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We present an improvement to the cross resonance gate realized with the addition of resonant, target
rotary pulses. These pulses, applied directly to the target qubit, are simultaneous to and in phase with
the echoed cross resonance pulses. Using specialized Hamiltonian error amplifying tomography, we con-
firm a reduction of error terms with target rotary—directly translating to improved two-qubit gate fidelity.
Beyond improvement in the control-target subspace, the target rotary reduces entanglement between target
and target spectators caused by residual quantum interactions. We further characterize multiqubit perfor-
mance improvement enabled by target rotary pulsing using unitarity benchmarking and quantum volume
measurements, achieving a new record quantum volume for a superconducting qubit system.
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I. INTRODUCTION

Improving the performance of near-term quantum sys-
tems is important to quantum information technology
today. These systems, realized and made available for
general use in recent years, demonstrate multipartite entan-
glement, algorithms, and fault-tolerant protocols [1–8].
However, much work remains before we can execute
quantum circuits with sufficient fidelity to consistently
demonstrate quantum advantage. Here we show improve-
ments in our understanding and in the performance of our
two-qubit gates in multiqubit systems that provide a sig-
nificant increase in various performance metrics, including
the quantum volume (QV) [9] of the system.

The cross-resonance (CR) gate has emerged as a promis-
ing two-qubit entangling gate in superconducting quantum
computing architectures [10–12]. The CR gate generates
entanglement using microwave pulses without the need for
qubit or coupling tunability, which simplifies scaling to
larger numbers of qubits by reducing the number of input
lines and overhead of control electronics. In this respect,
the CR gate compares favorably to those approaches that
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require variable magnetic flux to tune qubit frequencies
[13–15] and/or bus couplings [16], or use microwave
pulses applied to buses to induce entanglement [17].

While CR pulses enhance the entangling interaction
between two qubits, they introduce unwanted errors for
implementing high-fidelity gates [18–21]. A simple echo
sequence corrects most of the unwanted terms in the CR
Hamiltonian, leading to significant increase in the two-
qubit gate fidelity [22]. Errors can be further reduced by
proper choice of the calibration frame [23] and devising
strategies to negate effects from classical crosstalk [18]. As
qubit coherence improves, however, we find that higher-
order unitary errors such as those arising from always-on
ZZ interactions limit gate fidelity below the level set by
coherence.

The effects of static ZZ coupling go beyond creat-
ing errors in the two-qubit subspace. Interactions with
other qubits in the device—“spectators”—cause unwanted
entanglement to accumulate across the system. While these
ZZ-induced errors can be corrected with more compli-
cated pulse sequences, such as higher-order echoes to
address spectator-induced error [24] or additional single-
qubit rotations to correct unitary errors in the two-qubit
subspace, we show here that a resonant drive of the target
qubit reduces both types of error simultaneously without
increasing the duration or the depth of the two-qubit gate
sequence. This “target rotary” pulsing, presented schemat-
ically in Fig. 1(a), is performed in parallel to the CR drive
of the control qubit and also switches sign in the stan-
dard two-pulse echo sequence. In the context of classical
crosstalk [18–20], numerical evidence suggests this type of
target pulsing can help reduce the two-qubit gate error [20].
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FIG. 1. (a) Diagram of the echoed CR gate with target rotary
pulse sequence, where R± denotes a fixed ±X rotation on
target. (b) Hamiltonian error amplifying tomography (HEAT):
example of four gate sequences used to accurately reconstruct
echoed CR Hamiltonian error terms. (c) Hamiltonian errors with
target rotary on a pair of qubits (inset: f01 = qubit frequency,
δ= anharmonicity). Solid lines are numerical fits to the data
described in the Appendix H. (d) Two-qubit error per gate (EPG)
from randomized benchmarking tracks the error is blue estimated
by only considering the contribution from the four error terms
measured in (c) added to the coherence limit set by the measured
T1s and T2s for a gate time of 484 ns (dashed line).

We develop specialized tomographic error amplifica-
tion sequences to measure how target rotary pulses reduce
unitary errors. These errors are comprised of terms in
the control-target subspace as well as terms containing
entanglement between the target qubit and target spectator
qubits. We verify the impact of the rotary tone in reduc-
ing these errors with both randomized benchmarking (RB)
[25,26] and benchmarking the noise unitarity via purity
measurements [27]. We also find that the QV, a holistic
measure of device performance affected by unitary and
purity errors amongst others, increases to 32 with the addi-
tion of target rotary on many five-qubit subsystems of the
20-qubit device tested.

II. GATE ERRORS

A. Errors in the two-qubit subspace

Consider a system of two detuned transmons coupled by
a dipole interaction, which can be modeled as two Duffing

oscillators with a Jaynes-Cummings interaction,

H =
1∑

j =0

[
ωj b†

j bj + δj

2
b†

j bj (b
†
j bj − 1)

]

+ J (b†
0b1 + b0b†

1), (1)

where ωj and δj are the transmon frequencies and
anharmonicities, respectively, J is the transmon-transmon
exchange coupling, bj is the lowering operator for the j th
qubit, 1 is the identity operator, and, for simplicity, we
have taken � = 1. Diagonalizing the Hamiltonian H pro-
duces a static ZZ interaction in the resulting dressed basis
[13]. A CR tone, which drives one transmon (designated
the “control”) at the dressed frequency of the other (des-
ignated the “target”), produces an effective Hamiltonian of
the form [19]

H(�) = νZX
ZX
2

+ νIZ
IZ
2

+ νIX
IX
2

+ νZI
ZI
2

+ νZZ
ZZ
2

, (2)

where we choose the convention of the control being first
and the target second in the tensor product reading from
left to right. There are various terms in the effective Hamil-
tonian of Eq. (2), including a ZX conditional rotation. We
would like to isolate the ZX term so that the evolved
unitary is ZXπ/2 = e−i(π/4)ZX , which is locally equivalent
to the standard controlled-NOT gate that easily compiles
into universal quantum circuits. Our goal here is to iden-
tify the unwanted CR Hamiltonian error terms that remain
after standard echo sequences. Later we devise strate-
gies to characterize these terms through error amplification
sequences and mitigate their effects through additional
target rotary tones.

1. Origin of unwanted errors on the target qubit:
IY and IZ

The coefficients νij of Eq. (2) are a function of the sys-
tem parameters and CR drive amplitude� [19]. The diago-
nal coefficients νIZ , νZI , and νZZ are even order in �, while
the nondiagonal coefficients νIX and νZX are odd order in
�. Hence, reversing the sign of � only reverses the sign
of the nondiagonal coefficients. The standard two-pulse
echo sequence, as shown in Fig. 1(a) but without the target
pulses, removes most of the unwanted terms from Eq. (2).
Defining H1 ≡ H(�) and H2 ≡ XI · H(−�) · XI to be the
system Hamiltonians for the positive tone and the rotated
CR tone with negative drive amplitude, respectively,

Heff = i
τ

ln[e−iH2te−iH1t] (3)

describes the effective Hamiltonian of the entire pulse
sequence. Here H1 and H2 are the same up to a sign change
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on the coefficients of IX , ZI , and ZZ, and Heff is predom-
inantly a ZX term where τ is the effective time satisfying
Heffτ � (π/4)ZX . We would like to identify and reduce
the other terms present in Heff.

Let U = e−iHeffτ = U1 · U2 be the unitary evolution of
the entire echo sequence, where U1 and U2 are the uni-
tary operators corresponding to H1 and H2, respectively.
We calculate the Pauli coefficients of U in Appendix A.
The terms that appear with the same signs in H1 as in H2,
specifically II , IZ, and ZX , are nonzero in U. Interestingly,
the IY coefficient of U is also nonzero and second order in
the νij since the pairs (IX , IZ) and (ZX , ZZ) are each com-
posed of anticommuting operators that have opposite signs
in H1 and H2. We can therefore expand Heff in the Pauli
basis as

Heff = ν̃ZX
ZX
2

+ Herr, (4)

where

Herr ≡ ν̃IY
IY
2

+ ν̃IZ
IZ
2

(5)

and the ν̃ij are used to denote the Pauli coefficients of the
effective Hamiltonian of the entire pulse sequence. The
exact expressions for the ν̃ij are given as a function of the
Pauli coefficients of only the positive CR pulse, which are
denoted νij (see Appendix A). Note that the coefficients of
U are simply proportional to the coefficients of Heff when
ν̃ZX τ = π/2. Nonzero ν̃IY and ν̃IZ are the source of unitary
errors within the two-qubit (2Q) subspace of the CR gate,
while any corrections to νZX can be absorbed into the CR
gate calibration. Note that ν̃IY errors caused by static ZZ
contribute at second order even with a perfectly executed
echo sequence and no crosstalk.

2. Rotary pulsing without crosstalk

The addition of a rotary tone applied in parallel to the
CR tone, as shown in Fig. 1(a), can be beneficial for mod-
ifying the size of terms in the effective Hamiltonian of
the entire pulse sequence while not introducing new error
types or extending the gate time (see Appendix B). The
main effect of the rotary pulse on just the CR + rotary tone
is to tune νIX ; however, the off-resonant driving of higher
levels of the target also modifies both νIZ and νZZ .

In the case of no classical crosstalk, as shown in
Appendix C, the rotary tone can be used to eliminate ν̃IY.
To understand why this is the case, note that

ν̃IY = π√
2t

χ0

η+η−
sin

η+t
2

sin
η−t
2

(6)

for pulse duration t, where the coefficient

χ0 ≡ νIX νIZ − νZX νZZ (7)

depends on the relative size of the noncommuting pairs
(IX , IZ) and (ZX , ZZ) in the CR Hamiltonian, and

η2
± ≡ (νIX ± νZX )

2 + (νIY ± νZY)
2 + (νIZ ± νZZ)

2. (8)

The full set of conditions for which ν̃IY can be set to 0
is given in Appendix C. As an approximation, note that
realistically νIX and νZX are much larger in magnitude than
all other coefficients, allowing us to write

ν̃IY � πχ0√
2t

(
cos νIX t − cos νZX t

ν2
IX + ν2

ZX

)
. (9)

We see that ν̃IY oscillates with the increasing magnitude
of νIX . The CR tone amplitude and t are fixed in order to
implement a ZXπ/2 gate and νZX is insensitive to the rotary
amplitude. Within this approximation, ν̃IY = 0 when one
of the conditions

(i) νIX νIZ = νZX νZZ ,
(ii) νIX = ±νZX + nω, n ∈ Z and n �= 0,

is met, where ω = 2π/t. Therefore, as the rotary ampli-
tude is swept, ν̃IY = 0 when νIX ≈ νZX + nω for different
values of n �= 0. Since no additional error types are created
in the echoed gate, only ν̃IZ is present in the error Hamil-
tonian, which can be corrected by updating the frame of
the target qubit. As the rotary amplitude is swept, there
are potentially multiple solutions to ν̃IY = 0, allowing it to
be constrained by other considerations such as minimizing
classical crosstalk or spectator effects. While these argu-
ments allow us to understand the effect of target rotary
pulsing intuitively, a quantitative model of experiment
includes classical crosstalk.

