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Abstract

Modern laser facilities provide highly intense light with a very short temporal structure,
which brings the phenomena originally found near the strong radiating stars in the universe
into the laboratory. Accordingly, there are, among others, wide theoretical investigations
w.r.t. scattering processes of particles impinging this extreme light sources. This has
been done by applying the strong-field quantum electrodynamics, which is a theory of
electromagnetic interactions within coherent highly intense light treated as a semi-classical
background field. For instance, the treatment of the Compton process (inelastic electron-
photon scattering) and the Breit-Wheeler process (pair production of a collision of two
photons) with strong-field quantum electrodynamics revealed a vast amount of novel
non-linear structures and phenomena, which were to some extent experimentally verified.
Of particular interest and the central object of investigation within this thesis is also
the trident process: a second order process in (strong-field) quantum electrodynamics
producing an electron-positron pair within the collision of a photon beam (e.g. produced
by a laser) with a counter-propagating electron. However, in the context of highly intense
fields, the trident process is more than the product of its parts, the mentioned Compton
and Breit-Wheeler process, since the intermediate photon yields both virtual and real
contributions producing exceedingly complicated structures. Over the last years, there are
several theoretical contributions to the non-linear treatment of the trident process w.r.t. a
wide range of laser properties, but the trident process has not yet been fully understood
due to its demanding mathematical nature.
Within the present thesis, we focus on the dependence of the trident process to the short
temporal structures of the involved light source at high energies. Loosely speaking, this
means the short pulsed structure of modern light sources provide a wide energy spectrum
of the respective photons, which is imprinted on the considered scattering processes.
Accordingly, we elaborate a new approximation to strong-field quantum electrodynamics
capable to describe the spectral dependence of processes within laser-electron collisions at
high energies. Then we apply this new approximation to the trident process and reveal

c



the novel structures generated by the spectrum of the light source. Therefore, we provide
an analysis of the spectral impact to the trident process involving the total cross section
as well as several inclusive and exclusive distributions of its final particles. Consequently,
we examine in principle the experimental capabilities of present or planed extreme light
sources by combining them with a suitable electron beam, whether they are sensitive to
the encountered spectral effects of the trident process and discuss further applications of
the newly introduced approximation.



Kurzdarstellung

Moderne Lasereinrichtungen stellen hochintensives Licht mit sehr kurzer zeitlicher Struktur
zur Verfügung. Damit bringen diese Einrichtungen die Phänomene in die Laboratorien,
welche normalerweise nur in der Nähe von stark strahlenden Sternen im Weltall zu finden
sind. Bezüglich der Streuprozesse von Teilchen innerhalb dieser extremen Lichtquellen
gibt es eine Vielzahl an theoretischen Untersuchungen. Vorwiegend geschehen diese
unter der Verwendung der Starkfeld-Quantenelektrodynamik, einer Theorie zur quanten-
theoretischen Beschreibung von elektromagnetischen Wechselwirkungen innerhalb eines
kohärenten hochintensiven Feldes, welches als semi-klassisches Hintergrundfeld beschrieben
wird. Zum Beispiel zeigte die theoretische Behandlung des Compton-Prozesses (die inelastis-
che Elektron-Photon-Streuung) oder des Breit-Wheeler-Prozesses (der Paarproduktion in
der Kollision von zwei Photonen) innerhalb der Starkfeld-Quantenelektrodynamik eine
große Menge an neuen nicht-linearen Effekten und Phänomen, welche stellenweise in zukun-
ftsweisenden Experimenten nachgewiesen werden konnten.
Von großem Interesse und auch zentrales Untersuchungsobjekt der vorliegenden Arbeit
ist ebenso der Trident-Prozess: ein Prozess zweiter Ordnung in der (Starkfeld-) Quan-
tenelektrodynamik, bei dem ein Elektron-Positron-Paar innerhalb der Kollision eines
Photonstrahls (z.B. erzeugt von einem Laser) und eines gegenläufigen Elektronenstrahls
entsteht. Allerdings ist der Trident-Prozess im Zusammenhang mit hochintensiven Feldern
nicht ausschließlich das Produkt seiner Teile, den erwähnten Compton- und Breit-Wheeler-
Prozessen, vielmehr erzeugt das Vorhandensein des intermediären Photons durch seine
virtuellen und reellen Beträge überaus komplizierte Strukturen. In den letzten Jahren
gab es daher eine große Menge an theoretischen Beiträgen zur nicht-linearen Behandlung
des Trident-Prozesses bezüglich eines weiten Bereichs an Eigenschaften der verwendeten
Lichtquelle. Jedoch ist der nicht-lineare Trident-Prozess wegen seiner anspruchsvollen
mathematischen Natur bisher nicht als völlig verstanden anzusehen. In der vorliegen-
den Arbeit liegt der Fokus auf der Abhängigkeit des Trident-Prozesses von den kurzen
zeitlichen Strukturen der verwendeten Lichtquellen bei hohen Energien. Grob gesprochen
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bedeutet dies, dass die kurz gepulsten Strukturen der modernen Lichtquellen zu breiten
Spektren der Photonstrahlen führen, welche sich dann auch in den betrachteten Prozessen
widerspiegeln. Demfolgend wird in der vorliegenden Arbeit eine neue Approximation an
die Starkfeld-Quantenelektrodynamik erarbeitet, welche in der Lage ist, die spektralen
Abhängigkeiten in den Prozessen zu beschreiben, die in Laser-Elektron-Kollisionen bei
hohen Energien vorzufinden sind. Diese neue Approximation wird dann auf den Trident-
Prozess angewendet und es werden die neuen Strukturen herausgearbeitet, welche durch
das breite Spektrum der betrachteten Lichtquelle entstehen. Ferner werden bestehende oder
geplante extreme Lichtquellen dahingehend untersucht, in welcher Weise diese, kombiniert
mit einem passendem Elektronenstrahl, sensitiv für die vorgestellten spektralen Effekte
im Trident-Prozess sind. Abschließend werden weitere mögliche Anwendungsbereiche der
neuen Approximation diskutiert.
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1 | Introduction

The primary motivation of theoretical physics is the modeling of phenomena in nature
by the use of a system of equations, i.e. a theoretical model, where the main ambition is
predicting as many as possible observables using as few as possible parameters. It becomes
experimentally apparent that every physical phenomenon in nature is ascribable to four
fundamental interactions: the gravitation, the electromagnetic interaction as well as the
weak- and the strong nuclear interaction. In this context, one of the most precise theory
describing nature on a fundamental level (in the absence of gravity) is the standard model
of particle physics (originally proposed in [307]). This theory is a conceptional combined
description of the strong interaction, by the theory of quantum chromodynamics and
electro-weak interaction employing the Glashow-Weinberg-Salam theory (GWS; originally
in [100, 254, 307]).
One of the pillars of the standard model of particle physics (as one of the results of the
spontaneous symmetry breaking in the Higgs sector of the GWS theory) is the description
of the electromagnetic interaction in the context of the theory of quantum electrodynamics
(QED; originally in [76, 87, 88, 264, 265, 295]), which combines the classical electrodynamics
(by means of Maxwell’s equations) with quantum mechanics. Several calculations made
in QED using the series expansion of certain quantities in its coupling 𝛼 (also referred to
as perturbation theory) are ranked as the most precise predictions w.r.t. high-precision
experimental measurements (see, e.g., [83] for further details). For instance, the prediction of
the anomalous magnetic moment of the electron using QED perturbation theory (currently
up to O(𝛼5); see [14, 15]) shows an outstanding agreement with the experimental results
with an exact match of ten significant digits [112]. This great success of perturbation
theory gives QED the reputation of the most precise theoretical model in physics.
First as a conceptional study and later highly motivated through the invention of the
laser (light amplification by stimulated emission of radiation [181] based on [258] and
originally conceived in [80]), there was, and still is, a high demand on considering coherent
electromagnetic fields with high intensities within the framework of QED. As it turns out,
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2 1 Introduction

the involvement of highly intense fields leads to qualitatively different and novel non-linear
phenomena, which require a non-perturbative treatment.

Vacuum pair production

One of the first investigated example of such non-linear phenomena is the spontaneous
production of particle and anti-particle pairs from the vacuum in the presence of a high-
intensity static electric field, also referred to as the Sauter-Schwinger effect [129, 257, 263].
Considering the QED vacuum, i.e. the quantised state with minimum energy, there are
always virtual electron-positron pairs (as well as heavier particle anti-particle pairs, but
much less likely) produced by quantum fluctuations, which annihilate after a short period
of time in agreement with the Heisenberg uncertainty relation. The mean distance of
these pairs is in the order of the Compton wavelength 𝜆C = ℎ

𝑚𝑐 , where ℎ denotes the
Planck constant, 𝑚 is the mass of the electron and 𝑐 is the speed of light in vacuum.
Thereby the Compton wavelength 𝜆C acts as the fundamental length scale of QED. In
the presence of an electromagnetic field, e.g. a static electric field 𝐸, the dipoles formed
by the electron-positron pairs are aligned along the field lines yielding a polarisation of
the vacuum. However, if the electric field exceeds a critical value 𝐸S, where the produced
particles gain energy of 𝑚𝑐2 along the distance of the Compton wavelength, the electron-
positron pairs become real and one has actual pair production out of the vacuum. Here,
the critical electric field is given as 𝐸S = 𝑚2𝑐3

𝑒ℏ ≈ 1.32 × 1016 V/cm, where ℏ = ℎ
2𝜋 denotes

the reduced Planck constant, which is commonly referred to as the critical Schwinger
field or shortly the Schwinger limit [263]. Equivalently one has the critical field intensity
𝐼S = 𝑐𝜀0

2 𝐸
2
S ≈ 2.32 × 1029 W/cm2 with the vacuum permittivity 𝜀0, which is also associated

with the Schwinger limit. However, for field intensities below the Schwinger limit, the pair
production via the Sauter-Schwinger mechanism is usually highly suppressed. For instance,
considering a homogenous constant electric field 𝐸, the pair production probability 𝑃

scales in the leading order like 𝑃 ∼ 𝐸2 exp
(︁

−𝜋𝐸S
𝐸

)︁
. Nevertheless, in order to enhance the

pair production rate, extensive investigations had been done, for instance, w.r.t. possible
configurations of the electric and magnetic field (see, e.g.,[10, 18, 37, 43, 74, 106, 126, 159,
196, 246, 252]), by combining high-intensity electromagnetic fields with the strong Coulomb
field of heavy nuclei or ions (see, e.g., [57, 58, 60, 89, 203–205, 240, 241]) as well as by
considering the superposition of two or more different light sources (see, e.g., [7, 9, 42, 73,
86, 121, 142, 143, 226–230, 233, 262, 296–298]). A more detailed outline of the different
aspects of the Sauter-Schwinger mechanism as well as their experimental implications can
be found in the review articles [61, 98, 114].
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Non-linear scattering processes

Another possible point of view for the investigation of non-linear QED phenomena, and
rather complimentary to the Sauter-Schwinger mechanism, is given by the scattering
processes of probe particles with a coherent and highly intense electromagnetic field. Here
the electromagnetic field is divided into a coherent part, which will be treated in a (semi-)
classical way as a background field, and a quantised photon field, which interacts with the
quantised fermion fields within this background field. This approach is also referred to
as the background field approximation (or the Furry picture representation) of QED and
provides a powerful model to investigate non-linear QED effects w.r.t. scattering processes.
First, we mention the scattering of an electron with a high-intensity electromagnetic field
yielding the emission of a single photon, also referred to as the non-linear Compton scatter-
ing, which was initially investigated in the pioneering work of [39, 103, 150, 213, 216–219,
247] (as revised in [117, 124, 164]) by applying the background field approximation, where
a (infinitely extended) plane-wave field and a constant-crossed field was used to model the
background field, respectively. Since then the non-linear Compton scattering is extensively
investigated in the literature w.r.t. a large variety of features of the background field as well
as in several different parameter regimes. We mention the involvement of high-intensities
and pulsed structures of the light source, e.g. produced by using chirped pulse amplification
[283] in modern laser facilities, by applying the pulsed plane-wave approach [29, 30, 124,
173, 176, 212, 267, 269, 275, 292, 294]. In this context, non-linear Compton scattering is
established as one of the main test cases for the investigation of analytical and numerical
methods, respectively, as well as several approximations, for instance, the slowly-varying
envelope approximation [212, 269, 271, 290], stationary phase analysis [176, 212, 271, 272]
and the expansion into harmonics in pulsed plane-waves [276], to name a few. Furthermore,
we mention the treatment in locally constant fields and its improvements [28, 62, 63, 116,
134] in order to include non-linear Compton scattering in large-scale simulations with
emphases in plasma-physical applications [312].
The second extensively investigated scattering process in the background field approxima-
tion is the scattering of a single probe photon with a highly intense electromagnetic field
producing an electron-positron pair also referred to as the non-linear Breit-Wheeler pair
production, which is the cross-channel process to non-linear Compton scattering. As for the
latter, the pioneering work w.r.t. the non-linear Breit-Wheeler pair production was done
assuming infinite plane-waves as well as constant crossed fields for the background field,
respectively [213, 216–219, 243, 247]. Since then and similar to the non-linear Compton
process, the non-linear Breit-Wheeler process is extensively investigated w.r.t. several differ-
ent features of the background field (see, e.g., [122, 127, 140, 161, 162, 191, 221, 287, 290]).
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However, in contrast to the non-linear Compton scattering, the non-linear Breit-Wheeler
pair production is a threshold-process, i.e. the attained energy in the center-of-momentum
frame needs to exceed a threshold energy in order to produce the pair. This leads to
unique phase space structures, which are rather different compared to those found for
non-linear Compton scattering. For instance, the pair production probability 𝑃 of the
non-linear Breit-Wheeler process scales in the regime of ultra-high intensities and small
center-of-momentum energies (also referred to as the tunneling regime) with the electric
field like 𝑃 ∼ exp

(︁
− 4𝑚

3𝜔′
𝐸𝑆
𝐸

)︁
(cf. [243, 247]), where ℏ𝜔′ denotes the energy of the probe

photon, which is similar to the scaling of the above mentioned Sauter-Schwinger effect.
Furthermore, we mention the sub-threshold enhancements of the non-linear Breit-Wheeler
process due to the application of the pulsed plane-wave approach [127, 221, 290] as well as
the consideration of polarisation effects [140, 289, 291].
Together with the non-linear Compton process, the non-linear Breit-Wheeler pair produc-
tion is one of the driving forces of cascade formations in non-linear QED [81, 104, 244].
This is of particular interest since the Bohr conjecture [281] suggests that a field as high as
the Schwinger field 𝐸S mention above is not reachable, because the intensity of a strong
laser system is, in general, bounded above due to the formation of such cascades [22, 85,
214, 280].
Furthermore, we mention the pioneering experiment E-144 at the SLAC National Acceler-
ator Laboratory [20, 40, 47], where for the first time multi-photon contributions to the
Compton and Breit-Wheeler process were measured during a collision of a highly energetic
electron beam and a medium intense optical laser.

