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Abstract. We review numerous applications of relative entropy estimates
in Statistical Mechanics and Field Theory.

The Particle Structure Implies Relative Entropy Bounds

It is well known that one can represent the physical Hilbert space H of the
free scalar massive field theory as IL2(µG) defined with a mean zero Gaussian
measure of covariance G = (−∆ + m2)− 1

2 . This Hilbert space has a natural
Fock space structure

H =
∞⊕
n=0

Hn

that is it can be represented as a direct sum of orthogonal n-particle sub-
spaces Hn which are preserved by the semigroup Pt ≡ e−tH , t ≥ 0, where
H denotes the physical Hamiltonian of the free field. At the end of sixties
it has been discovered that this Particle Structure implies the following very
special property of the semigroup Pt

||Ptf ||ILq
≤ ||f ||IL2 (IH)

with q ≡ q(t) = 1 + e2t/c for some positive constant c. That means the
semigroup is not only contractive in the physical Hilbert space, (which follows
from the fact that physical Hamiltonian has non-negative spectrum), but
maps this space into a strictly smaller subspaces consisting of more smooth
vectors. Since then this property is called the Hypercontractivity. For the
references to the related publications including those of J. Glimm, E. Nelson,
B. Simon, R. Hoegh-Krohn and others, see e.g., (Simon 1974) and (Glimm
and Jaffe 1987).

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 149−160, 2000.
 Springer-Verlag Berlin Heidelberg 2000



150 B. Zegarliński

In (Federbush 1969), P. Federbush studied perturbation of free Hamilto-
nian by λ : ϕ4 : interaction. He has shown that the Hypercontractivity prop-
erty implies the following infinitesimal condition, called Logarithmic Sobolev
inequality,

µG
(
f2 log f2) ≤ 2c µG (fHf) , (ILIS)

where f belongs to the quadratic form domain of the Hamiltonian and is
normalised by µGf2 = 1. For later purposes we note that the quadratic form
on the right hand side of (ILIS) can be regarded as a Dirichlet form, that is
it can be represented as an expectation of a square of (infinite dimensional)
gradient, (Araki 1960), (Herbst 1976), (Albeverio and Hoegh-Krohn 1977).
Later L. Gross showed, (Gross 1976), that actually this Relative Entropy
bound is equivalent to the Hypercontractivity property.
We remark that, because of our normalisation condition, f2 in the above in-
equality can be regarded as a probability density with respect to the measure
µG and so the quantity on the left hand side of (ILIS) can be interpreted as
the relative entropy of the corresponding measures. Thus we see that in the
Free Field Theory the Particle Structure implies the Relative Entropy bound.

1 The Relative Entropy Bounds for Gibbs Measures

One of the main properties of (ILIS) is the fact that whenever it holds for any
two measures, it is also true for their product. Thus such entropy bounds are
naturally suitable for description of large or even infinite physical systems. At
the time when (ILIS) was introduced the only known examples of measures
satisfying it were given by the Gaussian or some product measures. This
situation persisted till the mid of eighties when Bakry and Emery introduced
a very efficient criterion for the case when the underlying configuration space
was given as Ω = IMΓ with IM being a Riemannian manifold with strictly
positive Ricci curvature and Γ a countable set, (Bakry and Emery 1984).
It has been applied in (Carlen and Stroock 1986) to show that (ILIS) hold
for infinite volume measures describing some continuous spin systems on a
lattice at very high temperatures. A new idea which allowed to extend this
result came at the end of eighties from the Statistical Mechanics (where
some other relative entropy bounds proved to be a useful tool in the study of
infinite systems). Studying a uniqueness problem for disordered spin systems,
the author realised that one can use the Gibbs structure related to the spin
systems to prove (ILIS). It allowed him to show this relative entropy estimate
not only for continuous spins when the single spin space do not satisfy Ricc >
0, (as for example in planar rotators), (Zegarliński 1990), but also for discrete
spin systems, (Zegarliński 1990), (Zegarliński 1992). To describe the related
idea and some results, we need to recall the basic notion of the Gibbsian
description. We begin from introducing the finite volume Gibbs measures
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µωΛ(f) ≡ δω

(
µΛ0 (e−UΛf)
µΛ0 (e−UΛ)

)
,

where δω is the Dirac measure fixing the external configuration ω ∈ Ω of
the system outside a finite subset Λ of the lattice ZZd, (denoted later on by
Λ ⊂⊂ ZZd ); µΛ0 denotes a free product measure in Λ and the interaction
energy is given by

UΛ ≡
∑

X∩Λ6=∅
ΦX(σX) .