3. Rotary pulsing with crosstalk

Classical crosstalk, arising from some amount of the
CR drive inadvertently reaching the target qubit, is an
important potential source of error [18]. In this case the
CR Hamiltonian in Eq. (2) can have nonzero νIY and νZY
that depend on the CR drive amplitude and the phase of
the signal seen by the target, which is shifted from the
phase seen by the control by an amount that depends in
detail on circuit layout. The crosstalk and rotary tones
have the same frequency with different amplitudes and
phases. Taken together they create a single tone of the same
frequency with a phase and amplitude modulated by the
phases and amplitudes of the individual tones. The inclu-
sion of crosstalk from the CR tone causes the rotary echo
Hamiltonian to have nonzero ν̃IX , ν̃ZY, and ν̃ZZ in addition
to ν̃IY and ν̃IZ . Analytic expressions for the error terms with
classical crosstalk are given in Appendix C. Importantly,
we find that, as the rotary tone amplitude increases, the
sizes of ν̃IX , ν̃ZY, and ν̃ZZ quickly reduce.
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4. Hamiltonian reconstruction

We introduce tailored tomographic methods—which
we refer to as Hamiltonian error amplifying tomography
(HEAT)—that amplify and measure errors in our system.
The HEAT sequences, shown in Fig. 1(b) (see Appendix D
for details), can be used in scenarios where errors are of the
form Z ⊗ A or I ⊗ A with A ∈ X , Y, Z. Both analytics and
numerical analyses show that these are the main errors for
current CR gate implementations. In the case of the rotary
echo CR gate, we find that ν̃ZX τ � π/2 and that the HEAT
sequences are sensitive to the small ν̃IY and ν̃IZ errors.

HEAT can be compared favorably to more traditional
direct Hamiltonian tomography sequences [18] that apply
in more generality, but require more data collection and
fitting of time series data to estimate the effective Hamil-
tonians of individual pulses. In addition, small error terms
can be challenging to detect with these methods. By com-
parison, HEAT uses repetition to amplify known errors to
the completed echo sequence, easing their detection, and
allowing us to calibrate the target rotary pulse magnitude
by directly minimizing these errors.

We now test these concepts on the 20-qubit ibmq_johan-
nesburg system [28], illustrated in more detail in Appendix
I. Focusing on qubits Q11 and Q12, we show the results of
the HEAT sequence in Fig. 1(c), tracking the dependence
of the error terms on the target rotary rate. The data fits well
to a numerical model (solid curves), outlined in Appendix
H, that allows for classical crosstalk. This crosstalk intro-
duces a large ZZ error (in addition to that corrected by
the echo sequence) that quickly decays with increasing
rotary amplitude. The measured Hamiltonian errors trans-
late directly into gate error, as shown in Fig. 1(d), where
the total error in Fig. 1(c) is related to that measured by
2Q RB. In this case, adding target rotary reduced the 2Q
error per gate by nearly a full percentage point, bringing
gate error significantly closer to the limit set by coherence.

B. Spectator errors

In addition to the errors within the two-qubit control-
target subspace, coherent errors due to coupling with other
nearest-neighbor qubits, or “spectators”, are known to be
significant [24]. In our architecture, the impact of spec-
tators mainly arises from the static ZZ coupling between
connected qubits. Because of the distribution of qubit fre-
quencies, most qubit pairs on ibmq_johannesburg have
static ZZ below 50 kHz, with a few worse pairs exhibiting
greater than 100 kHz ZZ coupling, as shown in Fig. 2(a).
In multiqubit devices, we encounter spectators on both the
control and target qubits, but the standard two-pulse echo
sequence is only effective at reducing errors caused by con-
trol spectators (qubits that couple significantly only to the
control qubit). As such, it is important to find methods
that provide first-order correction to static ZZ errors arising

(a)

(c)

(b)

FIG. 2. (a) Quantile distribution of measured static ZZ
between coupled qubits on ibmq_johannesburg. Median ZZ
denoted by gray dashed line. (b) Modified HEAT sequence to
measure dominant target-target spectator entangling Hamiltonian
terms. (c) Hamiltonian errors with target rotary [numerical fits
(solid line) and experiment (circles)] on a pair of qubits (inset).

from target spectators (qubits that couple significantly only
to the target qubit).

We find that in addition to reducing unitary errors in
the 2Q subspace, the target rotary pulse plays a critical
role in reducing undesired target-target spectator entangle-
ment errors. For clarity, we denote Pauli rotations in the
three-qubit subspace with control ⊗ target ⊗ target spec-
tator ordering. As the target-target spectator dynamics are
dominated by the target rotary pulse (the CR pulse has
no significant effect on a target spectator), we utilize the
HEAT sequences [shown in Fig. 2(b)] to identify and track
the dependence of dominant entangling Hamiltonian terms
IYZ and IZZ with target rotary amplitude (see Appendix E
for details). The results, shown in Fig. 2(c), reveal rotary
amplitudes where both IYZ and IZZ are reduced.

In order to understand the reduction in IYZ and IZZ with
target rotary amplitude, we develop an effective Hamil-
tonian model for the target-target spectator system. The
initial system Hamiltonian is modeled as

H =
1∑

j =0

ωj b†
j bj + δj

2
b†

j bj (b
†
j bj − 1)

+ J (b†
0b1 + b0b†

1)+� cos(ωdt)(b†
1 + b1). (10)

Diagonalizing the time-independent part of the Hamilto-
nian gives the dressed frequencies ω̃j as well as the static
ZZ coefficient ξ = J 2(δ1 + δ2)/[(�+ δ1)(�− δ2)]. Fol-
lowing a similar procedure to Ref. [19] gives to first order
in � an effective Hamiltonian H (1) with nonzero ZZ coef-
ficient ν̃ZZ = ξ as well as nondiagonal terms including �.
Going to higher orders in � produces nonzero IZ and ZI
coefficients as well as shifts on the off diagonals. Switch-
ing the sign of � only changes the sign of the off-diagonal
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elements. Defining H (1)
± = H (1)(±�), R± = e−iH (1)

± t, and
R = R−R+, we find to first order in ξ that the effective
generating Hamiltonian has coefficients

ν̃YZ ≈ ξ [1 − cos(�t)]
�t

,

ν̃ZZ ≈ ξ sin(�t)
�t

,
(11)

which decay as 1/� with a scale set by ξ .
To further characterize the entangling error originating

from target-target spectator coupling, we perform purity
randomized benchmarking sequences and extract the uni-
tarity of the noise via the decay rate [27,29]. For a general
quantum operation E , the unitarity, denoted uE , is given by

uE = 1
d2 − 1

tr([E∗]†[E∗]), (12)

where d is the dimension of the system, [E] is taken to
be the representation of E with respect to the orthonor-
mal Pauli basis, and [E∗] is the unital part of [E]. Suppose
that the total system is comprised of n subsystems each
of dimension dj with local unital noise Ej acting on each
subsystem. As shown in Appendix G, the unitarity of the
total system, uE , is given by up

E , where up
E is related to the

unitarity of the individual systems via

up
E = 1

d2 − 1

{ n∏
j =1

[1 + (d2
j − 1)uEj ] − 1

}
. (13)

The approximation uE = up
E is very good when including

small nonunital effects. In the case of d1 = 4, d2 = 2, and
including T1 effects we find that, for the C + T − S system,

up
E = 1

63 [15uE1(1 + γ 2
a,3)+ 45uE1uE2

+ 3uE2(1 + γ 2
a,1)(1 + γ 2

a,2)], (14)

where γa,j is the j th decay probability. This product unitar-
ity being equal to the full three qubit unitarity implies that
the subsystems are not entangled.

To estimate the unitarity of the constituent control-target
(2Q) and target spectator (1Q) subsystems of our 3Q sys-
tem, we perform purity RB on the 2Q subsystem while
driving 1Q Cliffords on the spectator, and vice versa. To
illustrate the worst-case scenario, the spectator is idled dur-
ing each 2Q gate to prevent refocusing of spectator errors
originating from static ZZ during the CR. The results as a
function of rotary amplitude are shown in Fig. 3. We find
a strong reduction in unitarity error per Clifford in both the
2Q and 1Q subsystems with the addition of rotary, consis-
tent with the reduction of entangling error terms identified
in Fig. 2(c). We use Eq. (14) to estimate the 3Q composite

FIG. 3. Unitarity of the target spectator (red) and control-
target (blue) subspaces extracted from purity RB on each sub-
space while performing Clifford gates in the opposite subspace.
The product unitarity [Eq. (14)] is shown in green, as well as the
estimated unitarity in each case including only measured T1 s and
T2 s (dashed lines) and also unitary errors from fits above (solid
curves). Error bars are the standard deviation of measurements
sampled over approximately 1 week to represent drift in unitari-
ties. Black solid line (right axis) shows the numerically simulated
unitary entanglement over the same range of rotary amplitudes.

unitarity assuming no entangling errors between the con-
stituent systems. While it is challenging to measure the full
3Q unitarity directly, we can place an upper bound on it
given the coherence limit and a lower bound given by up

E .
As up

E converges to the coherence limit, we can infer that
negligible spectator entanglement is generated by the CR
gate. This is further evidenced by the fact that the 1Q and
2Q unitarities converge to their respective coherence limits
with the amplitude of target rotary pulsing.