Besides the two fundamental processes, non-linear Compton and non-linear Breit-Wheeler,
there is a vast amount of other processes elaborated in literature. Here, we mention
the processes related to vacuum polarisation, e.g. vacuum birefringence [36, 66, 128, 148,
149, 259, 279] and ”matterless double slit“ invesigations [153, 154]. Since the particle
treatment in QED has a universal character, there are also investigations w.r.t. exotic
particles [99, 163, 180] as well as considerations beyond the standard model of particle
physics, for instance non-commutativity of space-time [136, 166] and the hidden gauge
sector [6] as well as axion-like particles [65, 155]. Furthermore, there are investigations
about the photon splitting and merging process [4, 8, 59, 234] as well as the consideration
of non-linear QED applications w.r.t. other particle processes in the standard model of
particle physics, e.g. muon decay [64, 84, 277] and neutrino scattering [190, 193, 288].
Furthermore, we mention the application of the dynamical assistance approach mentioned
above to non-linear Compton [23, 224, 268] and non-linear Breit-Wheeler process [220,



5

261] as well as to other scattering processes as for instance Mott scattering [232, 285, 301]
and bremsstrahlung [45, 169, 261]. Of particular interest are the non-linear processes with
more than one vertex within a strong electromagnetic field, for instance, laser-assisted
electron-electron scattering (also referred to as Møller scattering; see, e.g., [223, 231, 251,
301]), laser-assisted electron-positron scattering (also referred to as Bhabha scattering; see
[53, 54, 238]), lepton conversion (e.g. process like 𝑒−𝑒+ → 𝜇−𝜇+ in external fields; see
[206, 207]), the double and higher-order Compton processes (see, e.g., [67, 68, 151, 152,
170, 174, 177, 199, 224, 270, 273]) as well as the trident process (see below). These kinds
of processes lead to rich phase space structures due to the on-/off-shell contributions of
their intermediate particles. For a more detailed outline of the literature about scattering
processes and their experimental investigations, we refer the reader to the review articles
[61, 79, 113, 183, 202, 256, 301].

Trident pair production

Of particular interest in literature, as within this thesis, is the trident process, i.e. in
general the scattering of an electromagnetic field with an incoming electron producing an
electron-positron pair as well as an additional (recoil) electron:

𝑒− + 𝛾 → 𝑒+ + 𝑒− + 𝑒−, (1.1)

which is also referred to as the triplet pair production (especially in older literature).
Since the origin of QED, there are a vast amount of publications about the perturbative
(monochromatic) treatment w.r.t. the trident process (1.1), e.g. the investigations within
several kinematic limits [32, 33, 306] (see [147, 200] for a review). The first full (monochro-
matic) derivation of the trident process (1.1) was given in [118, 120, 144, 197, 198], where
the rich structures of the respective cross sections were revealed. Of particular interest are
the investigations w.r.t. the distribution of the recoil electron [284], since the consideration
of polarised incoming photons and electrons (see, e.g., [302, 303], as revised in [93, 95])
lead to further use in polarisation measurements [31, 72]. Considering the latter, there
are recent applications using the (perturbative) trident process in order to control the
polarisation of a highly energetic photon beam as produced in the gamma-ray sources of
the Jefferson Laboratory experiments PrimEX [12] and GlueX [3] as well as the polarisation
measurements in the LEPS/LEPS2 experiment at the SPring-8 (Laser Electron Photon
Experiment at Super Photon Ring - 8 GeV; see, e.g., [208, 209]). We also mention the
consideration of the perturbative trident process (1.1) in polarisation measurements of
cosmic gamma-rays [26, 110], e.g. in the HARPO experiment (Hermetic Argon Polarimeter;



6 1 Introduction

see, e.g., [109]).
Considering a strong electromagnetic field the trident process appears in the form of

𝑒−
L → 𝑒+

L + 𝑒−
L + 𝑒−

L , (1.2)

where the label L indicates a laser field dressed fermion (in difference to the single photon
interaction given in (1.1)). The process (1.2) is also referred to as strong-field or non-linear
trident pair production, respectively, and was firstly investigated in the pioneering work of
[19, 249] by considering a constant background field. Due to the vast improvements of the
experimental capabilities, the theoretical treatment of the non-linear trident process has
recently attracted a high degree of interest in literature. For instance, the consideration
of the trident process in an infinite plane-wave background field [132, 133], as well as
in a constant crossed field [157, 158]. Furthermore, there are investigations within the
(arbitrary) pulsed plane-wave approach [135, 175] as well as an equivalent full derivation
in the light-front quantisation approach [69, 70], both targeting an application for high-
intensity laser experiments. A different direction is taken in [131], where the impact of the
bandwidth effects on the trident process at low to medium intensities is elaborated.
Considering the above mentioned cascades, the strong-field trident process is the very
first step in an electron-seeded avalanche in strong electromagnetic fields. Furthermore,
the evaluation of the non-linear trident processes is the corresponding cross channel to
the above mentioned non-linear Møller scattering, Bhabha scattering as well as lepton
conversion. Therefore, of particular interest are the conceptional investigations of the
involvement of non-linear (virtual) Compton and Breit-Wheeler contributions in the off-
/on-shell decomposition of the strong-field trident matrix element w.r.t. the intermediate
photon, as well as the extension of similar concepts to higher order processes [67].
Considering the experimental point of view, we mention the trident process as a high-
precision test case for strong-field QED as it will be investigated in the promising upcoming
experiments LUXE (Laser Und XFEL Experiment; see [2, 34, 46]) at the europeanXFEL
and the E320 at FACET-II ([186, 310]), which are modern next-generation experiments
in progression to the above mentioned E-144. These experiments are emphases to the
high-intensity effects in strong-field QED with particular respect to the trident process.
Another conceivable application of the trident process could be situated in the dark matter
search. Given the high repetition rate of the europeanXFEL a potentially interesting
option is to combine the x-ray beam with a synchronised electron beam of about 50 MeV
in order to facilitate a high-statistics search for the dark photon. A dark photon (also
referred to as U boson or hidden photon) is a candidate for dark matter beyond the
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standard model of particle physics, which is considered both theoretically [21, 52, 250]
as well as experimentally [5, 24, 50, 242]. A corresponding analysis in the context of
the perturbative (monochromatic) trident was given in [94]. In fact, the trident process
includes a sub-process of the type 𝛾* → 𝑒+𝑒−, i.e. the above mentioned intermediate
(virtual) photon which decays into an electron-positron pair. Via kinetic mixing, that
virtual photon may “temporarily” couple to a dark photon 𝐴′, e.g. 𝛾* → 𝐴′ → 𝛾*, thus
signalising its presence as a peak of the invariant mass distribution of the electron-positron
pair. The peak would be at the mass of the dark photon and its width is related to the
kinetic mixing strength.
Another, and rather complementary, entry-point to measurements involving non-linear
trident could be seen in upcoming coherent light sources as proposed in the XLEAP project
at the LCLS-II (X-ray Laser-Enhanced Attosecond Pulse generation at the Linac Coherent
Light Source; see, e.g.,[115]) or the SYLOS light source at ELI-ALPS (Single Cycle Laser
at Extreme Light Infrastructure – Attosecond Light Pulse Source; see, e.g.,[195]). Those
will provide sub-femtosecond pulsed soft x-ray beams by applying beam modulation (e.g.
Enhanced Self Amplified Spontaneous Emission; ESASE [171]) as well as higher-harmonic
generation [111], respectively. Assuming a combination of such x-ray beams with a sub-GeV
electron beam, one can assume the intensity effects on the particles produced by the trident
process to be suppressed due to the high energy of the respective light source. However, the
leading property influencing the particle distributions of such a conceivable experimental
setup would be the broad spectrum of the light source originated from the very short
temporal structure. Furthermore, the consideration of the bandwidth of high-energy photon
sources could also lead to an updated tool in order to refine the polarisation measurements
(as mentioned above in the context of the GlueX, PrimEX, and LEPS/LEPS2 experiments)
by involving the spectral information of the light source to the analysis of the measured
azimuthal recoil electron distribution.

This motivates the main investigation of the present thesis: the elaboration of the impact of
broad spectra from the light source to the phase space distributions of the trident process
near to the threshold. This can also be seen from two perspectives: (i) the consideration
of low to medium intensities within a strong-field QED framework by means of the back-
ground field approximation, targeting highly energetic coherent photon sources, or (ii)
as an extension of the monochromatic perturbative QED treatment in order to include
spectral effects of the incoming photon beam.
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Outline of this thesis

In chapter 2 we outline the background field approximation to QED. We begin in section
2.1 with the description the general properties of the background field and specialise it to
the pulsed plane-wave field. Then in section 2.2, we introduce the position space rules of
strong-field QED as widely used in literature by derivation from the QED Lagrangian in the
Furry representation. In section 2.3 we transform this position space rules into momentum
space by introducing the strong-field dressed vertex, which was done in a similar way in [187,
189, 192]. There we isolate the finite part of the strong-field dressed vertex, where we keep
the pulse envelope function arbitrary. We show the connection of the regularisation result
to the gauge invariance w.r.t. the quantised photon field by considering its Ward identity
in section 2.4. Finally, in section 2.5 we derive the matrix element of the trident process in
the background field approximation considering an arbitrary pulsed plane-wave field by
applying the momentum space rules mentioned above. Furthermore, we show a refined
decomposition of the trident matrix element, not only in on- and off-shell contributions w.r.t.
the intermediate photon, but also due to a partial coupling of the background field exclu-
sively to one of the vertices. As it turns out, this is a direct implication of the regularisation
of the strong-field dressed vertex and furthermore, the resulting sub-contributions to the
matrix element are key for the pathway back to the perturbative monochromatic case as well.

Motivated by these observations, we introduce in chapter 3 a new model called pulsed-
perturbative QED, which is capable to approximate QED processes at low intensities, but
with the inclusion of the spectral information of the involved light source. In section 3.1
we show that this approximation turns out to be a missing piece in the limiting cases of
strong-field QED w.r.t. the connection to perturbative monochromatic QED. Therefore,
we elaborate in section 3.2 the first order approximation in the intensity parameter (cf.
section 2.1) and show that the resulting vertex still obeys the Ward identity, thus is
capable to produce gauge invariant scattering amplitudes. In section 3.3 we discuss the
properties of the light spectrum in the pulsed plane-wave approach, its influence on the
pulsed-perturbative vertex as well as its connection to the perturbative monochromatic case.

In chapter 4 we apply the pulsed-perturbative QED approximation to the trident process
(within this thesis also referred to as pulsed-perturbative trident). Therefore we derive in
section 4.1 the matrix element as well as the six-fold differential cross section of pulsed-
perturbative trident for an arbitrary pulse envelope function. Furthermore, we elaborate
the limiting case of infinitely wide pulsed with only weak constraints to the envelope
function (it needs to be at least an even function). In section 4.2 we numerically calculate
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the total cross section of pulsed-perturbative trident and compare the resulting curves with
the monochromatic case. Following that, we discuss in section 4.3 the inclusive positron
distribution, i.e. the three-fold differential cross section w.r.t. the positron momentum in
transverse coordinates. We illustrate the modification of the positron phase space due
to the finite bandwidth of the used incoming laser field and again compare the resulting
contributions with the respective monochromatic case. In section 4.4, we consider the ex-
clusive electron distributions, i.e. the six-fold differential cross sections treated as functions
of a final electron three-momentum and for a given fixed positron three-momentum. Here,
the modifications of the final phase space of the electron due to the broad laser spectrum
are illustrated for both, the transverse momentum and rapidity distribution as well as the
azimuthal distribution. Furthermore, we derive in this section an analytical estimation
for the extent of the final phase space of the electron based directly on the spectral width
of the laser field. Finally, in section 4.5, we examine certain (operating or planned) light
sources, whether they are sensitive to the effects found for the pulsed-perturbative trident
and briefly discuss further applications.
In chapter 5, we summarise the present thesis and give a brief outlook for conceivable
further investigations.

In appendix A and B, we outline the notations and conventions used in this thesis w.r.t. the
relativistic particle kinematics as well as the Feynman rules of perturbative monochromatic
QED. In appendix C, we elaborate on the perturbative monochromatic trident, which
is used as the monochromatic limiting case within this thesis. Therefore, we derive the
matrix element as well as the cross section. In section C.2 we illustrate the used numerical
treatment and verify our implementation against literature data. Furthermore, in section
C.3, we calculate the double-differential cross section of monochromatic trident w.r.t. a final
electron momentum and show the kinematical distinction of the two final electrons for high
energies of the incoming photon with the initial electron at rest. Finally, in appendix C.4,
we give a brief illustration of capabilities to measure (hypothetical) dark matter particles
by using the trident process.
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2 | Strong-field quantum electro-
dynamics

The fundamental way to describe the elementary interaction of charged particles and an
electromagnetic field and/or photons taking into account all relativistic and quantum
mechanical properties is the usage of quantum electrodynamics, commonly referred to as
QED (for an introduction, see the well-known textbooks about quantum field theory, e.g.
[25, 107, 108, 139, 145, 179, 236, 253, 282, 308, 309]). A common method to compute
probabilities of processes in QED is the Feynman diagram technique, where Feynman
rules are used to represent the mathematical expressions of a perturbative expansion in
the QED coupling 𝛼. Since the value of this coupling strength is given at small energy or
momentum scales by 𝛼 ≈ 137.035 999 084(21)−1 [194, 286], the expansion in powers of 𝛼
can be truncated at a certain order, which results in controlled analytical approximations
of fundamental interaction processes. However, modern laser facilities provide laser pulses
with mean photon numbers in the order of 1018 photons/𝜆3 (normalised on a cube with
the edge length equal to the wavelength 𝜆; [61, 117]) and a high degree of coherence, which
results in the need of evaluation of very large numbers of Feynman diagrams in such a
perturbative approach [77, 78, 91], which is organised solely in powers of 𝛼. Consequently,
the usage of single photon couplings to describe the fundamental interaction involving laser
fields is computationally very expensive and therefore impracticable [215].
An extensively used approach to overcome these difficulties is the description of the
asympthotics of the laser fields as coherent states, which results in a distinction of the
electromagnetic field in (i) a semi-classical background field, as a model for the laser, and
(ii) a quantised photon field, for the single photon interactions within this background
field [90]. This decomposition of the electromagnetic field within QED leads to the Furry
picture outlined in section 2.2.