The potential Φ ≡ {ΦX : X ⊂⊂ ZZd, |X| < ∞}, for simplicity of the expo-
sition, is assumed to be of finite range, that is ΦX ≡ 0 if diam(X) > R for
some fixed R > 0.
The infinite system is described by a Gibbs measure µ which by definition is
a solution of the celebrated Dobrushin - Lanford - Ruelle equation

µ (µ·
Λ(f)) = µ(f) . (IDILIR)

Using this equation one can represent the relative entropy as follows

µ
(
f2 log f2/µf2) = µ

(
µ·
Λ(f2 log f2/µf2)

)
= µ

(
µ·
Λ(f2) log

f2

µ·
Λ(f2)

)
+ µ

(
µ·
Λ(f2) log

(
µ·
Λ(f2)/µ(µ·

Λ(f2)
)
)
)
.

In this way we split the estimate into two parts. The first one involves the local
relative entropy estimate with the measure µ·

Λ and as a finite dimensional
problem is usually easy. On the other hand the second term has a similar
structure but involves a new density µ·

Λ(f2) which is in some way smoother.
Choosing another finite set, (given as a translation of Λ), we can apply the
same idea to that second term. It is an interesting fact that under some mixing
condition such procedure can be iterated and leads to convergent expansion
which results with the desired relative entropy estimate.

2 Equivalence of Equilibrium
and Non-Equilibrium Descriptions

An interesting outcome of the research on relative entropy estimates is con-
tained in the following result.
Theorem: The following conditions are equivalent
(I) Strong Mixing : ∃M > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω

|µωΛ ((f − µωΛ(f))(g − µωΛ(g)))| ≤ C(f, g)e−M ·dist(Λf ,Λg)

for any local observable f and g localised in a bounded set Λf and Λg,
respectively.

(II) Spectral Gap : ∃m > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω
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mµωΛ (f − µωΛ(f))2 ≤ µωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

(III) Logarithmic Sobolev Inequality : ∃c > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω

µωΛ
(
f2 log f2/µωΛ(f2)

) ≤ 2c µωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

(IV) Asymptotic Sobolev Inequality :
∃C > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω, ∀p ∈ [2, 2 + 1

|Λ| ]

||f ||2ILp(µω
Λ) ≤ ||f ||2IL2(µω

Λ) + (p− 2)CµωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

The equivalence of the (I)-(III) has been proven in (Stroock and Ze-
garliński 1992). The last point has been added only recently in (Zegarliński
1998).

The first condition is a statement from statistical mechanics which says
that in the given systems one has a fast uniform decrease of correlations. It
means, (Dobrushin and Shlosman 1985, 1987), that in such system one has
no phase transitions in the strongest possible sense of analytic dependence of
expectations on the potential.

The second has an interpretation within the spectral theory of the selfad-
joint Markov generator described by the Dirichlet form on the right hand side
of the inequality. It means that one has a gap at the bottom of the spectrum
of this generator. Thus it carries an information about the ergodicity of the
corresponding semigroup in the IL2 sense.

The third statement is our relative entropy estimate. It is well known
that (ILIS) implies the spectral gap. On the other hand one can show exam-
ples when the spectral gap inequality is true, but (ILIS) does not hold. The
important point here is that the spectral gap is uniform with respect to the
volume Λ and external conditions ω.

Finally the last property involves a classical Sobolev inequality which is
one of the cornerstones of the twentieth century analysis. It tells us that given
the IL2 information about the gradient of a function we can estimate its 2+δ
moment with strictly positive delta δ. This improvement of square by a small
root is much stronger than the logarithmic one in (ILIS), but is relaxed in the
thermodynamic limit. The equivalence of (III) and (IV) follows from the very
special behaviour of the coefficient at the Dirichlet form.