Entanglement generated by the rotary echo can also be
quantified by the unitary entanglement [30,31]. Suppose
that U is a unitary acting on the bipartite space H1 ⊗ H2.
We can naturally associate U with a state |ψU〉 in H⊗2

1 ⊗
H⊗2

2 and the unitary entanglement of U, E(U), is given by

E(U) = 1 − tr[tr3,4(|ψU〉〈ψU|)2], (15)

where “tr3,4” denotes the partial trace over subsystems 3, 4
and tr[tr3,4(|ψU〉〈ψU|)2] is the purity of the reduced state.
We can directly compute E(U) from U via [31]

E(U) = 1 − 1
d2

1d2
2

tr[(U†)⊗2T1,3U⊗2T1,3], (16)

where T1,3 is the permutation operator that swaps subsys-
tems 1 and 3. In Fig. 3, E(U) is numerically calculated
as a function of rotary amplitude and goes to 0, which
implies that the rotary tone decouples the spectator from
the control-target system.
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TABLE I. HOP of QV32 circuits for two calibration condi-
tions—echoed CR with and without added target rotary—with
the difference in the HOP (�) presented in the last column.
Details on subset A can be found in Appendix I.

Rotary No rotary �

HOP on A 0.69 ± 0.01 0.655 ± 0.01 0.035 ± 0.014
Average HOP 0.648 ± 0.004 0.635 ± 0.004 0.013 ± 0.006

III. QUANTUM VOLUME

While specialized gate sequences and multiqubit RB
are essential tools for gate calibration and characteriza-
tion, to study the combined circuit improvement from both
two-qubit errors and target-target spectator interactions,
we turn to QV [9]. The QV metric is a single-parameter
alternative to quantifying performance in terms of many
individual parameters, such as gate fidelity, number of
qubits, and qubit connectivity, and requires measurement
of heavy output probability (HOP) greater than 2

3 .
To explore the effect of target rotary on QV, we execute

QV circuits for two calibration test conditions—with and
without target rotary. As we see a broad improvement in
the spectator error with the addition of target rotary for a
range of rotary amplitudes, in this experiment we calibrate
the amplitude of the rotary pulse to produce a 2π rotation
during each cross-resonance pulse.

We report in Table I a comparison in the HOP obtained
for these two conditions. We find that the HOP on sub-
set A (see Appendix I for details) successfully passes the
2
3 HOP threshold with the addition of target rotary to
achieve QV32, but does not when using the standard CR
sequence. For more statistics, we executed a smaller sam-
ple of QV circuits across all five-qubit linear subsets on
ibmq_johannesburg for the same two calibration condi-
tions (see Appendix I for details). From this experiment,
we measured an average increase in the HOP of 0.013 with
target rotary—demonstrating the benefit of this technique
for our most comprehensive performance metric.

IV. CONCLUSION

We identify and characterize higher-order errors aris-
ing from static ZZ and develop specialized tomogra-
phy sequences (HEAT) to amplify and characterize these
errors. We show that the addition of target rotary pulses
during the echoed CR gate can provide the simultane-
ous benefit of addressing single-qubit errors identified in
the echoed CR Hamiltonian arising from static ZZ, reduc-
ing Hamiltonian error due to CR classical crosstalk, and
suppressing unwanted entanglement with target spectator
qubits due to static coupling, all without increasing the
length of the echo sequence. In particular, a rotary tone
can eliminate ν̃IYI while being large enough to sufficiently
suppress ν̃ZYI and ν̃ZZI as shown in Fig. 1(c), as well as ν̃IYZ

and ν̃IZZ as shown in Fig. 2(c). Any residual ν̃IZI and ν̃IYI
errors can be compensated for with extra Z rotations on the
target when constructing a controlled NOT.

We analyze the impact of rotary via both gate error
using randomized benchmarking and quantum volume cir-
cuit performance. We find that the error mitigation offered
by rotary pulsing brings our error metrics very close to the
limit of coherence. Some coherent errors due to pulsing
imperfections are not captured in this model, and we expect
this topic to move closer to the forefront of device research
as gates are pushed faster.

ACKNOWLEDGMENTS

We thank Oliver Dial, David McKay, William Shanks,
and Matthias Steffen for helpful experimental discussions,
as well as Seth Merkel, John Timmerwilke, and Lev
Bishop for numerical and theoretical support. We thank
Doug McClure, Michael Gordon, George Keefe, William
Landers, Srikanth Srinivasan, and Cindy Wang for their
work in creating and supporting the ibmq_johannesburg
system on which all data presented here is taken. This
work is partially supported by the Army Research Office
under Grant No. W911NF-14-1-0124. The authors declare
no competing interests.

APPENDIX A: ECHO CR MODEL

The CR Hamiltonian can be modeled by

H =
1∑

j =0

[
ωj b†

j bj + δj

2
b†

j bj (b
†
j bj − 1)

]
+ J (b†

0b1 + b0b†
1)

+� cos(ωdt + φC)(b
†
0 + b0), (A1)

where we have set � = 1. The first transmon is des-
ignated the “control” and the second is designated the
“target.” The transmons are represented by Duffing oscilla-
tors ωj b†

j bj + (δj /2)b
†
j bj (b

†
j bj − 1)with frequency ωj and

nonlinearity δj . The coupling is a Jaynes-Cummings inter-
action J (b†

0b1 + b0b†
1) and the drive term is � cos(ωdt +

φ)(b†
0 + b0), where �, ωd, and φ are the drive amplitude,

frequency, and phase, respectively.
As outlined in Ref. [19], an effective time-independent

block-diagonal Hamiltonian can be obtained by the follow-
ing procedure: diagonalize the free part of the Hamiltonian,
rotate the drive term into the dressed basis, move into the
frame rotating at the dressed target frequency, make the
rotating-wave approximation, and finally block diagonal-
ize under the principle of least action. The block-diagonal
model is valid provided the eigenvectors of the Hamilto-
nian prior to block diagonalization do not have significant
overlap connecting the different blocks [19]. In particular,
the frequencies of the transmons should be reasonably far
from resonance collisions.

020318-6



REDUCING UNITARY AND SPECTATOR ERRORS. . . PRX QUANTUM 1, 020318 (2020)

The resulting block-diagonal Hamiltonian on the qubit-
qubit subspace only has I and Z terms on the control qubit
and takes the form

H(�) = νIX
IX
2

+ νIZ
IZ
2

+ νZI
ZI
2

+ νZX
ZX
2

+ νZZ
ZZ
2

, (A2)

where νj = νj (�). There are no νIY or νZY terms as the
rotation on the target qubit is purely in the X quadrature.
Reversing the sign of the tone only reverses the sign of
the nondiagonal Pauli coefficients since diagonal terms are
even order in � while nondiagonal terms are odd order in
�:

H(−�) = −νIX
IX
2

+ νIZ
IZ
2

+ νZI
ZI
2

− νZX
ZX
2

+ νZZ
ZZ
2

. (A3)

The Hamiltonian model of Eq. (A2) contains unwanted
terms that create errors in implementing the ideal ZXπ/2
gate. One strategy for eliminating most of these errors is
through the echoed ZXπ/2 gate,

ZXπ/2 = XI · ZX−π/4 · XI · ZXπ/4, (A4)

where a general rotation about ZX by angle θ , denoted
ZXθ , is given by

ZXθ = e−i(θ/2)ZX . (A5)

Assuming the time-independent Hamiltonian of Eq. (A2),
the ZXπ/2 gate is implemented via

U = XI · e−iH(−�)t · XI · e−iH(�)t, (A6)

where � is the drive amplitude and t is the gate time for
e−iH(±�)t. Both e−iH(±�)t can be found analytically and U
in Eq. (A6) can be modeled as

U = AII II + AIYIY + AIZIZ + AZX ZX , (A7)

where

AII = tr(UII)/4

= AB cos(At/2) cos(Bt/2)
AB

+ (ν2
IX − ν2

IZ) sin(At/2) sin(Bt/2)
AB

+ (−ν2
ZX + ν2

ZZ) sin(At/2) sin(Bt/2)
AB

, (A8a)

AIY = tr(UIY)/4

= −2i(νIX νIZ − νZX νZZ) sin(At/2) sin(Bt/2)
AB

, (A8b)

AIZ = tr(UIZ)/4

= −i
(νIZ − νZZ)A cos(At/2) sin(Bt/2)

AB

− i
B(νIZ + νZZ) sin(At/2) cos(Bt/2)

AB
, (A8c)

AZX = tr(UZX )/4

= i
(νIX − νZX )A cos(At/2) sin(Bt/2)

AB

− i
B(νIX + νZX ) sin(At/2) cos(Bt/2)

AB
, (A8d)

and

A =
√
(νIX + νZX )2 + (νIZ + νZZ)2,

B =
√
(νIX − νZX )2 + (νIZ − νZZ)2.

(A9)

The Hamiltonian that generates the unitary is given by

H = i log(U)
2t

, (A10)

and the analytical expression for H is given by

H = ν̃II
II
2

+ ν̃IY
IY
2

+ ν̃IZ
IZ
2

+ ν̃ZX
ZX
2

= i
2t

(
BII

II
2

+ BIY
IY
2

+ BIZ
IZ
2

+ BZX
ZX
2

)
, (A11)

where

BII = ln(AII − M )+ ln(AII + M ), (A12a)

BIY = AIY

(− ln(AII − M )+ ln(AII + M )

M

)
, (A12b)

BIZ = AIZ

(− ln(AII − M )+ ln(AII + M )

M

)
, (A12c)

BZX = AZX

(− ln(AII − M )+ ln(AII + M )

M

)
, (A12d)

M =
√

A2
IY + A2

IZ + A2
ZX , (A12e)

and the Aj are defined in Eqs. (A8). Hence, we see that
the effective echoed Hamiltonian only has nonidentity IY,
IZ, and ZX Pauli elements that depend on the underlying
Hamiltonian parameters ν and time t.
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Because of the form of the problem we can define two
unitary operators on the target qubit that depend on the
state of the control,

U|0〉 = AII I + AZX X + AIYY + AIZZ

= A|0〉
I I + A|0〉

X X + A|0〉
Y Y + A|0〉

Z Z, (A13a)

U|1〉 = AII I − AZX X + AIYY + AIZZ

= A|1〉
I I + A|1〉

X X + A|1〉
Y Y + A|1〉

Z Z. (A13b)

Writing U|j 〉, j ∈ {0, 1}, as elements of SU(2) via

U|j 〉 = e−i(θj /2)n̂j ·(X ,Y,Z),

and noting that, for a given unitary U, the relations

U1,1 = cos
(
θ

2

)
− in̂z sin

(
θ

2

)
, (A14a)

U1,2 = −(n̂y + in̂x) sin
(
θ

2

)
, (A14b)

U2,1 = (n̂y − in̂x) sin
(
θ

2

)
, (A14c)

U2,2 = cos
(
θ

2

)
+ in̂z sin

(
θ

2

)
, (A14d)

hold, we obtain, for j ∈ {0, 1},

cos
(
θj

2

)
= A|j 〉

I ,

−in̂j ,x sin
(
θj

2

)
= A|j 〉

X ,

−in̂j ,y sin
(
θj

2

)
= A|j 〉

Y ,

−in̂j ,z sin
(
θj

2

)
= A|j 〉

Z .