11



12 2 Strong-field quantum electrodynamics

2.1 Description of the laser field
Within the present thesis, as is done widely over the recent literature, we model a laser as
a classical electromagnetic field 𝐴𝜇(𝑥). Generally, such a field is characterised by two field
invariants1 [25]

F := 𝑒2

4𝑚4𝐹
𝜇𝜈𝐹𝜇𝜈 , G := 𝑒2

4𝑚4𝐹
𝜇𝜈𝐺𝜇𝜈 , (2.1)

where 𝐹𝜇𝜈 := 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 denotes the electromagnetic field-tensor and 𝐺𝜇𝜈 =: *𝐹𝜇𝜈 =:
1
2𝜀𝜇𝜈𝜏𝜆𝐹

𝜏𝜆 its pseudo-tensorial conjugate, with the Levi-Civita symbol 𝜀𝜇𝜈𝜏𝜆, which obeys
𝜀0123 = −1 and is fully skew symmetric in its indices. The prefactors of the contraction of
the tensors are chosen in order to make the invariants dimensionless, where 𝑒 and 𝑚 denote
the absolute value of the elementary charge and the electron mass, respectively. One can
show that these invariants are the only linearly independent invariants to characterise
Lorentz-invariant gauge fields [82], which means every Lorentz scalar depending only on
the Abelian gauge field 𝐴𝜇 needs to be a (smooth) function of the field invariants (2.1).
Considering a laser field we assume 𝐴𝜇 is a null-field, which means that the field invariants
(2.1) vanish:

F = G = 0. (2.2)

This (strong) assumption is valid for focused laser scattering experiments if the transit time
of the scattering partner through the focal point is longer than the interaction time scale
of the scattering process [178, 255]. In this thesis, the null-field condition (2.2) is fulfilled
by assuming 𝐴𝜇 is a Lorenzian plane-wave field, i.e. it only depends on a phase variable
𝜙 := 𝑘𝜇𝑥𝜇, with a reference four-momentum 𝑘𝜇 and obeys the Lorenz gauge condition

𝜕𝜇𝐴
𝜇 = 0, (2.3)

which implies 𝑘𝜇𝐴
𝜇 = 0. Since the Lorenz gauge does not completely exhaust the gauge

freedom in the sense that it does not fix the complete gauge freedom of 𝐴𝜇, we additionally
assume that the laser field obeys the Weyl condition 𝐴0 = 0. This fully avoids (combined
with the Lorenz condition) the presence of longitudinal components in the laser field, i.e. for
the spatial components one has 𝑘𝑖𝐴

𝑖 = 0 with 𝑖 = 1, 2, 3. Since the processes investigated
extensively in the literature as well as in this thesis are scattering processes, there are two
additional gauge and Lorentz-invariant quantities to characterise the system of the laser

1 Within this thesis, we work in natural units, where 𝑐 = ℏ = 1.
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field and scattering partner [125, 218, 247]: the classical non-linearity parameter1 𝑎0 and
the quantum non-linearity parameter 𝜒. These invariants are given in a general Lorentz
and gauge invariant form by

𝑎0 := |𝑒|
𝑚(𝑘𝑞)

√︁
⟨𝑞𝜇𝑇𝜇𝜈𝑞𝜈⟩, (2.5)

𝜒 := 𝑒

𝑚3

√︁
⟨|𝑞𝜇𝐹𝜇𝜈 |⟩, (2.6)

where 𝑞𝜇 denotes the 4-momentum of the scattering partner (mostly an electron or a
photon). The angle brackets ⟨. . .⟩ denote the proper time average of the respective quantity,
although it is also common practice to use the maximum value of the respective quantities
instead [157, 247], as we will do within this thesis. Again, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is
the electromagnetic field-tensor, and 𝑇𝜇𝜈 denotes the energy-momentum tensor of the
electromagnetic field 𝐴𝜇, which is given by [141]

𝑇𝜇𝜈 := −𝑔𝜏𝜆𝐹
𝜏𝜇𝐹 𝜆𝜈 + 1

4𝑔
𝜇𝜈𝐹 𝜏𝜆𝐹𝜏𝜆, (2.7)

where 𝑔𝜇𝜈 := diag (1,−1,−1,−1) denotes the Minkowski metric. The component 𝑇 00 is
also denoted as the energy density of the laser field, which is an important quantity since
the incident photon flux [140, 269, 273]

𝐼𝛾 := 1
𝜔2

ˆ ∞

−∞
d𝜙𝑇 00(𝜙), (2.8)

with the frequency (energy) 𝜔 := |𝑘| of the laser field, is used to normalise certain emission
probabilities to obtain the cross section of the respective process (see below in equation
(2.40)).
The classical non-linearity parameter 𝑎0 is especially important within the description
of laser-matter interaction, since 𝑎0 acts as an effective intensity parameter of the laser
field seen from the perspective of the scattering partner [125]. Especially for electrons as
respective scattering partner, 𝑎0 is the work which needs to be done on one electron (initially
at rest) by the laser field within one wavelength 𝜆 = 2𝜋𝑐

𝜔 ≡ 2𝜋
𝜔 in order to accelerate the

electron to the relativistic regime. Compared to that, the quantum non-linearity parameter

1 The relation of 𝑎0 versus the laser pear intensity 𝐼𝐿 and frequency 𝜔 reads

𝑎0 ≃ 7.5eV
𝜔

√︂
𝐼𝐿

1020 W cm−2 , (2.4)

see for instance [61].
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𝜒 denotes the work done to the electron over its Compton wavelength 𝜆C = ℎ
𝑚𝑐 ≡ 2𝜋

𝑚 [247].
According to the null-field property (2.2), the invariants 𝑎0 and 𝜒 are the characterising
invariant quantities for laser-matter interaction and are given in the explicit form

𝑎0 = |𝑒|
𝑚

√︃
−

⟨
𝜕𝐴𝜇

𝜕𝜙

𝜕𝐴𝜇

𝜕𝜙

⟩
, 𝜒 = 𝑒𝜔

𝑚2

√︃⟨⃒⃒⃒⃒
𝜕𝐴𝜇

𝜕𝜙

𝜕𝐴𝜇

𝜕𝜙

⃒⃒⃒⃒⟩
. (2.9)

Considering the assumptions made above, there is a large amount of various explicit
expressions for the field 𝐴𝜇 given in the literature, all of which are Lorenzian null-fields
and used to model different aspects of laser-matter interaction.

Parametrisation of Lorenzian pulsed plane-wave fields

As mentioned in the introduction 1, an important class of laser fields are pulsed fields, i.e.
the field vanishes outside of a given interval referred to as the support of the field. As a
model of this behavior, a widely used approach is the so called pulsed plane-wave field

𝐴𝜇
ppw(𝜙|𝛥𝜙, 𝜉) = 𝑎𝑔(𝜙,𝛥𝜙) [𝜀𝜇

1 cos(𝜉) cos(𝜙+ 𝜙CEP) + 𝜀𝜇
2 sin(𝜉) sin(𝜙+ 𝜙CEP)]

(2.10)

where 𝑎 denotes the maximum value of the laser field, 𝑔(𝜙,𝛥𝜙) is the pulse envelope with
pulse width 𝛥𝜙 > 0 and 𝜙CEP the carrier envelope phase. The elementary polarisations
are given as 𝜀𝜇

𝑖 := (0, 𝜀𝑖) with 𝑖 = 1, 2, where 𝜀𝑖 denote the spatial components, which are
normalised such that 𝜀𝜇

𝑖 𝜀𝑗𝜇 = −𝛿𝑖𝑗 and obey 𝑘𝜇𝜀
𝜇
𝑖 = 0 for 𝑖 = 1, 2 in order to make sure

that 𝐴𝜇
ppw fulfils the Lorenz condition (2.3) as well as the Weyl condition 𝐴0

ppw = 0. For
numerical calculations, we explicitly use 𝜀1 = (1, 0, 0) and 𝜀2 = (0,1,0), where we assume,
without loss of generality, that the spatial part 𝑘 of the reference momentum 𝑘𝜇 of the
laser field is aligned along the 3-axis in momentum space. The polarisation parameter 𝜉
characterises the different kinds of polarisations (cf. [141, 273]). For 𝜉 = 0 (𝜉 = 𝜋

2 ), the
field (2.10) is called linearly polarised with respect to the 𝜀1- (𝜀2-) direction, whereas for
𝜉 = 𝜋

4 (𝜉 = −𝜋
4 ) the field (2.10) is referred as left hand-side (right hand-side) circularly

polarised. For every other value of 𝜉, the field (2.10) is generally called elliptically polarised.
For very short pulses, the carrier envelope phase becomes important. Since short pulses
are not considered here, we put henceforth 𝜙CEP = 0.
The pulse envelope 𝑔(𝜙,𝛥𝜙) is a smooth function, which in addition ensures the pulsed
behavior of the field (2.10) by the assumption

lim
|𝜙|→∞

𝑔(𝜙,𝛥𝜙) = 0 (2.11)
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for all 𝛥𝜙. Additionally, we assume the pulse envelope to be normalised in the sense of
𝑔(0, 𝛥𝜙) = 1 for all 𝛥𝜙 and 𝑔(𝜙,𝛥𝜙 → ∞) = 1 for all 𝜙, respectively. The special limit
𝑔 ≡ 1 is also referred to as the infinite plane-wave case and was a widely used approach in
the past [25, 218, 247] to investigate laser-matter interactions considering only the influence
of the intensity of the laser field, without any interferences caused by the pulse form. For
regularity purposes, we assume that the characteristic moments of the envelope function

𝜈𝑛[𝑔] := 1
𝛥𝜙

ˆ ∞

−∞
𝑔𝑛(𝜙,𝛥𝜙) d𝜙 (2.12)

to be independent w.r.t. the pulse width 𝛥𝜙 for all 𝑛 ∈ N with 𝑛 > 0. This assumption
seems to be rather strong, however, most of the pulse-shape functions used in literature
about scattering processes in strong-field QED have 𝛥𝜙-independent characteristic moments
(cf. [273] appendix A).
Considering the parametrisation (2.10), the invariants (2.9) read

𝑎0 = 𝑒

𝑚
𝑎, (2.13)

𝜒 = 𝑒𝜔

𝑚2𝑎 = 𝜔

𝑚
𝑎0. (2.14)

We mention, that these quantities are chosen in such a way that they are independent of
the pulse envelope as well as any polarisation properties of the laser field, which enables
the comparison of different cases.
Assuming not too small pulse widths, e.g. 𝛥𝜙 > 5, the incident photon flux (2.8) of a
pulsed plane-wave background field can be written as [140, 269]

𝐼𝛾 = 𝑎2
0𝑚

2

2𝑒2 𝜈2[𝑔]𝛥𝜙, (2.15)

where the second moment 𝜈2 is defined in equation (2.12). Having in mind brief mathe-
matical expressions within this thesis for the pulsed plane-wave background field defined
in equation (2.10), we introduce the following abbreviations:

𝐴𝜇
ppw(𝜙|𝑎0, 𝛥𝜙, 𝜉) = 𝑎0 [𝜀𝜇

1𝑓1(𝜙|𝛥𝜙, 𝜉) + 𝜀𝜇
2𝑓2(𝜙|𝛥𝜙, 𝜉)] , (2.16)

where we used the connection of the laser intensity parameter 𝑎0 and the maximum
amplitude 𝑎 of the background field given in equation (2.13) and define the amplitude
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functions

𝑓1(𝜙|𝛥𝜙, 𝜉) := 𝑚

𝑒
𝑔(𝜙|𝛥𝜙) cos(𝜉) cos(𝜙), 𝑓2(𝜙|𝛥𝜙, 𝜉) := 𝑚

𝑒
𝑔(𝜙|𝛥𝜙) sin(𝜉) sin(𝜙),

(2.17)

respectively. For the later use, we further define 𝑓3(𝜙) := 𝑓2
1 (𝜙) + 𝑓2

2 (𝜙) as well as the
functions 𝛽𝜇

1 (𝜙) :=
´ 𝜙

0 (𝜀𝜇
1𝑓1(𝜙′) + 𝜀𝜇

2𝑓2(𝜙′)) d𝜙′ and 𝛽2(𝜙) := −
´ 𝜙

0 𝑓3(𝜙′) d𝜙′, respectively.
Considering the pulse dependence of the background field 𝐴𝜇 via the appearance of the
function 𝑔(𝜙) in the amplitude functions (2.17), the explicit expression of the pulse envelope
is not fixed here, because we want to derive the respective quantities not depending on
a special pulse form. However, for explicit numerical calculations, we use the cos2-pulse
form given by

𝑔(𝜙|𝛥𝜙) = cos2
(︂
𝜋𝜙

2𝛥𝜙

)︂
(𝛩(𝜙+𝛥𝜙) −𝛩(𝜙−𝛥𝜙)) , (2.18)

where 𝛩(𝑥) denotes the Heaviside step function with 𝛩(𝑥) = 1 if 𝑥 > 0 and 𝛩(𝑥) = 0
anywhere else, which sets the envelope function (2.18) to zero outside of the interval
[−𝛥𝜙,𝛥𝜙], i.e. this envelope function has a compact support. Furthermore, since the
cosine square function becomes one, if its argument vanishes, the envelope function (2.18)
obeys the required constraints to become unity for 𝜙 = 0 and in the limit 𝛥𝜙 → ∞,
respectively. Additionally, the characteristic moments 𝜈𝑛 defined in equation (2.12) w.r.t.
the cos2-pulse are given by

𝜈𝑛[cos2] = 2√
𝜋

𝛤
(︀
𝑛+ 1

2
)︀

𝛤 (𝑛+ 1) , (2.19)
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Figure 2.1: The cos2-pulse envelope function times the oscillatory function cos(𝜙) (blue
curve) for different pulse widths (from left to right: 𝛥𝜙 = 10, 20, 30, 50) and the envelope
function itself (black curve; positive and negative branch). With increasing 𝛥𝜙, the pulse
becomes wider and the number of cycles of the oscillatory function increases as well.
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with the gamma function 𝛤 (𝑧) :=
´∞

