds and
orange circles representing stable and unstable initial data respectively. The metastable class is
represented by green triangles, while the irregular class are represented by red squares. Note that
the graph has been divided into two regions with different scales, separated by a break: 0 < p <1
is pictured on the bottom, while 5 < u < 20 is pictured on the top. At a glance, two features of the
stability phase diagram are apparent: as u increases, the island of stability moves toward smaller
values of o and takes up a gradually larger range of 0. To be specific, the stable class of initial data
is centered at 0 = o ~ 1.4 and has a width of Ao ~ 0.7 for = 0,0.5, with 6 ~ 1.2 for p = 1. Ao
increases to ~ 1.1, and the island of stability is centered at & ~ 0.9 for u = 5,10, while Ao ~ 1.2
for p = 15,20 with the stable class centered at @ ~ 0.8. Note that the transition between “light

field” and “heavy field” behavior occurs for © > 1 in AdS units.

The metastable and irregular classes appear at the shorelines of the island of stability, the boundary
between unstable and stable classes. In particular, the slope of the power law ty ~ ¢ P as € — 0
increases as the width moves toward the island of stability, leading to metastable behavior. We find

metastability at the large o shoreline for all p values considered and also at the small o shoreline
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for several scalar masses. It seems likely that metastable behavior appears in only a narrow range
of o for larger p, which makes it harder to detect in a numerical search, leading to its absence in
some parts of the stability phase diagram. We find irregular behavior at the small o shoreline for
every mass and at the large ¢ boundary for large p, closer to stable values of o than metastable
initial data. This class of initial data includes a variety of irregular and non-monotonic behavior, as
detailed below. Evidence for chaotic behavior especially becomes more prominent at larger values

of u, as we will discuss below.

2.4.1 Metastable versus unstable initial data

While stable and irregular initial data are typically apparent by eye in a plot of ¢ vs €, distinguishing
the unstable from metastable classes is a quantitative task. As we described in section 2.3.2, we find
the least squares fit of ty = ae™? + b to all evolutions with ¢ty > ts; for the given (u, o), running
over values ty; = 60,80,100. Using the covariance matrix of the fit, we also find the standard
error for each fit parameter. We classify a width as having unstable evolution if the best fit value
of p is within two standard errors of p = 2 for t;; = 60,80 or one standard error for ¢;; = 100
(due to a smaller number of data points, the standard errors for ¢;; = 100 tend to be considerably
larger). In contrast, we classify a width as having metastable evolution if the best fit p is statistically
significantly different from 2 (in that the best fit value is more than 2 standard errors from p = 2
for ty; = 60,80 and more than 1 standard error from p = 2 for ¢;; = 100). This indicates that
either further subleading contributions in a perturbative expansion of ¢y are non-negligible in this
regime for metastable initial data or that possibly metastable initial data are stable at the first
nontrivial order in perturbation theory. Considering larger values of ¢;; helps to ensure that the
leading perturbative terms do not come to dominate for particular initial profile at the smallest
computationally accessible amplitude values. In the case that the fit to ty = ae™® 4 b has large
reduced 2 or is sensitive to fitting algorithm, the data is not well-described by our fitting function,

so we classify it as irregular (see the next subsection).

The fits ty = ae™? 4+ b allow us to explore the time scale of horizon formation across the stability
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phase diagram, for example through a contour plot of one of the coefficients vs ¢ and p. In most
cases, this has not been informative, but an intriguing feature emerges if we plot the normalization
coefficient @ vs o for unstable initial data at small o, as shown in figure 2.3 for t4; = 60. By eye,
the coefficient is reasonably well described by the fit a = (32.0 & 0.3)0~(20140:02) (values following
+ are standard errors of the best fit values) independent of scalar field mass. This is not born out
very well quantitatively; the reduced x? for the fit is x?/d.o.f.= 180, indicating a poor fit. However,
the large x? seems largely driven by a few outlier points with large scalar mass, so it is tempting
to speculate that the gravitational collapse in this region of parameter space is driven by gradient
energy, making all fields effectively massless at narrow enough initial . The picture is qualitatively

similar if we consider the parameter a for t4; = 80, 100 instead.

Several examples of metastable behavior appear in figure 2.4. These figures show both data from
the numerical evolutions (blue dots and red triangles) and fits of the form ¢z = ae? + b for points
with ¢y >ty = 60 (magenta curves). The best fit parameters are given in table 2.1 along with
the standard errors (listed following =+ for the fit values) and x? values. The insets show the fit

region with a log-log scale and an additional line (red) showing an ¢ 2 power law normalized to fit
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Figure 2.4: Metastable behavior: blue dots represent horizon formation and red triangles a lower limit on
tr. Magenta curves are fits typ = ae P + b over the shown range of amplitudes. Insets show the fit region
with log-log scale; note that the fit is not strictly a power law, so the fits are not straight lines. See table
2.1 for best fit parameters. Red lines in insets are € 2 power laws normalized to the ty of the smallest
amplitude shown.

the smallest amplitude shown in the inset. It is visually clear that ¢z grows faster than e=2 for all

these examples as e decreases in the fit region (there is a significant constant offset in figure 2.4d).

Figures 2.4a,2.4b demonstrate behavior typical of most of the instances of metastable initial data
we have found; specifically, the initial data continue to collapse through horizon formation times of
ty ~ 0.6, but with p significantly greater than the perturbative value of p = 2. Note that the

evolutions of figure 2.4b have been extended to larger values of ¢t to demonstrate that the evolutions
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a p b x%/d.o.f.
uw=15,0 =1.5 0.10 £0.01 2.33£0.05 | =274 | 0.7736
w=>5o,0=17 0.91 £0.06 2.07£0.02 | =33£2 | 0.5070
w=00=138 0.06 £ 0.02 4.3+£0.2 30+5 1.502
p=050=17 (tg < 0.4ty,) | (4+32) x 1074 73E£5 70 £ 2 5.409
(tg > 0.72t1m) 0.02 £ 0.03 5.6 £0.8 | 260+ 20 1.078

Table 2.1: Best fit parameters for the cases shown in figure 2.4 restricting to ty > try = 60 and as
noted. Listed errors (+ values) are standard errors. x*/d.o.f. is the reduced x? value used as a measure
of goodness-of-fit.

continue to collapse to somewhat smaller amplitude values. Figure 2.4b is also of interest because
its best fit value p ~ 2.07 £ 0.02 is approximately as close to the perturbative value as several

stable sets of initial data but has a smaller standard error for the fit, so the difference from the

perturbative value is more significant (again, the value following the + is the standard error).

Figure 2.4c shows metastable evolution to tg < 0.6¢, but then a sudden jump to stability until
t = tiim- In the figure, the fit has been extended to the largest non-collapsing amplitude, which
demonstrates that there is no collapse over a time period significantly longer than the fit predicts.
This example argues that metastable data may in fact become stable at the smallest amplitudes.
On the other hand, figure 2.4d shows a similar jump in ¢y to values ty < t;,,; evolution at lower
amplitudes shows metastable scaling with p =~ 5.6 + 0.8 for 360 < ty < t;,. The figure also shows a
metastable fit with larger reduced x? at larger amplitudes corresponding to ¢y <ty < 0.4¢4,. So
this is another option: metastable behavior may transition abruptly to metastable behavior with
different scaling (or possibly even perturbatively unstable behavior) at sufficiently small amplitudes.
It is also reasonable to classify this case as irregular due to the sudden jump in ty; we choose

metastable due to the clean metastable behavior at low amplitudes.

Our point of view is that initial data in the metastable class is distinct from the unstable class at
finite amplitudes corresponding to t¢; < tyg < 300; they take longer to collapse at a fixed small
value of € than would be expected by the perturbative scaling. An alternate point of view is to ask
whether we can determine if a given set of initial data is perturbatively unstable in the ¢ — 0 limit.
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We have already seen that metastable initial data does not follow the perturbative scaling when fit
to ty = ac™P + b, the first two terms of the perturbative expansion. However, it is possible that a
perturbative description applies but requires a further subleading term. To test this hypothesis, we
fit unstable and metastable initial data to tg = ae™® + b+ ce?; as described earlier in this section,
we determine if p is within two standard errors of the perturbative value p = 2 (or one standard

error for ¢, = 100).

The unstable class of initial data is instructive. For the new fits of unstable initial data, p is
statistically equal to 2, and the new values of a,p,b are consistent with the values from the old
fits to within two standard errors (or sometimes slightly more). The fit value of ¢ is uniformly
within a standard error of zero, and, for the amplitude values in the fit region, the €2 term is small
compared to the constant and €2 terms. What is more, for some unstable initial data near the
island of stability, the original ¢t = ae™? + b fits for t;; = 60 have p > 2 statistically; on the other
hand, the new fits have p = 2 within statistical error. In other words, the perturbative expansion
is still valid but requires more terms. Part of the metastable class of initial data also behaves in
this manner and could therefore be reasonably considered to be perturbatively unstable. Of the
metastable initial data we found, these are 0 = 1.9 for u =0, c = 0.8 and 1.9 for u = 0.5, 0 = 0.7
for py =1, 0 = 1.7 for p = 5, 0 = 0.155 for 4 = 10, 0 = 0.11 and 1.5 for p = 15, and ¢ = 1.5
for 4 = 20. In addition, 4 = 1,0 = 1.8 and p = 10,0 = 1.7 initial data have similar behavior,
but p is not statistically consistent with 2 for any of the fit regions, though it is closer than in the
original fits. On the other hand, the other metastable initial data (¢ = 0.85 and 1.8 for u = 0,
o = 1.7 and 1.8 for p = 0.5, 0 = 1.45 for p = 10, and o0 = 1.4 for u = 20) show no evidence
for perturbative behavior. Specifically, p remains statistically larger than 2 for all fits, the €? term
in the new fit is roughly the same magnitude as the other terms, and the a,p, b values in the new
fits are not statistically consistent with the original fits. To check if perturbative scaling might be
masked by numerical errors, we have also fit these remaining metastable data (o = 0.85,1.8 for
pw=00=18for u =05 0c=18for u=1,0 = 14517 for p = 10, and o = 1.4 for u = 20)

with ty = ae P + be ! + ¢. Of these, only the y = 1,0 = 1.8 and p = 10,0 = 1.7 initial data have
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best fit p values statistically consistent with p = 2. However, except for u = 1,0 = 1.8 initial data,
the best fit p values are all further from p = 2 in absolute terms (usually substantially); the main
effect of including the €' term is to increase the standard error on the best fit for p. Therefore,
it is not clear that potential numerical errors alone can be responsible for the observed deviation
from perturbative scaling. We would also point out that, even if the extra e~ term turns out to be
important for these initial data, the fact that it is only important at the boundary of the island of
stability indicates a change in behavior for these mass/width combinations as compared to those
farther from the stable region. This justifies a separate classification related to the slower entry
of these mass/width combinations into the perturbative regime (as measured by horizon formation

time).

2.4.2 Irregular behaviors

We have found a variety of irregular behaviors at the transition between the metastable and stable
classes which we have classified together as irregular initial data; however, it may be better to
describe them as separate classes. The stability phase diagram 2.2 indicates that the irregular class
extends along the “inland” side of the small o shoreline and at least part of the large o shoreline
of the island of stability. What is not clear from our evolutions up to now is whether each type
of behavior appears along the entire shoreline or if they appear in pockets at different scalar field

masses. Examples of each type of behavior that we have found appear in figure 2.5.

The first type of irregular behavior, shown in figure 2.5a, is monotonic (ty increases with decreasing
e as usual), but it is not well fit by a power law. In fact, this behavior would classify as metastable by
the criterion of section 2.4.1 in that the power law of the best fit ty = ae™P+b is significantly different
from p = 2, except for the fact that the reduced x? value for the fit is very large (greater than 10)
and also that different fitting algorithms can return significantly different fits, even though the data
may appear to the eye like a smooth power law. In any case, this type of behavior apparently
indicates a breakdown of metastable behavior and hints at the appearance of non-monotonicity. So

far, our evolutions have not demonstrated sudden jumps in tg typical of stability at low amplitudes,
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however.

Figure 2.5b exemplifies non-monotonic behavior in the irregular class. This type of behavior, which

was noted already by [52], involves one or more sudden jumps in ty as € decreases, which may be

followed by a sudden decrease in tg and then resumed smooth monotonic increase in ty. There are

suggestions that this type of initial data is stable at low amplitudes due to the usual appearance

of non-collapsing evolutions, but it is worth noting that these amplitudes could instead experience

another jump and decrease in ty, just at tg > tj;,. Finally, [39] studied this type of behavior in

some detail, denoting it as “quasi-stable.”

43




Some irregular initial data demonstrates evidence of chaotic behavior, in that ¢ty appears to be
sensitive to initial conditions (ie, value of amplitude) over some range of amplitudes. This type of
behavior appears over the range of masses (see figure 2.1d for a mild case for massless scalars), but
it is more common and more dramatic at larger pu. Figures 2.5¢,2.5d represent the most extreme
behavior of this type among the initial data that we studied with collapse at t; < 50 not very far
separated from amplitudes that do not collapse for ¢ < t;;,,, along with an unpredictable pattern of
variation in tg. This type of evidence for chaotic behavior has been seen previously in the collapse
of transparent but gravitationally interacting thin shells in AdS [120] as well as in the collapse of
massless scalars in AdS; Einstein-Gauss-Bonnet gravity [101,114]; these references speculated that
the ty vs e curve is fractal. In both cases, this type of behavior is hypothesized to be due to the
transfer of energy between two infalling shells, with horizon formation only proceeding when one
shell is sufficiently energetic. In the latter case, the extra scale of the theory (given by the coefficient
of the Gauss-Bonnet term in the action) leads the single initial pulse of scalar matter to break into

two pulses.

We should therefore ask two questions: does this irregular behavior show evidence of true chaos,
and is a similar mechanism at work here? We note first that [114] found evidence (using a modified
box test) that the ¢ty vs € curve has a non-integer fractal dimension for plots visually similar to
our figures 2.5¢,2.5d. Here, to quantify the presence of chaos, we examine the difference in time
evolution between similar initial conditions (nearby amplitudes), which diverge exponentially in
chaotic systems. Specifically, any quantity A should satisfy |A| o< exp(At) for Lyapunov coefficient
A. Our characteristic will be the upper envelope of the Ricci scalar at the origin per light crossing
time, R(t). We consider three sets of irregular initial data: a massless scalar of width o = 1.1
with amplitudes e = 1.02,1.01, 1.00 (see figure 2.1d), a u = 5 massive scalar of width o = 0.34 and
e = 3.52,3.51,3.50, and a pu = 20 scalar of width o = 0.19 and € = 6.98,6.95,6.92 (figure 2.5d). We
also calculated determined the Lyapunov coefficient for unstable initial data with = 0.5, 0 = 0.3,

and € = 1.22,1.20, 1.18 for comparison.

Figure 2.6 details evidence for chaotic evolution in the y = 5,0 = 0.34 case; figure 2.6a shows our
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characteristic function R(¢) for the amplitudes ¢; = 3.50, ¢, = 3.51, and e3 = 3.52. By eye, R
shows noticeable differences after a long period of evolution. These are more apparent in figure
2.6b, which shows the log of the differences Ay = R, — ﬁeb, along with the best fits. Although
there is considerable noise — or oscillation around exponential growth — in the differences (leading
to R? values ~ 0.2,0.26 for the fits), the average slope gives Lyapunov coefficient A\ = 0.007 (within
the error bar of each slope), and each slope differs from zero by more than 3 standard errors. One
interesting point is that the ¢y vs e curve in figure 2.5b does not appear chaotic to the eye, even

though it shows some of the mathematical signatures of chaos at least for €; < € < €3 (the visible

spike in ¢y is at € ~ 3.57).

The story is similar for the massless and p = 20 cases we studied, which exhibit A values that differ
from zero by at least 1.9 standard errors; see table 2.2. This is a milder version of the behavior
noted by [101,114,120], especially for the u = 5 case studied. One thing to note is that the strength
of oscillation in log(|A|) around the linear fit increases with increasing mass, so that the two best fit
Lyapunov exponents for u = 20 are no longer consistent with each other at the 1-standard deviation

level. We should note, however that the unstable initial data with = 0.5,0 = 0.3 also exhibits a
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A average A\
pw=0,0=11 A | 0.011 4+ 0.005 0.011
Aoz | 0.011 4+ 0.005
w=0.5,0 =03 A | 0.021 £ 0.0007 0.022
Ao | 0.024 +0.001
w=">50=034 Ay | 0.006=£0.002 0.007
Asg | 0.007 £ 0.002
pw=20,0=0.19 Ay | 0.046 £ 0.009 0.032
Ao | 0.019 £+ 0.007

Table 2.2: Best fit Lyapunov coefficients A for adjacent amplitude pairs and average A\ value for each u, o
system studied. Standard errors are given following + signs.
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Figure 2.7: Trajectories in II(x = 0), ¢(x = 0) phase space for one irreqular and one unstable evolution.
Trajectories are shown for t < 50.

statistically positive Lyapunov exponent, though we should note that the value of A quoted in table
2.2 includes the time shortly before horizon formation, which does increase A somewhat (though

not more than the quoted error).