In the case of implementing a ZXπ/2 gate, since n̂ is a unit
vector and θ0 = θ1 = π/2,

M = i√
2

, (A15)

and so

BII = ln(AII − M )+ ln(AII + M )

= ln
(

1 − i√
2

)
+ ln

(
1 + i√

2

)

= −iπ
4

+ iπ
4

= 0, (A16a)

BIY = AIY

(− ln(AII − M )+ ln(AII + M )

M

)

= AIY

(
iπ/2

i/
√

2

)

= AIY
π√
2

, (A16b)

BIZ = AIZ

(− ln(AII − M )+ ln(AII + M )

M

)

= AIZ

(
iπ/2

i/
√

2

)

= AIZ
π√
2

, (A16c)

BZX = AZX

(− ln(AII − M )+ ln(AII + M )

M

)

= AZX

(
iπ/2

i/
√

2

)

= AZX
π√
2

. (A16d)

APPENDIX B: ECHO CR MODEL WITH ROTARY

Including a rotary tone to Eq. (A1) gives

H =
1∑

j =0

[
b†

j bj + δj

2
b†

j bj (b
†
j bj − 1)

]
+ J (b†

0b1 + b0b†
1)

+� cos(ωdt + φC)(b
†
0 + b0)

+�R cos(ωRt + φR)(b
†
1 + b1), (B1)

and the effective Hamiltonian takes the form

H(�,�R) = νIX
IX
2

+ νIY
IY
2

+ νIZ
IZ
2

+ νZI
ZI
2

+ νZX
ZX
2

+ νZY
ZY
2

+ νZZ
ZZ
2

, (B2)

where νj = νj (�,�R). As before, reversing the signs of
the tones gives

H(−�, −�R) = −νIX
IX
2

− νIY
IY
2

+ νIZ
IZ
2

+ νZI
ZI
2

− νZX
ZX
2

− νZY
ZY
2

+ νZZ
ZZ
2

. (B3)

In the limit of large |�R|, νIX grows unbounded as the
rotary is a direct tone on the target. In addition, νIZ grows
since off-resonant driving of higher levels of the target pro-
duces a phase shift on the computational subspace. The
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rotary tone has small impact on νZI and νZX , so both
remain effectively constant in �R. In addition, assuming
that φC = 0, both νIY and νZY are equal to 0. Lastly, νZZ
grows due to drive-induced ZZ from off-resonant driving
of higher levels.

As before, both e−iH(�)t and e−iH(−�)t can be found
analytically with U in Eq. (A6) given by

U = AII II + AIX IX + AIYIY + AIZIZ + AZI ZI

+ AZX ZX + AZYZY + AZZZZ, (B4)

where

AII = tr(UII)/4

= AB cos(At/2) cos(Bt/2)
AB

+ (ν2
IX + ν2

IY − ν2
IZ) sin(At/2) sin(Bt/2)

AB

− (ν2
ZX + ν2

ZY − ν2
ZZ) sin(At/2) sin(Bt/2)

AB
, (B5a)

AIX = tr(UIX )/4

= 2i(νIYνIZ − νZYνZZ) sin(At/2) sin(Bt/2)
AB

, (B5b)

AIY = tr(UIY)/4

= −2i(νIX νIZ − νZX νZZ) sin(At/2) sin(Bt/2)
AB

, (B5c)

AIZ = tr(UIZ)/4

= −i
A(νIZ − νZZ) cos(At/2) sin(Bt/2)

AB

− i
B(νIZ + νZZ) sin(At/2) cos(Bt/2)

AB
, (B5d)

AZI = tr(UZI)/4 = 0, (B5e)

AZX = tr(UZX )/4

= i
A(νIX − νZX ) cos(At/2) sin(Bt/2)

AB

− i
B(νIX + νZX ) sin(At/2) cos(Bt/2)

AB
, (B5f)

AZY = tr(UZY)/4

= i
A(νIY − νZY) cos(At/2) sin(Bt/2)

AB

= i
−B(νIY + νZY) sin(At/2) cos(Bt/2)

AB
, (B5g)

AZZ = tr(UZZ)/4

= −2i(νIYνZX − νIX νZY) sin(At/2) sin(Bt/2)
AB

, (B5h)

and

A =
√
(νIX + νZX )2 + (νIY + νZY)2 + (νIZ + νZZ)2,

B =
√
(νIX − νZX )2 + (νIY − νZY)2 + (νIZ − νZZ)2.

(B6)

The effective generating Hamiltonian is given by

H = ν̃II
II
2

+ ν̃IX
IX
2

+ ν̃IY
IY
2

+ ν̃IZ
IZ
2

+ ν̃ZI
ZI
2

+ ν̃ZX
ZX
2

+ ν̃ZY
ZY
2

+ ν̃ZZ
ZZ
2

= i
2t

(
BII

II
2

+ BIX
IX
2

+ BIY
IY
2

+ BIZ
IZ
2

+ BZI
ZI
2

+ BZX
ZX
2

+ BZY
ZY
2

+ BZZ
ZZ
2

)
,

(B7)

with the B coefficients given by

BII = 1
2 [ln(AII − M2)+ ln(AII + M2)]

+ 1
2 [ln(AII − M1)+ ln(AII + M1)], (B8a)

BIX = (−AIX + AZX )M1 ln(AII − M2)

2M1M2

+ (AIX − AZX )M1 ln(AII + M2)

2M1M2

− (AIX + AZX )M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8b)

BIY = (−AIY + AZY)M1 ln(AII − M2)

2M1M2

+ (AIY − AZY)M1 ln(AII + M2)

2M1M2

− (AIY + AZY)M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8c)

BIZ = (−AIZ + AZZ)M1 ln(AII − M2)

2M1M2

+ (AIZ − AZZ)M1 ln(AII + M2)

2M1M2

− (AIZ + AZZ)M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8d)

BZI = 0, (B8e)
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BZX = (AIX − AZX )M1 ln(AII − M2)

2M1M2

+ (−AIX + AZX )M1 ln(AII + M2)

2M1M2

− (AIX + AZX )M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8f)

BZY = (AIY − AZY)M1 ln(AII − M2)

2M1M2

+ (−AIY + AZY)M1 ln(AII + M2)

2M1M2

− (AIY + AZY)M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8g)

BZZ = (AIZ − AZZ)M1 ln(AII − M2)

2M1M2

+ (−AIZ + AZZ)M1 ln(AII + M2)

2M1M2

− (AIZ + AZZ)M2[ln(AII − M1)− ln(AII + M1)]
2M1M2

,

(B8h)

where

M1 =
√
(AIX + AZX )2 + (AIY + AZY)2 + (AIZ + AZZ)2,

M2 =
√
(AIX − AZX )2 + (AIY − AZY)2 + (AIZ − AZZ)2,

(B9)

and the Aj are defined in Eqs. (B5).
Again, note that in the case of implementing a ZXπ/2

gate (so that θ = π/2)

M1 = M2 = i√
2

, BII = 0, (B10)

and the nonidentity B and A coefficients are related via

Bij = π√
2

Aij . (B11)

1. Eliminating AIY

One strategy for reducing the gate error is to try and
eliminate AIY so that the rotary echo error is an IZ rota-
tion that can be corrected via a frame change. We see that
AIY = 0 if one of the following conditions is satisfied:

(i) νIX νIZ − νZX νZZ = 0,
(ii) A = 2nπ/t, n > 0,

(iii) B = 2nπ/t, n > 0.

We restrict n > 0 since A and B are non-negative and not
equal to 0 by assumption. Note also that

B = 0 ⇒ νIX νIZ − νZX νZZ = 0. (B12)

We define three classes of solutions,

χ0 := νIX νIZ − νZX νZZ , (B13a)

χ1,n := A − 2nπ
t

, (B13b)

χ2,n := B − 2nπ
t

, (B13c)

and AIY = BIY = 0 if and only if χ0 = 0, χ1,n = 0, or
χ2,n = 0 for some n > 0.

APPENDIX C: ECHO CR MODEL WITH
CROSSTALK AND ROTARY

Suppose that there are both CR and rotary tones and
classical crosstalk from the CR tone to the target. We
assume that crosstalk from the rotary tone back to the con-
trol transmon is negligible compared to crosstalk from the
CR tone. The Hamiltonian for the system is given by

H =
1∑

j =0

[
b†

j bj + δj

2
b†

j bj (b
†
j bj − 1)

]
+ J (b†

0b1 + b0b†
1)

+� cos(ωdt + φC)(b
†
0 + b0)

+�T cos[ωdt + (φC − φT)](b
†
1 + b1)

+�R cos(ωdt + φR)(b
†
1 + b1), (C1)

where � cos(ωdt + φC)(b
†
0 + b0) is the CR tone, �T cos

[ωdt + (φC − φT)](b
†
1 + b1) is the classical crosstalk, and

�R cos(ωdt + φR)(b
†
1 + b1) is the rotary tone. Here φT is

a constant that represents the phase accumulation due to
the path length of the crosstalk signal seen by the target.
We can rewrite this Hamiltonian in the form of Eq. (B1)
by summing the crosstalk and rotary signals into a single
cosine, i.e.,

H =
1∑

j =0

[
b†

j bj + δj

2
b†

j bj (b
†
j bj − 1)

]
+ J (b†

0b1 + b0b†
1)

+� cos(ωdt)(b†
0 + b0)+ �̃ cos(ωdt + φ̃)(b†

1 + b1),
(C2)
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where

�̃2 = �2
T +�2

R + 2�T�R cos[(−φT)− φR]

= �2
T +�2

R + 2�T�R cos(φT + φR), (C3a)

φ̃ = arctan
(
�T sin(−φT)+�R sin(φR)