0 𝑥𝑧−1𝑒−𝑥 d𝑥 (cf. [225]), which obeys the assumption,
that 𝜈𝑛 is independent of the pulse width 𝛥𝜙.
In order to illustrate the impact of the pulse envelope function 𝑔(𝜙|𝛥𝜙) on a plane wave,
e.g. given by the oscillatory term cos𝜙, in figure 2.1 the product 𝑔(𝜙|𝛥𝜙) cos(𝜙) is depicted
in the case of the cos2-pulse defined in equation (2.18) as a function of the phase variable
𝜙 for several values of the pulse width 𝛥𝜙. One recognises the typical bell-shaped behavior
of the envelope function is imprinted on the extrema of the oscillatory term. Furthermore,
with increasing pulse width 𝛥𝜙 the distribution becomes wider and the number of cycles
from the oscillatory term increases as well.
In order to provide a notion about the impact of the pulse envelope function on the
background field 𝐴𝜇, in figure 2.2 the (1, 2)-components of 𝐴𝜇

ppw defined in equation (2.10)
are depicted in the case of a cos2-pulse as a function of the scaled time 𝑚𝑡 with the electron
mass 𝑚, for different polarisations and at the point of origin in space. The left panel shows
that in the case of linear polarisation in 𝜀1-direction, i.e. 𝜉 = 0 with 𝜀1 = (1,0,0), the
component 𝐴2

ppw vanishes, of course, and the component 𝐴1
ppw performs a pulsed oscillation

similar to that depicted in figure 2.1. The panel in the middle of figure 2.2 shows the
analogous situation, but for the case of linear polarisation in 𝜀2-direction, i.e. 𝜉 = 𝜋

2 with
𝜀2 = (0,1,0), where the component 𝐴1

ppw vanishes and the component 𝐴2
ppw performs a

pulsed oscillation similar to that depicted in figure 2.1. However, in the right panel of
figure 2.2, the case of a circularly polarised background field is depicted, i.e. 𝜉 = 1

4 with
𝜀1 = (1,0,0) and 𝜀2 = (0,1,0), respectively. In this case, the vector (𝐴1

ppw, 𝐴
2
ppw) rotates

around the time axis and the amplitude (𝐴1
ppw)2 + (𝐴2

ppw)2 describes the bell-shaped
behavior imprinted from the pulse envelope function.
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Figure 2.2: The (1, 2)-component of the background field 𝐴𝜇 (black curve) scaled with
the laser intensity parameter 𝑎0 with 𝜔 = 2 × 10−2 𝑚 = 10.212 keV for several polarisation
parameter (from left to right: 𝜉 = 0, 𝜋

2 ,
𝜋
4 ) are depicted as functions of the scaled time 𝑚𝑡 at

the point of origin, where 𝑚 denotes the electron rest mass.
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2.2 Background field approximation
Within this section, we summarise the assumptions and notations for the background field
approximation of QED; for a more detailed introduction, the interested reader is referred
to the reviews [90, 192, 215, 256, 274, 293] and references given there.
In QED the photon field is described as a quantised field 𝐵̂

𝜇(𝑥). A key ingredient to
calculate processes are the free asymptotic states. As pointed out in [117] it is not feasible
to define a proper asymptotic state for a laser field due to the unknown number of photons
involved. Therefore, the central approach of the strong-field QED, or more precisely the
background field approximation, is the introduction of coherent states to describe the
asymptotic states of a laser field (cf. [90, 101, 102, 266]). Here, a coherent state represents
the most classical part of the electromagnetic field, i.e. the state with minimum uncertainty.
This approach results in a shift of the electromagnetic field by a non-vanishing vacuum
expectation value 𝐵̂𝜇 → 𝐵̂

𝜇 + 𝐴𝜇, where 𝐴𝜇(𝑥) is a classical non-quantised background
field. This field 𝐴𝜇 does not interact directly with the other particles, but distorts the free
fermion fields by minimal coupling to their conditional equation. Concerning the large
number of coherent photons in a laser field, it is assumed that a scattering process does not
change the laser field itself; in other words: there is no back-reaction or depletion taken
into account, which is analog to the test particle assumption of classical electrodynamics.
Therefore, using coherent asymptotic states as the background field 𝐴𝜇 is a feasible model
for a laser field.

The Furry picture

The coherent-state approach was first used to describe bound fermions in a Coulomb field
[92], where the expressions containing the background field 𝐴𝜇 were seen as a part of the
free Hamiltonian of the theory. This model is also referred as the Furry representation
(also known as bound-interaction picture or Furry picture) of QED and can be formulated
by the use of the classical Dirac-Furry Lagrangian

LF = L𝑓 + L𝛾 + Li. (2.20)

The particular terms are given by

L𝑓 = 𝛹𝑝𝜎(𝑥)
(︀
𝑖/𝜕 − 𝑒 /𝐴−𝑚

)︀
𝛹𝑝𝜎(𝑥), (2.21)

L𝛾 = −1
4𝐵𝜇𝜈𝐵

𝜇𝜈 − 1
2𝜂 (𝜕𝜇𝐵

𝜇(𝑥))2 , (2.22)

Li = −𝑒𝛹𝑝𝜎(𝑥) /𝐵𝛹𝑝𝜎(𝑥), (2.23)
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where 𝛹𝑝𝜎(𝑥) denotes the Dirac field describing the ’free’ fermions involving the classical
background field 𝐴𝜇 (also referred as Volkov states; see below) with four-momentum 𝑝,
electric charge 𝑒 and spin 𝜎. Here we use Feynman’s slash notation 𝛾𝜇𝑣

𝜇 = /𝑣 for an arbitrary
four-vector 𝑣𝜇, where 𝛾𝜇 denote Dirac’s gamma matrices. In detail, the term L𝑓 describes
the ’free’ motion of the Dirac field 𝛹𝑝𝜎(𝑥) with respect to the classical background field 𝐴𝜇.
Note the Euler-Lagrange operator

(︀
𝑖/𝜕 − 𝑒 /𝐴−𝑚

)︀
is the usual Dirac differential operator

extended by a minimal coupling to the classical field 𝐴𝜇, which is a manifestation of the
test particle approximation. The term L𝛾 represents the free motion of the photon field 𝐵𝜇,
where 𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 denotes the electromagnetic field tensor and 𝜂 the gauge fixing
parameter. Since there is no interaction between the photon field 𝐵𝜇 and the background
field 𝐴𝜇, this term is exactly the same as in QED in its usual representation without the
background field and consequently the free photon field 𝐵𝜇 obeys the homogenous Maxwell
equations. The last term Li represents the interaction between the Dirac field 𝛹𝑝𝜎 deformed
by the background field and the photon field 𝐵𝜇. Analogously to other established quantum
field theories, the classical Lagrangian (2.20) is the defining quantity of strong-field QED
and needs to be quantised using the canonical quantisation (see e.g. [117]) or Feynman’s
path integral approach (see, e.g., [299]) in order to be applicable to scattering processes.
However, in order to use this theory for practical calculations within the present thesis, we
use the fast track procedure of applying the Feynman diagram technique (see, e.g., [236])
and hence need to establish the Feynman rules resulting from the Lagrangian (2.20).
As mentioned above, the Lagrangian (2.20) closely resembles the QED Lagrangian, but
differs only in the Euler-Lagrange operator

(︀
𝑖/𝜕 − 𝑒 /𝐴−𝑚

)︀
and, by implication, in the

Dirac fields 𝛹𝑝𝜎(𝑥). Therefore the resulting position-space Feynman rules (directly derived
from the Lagrangian) in strong-field QED will only differ from the QED position-space
Feynman rules in the external as well as internal fermion lines.

Volkov states

In order to get an analytical expression for the ’free’ fields from the Lagrangian (2.20), we
need to derive the conditional equations by the use of the Euler-Lagrange equations

𝜕LF
𝜕𝜓(𝑥) − 𝜕𝜈

𝜕LF
𝜕 (𝜕𝜈𝜓(𝑥)) = 0, (2.24)

where 𝜓 represents 𝛹𝑝𝜎, 𝛹𝑝𝜎, and 𝐵𝜇, respectively, and the remaining fields are assumed
to be zero, which represents the free field case. For the field 𝛹𝑝𝜎, this results in the well
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known Dirac equation with minimal coupling to the classical background field 𝐴𝜇(𝑥):

(︀
𝑖/𝜕 − 𝑒 /𝐴(𝑥) −𝑚

)︀
𝛹𝑝𝜎(𝑥) = 0. (2.25)

On the one hand, for general fields 𝐴𝜇, no general analytical solution of equation (2.25)
is known, neither in terms of elementary mathematical functions, nor special functions.
On the other hand, closed solutions of equation (2.25) for special classes of fields 𝐴𝜇 have
been well known for a long time [305] (revised, for instance, in [17, 25, 192, 248, 274]).
However, with the additional assumption that 𝐴𝜇 is a Lorenzian null-field (as in this thesis
and extensively in literature; see section 2.1), the equation (2.25) is called Volkov-Dirac
equation and its solution is given by the Volkov wave function [248]

𝛹𝑝𝜎(𝑥) = 𝐸𝑝(𝑥)𝑢𝑝𝜎, (2.26)

where 𝑢𝑝𝜎 denotes the free Dirac bi-spinor describing an on-shell fermion in momentum
space with four-momentum 𝑝 and spin 𝜎, which obeys

(︀
/𝑝−𝑚

)︀
𝑢𝑝𝜎 = 0 and is normalised

by the orthogonality relation 𝑢𝑝𝜎𝑢𝑝𝜎′ = 2𝑚𝛿𝜎𝜎′ . The Ritus matrix 𝐸𝑝(𝑥) reads

𝐸𝑝(𝑥) =
(︂
1 + 𝑒

/𝑘 /𝐴(𝜙)
2 (𝑘𝑝)

)︂
𝑒𝑖𝑆𝑝(𝑥), (2.27)

where the exponent is given by the Hamilton-Jacobi action of a classical particle with
four-momentum 𝑝 in a Lorenzian null-field 𝐴𝜇:

𝑆𝑝(𝑥) = −𝑝𝑥− 1
2 (𝑘𝑝)

ˆ 𝜙

0
d𝜙′ [︀2𝑒 (︀𝑝𝐴(𝜙′)

)︀
− 𝑒2𝐴2(𝜙′)

]︀
≡ −𝑝𝑥− 𝑆̃𝑝(𝜙). (2.28)

The term 𝑆̃𝑝(𝜙) is also referred to as the non-linear Volkov phase.
By the use of the Volkov solution (2.26), we can easily derive the Dirac-adjoint Volkov
solution

𝛹𝑝𝜎(𝑥) = 𝛹*
𝑝𝜎(𝑥)𝛾0 = 𝑢𝑝𝜎𝐸𝑝(𝑥), (2.29)

where the Dirac-adjoint Ritus matrix reads

𝐸𝑝(𝑥) = 𝛾0𝐸†
𝑝(𝑥)𝛾0 =

(︂
1 − 𝑒

/𝑘 /𝐴

2 (𝑘𝑝)

)︂
𝑒−𝑖𝑆𝑝(𝑥), (2.30)
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which is coincidentally the inverse of the Ritus matrix (2.27) at the same position and
momentum:

𝐸𝑝(𝑥)𝐸𝑝(𝑥) = 𝐸𝑝(𝑥)𝐸𝑝(𝑥) = 1. (2.31)

Compared to the Volkov solution (2.26), which describes a ’free’ fermion propagating
through the background field, the corresponding anti-fermion is described by the charge
conjugated field 𝛹

(+)
𝑝𝜎 (𝑥) = 𝐶 [𝛹𝑝𝜎(𝑥)]. The occurring charge operator 𝐶 = 𝑖𝛾2𝛾0 (in Dirac

representation of the gamma matrices) causes the replacements 𝑒 → −𝑒 and 𝑢𝑝𝜎 → 𝑣𝑝𝜎,
where 𝑣𝑝𝜎 denotes the free Dirac bi-spinor describing an on-shell anti-fermion in momentum
space with four-momentum 𝑝 and spin 𝜎, which obeys

(︀
/𝑝+𝑚

)︀
𝑣𝑝𝜎 = 0 and is normalised

by the orthogonality relation 𝑣𝑝𝜎𝑣𝑝𝜎′ = −2𝑚𝛿𝜎𝜎′ . This results in the Volkov solution for
anti-fermions

𝛹 (+)
𝑝𝜎 (𝑥) = 𝐸−𝑝(𝑥)𝑣𝑝𝜎 =

(︂
1 − 𝑒

/𝑘 /𝐴

2 (𝑘𝑝)

)︂
𝑣𝑝𝜎𝑒

𝑖𝑝𝑥+𝑖𝑆̃−𝑝(𝜙). (2.32)

In analogy to equation (2.29), the Dirac-adjoint of the anti-fermion Volkov solution reads

𝛹
(+)
𝑝𝜎 (𝑥) =

(︁
𝛹 (+)

𝑝𝜎 (𝑥)
)︁†
𝛾0 = 𝑣𝑝𝜎𝐸−𝑝. (2.33)

This completes the set of solutions of Volkov-Dirac’s equation (2.25). For further details
and properties of the Volkov solution, see for instance [17, 25, 274].

Propagators of photons and fermions

A crucial part of the Feynman diagram technique are the internal fermion and photon lines,
respectively. These represent the propagators of photons and fermions, where the latter
ones are special solutions (Green’s function) of the respective conditional equations to the
fields describing these particles. Considering the Furry-Lagrangian (2.20) one may derive
the (free) Feynman-propagator of the photon field 𝐵𝜇 in position space, which leads to

𝐷𝜇𝜈(𝑥− 𝑦) =
ˆ d4𝑘′

(2𝜋)4
𝑒−𝑖𝑘′(𝑥−𝑦)

𝑘′2 + 𝑖𝜖

(︂
−𝑔𝜇𝜈 +

𝑘′
𝜇𝑘

′
𝜈

𝑘′2 − 𝑖𝜖
(1 − 𝜂)

)︂
, (2.34)

where 𝜂 is the gauge-fixing constant [236]. For calculations within this thesis, we use the
Feynman gauge 𝜂 = 1, where the photon propagator takes the handy form

𝐷𝜇𝜈(𝑥− 𝑦) =
ˆ d4𝑘′

(2𝜋)4
−𝑔𝜇𝜈𝑒

−𝑖𝑘′(𝑥−𝑦)

𝑘′2 + 𝑖𝜖
. (2.35)
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As mentioned in section 2.2, there is no direct interaction between the photon field 𝐵𝜇 and
the background field 𝐴𝜇, which implies the (free) photon propagator (2.35) is the same as
in QED without a background field.
The (free) Dirac-propagator of fermions in a background field can also be derived from the
Furry-Lagrangian (2.20) and is given in the Ritus representation [247] by

𝑆𝐴(𝑥− 𝑦) =
ˆ d4𝑝

(2𝜋)4𝐸𝑝(𝑥) /𝑝+𝑚

𝑝2 −𝑚2 + 𝑖𝜖
𝐸𝑝(𝑦), (2.36)

where 𝑝 and 𝑚 denote the momentum and mass of the propagating fermion and 𝐸𝑝 and
𝐸𝑝 denote the Ritus matrix (2.27) as well as its Dirac-adjoint (2.30), respectively. In
contrast to the photon propagator (2.35), the fermion propagator depends directly on the
background field 𝐴𝜇 due to the appearance of the Ritus matrices.