Since the Lyapunov coefficients do not distinguish the irregular and unstable cases, we also consider
the phase space trajectories of the evolutions. Following [121], we consider the trajectory of evolu-

tions in II and ¢ evaluated at the origin for ¢ < 50 in figure 2.7. Neither the p = 5,0 = 0.34,¢ = 3.51
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(figure 2.7a) or u = 0.5,0 = 0.3, ¢ = 1.20 (figure 2.7b) trajectories close, though there is a clear dif-
ference. Specifically, the former trajectory is visually disorganized (that is, strongly varying orbits)
with very rapid motion (seen in the gap between points on the trajectory between plotted time
steps). Meanwhile, the latter motion is comparatively regular, typical of quasi-periodic motion.
Figure 2.7a is typical of turbulence and clearly shows that these evolutions are nonperturbative,

even though ¢y is large (well into the perturbative regime for unstable initial data).

To sum up, we have identified irregular initial data that shows evidence of chaotic behavior. Specif-
ically, several of the ty vs € curves appear qualitatively similar to analogous plots in [101,114,120],
which were demonstrated to have fractal-like behavior (including fractional fractal dimension in one
case). Furthermore, a number of cases of irregular initial data (and some unstable) have positive
Lyapunov exponents; phase space trajectories for irregular initial data show very rapid motion typ-
ical of turbulence, while unstable initial data have more regular trajectories. Taken together, this
is strong evidence for chaotic behavior for some irregular initial data, similar to that discussed in
other studies of gravitational collapse in AdS. Furthermore, this is the first evidence of chaos in the

ty vs € curve for gravitational collapse of a massless scalar in AdS to our knowledge.

The mechanism underlying the possibly chaotic behavior seems somewhat different or at least weaker
than the two-shell or Einstein-Gauss-Bonnet systems. When examining the time evolution of the
mass distributions of these data, we see a single large pulse of mass energy that oscillates between
the origin and boundary without developing a pronounced peak. However, there is also apparently
a smaller wave that travels across the large pulse. We can see this by comparing snapshots of the
mass distribution at different times, as in figure 2.8. In the massless case examined, this wave
deforms the pulse, leading to a double-shoulder appearance seen at two times in figure 2.8a. In the
i =>5,0 = 0.34 case, the secondary wave is more like a ripple, usually smaller in amplitude but more
sharply localized, as toward the right side of the main pulse in figure 2.8b. So the chaotic behavior
may be caused by the relative motion of the two waves, rather than energy transfer between two
shells. In this hypothesis, a horizon would form when both waves reach the neighborhood of the

origin at the same time.
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Figure 2.8: Radial derivative of the mass function at the indicated time for two systems that show evidence
of chaos. Note the appearance of a secondary wave on top of the main pulse. (u,o0,€) as indicated.

As a note, we have run convergence tests on several sets of irregular initial data and find that
our calculations are convergent overall, as expected (even at lower resolution than we used). In
particular, the massless scalar evolutions studied in table 2.2 are convergent already at resolution
given by n = 12 (note that we typically start at n = 14); we also observe convergent behavior
for the 1 = 5 evolutions discussed in table 2.2. We have therefore validated that nonmonotonic
behavior and even evidence of chaos occurs. The only caveat may be for some of the apparently
initial data with scalar mass p = 20, which nonetheless appear well-behaved according to other
indicators. The reader may or may not wish to take them at face value but should recall that we
have presented other chaotic initial data with rigorously convergent evolutions. See the appendix

for a more detailed discussion.

2.5 Spectral analysis

As we discussed in the introduction, instability toward horizon formation proceeds through a turbu-

lent cascade of energy to shorter wavelengths or, more quantitatively, to 1st-order scalar eigenmodes
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with more nodes. Inverse cascades are typical of stable evolutions. Therefore, understanding the
energy spectrum of our evolutions, both initially and over time, sheds light on the behavior of the
self-gravitating scalar field in asymptotically AdS spacetime, providing a heuristic analytic under-

standing of the stability phase diagram.

The (normalizable) eigenmodes e; are given by Jacobi polynomials as

ej(z) = Kkjcos™ (:E)Pj(dﬂ_l’ v Cle/ﬂ/Q)(cos(?x)) (2.8)
(k; is a normalization constant) with eigenfrequency w; = 25 + Ay and Ay = (d + /d? + 4p2)/2
in AdSy.; for j =0,1,... (see [6,122] for reviews). Including gravitational backreaction, we define

the energy spectrum

N | —

(Hﬁ - ¢j¢5j> : (2.9)
where

I, = (\/ZH,GJ), ¢; = (. €),

gBj = (cotd_l(x)é?z [tand_l(x)A(I)] — i sec?(x) ¢, ej) , (2.10)

and the inner product is (f,g) = foﬁ/ ? dx tan®1 (x)fg. The sum of E; over all modes is the conserved

ADM mass.

2.5.1 Dependence on mass

The most visibly apparent feature of the stability phase diagram of figure 2.2 is that the island of
stability both expands and shifts to smaller widths as the scalar mass increases. As it turns out,

the energy spectrum of the Gaussian initial data (2.7) provides a simple heuristic explanation.

It is well established both in perturbation theory and numerical studies that initial data given by

a single scalar linear-order eigenmode is in fact nonlinearly stable, and the spectra of many quasi-
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Figure 2.9: Left: Spectra of the best fit gaussians (2.7) to the j = 0 eigenmode for masses u = 0 (blue
circles), 0.5 (yellow squares), 1 (empty orange circles), 5 (green diamonds), 10 (empty cyan squares), 15
(upward red triangles), and 20 (downward purple triangles). Right: an overlay of the best fit Gaussian and
eo eigenmode for p = 0 (solid blue is best fit, orange dashed is eigenmode) and p = 20 (solid green, red
short dashes).

periodic solutions are also dominated by a single eigenmode. As a result, we should expect Gaussian
initial data that approximates a single eigenmode (which must be j = 0 due to lack of nodes) to
be stable. To explore how this depends on mass, we find the best fit values of ¢, 0 for the j = 0
eigenmode for each mass that we consider (defined by the least-square error from the Gaussian to a
discretized eigenmode); this is the “best approximation” Gaussian to the eigenmode. Then we find
the energy spectrum of that best-fit Gaussian; these are shown in figure 2.9a. From the figure, it is
clear that the j = 0 eigenmode is closer to a Gaussian at larger masses. That is, other eigenmodes
contribute less to the Gaussian’s spectrum at higher masses (by several orders of magnitude over
the range from p = 0 to 20). Simply put, the shape of the 7 = 0 eigenmode is closer to Gaussian at
higher masses, which suggests that the island of stability should be larger at larger scalar field mass.
Figure 2.9b compares the 5 = 0 eigenmode and best fit Gaussian for 4 = 0 and 20; on inspection,

there is more deviation between the eigenmode and Gaussian for the massless scalar.

In addition, the best-fit Gaussian width decreases from o ~ 0.8 for a massless scalar as the mass
increases. At = 20, the best-fit width is o ~ 0.31. This suggests that Gaussians that approximate
the 7 = 0 mode well enough are narrower in width at higher masses. An interesting point to

note is that the island of stability for p = 0,0.5 is actually centered at considerably larger widths
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Figure 2.10: Initial (t = 0) energy spectra for the indicated evolutions. In order, these represent stable,
unstable, metastable, monotonic irreqular, non-monotonic irreqular, and chaotic irreqular initial data.

than the best-fit Gaussian. This may not be surprising, since the best-fit Gaussians at low masses
actually receive non-negligible contributions from higher mode numbers; moving away from the
best-fit Gaussian can actually reduce the power in higher modes. For example, the stable initial

data shown in figure 2.10a below has considerably less power in the 7 = 2 mode.

2.5.2 Spectra of different behaviors

A key question that one might hope to answer is whether the stability class of a given (i, o) can
be determined easily by direct inspection of the initial data without requiring many evolutions at
varying amplitudes. The initial energy spectra for examples of each class, including monotonic,
non-monotonic, and apparently chaotic irregular behaviors, are shown in figure 2.10. These spectra

are taken from among the smallest amplitudes we evolved in order to minimize backreaction effects.

Unfortunately, the initial energy spectra do not seem to provide such a method for determining the
stability class. Very broadly speaking, stable and metastable (u, o) correspond to initial spectra that

drop off fairly quickly from the j = 0 mode as j increases, while unstable and irregular behaviors
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tend to have roughly constant or even slightly increasing spectra up to j = 5 or 10. However, figure

2.10d shows that some irregular initial data have spectra that decrease rapidly after a small increase

from j = 1 to 7 = 2. Kinks in the spectrum are more prevalent for widths of the AdS scale or

larger, while spectra for smaller widths tend to be smoother.
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2.5.3 Evolution of spectra

While the initial spectrum for a given (u, o) pair does not have predictive value regarding the future
behavior as far as we can tell, the time dependence of the spectrum throughout the evolution of
the system is informative. Figure 2.11 shows the time-dependence of spectra for examples of the
stable, unstable, metastable, and chaotic irregular classes. In each figure, the lower panel shows the

fraction E;/Mapy in each mode up to j = 6, while the upper panel shows the cumulative fraction

Zj E;/Mapys to the mode 2% with k = 0 to 5.

The difference between stable evolution in figure 2.11a and unstable evolution in figure 2.11b is
readily apparent. As the evolution proceeds, we expect a cascade of energy into higher mode
numbers, but inverse cascades to lower modes can also occur. The stable evolution shows a slow
pattern of cascades and inverse cascades, in fact. On the other hand, the unstable evolution shows
a nearly monotonic cascade of energy into the highest modes along with a simultaneous cascade
of energy into the lowest modes (therefore depleting intermediate modes). These are common

observations in the literature and are included here for completeness.

The metastable evolution shown in figure 2.11c is interesting in light of the stable and unstable
spectra. The amplitude shown is from the “unstable” portion of figure 2.4d, the part consistent

with the perturbative scaling ty ~ e 2.

However, the spectrum shows a similar pattern of slow
cascades and inverse cascades to the stable initial data example, though on a somewhat faster time
scale in this case. While perhaps surprising, this is in keeping with the similarities noted between the
initial spectra in figures 2.10a and 2.10c. We have also checked that the time-dependent spectrum
at a higher amplitude with tgz ~ 100 follows the same pattern as 2.11c; in fact, it looks essentially
the same but simply ends at an earlier time. This lends some credence to the idea that metastable
initial data is stable at lowest nontrivial order in perturbation theory, with instability triggered by
higher-order corrections. Alternately, the instability could be caused by an oscillatory singularity in

the perturbative theory, as discussed in [106,110-112] in the case of two-mode initial data. These

divergences do not appear in the energy spectrum.
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horizon at tyy ~ 71.1, e = 1.02 at tyy ~ 248.0.

Figure 2.11d shows the time-dependence of the spectrum in an irregular evolution, specifically
= 20,0 = 0.19 at € = 6.95, which is in the chaotic region of the ¢y vs € plot in figure 2.5d.
There is rapid energy transfer among modes, including cascades out of and inverse cascades into
mode numbers j < 32 over approximately a light-crossing time. It is easy to imagine that horizon
formation might occur at any of the cascades of energy into higher modes, leading to seemingly

random jumps in tg as a function of amplitude.

Finally, the time-evolved energy provides another possible measure of approximate thermalization
in the dual CFT; namely, the spectrum should approach an (exponentially cut-off) power law at
thermalization. In most cases, this occurs shortly before horizon formation, but there are exceptions,
such as the late time behavior of initial data below the critical mass for black hole formation in
Einstein-Gauss-Bonnet gravity [114]. When there is evidence of chaotic behavior, it is particularly
interesting to know if the spectra for similar amplitudes approach a power law at similar times even
if horizons form at very different times. Figure 2.12 shows the energy spectra for two amplitudes
in the chaotic region of the ¢ty vs € plot for 4 = 0,0 = 1.1. Figure 2.12a is the spectrum just
before horizon formation for e = 1.01, while figure 2.12b is the spectrum at approximately the same
time for e = 1.02, which is very long before horizon formation. In this example, we see that the
spectrum does approach a power law for the evolution that is forming a horizon, while the other

evolution demonstrates a more rapid decay (typically fit by a power law times an exponential in the
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literature). Therefore, this example suggests that a power law spectrum may yield similar results

to horizon formation as a measure of thermalization in the dual CFT.

2.6 Discussion

For the first time, we have presented the phase diagram of stability of AdS; against horizon for-
mation, treating the scalar field mass p and width o of initial data as free parameters. In addition
to mapping the location of the so-called “island of stability,” we have gathered evidence for two
non-perturbative classes on the “shorelines” of the island, the metastable and irregular classes.
While these must either exhibit stability (no collapse below some critical amplitude) or instability
(collapse at arbitrarily small but finite amplitude) as the amplitude e — 0, they are distinguished
by their behavior at computationally accessible (finite) amplitudes. While perturbatively unstable
evolutions obey ¢y o< € 2 as € — 0 (and show evidence of this behavior at finite €), metastable initial
data follows ¢t o €7? for p > 2 over a range of amplitudes € > 0. The irregular class is characterized
by horizon formation times ¢ty that are not well described by a power law and sometimes exhibit
non-monotonicity or even evidence of chaos. Both of these classes appear across the range of
values that we study and at both small- and large-width boundaries of the stable class of initial

data.

At this time, it is impossible to say whether metastable initial data is stable or unstable as ¢ — 0 (or
if all metastable data behaves in the same way in that limit). Our numerical evolutions include cases
in which the lowest amplitudes jump either to metastable scaling with smaller p or to evolutions
that do not collapse over the timescales we study. We did find evidence that many metastable
profiles move toward perturbatively unstable scaling (tz o< €72) as € — 0 but more slowly than the
initial data that we have classified as unstable. It is also possible that some metastable initial data
is stable in the perturbative theory (ie, to € order in a perturbative expansion) but not at higher
orders. We emphasize once again, however, that our interest and therefore our classification is in

small but finite ¢ behavior (which is by definition not strictly in the perturbative regime).
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The irregular class seems likely to be (mostly) stable at arbitrarily small amplitudes based on our
numerical evolutions, though we have not found a critical amplitude for monotonic irregular initial
data. The irregular initial data includes the “quasi-stable” initial data described in [39,52], which
has a sudden increase then decrease in ¢y as € decreases as well as evidence for chaotic behavior.
In fact, we have found evidence for weakly chaotic behavior for non-monotonic initial data in the
form of a small but nonzero Lyapunov coefficient and in the phase space trajectory. Both non-
monotonicity and chaos become stronger and more common at larger scalar masses; however, we
have also found evidence of chaotic behavior for the massless scalar including in the ty vs € curve.
To our knowledge, this is the first evidence of chaos in this relationship for spherically symmetric
massless scalar collapse in AdS, which is particularly interesting because there is only one physically

meaningful ratio of scales, 0 as measured in AdS units.

While we have emphasized the appearance of new behaviors outside perturbation theory, metastable
and irregular initial data are interesting potential subjects for analysis in the multiscale perturbation
theory. A key question is if they demonstrate any unusual behavior there or map directly onto the

stable or unstable classes.

Aside from the ultimate stability or instability of metastable and irregular initial data, several ques-
tions remain. For one, black holes formed in massive scalar collapse in asymptotically flat spacetime
exhibit a mass gap for initial profiles wider than the Compton wavelength 1/4 [123]. Whether this
mass gap exists in AdS is not clear, and it may disappear through repeated gravitational focusing
as the field oscillates many times across AdS; investigating this type of critical behavior will likely
require techniques similar to those of [124]. Returning to our stability phase diagram, the physical
mechanism responsible for chaos that seems to occur for some irregular initial data is not yet clear.
Is it some generalization of the same mechanism as found in the two-shell system? Also, would
an alternate definition of approximate thermalization in the dual CFT, such as development of a
power-law spectrum, lead to a different picture of the stability phase diagram? Finally, the big
question is whether there is some test that could be performed on initial data alone that would

predict in advance its behavior? So far, no test is entirely successful, so new ideas are necessary.
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Appendix

2.A Convergence Testing

Due to the large number of evolutions we have carried out, it is not computationally feasible to test
all of them for convergence. Therefore, we have checked several interesting cases of irregular initial
data, which are the most curious. These are carried out by evolving the initial data with a base
resolution n = 14 and again at n = 15, 16 with commensurate time steps, as described in [39]. In the
cases indicated, we evaluated the order of convergence at lower resolutions. We remind the reader
that the order of convergence Q is the base-2 logarithm of the ratio of L? errors (root-mean-square
over all corresponding grid points) between successive pairs of resolutions. We also note that the
initial data is defined analytically, so () can appear poor at t = 0 since the errors are controlled by

round off; in some cases, () is therefore undefined and not plotted.

First, we carried out convergence tests for mass u = 0.5, width ¢ = 1, and amplitude ¢ = 1.12,
which is monotonic irregular initial data presented in figure 2.5a. This amplitude collapses with
ty ~ 88. Figure 2.A.1a shows the (L? norm) order of convergence for the field variable ¢, the mass
function M, and the metric functions A, 0. While the order of convergence is initially poor and even
negative, all these variables show approximately fourth order convergence for times ¢t = 70. The
reason for the initially poor convergence is that the error between successive resolutions is already
given by (machine limited) round off. As a demonstration, we tested the order of convergence with
base resolution n = 12, as shown in figure 2.A.1b. The variables show order of convergence @) = 3

already at this resolution for most of the evolution, losing convergence only for ¢ > 80, where we
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Figure 2.A.1: Convergence results for p = 0.5, 0 =1, ¢ = 1.12 showing order of convergence ) vs time
for ¢, M, A, (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line, respectively).
Left: Resolutions n = 14,15,16 used. Right: Resolutions n = 12,13,14 used.

see approximately 4th-order convergence in the n = 14 resolution computations.