�T cos(−φT)+�R cos(φR)

)

= arctan
(−�T sin(φT)+�R sin(φR)

�T cos(φT)+�R cos(φR)

)
. (C3b)

Note that even if φR = 0 the amplitude �R can still affect
the resultant phase φ̃. If the effective Hamiltonian has the
form

H(�,�T,�R) = H(�, �̃)

= νIX
IX
2

+ νIY
IY
2

+ νIZ
IZ
2

+ νZI
ZI
2

+ νZX
ZX
2

+ νZY
ZY
2

+ νZZ
ZZ
2

,

(C4)

where νj = νj (�, �̃) = νj (�,�T,�R), then since chang-
ing the sign of �T and �R changes the sign of �̃, from the
solution of Eq. (C3b),

H(−�, −�T, −�R)

= H(−�, −�̃)

= −νIX
IX
2

− νIY
IY
2

+ νIZ
IZ
2

+ νZI
ZI
2

− νZX
ZX
2

− νZY
ZY
2

+ νZZ
ZZ
2

. (C5)

1. Behaviors of the ν and A coefficients in the large
rotary amplitude limit

We look at the realistic limit where the rotary ampli-
tude is much larger than the crosstalk amplitude, |�R| 

|�T|, and set φC = φR = 0. We assume that |�R| is much
smaller than the anharmonicity of the target qubit to avoid
unwanted effects from the direct drive on the target. As in
the case with no crosstalk, νIX grows unbounded, νIZ grows
from phase accumulated due to higher levels present, νZI
and νZX remain effectively constant, νZY is equal to 0 since
φC = 0, and νZZ grows due to drive-induced ZZ. What
remains is understanding the behavior of νIY.

Since φC = φR = 0,

�̃2 = �2
T +�2

R + 2�T�R cos(φT),

φ̃ = arctan
( −�T sin(φT)

�T cos(φT)+�R

)
.

(C6)

As |�R| 
 |�T|, we rewrite the above as

�̃2 = �2
R

(
1 + �2

T

�2
R

+ 2�T

�R
cos(φT)

)

= �2
R[1 + ε2 + 2ε cos(φT)], (C7a)

φ̃ = arctan
( −�T sin(φT)

�R[1 + (�T/�R) cos(φT)]

)

= − arctan
(

ε sin(φT)

1 + ε cos(φT)

)
, (C7b)

where ε = �T/�R. For the amplitude, we have

�̃ = ±|�R|
√

[1 + ε2 + 2ε cos(φT)], (C8)

where, if �R 
 0, we take the positive solution and, if
�R � 0, we take the negative solution. As φC = 0, we can
approximate νIY by −�̃ sin(φ̃). Hence, to first order in ε, if
�R 
 0,

νIY ≈ −ε|�R| sin(φT) = −�T sin(φT), (C9)

while, if �R � 0,

νIY ≈ ε|�R| sin(φT) = −�T sin(φT). (C10)

In the case of crosstalk with no rotary, νIY ≈ −�T sin(φT).
Hence, we see that the νIY coefficient is effectively
unchanged by the addition of the rotary tone.

Summarizing, assuming that φC = φR = 0, in the limit
of |�R| growing large the ν parameters are given by

(1) νIX grows large in magnitude (driving target on
resonance),

(2) νIY remains effectively constant (shown above),
(3) νIZ grows large in magnitude (phase shift from off-

resonant driving of higher levels),
(4) νZI remains effectively constant,
(5) νZX remains effectively constant,
(6) νZY remains effectively constant and equal to 0,
(7) νZZ grows large in magnitude (phase shift from off-

resonant driving of higher levels),

and in this limit νIX dominates all other terms in magni-
tude.

Next, let us look at the behavior of the A coefficients
in the large �R limit. From Eqs. (B5) (still assuming that
φC = φR = 0) we see that the components that do not have
νIX , νIZ , or νZZ in the numerator will damp to 0 in the large
|�R| limit. These include AZY and AZZ . We expect AIX to be
small since νZY = 0 and the product νIYνIZ is small (but will
grow with νIZ). Next, AIY and AIZ both have terms grow-
ing large in the numerator and denominator so we do not
expect them to damp out from the application of the rotary
tone. Lastly, we expect AZX to be relatively independent
of the rotary amplitude and be the main coefficient in the
large rotary limit.
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APPENDIX D: HAMILTONIAN ERROR
AMPLIFYING TOMOGRAPHY: ROTARY ECHO

For rotary echo, the unitary U describing the evolution
is given by

U = AII II + AIX IX + AIYIY + AIZIZ

+ AZX ZX + AZYZY + AZZZZ, (D1)

where we include ZY and ZZ terms in the case of crosstalk
or phase misalignment. If the control is initially in |0〉 then
the evolution of the target qubit is described by

U|0〉 = A|0〉
I I + A|0〉

Y Y + A|0〉
Z Z + A|0〉

X X

= AII I + (AIY + AZY)Y + (AIZ + AZZ)Z

+ (AIX + AZX )X , (D2)

while if the control is initially in |1〉 then

U|1〉 = A|1〉
I I + A|1〉

Y Y + A|1〉
Z Z + A|1〉

X X

= AII I + (AIY − AZY)Y + (AIZ − AZZ)Z

+ (AIX − AZX )X . (D3)

An element of SU(2) takes the form

e−i(θ/2)n̂·(X ,Y,Z) = cos
(
θ

2

)
I − i sin

(
θ

2

)
n̂ · (X , Y, Z),

(D4)

and a given unitary U ∈ SU(2) can be written in this form
via

U1,1 = cos
(
θ

2

)
− in̂z sin

(
θ

2

)
, (D5a)

U1,2 = −(n̂y + in̂x) sin
(
θ

2

)
, (D5b)

U2,1 = (n̂y − in̂x) sin
(
θ

2

)
, (D5c)

U2,2 = cos
(
θ

2

)
+ in̂z sin

(
θ

2

)
. (D5d)

Hence, for j ∈ {0, 1},

U|j 〉 = e−i(θj /2)n̂j ·(X ,Y,Z), (D6)

where

cos
(
θj

2

)
= A|j 〉

I ,

−in̂j ,x sin
(
θj

2

)
= A|j 〉

X ,

−in̂j ,y sin
(
θj

2

)
= A|j 〉

Y ,

−in̂j ,z sin
(
θj

2

)
= A|j 〉

Z .

The set of HEAT sequences are given in Fig. 4.To first
order in n̂0,y and n̂0,z and for even N (similarly for n̂1,y
and n̂1,z since the sequences do not distinguish between
preparation of the control in |0〉 or |1〉), the measure-
ment expectation values of the output state ρN from the
N repetitions are given by

Yerr0,N = tr(ρN Z) ≈ −Nn̂0,y sin(θ0)

|n̂0,x| ,

Zerr0,N = tr(ρN Y) ≈ Nn̂0,z sin(θ0)

|n̂0,x| ,
(D7)

while, for odd N , there is mixing between n̂0,Y and n̂0,Z .
The above holds for n̂1,X , n̂1,Y, n̂1,Z , and θ1 so that, for even
N ,

Yerr1,N = tr(ρN Z) ≈ −Nn̂1,y sin(θ1)

|n̂1,x| ,

Zerr1,N = tr(ρN Y) ≈ Nn̂1,z sin(θ1)

|n̂1,x| .
(D8)

The coefficients AII , AIX , AIY, AIZ , AZX , AZY, and AZZ can
be reconstructed from the above equations. First, note that,
for each j = 0, 1,

3∑
a=1

n̂2
j ,a = 1, (D9)

so that

|n̂j ,x|2
[

1 +
( Yerrj ,N

N sin(θj )

)2

+
( Zerrj ,N

N sin(θj )

)2]
= 1. (D10)

Hence, for j = 0, 1,

n̂j ,x = ±
√

1
/[

1 +
( Yerrj ,N

N sin(θj )

)2

+
( Zerrj ,N

N sin(θj )

)2]
,

(D11)
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FIG. 4. HEAT sequences for reconstructing error terms.

and, for the y and z components,

n̂0,y ≈
(

− Yerr0,N

N sin(θ0)

)
|n̂0,x|, (D12a)

n̂1,y ≈
(

− Yerr1,N

N sin(θ1)

)
|n̂1,x|, (D12b)

n̂0,z ≈
( Zerr0,N

N sin(θ0)

)
|n̂0,x|, (D12c)

n̂1,z ≈
( Zerr1,N

N sin(θ1)

)
|n̂1,x|. (D12d)

Using these values, we can reconstruct the A parameters.
As an example, in the case of implementing a ZXπ/2

gate,

θ0 = θ1 ≈ π

2
, (D13a)

n̂0,x ≈
√

1
/[

1 +
( Yerr0,N

N sin(θ0)

)2

+
( Zerr0,N

N sin(θ0)

)2]

≈
√

1
/[

1 +
(Yerr0,N

N

)2

+
(Zerr0,N

N

)2]
, (D13b)

n̂1,x ≈ −
√

1
/[

1 +
( Yerr1,N

N sin(θ1)

)2

+
( Zerr1,N

N sin(θ1)

)2]

≈ −
√

1
/[

1 +
(Yerr1,N

N

)2

+
(Zerr1,N

N

)2]
, (D13c)

AII = cos
(
θ0

2

)
= cos

(
θ1

2

)
≈ 1√

2
, (D13d)

AIX = A|0〉
X + A|1〉

X

2
≈ −i

2
√

2
(n̂0,x + n̂1,x), (D13e)
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AIY = A|0〉
Y + A|1〉

Y

2
≈ −i

2
√

2
(n̂0,y + n̂1,y), (D13f)

AIZ = A|0〉
Z + A|1〉

Z

2
≈ −i

2
√

2
(n̂0,z + n̂1,z), (D13g)

AZX = A|0〉
X − A|1〉

X

2
≈ −i

2
√

2
(n̂0,x − n̂1,x), (D13h)

AZY = A|0〉
Y − A|1〉

Y

2
≈ −i

2
√

2
(n̂0,y − n̂1,y), (D13i)

AZZ = A|0〉
Z − A|1〉

Z

2
≈ −i

2
√

2
(n̂0,z − n̂1,z). (D13j)

Assuming that AZI = 0, the Hamiltonian B coefficients can
now be reconstructed from Eqs. (B8).