Position space rules of strong-field QED

Summarising this section, the position space rules are listed in table 2.1, where the incoming
and outgoing fermions are represented by double lines connected to exactly one vertex,
which stands for the respective Volkov state of the fermion. The external photons are
represented by wave lines also connected to exactly one vertex, which stands for the
respective photon state. The internal fermions and photons are represented by double or
waved lines connecting two vertices, respectively, which stand for the respective propagator,
where the vertex itself is represented by a single full dot as known from QED. These
position space rules are widely used to calculate the scattering matrix elements of the
respective processes in strong-field QED by applying the following scheme [192]:

1. Draw all Furry-Feynman diagrams for a given initial and final state.

2. Exchange the distinct parts of the diagrams with the respective mathematical ex-
pression according to the rules given in table 2.1, where the order of the terms at
each fermion line needs to be contrary to the fermion arrow.

3. Perform an integration
´

d4𝑥 on each vertex position 𝑥.

4. Apply symmetrisation and insert symmetry factors as usual in perturbative QED.

The usage of this scheme for a given process leads to the scattering matrix element 𝑆fi,
which contains all information about the transition from the initial to the final state of
the process [25, 236, 282] and is a function of all external momenta (either incoming or
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Table 2.1: Position space rules of strong-field QED (see, e.g., [71, 90, 192, 247]). In the first
column the diagrammatical representation of the respective rule is depicted, in the second
column the symbol used within this thesis is shown, the third column indicates the common
name of the expression and in the fourth column the definition in the text is referred.

p x 𝛹𝜎𝑝(𝑥) dressed incoming
fermion (eq. (2.26))

p x 𝛹
(+)
𝜎𝑝 (𝑥)

dressed incoming
anti-fermion (eq. (2.33))

x p′ 𝛹𝜎𝑝(𝑥) dressed outgoing
fermion (eq. (2.29))

x p′ 𝛹
(+)
𝜎𝑝 (𝑥)

dressed outgoing
anti-fermion (eq. (2.32))

x

−𝑖𝑒𝛾𝜇 fermion-fermion-
photon vertex

K
x y

𝐷𝜇𝜈(𝑥− 𝑦) photon propagator (eq. (2.35))

P
x y

𝑆𝐴(𝑥− 𝑦) dressed fermion
propagator (eq. (2.36))

k x 𝜀′𝜇
𝜆 (𝑘′)𝑒−𝑖(𝑘′𝑥) incoming photon

x k′ 𝜀′*𝜇
𝜆 (𝑘′)𝑒𝑖(𝑘′𝑥) outgoing photon

outgoing):

𝑆fi =
∑︁

diagrams

ˆ ∏︁
vertex

position 𝑥

d4𝑥

(︂ product of all rules according to the
certain Feynman diagram

)︂
. (2.37)

Assuming we have a process where one particle, e.g. an electron or a photon, collides with
a laser field producing 𝑛 outgoing particles and further we derive the scattering matrix
element 𝑆fi of such a process by applying the calculation scheme given above, then the
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differential probability of that process is defined as [25, 247]

d𝑤 := |𝑆fi|2 d𝛷𝑛, (2.38)

with the invariant integral measure d𝛷𝑛 of the final 𝑛-particle phase space, which is given
by

d𝛷𝑛 :=
𝑛∏︁

𝑖=1

d3𝑝𝑖

(2𝜋)3𝐸0
𝑖

, (2.39)

where 𝐸𝑖 =
√︁
𝑝

𝑖
+𝑚2

𝑖 denotes the energy of the 𝑖-th particle in the final state with spatial
momentum components 𝑝

𝑖
= (𝑝1

𝑖 , 𝑝
2
𝑖 , 𝑝

3
𝑖 ). Using the definition (2.38), the differential cross

section is defined by [269]

d𝜎 := d𝑤
𝐼𝛾𝑉lf

, (2.40)

where 𝐼𝛾 denotes the incident photon flux defined in equation (2.8) and 𝑉lf is a large but
finite volume, which occurs due to regularity purposes. This volume will eventually cancel
out, due to the appearance of a delta-distribution in the matrix element caused by the
global conservation of certain light-front components of the external momenta (cf. section
2.5). We mention, that the usage of the incident photon flux 𝐼𝛾 as the normalisation
towards getting the differential cross section results directly from the assumption to have
exactly one particle alongside the laser field in the initial state. For multiple particles
colliding within a laser field, one needs to use another normalisation. The differential
cross section (2.40), as well as (partial) integrations of it over the final phase space, is
the measurable quantity for a given process and will be the central object of investigation
within the present thesis.
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2.3 Momentum space rules of strong-field QED

A common practice utilising the Feynman diagram technique in QED is to transform the
Feynman rules from position into momentum space. To perform this transformation for
the position space rules given in table 2.1, we need to collect all possible expressions which
may depend on the position of each vertex. As it turns out, the only term that appears on
each vertex is given as the dressed vertex [187–189, 192]

𝛥𝜇(𝑝, 𝑝′, 𝑘′|𝑘) :=
ˆ

d4𝑥𝐸𝑝′(𝑥) (−𝑖𝑒𝛾𝜇)𝐸𝑝(𝑥)𝑒𝑖𝑘′𝑥, (2.41)

where 𝑝, 𝑝′, and 𝑘′ denote the momenta of the incoming, outgoing fermion and the outgoing
photon, respectively, and 𝐸𝑝 is the Ritus matrix given in equation (2.27). We mention
that none of the momenta 𝑝, 𝑝′, or 𝑘′ appearing in equation (2.41) is generally assumed to
be on-shell since the terms came either from an external state (on-shell momentum) or
from a propagator (off-shell momentum). Utilising the equations (2.27) and (2.30), the
dressed vertex results in

𝛥𝜇(𝑝, 𝑝′, 𝑘′|𝑘) = −𝑖𝑒
ˆ

d4𝑥

(︂
1 − 𝑒

/𝑘 /𝐴

2𝑘𝑝′

)︂
𝛾𝜇

(︂
1 + 𝑒

/𝑘 /𝐴

2 (𝑘𝑝)

)︂
𝑒𝑖(𝑆̃𝑝′ −𝑆̃𝑝)𝑒𝑖(𝑝′+𝑘′−𝑝)𝑥,

(2.42)

where 𝑆̃𝑝(𝜙) denotes the non-linear Volkov phase defined in the r.h.s. of equation (2.28).
One may note that all factors of the integrand, except the last exponential term, depend
on the phase 𝜙 = (𝑘𝑥) of the background field 𝐴𝜇. This motivates the usage of the Fourier
transform of this part of the integrand:(︂

1 − 𝑒
/𝑘 /𝐴

2𝑘𝑝′

)︂
𝛾𝜇

(︂
1 + 𝑒

/𝑘 /𝐴

2 (𝑘𝑝)

)︂
𝑒𝑖(𝑆̃𝑝′ −𝑆̃𝑝) =:

ˆ d𝑙
2𝜋𝛤

𝜇(𝑙, 𝑝, 𝑝′, 𝑘′|𝑘)𝑒−𝑖𝑙𝜙, (2.43)

where 𝛤𝜇 denotes the dressed vertex function; its argument 𝑙 is referred to as the photon
number parameter, which is the Fourier conjugate of the phase 𝜙. Inserting this definition
in the dressed vertex results in

𝛥𝜇(𝑝, 𝑝′, 𝑘′|𝑘) = −𝑖𝑒
ˆ

d4𝑥

ˆ d𝑙
2𝜋𝛤

𝜇(𝑙, 𝑝, 𝑝′|𝑘) exp(𝑖
(︀
𝑝′ + 𝑘′ − 𝑝− 𝑙𝑘

)︀
𝑥) (2.44)

= −𝑖𝑒
ˆ d𝑙

2𝜋 𝛤
𝜇(𝑙, 𝑝, 𝑝′|𝑘) (2𝜋)4 𝛿(4)(︀𝑝′ + 𝑘′ − 𝑝− 𝑙𝑘

)︀
, (2.45)

where we used the integral representation of the delta-distribution
´

d4𝑥𝑒𝑖𝑞𝑥 = (2𝜋)4 𝛿(4)(𝑞).
Here, one should emphasize that due to the appearing delta-distribution in fact the photon
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number parameter 𝑙 parameterizes the amount of momentum 𝑘 from the background
field, which is involved in the dressed vertex. Certainly, it is straightforward to solve the
remaining integral over 𝑙 applying the delta-distribution, but in some cases, it is better to
use the delta-distribution for other integrations, e.g. four-dimensional integrals over one or
more of the occurring momenta.
Since we collect every positional dependency of the position space rules in table 2.1 and
include them in the dressed vertex, the remaining expressions for external legs as well as
for the propagators become fairly simple. If a leg of the dressed vertex is connected to
an external (on-shell) particle, the remaining expression in the Feynman diagram is one
of the free Dirac bi-spinors 𝑢,𝑣, 𝑢, 𝑣 (for fermions) or one of the free polarisations 𝜀′, 𝜀′*

(for photons), respectively. Furthermore, if two position space vertices are connected by
a propagator and each of these vertices is transformed to a dressed vertex according to
equation (2.41), the remaining expression of the propagator is /𝑝+𝑚

𝑝2−𝑚2+𝑖𝜖
(for fermions) or

−𝑔𝜇𝜈

𝑘2−𝑖𝜖
(for photons) as well as additionally an integration

´ d4𝑝
(2𝜋)4 (similarly for 𝑘) over

the (off-shell) momentum of the respective propagator. Therefore, the transformation to
dressed vertices causes the reduction of all other position space rules in table 2.1 (except
the vertex) to the Feynman rules of perturbative monochromatic QED (see table B.1).
This also implies that the whole dependence of the position space rules in table 2.1 on the
background field 𝐴𝜇 is attributed to the dressed vertex due to the transformation from
position to momentum space.

Dressed vertex function

From definition (2.43) we get the dressed vertex function as

𝛤𝜇(𝑙, 𝑝, 𝑝′|𝑘) =
ˆ

d𝜙
(︂
1 − 𝑒

/𝑘 /𝐴

2𝑘𝑝′

)︂
𝛾𝜇

(︂
1 + 𝑒

/𝑘 /𝐴

2 (𝑘𝑝)

)︂
𝑒𝑖(𝑆̃𝑝′ −𝑆̃𝑝)𝑒𝑖𝑙𝜙 (2.46)

= 𝛤𝜇
0 𝐵0(𝑙) + 𝛤𝜇𝜈

1 𝐵1𝜈(𝑙) + 𝛤𝜇
2 𝐵2(𝑙), (2.47)

where we absorb all dependencies on the photon number parameter 𝑙 as well as the
remaining integration over the phase 𝜙, i.e. all dependencies on the background field 𝐴𝜇, in
the so called phase integrals 𝐵0, 𝐵

𝜇
1 and 𝐵2. The appearing elementary vertices are given
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by

𝛤𝜇
0 (𝑝, 𝑝′|𝑘) := 𝛾𝜇, (2.48)

𝛤𝜇𝜈
1 (𝑝, 𝑝′|𝑘) := 𝑒

(︂
𝛾𝜇/𝑘𝛾𝜈

2(𝑘𝑝) + 𝛾𝜈/𝑘𝛾𝜇

2(𝑘𝑝′)

)︂
, (2.49)

𝛤𝜇
2 (𝑝, 𝑝′|𝑘) := −𝑒2 /𝑘

2(𝑘𝑝)(𝑘𝑝′)𝑘
𝜇, (2.50)

which have no dependence on the background field 𝐴𝜇. The phase integrals are defined by

𝐵0(𝑙, 𝑝, 𝑝′|𝑘) =
ˆ

d𝜙 exp(𝑖𝑙𝜙+ 𝑖𝐺(𝜙)), (2.51)

𝐵𝜇
1 (𝑙, 𝑝, 𝑝′|𝑘) =

ˆ
d𝜙𝐴𝜇(𝜙) exp(𝑖𝑙𝜙+ 𝑖𝐺(𝜙)), (2.52)

𝐵2(𝑙, 𝑝, 𝑝′|𝑘) =
ˆ

d𝜙𝐴2(𝜙) exp(𝑖𝑙𝜙+ 𝑖𝐺(𝜙)), (2.53)

where we use the abbreviation

𝐺(𝜙, 𝑝, 𝑝′|𝑘) := 𝛼𝜇
1

ˆ 𝜙

0
d𝜙′𝐴𝜇(𝜙′) + 𝛼2

ˆ 𝜙

0
d𝜙′𝐴2(𝜙′) (2.54)

with the kinematic factors

𝛼𝜇
1 (𝑝,𝑝′|𝑘) := 𝑒

(︂
𝑝′𝜇

𝑘𝑝′ − 𝑝𝜇

𝑘𝑝

)︂
, 𝛼2(𝑝, 𝑝′|𝑘) := 𝑒2

(︂
1
𝑘𝑝

− 1
𝑘𝑝′

)︂
. (2.55)

These factors contain the complete dependence of the phase integrals on the kinematics of
the process, i.e. the appearing momenta.
Considering the phase integrals (2.51) – (2.53), one can gather the reason, why the regime
for intensity parameters 𝑎0 > 1 is difficult to elaborate. Assuming 𝐴𝜇 ∼ 𝑎0, as explicitly
shown for the pulsed plane-wave approach (2.16), the exponent appearing in the integrand
of the phase integrals has the form 𝑐1𝑎

2
0 + 𝑐2𝑎0 + 𝑐3, where 𝑐𝑖 with 𝑖 = 1, 2, 3 are complex-

valued functions of the momenta, the phase variable 𝜙, and the photon number parameter
𝑙, but independent of 𝑎0. Consequently, if one assumes 𝑎0 < 1, the exponential function
can be expanded in the intensity parameter 𝑎0, which results to some extent in analytical
solutions for the phase integrals for a vast variety of field configurations (especially if
the Fourier transform of the background field 𝐴𝜇 is known, see chapter 3). However,
for 𝑎0 ≥ 1, the exponential function in the integrand of the phase integrals needs to be
treated exactly, which results in a highly oscillatory behavior of the integral. In this case,
analytical solutions are known for constant field approaches, i.e. 𝐴𝜇(𝜙) = 𝑎0𝜀

𝜇𝜙, where the
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phase integrals are reduced to expressions involving Airy functions (see for instance [158,
247]). However, only in certain parameter regimes (e.g. 𝑎0 ≫ 1, 𝜒 ≪ 1), the constant field
approaches are capable to describe scattering processes accurately (see for instance [28, 62,
63, 134]). Conclusively, in the case of 𝑎0 ≥ 1 and for more general background fields, the
evaluation of the phase integrals can be fairly challenging and require advanced numerical
methods, e.g. highly oscillatory integrals, methods of steepest descent, or stationary phase
analysis, to name a few.