The condition (I) is a condition of the equilibrium statistical mechanics.
If we would think of (II) - (IV) as some features of dissipative dynamics
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with generator described by the corresponding Dirichlet form, we could say
that the above Theorem establishes an equivalence between equilibrium and
non-equilibrium description of a physical system.

3 Strong Decay to Equilibrium

One of interesting consequences of the hypercontractivity of the dissipative
dynamics is the fact that the corresponding systems decays exponentially fast
to the unique equilibrium.
Theorem: ((Stroock and Zegarliński 1995))
If a Gibbs measure µ satisfies

µ

(
f2 log

f2

µf2

)
≤ 2c µ(fHf)

then
||e−tHf − µf ||∞ ≤ e−mtCV |||f |||

with a positive constant CV dependent only on a finite set V in which an
observable f is localised, and with an arbitrary m ∈ (0, gap2H) , provided
some suitable seminorm |||f ||| of f is finite.

It is interesting to remark that the region where (ILIS) remains true, in many
systems, extends to the critical point. (It includes for example the Ising fer-
romagnet with nearest neighbours interactions.)
Results about the decay to equilibrium, besides their theoretical and esthet-
ical value, play an important role in numerical analysis. One should recall
that the only practical way of making actual computations of equilibrium ex-
pectations of large system is via running a stochastic process on a computer.
To illustrate the computational difficulty, consider the Ising model on ten by
ten square of the integer lattice ZZ2. This certainly can not be regarded as a
large system if we compared it with a small macroscopic piece of ferromagnet
which is known to contain 1023 elements. Yet the corresponding configura-
tion space contains 2100 ≥ 1030 different configurations of the ±1 spins. That
is we would have to compute more than 1030 terms exp{−UΛ(σ)} to get a
value of expectation with a Gibbs measure. Computing 109 terms per second,
(which is a very good speed !), one would need 1021 seconds. That is about
1014 years. Compare that with the age of the Universe which when estimated
using the Big Bang theory is equal approximately 1010 years !
For related development see also (Martinelli and Olivieri 1994), (Lu and Yau
1993), (Zegarliński 1990)–(Zegarliński 1998) and references there in.

4 Strong Decay to Equilibrium in Disordered Systems

It is well known that the systems with random interactions can exhibit an
interesting behaviour. A simplest example of such a system is given by the
Edwards - Anderson model described by the following interaction energy
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U =
∑

|i−j|=1

Jijσiσj ,

where the couplings Jij are random i.i.d. variable. If the couplings can take
on arbitrary large values, the corresponding system exhibits a non-analytic
behaviour even at the high temperature region. In view of the previous discus-
sion it is natural to expect that one should have also different non-equilibrium
behaviour. The first numerical evidence that at the high temperatures one
should have a stretched exponential decay has been published in the mid of
eighties by Ogielski, (Ogielski 1985). For a mathematical results one needed
to wait for a long time. By adapting the strategy based on the hypercon-
tractivity the following result has been proven for Glauber dynamics of two
dimensional models.
Theorem ((Guionnet and Zegarliński 1996, 1997))
Almost surely

||etLJ f − µJf ||∞ ≤ e−tαC(J)|||f |||
with some α ∈ (0, 1) and a random variable C(J), where J denotes the
random configuration of the couplings.
See also (Cesi et al. 1997) for further development on that subject.

5 The Relative Entropy Estimates
in Quantum Systems

In the description of quantum spin systems we describe observables as ele-
ments of a C∗ algebra A = ∪Λ⊂⊂ZZdAΛ, where AΛ is isomorphic to IMΛ the
algebra of all complex n×n matrices. The free state is given by a normalised
trace Tr, satisfying the usual properties

Tr1 = 1, T r(a∗a) > 0 for a 6= 0 and Tr(ab) = Tr(ba) .