APPENDIX E: HAMILTONIAN ERROR
AMPLIFYING TOMOGRAPHY:

SPECTATOR-TARGET CASE

Assume that U has the form

U = AII II + AIYIY + AIZIZ + AZYZY + AZZZZ. (E1)

If the spectator is initially in |0〉 then the evolution on the
target qubit is described by

U|0〉 = A|0〉
I I + A|0〉

Y Y + A|0〉
Z Z

= AII I + (AIY + AZY)Y + (AIZ + AZZ)Z, (E2)

while if the control is initially in |1〉 then

U|1〉 = A|1〉
I I + A|1〉

Y Y + A|1〉
Z Z

= AII I + (AIY − AZY)Y + (AIZ − AZZ)Z. (E3)

As before, U|0〉 can be written as

U|0〉 = e−i(θ0/2)n̂0·(X ,Y,Z)

= cos
(
θ0

2

)
I − i sin

(
θ0

2

)
n̂0 · (X , Y, Z), (E4)

and, noting that n̂0,x = 0,

cos
(
θ0

2

)
= A|0〉

I = AII , (E5a)

n̂0,y sin
(
θ0

2

)
= iA|0〉

Y = i(AIY + AZY), (E5b)

n̂0,z sin
(
θ0

2

)
= iA|0〉

Z = i(AIZ + AZZ). (E5c)

Similarly, for U|1〉,

U|1〉 = e−i(θ1/2)n̂1·(X ,Y,Z)

= cos
(
θ1

2

)
I − i sin

(
θ1

2

)
n̂1 · (X , Y, Z), (E6)

with

cos
(
θ1

2

)
= A|1〉

I = AII , (E7a)

n̂1,y sin
(
θ1

2

)
= iA|1〉

Y = i(AIY − AZY), (E7b)

n̂1,z sin
(
θ1

2

)
= iA|1〉

Z = i(AIZ − AZZ). (E7c)

In the small θ limit we can write

n̂0,y sin
(
θ0

2

)
≈ n̂0,y

θ0

2
, (E8a)

n̂0,z sin
(
θ0

2

)
≈ n̂0,z

θ0

2
, (E8b)

n̂1,y sin
(
θ1

2

)
≈ n̂1,y

θ1

2
, (E8c)

n̂1,z sin
(
θ1

2

)
≈ n̂1,z

θ1

2
. (E8d)

Using the sequences in Fig. 4, we find in this case that, for
even N and small θ0,

Yerr0,N = tr(ρN Z) ≈ −Nn̂0,y sin(θ0) ≈ −Nn̂0,yθ0,

Zerr0,N = tr(ρN Y) ≈ Nn̂0,z sin(θ0) ≈ Nn̂0,zθ0,
(E9)

while, for odd N , there is mixing between n̂0,y and n̂0,z.
Analogous results hold for n̂1,Y and n̂1,Z : for even N and
small θ1,

Yerr1,N = tr(ρN Z) ≈ −Nn̂1,y sin(θ1) ≈ −Nn̂1,yθ1,

Zerr1,N = tr(ρN Y) ≈ Nn̂1,z sin(θ1) ≈ Nn̂1,zθ1.
(E10)
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One can therefore estimate the A terms in this limit by
using Eqs. (E5), (E7), (E9), and (E10):

AIY + AZY = −in̂0,y sin
(
θ0

2

)

≈ −in̂0,yθ0

2
≈ itr(ρN Z)

2N
,

AIZ + AZZ = −in̂0,z sin
(
θ0

2

)

≈ −in̂0,zθ0

2
≈ −itr(ρN Y)

2N
,

AIY − AZY = −in̂1,y sin
(
θ1

2

)
≈ −in̂1,yθ1

2
≈ itr(ρN Z)

2N
,

AIZ − AZZ = −in̂1,z sin
(
θ1

2

)

≈ −in̂1,zθ1

2
≈ −itr(ρN Y)

2N
.

We can compute AII by noting that

θ0

2
≈ ±i

√
(AIY + AZY)2 + (AIZ + AZZ)2,

θ1

2
≈ ±i

√
(AIY − AZY)2 + (AIZ − AZZ)2,

(E11)

and so the following holds:

AII = cos
(
θ0

2

)
= cos

(
θ1

2

)

≈ cos[i
√
(AIY ± AZY)2 + (AIZ ± AZZ)2]. (E12)

The Hamiltonian can now be computed via

H = i log(U)
2t

, (E13)

where t is the duration of each tone.

APPENDIX F: HAMILTONIAN ERROR
AMPLIFYING TOMOGRAPHY:± ROTARY

SINGLE-QUBIT CASE

Assume that U has the form

U = AI I + AYY + AZZ. (F1)

We can write U as

U = e−i(θ/2)n̂·(X ,Y,Z)

= cos
(
θ

2

)
I − i sin

(
θ

2

)
n̂ · (X , Y, Z), (F2)

and, noting that n̂x = 0,

cos
(
θ

2

)
= AII , (F3a)

n̂y sin
(
θ

2

)
= iAY, (F3b)

n̂z sin
(
θ

2

)
= iAZ . (F3c)

In the small θ limit we can write

n̂y sin
(
θ

2

)
≈ n̂y

θ

2
,

n̂z sin
(
θ

2

)
≈ n̂z

θ

2
.

(F4)

Using the sequences in Fig. 4, for even N and small θ ,

YerrN = tr(ρN Z) ≈ −Nn̂y sin(θ) ≈ −Nn̂yθ ,

ZerrN = tr(ρN Y) ≈ Nn̂z sin(θ) ≈ Nn̂zθ ,
(F5)

while, for odd N , there is mixing between n̂y and n̂z. We
can therefore estimate the A terms in this limit via

AY = −in̂y sin
(
θ

2

)
≈ −in̂yθ

2
≈ itr(ρN Z)

2N
,

AZ = −in̂z sin
(
θ

2

)
≈ −in̂zθ

2
≈ −itr(ρN Y)

2N
.

(F6)

We can compute AI by noting that

θ

2
≈ ±i

√
A2

Y + A2
Z , (F7)

and so

AI = cos
(
θ

2

)
≈ cos

(
i
√

A2
Y + A2

Z

)
. (F8)

The Hamiltonian is given by

H = i log(U)
2t

, (F9)

where t is the duration of each tone.

APPENDIX G: PURITY RANDOMIZED
BENCHMARKING TO ESTIMATE UNITARITY

Purity randomized benchmarking [27] consists of
choosing a gate sequence of length m, applying it to the
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initial state, and measuring the purity P of the output
state ρ,

P = tr(ρ2). (G1)

If ρ is written as

ρ = 1

d
+ 1

d

d2−1∑
j =1

nj σj (G2)

for the set of d2 − 1 coefficients {nj } and where σj is the
j th Pauli operator then

nj = 〈σj 〉 = tr(ρσj ). (G3)

The purity P is given by

P = 1
d

+ 1
d

d2−1∑
j =1

n2
j . (G4)

Assuming time-independent, trace-preserving noise E
and averaging over many length-m sequences gives the
model [27]

E[P] = A + Bum−1
E , (G5)

where uE ∈ [0, 1] is the unitarity of E . Let [E] be the Liou-
ville representation of E with respect to the orthonormal
Pauli basis, also called the Pauli transfer matrix (PTM) of
E . The unitarity is given by

uE = 1
d2 − 1

tr([E∗]†[E∗]), (G6)

where [E∗] is the unital part of [E].

1. One-qubit noise model

Here we consider E to be the combination of both longi-
tudinal and transverse relaxations. Longitudinal relaxation
is modeled via amplitude damping Ea with Kraus operators

Ea :
{[

1 0
0

√
1 − γa

]
,
[

0
√
γa

0 0

]}
, (G7)

and transverse relaxation is modeled via phase damping Ep
by the Kraus operators

Ep :
{[

1 0
0

√
1 − γp

]
,
[

0 0
0 √

γp

]}
. (G8)

The PTMs for each are given by

REa =

⎡
⎢⎢⎣

1 0 0 0
0

√
1 − γa 0 0

0 0
√

1 − γa 0
γa 0 0 1 − γa

⎤
⎥⎥⎦ , (G9a)

REp =

⎡
⎢⎢⎣

1 0 0 0
0

√
1 − γp 0 0

0 0
√

1 − γp 0
0 0 0 1

⎤
⎥⎥⎦ . (G9b)

We take E to be the composition of the noise models,

E = Ea ◦ Ep , (G10)

and so, since the Liouville representation is multiplicative
with respect to channel composition,

RE = REaREp

=

⎡
⎢⎢⎣

1 0 0 0
0

√
1 − γa

√
1 − γp 0 0

0 0
√

1 − γa
√

1 − γp 0
γa 0 0 1 − γa

⎤
⎥⎥⎦ .

(G11)

The unitarity is then given by

uE = 1
3 (1 − γa)(3 − γa − 2γp). (G12)

The amplitude and phase damping model parameters are
given by

γa = 1 − e−�at, γp = 1 − e−�p t, (G13)

where

�a := 1
2T1

, �p := 1
Tφ

. (G14)

Here Tφ is the pure dephasing rate, which is related to T2
via

1
T2

= 1
2T1

+ 1
Tφ

, (G15)

so that

Tφ = 2T1T2

2T1 − T2
. (G16)

2. n-qubit independent noise model—amplitude and
phase damping

Let us assume an independent noise model on an n-qubit
system. Each qubit has both amplitude damping, Ea,j , and
phase damping, Ep ,j . The amplitude and phase damping
parameters are γa,j and γp ,j , respectively. The total noise
operator is given by

E =
n⊗

j =1

(Ea,j ◦ Ep ,j ), (G17)
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and, since the Liouville representation obeys tensor prod-
ucts, the PTM is given by

RE =
n⊗

j =1

(REa,j REp ,j ). (G18)

For n = 2, the unitarity of E is found to be

uE = 1 + 1
15 {γ 2

a,1[3γ 2
a,2 + 4γa,2(γp ,2 − 2)− 4γp ,2 + 7]

+ 4γa,1(γp ,1 − 2)[γ 2
a,2 + γa,2(γp ,2 − 2)− γp ,2 + 2]

+ γ 2
a,2(7 − 4γp ,1)− 4γa,2(γp ,1 − 2)(γp ,2 − 2)

+ 4γp ,1γp ,2 − 8γp ,1 − 8γp ,2}. (G19)