Regularisation of 𝐵0

The integral defining 𝐵0 in equation (2.51) tends to be divergent. We insert a regulator
term 𝑒−𝜀|𝜙| with 𝜀 > 0 in the integral (2.51) and we get

𝐵0(𝑙) = lim
𝜀→0+

ˆ ∞

−∞
d𝜙𝑒−𝜀|𝜙|𝑒𝑖𝑙𝜙𝑒𝑖𝐺(𝜙) (2.56)

= lim
𝜀→0+

[︂ ˆ 0

−∞
d𝜙𝑒(𝑖𝑙+𝜀)𝜙𝑒𝑖𝐺(𝜙) +

ˆ ∞

0
d𝜙𝑒(𝑖𝑙−𝜀)𝜙𝑒𝑖𝐺(𝜙)

]︂
+ 𝑒(𝑖𝑙−𝜀)𝜙𝑒𝑖𝐺(𝜙)

𝑖𝑙 − 𝜀

⃒⃒⃒⃒∞
0

− 𝑖

𝑖𝑙 − 𝜀

ˆ ∞

0
d𝜙𝑒(𝑖𝑙−𝜀)𝜙𝐺′(𝜙)𝑒𝑖𝐺(𝜙)

]︂
, (2.57)

where we use partial integration and the shortcut 𝐺′ := d
d𝜙𝐺. Considering the non-integral

terms of 𝐵0, one gets

lim
𝜀→0+

[︃
𝑒(𝑖𝑙+𝜀)𝜙𝑒𝑖𝐺(𝜙)

𝑖𝑙 + 𝜀

⃒⃒⃒⃒0
−∞

+ 𝑒(𝑖𝑙−𝜀)𝜙𝑒𝑖𝐺(𝜙)

𝑖𝑙 − 𝜀

⃒⃒⃒⃒∞
0

]︃
= 2 lim

𝜀→0+

[︂
𝜀

𝜀2 + 𝑙2

]︂
= 2𝜋𝛿(𝑙), (2.58)

where we use 𝐺(0) = 0 deduced from equation (2.54). In the very last step, we execute
the limit in a distributional manner, i.e. it exists in a product with a test function. To
evaluate the terms in (2.57), we consider the integral

´ 0
−∞ d𝜙𝑒(𝑖𝑙+𝜀)𝜙𝐺′(𝜙)𝑒𝑖𝐺(𝜙) which is

finite for every 𝜀 ≥ 0 due to the proportionality 𝐺′(𝜙) ∼ 𝐴𝜇(𝜙), where 𝐴𝜇 is assumed to
vanish at the lower limit of the integral. The same holds for the other integral, so the limit
in these integrals can be performed trivially and we get

lim
𝜀→0+

[︂
𝑖

𝑖𝑙 + 𝜀

ˆ 0

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺 + 𝑖

𝑖𝑙 − 𝜀

ˆ ∞

0
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

]︂
(2.59)

= lim
𝜀→0+

1
2

[︂(︂
𝑖

𝑖𝑙 + 𝜀
+ 𝑖

𝑖𝑙 − 𝜀

)︂ ˆ ∞

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

+
(︂

𝑖

𝑖𝑙 + 𝜀
− 𝑖

𝑖𝑙 − 𝜀

)︂(︂ˆ 0

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺 −

ˆ ∞

0
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

)︂]︂
, (2.60)
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where we apply the identity 𝑢𝑤+𝑣𝑧 = 𝑢+𝑣
2 (𝑤+𝑧)+ 𝑢−𝑣

2 (𝑤 − 𝑧) with 𝑢,𝑣,𝑤,𝑧 ∈ C. Starting
with the first term of equation (2.60), we get

lim
𝜀→0+

1
2

(︂
𝑖

𝑖𝑙 + 𝜀
+ 𝑖

𝑖𝑙 − 𝜀

)︂ ˆ ∞

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺 = P

[︂
1
𝑙

ˆ ∞

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

]︂
, (2.61)

by using

lim
𝜀→0+

ˆ 𝑏

𝑎

𝑥2

𝑥2 + 𝜀2𝐻(𝑥) d𝑥 = P

ˆ 𝑏

𝑎
𝐻(𝑥) d𝑥, (2.62)

with an arbitrary function 𝐻 : (𝑎,𝑏) → C. The symbol P denotes the Cauchy principal
value. The second term of equation (2.60) contains again a delta-distribution:

lim
𝜀→0+

1
2

(︂
𝑖

𝑖𝑙 + 𝜀
− 𝑖

𝑖𝑙 − 𝜀

)︂(︂ˆ 0

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺 −

ˆ ∞

0
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

)︂
(2.63)

= 𝑖𝜋𝛿(𝑙)
(︂ˆ 0

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺 −

ˆ ∞

0
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

)︂
(2.64)

= 𝑖𝜋𝛿(𝑙)
(︂ˆ 0

−∞
d𝜙𝐺′𝑒𝑖𝐺 −

ˆ ∞

0
d𝜙𝐺′𝑒𝑖𝐺

)︂
, (2.65)

where we used 𝛿(𝑥)𝐻(𝑥) = 𝛿(𝑥)𝐻(0) in the last step. To evaluate the integrals, we use
𝐺′𝑒𝑖𝐺 = −𝑖

(︀
𝑒𝑖𝐺

)︀′ and get

ˆ 0

−∞
d𝜙𝐺′𝑒𝑖𝐺 −

ˆ ∞

0
d𝜙𝐺′𝑒𝑖𝐺 = 1

𝑖

(︃
𝑒𝑖𝐺

⃒⃒⃒⃒0
−∞

− 𝑒𝑖𝐺

⃒⃒⃒⃒∞
0

)︃
= 1
𝑖

(︀
2 − 𝑒𝑖𝐺+ − 𝑒𝑖𝐺−

)︀
(2.66)

with the abbreviation 𝐺± := lim𝜙→∞𝐺(±𝜙). Finally, we insert (2.58) and (2.60) in
equation (2.57) and take a use of the evaluation above, to obtain

𝐵0(𝑙) =
(︀
𝑒𝑖𝐺+ + 𝑒𝑖𝐺−

)︀
𝜋𝛿(𝑙) − P

[︂
1
𝑙

ˆ ∞

−∞
d𝜙𝑒𝑖𝑙𝜙𝐺′𝑒𝑖𝐺

]︂
. (2.67)

Considering 𝐺′(𝜙) = 𝛼𝜇
1𝐴𝜇(𝜙) + 𝛼2𝐴

2(𝜙) and the definition of 𝐵𝜇
1 in equation (2.52) as

well as 𝐵2 in (2.53), respectively, we can write 𝐵0 in terms of the other phase integrals as

𝐵0(𝑙) = 𝜋𝛿(𝑙)
(︀
𝑒𝑖𝐺+ + 𝑒𝑖𝐺−

)︀
− P

[︂
𝛼𝜇

1
𝑙
𝐵1𝜇(𝑙) + 𝛼2

𝑙
𝐵2(𝑙)

]︂
(2.68)

= 𝜋𝛿(𝑙)G + 𝐵̃0(𝑙), (2.69)
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where we introduce the abbreviation G := 𝑒𝑖𝐺+ + 𝑒𝑖𝐺− as well as the finite phase integral
𝐵̃0(𝑙) := −P1

𝑙 [𝛼𝜇
1𝐵1𝜇(𝑙) + 𝛼2𝐵2(𝑙)]. Inserting the regularised version of the phase integral

(2.68) in the definition of the vertex function (2.47) yields

𝛤𝜇(𝑙, 𝑝, 𝑝′|𝑘) = 𝜋G𝛿(𝑙)𝛤𝜇
0 + 𝛤𝜇

0 𝐵̃0(𝑙) + 𝛤𝜇𝜈
1 𝐵1𝜈(𝑙) + 𝛤𝜇

2 𝐵2(𝑙) (2.70)

= 𝜋G𝛿(𝑙)𝛤𝜇
0 + 𝛤

𝜇(𝑙, 𝑝, 𝑝′|𝑘), (2.71)

where the finite part of the vertex function is denoted by

𝛤
𝜇 := 𝛤𝜇

0 𝐵̃0 + 𝛤𝜇𝜈
1 𝐵1𝜈 + 𝛤𝜇

2 𝐵2. (2.72)

The first summand of the regularised vertex function (2.71), proportional to 𝛿(𝑙), can
be interpreted as the part of the dressed vertex function with no momentum transition
from the background field, which has in fact no contribution to one-vertex processes
like nonlinear Compton scattering or nonlinear Breit-Wheeler pair production due to the
vanishing physical phase space, i.e. there is neither single-photon absorption nor single-
photon emission in perturbative QED. However, for processes with more than one vertex,
e.g. the trident process investigated in this thesis, the vanishing momentum transition from
the background field to one vertex may eventually be compensated due to the momentum
transfer at another vertex. Since the only dependence of this non-transfer term on the
background field is condensed in the factor G, the leading order of the whole non-vanishing
term in 𝐴𝜇 is actually constant through G = 2+O(𝐴𝜇). Furthermore, the appearance of the
non-transfer term has a strong connection to the analyticity of the amplitudes calculated
within the framework of strong-field QED. However, this is beyond the scope of this thesis
(see [137] for a recent discussion about this connection).
The second summand 𝛤

𝜇 of the regularised vertex function (2.71) will be interpreted as a
part of the dressed vertex function with a genuine momentum transfer from the background
field to the vertex, which is indicated by the occurring principal value in the finite part
𝐵̃0(𝑙) of the regularised phase integral (2.68), considering the other phase integrals are
regular for 𝑙 → 0. Moreover, since the elementary vertices given in the equations (2.48) to
(2.50) as well as the kinematic factors 𝛼𝑖 given in equations (2.55) are independent of the
background field, the leading order of the finite part 𝛤𝜇 of the vertex function 𝛤𝜇 is linear
in 𝐴𝜇, i.e. there is no 𝐴𝜇-independent term in an expansion of 𝛤𝜇 w.r.t the background
field 𝐴𝜇.
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Momentum space rules

The introduction of the dressed vertex in equation (2.41) leads to the reductions of all
other position space rules given in table 2.1 to their momentum space counterpart known
from perturbative QED (see appendix B for details). Every external double line becomes
a solid line representing the external field-free fermions, which are given in momentum
space by the fundamental Dirac bispinors 𝑢(𝑝), 𝑢(𝑝), 𝑣(𝑝) and 𝑣(𝑝) with the momentum
𝑝 of the respective particle. The dressed fermion propagator reduces to its momentum
space counterpart from perturbative QED given by 𝑆(𝑃 ) = /𝑃 +𝑚

𝑃 2−𝑚2+𝑖𝜖
with the transferred

momentum 𝑃 and the mass 𝑚 of the respective particle. Admittedly, the internal and
external photon lines do not depend on the background field, however, the transformation
to momentum space causes a reduction of the respective rules as well. The external
incoming (outgoing) photon is represented by its polarisation four-vector 𝜀𝜇

𝜆(𝑘) (𝜀*𝜇
𝜆 (𝑘)),

where 𝜆 denotes the polarisation and 𝑘 is the momentum of the photon. The photon
propagator is reduced to its perturbative QED counterpart in momentum space, which
is given in the Feynman-gauge as 𝐷𝜇𝜈(𝐾) = 𝑖𝑔𝜇𝜈

𝐾2+𝑖𝜖
, where 𝐾 denotes the transferred

momentum and 𝑔𝜇𝜈 is the Minkowski metric tensor. We mention that the transformation
of the propagators to momentum space leads to integrations

´ d4𝑄
(2𝜋)4 of the matrix element

with the respective transferred momentum 𝑄 at each appearing propagator. Accordingly,
the whole dependence of the resulting momentum space rules on the background field is
condensed in the dressed vertex, which makes this approach conceptually simple.
We summarise the momentum space rules in table 2.2, where the bold lines represent the
respective rest of a certain diagram. As we mentioned above, these rules represent the
momentum space description of a given process in strong-field QED and similarly to the
position space rules, the momentum space rules can be used to derive the scattering matrix
element. However, here we need to adjust the calculation scheme in order to apply the
momentum space rules. On the one hand, in contrast to the position space rules, there is
no integration

´
d4𝑥 over the position of any vertex left in the momentum space description.

Instead, an integration
´ d𝑙

2𝜋 over the photon-number parameter at each dressed vertex
appears. On the other hand, we extract the momentum integration for each propagator
from the respective momentum space rule and make them part of the calculation scheme.
This leads to the new calculation scheme for the scattering matrix element using the
momentum space formulation:

1. Draw all Furry-Feynman diagrams for a given initial and final state (in momentum
space).

2. Exchange the distinct parts of the diagrams with the mathematical expression
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according to the momentum space rules given in table 2.2, where the order of terms
for each fermion line needs to be contrary to the fermion arrow.

3. Perform the integrations
´ d𝑙

2𝜋 over the photon-number parameter for each dressed
vertex as well as

´ d4𝑄
(2𝜋)4 for each propagator, i.e. internal line, with respective

transferred momentum 𝑄.

4. Apply symmetrisation and insert symmetry factors as usual in perturbative QED.

Applying this scheme leads to the same scattering matrix element 𝑆fi as given in equation

Table 2.2: Momentum space rules of strong-field QED. In the first column the diagrammatical
representation of the respective rule is depicted, in the second column the symbol used within
this thesis is shown, the third column indicates the common name of the expression and in the
fourth column the definition in the text is referred.

p 𝑢𝜎𝑝 incoming fermion

p 𝑣𝜎𝑝
incoming anti-
fermion

p′ 𝑢𝜎𝑝 outgoing fermion

p′ 𝑣𝜎𝑝
outgoing anti-
fermion

p p′

k′

rk

−𝑖𝑒𝛤 𝜇 dressed vertex func-
tion (eq. (2.47) seqq.)