Two of the authors have discussed the convergence properties of evolution for the nonmonotonic
irregular initial data with u = 20,0 = 0.1,e = 11.74, which is in an amplitude region of increased
tg surrounded by smaller values, in detail in [39]. In short, the variables ¢, M, A, ¢ all exhibit fourth

order convergence, as does I12(¢,0), and the conserved mass actually has 6th order convergence.

Initial data for u = 15,0 = 0.2 is also nonmonotonic, as shown in figure 2.A.2a. While we have not
analyzed all aspects of the convergence, we see from the remainder of figure 2.A.2 that ¢, M, A, ¢
exhibit convergent behavior at better than second order for e = 7.42 (figure 2.A.2b, second-largest
value of ty in figure 2.A.2a) and € = 7.40 (figure 2.A.2¢, adjacent amplitude in figure 2.A.2a). It
is important to note that the larger amplitude also has the larger horizon formation time, contrary
to the usual monotonic behavior. In other words, we have validated the nonmonotonicity of this

initial data through convergence testing.

It is most crucial to validate the convergence of chaotic evolutions. In table 2.2, we noted that
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Figure 2.A.2: Convergence results for p = 15, 0 = 0.2. Left: tg vs e.
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Figure 2.A.3: Convergence results for p =0, o = 1.1 for listed amplitudes showing order of convergence
Q wvs time for ¢, M, A, 6 (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,

respectively); resolutions n = 12,13, 14.

the Ricci scalar at the origin has nonzero Lyapunov exponent at almost the 2 sigma level for

amplitudes ¢ = 1.02,1.01,1.00 for p = 0,0 = 1.1. We show the results of convergence tests for

these amplitudes in figure 2.A.3; because these are longer evolutions, we consider the convergence

at the lower resolutions n = 12,13, 14. After a transient start-up period, these are all convergent

with () > 2.5 for all variables considered at all times; for most of the time, the order of convergence

is @ > 3.5. It is worth noting that one of the amplitudes does not form a horizon through ¢ = 500.

These convergence tests validate both the nonmonotonic nature of the evolution (ty ~ 248,71 and
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Figure 2.A.4: Convergence results for y =5, o = 0.34 for listed amplitudes showing order of convergence
Q wvs time for ¢, M, A, 6 (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,
respectively); resolutions n = 14,15, 16.

> 500 for € = 1.02,1.01, 1.00 respectively) and also the calculation of the Lyapunov coefficient.

Also in table 2.2, we found a nonzero Lyapunov exponent for 4 = 5,0 = 0.34 at amplitudes
e = 3.52,3.51,3.50. The results of convergence tests for these amplitudes appear in figure 2.A.4.
For t 2 20, these evolutions exhibit convergent behavior with @ > 3.5 (and always @ > 2). At
early times, the apparent poor convergence is again due to the errors being dominated by round-off;
we have carried out additional convergence tests (not shown) and verified that these evolutions are
already convergent with order of convergence close to () = 4 at base resolutions n = 12 for ¢ < 20.

Again, convergence tests validate chaotic behavior for these initial data.

Initial data with ¢ = 1,0 = 1 is chaotic over a narrow range of amplitudes. We have carried out
convergence testing for amplitudes ¢ = 1.15,1.14, which are the two amplitudes with t5 < 100
between amplitudes with ¢y = 150 in figure 2.A.5a. The order of convergence was poor for these
amplitudes in our initial tests with base resolution n = 14 because the error between resolutions
was dominated by round-off, similar to the convergence tests we discussed above for p = 0.5,0 = 1.
In subsequent tests with lower resolutions n = 11,12,13, we find an order of convergence ) ~ 4
for most of the evolutions (and always @ > 3). It is important to note again that our evolutions
exhibit convergence while showing horizon formation at a later time for a larger amplitude in this

case, again validating the nonmonotonic behavior.
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Figure 2.A.5: Convergence results for yp =1, c = 1. Left: tg vse. Middle & Right: order of convergence
Q vs time for ¢, M, A, 6 (blue thin solid line, green dashed line, red dash-dotted line, cyan thick solid line,
respectively); resolutions n = 11,12, 13.
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Figure 2.A.6: Order of convergence vs time for ¢, M, A,§ (blue thin solid line, green dashed line, red
dash-dotted line, cyan thick solid line, respectively) for p = 20,0 = 0.19 and indicated amplitudes.

Finally, we ran convergence tests for the chaotic initial data with ;= 20,0 = 0.19 for € = 6.95,6.92,

with ty &~ 65.5,40.8 respectively. As shown in figure 2.A.6, the simulations are close to fourth order

convergence for most of the evolution, but there are periods where the order of convergence for

evolution and constraint variables becomes negative. This of course leads to the concern that the

evolutions should have collapsed during those periods and extend into an “afterlife” evolution.
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We have therefore evolved these amplitudes through these regions (approximately ¢ = 30 — 40 for
€ =6.95 and t = 18 — 30 for € = 6.92) at high resolution (n = 18). If the evolutions are truly in
an afterlife, this higher resolution calculation may include horizon formation. We do not observe
this. Another tell-tale of would-be horizon formation is a decrease in the timestep size by an order
of magnitude or more followed by an increase. We monitor the timestep size every 500 timesteps
through this evolution but do not observe a decrease in timestep size by more than a factor of 2.
As a result, we believe the values of ty found are reliable, though the reader may wish to consider
them with some caution. In other words, while convergence testing is the gold standard to validate
our numerical evolutions, there are other indicators of reliability, which these evolutions satisfy. It
is also worth noting that the rapid energy transfer characteristic of figure 2.11d for € = 6.95 begins

immediately and is therefore seen in a convergent region of the evolutions, particularly for ¢ < 14.

Nonetheless, we emphasize that we have found convergent evolutions for irregular initial data at
scalar masses from g = 0 to 20. It is important to note that we have validated nonmonotonic
behavior in plots of ¢ty vs €. Convergence testing also specifically validates the evolutions used to

find a nonzero Lyapunov coefficient (at nearly the 20 level) for massless scalar collapse.
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3 Perturbative Stability of Massless Scalars in AdS;

Having examined the collapse of massive scalars fields in AdSs, we now wish to explore the pertur-
batively stable solutions for massless scalars. These solutions resist gravitational collapse and give
analytic descriptions of the direct and inverse energy cascades that must be balanced for stability

to be achieved.

The Two-Time Formalism (TTF) allows for renormalization flow equations that absorb secular
terms into renormalized integration constants in the first-order solution for the scalar field. These
flow equations become algebraic under a quasi-periodic (QP) ansatz for the amplitudes and phases.
While the TTF theory technically involves an infinite sum of terms, by truncating the series to
a finite j,.q.. value, numerical values for the amplitudes and phases can be calculated. How the
truncation value affects the space of solutions, and the limits of the solution space itself, remains

to be addressed.

3.1 Contributions of Authors

In this collaboration, QP solutions to (3.19) were found numerically through programs initially
written by N. Deppe, but later expanded and developed by myself. In particular, I developed code
to achieve the tail fitting and seeding procedure detailed in appendix 3.A that allowed for solutions
to (3.19) to be developed for j,,, values of several hundred — almost an order of magnitude greater
than the solutions previously found in the literature. Implementation of the high temperature

perturbation method outlined in 3.5 was done using code I developed, as was the procedure of
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reoptimization that allowed for the high temperature solution to be projected back to the QP
solution surface at various frequencies. Finally, I developed the constant-T" solution finding method
using a Newton-Raphson solver. Evolution of the solutions was based on numerical methods initially
developed by N. Deppe, then further developed by me. All data management and analysis was done

using programs I wrote.

Much of the numerical work for this project was done using the University of Winnipeg’s tesla
server, where CPU hours are not tracked. However, for larger systems increased computing power
was required, which necessitated transferring all code to Compute Canada’s new Cedar cluster.
Once there, I used 5.43 CPU years’ worth of computing power to run evolutions and analysis of the
results. Finally, I have written the manuscript, with input from the other authors, that appears

here.

As is common for these types of projects, all members of the collaboration were equally involved in
the interpretation of the data, as well as the late stages of editing. Authors are listed alphabetically

and it is understood that all members contribute equally to the publication.
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We examine a family of numerical solutions in the Two-Time Formalism (TTF) description of
massless scalars in AdS, parameterized by the dimensionless parameter 7. Numerical solutions can
only be found by truncating a sum over frequency components to some finite number. However,
any numerical solution must be robust against an increase in the number of frequencies. We
extensively verify the robustness of such solutions against truncation, and over a range of T. We
find that solutions with low values of T are in general robust as the number of modes is increased,
while solutions with higher values of T" are not. Finally, we examine the evolution of possible
quasi-periodic solutions within the T'TF description and show that low-7" solutions maintain their

quasi-periodicity while higher T" solutions do not.
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3.2 Introduction

The question of the nonperturbative stability of (d+1)-dimensional Anti-de Sitter spacetime against
horizon formation has been examined extensively, both as a question of mathematical physics and
given its application to the AdS/CFT correspondence; see reviews such as [125]. Beginning with the
seminal work of [67], others (including [64,68-70, 126]) have repeatedly demonstrated the generic
instability of spherically symmetric AdS,; gravity minimally coupled to a scalar field. The primary
driver of the instability in the fully nonlinear system is the turbulent flow of energy to short length
scales. However, [58,87,108] and others have shown that some initial conditions in asymptotically
AdS spacetimes resist gravitational collapse; these conditions form islands of stability in the space
of initial data. As these islands of stability continue to be explored, more subtle behaviours continue
to be identified, particularly along the “shorelines” [39,86,88,120]. Within the stability islands are
various solutions created from exciting a single linear mode, known as oscillons or breathers for real
scalars [50,58,64,67], boson stars for complex scalars (on a fixed metric) [52,108], and geons in pure

gravity [49,91].

While the nonperturbative physics of AdS instability requires numerical study, the perturbative
formulation is purely analytical and encapsulates the weakly turbulent physics at O(€?) in a small-
amplitude expansion. The linear-order system is simply a massless scalar in global AdS whose
solution is written as a sum over the spatial eigenfunctions of AdS. At this order, the scalar field is
stable for all times. The next-to-leading order in the expansion — O(e?) for the scalar field — gives
an equation of motion for the scalar field that is sourced by the scalar’s backreaction with non-
trivial metric functions. It is at this order that resonant sources terms arise which grow with time
and invalidate the perturbative description. When only a single eigenmode is excited, resonances
can be removed by frequency shifts; however, multimode data contain resonances that cannot be
removed this way [91]. For fields constructed from multiple excited eigenmodes, the secular growth

of resonant terms triggers the onset of instability [60,91, 110, 127].

To describe the secular growth, the amplitude and phase of each eigenmode are allowed to flow with
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respect to time. Applying renormalization techniques to these new slowly-varying amplitudes and
phases leads to a ladder of coupled first-order ordinary differential equations describing the flow.
There are several equivalent methods to arrive at the flow equations: the Two-Time Formalism
(TTF) — wherein the slow time 7 = €t is the flow parameter [44] — a renormalization-like formalism
[42,78], and time averaging procedure [78,80]. The O(e?) resonances are then controlled by absorbing

the secular terms into the renormalized amplitudes and phases.

In order to numerically solve the flow equations for a general scalar field, one naturally must
truncate the mode expansion at a maximum eigenmode number j,,... By taking a quasi-periodic
(QP) ansatz for the amplitude and phase variables, we are guaranteed a stable solution. These
QP solutions, like all other solutions in the TTF description, have constant energy E and particle
number N, and families of solutions are parameterized by a unit-less “temperature” parameter
T = E/N [44,82]. Understanding the bounds of the space of QP solutions allows us to better
understand how to construct more general long-lived scalar fields. QP solutions are special in
that the time-dependence of each mode is harmonic, so QP solutions satisfy algebraic equations.
The first family of low-temperature solutions is found by directly solving these algebraic equations.
High temperature solutions were purportedly found by [82] through repeatedly perturbing low-

temperature solutions up to a maximum temperature of T},,: = 2Jmaz + d.

In this work, we ask when QP solutions to the truncated TTF theory extend to the full untruncated
theory. We explore the space of high temperature solutions using established perturbative methods,
and solutions are tested against various choices of j,,... We then examine the stability of both classes

of solutions through indicators such as the scalar curvature and energy transfer among eigenmodes.

This work is organized as follows: we begin in § 3.3 with a review of the linearized solutions for a
minimally coupled, massless scalar field in AdS,;, as well as the renormalization flow equations
that govern the time evolution of the amplitudes and phases in the TTF theory. In § 3.4, we find
quasi-periodic solutions in AdS; by numerically solving a set of algebraic equations and establish
the bounds of low-temperature QP solutions. We then consider methods of probing the space of

QP solutions to include high-temperature solutions in § 3.5, and examine the evolution of all QP
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solutions within the perturbative theory in § 3.6. We end with a discussion of results in §3.7.

3.3 Minimally Coupled Scalar Fields in AdS,;

Consider a spherically-symmetric, asymptotically AdS;y; spacetime with characteristic curvature

L = 1. Written in Schwarzschild-like coordinates, the metric is given by

ds® = L

_95 _ . _
= (@) (—Ae™>dt* + A~ dz” + sin®(z)dQ ") | (3.1)

where the radius x € [0, 7/2] and —co < t < co. A minimally-coupled, massless scalar field ¢(¢, x)

is subject to the following Einstein and Klein-Gordon equations:

G+ g = 81 Vad¥i6 — Su(V0") 32)
1

0= ———=0sv/—9 9" 0. 3.3

=0V (3:3)

The canonical equations of motion for the scalar field are

Oy (PAe™ tan® ! (z))

tan?=1(x)

O = Ae ™I, 0,® = 0,(Ae), and 911 = , (3.4)

where the canonical momentum is II(t,z) = A~'e’¢ and ®(¢,r) = 0,¢ is an auxiliary variable. In

terms of these fields, (3.2) reduces to

0,0 = — (II? + ®°) sin(z) cos(x), (3.5)

d — 2+ 2sin®(z)
sin(x) cos(x)

0. A = (1 — A) — Asin(z) cos(z) (11 + ®?) . (3.6)
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3.3.1 Linearized Solutions

The linearized scalar field solutions come from expanding in terms of a small amplitude

[e.e] o0

Gt x) = Mgt x), Altx) =1-> ¥ Ay(t,x), 6(t,x) =) oy(t,x). (3.7)
j=0

j=1 j=1
Under this expansion, the O(e) terms give the linearized equation of motion for the scalar field

1 + Loy =0 where L;=—

The eigenfunctions of L satisfy j}ej = w]?ej, where w; = 2d + 7 and

d_qd , 2¢/jl(j+d—1)!
() = kj cos(x) P22 (cos(2 th k= 3.9
ej(x) = kj cos®(x) P (cos(2z)) wi j TG+ 9 (3.9)
Note that the normalizations are chosen such that
(ei,ej) = /2 dr ezejtan® ' (z) = ;5 . (3.10)
0

By expanding the scalar field functions in terms of the eigenbasis given in (3.9) and substitut-

ing into (3.8), we find that the time-dependent functions cﬁ?jﬂ)(t) = (¢o+1(t, ), en(x)) satisty

ég»l) + w?cg-l) = 0. The general solution for the scalar field is can then be written as a sum over

eigenfunctions with time-independent amplitude and phase variables

$1(t,x) =Y Ajcos (wit + B)) ej(x). (3.11)

J=0

As discussed in [42,78,106], the integer nature of the mode frequencies mean that the spectrum is
fully resonant. In general, secular growth caused by resonances cannot be absorbed by frequency
shifts, and therefore result in secular terms: resonant contributions that grow rapidly with time and

induce collapse. These resonant terms appear at O(e?) and can be expressed in terms of a source
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S(t) such that

93+ Loy = S(t) = 2(Az — 82) 1 + (Az — d2) 1 + (A) — 83) ¢, (3.12)

where Ay, 5 are the leading-order contributions to the metric functions in (3.7) that are determined

by the O(e?) backreaction of the metric. Projecting onto the e;(z) basis, the source term is

&) 42 = ;. (3.13)

To describe the growth of secular terms, [78] used renormalization techniques to absorb secular
contributions into the O(e?) contributions to amplitudes and phases from (3.11). In particular,
a set of renormalization flow equations were found that determined the time derivatives of the
amplitudes and phases. As explained in [78], this procedure also allows for explicit expressions for
the source term S; to be calculated on resonance. These resonances occur for specific combinations
of the frequencies found in S}, such that the frequency of the £ mode is equal to either w; +w; +ws,
W; — Wj — Wk, OF w; +w; —wy. After direct calculation of the source terms in each of these cases, [7§]
showed that the source terms naturally vanished for both the w, = w; +w; +wy and wy = w; —w; —wy,

channels. It was only for w, = w; + w; — wy that S(t) # 0.