In the case that the two qubits have the same amplitude
damping and phase damping parameters,

uE = 1
15 (γa − 1)(γa + 2γp − 3)

× [γa(3γa + 2γp − 4)− 2γp + 5]. (G20)

To compute uE for arbitrary n, we first note that

uE = 1
4n − 1

4n∑
i,j =2

RE(i, j )2

= 1
4n − 1

[
tr(RT

ERE)−
(

RE(1, 1)2 +
4n∑

i=2

RE(i, 1)2 +
4n∑

j =2

RE(1, j )2
)]

. (G21)

The relevant PTMs are given by

RE =

⎡
⎢⎢⎣

⊗n
j =2 REj 0 0 0

0
√

1 − γa,1
√

1 − γp ,1
⊗n

j =2 REj 0 0
0 0

√
1 − γa,1

√
1 − γp ,1

⊗n
j =2 REj 0

γa,1
⊗n

j =2 REj 0 0 (1 − γa,1)
⊗n

j =2 REj

⎤
⎥⎥⎦ ,

RT
E =

⎡
⎢⎢⎢⎣

⊗n
j =2 RT

Ej
0 0 γa,1

⊗n
j =2 RT

Ej

0
√

1 − γa,1
√

1 − γp ,1
⊗n

j =2 RT
Ej

0 0
0 0

√
1 − γa,1

√
1 − γp ,1

⊗n
j =2 RT

Ej
0

0 0 0 (1 − γa,1)
⊗n

j =2 RT
Ej

⎤
⎥⎥⎥⎦ ,

(G22)

RT
ERE =

⎡
⎢⎢⎣

(1 + γ 2
a,1)

⊗n
j =2 Sj 0 0 γa,1(1 − γa,1)

⊗n
j =2 Sj

0 (1 − γa,1)(1 − γp ,1)
⊗n

j =2 Sj 0 0
0 0 (1 − γa,1)(1 − γp ,1)

⊗n
j =2 Sj 0

γa,1(1 − γa,1)
⊗n

j =2 Sj 0 0 (1 − γa,1)
2 ⊗n

j =2 Sj

⎤
⎥⎥⎦ ,

where Sj = RT
Ej

REj and so

tr(RT
ERE) =

n∏
j =1

[1 + γ 2
a,j + 2(1 − γa,j )(1 − γp ,j )+ (1 − γa,j )

2]. (G23)

In addition, the nonunital and trace-preserving contributions give

RE(1, 1)2 +
4n∑

i=2

RE(i, 1)2 =
n∏

j =1

(1 + γ 2
a,j ),

4n∑
j =2

RE(1, j )2 = 0.

(G24)

020318-17



NEEREJA SUNDARESAN et al. PRX QUANTUM 1, 020318 (2020)

Hence, from Eqs. (G21), (G23), and (G24), the unitarity
for an independent n-qubit noise model is given by

uE = 1
4n − 1

{ n∏
j =1

[1 + γ 2
a,j + 2(1 − γa,j )(1 − γp ,j )

+ (1 − γa,j )
2] −

n∏
j =1

(1 + γ 2
a,j )

}
.

(G25)

Note that if the n qubits have the same amplitude and phase
damping parameters,

uE = 1
4n − 1

{[1 + γ 2
a + 2(1 − γa)(1 − γp)+ (1 − γa)

2]n

− (1 + γ 2
a )

n}. (G26)

It is useful to relate uE more directly in terms of the {uEj }.
For n = 2, we see from RE in Eq. (G22) that

16∑
i,j =1

RE(i, j )2 =
4∑

i,j =1

RE2(i, j )2[1 + 2(1 − γa,1)(1 − γp ,1)

+ (1 − γa,1)
2 + γ 2

a,1]

= (1 + γ 2
a,2 + 3uE2)(1 + γ 2

a,1 + 3uE1).
(G27)

Therefore, we have

uE = 1
15

16∑
i,j =2

RE(i, j )2

= 1
15 [3(1 + γ 2

a,2)uE1 + 3(1 + γ 2
a,1)uE2 + 9uE1uE2 ],

(G28)

and the nonunital noise prevents writing uE in terms of
solely uE1 and uE2 .

3. n-independent unital operations

From the form of the unitarity and Eq. (G28) we expect
that, for independent unital operation, we can write uE in
terms of just the individual {uEj }. Suppose that E is the ten-
sor product of n maps Ej , where each Ej is a unital quantum
operation that acts on the space of d2

j × d2
j matrices. Hence,

d = ∏n
j =1 dj and E is also unital, which gives

uE = 1
d2 − 1

d2∑
m,n=2

RE(m, n)2

= 1
d2 − 1

( d2∑
m,n=1

RE(m, n)2 − 1
)

= 1
d2 − 1

[tr(RT
ERE)− 1]. (G29)

Since the PTM representation is multiplicative with respect
to tensor products,

uE = 1
d2 − 1

[
tr
( n⊗

j =1

RT
Ej

REj

)
− 1

]

= 1
d2 − 1

( n∏
j =1

tr(RT
Ej

REj )− 1
)

= 1
d2 − 1

[ n∏
j =1

(d2
j − 1

d2
j − 1

)
tr(RT

Ej
REj )− 1

]
. (G30)

As the Ej are each unital,

tr(RT
Ej

REj ) = 1 +
d2

j∑
m,n=2

REj (m, n)2

= 1 + (d2
j − 1)uEj , (G31)

which gives

uE = 1
d2 − 1

[ n∏
j =1

(d2
j − 1)

(
1

d2
j − 1

+ uEj

)
− 1

]

= 1
d2 − 1

( n∏
j =1

[1 + (d2
j − 1)uEj ] − 1

)
. (G32)

Hence, in total, if E is the tensor product of unital Ej then

uE = 1
d2 − 1

( n∏
j =1

[1 + (d2
j − 1)uEj ] − 1

)
. (G33)

A possible measure of entanglement under the approxima-
tion of unital noise is to compute

eE = uE − 1
d2 − 1

( n∏
j =1

[1 + (d2
j − 1)uEj ] − 1

)
, (G34)

and, for spaces with d1 = 4 and d2 = 2, we have

eE = uE − 1
63 [(1 + 15uE1)(1 + 3uE2)− 1]. (G35)
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4. Independent T1 and unital noise for n = 2

Let us consider an independent noise model consisting
of amplitude damping and unital noise on each qubit for
the case of n = 2. Let the amplitude damping and unital
noise be denoted by Ea,j and �j , respectively, with associ-
ated PTMs REa,j and R�j . The noise on each qubit is then
given by

Ej = Ea,j ◦�j . (G36)

First, let us find uEj . As � is unital, R�j is block diagonal
with the 1 × 1 identity block and a 3 × 3 block. Hence,

REj =

⎡
⎢⎢⎣

1 0 0 0
0

√
1 − γa,1[R�j ]2

0
√

1 − γa,1[R�j ]3

γa,1 (1 − γa,1)[R�j ]4

⎤
⎥⎥⎦ , (G37)

where [R�j ]k is the kth row of R�j and the unitarity is given
by

uEj = 1
3 {(1 − γa,1)[R�j ]2[R�j ]T

2

+ (1 − γa,1)[R�j ]3[R�j ]T
3

+ (1 − γa,1)
2[R�j ]4[R�j ]T

4}. (G38)

For n = 2, we find that

RE =

⎡
⎢⎢⎣

RE2 0 0 0
0

√
1 − γa,1[R�1 ]2 ⊗ RE2

0
√

1 − γa,1[R�1 ]3 ⊗ RE2
γa,1RE2 (1 − γa,1)[R�1 ]4 ⊗ RE2

⎤
⎥⎥⎦ ,

(G39)

and so

16∑
i,j =1

RE(i, j )2 =
4∑

i,j =1

RE2(i, j )2{1 + γ 2
a,1

+ (1 − γa,1)[R�j ]2[R�j ]T
2

+ (1 − γa,1)[R�j ]3[R�j ]T
3

+ (1 − γa,1)
2[R�j ]4[R�j ]T

4}
= [3uE2 + (1 + γ 2

a,2)][3uE1 + (1 + γ 2
a,1)].
(G40)

Therefore,

uE = 1
15

16∑
i,j =2

RE(i, j )2

= 1
15 [3(1 + γ 2

a,2)uE1 + 3(1 + γ 2
a,1)uE2 + 9uE1uE2 ].

(G41)

5. T1 and unital noise for control + target and
spectator systems

Here we consider the case of looking at the entangle-
ment across two subsystems: the control + target subsys-
tem of dimension 4 and the spectator system of dimension
2. Here we take the ordering S − C − T so that d1 = 2
and d1 = 4. We assume each individual qubit has ampli-
tude damping and each of the two subsystems has arbitrary
unital noise maps. Let the unital noise maps be denoted
by �1 and �2, where �1 acts on the two-dimensional S
space and�2 acts on the four-dimensional C + T space. As
well, let the amplitude damping maps be denoted by Ea,j
for j = 1, 2, 3. Hence, the noise models on S and C + T
are given by E1 = Ea,1 ◦�1 and E2 = (Ea,2 ⊗ Ea,3) ◦�2,
respectively.

First, note that Eq. (G38) gives uE1 . Next, since REa,2⊗Ea,3
takes the form

⎡
⎢⎢⎣

REa,3 0 0 0
0 K2REa,3 0 0
0 0 K2REa,3 0

γa,1REa,3 0 0 K2
2 REa,3

⎤
⎥⎥⎦ (G42)

for K2 = √
1 − γa,2, we have

RE2 = REa,2⊗Ea,3R�2

=

⎡
⎢⎢⎣

REa,3 [R�2 ]4
1√

1 − γa,2REa,3 [R�2 ]8
5√

1 − γa,2REa,3 [R�2 ]12
9

γa,1REa,3 [R�2 ]4
1 + (1 − γa,2)REa,3 [R�2 ]16

13

⎤
⎥⎥⎦ ,

(G43)

where [�2]j
i is the matrix corresponding to the ith through

j th rows of [�2]. Therefore,

uE2 = 1
63

64∑
i,j =2

RE2(i, j )2, (G44)

where RE2 is given in Eq. (G43). An explicit calculation of
uE2 will not be required to calculate uE .