K
𝐷𝜇𝜈(𝑘′) photon propagator

P
𝑆(𝑝′) fermion propagator

k 𝜀′𝜇
𝜆 (𝑘′) incoming photon

k′ 𝜀′*𝜇
𝜆 (𝑘′) outgoing photon
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(2.37) for the position space, but using the momentum space rules given in table 2.2,
which means the momentum space formulation introduced in this section is an equivalent
description of processes in strong-field QED. Especially the definition of the differential
probability and cross section given in equations (2.38) and (2.40) stay the same within the
momentum space formulation. In conclusion, we mention that for the derivation of the
momentum space rules, as well as any scattering matrix element eventually derived with
them, only the constraint was used, that the background field is a Lorenzian null-field as
described in section 2.1. This means, using these rules, one can derive matrix elements
of several processes for a general Lorenzian background null-field and then specialise to a
certain background field shape afterward.
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2.4 Ward identity and gauge invariance

It is widely known that QED is gauge invariant term by term in the perturbative expansion,
and one implication of this fact is the absence of longitudinal contributions of the coupled
photons, i.e. parts of the photon polarisation which are parallel to its four-momentum.
However, the application of the background approximation (see section 2.2) does not a priori
preserve this behavior. In the language of the momentum space rules listed in table 2.2, that
means the longitudinal contributions of photons coupling to the dressed vertex function
(2.47) do not automatically disappear. Explicitly, there are two cases where photons may
couple to the dressed vertex: by external polarisations 𝜀′𝜇, 𝜀′*𝜇 or by photon propagators
𝐷𝜇𝜈(𝑘′). In the case of an external outgoing photon (the reasoning is similar for incoming
photons), the gauge transformation of the polarisation reads 𝜀′*

𝜇 → 𝜀′*
𝜇 + 𝑞(𝑘′)𝑘′

𝜇, where
𝑞(𝑘′) is an arbitrary smooth function also referred to as gauge function. The coupling of
the transformed polarisation to the dressed vertex then reads 𝛤𝜇𝜀′*

𝜇 → 𝛤𝜇𝜀′*
𝜇 + 𝑞(𝑘′)𝛤𝜇𝑘′

𝜇.

Since the resulting amplitude may not depend on the gauge function 𝑞(𝑘′), the requirement
of gauge invariance is equivalent to the Ward identity

𝛤𝜇𝑘′
𝜇 = 0. (2.73)

In addition, if a photon propagator connects two dressed vertices, the appearing term
would have the form 𝛤𝜇(𝑙)𝐷𝜇𝜈(𝑘′)𝛤 𝜈(𝑟), where 𝑙,𝑟 denote the respective photon number
parameters (the dependence on the momenta is suppressed for now) and 𝐷𝜇𝜈(𝑘′) is given
in its general form by the Fourier transform of equation (2.34). The resulting expression
reads

𝛤𝜇(𝑙)𝐷𝜇𝜈(𝑘′)𝛤 𝜈(𝑟) = −𝑖𝛤
𝜇(𝑙)𝛤𝜇(𝑟)
𝑘′2 + 𝑖𝜖

+ 𝑖(1 − 𝜂)
(𝑘′

𝜇𝛤
𝜇(𝑙))(𝑘′

𝜈𝛤
𝜈(𝑟))

(𝑘′2)2 + 𝜖2
, (2.74)

where 𝜂 denotes again the gauge fixing parameter. Since the resulting amplitude must not
depend on 𝜂, the requirement of gauge invariance is equivalent to the same Ward identity
𝑘′

𝜇𝛤
𝜇 = 0.

After this brief description of gauge invariance in strong-field QED, we will use the Ward
identity (2.73) to enforce gauge invariance of the dressed vertex function. With the dressed
vertex function from equation (2.47) the Ward identity results in

0 = 𝑢𝑝′𝑘′
𝜇𝛤

𝜇𝑢𝑝 (2.75)

=
(︀
𝑢𝑝′𝑘′

𝜇𝛾
𝜇𝑢𝑝

)︀
𝐵0 +

(︀
𝑢𝑝′𝑘′

𝜇𝛤
𝜇𝜈
1 𝑢𝑝

)︀
𝐵1𝜈 +

(︀
𝑢𝑝′𝑘′

𝜇𝛤
𝜇
2 𝑢𝑝

)︀
𝐵2, (2.76)
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where 𝐵0, 𝐵1𝜈 , 𝐵2 denote the phase integrals (2.51) – (2.53) and 𝛤𝜇
0 , 𝛤

𝜇𝜈
1 , 𝛤𝜇

2 are the
elementary vertices (2.48) – (2.50) (for both we suppress the momentum dependence for
now). We will eventually use the regularised version of 𝐵0 from equation (2.68). The
usage of the free Dirac bi-spinors in the side-condition (2.75) is reasonable since, during
calculations of amplitudes using the momentum space rules, these will always appear,
either trivially from the external fermions or from the fermion propagator due to the spin
sum decomposition /𝑝+𝑚 =

∑︀
𝜎 𝑢𝜎𝑝𝑢𝜎𝑝 (analog for the other bi-spinors) of the nominator.

Since we have energy-momentum conservation 𝑝 + 𝑙𝑘 = 𝑝′ + 𝑘′ at each vertex, which is
implied by the delta-distribution in the full dressed vertex (2.45), the Ward identity (2.76)
of the dressed vertex function reads 0 = (𝑙𝐵0(𝑙) + 𝛼𝜇

1𝐵1𝜇(𝑙) + 𝛼2𝐵2(𝑙)) (𝑢𝑝′/𝑘𝑢𝑝), where we
used Dirac’s equations in momentum space (/𝑝−𝑚)𝑢𝑝 = 0 and 𝑢𝑝′(/𝑝′ −𝑚) = 0, respectively.
This implies a severe constraint for the phase integrals:

0 = 𝑙𝐵0(𝑙) + 𝛼𝜇
1𝐵1𝜇(𝑙) + 𝛼2𝐵2(𝑙), (2.77)

which is equivalent to the Ward identity (2.73) and shows that the phase integrals are not
independent. One may notice, inserting the regularised version of 𝐵0 from equation (2.68)
and assuming the phase integrals 𝐵1𝜈 , 𝐵2 are finite (which is the case if the background
field obeys 𝐴𝜇(𝜙) → 0 if |𝜙| → ∞), the condition (2.77) is automatically fulfilled. In
summary, this means that the usage of the regularised version of 𝐵0 from equation (2.68)
for calculations with the dressed vertex (2.47) implies gauge invariance of the resulting
amplitude. However, it should be stressed that this is not an equivalence, since the prefactor
of the delta-distribution in equation (2.47) is not determined by the Ward identity (2.77).
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2.5 Strong-field trident process
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Figure 2.3: The diagrammatical representation of the strong-field trident in momentum
space, where 𝑝 denoted the momentum of the initial electron, 𝑝1 the momentum of the
outgoing positron, and 𝑝2, 𝑝3 the momenta w.r.t. the two outgoing electrons, respectively. The
momentum transfer from the background field (with momentum 𝑘) to each vertex is denoted
by 𝑙 and 𝑟, respectively. The respective momentum of the intermediate photon is 𝑘′ for the
first and 𝑘′′ for the second diagram.

The trident process within strong-field QED (also referred to as strong-field trident) is on
the tree-level represented by the momentum space diagrams given in figure 2.3. Due to the
indistinguishability of the two final electrons, there are two diagrams differing w.r.t. the
exchange 𝑝2 ↔ 𝑝3, where the relative sign represents the Fermi statistic of those electrons.
Accordingly, we use the denotation 𝑆d

fi for the scattering matrix element corresponding to
the first diagram (referred to as direct part) and 𝑆ex

fi for the second diagram depicted in
figure 2.3 (referred to as exchange part). Having in mind brief mathematical expressions
in the following sections, we demonstrate the following only using the direct part 𝑆d

fi , since
the reasoning can be done completely analogously for the exchange part 𝑆ex

fi and leads
easily to the full scattering matrix element 𝑆fi = 𝑆d

fi − 𝑆ex
fi .

Using the momentum space rules given in table 2.2 the respective (direct) scattering matrix
element results in

𝑆d
fi =
ˆ d4𝑘′

(2𝜋)4

ˆ d𝑙
2𝜋

ˆ d𝑟
2𝜋 𝐷𝜇𝜈(𝑘′)

× 𝑢(𝑝3) (−𝑖𝑒𝛤 𝜇(𝑙, 𝐶))𝑢(𝑝) (2𝜋)4 𝛿(4)(︀𝑝+ 𝑙𝑘 − 𝑝3 − 𝑘′)︀
× 𝑢(𝑝2) (−𝑖𝑒𝛤 𝜈(𝑟,𝐵𝑊 )) 𝑣(𝑝1) (2𝜋)4 𝛿(4)(︀𝑘′ + 𝑟𝑘 − 𝑝1 − 𝑝2

)︀
(2.78)

= (2𝜋)2 𝑒2
ˆ

d𝑙
ˆ

d𝑟 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖
𝛿(4)(𝑝+ (𝑙 + 𝑟)𝑘 − 𝑝𝑡)

× [𝑢(𝑝3)𝛤𝜇(𝑙, 𝐶)𝑢(𝑝)] [𝑢(𝑝2)𝛤 𝜈(𝑟,𝐵𝑊 )𝑣(𝑝1)] , (2.79)

where 𝑝𝑡 = 𝑝1+𝑝2+𝑝3 denotes the total momentum transfer of the process and we introduce
the short-hand notation 𝐶 and 𝐵𝑊 to mean the evaluation of the vertex functions at the
momenta 𝑝, 𝑝3, 𝑘 and −𝑝1, 𝑝2, 𝑘, respectively. In the last step, we used one of the delta-
distributions to solve the integral over 𝑘′, which leads to 𝑘′ = 𝑝+ 𝑙𝑘− 𝑝3 = 𝑝1 + 𝑝2 − 𝑟𝑘 for
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the momentum of the intermediate photon. Kinematically, this 4-momentum conservation
corresponds to the two one-vertex sub-processes:

𝑝+ 𝑙𝑘 = 𝑘′ + 𝑝3 (virtual) strong-field Compton , (2.80)

𝑘′ + 𝑟𝑘 = 𝑝1 + 𝑝2 (virtual) strong-field Breit-Wheeler. (2.81)

However, this generally does not mean, that the strong-field trident process is just the
combination of the two subprocesses Compton scattering and Breit-Wheeler pair production,
since the intermediate photon may be either on-shell 𝑘′2 = 0 or off-shell 𝑘′2 ̸= 0, which
plays an important role later on.
Considering the remaining delta-distribution in equation (2.79), which represents the global
energy-momentum conservation, it is useful to introduce the light-cone coordinates 𝑞±, 𝑞⊥

for the appearing 4-momenta (see appendix A), similar to the one-vertex processes. This
leads to

𝛿(4)(𝑝+ (𝑙 + 𝑟)𝑘 − 𝑝1 − 𝑝2 − 𝑝3) = 𝛿lf(𝑝𝑡 − 𝑝)𝛿(𝑝+
𝑡 − 𝑝+ − (𝑙 + 𝑟) 𝑘+), (2.82)

where we use the abbreviation 𝛿lf(𝑞) := 1
2𝛿(𝑞−) 𝛿(2)(𝑞⊥), with an arbitrary momentum 𝑞.

Inserting this into equation (2.79) and solving the integral over 𝑙 results in

𝑆d
fi = (2𝜋)2

𝑘+ 𝑒2𝛿lf(𝑝− 𝑝𝑡)
ˆ

d𝑟 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖
[𝑢(𝑝3)𝛤𝜇(𝑙𝑟, 𝐶)𝑢(𝑝)] [𝑢(𝑝2)𝛤 𝜈(𝑟,𝐵𝑊 )𝑣(𝑝1)] ,

(2.83)

where we introduce 𝑙𝑟 = 𝑝+
𝑡 −𝑝+

𝑘+ − 𝑟 ≡ 𝑝2
𝑡 −𝑚2

2(𝑘𝑝) − 𝑟. For a given point in the final phase space,
the dependence of the photon number parameter at one vertex on the one at the other
vertex is a direct consequence of the global energy-momentum conservation. This means,
loosely speaking, for a given amount of momentum transferred from the background field
to one vertex (here 𝑟), the transfer of momentum to the other vertex (here 𝑙𝑟) is exactly
arranged in such a way, that the given point of the phase space will be reached. Since
there is no explicit condition for the momentum transfer from the background field to a
certain vertex for a given point in the final phase space, an integral over all possible 𝑟
appears in 𝑆d

fi .