3.3.2 Two-Time Formalism

The Two-Time Formalism (TTF) introduces a second time scale, the slow time 7 = €2, that dictates

the evolution of the amplitude and phase variables. In terms of 7, the scalar field is

iA] €’t) cos (w;t + Bj(€*t)) e;(x) (3.14)

where A;(7) and B;(7) now contain both O(1) and O(e?) contributions. In this description, the
next non-trivial order in the equations of motion include gravitational self-interactions of the scalar

field, and provides source terms for the time derivatives of A; and B;. Following the renormalization
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procedure of [42] the derivatives of the /" amplitudes and phases are given by

2&)@ dAg = .
— = =D Sijirj—neAiAjAisj_esin (Bo+ Biyje — Bi — Bj) (3.15)
e dt vl
_ 2“’:2Af % = T,A% + ; Ry A2 A,
£<i+j
+ Z Z Sij(i+j_g)gAiAin+j_g COSs (Bg + Bi—f—j—f - BZ - BJ) . (316)
i#EL jEL

NB. The remaining non-vanishing resonance condition allows us to write wy, = w; + w; — w, above.
The coefficients T;, R;j, S, are calculated directly from integrals over the product of eigenmodes.
Computationally, we find it more convenient to write these in terms of auxiliary coefficients with
greater symmetry properties (as shown in [106]). The explicit expressions for these integrals in the

interior gauge, in which (¢, = 0) = 0, are given in appendix 3.B.

Using a complex amplitude of the form A;(7) = A;exp(—iB;) in (3.14) allows us to combine

equations (3.15) and (3.16) into a single equation

(<iti
A .
—Qszd—: = Tl AN A+ ) R AP At Y 0 Sijini—eAiAiAisie (3.17)
i2l vy,

where A denotes the complex conjugate. It was further demonstrated by [79] that the TTF theory
resulted in a set of conserved quantities: the energy of the system, F, and particle number, N. The
simultaneous conservation of both £ and N imply the existence of inverse energy cascades that
must balance direct cascades, thereby providing a mechanism through which two-mode data could

remain stable.
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3.4 Quasi-periodic Solutions in AdS,

The stability of the solutions to (3.17) can be examined using a quasi-periodic (QP) ansatz for the

complex amplitude
.Aj = Oéjei’BjT s (318)

where o, §; € R. Substituting (3.18) into (3.14) allows us to relate the QP modes «; and 3; to the
amplitude/phase modes via A; = 2¢;, Bj = ;7. The time dependence in (3.17) is removed via the
condition ; = By + j(B1 — Bo), leaving Sy and 3; as unknown parameters. Considering modes of
(3.14) up to some j,qz, the QP ansatz results in a set of j,.. + 1 algebraic equations for jq. + 3

unknowns

(<i+j
2Wg04gﬂg = TgOé? + Z Riga?ag—f- Z Z Sij(iﬂ_g)gaiozjaiﬂ_g . (319)
17l i#l jHEL

As shown in [80, 82], the TTF is invariant under two U(1) transformations which lead to the

conserved quantities
E=4) wia} and N=4) wia’. (3.20)
J J

The energy F is the perturbative form of the exactly conserved energy in the system. The other
quantity, N, is interpreted as the particle number because the contribution per mode has one fewer
power of the frequency compared to the energy. Together, these definitions allow for two of the
free parameters to be fixed. Families of solutions can be examined by fixing ag = 1 and sampling
a range of o values in the range a; < ap. The families of solutions can be distinguished by their

“temperature”, or energy per particle number 7' = E/N°&.

Practically speaking, finding solutions to the j,,.. equations that arise from (3.17) requires truncat-

8Note that the temperature T is distinct from the source coefficients T} that appear in (3.16), (3.17), and (3.19).
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ing the series at a finite value j,,,. < 00. Then, one of the free parameters (either o or T') is set
and used to generate seed values so that (3.17) can be solved using a Newton-Raphson solver (see
appendix 3.A for more details). Within a space spanned by {a, ..., «;, ..} we can imagine a surface
that represents all possible QP solutions. For a set of seed values, solving (3.19) with fixed «a; (T")
is tantamount to moving along lines of constant a; (7") until the solution surface is intersected®.
For this reason, we refer to solving the QP equation (3.19) given seed values for [as, ..., q;, ,.] and

one fixed value as projecting back to the solution surface.

3.4.1 Persistence at Large j,,u:

The question of edge effects in determining the robustness of a particular solution is important to
investigate. For instance, if a particular solution to (3.19) is found for some a1 when j,,., = 50,
does this continue to be a solution when we consider more modes, say jm.. = 2507 By following the
methods outlined in appendix 3.A, we are able to start with a low j,,4, solution and incrementally
increase the number of modes being considered up to several hundred. This method was found to

be more successful, given the optimization algorithms being used, than other seeding methods.

As an example, consider solutions to (3.19) with the conditions oy = 1.0 (since all QP solutions are
defined up to an overall scale, ag = 1.0 is taken to always be true) and a; = 0.2, which corresponds
to a temperature of T' ~ 3.146. In figure 3.1a, we present an overlay of QP solutions generated by
successive solving, fitting, and seeding from j,,0; = 50 t0 Jjpae = 500 for a family of QP solutions.

Similar high j,,.. solutions were confirmed for a; < 0.442 and are shown in figure 3.1b.

When examining the range of «y values that yield low temperature QP solutions, it was found
that any small 7,,.. QP solution could be extended to large j,,.. wWith proper seeding and sufficient
computing power; that is, there seem to be no solutions that exist at low j,,.. that cease to exist
at high j,... However, a hard limit exists at the maximum «; value of ay = 0.442, corresponding

to a temperature of T' ~ 4.643. Above this limit, no QP solutions can be found by directly solving

9For low temperatures, the same QP solution is found whether travelling along lines of constant o; or 7. For
higher temperatures, however, this picture becomes more complicated.
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Figure 3.1: Energy spectra for various low temperature QP solutions.

(3.19), even with j,q. values as low as jna: = 50. Conversely, there is no lower limit to «; values;

as a; — 0 with o; > aj41, the TTF solution approaches the well-known single-mode solution.

3.5 High Temperature Perturbations

In [82], additional QP solutions were found by repeatedly perturbing away from existing solutions:
the addition of some energy dF corresponds to the changes a;; — oj +u; and B; — B; + 61 + w;bs.

The perturbed quantities are given by the system of linear equations

0E = 4Zw?ajuj (3.21)
J
ON =4 wjaju; =0 (3.22)

J

0 = Wy (Oég(gl + u}g02> + BKUZ) + 6Tg0z?’dg + 2 Z Rig(oz?ug + 20@0&41@)

1#0
(<itj
+ 2 Z Z Sij(zurj,g)g [uiajaiﬂ_g + U; OG04 j—p + (Jéiajui+j_g] . (323)
i#£l jHEL
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Therefore, by solving (3.21)-(3.23) for {u;, 0:, 62}, the existing QP solution can be updated and the

process can be repeated.

For a standard QP solution with ay = 0.2, the initial temperature is 7" ~ 3.146. By applying the
high temperature perturbation method described above, we are able to increase the temperature
of the solution. However, this process must be examined with some scrutiny; applying repeated
perturbations to a known solution does not guarantee the final result remains a valid solution. To
investigate this further, we have implemented two high temperature solvers, both of which increment
the energy of the system using (3.21)-(3.23) and are able to use the updated values of o; and §; as

seeds to solve (3.19) using a Newton-Raphson solver.

The projection used by the first solver follows the form used in [82] and takes an input ay value
when projecting to the QP solution surface, while the second holds the temperature of the solution
fixed during projection. To hold the temperature fixed, we use the definition of 7" and the freedom

to rescale the o such that oy = 1 to solve for o via

ai = - (wo(wo -T)+ ij(wj - T)a?) (3.24)

N w1 (T — wl) =2

It can easily be seen that a; will become singular when T'= w; = 5 in AdS,. Since we are inputting
a value for the temperature 7" instead of a a;, we are still solving a system of j,,.. + 1 equations

for Jmaee + 1 unknowns.

3.5.1 Projections at Constant o,

Let us first consider the results of the a; projection method, shown in figure 3.2. We have fixed
the perturbation amount 0E to 1% of the energy of the initial solution. Beginning with an a; =
0.44 solution with low j,,.., we apply repeated energy perturbations and project back to the QP
solution surface with a frequency of once per 5 temperature iterations (see appendix 3.C for further
discussion on projection frequency and energy perturbation value). Figure 3.2a shows the resulting

values of a; and T' during these perturbations. We see that oy approaches an attractor solution of
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a1 =~ 0.43 with T ~ 4.3. The energy perturbations between projections are insufficient to escape this
local minimum, thus repeated projections return the same solution. However, when the projection
frequency is decreased to once every 20 iterations, the resulting QP solution is able to bypass the
attractor solution (variations of the projection frequency and energy perturbations are discussed in
appendix 3.C). Note that as the iteration number increases, we actually see a decrease in «y value
while the temperature continues to increase. At iteration 150 in figure 3.2b, there is a cusp in oy

and a discontinuity in the temperature. After several hundred iterations, a; becomes negative.
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Figure 3.2: The results of projecting a jmar = 50, a1 = 0.44 solution back to the QP surface at various
frequencies during high temperature perturbations. Colour changes indicate that the solution has been
projected back to the QP surface.

Let us examine the energy spectra of these solutions. In figure 3.3a we see that when we choose a
high projection frequency, the resulting energy spectra do not deviate far from the initial solution
(using the «; projection method) in either shape or temperature, but rather approach an attractor
solution. The temperature of this attractor solution is robust against increases in Jqz, as shown

in table 3.1.

When the projection frequency is decreased, the solution is able to pass the attractor in temperaure.

However, as seen in figure 3.3b, projections back to the QP surface give a; < 0 and an energy
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Jmaz T Iterations
50 | 4.30344575697724e+00 350
75 | 4.30344544264076e+00 210
100 | 4.30344544023857e+00 540
150 | 4.30344544024198e+00 280
200 | 4.30344544023915e+-00 300

Table 3.1: The temperature of the attractor solution for various jmaz values. Also included is the number
of iterations applied (projecting back to the solution surface with constant ay after every five iterations).

spectrum that is no longer a smooth' function of j (c.f. spectra of iterations 120 and 180). This
in itself is not necessarily a breakdown of the quasi-periodic nature of the solution. However, upon
examining the condition number of the matrix formed by (3.21)-(3.23), we find that in fact the
problem becomes ill-conditioned. This results in a absolute value of w; that is greater than «;;
that is, the perturbative condition required to derive the system of linear equations (3.21)-(3.23)
breaks down. For many prospective high-temperature solutions, this break-down of the perturbative
condition is signalled by the loss of a smooth energy spectrum due to the values of «; becoming

negative.

10Here we appeal to the colloquial meaning of “smooth” instead of a strictly mathematical meaning, since Ejisa
function of a discrete variable.
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a1 = 0.44, QP solution (see figure 3.2a for tem- 20 iterations.

perature and oy as a function of iteration).

Figure 3.3: Comparing energy spectra of high-temperature perturbations of an aq = 0.44 QP solution that
have been projected back to the QP surface at different frequencies.

3.5.2 Projections at Constant Temperature

We again use a series of small energy perturbations to seek high-temperature QP solutions, this
time using a constant-temperature projection method at regular intervals. Starting from a standard
a1 = 0.44 QP solution, we apply successive perturbations to increase the temperature. After five
increments, the temperature is calculated and used as the input to the second nonlinear solver. This
ensures that the temperature is not changed when projecting back to the QP solution surface. The
seed values were projected back to the QP solution surface when goal temperatures of T' = 5.5, 6.0,
and 7.0 were reached (or at the first perturbation when these temperatures were exceeded). The
resulting spectra for each temperature goal over several choices of j,,.. are shown in figure 3.4. It is
worth noting that we did not include the spectra for j,,,, = 250 solutions with goal temperatures

of T'= 6.0 and 7.0 because the fixed-temperature projection failed to find a solution.

Recall that solutions must be robust in the limit of 7,,,. — oo in order to be considered solutions to

the full TTF theory. While the upper panel of figure 3.4 suggests that solutions with temperatures
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either reached or exceeded for the first time, the data is again projected back at constant temperature.
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at or near T' = 5.5 can be constructed in the large-j,,q. limit, we do not find evidence that low j,,qz

solutions with 7' = 6.0, 7.0 extend to the full theory.

3.5.3 Building High-Temperature Solutions

In figure 3.4 we see that QP solutions with smooth spectra exist for goal temperatures of T' = 6.0
and 7.0 when j,... = 50 but cease being smooth as j,,.. increases and the temperature is held
constant. It is therefore reasonable to ask whether high temperature, low j,... QP solutions can
be extended to higher j,,.. by using a fitting procedure to generate seed values for the fixed-ay
Newton-Raphson solver. In figure 3.5, instead of fitting «; values for modes [jimaz — 30, jmaz — 10]
(as outlined in appendix 3.A), we have applied the fitting method to final 5 modes and used the
result to generate seed values for a solution with j,,.,, + 5 modes. This method was successful in

finding QP solutions with substantially higher temperatures than the previous seeding method.

However, the solutions were not robust with the addition of extra modes. Instead, the distribution of
energy in the resulting spectra becomes increasingly concentrated in high-j modes with the addition
of as few as five extra modes. As we seed in figure 3.5, fitting the tail of the j,.. = 75, T ~ 27
and producing seed values for a j,,.. = 80 solution resulted in a QP solution with T" ~ 38 after
projecting back to the QP surface with constant a;. Because these solutions were not robust as
Jmaz Was increased, they do not provide evidence of solutions to the untruncated theory at those

temperatures.

In [82], it was suggested that QP solutions should exist in a continuous region of temperature
space T' € [Thin, Tnaz) = [d; 2Jmaz + d]. To produce high-temperature solutions, successive energy
perturbations could be applied to a low-temperature solution with a low frequency of projecting
back to the QP surface. However, we have found that the high temperature solutions produced using
regular projections back to the solution surface are not robust as j,,q, increases and therefore do no
constitute physical solutions. In further pursuit of high temperature QP solutions, we investigated

additional methods for generating these solutions.
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Figure 3.5: Beginning with the jmar = 75, T =~ 27 solution (grey left-tri), a fit is applied to the final
five modes to generate seed values that are used in the fized-cy Newton-Raphson solver find the next QP
solution. The procedure is repeated to generate the jmae = 80, T ~ 38 (green up-tri), jmaz = 85, T ~ 48
(yellow down-tri), jmaz = 90, T =~ 57 (red diamonds), and jmae = 95, T ~ 67 (blue circles) QP spectra.

First, we considered applying a similar fitting technique to a T' ~ 5.4 QP solution as that which was
used to extend low-temperature QP solutions. In this case, values were taken from the middle!! of
high temperature solutions with j,,.. = 50 and fit with an exponential function (see figure 3.A.2
for a similar procedure with tail values) to produce 10 new modes, {a;}. We then inserted the
new values a; with the existing data so that o; = (aj<j, .., Qfit, @jj, .,). The result was to extend
the data by 10 modes and slightly increase the temperature, thereby providing a good seed for the
constant-temperature nonlinear solver. However, no solutions were found by the Newton-Raphson

solver, starting either with j,,.. = 50, T' > 5.5 data, or J,,., = 200, T' ~ 5.5 data.

Next, we considered perturbing up to an intermediate temperature 5.5 < Tj,; < T),4 before

attempting to project back to the QP surface using the T},; data as seed values. In particular, we

UTypically at jmas/2, Where the power law scaling has not been affected by edge effects.
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repeatedly perturbed a T ~ 4.5 solution using the method described in § 3.5 to a temperature of
T;ne = 20 without projecting back to the QP surface at any point. For j,.. < 100, projection back
to the solution surface finds a new solution with 7" < Tj},; that — much like the spectra shown in
figure 3.3b — loses its smooth profile. Under evolution within the TTF theory (discussed below),
the fractional energy in the low-frequency modes oscillates rapidly over several orders of magnitude
during the evolution and the Ricci scalar reaches values O(10°); these solutions are almost certainly
not quasi-periodic. The same result is found for high-temperature solutions created by fitting tail
data (see figure 3.5 for example spectra). Finally, for jn.. > 100, projection back to the QP

solution surface once T' = T}, fails entirely. Thus, we did not find evidence for QP solutions with

temperatures above T ~ 5.5.

3.6 Time Evolution of Quasi-Periodic Solutions

The weakly turbulent behaviour of the scalar field in the TTF is captured by the O(e?) renor-
malization group flow equations (3.15)-(3.16). Having identified different families of quasi-periodic
solutions, we wish to evolve these solutions within the TTF description. Furthermore, we may
also be able to identify previously inaccessible solutions by evolving a QP solution within the TTF
framework before attempting to project back to the QP surface. To achieve these aims, we use
numerical methods first described by [111] and take both low-temperature and high-temperature

QP solutions as initial data.

3.6.1 Low-temperature QP data

Let us consider the evolution of a “typical” QP solution: a solution to (3.19) with oy = 0.2 and
Jmaz = 100, corresponding to a temperature of T~ 3.146. Choosing an amplitude of ¢ = 0.01 (note
that the TTF equations are invariant under A(7) — € A(7/€?) and so the value of € does not change
the physics), figure 3.6 shows the evolution of the fraction of the total energy per mode. We see

that energy in the lowest-j modes remains constant over the duration of the evolution, while the
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fraction in the highest-j modes increases after ¢ ~ 300. Similar behaviour is observed for higher
Jmaz solutions and over values of 0.2 < a; < 0.44. Given the scale of the energy in the modes
Jj > 96, the growing energy fractions in these modes can mainly be attributed to numerical errors

rather than direct energy cascades.
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Figure 3.6: Fraction of the total energy in each mode during evolution of an a1 = 0.2, jmaer = 100, QP
solution with ¢ = 0.01.