With the trace Tr we can associate a family of partial traces TrX , X ⊂⊂ ZZd

possessing all basic properties of conditional expectations. A Gibbs state ω
on the algebra A is given by

ω|AΛ
(f) = Tr(ρΛf) ,

where ρΛ is a density matrix. In this setting a dissipative dynamics is de-
scribed as a Markov semigroup, that is a semigroup satisfying the following
properties

Pt1 = 1, Ptf
∗f ≥ 0,

and possibly also the following Feller Property

Pt(A) ⊂ A ,

Frequently we want to distinguish a’priori a family of invariant states that is
the states satisfying
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ω(Ptf) = ω(f) .

One convenient way of doing that is by assuming the following detailed bal-
ance condition with respect a scalar product associated to the state ω

< Ptf, g >Hω =< f, Ptg >Hω .

A construction of a dissipative dynamics preserving positivity in the algebra
and simultaneously satisfying this symmetry condition constitutes one of the
toughest problems of mathematical physics; for some progress in that direc-
tion see (Majewski et al. 1998) and references therein.
We recall that, unlike as in the classical case, in the non-commutative theory
one can consider many scalar products associated to a given state ω = Tr(ρ ·).
Some examples are given by

< f, g >ω,s≡ Tr(ρs/2fρ(1−s)/2)∗(ρs/2fρ(1−s)/2) .

In particular if we set s = 0 one gets the usual scalar product used in the
GNS construction. An integral over s ∈ [0, 1] gives a scalar product relevant
to the linear response theory.
Additionally one can associate to ω an interpolating family of ILp(ω, s) spaces
defined by the following norms

||f ||pILp(ω,s) ≡ Tr|ρs/pfρ(1−s)/p|p .

Note that for 1 ≤ p ≤ q ≤ ∞ we have

ILp ⊃ ILq ⊃ A .

We note that a symmetric in IL2(ω, s) Feller - Markov semigroup can be
extended to a contractive semigroup in all ILp(ω, s)

||Ptf ||ILp(ω,s) ≡ ||f ||ILp(ω,s)

in a full analogy to the classical theory.

6 Hypercontractivity in Noncommutative ILp Spaces

Given a family of noncommutative ILp(ω, s) spaces, in a natural way we can
define a Hypercontractive semigroup by the following condition

||Ptf ||ILp(ω,s) ≤ ||f ||IL2(ω,s) ,

where p = 1 + e
2
c t, with some c ∈ (0,∞). Later on s = 1

2 .
Theorem: ((Olkiewicz and Zegarliński 1999))
Hypercontractivity in ILq(ω, 1

2 ) spaces implies the following Quantum Rela-
tive Entropy bound
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QEp(f) ≡ Tr|ρ1/2pfρ1/2p|p
(

log |ρ1/2pfρ1/2p| − 1/p log ρ
)

−||f ||p
ILp(ω, 12 ) log ||f ||ILp(ω, 12 )

≤ c(p) Ep(f) ,

where c(p) = cp
2(p−1) and

Ep(f) =< Ip,q(f),Lpf >IL2(ω, 12 )

with isometry Ip,q : ILp → ILq.
Moreover if

E2(I2,pf) ≤ q2

4(q − 1)
Eq(f)

then
QE2(f) ≤ c E2(f)

implies hypercontractivity
The statement simply says that basically the quantum relative entropy esti-
mate is equivalent to hypercontractivity in this more general noncommuta-
tive setting. Note that the theorem introduces a new kind of quantum relative
entropy not considered before in the literature. In the particular case when
the observable f is nonnegative and commutes with the density matrix ρ, the
renormalization of the logarithm gives us the classical formula for the relative
entropy.

7 Spectral Theory of Hypercontractive Semigroups

Suppose Pt = e−tL is a symmetric Markov semigroup in IL2(µ). If its genera-
tor would have a discrete spectrum, (as it happens for example in case of the
Laplace - Beltrami operator on a compact Riemannian manifold), we would
have the following representation

Ptf =
∑
n

e−tλn(Ψn, f)Ψn

with Ψn being a normalised eigenfunction corresponding to an eigenvalue λn.
Using this representation an equivalent condition of the hypercontractivity
property