The PTM of the composite system is given by RE =
RE1 ⊗ RE2 , where RE1 is given by Eq. (G37) for j = 1 and
RE2 is given as above. Thus,

RE = RE1 ⊗ RE2

=

⎡
⎢⎢⎣

RE2 0 0 0
0

√
1 − γa,1[R�1 ]2 ⊗ RE2

0
√

1 − γa,1[R�1 ]3 ⊗ RE2
γa,1RE2 (1 − γa,1)[R�1 ]4 ⊗ RE2

⎤
⎥⎥⎦ ,

(G45)

020318-19



NEEREJA SUNDARESAN et al. PRX QUANTUM 1, 020318 (2020)

and so

64∑
i,j =1

RE(i, j )2

= tr(RE2RT
E2
)+ γ 2

a,1tr(RE2RT
E2
)

+ (1 − γa,1)tr{([R�1 ]2 ⊗ RE2)([R�1 ]2 ⊗ RE2)
T}

+ (1 − γa,1)tr{([R�1 ]3 ⊗ RE2)([R�1 ]3 ⊗ RE2)
T}

+ (1 − γa,1)
2tr{([R�1 ]4 ⊗ RE2)([R�1 ]4 ⊗ RE2)

T}
= tr(RE2RT

E2
)(1 + γ 2

a,1

+ (1 − γa,1){tr([R�1 ]2[R�1 ]T
2)+ tr([R�1 ]3[R�1 ]T

3)}
+ (1 − γa,1)

2tr([R�1 ]4[R�1 ]T
4))

= tr(RE2RT
E2
)[1 + γ 2

a,1 + 3uE1 ], (G46)

where the last line follows from Eq. (G38). Now it is
straightforward to verify that the first column of RE2 in
Eq. (G43) has the contribution

64∑
i=1

RE2(i, 1)2 = 1 + γ 2
a,2 + γ 2

a,2γ
2
a,3 + γ 2

a,3

= (1 + γa,2)
2(1 + γ 2

a,3), (G47)

so that

tr(RE2RT
E2
) = 15uE2 + (1 + γa,2)

2(1 + γ 2
a,3), (G48)

which gives

64∑
i,j =1

RE(i, j )2 = [15uE2 + (1 + γ 2
a,2)(1 + γ 2

a,3)]

× [1 + γ 2
a,1 + 3uE1 ]. (G49)

Next, note that

64∑
i=1

RE(i, 1)2 = (1 + γ 2
a,1)

64∑
i=1

RE2(i, 1)2

= (1 + γ 2
a,1)(1 + γ 2

a,2)(1 + γ 2
a,3), (G50)

which gives uE in terms of uE1 , uE2 , and the decay param-
eters {γa,j }:

uE = 1
63

( 64∑
i,j =1

RE(i, j )2 −
64∑

i=1

RE(i, 1)2
)

= 1
63 {[15uE2 + (1 + γ 2

a,2)(1 + γ 2
a,3)](1 + γ 2

a,1 + 3uE1)

− (1 + γ 2
a,1)(1 + γ 2

a,2)(1 + γ 2
a,3)}

= 1
63 [15uE2(1 + γ 2

a,1)+ 45uE1uE2

+ 3uE1(1 + γ 2
a,2)(1 + γ 2

a,3)]. (G51)

Reordering to C-T-S gives

uE = 1
63 [15uE1(1 + γ 2

a,3)+ 45uE1uE2

+ 3uE2(1 + γ 2
a,1)(1 + γ 2

a,2)]. (G52)

APPENDIX H: NUMERICAL METHODS

While first principle simulations readily reveal the qual-
itative behavior of target rotary pulsing, we leave a full
numerical study of the effect of target rotary pulsing for
future work. Here we show that a simple numerical model
captures the data quantitatively with relatively few fit
parameters that are reasonable in light of our theoretical
understanding of pulsed, coupled transmon qubits. To esti-
mate the expected error of our echoed pulse sequence, we
simulate the HEAT pulse sequences directly in the com-
putational subspace of the three-qubit system, allowing
anharmonicity to affect certain terms of our Hamiltonian
within the computational subspace, but leakage is not
included (and in fact does not play a large role in the
parameter space explored in this work, as we have checked
both experimentally and numerically). In our numerical
fits, we substitute

U± = ei
∑

i,j ,k∈X ,Y,Z θ
ijk
± σijk (H1)

for the evolution under positive or negative CR±π/4 and
R± in Figs. 1 and 2 in the main text. Here we adopt the
convention used in the main text that

σijk = σi ⊗ σj ⊗ σk, (H2)

where σi acts on the control Q11 Hilbert space, σj acts on
the target Q12, and σk acts on the target spectator Q13.
Here |θ ijk

+ | = |θ ijk
− | with θZXI , θ IXZ , θ IXI , θZYI , θ IYZ , and

θ IYI changing signs from U+ to U− while θZZI , θ IZZ , and
θ IZI do not. Only these terms are considered in our model
Hamiltonian, all of which are expected from previous CR
perturbation theory work and a simple model of crosstalk
[18,19]. While a more inclusive model might cover errors
from pulsing imperfections (θXII , θYII , etc.), we limit the
discussion here and revel in the rich physics resulting from
only the largest of the Hamiltonian error terms.

We model numerically only the relevant two- or
three-qubit subsystem of the 20-qubit ibmq_johannesburg
device. Numerical fits to Fig. 1 are two-qubit computations
with θ IZZ

1 = θ IXZ
1 = θ IYZ

1 = 0, justified by the fact that the
target spectator Q13 remains in its ground state for this
experiment and its preceding calibrations. In other words,
while qubits Q11 and Q12 are calibrated “simultaneously”
for Fig. 1 data, they are “isolated” from all spectators
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TABLE II. Parameters used in the numerical model of Fig. 1;
bold parameters are fit to data.

ijk θ
ijk
0 θ

ijk
1 θ

ijk
2

IXI −4.63 × 10−1 1.00 0.00
IYI 7.98 × 10−3 0.– 0.00
IZI 2.55 × 10−2 −1.23 × 10−3 −2.69 × 10−3

ZZI −1.59 × 10−2 0.00 2.11 × 10−3

ZYI 7.05 × 10−3 0.00 0.00
ZXI π/8 0.00 0.00

that are in their ground state with high probability [32].
Target spectator Q13 is included in the three-qubit simu-
lations of Figs. 2 and 3 because it is not only calibrated
simultaneously with the control and target qubits but is an
integral part of the presented experiments. By comparison,
target spectator Q7 is not included in any numerical mod-
eling as it is calibrated in isolation and is not used in any
experiment.

Focusing on Fig. 1, each of the nonzero angles are
fit to quadratic functions of the applied rotary amplitude
x. The values of each parameter producing the numeric
curve of Fig. 1 are shown in Table II. The terms in bold
are numerically optimized using a least-squares fit of the
experimental data. We fix θZZI

0 by an independent measure-
ment of the ZZ rate (over 2) times the pulse time, 206.22

TABLE III. Parameters used in the numerical model of Fig. 2;
bold parameters are fit to data.

ijk θ
ijk
0 θ

ijk
1 θ

ijk
2

IXI −2.97 × 10−1 1.00 0.00
IYI 0.00 0.00 0.00
IZI 4.88 × 10−2 −1.23 × 10−2 −5.84 × 10−3

ZZI −1.59 × 10−2 0.00 2.11 × 10−3

IZZ −2.66 × 10−2 0.00 −3.02 × 10−3

IZY 0.00 0.00 0.00
ZYI 0.00 0.00 0.00
ZXI 0.00 0.00 0.00
IYZ 0.00 0.00 0.00
IXZ 7.21 × 10−2 −1.85 × 10−2 0.00

ns. We have

θ ijk(x) = θ
ijk
0 + θ

ijk
1 · x + θ

ijk
2 · x2. (H3)

To fit Fig. 2, we fix many parameters from our fit to Fig. 1
and add terms that describe the coupling between the target
and target spectator, as shown in Table III.

In Fig. 3, the unitary evolution of the three-qubit system
under an entangling pulse Uent � ei(π/4)σZXI is calculated
using the fits for θZXI

0 , θ IXI
0 , θZZI

0 , θ IZI
0 , θZYI

0 , and θ IYI
0

obtained in the fit for Fig. 1 and θ IZZ
0 , θ IZY

0 , θ IYZ
0 , θ IXZ

0
obtained in the fit for Fig. 2. The unitarity of the 2Q and
1Q subsystems are then calculated after the performance of

(a) (b)

FIG. 5. (a) Typical parameters and performance of ibmq_johannesburg. QV32 HOP on subset A (blue dashed line) with and without
rotary is presented in Table I in the main text. (b) To more rigorously study the impact of target rotary on quantum volume circuits,
we executed the same set of circuits on all possible 5Q linear subsets of ibmq_johannesburg for the same two cross-resonance gate
conditions—with and without rotary. In this comparison plot of the HOP we see that, when using target rotary, the HOP is almost
always greater than that obtained without for this experiment. As a guide to the eye, the black line denotes equal HOPs and the dashed
black lines mark the 2

3 QV success threshold. As the intent of this study is to estimate an average change in the HOP, we used only
a limited number of circuits such that the experiment could run in a reasonable time frame. Thus, these experiments did not pass the
QV32 threshold with confidence as was done on subset A.
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Uent, as well as the entropy of entanglement between these
two subsystems.

APPENDIX I: BACKEND DETAILS AND
QUANTUM VOLUME COMPARISON

In Fig. 5(a) we provide a representative performance
map of ibmq_johannesburg. The experimental data pre-
sented in this paper is taken over several days and so is
subject to parameter drift. For the average QV32 HOPs
with and without target rotary (presented in Table I of
the main text), we tested all possible five qubit linear
subsets of ibmq_johannesburg. For this experiment, the
frequencies of the qubits in each subset are first cali-
brated jointly to account for average static ZZ and then
two-qubit gates are optimized for each echoed CR condi-
tion prior to executing 150 optimized QV32 circuits. In
Fig. 5(b), we plot the HOP for each of the calibration
conditions for each subset. Statistically, we see that the
HOP from most subsets falls above the black guideline
(denoting equal HOPs in both conditions) and infer the
performance improvement added by target rotary. As only
150 circuits are performed to reduce runtime, we note that
these measurements do not meet the confidence threshold
to confirm QV32. As a proof of concept, we selected sub-
set A [denoted in Fig. 5(a) with a blue dashed line] and
executed the necessary number of circuits to confirm that
HOP only passes the QV32 threshold with the use of target
rotary pulsing.
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