We may also ask: does a given quasi-periodic solution remain unique under evolution? That is,
will the solution project back to itself during its evolution? To answer this, we evolve the same
low-temperature, QP solution and take the spectra at different times as seed values for projecting
back to the QP surface. We see that seed values taken from data with ¢ > 0 are projected back
to themselves (using the constant «; Newton-Raphson method) at all times during the evolution,
and that the resulting solutions solve the QP equation (3.19) to a high degree of accuracy (see
figure 3.7).

In an effort to find new QP solutions, we consider an alternative method for finding solutions
that may not be accessible through established seeding methods. We pad a given quasi-periodic
solution with extra modes that are initially set to zero and project back to the QP solution surface.
Upon amplitude-phase evolution via (3.15)-(3.16), the energy in the lower-j modes will flow into
the higher-j modes. This may lead to new quasi-periodic solution with the same temperature but
larger jnqe. In figure 3.8, we construct initial data from a known 7,,,, = 100, T' ~ 3.14 solution by

padding the data with zeros up to je: = 200. As in the case of unpadded QP solution, the fraction
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Figure 3.7: Left: Projecting a low-temperature solution back to the QP surface with constant oy during
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(pentagons). Right: the L?>-norms of the errors between solutions at t ~ 0.0,0.2,0.5,1.0,2.0,2.5 (red
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of the total energy in the first four modes does not vary significantly during the evolution and the
highest modes accumulate some numerical error before levelling off. Despite the somewhat normal
profile of the spectra of padded QP solution (shown in figure 3.8¢c) and the relatively low value
of the Ricci scalar (see figure 3.8d), we find that the Newton-Raphson solver — both constant-ay
and constant-7" — is not able to project back to the QP surface when the evolved QP solution is
used as seed data. To check whether the failure to project back to the QP surface is due to the
addition of too many extra modes, we also investigated incrementally adding a small number of
modes. Beginning with the same j,,,, = 100 QP solution, we padded with only five modes. Despite
a QP solution with j,,,. = 105 already being known, the evolution did not result in the padded

solution approaching the known solution.
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Figure 3.8: The evolution of the padded QP solution for a; = 0.2 and jmaer = 200, with amplitude ¢ = 0.27
over t € [0,25].

3.6.2 High-Temperature QP Data

We now apply the same amplitude-phase evolution procedure to higher temperature QP data. First,
we consider a QP solution with 7, = 100 and T" ~ 5.4. Such a solution was demonstrated in
figure 3.4 to be robust as j,,.. increased. In figure 3.9 we show the fractional energy per mode
during evolution. Because of the initial profile of solutions with these temperatures, there is a much
higher fraction of the total energy in the higher modes; therefore, the accumulation of numerical
errors that were present in low-temperature solutions are not as significant. Close inspection of

figure 3.9, shows small oscillations in the fractional energy of the high frequency components of the
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scalar field. However, these oscillations are not sufficient to produce a qualitative change in the full
energy spectrum, as shown in the left pane of figure 3.10. Examination of the absolute value of the
scalar curvature at the origin in the right pane of figure 3.10 shows that the large initial value of |R|
oscillates rapidly during evolution. Since the TTF description is inherently stable, the curvature will
never become infinite; however, large values of curvature with rapid oscillations are good indicators
of instability. It would be interesting to use such a solution as initial data for evolution in the fully

nonlinear system to test if stability is maintained over the perturbative timescale.
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Figure 3.9: Fzamining the energy per mode during the evolution of a T ~ 5.4 QP solution with ¢ = 0.1
over t € [0,425]. Ej for j =0,1,2,3 (purple, green, blue, orange) is on the left, E; for j = 96,97,98,99
(purple, green, blue, orange) is on the right.
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Figure 3.10: The evolution of the energy spectrum (left) and upper envelope of the Ricci scalar (right)
for a T ~ 5.4 QP solution with e = 0.1 over t € [0,425].
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Figure 3.11: A T ~ 5.4 QP solution shown in figure 3.10 is padded with 100 extra modes and evolved
with e = 0.1 over t € [0,100]

As in the case of low-temperature QP solutions, we wish to expand the space of possible solutions
by padding high temperature solutions with extra modes that are initially set to zero. To do
so, we consider padding a 7" ~ 5.4 QP solution from jpe = 100 to jne = 200 with o; = 0
for j > 99. Figure 3.11 demonstrates that after evolving in time there are indications of large
scale energy transfer amongst modes with higher frequencies. Interestingly, the magnitude and

oscillation frequency of the Ricci scalar at the origin is significantly decreased compared to the
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Figure 3.12: Overlay of the known T ~ 5.4 solution for jmaer = 200 (thick red line) with the spectra in
figure 3.11.

Jmaz = 100, T' >~ 5.4 solution. When compared against the known solution of the same temperature
when j,q.. = 200, figure 3.12 indicates that the padded solution may not approach the known QP

solution and instead may have produced a distinct, isothermal, but non quasi-periodic, solution.

3.7 Discussion

We have explored the space of quasi-periodic solutions within the perturbative description of a
massless scalar field in AdS,. Using the conserved quantities £ and N, we constructed families of
quasi-periodic solutions that were distinguished by the temperature T'= E/N for different choices
of the truncation value j,,.,,. We have demonstrated that low temperature QP solutions, i.e. those
that are clearly accessible by solving (3.19) for a given «; such that ay < oy = 1, can be extended
to arbitrarily large j... values, and therefore constitute solutions to the TTF theory. We have
also examined high temperature QP solutions, which are found by perturbing low temperature
solutions by dF while keeping N fixed. We found that high temperature solutions were robust
against increasing j,,.. only for temperatures T < 5.5. We also applied several alternative methods
for generating high temperature QP solutions. However, we were not able to find evidence of
any solutions that could be extended to the untruncated TTF system. We constructed 1ow-7,,qz
solutions with T" > 5.5, but found that they were not robust with increasing j,... and therefore
were not true solutions. Rather, only solutions with temperatures 7" < 5.5 could be extended to
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large jmae values. The nature of this temperature threshold is not totally understood. It may be
due to numerical limitations with the Newton-Raphson solving method, or it may be a physical

limitation of the quasi-periodic ansatz.

By construction, TTF solutions are stable against gravitational collapse and therefore evolution
within the TTF description will not produce a singularity. However, there are several indicators
for instability in the fully nonlinear theory: the value of the Ricci scalar at the origin, the growth
higher-order contributions to the lapse function d, and rapid growth/oscillations in the energy of
high frequency modes. With these indicators in mind, we have shown that low temperature QP
solutions constructed from directly solving (3.19) did produce oscillations in R, however they did
not exhibit other behaviour — such as the rapid transfer of energy from low- to high-frequency
components — that would suggest instability in the fully nonlinear theory. At late times in their

TTF evolution, these solutions project back to the QP surface without altering their energy spectra.

In an effort to find QP solutions through extensions of known solutions, we constructed seed data
from low temperature QP solutions that had been padded with extra, zero-energy modes. However,
attempting to project back to the solution surface resulted either in solutions that were not robust
as Jmaz Was increased, or failure to find any solution at all. When these data were taken as initial
conditions for evolution within the TTF description, no new solutions were found as a result of the
evolution. Instead, the inclusion of extra modes caused an isothermal drift away from the known
QP seed solution and the Newton-Raphson solver was not able to project the data back to the QP
surface. In such cases, the scalar curvature became oscillatory with values ranging up to 20 times
the initial curvature. Padding T" ~ 5.4 QP solutions with zero-energy modes once again produced
an isothermal drift during evolution and did not converge towards the known QP solution for that
temperature and number of modes. These solutions, however, exhibit slow oscillations of scalar
curvature over a narrow range of values, hinting at stability over perturbative timescales in the

nonlinear theory.

With respect to the overall stability of AdS,, as well as the interpretation of stable data in the bulk

as non-thermalizing states in the boundary theory, we did not find evidence of families of quasi-
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periodic solutions with high temperatures that are robust against increasing j... It is important
to note that we have focused entirely on solutions where the dominant energy contribution is in
the 7 = 0 mode. Other configurations are possible where the dominant energy contribution is in
the j, mode, with r # 0. As shown in [82], QP solutions for temperatures in certain ranges are
degenerate in the value of r. It may be that the observed temperature limit for QP data we have
seen is an indication that the r = 0 family of solutions no longer dominates, and instead the correct
quasi-periodic solution is one of the r # 0 families. Now that we have established the tools required
to examine this possibility, it will be a focus of future research. Also to be considered in the future
is the use of QP solutions as initial data for evolution within the fully nonlinear theory in order to
help establish a more precise expression for the perturbative timescale ¢,. With this, we can create
hybrid evolutions for massless scalar field collapses that use TTF methods for evolutions when ¢ < ¢,
before changing to fully nonlinear methods for ¢ > ¢,. This would decrease the computational power

required to study such collapses without compromising the accuracy of the simulation.
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Appendix

3.A Seeding Methods For Non-Linear Solvers

To generate seed values for the a; with j > 2, [82] used the exponential relation

3e M

Qy ~ -
27+ 3

(3.25)

in AdS,, where 1 = In(3/5a4). However, as jnq.. increased, the seed values diverged significantly
from the true solutions (see figure 3.A.2 for a comparison between known QP «a; values, the seeds
generated by (3.25), and the result of the fitting procedure). Although this profile was sufficient

> 150, (3.25) no longer provided an adequate starting guess. To

~Y

for low J,,q2 solutions, above Jaz
overcome this problem, we applied an exponential fit to the tail values of a known QP solution with

lower jq.. As explained below, this exponential fit was used to extrapolated the data to a higher

,]mam-

To err on the side of caution, the o;; with j € [jmaz — 30, jimae — 10] were used from each QP solution
to provide more accurate seed values when increasing j,.. by 25. See figure 3.A.1 for a comparison
of seed values generated by tail fitting to actual QP solutions. The solutions found using this
method of seeding versus those found from the seeding given in (3.25) had relative differences on

the order of 1014,
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Figure 3.A.1: Fitting the tail of the jmar = 175 spectrum to construct a seed for jma: = 200 at fized

a1 = 0.2. Also included is actual QP spectrum for jmas = 200.

3.B Auxiliary Integrals For Calculating the 7', R, S Coeffi-

cients

The auxiliary coefficients X, Y, W, W* A, and V allow the symmetries of the T, R and S coefficients

to be more easily recognized and therefore reduce the number of total calculations involved in deter-

mining (3.32) - (3.34). These auxiliary coefficients are written simply in terms of the eigenfunctions

in (3.9) and their derivatives. Explicitly, they are

Xijke = /Oﬂ/2 dze(x)ej(x)er(x)e (z) sin(z) cos(x) (tan(:ﬁ))d_1

Yijke = /Oﬂ/2 dze(x)ej(x)el(x)e)(z) sin(z) cos(z) (tan(x))d_1

Wone = [ dee(@res o)) cose) [ dyesteaty) (taniy)*™

Wi = | " () ) sn) con(a) [ dvestieds) tante)y
Ay = /0 " €}(x)e (x) sin(z) cos(z)

/2
Vij = /0 dxe;(z)ej(x)sin(z) cos(z) .
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Figure 3.A.2: A comparison of seeds predicted by (3.25) to known QP solution. Also included for
comparison are the results of fitting the QP solutions to a generic exponential fit.

In terms of these coefficients, the TTF source terms are given by

T, =
Ry =

+

1
2

2
—wy Xppee +

3 .
§Y€W + 2w Weeee + 20 Wiy — wi (Age + wi Vee) (3.32)

2 2 2 2
1 W + Wy 2X 2X 9 Wy }/;Zif — Wy }/Ziﬁi
5\ T2 =2 (w Xieei — w; Xeiie) + 2 2
2 \w; — w; Wi — W
2,2
wiw 1
¢ 2 2
22 (Xioei — Xoies) + §(Yim + Youis) 4 wiwy (Wi + Wiiee)
¢ T Wi

+ W Wi + Wi Wi — wi (Asi + wiVi) (3.33)
1

4

Sijke =

e N N N

1 1 1
+ Wiw;wXy; weYip;
w; +w; W — Wg —w ( JHk A igh T ij)

El

1 1
+ (wjwrweXire — Wi Yjire)

iwiweXjike — wW;Yijke)

1 1

1 1
wi+wj wi—wk

(w
(wiwjwe Xpije — Wi Yikje) - (3.34)
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3.C Frequency of Solution Checking

The frequency of applying the nonlinear solver to project back down to the QP solution surface is
an important part of ensuring that the perturbative method remains applicable. If QP solutions
are perturbed by too large an energy, or for too many iterations, the intermediate solutions may not
be close enough to the solution surface to provide an adequate seed value. Such was the concern

when examining the purported high-temperature solutions from existing sources.

For example, consider the process of applying perturbations of 6 & = 0.01% up to some intermediate
temperature without projecting back to the QP surface, then projecting back every 100 iterations
until a maximum temperature is reached. Starting with the QP solution corresponding to a; = 0.2,
the lower panel of figure 3.C.1 shows the result of repeated perturbations of 0E = 0.01% that are

not projected back the to QP surface.

5E=0.01%, Checked Every 100 Perturbations

§E=0.01%, Checked Every 100 Perturbations

Initial solve, T = 16.9843
o It=100, T pre = 17.1336
© 0 It =100, T_post = 16.7251
< It = 3100, T_pre = 8.99518
© 0 It =3100, T_post = 9.05093
< It = 6100, T_pre = 18.5822
© 0 It=6100, T_post = 18.7473
It = 9100, T_pre = 26.3944

\H Initial solve, T = 4.33009
© It = 9100, T_post = 26.5358 | o < It=100, T pre = 437899

© It=12100, T_pre = 315847 10 i © o It =100, T_post = 4.38655
© o It=12100, T_post = 31,6912 o o It=700,T pre = 4.70838
It = 15100, T_pre = 34.9219 107 i © o It =700, T _post = 4.7157
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Figure 3.C.1: Left: the result of unchecked perturbations of a jmaer = 50 QP solution up to an intermediate
temperature before switching to reqular checking. Right: the same procedure is applied to @ jmar = 150 QP
solution.

The behaviour of the spectra differ for the low and high j,,.. cases. For the j,... = 50 solutions, the
spectra in the lower panel of the figure can be remain smooth through more than 27,000 iterations

of OF perturbations. When a temperature of approximately 17 is reached, the spectrum is used
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as a seed value for the nonlinear solver and a smooth solution is found. Continuing with the same
0F, but reapplying the nonlinear solver produces mixed results; the temperatures of increasing
iterations do not increase monotonically, but do always project back to a solution with nearly the
same temperature. However, the spectra themselves are no longer smooth by iteration 3,100. As
discussed in § 3.5.1, loss of smoothness is merely indicative of a change of sign in the alpha values;
however, this is also accompanies a breakdown of the perturbative conditions in §3.5. Because only
a small number of modes are considered, numerical solutions are still found by the Newton-Raphson
solver but no longer represent physical states. Continuing this procedure, we find that the solver

fails to find a solution even at the modest temperature of 7" ~ 38.

The behaviour of the 7, = 150 solutions is consistent with their lower-mode number counterparts,
albeit more pronounced. We see that kinks in the spectrum develop even when the nonlinear solver
has not been applied. The intermediate solution used as a seed for the nonlinear solver did not
project back to a nearby temperature, instead falling from T' ~ 14.2 to T' ~ 4.3. As the perturbative
procedure continued, projection back to the QP surface was only possible in for a short time before

no solutions could be found.
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4 Perturbative Descriptions of Driven Instabilities

in AdS

We have now seen how renormalization flow equations that arise in the TTF allow for secular terms
to be absorbed into the definitions of the slowly varying amplitude and phases variables over the
perturbative timescale. However, we have only considered gravitational systems whose holographic
duals are constrained to instantaneous quenches so far. To better understand more general systems,
we wish to extend the perturbative description of gravitational collapse in AdSg;,; from massless
scalars with static boundary conditions to include all allowed masses (both positive and negative
mass-squared), as well as time-dependent driving terms on the conformal boundary. This is the
focus of the following project: to derive a perturbative theory for a more general class of scalar
fields and to examine the effects of time-dependent sources for the fields. As the sole author on this

work, all contributions were mine.
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We extend the study of the non-linear perturbative theory of weakly turbulent energy cascades in
AdSg, to include solutions of driven systems, i.e. those with time-dependent sources on the AdS
boundary. This necessitates the activation of non-normalizable modes in the linear solution for the
massive bulk scalar field, which couple to the metric and normalizable scalar modes. We determine
analytic expressions for secular terms in the renormalization flow equations for any mass, and for
various driving functions. Finally, we numerically evaluate these sources for d = 4 and discuss what

role these driven solutions play in the perturbative stability of AdS.