∃T ∈ (0,∞)∀t > T , ||Ptf ||4IL4
≤ ||f ||4IL2

can be written as follows∑
n1,..,n4

e−t(λn1+..+λn4 )µ(Ψn1 ..Ψn4)
∏

l=1,..,4

(Ψnl
, f) ≤

∑
n1,n2

(Ψn1 , f)2(Ψn2 , f)2



Relative Entropy Estimates in Statistical Mechanics and Field Theory 157

for all t > T . This means that for hypercontractivity to be true we need very
special properties of the spectrum and overlapping property of the eigen-
fuctions, (that is the random variables Ψn have to be in some sense weakly
dependent and behave similarly to the random variables with Gaussian dis-
tribution). As we have mentioned at the beginning of this lecture, in case of
free scalar massive field one can derive hypercontractivity from the particle
structure of the theory. More precisely one uses the following properties.
(I) Existence of Invariant Subspaces ∀n ∈ ZZ+∃Hn ⊂ IL2(µ)

PtHn ⊂ Hn, Hn⊥Hn′ , and ∪n Hn = IL2(µ) .

(II) Particle Structure of the Spectrum

∃ε ∈ (0,∞)∀n ∈ IN inf σ(H|Hn) ≥ nε .

(III) Gaussian Bounds

∃C ∈ (0,∞)∀n ∈ IN ∀f ∈ Hn ||f ||IL4(µ) ≤ Cn||f ||IL2(µ) .

We mention that recently the following further examples of such structure
has been exhibited, (Bodineau and Zegarliński 1998).
Example A: The Glauber dynamics in D = 1 Ising model

– Hn = Span{σX , |X| = n}
– σ(H|Hn) ⊂ [η−n, η+n], with some constants 0 < η− < η+ < ∞, (Minlos
and Trishch 1994)

– Gaussian Bounds

∃C ∈ (0,∞)∀n ∈ IN ∀f ∈ Span{σX , |X| = n} ||f ||IL4(µ) ≤ Cn||f ||IL2(µ) ,

where µ is the infinite volume Gibbs measure of the model.
This method is a bit simpler than the one used in (Zegarliński 1990), but
also offers more precise estimates on the Logarithmic Sobolev coefficient c.
Example B: The Free Dynamics for Quantum Spin Systems

Let ω ≡ ⊗iωΛi
, where Λi ∩ Λj = ∅ for i 6= j,ωΛ is a state on IMΛ. Then the

Logarithmic Sobolev inequality holds with generator

Hf =
∑
i

(f − ωΛi
f) .
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8 A Problem

The problem of the particle structure of a physical theory is one of the im-
portant problems which still remain weakly understood. Some partial results,
(see references in (Glimm and Jaffe 1987)), show that in the two dimensional
models of scalar fields with polynomial interactions one has the particle struc-
ture up to a level N provided the coupling constant λ = λ(N) > 0 is suf-
ficiently small. Similar structure has been proven to exist for generators of
Glauber dynamics in classical spin systems on the lattice in an interesting
paper (Minlos 1996).
Taking into account the progress made in the last decade in understanding
the relative entropy estimates and our discussion presented in this lecture,
it would be very interesting to prove that under some reasonable general
conditions present in the physical models, one has the following implication

Relative Entropy Bound =⇒ Particle Structure

Acknowledgment

The author would like to thank the organisers for this interesting and mem-
orable meeting and is pleased to acknowledge the support of British Council.
The research described in this paper has been supported by EPSRC Grants
GR/K95635, GR/L58873 GR/K76801 and EU Stochastic Analysis Network.

References

Araki, H., (1960): Hamiltonian formalisms and the canonical commutation relations
in quantum field theory, J. Math. Phys. 1, 492–504

Albeverio, S., Hoegh-Krohn, R., (1977): Dirichlet forms and diffusion processes on
rigged Hilbert spaces, Z. Wahr. und verw. Geb. 40, 1–57

Bakry, D., Emery, M., (1984): Hypercontractivitè de semi - groupes des diffusion,
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Zegarliński, B., (1995): Ergodicity of Markov Semigroups, pp. 312–337, in Proc. of
the Conference: Stochastic Partial Differential Equations, Edinburgh 1994, Ed.
A. Etheridge, LMS Lec. Notes 216, Cambridge University Press
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