4.1 Introduction

Nonlinear instabilities in Anti-de Sitter space have been the subject of examinations on several
grounds in addition to the holographic description of quantum quenches via the AdS/CFT corre-
spondence [10, 125], including general stability of maximally-symmetric solutions in general rela-
tivity [49,67,128], and the study of the growth of secular terms in time-dependent perturbation
theories [43,129]. Numerical studies in holographic AdS show that the eventual collapse of a scalar
field into a black hole in the bulk (which is dual to the thermalization of the boundary theory) is
generic to any finite sized perturbation [67-69], but can be avoided or delayed for certain initial

conditions [39, 83,86, 88]. The mechanism of collapse in such systems is described as a weakly
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turbulent energy cascade to short length scales. These dynamics can be captured by a non-linear
perturbation theory at first non-trivial order through the introduction of a second, “slow time”
that describes energy transfer between the fundamental modes. This is known as the Two-Time
Formalism (TTF) [44] and yields a renormalization flow equation that allows for the absorption of
secular terms into renormalized amplitudes and phases [42,78,106,107]. Therefore, stability against

a perturbation of order € is maintained over time scales of t ~ ¢2.

Conventional examinations of perturbative stability using TTF have focused on the reaction of
the bulk space to some initial energy perturbation, and have aimed to study the balance between
direct and inverse energy cascades [82, 111,112,130, 131]. Furthermore, numerical examinations
of “pumped” scalars and their implications for thermalization of the dual theory have also been
examined [30,97,98,100, 132, 133]. However, extensions of the perturbative description to include
time-dependent sources — corresponding to a driving term on the boundary of the bulk space —

remain unaddressed.

With this in mind, we examine the effects that a time-dependent source on the conformal boundary
has on the non-linear perturbative theory. The introduction of a driving term on the boundary
means that we must include a second class of fundamental modes with arbitrary frequencies. Since
these solutions will have non-finite inner products over the bulk space, they are known as non-
normalizable. Non-normalizable modes couple to both the source on the boundary and the regular
normalizable modes to bring energy into the system, where direct and inverse energy cascades

proceed over perturbative time scales.

To capture these dynamics, we expand the fields in powers of a small perturbation and isolate the
secular terms that appear at third order in e. Only modes whose frequencies satisfy certain reso-
nance conditions will contribute terms that cannot be absorbed by simple frequency shifts. The form
of the resonant terms depends on the specific physics of the system, as well as possible symmetries
between frequencies. Finally, by evaluating the resonant third-order interactions when combina-
tions of normalizable and non-normalizable modes are activated, we can write renormalization flow

equations for the slowly varying amplitudes and phases.
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This paper is organized as follows: section §4.2 involves a brief discussion of how we arrive at the
third order source term, as well as additional considerations due to the time-dependent boundary
condition. As an exercise — and to provide explicit expressions for the resonant contributions when
the scalar field has non-zero mass — § 4.3 examines the secular terms in the case of a massive
scalar field in AdSg,; with any mass-squared, up to and including the Breitenlohner-Freedman
mass [37]: m%p < m?. We demonstrate the natural vanishing of two of the three resonances,
and then examine the effects of mass-dependence on the non-vanishing channel. Whenever values
are calculated, the choice of d = 4 is implied as to draw the most direct comparison to existing
literature. In section § 4.4, we extend the boundary conditions to include a variety of periodic
boundary sources that couple to non-normalizable modes in the bulk. For each choice of boundary
condition, we derive analytic expressions for applicable resonances and evaluate these expressions for
different ranges of scalar field masses. Finally, in §4.5 we discuss the implications of non-vanishing
resonances on the competing energy cascades, and the implications for the perturbative stability of
such systems. For completeness, we include details of our derivation of the general source term in
appendix 4.A, as well as a complete list of possible resonance channels and their resulting secular

terms in appendix 4.B for the case of two, equal frequency non-normalizable modes.

4.2 Source Terms and Boundary Conditions

Let us first consider a minimally coupled, massive scalar field coupled to a spherically symmetric,
asymptotically AdS,,; spacetime in global coordinates, whose metric is given by

L2

ds® =
° cos(z)

(—A(, z)e” 200 g2 4 ANt x) da® + sin®(x) ) (4.1)
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where L is the AdS curvature (hereafter set to 1), and the radial coordinate = € [0,7/2). The

dynamics of the system come from the Einstein and Klein-Gordon equations:
1
G+ ANg, = 87 (vmvygb — 59 (VPoV 0 + m2¢2)> and VZ¢—m?¢=0, (4.2)

with the cosmological constant for AdS given by A = —d(d —1)/2.

Perturbing around static AdS, the scalar field is expanded in odd powers of epsilon
P(t, ) = epi(t, x) + Eps(t, ) + ... (4.3)
and the metric functions A and J in even powers,

Alt,z) =1+ EA5(tx) + . .. (4.4)

§(t,x) = 20,5t ) + ... . (4.5)

We choose to work in the boundary gauge, where (¢, 7/2) = 0, for reasons that we discuss below.

At linear order, ¢, satisfies

A R 1 2
d7¢1 + Lop1 =0  where = (10, + puod?) — TZ 7
cos?(x)

(4.6)

=

and pu = tan?!(z). The general solution for (4.6) in the bulk is a linear combination of the
eigenfunctions @Ii(w), whose frequencies w; are arbitrary. Examining each function’s scaling when
T — 7/2, we see that ®} is normalizable and goes as (cos )2  while ¢, is non-normalizable and

goes as (cosx)? . We denote the positive (negative) root of A(A —d) = m? as AT(A7).

For an arbitrary frequency, requiring regularity at the origin means that we must choose the linear

combination [122]

A+—|—OJI A*—w[
2 ’ 2

E;(x) = K; (COS(JZ))A+ o Fy ( ,d/2; sin2(x)> : (4.7)

101



that solves the eigenvalue equation

LE;(z) = wiE(z). (4.8)

For special integer values of the frequencies w; = w; = 2i + A" with ¢ € Z*, the functions ®;(x)
are individually regular at the origin. In this case, the normalizable part of the solution in (4.7)

can be written as

Er(z) = ei(x) = k; (cos(x))®" PP 1A= (o522 | (4.9)

(2

with the Jacobi polynomials Y (z) providing an orthogonal basis so that (e;(z), e;(x)) = d;; when

- 2\/ (i + A+/2)T(i + DI(i + A*) (4.10)

L(i+d/2)T0@+ AT —d/2+1)
For consistency with other frequency values, we choose to write the non-normalizable contributions

in the general form of (4.7).

The interpretation of the driving term through the AdS/CFT dictionary is the addition of a time-
dependent part of the boundary Hamiltonian. Therefore, the presence of non-normalizable modes
corresponds to pumping energy in and out of the system. We will find it useful when calculating
the third-order source term — which requires a triple sum over first-order modes — to be able to
separate the contributions from either kind of mode. To that end, we write the first-order part of

the scalar field as a sum over both normalizable and non-normalizable modes:

d1(t,x) =Y er(t)Ex(x)

= Z a;(t) cos (wit + b;(t)) e;(z) + Z Aq 08 (wal + Ba) Eu(x). (4.11)

The values of A, and B, will be set by the driving term. This informs our choice of working in the
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boundary gauge; the time ¢ is the proper time measured on the boundary, as well as the time scale
of oscillations from the driving term. In the simplest example, the driving term on the boundary is

a single, periodic function
1(t, m/2) = Acoswt . (4.12)
In this case, (4.11) collapses into a single term so that
ZA‘I cos(wat + Bo)Ey(1/2) = Acoswt = Ay Eg(n/2)=A and By =0. (4.13)

Generalizing the boundary condition to a sum over Fourier modes would set further A, and B, to

non-zero values.

Without specifying whether frequencies or basis functions have been chosen to be either normalizable
or non-normalizable for the time being, we can show that the O(€®) part of the scalar field satisfies

the equation
g.b'g + i/¢3 = S = 2(142 — 52)&;1 + (A2 — 52)4)1 + (A/2 — 5;)@5/1 + mQAggbl SGCQJZ . (414)

Following the steps outlined in appendix 4.A, we project (4.14) onto the basis of normalizable modes
since all non-normalizable contributions have been fixed by the O(¢) boundary condition. Employing
an ubiquitous time-dependent solution ¢;(t) = ay cos(wyrt + by) = aycosfr with I € {i,a}, we find

that the source term for the /™ mode is
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1 > arajaWg _
SZ:Z‘: E a}%_—u}%( ZIJKE(WI—i_WJ_2WK)COS(0[+0J_GK)
1,J,K
K#¢L

— Zre(wr +wy + 2wk ) cos(0p + 05 + 0k) + Z; e p(wr — wy + 2wie) cos(0 — 05 + O)

— 7} pe(wr — wy — 2wie) cos(0; — 05 — HK)}

1 [e.e]
+ 5 Z arajagwWy (HIJKe +m*Vykre — QW%{XIJKE) [ (008(91 — 05— Ok)

IJK
I£J

wr —wy

+ COS(Q[ — HJ + 9[{)) — (COS(Q[ + 9J — QK) + COS(Q[ + 9J + QK))

w1+wJ

1 oo
— Z Z arajag { (2waKX]JKe -+ ?712‘/[]}(5) COS(@[ -+ 9] — QK)
I,J, K

— (2wywr Xrsxe — m*Vigxe) cos(0r — 05 — 0k) + (2wiwr Xpsxe +m*Vigke) cos(0; — 6 + 0k)

— (2WJ(UKX[JK[ — m2V1JK4) COS(@] -+ QJ + 9}():|

1 < . .

+ 1 Z arayapwyp [ZI_M(OJ] +wy — 2wy) cos(0r + 6, — 00) — Z;,(wr +wy + 2wp) cos(0r + 05 + 6,)

1,7

+ ZF ) (wr — w4 2wy) cos(0r — 05+ 0p) — Z 5, (wr — wy — 2wy) cos(0; — 0 — 94)}
> ai
1,7
Z CL?—GJ |:H][Jg —|— mZVJ[[g — 2W§X][Jg + 4w?w3PM + QW?(M(]@[ —I— mQQJg]):| COS QJ. (415)
1,J

Qg |:H][Jg —|— mZVJ[[g — 2W§X]]Jg:| (COS(20[ — HJ) —f- COS(Q@] —|— QJ))

A~ =

| —

Note that sums and restrictions on indices must be interpreted as sums and restrictions on frequen-

cies when any of the modes is non-normalizable, since w, # 2a + AT in general.

As mentioned above, the growth of resonant terms with time, i.e. secular growth, at O(e®) can be
absorbed into the time-dependent part of the scalar field at that order [43]. Thus, (4.14) tells us

that
éf’) (t) + w?cf) (t) = Sé?’) cos (wet + ¢r) (4.16)
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where Sf’) is a polynomial in a; determined by evaluating the resonant contributions from (4.15),
and @, is some combination of the b;. To obtain the renormalization flow equations, we can
rewrite the amplitudes and phases in terms of renormalized integration constants that exactly
cancel the secular terms at each instant. Doing so yields the renormalization flow equations for the

renormalized constants [42]

2wy day 3) .

— g = 9 sin(be = i) (4.17)
2wpay db

St = =5 cos (b — 1) (4.18)

Note that the amplitudes and phases evolve with respect to the “slow time” 7 = €2t. In practice, once
these flow equations can be written down, the perturbative evolution of the system is determined

up to a timescale of t ~ ¢2.

To determine the exact form of S, 153)7 we must consider all combinations of the frequencies {wr, w;, wk }

that satisfy the resonance condition
ij:ij:wK:j:wg. (419)

As an exercise, we first derive the resonant contributions when the boundary source is zero, and
therefore only normalizable modes are present. These results agree numerically with previous work
on normalizable modes for massless scalars in the interior time gauge (d(¢,0) =0) [134]. The
definitions of the functions Z, H, X, etc. in (4.15) differ slightly from other works — in part because
of the gauge choice, and in part because of a desire to separate out mass-dependent terms — and so

are given explicitly in appendix 4.A.
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4.3 Resonances From Normalizable Solutions

Consider the case where each of the basis functions are given by normalizable solutions. The possible

combinations of frequencies that satisfy (4.19) can be separated into the three distinct cases:

wi +w; +wp = wy (+++) (4.20)
W — Wj — W = Wy (+—-) (4.21)
Wi + wj — wp = Wy (+4+-). (4.22)
Note that the (+ + +) and (+ — —) resonances produce restrictions on the allowed values of the

indices {1, j, k}, as well as on values of the mass, since w; = 2i+A*. In the first case, the indices are
restricted by i + j + k= ¢ — A*, and so AT must be an integer and greater than ¢ for resonance to
occur. Similarly, the (+ — —) resonance condition becomes i — j — k = ¢ + A", which is resonant
for any integer value of A™. We will see that these two resonance channels will non-trivially vanish
whenever their respective resonance conditions are satisfied. This is in agreement with the results
shown for the massless scalar in the interior time gauge (as they must be, since the choice of time
gauge should not change the existence of resonant channels). Here we include the expressions for

the naturally vanishing resonances, choosing to explicitly express the mass dependence.

4.3.1 Naturally Vanishing Resonances: (+ + +) and (+ — —)

Resonant contributions that come from the condition w; + w; + w, = w, contribute to the total

source term via

(o olNNe o lNe o]

Se = Z Z Z Qijre aiajag cos (O; + 05 +0p) + ..., (4.23)
i=0 j=0 k=0

wi —Hu]- +wk: Wy
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where the ellipsis denotes other resonances. €2, is given by

1 w;(wi + wi, + 2wj) 1 wi(w; + w; + 2wy) 1 w;(wj + wi, + 2w;)
——Hijie — —Hpje — —Hjire
12 (wi +wj)(w; +wg) 12 (wi +wp)(wj +wy) 12 (wi + wj)(wi + wg)
2

m Wi w; m? W W
e (14— ) - Py (14—

12 sz( +wj+wk+wi—|—wk> 12 ]kg( +wi+wj+wi+wk>

m? w; Wi 1 W Wi
My (1 i Z X (1 j

19 k]K( +wi+wj+wj+wk>+6w]wk ]ké( +wi+wk+wi+wj)

1 w; w 1 w; W
+ —wiwp Xjkie (1 + +— ) + —wiw; Xije (1 + + — )
6 wj+wr  witw;j 6 Wi +wr Wi+ wy

1 Wi 1 Wj 1 W;
——Zol— - —=Z —— ) - =7, —— ). 4.24
127kt (wﬁwj) 127 kit (wi+wk> 127 9kit (wj+wk) (424)

The second naturally vanishing resonance comes from the condition w; — w; — w, = wy, and con-

Qijre =

tributes to the total source term via

oo o0

Sg = Z Z P(j+k+é+A+)jk£ A5 AkA (G4 k+0+AT) COS (9(j+k+é+A+) - 9]' - G,C) + ..., (425)
j=0 k=0
where
1 wilwp —w; +2w;) 1 wi(wj —w; +2wy) 1 w;(wj + wi, — 2w;)

Ciipe = —H;s —Hi
gkt i —w)(wj +wr) 4 T (w — we)(wy +w) | 4

— —W;wWEX;i J —1 SWiwr X jki -1
2%% ki (Wi 0 + R ) + 2w WEA kit (wi — + w5 + W )

1 Wi w; m? w; W
9 kﬂ(wi—wkjijjka )+ 4 ]H(wi—wj—'—wi—wk )

1__ w; | — Wi | — w;
+ Znjit (m) = 1 Zijke <m) = 7 Zjkit <m : (4.26)

Building on the work done with massless scalars, we are able to show numerically that (4.24) and
(4.26) continue to vanish for massive scalars (m? > m%;,) in the boundary gauge; thus, the dy-
namics governing the weakly turbulent transfer of energy are determined only from the remaining

resonance channel. When non-normalizable modes are introduced, we will see that naturally vanish-
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ing resonances are not present and so the total third-order source term is the sum over all resonant

channels.

4.3.2 Non-vanishing Resonance: (+ + —)

The first non-vanishing contributions arise when w; + w; = wy + wy. This contribution can be split

into three coefficients that are evaluated for certain subsets of the allowed values for the indices,

namely

Sy = Tya; cos(8y + 0, — 0;) + Z RigaZagcos(6; + 0, — 0;)

i£l
-+ Z Z Sij(i+j_g)g A;A5Q(i45—0) COS(QZ- + Qj - ¢9i+j_g) , (427)
A A
where the coefficients are given by
1 wi(wj — Wi + 2&)@) 1 Wy (wi — Wy + 2&)j) 1 wk(wi + Wy — Q(Uk)
Sijke = —~ Hpije — —ijke — — I jkie
4 (wi —wp)(w; +wj) 4 (wj —wp)(w; +wj) 4 (wi — w)(wj — wg)
1 Wi W 1 Wi Wk
ZWJWk gkt (wi — Wk Wi + CL)j + ) 200 Wk Jkit ((.Uj — Wk Wi -+ wj + )
1 Wi Wi m? Wy wj
+ swiw;j Xkije ( + — + 1) — — Vijre ( + — + 1)
2 Wj —Wp W — Wy 4 Wi — WE Wi — Wy
m? W W m? Wi w;
— Vi — J 1 —Viii — L1
+ 4 ﬂ”(wi—wk wi—l—wj )+ 4 kﬂ(wj—wk wi+wj )
1 Wy 1 Wi 1 w;
g =k 7+ J —zt | — 4.28
+4 ijke (wi+wj) +4 ikjl (wi_wk> +4 jkil w; — W ) ( )
w; 2 w} 2 2
Ri=| 5 | (Yies — Yiee + w; Kieie — Xoiei)) + | 5 | (Heize + m*Viiee — 207 Xpiie)
wy 2 2 m? 2 2
7 (Hivie + m*Vyize — 2w; Xigi) — I(Viéiﬁ + Viiee) + wiwy (P — 2Pus)
¢ — Wi
3m? 1 2 2 2 2
— wiwe Xipie — TV&‘M — §Hnee + wy Biie — wi Mees — m”w; Qu (4.29)
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and

1 3
D = 5&]? (XMM + 4B@g@ — 2Mgu — ZmQQMZ) _ Z (HUM 4+ 3m2vzezz) . (430)

Following the form of (4.17) - (4.18), these resonant terms set the evolution of the renormalized

integration coefficients to be [78§]

2wy day e .
@ g DD Siitiri-oe iaagisj—o sin(be + b — b = by), (4.31)
il jA
2&)40,4 dbg 3 > 2
o q - L= ;Rw a;
_ Z Z Sij(i+j—0) QiG;a(i4j—0) COS(bg + D(igj—e) — by — by) . (4.32)
il jA

To examine the effects of non-zero masses on R, S, and T', we evaluate (4.28)-(4.30) for tachyonic,
massless, and massive scalars in figure 4.1. The result is a vertical shift in the coefficient value that
is proportional to the choice of mass-squared. By inspection, there is an indication that this shift
increases with increasing ¢ values; however, a numerical fit of the data would be needed to claim

this definitively.

4.4 Resonances From Non-normalizable Modes

Now let us consider the excitation of non-normalizable modes by a driving term on the boundary
of AdS. Having set wy to be a normalizable mode, we may ask what restrictions exist on our choices
for the other frequencies, {w;, w;,wy}. Aside from the trivial case where all modes are normalizable,
we could imagine that one of the modes is non-normalizable. However, this would violate the
resonance condition (4.19); thus, at least two modes must be non-normalizable. When three non-
normalizable modes exist, there are two possibilities: first, that any combination of generically

non-integer frequencies gives a non-integer value and so does not contribute a secular term when
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Figure 4.1: FEvaluating (4.28)-(4.30) over different values of m? for £ < 10. Sij(i+j—eye 18 denoted by
filled circles connected by dash-dotted lines; R;p is denoted by filled triangles connected by solid lines; Ty
is denoted by large Xs connected by dotted lines. Different values of m? are denoted by the colour of each
series.

projected onto the wy, basis; second, some particular combination of the non-normalizable frequencies
gives an integer frequency, in which case there are resonant contributions to 5153). Therefore, the
pertinent question is what resonances are possible when two of {w;,w;,w;} are non-normalizable?
Because this choice breaks some of the symmetries that contributed to the previous expressions
for resonance channels, the resonance conditions must be re-examined starting from the source

expression (4.15).

Before proceeding further, an important consideration is what the effect of non-normalizable modes
are on the perturbative expansion that leads to the source equations. Since non-normalizable
solutions do not have well-defined norms, we do not know a prior: that the inner products described
in appendix 4.A are still finite. To investigate this, consider the generic expression for the second-

order metric function

Ao == [y (802 + (6)° + m6tsecta) (4.33)
0
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in the limit of x — 7 /2, and let the scalar field ¢; be given by a generic superposition of normalizable
and non-normalizable eigenfunctions as in (4.11). Ignoring the time-dependent contributions, we

find that

(4.34)

28 31+ (A0)?)
2-¢ 3 ’

lim Ay (% = 7/2 - x) = it (
where we have defined € = v/d2 +4m2. In the massless case, ¢ = d and all powers of & are
non-negative; thus, the limit is finite. For tachyonic masses, m%, < m? < 0 so that 0 < £ < d
and the limit is again finite. However, when m? > 0, part of the limit diverges. In order for
the boundary to remain asymptotically AdS, counter-terms in the bulk action would be required
to cancel such divergences — a case we will not address presently. Furthermore, for masses that
saturate the Breitenlohner-Freedman bound, the limit would have to be re-evaluated. We will
therefore restrict our discussion to m%, < m? < 0 to avoid these issues. A similar check on the
near-boundary behaviour of d; shows that the gauge condition d5(¢, 7/2) = 0 remains unchanged by
the addition of non-normalizable modes given the same restrictions on the mass of the scalar field.

With these restrictions in mind, let us now examine the resonances produced by the activation of

non-normalizable modes.

4.4.1 Two Non-normalizable Modes with Equal Frequencies

As a first case, let us assume that the two non-normalizable modes have equal, constant, and
arbitrary frequencies, @ (and therefore amplitudes Ag). The resonance condition (4.19) will only
be satisfied when one of {wy,w,,wk} are normalizable. In particular, we find that the following

combinations are resonant:

wi —wj+wp—we=0 = either w; or wy, is normalizable (4.35)
Wi +wj —wp —wp =0 = either w; or w; is normalizable (4.36)
Wi —w; —wgp+we=0 = either w; or wy, is normalizable. (4.37)
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When any of these resonance conditions is met, the remaining normalizable mode will have a

frequency equal to wy, collapsing all sums over frequencies so that
Sg = Tg (lg/_l% COS(@[) + ... s (438)

where the amplitudes of the non-normalizable modes Az are set by the choice of boundary condition.

Collecting the appropriate terms in (4.15) and evaluating each possible resonance, we find that

_ 1 w 1 w w2 w?
Te= |52 T = _Z+ wa ) _wa —Lt
= ot () o () o e ()~ o (52 5)

w? w? w2w? wt
v () e () 2 () — i (2]

2 _
Wy

3 1 1
2

+ w2 Xomee — 0 X g — g™m Votww — = Vamu — QHWM + ng — 20w} Pu

— wQ (W?Pgm — BZZE) . (439)

Notice that the terms in the square braces only contribute when @ # w,. Beginning from (4.15),
only terms in the square braces that are proportional to Z* are limited in this way; the remaining
terms have no such restriction. However, it can be shown that integral functions with permuted
indices are equal when the non-normalizable frequency equals the normalizable frequency. Upon
simplification, factors of w? —©? are cancelled, and the overall contribution to 7, from the terms in
the braces is zero. Thus, these terms are grouped with those that have natural restrictions on the

indices.

With the resonant contributions determined, the renormalization flow equations for two equal,

constant, non-normalizable frequencies follow from (4.17) - (4.18) and are

2&]( dag —0 d 2&)5&[ dbg
_—— a —_—
€2 dt " €2 dt

Qualitatively, we see that instead of both the amplitude and the phase running with respect to 7,

only the phase changes in time. Indeed, (4.40) tells us that by is a linear function of 7 with a slope
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Figure 4.2: Left: Evaluating (4.39) when m? = 0 for various choices of W. Right: The behaviour of Sy
for w values near wy.

that is determined by the O(e?) physics encapsulated by 7.

Other resonant contributions become possible for more restrictive values of the non-normalizable
frequency, such as if w is allowed to be an integer. These contributions are denoted by the ellipsis
in (4.38) and are listed in appendix 4.B. In figures 4.2 and 4.3, we evaluate (4.39) for ¢ < 10 over a
variety of w values first for a massless scalar, then for a tachyonic scalar. For both values of mass-
squared, Ty, demonstrates power law-type behaviour as a function of ¢ with a leading coefficient that
is proportional to the non-normalizable frequency @w. We also see that the limit of (4.39) as @ — wq

is well-defined in both cases.
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Figure 4.3: Left: FEwvaluating T, for a tachyon with m?> = —1.0. Right: The behaviour of Sy near

wo = A+ ~ 3.7.

4.4.2 Special Values of Non-normalizable Frequencies

Let us now consider special values of non-normalizable frequencies that will lead to a greater num-
ber of resonance channels. While general non-normalizable frequencies do not require any such
restrictions, we will find it informative to examine these special cases as they possess more sym-
metry in index/frequency values than the case of equal non-normalizable frequencies, but less than

all-normalizable modes.

4.4.2.1 Add to an integer

First, we choose two of the modes to be non-normalizable with frequencies w; and w, that add to
give an integer: w; + Wy = 2n where n = 1,2,3,... (note that the n = 0 case means that both @,
and Wy would need to be zero by the positive-frequency requirement and so would not contribute).
Furthermore, either frequency need not be an integer and therefore the difference |w; — wy| will, in

general, not be an integer. In §4.4.3, we examine the case when the difference of non-normalizable

114



frequencies is an integer.

When we consider possible resonance channels, we see that resonances can be grouped into

(++): wi+2n=w, YI{>n

(+=):w;i—2n=w, Vn
for any m%, < m? < 0. However, for a massless scalar, we have an additional channel
(—): —wi+2n=w, Yn>/0+d.
Adding the channels together, the total source term is

Se=> [@ (n— 0 —d) Ry, ) aye A1 Az agnsay 08 (Onr—a) — 01 — 02)

wy1+w2=2n m2=0

+ Z © (£ - n) EEZ—J;L))Z 12111212 QA(¢—n) COS (Q(g_n) + 91 + 92)

wi+wa=2n

—_— +_ — _
T Z REsz))z A1 Az aggyn) cos (9(e+n) — 0, — 92)
w1+we2=2n

+ Ty A1 Ay agcos (0y)

(4.41)

(4.42)

(4.43)

(4.44)

where the Heaviside step function ©(x) enforces the restrictions on the indices in (4.41) and (4.43)

and 6, = Wit + By, etc.

In the following expressions, the sum over all wy, Wy such that w; +w, = 2n is implied, and only the

restrictions on individual frequencies are included. Examining each channel in (4.44) individually,

115



we find

1 w1 1
= SN Bz = — (we—2n) Zy,
Z Wy — Lo — 1 72 oy, Zie T g (we — 2n) Z 10
wQ#wf W1Fwy
1 1
-7 Z — [51 (Hitze + m*Vigy — 205 X;12¢) + (we — 2n) (Huize + m*Viare — 2035 X150¢) }
4 o we— Wy
1 g—
— Z P |:CU2 (szlé +m V21@e - 2w1Xz215) + (wg — Zn) (H2i1£ 4 m2Vi12€ . QW%X%M) }
wﬁéwz € 1
1
 8n [leZW +WaHzig + m* (@1 Vigae + @2Vaie) — (we — 2”)2 (@1 X215 + ngm‘z)]
W1 F#w2
1 B - "
+ 3 |:UJ1CU2XZ~12€ + (we — 2n) (01 Xo1i0 + W2 X12:0) — > (Virze + Viore + Vlm)] : (4.45)

The notation X9, corresponds to evaluating Xz, with w; = w; and wy = Wy. Next, we find that

(4 1 2
(+ ) - [MZI_Q’LE + 2(&}( + 27’1,) (leQUK + 52X12Z’£)

4 2n
w1 9 5 (we +2n) 2 )
— ————— (Hj120 + m“ V3o — 2005 X; ————~ (Hyo0 + m* Vi1 — 205X,
(w£+52) ( 12¢ 12i¢ 5 126) (a)g+w2) ( 132¢ 21¢ 21 2@)
w . we + 2n
— m (HZQIE =+ mz‘/glig — QW%XZ'QM) E ; (H211€ +m ‘/;125 2@%Xgﬂ()
1
W1ls (Cdg + 271)
— 201wa X190 + m* (Vi + Vitoe + Vme)} — Z ot (Xotie — Xein2)
0 2
WaFwy
w1Ws(we + 2n)
Xioie — Xpi12) - 4.46
+ - g we + 01 ( 1246 512) ( )
wl wy
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When m? = 0, we have contributions from

—(—+) . 1 Wo + 1 w1 + 1 2n — Wy _
R " =1 > mzme + Z,Z mZme +7 Z o) it
w1 Fwp 1£L
1

1
t1 — |:wl (Hirze — 205 Xi120) — (2n — wy) (Huioe — 205X 1i2¢) ]
Wi — Wi
w1 Fw;
1 1 _ . L
1 — [w2 (Hme - 2W1Xi21€) —(2n — wy) (Hzm - 2w1X2ﬂe) ]
W; — Wa
WaFw;
1
- [51]‘[21% + WoHy9i0 — 2 (2n — we)z (W1 Xo140 + 52X12i€)}
wl;ﬁwz
1 _ _ _
3 [(271 — we) (W1 Xo1ie + Wa Xi9:i0) — W1W2Xi122:| . (4.47)

NB. In (4.47) only, w; = 2i + AT = 2i + d since this term requires that m? = 0 to contribute. We

maintain the same notation out of convenience, despite the special case. Finally,

_ 1 ~ ~ 1
Ty = 5”3 (Zfrw + Z2+212> D) [le + Hagee +m° (Ve + Vizae) — 207 (Xn1ee + Xooue)

+ 4&)3 (E%Pgm + w%Pm) + 2E%Mal + 2@3M@42 + o2m? (E%QMI + ngaz) i| . (448)

In figure 4.4, we compute the total source term (modulo the amplitudes a; and A, ) for a tachyonic
scalar with n = 2. Figure 4.5 provides a comparison between the value of the source term for
a massless scalar between two choices of n: one that includes contributions from }_%Z(E_ ") and one
that does not. As expected, the source terms are symmetric in w; <> Wy, hence only w; < n data
are shown. As a function of ¢, (4.44) starts near zero before becoming increasingly negative as ¢
becomes large. As a check for naturally vanishing channels, the absolute value of the sum of Sy is
also plotted; however, there is no indication that any channel vanishes for any of the w;, wy values

considered.

The renormalization flow equations include the sum of all the channels (none of which vanish
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Figure 4.4: Left: Source term walues for a tachyonic scalar with m? = —1.0 when the frequencies of
non-normalizable modes sum to 4.0. Right: The absolute value of the sum of the source terms for each
choice of Wy, wa.

naturally), and are

QWE dag —=(—+) P— . _ _
ik Z {@ (n—10¢—d) Riy—i—aye A1As ag—g—aysin (b(n_g_d) — By — Bg) »
wi1tw2=2n m
~ 3" 0 —n) R AiAs agnysin (b + By + Bo)
wi1twa=2n
- Z EEZ;L))[ A1A2 CL(g+n) sin (b(g_,_n) - Bl - Bg) y (449)
w1+wa=2n
and
20.)@&4 Clbg —=(—+) - - _ _
62 E = — Z |:@ (n — E — d) R(n—f—d)( A1A2 a(n,g,d) COS (b(n,g,d) — Bl — Bg) s

w1+wa=2n

_ Z O —n) EEZ—Z)M Ay A, (¢—p) COS (b(g_n) + By + Bg)

w1t+wa=2n

- Z }_%EZ{;L))E A1A2 A (0+n) COS (b(g_,.m - Bl - Bg) - T[ AIAQ Ay . (450)

w1+wo=2n
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4.4.3 Integer Plus y

Finally, as an analogue to the case of only normalizable modes, let us consider non-normalizable fre-

quencies that differ from integer values by a set amount. To do so, we consider the non-normalizable
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frequencies to be shifted away from integer values by

wy =27+ X, (4.51)

where v € Z* (greek letters are chosen to differentiate these non-normalizable modes from nor-
malizable modes with integer frequencies, which use roman letters). We furthermore limit y to be
non-integer'? and set m? = 0 throughout. For this choice of non-normalizable frequencies there are
no resonant contributions from the all-plus channel, unlike the naturally vanishing resonance found
in §4.3.1. Only when either w; + w, = wg — wy, or w; + w, = wg +w; with ¢ + v > ¢, are resonant

terms present. Let us examine each case separately.

4.4.3.1 w;+wy=wg— wy

When the resonance condition w; + w., = wg — wy is met, the contribution to the source term is of

the form
_(1) — —
Se = Z Z Si(iﬂH)vé i A (i) Ay COS (‘91: — iyt + 97)
i A£B
+ Zﬁgg ag/_l% COS ((9( + 95 — 05) + ..., (452)
B
where
S _ lH Cwy(wi —wg+2wy) 1 wwitwy, —2wg) 1 wi(wy —wg + 2w;)
DT g —w)wi b wy) 4T Wi —wp)(wp —wn) 4w — wg)(wi + )
1 w w; 1 w; w
1 wg w 1 Wi
— X; — T 1) -ZF | ——
W iy (wi—i—w7 Wi — wg ) 4Pt <wi—|—wg>
1 wg 1 w
70— ~zt o —2— 4.53
+4 B (we—w[g) +4 it (W@‘FUJV) ’ (4.53)

12Indeed, for integer values of x, the sum or difference of two non-normalizable modes could be an integer. This
would either be covered by the work in §4.4.2.1, or be a slight variation of it.
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and

Y lZ* wp N 1Z+ wp N 1H wj 1H w?
gL T 4 eBse we + wg 47 PPE\ Wy — wpg o THpBt wg—wé o pst w?—wg

4 2 2
+ nggg L - 1w2Xmﬁg w — 1[‘[@55@ + w22+ — 2w2w2Pgm — CUZMggﬁ .
w%—w% 28 wg—w% 2 t=Bpt B B

(4.54)

4.4.3.2 w;+wy=wg+ wy

Similarly, when the resonance condition w; + w, = wg + w, is met, the contribution to the source

term is
_(2) — —
Se = Z Z Si(itr—tyye Qi (ipy—e) Ay COS (‘91' = Oity—0) + 07)
i#l v#B
——
i+y>L
+ ZE(;E) CLZA% COS (6@ + 95 — 95) + ... y (455)
B
where
2) 1 Wy (w; — wp) 1 wp(we — wg) 1 w;(wy — wpg)
S Hg,; — —H. 5 —Hg;
P T oy — ) — ) A ey — ) (e — ) A T — ) — )
1 w w 1 w w
7 X {2 1 - : 1 —W; X i ! — B —1

gt (wz—wﬁ Wp = Wy i ) g 7M( —Wy Wi Wy )

1 w w 1 w

—wsw, X; T 1)+ -2 g
T iy (wl—w7 w; — wg )+4 bt (we+w5>

1 w 1 Wi

-7+ 2 — 7% ’ 4.56
+ 4 iByE (we - Wv) 4 Bit (wi - we) ’ (4.56)
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Figure 4.6: Left: Fvaluating the source term (4.52) for various values of x for £ < 10. Right: Evaluating
the source term (4.55) subject to i + v > £ for the same values of x and the same range of £.

and

}—2(2)_12_ wg _f_lZJr wga —|—1H wg 1 w}
BE T 4 7BBEN Gy 4 wp 47PN wy — wg o thmt wy — w3 o pmt wy — wj

2 2
b X [ L, (VLR Ly 2t 2202 Py — w2 M. (A5T
soe | —3— 5 |+ 5WsXesae | 55 5 Hspee +wiZgg, — 2wpwy Pus — wiMus. (4.57)
7 —wh ; — Ws

Unlike the case with all normalizable modes where two of the three resonance channels naturally
vanished, both of the resonant channels contribute when the non-normalizable modes have frequen-

cies given by (4.51). Therefore, the renormalization flow equations will contain contributions from
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both channels:

2&){ dCLg —(1) - - _ _
=~ 22 D S0 0 A Ay sin (b + B — bi — B)
i#L £
— Z Z Sz(z—&-v 0yt CLZA(i+,y_g)A7 sin (bg + B(H_fy_g) —b; — BV) , (458)
il yF£p
——
ity>Ll
2&)3@4 dbg

-1 12

6 — Z R ZAﬁ Z nge [A
]
—(1) _ _ _ _
= ) Siiirrere GiAay Ay 08 (b + Bipyse) — bi — By)
il #B
_(2) _
>N Sty ey G- Ay cos (by + Biipy—g) — b — By) - (4.59)

In figure 4.6, we evaluate both resonant contributions channels’ and plot their contributions for
various values of x. In particular, we examine the values x € {7/6,...,77/6}. Again, there is no
indication of any channel vanishing naturally. Interestingly, both sources demonstrate anomalous
behaviour when x ~ 2 for reasons that are not immediately clear. The source term (4.52) is generally
more positive for larger y except for x = 27/3, which is translated negatively with respect to the
source terms produced by other x values. Again, when (4.55) is evaluated for x = 27/3, the result
differs significantly from other choices of x: seemingly reflected through the x axis with respect
to other results. The significance of the choice x = 27/3 ~ d/2 is possibly explained by the non-
normalizable modes being nearly equal to the normalizable ones. In this event, S, would contain
additional terms, such as those present in § 4.3. The departure of the y = 27/3 data from other

data sets is perhaps a signal of these missing resonances.
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4.5 Discussion

We have seen that the inclusion of a time-dependent boundary term in the holographic dual of a
quantum quench allows energy to enter the bulk spacetime through coupling with non-normalizable
modes. The dynamics of the weakly turbulent energy cascades that trigger instability were captured
by secular terms at third-order that could not be removed by frequency shifts alone. Using the
Two-Time Formalism, we have determined the renormalization group flow equations for the slowly

varying amplitudes and phases that are tuned to cancel the secular terms that give rise to instability.

Unlike when only normalizable modes are considered, the introduction of non-normalizable modes
results in no naturally vanishing resonance channels for the frequencies considered. The flow equa-
tions for a, and b, are now linear, since the non-normalizable amplitudes and phases are set by the
first-order boundary condition and thus remain constant. In practice, this means the evolution of
the system will be different than in the case where only normalizable modes are activated. Further-
more, periodic pumping of energy into and out of the bulk theory will undoubtably add interesting
dynamics to the evolution already observed for quasi-periodic solutions with static boundary con-

ditions [84].

With the renormalization flow equations established, future work will examine whether equilibrium
solutions can be derived. Then, general non-collapsing solutions will be constructed and their evo-
lution within the perturbative description will be examined. Comparisons to established numerical
pumped solutions in the full theory may be instructive in understanding the space of stable and

nearly-stable data.

Properties of the boundary CF'T can also be determined from the perturbative theory in the bulk.
For instance, the AdS/CFT dictionary relates the leading coefficient of the normalizable modes of
the scalar field at the boundary to the expectation value of an operator (O,); the leading part of the
non-normalizable modes are related to a time-dependent driving term in the boundary Hamiltonian

s(t). The Ward identity for time translations gives the time dependence of the energy density in
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the CFT in terms of these quantities, and allows us to examine the evolution of the energy density

in boundary theory in terms of the leading contributions to bulk variables.
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Appendix

4.A Derivation of Source Terms For Massive Scalars

The derivation of the general expression for the O(e?) source term for massive scalars closely follows
the massless case, particularly if one chooses not to write out the explicit mass dependence as was
done in [134]. However, since we have chosen to write our equations in a slightly different way —
and in a different gauge — than previous authors, one may find it instructive to see the differences in
the derivations. Below we have included the intermediate steps involved in deriving the third-order

source term Sy.

Continuing the expansion of the equations of motion in powers of €, we see that the backreaction

between the metric and the scalar field appears at second order in the perturbation,

Al = —uv [(qﬁl)Q + (¢})? + m*¢7F sec? .:1:] +1V Ay /v, (4.60)
which can be directly integrated to give

Aa = [y (07 + (6 + midtsec’a) (4.61)
For convenience, we have also defined the functions

w(x) = (banz)®™'  and v(z) = (d—1)/4 . (4.62)
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Similarly, the first non-trivial contribution to the lapse (in the boundary time gauge) is
w/2 .
o= [y (G2 + @1)7) (163)

Projecting each of the terms in (4.14) individually onto the eigenbasis {e,} will involve evaluating
inner products involving multiple integrals. To aide in evaluating these expressions, it is useful to
derive several identities. First, from the equation for the scalar field’s time-dependent coefficients

Ci,
Gtwia=0 = 0 (+wic)=0C; =0. (4.64)
Next, from the definition of f/,
Le; = —% (,ue;)/ +m?sec’re; = (ue;)/ = p(m?sec’x —wi)e;. (4.65)
By considering the expression (uele;)’, we see that
(neje;) = (m®sec’ v — w?) peje; + peje;, (4.66)
which, after permuting 7, 7 and subtracting from above, gives

[1(efejw? — eiciwd)]’

(wj —w?)

= um?®sec? ze;e; + pele’; . 4.67
J 7
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Using these identities, we evaluate each of the inner products and find that

oo 0 XX

. wic )
(0201, €0) = 2.2 k—l; (3¢5 (Xreis — Xowig) + cicy (Yigow — Yijhe)]
i=0 j=0 k=0 k
k£l
— Z u)ng [Clcjf)z]g + CiCjBij[] y (468)
i=0 j=0

+ Z ij ¢j (CiPjei + ¢/ Xiize) (4.69)

<52¢1> €e> = Z i o2 [at (Cicj) (szz'j - Xekij) + 3t(CiCj) (Y;jék - Y;jk[)]

—i—ZZCg (04 (¢i¢) Pijo + Oi(cicj)Bije] (4.70)

0 j=

i=
<A2¢176€ —_QZZZCkCJCZ igkt (471)
=0 j=0 k=0

2 cn(Gicj + wicic;)
<(A,2 - 5;) qb,h €f> =-2 Z jg ]2 J zyk( m Z Z Z Czcjckv;jkﬁ

— £ Wi — w;
2:0]:0k:0 =0 j=0 k=0
i#]
(o] o0
=Y ¢ [¢fHigjo + C:Mjei] (4.72)
1=0 75=0
0o 0o 00 .. 2
4 ) _ Ck(CiCj‘i_w]'CiCj)V
(Agr sec” x,ep) = — 5 5 ki
- - Wi — Wy
i=0 j=0 k=0 J i
i#]

- Z Z Cj (c Viiie + C; Qﬂz) 5 (4.73)
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where the forms of X, Y, V, H, B, M, P, and Q are given by

Xijre = / " da pPreiejepe, (4.74)
07r/2
Yijke = / dx pPveiesere; (4.75)
Ow/2
Vijke = / dx pPveejelessec® x (4.76)
oﬂ/2
Hijpe = / dx ,u2y'egeje§€eg (4.77)
07r/2 w
Bije :/ dx ,uyege;/ dy pe; (4.78)
Ow/z " x
M :/ dx ,uy’e;ej/ dy pe; (4.79)
071'/2 .
Pije = / dx /U/eiej/ dy ,ue% (4.80)
077/2 " x
Qije = /0 dx pve;e; sec? :L’/O dy ey . (4.81)

Note that, using integration by parts to remove the derivative from v in the definitions of H;j, and

M;je, we can show that

2 2 2 2
Hijie = wi Xiijo + wiXijre — Yijor — Yongi — m™Vigie — m™Vijre (4.82)

Mije = WZ'QPijE - Bije - WQQW . (4-83)

129



Collecting (4.68) - (4.73) gives the expression for S, = (S, e;):

o0

1 ..
Se=> - [Fk(cicj) (Xkeij — Xewij) + Fr(cics) (Yijor — Y;jkf)}

g LT Y

k£
> CkDi‘ = .o

+2 Z o :}2 [2w13Xijk€ — Hjjie — m2‘/jki€i| - Z Ci [QCjCkXijké + m2€jCszjke]
Y S ik
i#£]

+ Z [Fﬁ(éiéj)Pijf + Fy(cicy) Bije + 2wic; (¢ Xiije + CiPyey)

0]

—Cj (C?(Hiijf + mQV}'iif) -+ (CZ(M]& -+ mQQm)) :| , (484)

where Fy(2) = érz —2wicrz, Dy = ¢i¢;+wicicj, and C; = ¢ +wjc;. Additionally, we have combined
some integrals into their own expressions, namely

ZE

ke = wiwj (Xkeij — Xewij) & (Yijew — Yigre)  and Zij;g = w;w; Pije £+ Bije . (4.85)

Finally, using the solution for the time-dependent coefficients, ¢;(t) = a;(t) cos (w;t + b;i(t)) =
a; cos 0;, we arrive at (4.15).
4.B Two Non-normalizable Modes with Equal Frequencies

Let us return to the case of two, equal, non-normalizable modes with frequency w. Within the space
of resonant frequency values, there are frequencies that happen to satisfy W = wy, numerically and
may produce extra resonances subject to restrictions on the normalizable frequency. These instances

were excluded from the discussion in §4.4.1, and we address them here. When considering special
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integer values of @ each choice of @ below will contribute a T-type term to the total source:

TE C wi=w+ 2w VweZ (4.86)
_52) wi=w,— 2w VYweZ" such that ¢ >w (4.87)
ng) D w;=2w—w, VweZ such that w <+ A', (4.88)

with w; # wy in each case. These special values contribute to the case of two, equal non-normalizable

modes via

Sy =A2T Z)+w) A (r455) COS (0(g+w — 2wt) + A2T T(e o) A(t-w) COS (Q(g_w) + 2@1&)

+ A2 Tgi) (—A+) A(@m—r—A+) COS (2@25 — Q(w,g,Aﬂ) (4.89)

under their respective conditions on the value of @. The total resonant contribution for all possible
w values is the addition of (4.89) and (4.38). Evaluating (4.15) in each case of the cases described
by (4.86) - (4.88), we find that

Tz(‘l) =5 {Hiwwz ( u _) — Hgiw ( u _) + WQVWM ( ~ )
2 W; — W w; —w _
- mQ‘/iWE ( i _) - QGinWE ( ~ _> + QWQquuE ( _) :|
W; — W W; —w —Ww Wi AT

1 w 1 wy + 2w 1 m?
- = ZL ~Z a5 2szw wai
2 |: il ( 1w ) :|w[7£w+ 4 wwil ( 2% ) + 2(“} wwl 4 ¢

m2
2

- wwinsz V;wwﬁ ) (49())
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=(2) 1 w wj 9 w
T, = —= Hz‘m — sz‘w — sz‘ —
! 2{ K(wi+w)+ Z(wi+w)+m g(w +w)

+ WQWWZ ( i _> - QEQXZ'WK ( “ _) - 252sz’£ ( i _) ]
w; +w w; +w  +w wiFw

7

1 w 1 — 2w 1 2
— 5| Zizwe - — — ~ L i + =0 Xigwe + - — Vawie
2 We =W/ | w 2 4

2

+ ww; Xewie + %Vim : (4.91)

and

_ 1 ] .
Tz@ =3 |:Hiww€ ( u _> — Hgiwe ( i _) + m* Vi < )
2 w; — W w; — W
— m2‘/z'mf < i _> - 252X@'W€ ( d ) + 2W2wazé < )
w; —w Wi —w wi —w

" w 1, _ 20 — wy 1, m?
— Lzt (wi — w) ]w#w + ZZWM (T) +5w Xigwe — Ivmil

— B Xt — Vi (4.92)

These resonance channels can then be added into the right hand side of the equation for da,/dt in

(4.40).
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5 Conclusion

In this thesis, we have addressed several facets of scalar field collapse in Anti-de Sitter spacetime as
it relates to dynamical processes in strongly-coupled gauge theories. By considering a wide range
of Gaussian initial data in AdS; in the nonperturbative (but small amplitude) regime, we have
mapped out the islands of stability for a real scalar of mass p and width ¢. In addition to stable
and unstable data, we have uncovered two new classes: those that exhibit metastability at finite
amplitudes and scale like ty o< € for p > 2, and those that have non-monotonically increasing
horizon formation times with decreasing amplitude. There is evidence for weakly chaotic evolution
of data within the latter class, even for massless scalars. The root of the chaotic behaviour is
yet to be determined, however there are indications that self-interaction occurs between regions
of increased density produced by gravitational focusing. While similar chaotic evolutions have
been observed between thin shells of infalling matter, this is the first time it has been observed in
continuous initial data without higher-derivative couplings in the action. To determine the ultimate
fate of irregular and metastable data in the nonlinear theory as ¢ — 0, greater computing power is
required; however, this is exactly the regime where the perturbative theory is applicable. Therefore,

future progress may be made by a combination of perturbative and nonlinear evolutions.

Next, we examined perturbatively stable solutions through the Two-Time Formalism. Using renor-
malization flow methods, the secular growth of resonant contributions was absorbed into amplitude
and phase variables so that the (massless) scalar field remained stable over perturbative timescales
of t ~ ¢72. By introducing a quasi-periodic ansatz for the renormalized amplitudes, we found nu-
merical solutions to the truncated system characterized by the ratio of conserved quantities in the

theory, T'= E//N. These solutions were tested for robustness against the choice of truncation value
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for different values of T'. At this time, our results remain in tension with those in the literature, as

we were unable to verify the entire range of proposed solutions.

Since the islands of stability seem to be “anchored” near single-mode data, and since the TTF
description of the scalar field is a sum single modes weighted by time-dependent coefficients, it is
natural to consider whether all data within the islands of stability could be written in terms of
quasi-periodic TTF solutions. Any reduction in the space of QP solutions, such as a threshold
temperature Ty,, would make this description less likely. Future work may include examining the
metastable and irregular data from nonlinear theory in the perturbative framework to see if existing

QP families of solutions can describe these initial conditions.

Ideally, scalar fields with amplitudes e could be evolved with less computational cost using the T'TF
framework over perturbative timescales, switching over to nonlinear evolution only when required.
However, predicting a value for when the perturbative theory begins to break down is not possible,
since we only know that the perturbative theory is valid when €*t ~ 1. An important future
contribution to the understanding of both the nonlinear and perturbative description of scalar field
collapse would be to compare the evolutions in either scheme to establish some time scale for the

applicability of the TTF.

Finally, we extended the TTF description to include massive scalars, as well as time dependent
boundary conditions. We saw that some of the symmetries that lead to the natural vanishing of two
of the three resonance channels were broken by the presence of mass-dependent terms. In such cases,
the renormalized amplitude and phase equations include contributions from multiple resonance
channels. The inclusion of non-zero boundary terms requires the activation of non-normalizable
modes. We explicitly calculated the O(e®) source term for several choices of non-normalizable
frequencies, which — unlike normalizable modes — are not constrained to be fully integer. Because
energy enters the bulk through the boundary term, the evolution of such pumped systems will differ
qualitatively from adiabatic evolution. The focus of future work will be constructing equilibrium
solutions and analyzing their evolution. Like the more familiar massless scalars, there must exist

inverse energy cascades to balance the transfer of energy to short length scales, thereby providing
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stability against collapse. This has yet to be addressed in the literature.

As research continues into the stability of Anti-de Sitter space, we will develop a better under-
standing not only of gravitational collapse, but also of dynamical processes in the strongly-coupled
regimes of the dual theories. We have seen that even the simplest case, that of a minimally-coupled
scalar field, has uncovered a surprising breadth of phenomena. Constructing a holographic dual to
a realistic system, such as the high energy collision of heavy ions, introduces myriad complexities
that may produce even more intriguing results. With each new discovery, we will gain a greater

appreciation for curious relationship between gauge theories and higher-dimensional gravity.
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