Decomposition of the matrix element
Considering the decomposition (2.71) of the dressed vertex function in a part without and
a part with a genuine momentum transfer from the background field, we can decompose the
direct part 𝑆d

fi of the scattering matrix element 𝑆fi from equation (2.83) (and analogously
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the exchange part) w.r.t. every combination of these circumstances:

𝑆d
fi = 𝑆0 + 𝑆11 + 𝑆12 + 𝑆2, (2.84)

where we suppress the denotation for the direct part for now. The first term of this
decomposition is given by

𝑆0 = 4𝜋4

𝑘+ 𝑒2𝛿lf(𝑝− 𝑝𝑡)G(𝐶)G(𝐵𝑊 )
ˆ

d𝑟 𝛿(𝑟)𝛿(𝑙𝑟)𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)] [𝑢(𝑝2)𝛾𝜈𝑣(𝑝1)]

(2.85)

= 4𝜋4

𝑘+ 𝑒2𝛿lf(𝑝− 𝑝𝑡)𝛿(𝑙0)G(𝐶)G(𝐵𝑊 ) 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)] [𝑢(𝑝2)𝛾𝜈𝑣(𝑝1)] , (2.86)

where 𝑙0 = 𝑝+
𝑡 −𝑝+

𝑘+ with 𝑝𝑡 = 𝑝1 + 𝑝2 + 𝑝3 and again 𝐶 and 𝐵𝑊 stand for evaluation
at the momenta 𝑝, 𝑝3, 𝑘 and −𝑝1, 𝑝2, 𝑘, respectively. Since one has 1

𝑘+ 𝛿
lf(𝑝𝑡 − 𝑝)𝛿(𝑙0) =

1
𝑘+ 𝛿

lf(𝑝𝑡 − 𝑝)𝛿
(︁

𝑝+
𝑡 −𝑝+

𝑘+

)︁
= 𝛿(4)(𝑝𝑡 − 𝑝), the appearance of 𝛿(𝑙0) in equation (2.86) leads to

the constraint 𝑝 = 𝑝1 + 𝑝2 + 𝑝3, which can not be fulfilled for on-shell momenta because
there is no physical final phase space for the contribution from the part 𝑆0 to the matrix
element 𝑆d

fi . This is also clear, since the product of the delta-distributions in equation
(2.85) implies 𝑟 = 0 = 𝑙𝑟, which means there is no momentum transfer from the background
field to one of the vertices. Speaking in the sense of perturbative QED, this results in a
kinematically forbidden contribution, since if one assumes the initial electron to be at rest,
there is no emission of a (virtual) photon possible due to the absence of acceleration of the
initial electron.
The second term of the decomposition (2.84) corresponds to the case, where the upper
vertex has no momentum transfer with the background field, i.e. 𝑟 = 0, which results in

𝑆11 = 4𝜋3

𝑘+ 𝑒2𝛿lf(𝑝− 𝑝𝑡)G(𝐵𝑊 ) 𝑔𝜇𝜈

(𝑝1 + 𝑝2)2 + 𝑖𝜖

[︀
𝑢(𝑝3)𝛤𝜇(𝑙0,𝐶)𝑢(𝑝)

]︀
[𝑢(𝑝2)𝛾𝜈𝑣(𝑝1)] ,

(2.87)

where we used 𝑘′2 = (𝑝1 + 𝑝2)2 from equation (2.81) for 𝑟 = 0. Concerning the absence
of a delta-distribution for 𝑙0 (in difference to 𝑆0), and the reasoning above, one has
𝑙0 = 𝑝+

𝑡 −𝑝+

𝑘+ ̸= 0 within the entire physical phase space, which implies that in the case of
𝑟 = 0 at the upper vertex, there is a non-vanishing momentum transfer from the background
field at the lower vertex.
The third term of the decomposition (2.84) results from the case, where the lower vertex
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has no momentum transfer from the background field and is given by

𝑆12 = 4𝜋3

𝑘+ 𝑒2𝛿lf(𝑝− 𝑝𝑡)G(𝐶) 𝑔𝜇𝜈

(𝑝− 𝑝3)2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)]

[︀
𝑢(𝑝2)𝛤 𝜈(𝑙0, 𝐵𝑊 )𝑣(𝑝1)

]︀
,

(2.88)

where we used 𝑘′2 = (𝑝 − 𝑝3)2 due to equation (2.80) with 𝑙𝑟 = 0, which also implies
𝑟0 = 𝑝+

𝑡 −𝑝+

𝑘+ ≡ 𝑙0. Considering that, the same reasoning as for 𝑆11 also holds here, which
means 𝑆12 corresponds to the case, where only the upper vertex has a non-vanishing
momentum transfer from the background field.
The last term of the decomposition (2.84) results from the case, where both vertices have a
non-vanishing momentum transfer from the background field, i.e. 𝑟 ̸= 0 ̸= 𝑙𝑟, and is given
by

𝑆2 = (2𝜋)2 𝑒2

2𝑘+(𝑘𝑝𝑝)𝛿
lf(𝑝− 𝑝𝑡)

ˆ
d𝑟 𝑔𝜇𝜈

𝑟on − 𝑟 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇(𝑟, 𝐶)𝑢(𝑝)

]︀ [︀
𝑢(𝑝2)𝛤 𝜈(𝑙𝑟, 𝐵𝑊 )𝑣(𝑝1)

]︀
, (2.89)

where 𝑝𝑝 = 𝑝1 +𝑝2 is the total pair momentum and 𝑟on = 𝑝2
𝑝

2(𝑘𝑝𝑝) ̸= 0 denotes the momentum
transfer from the background field, which implies 𝑘′2 = 0, due to the equations (2.80)
and (2.81), respectively, i.e. the case where the intermediate photon becomes on-shell.
As pointed out in [133, 135], this leads to an apparent singularity within the integral in
equation (2.89), which can be resolved due to the application of the Sokhotski-Plemelj
theorem [237] (also referred to as Kramers relation [278]) on the real line:

lim
𝜖→0+

ˆ
𝑓(𝑥)
𝑥± 𝑖𝜖

d𝑥 = ∓𝑖𝜋𝑓(0) + P

ˆ
𝑓(𝑥)
𝑥

d𝑥, (2.90)

where 𝑓(𝑥) denotes an arbitrary smooth complex-valued function and P is the Cauchy
principal value. The application of the relation (2.90) to equation (2.89) results in an
additional decomposition 𝑆2 = 𝑆on

2 + 𝑆off
2 , where 𝑆on

2 denotes the part of 𝑆2, where the
intermediate photon is on-shell (𝑟 = 𝑟on), and is given by

𝑆on
2 = −𝑖4𝜋3𝑒2

2𝑘+(𝑘𝑝𝑝)𝛿
lf(𝑝− 𝑝𝑡)𝑔𝜇𝜈

[︀
𝑢(𝑝3)𝛤𝜇(𝑟on, 𝐶)𝑢(𝑝)

]︀ [︀
𝑢(𝑝2)𝛤 𝜈(𝑙on, 𝐵𝑊 )𝑣(𝑝1)

]︀
,

(2.91)

where we use the short-hand notation 𝑙on := 𝑙𝑟on . Considering the energy-momentum
conservations at each vertex given in equations (2.80) and (2.81), respectively, this part
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of 𝑆2 corresponds to the case, where the strong-field trident entirely decomposes into the
two subprocesses, i.e. strong-field Compton and strong-field Breit-Wheeler process, where
each subprocess has its separate physical phase space. Therefore, the part 𝑆on

2 is widely
referred to as the two-step process.
The second term 𝑆off

2 from the decomposition of 𝑆2 denotes the part, where the intermediate
photon is off-shell (𝑟 ̸= 𝑟on) for every point in the final phase space, and is given by

𝑆off
2 = (2𝜋)2 𝑒2

2𝑘+(𝑘𝑝𝑝)𝛿
lf(𝑝− 𝑝𝑡)P

ˆ
d𝑟 𝑔𝜇𝜈

𝑟on − 𝑟

×
[︀
𝑢(𝑝3)𝛤𝜇(𝑟, 𝐶)𝑢(𝑝)

]︀ [︀
𝑢(𝑝2)𝛤 𝜈(𝑙𝑟, 𝐵𝑊 )𝑣(𝑝1)

]︀
, (2.92)

where P is the Cauchy principal value w.r.t. the variable 𝑟. Combined with the other
contributions of 𝑆d

fi , where the intermediate photon is off-shell, i.e. 𝑆11 and 𝑆12, the sum
𝑆11 + 𝑆12 + 𝑆off

2 is also referred to as the one-step process. Summarising this section, the
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Figure 2.4: Decomposition of the direct part of the strong-field trident process (analogously
for the exchange part) according to the decomposition in one- and two-step process as well as
the partial absence of a momentum transfer from the background field to one of the respective
vertex. On the l.h.s. the shaded vertices are given by the vertex function in momentum space
by equation (2.47) for arbitrary 𝑟 and 𝑙, respectively. On the r.h.s., the shaded vertices are
evaluated at the stated values of 𝑟 and 𝑙, respectively, except in the third summand, where 𝑟
and 𝑙 obey the stated constraint. The full vertices represent the vanishing momentum transfer
from the background field and are given by = −𝑖𝜋G𝛾𝜇. The cross on the intermediate photon
line depicted in the two-step process indicates the appearing intermediate on-shell photon.

full scattering matrix element of strong-field trident results in

𝑆fi = 𝑆11 + 𝑆12 + 𝑆off
2 + 𝑆on

2 − (𝑝2 ↔ 𝑝3), (2.93)

where 𝑆11, 𝑆12 are given by (2.87) and (2.88) and 𝑆on
2 , 𝑆off

2 are given in (2.91) and (2.92),
respectively. We mention that for the derivation of the matrix element (2.93) of strong-field
trident process, the only property of the background field we used, was that 𝐴𝜇 is a
Lorenzian null-field as described in section 2.1. The diagrammatical representation of the
full decomposition (2.93) of the direct scattering matrix element (2.83) is depicted in figure
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2.4, where on the left-hand side, the momentum transfer from the background field to each
vertex, i.e. 𝑟 and 𝑙, may have arbitrary values, but on the right-hand side, at each vertex,
there is a constraint which needs to be fulfilled. As mentioned above, this leads to the
denotation one-step process for the sum of the first three summands, due to the off-shell
intermediate photon, as well as two-step process for the last summand, according to the
on-shell intermediate photon.
We mention, there are similar decompositions of the trident matrix element as well as its
probability density in arbitrary plane-wave background fields (cf. [69, 135, 175]) as well as
constant crossed fields (cf. [157, 158]). For instance, based on a light-front hamiltonian
approach, the decomposition of the trident probability density given in [69] is originated
among others in the split of the matrix element in a light-front time ordered and a light-
front instantaneous term. This leads to excellent, in some cases analytical, results in
arbitrary plane-wave background fields for a wide range of intensity parameters 𝑎0 as
well as the quantum non-linearity parameter 𝜒 (see definition (2.6)). However, since the
aim of the present thesis is the investigation of the strong-field trident for 𝑎0 < 1, it is
more convenient to retain the decomposition given in equation (2.93) because here we can
directly point out, which parts of the matrix element contain the leading order for small
𝑎0. Considering 𝐴𝜇 ∼ 𝑎0 as well as the respective number of appearances of the finite
part 𝛤𝜇 (which is linear in 𝐴𝜇; see equation 2.72) in the terms of decomposition (2.93),
one has 𝑆11, 𝑆12 ∼ O(𝑎0) and 𝑆on

2 , 𝑆off
2 ∼ O(𝑎2

0), for 𝑎0 < 1. Therefore, we conclude that
the first two diagrams on the r.h.s. of figure 2.4 (also referred to as the partial diagrams;
corresponding to 𝑆11, 𝑆12) contain the leading order of the strong-field trident matrix
element in an expansion for small 𝑎0. Furthermore, this leading order is linear in 𝑎0, which
is key for the connection to the perturbative monochromatic case. In other words, the first
term in the regularised version of the vertex function (2.71) (which produces the partial
diagrams) is not only mandatory to preserve gauge invariance due to the Ward identity (see
section 2.4), but also necessary to ensure the contact to the perturbative monochromatic
QED, especially in the trident process considered in this thesis (see chapter 4 for further
details).





3 | Pulsed-perturbative quantum
electrodynamics

3.1 Approaches and approximations to strong-field QED

In chapter 2, we outlined the theory of strong-field QED assuming the background field
to be a Lorenzian null-field. However, for practical purposes, strong-field QED is only
applicable if one chooses an appropriate field approach in order to mathematically model
the laser field for a given experimental situation. Considering the description of scattering
processes involving a single particle (or several, but few particles) with a laser field, we
mention there are several well established field models.
First, there is the widely used constant-cross field (CCF) approximation [25], where one
assumes the background field to be in the form of 𝐴𝜇

CCF = 𝑎𝜇𝜙, where 𝑎𝜇 denotes a general
constant polarisation vector and 𝜙 = 𝑘𝜇𝑥𝜇 is the phase variable of the background field.
This approach implies the electric field 𝐸 = −𝜕𝑡𝐴 and the magnetic field 𝐵 = rot𝐴, where
𝐴 denote the spatial components of the Lorenzian null-field 𝐴𝜇, to be constant, with
the same magnitude and perpendicular to each other and the reference momentum 𝑘𝜇 of
the background field, respectively. Despite the apparently strong constraint made in this
approach w.r.t. the background field, applying the constant-cross field approximation, very
noticeable results are achieved, e.g. for Compton scattering and Breit-Wheeler pair produc-
tion [217, 218, 247], double-Compton scattering [151, 152] and trident pair production [157,
158], where especially the regime of high laser intensity parameters 𝑎0 ≫ 1 is considered.
Another well established and widely used approach for the background field is the pulsed
plane-wave model introduced within this thesis in section 2.1 and especially exposed in
definition (2.10). In general, this approach is suitable to calculate scattering processes in
strong-field QED for arbitrary laser intensity parameters 𝑎0 as well as address the pulsed
behavior of modern laser systems due to the introduction of a pulse-envelope function.
Therefore, in addition to the 𝑎0 and the quantum non-linearity parameter 𝜒, defined in the

43
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equations (2.9), there is another parameter in order to describe the background field: the
pulse width 𝛥𝜙, which depends on the choice of the envelope function. However, despite
the fact, that the pulsed plane-wave model is one of the more general approaches, the
occurring mathematical expressions can be rather complicated, which makes the numerical
treatment fairly challenging. This is especially true for strong-field QED processes with
higher numbers of vertices, e.g. non-linear double-Compton scattering [68, 174, 270] and
the strong-field trident process [69, 70, 135, 175].
This leads to the necessity of analytical approximations for the pulsed plane-wave approach
in order to produce more manageable descriptions of the involved processes and getting
deeper insights to the occurring phenomena w.r.t. the respective properties of the back-
ground field. For infinitely wide pulses, i.e. 𝛥𝜙 → ∞, one has the well known infinite
plane-wave (IPW) approach of the laser field, which is, besides CCF, widely used to investi-
gate strong-field QED processes w.r.t. their dependence to the laser intensity parameter 𝑎0.
In the IPW approach, there is no spectral information of the laser field involved (besides
the central frequency) and the photon number parameter becomes integer-valued, which
is actually more convenient to be interpreted as a photon number. The expansions of
transition amplitudes w.r.t. the harmonics of the laser field leads in the IPW approach
to analytical expressions for the cross sections of the one-vertex processes, e.g. non-linear
Compton scattering [38, 103, 117, 213, 217–219, 247] and non-linear Breit-Wheeler pair
production [140, 213, 216–218, 243, 247] in terms of special functions. However, the infinite
extent of the background field leads to regularity issues of the transition amplitude for
processes with more than one vertex, like the trident process [133]. We mention that on the
level of probabilities, the CCF approximation turns out to be the limiting case of the IPW
approach for 𝑎0 ≫ 1 with suitable side conditions (see [247] for a more detailed discussion
of this connection).
Nevertheless, since modern laser collision experiments apply pulsed laser sources with
shorter and shorter pulse widths, the spectral information of the laser field become more
important for the investigation of involved scattering processes. Furthermore, the develop-
ment of new x-ray sources provides highly energetic electromagnetic fields, which implies
small to medium intensity parameters 𝑎0 ≲ 1 (see section 4.5 for further details in the
context of the trident process). Therefore, within the present thesis, we investigate a new
approximation to the pulsed plane-wave approach, referred as pulsed-perturbative QED
and introduced in section 3.2, in order to address the finite spectral width of modern pulsed
radiation sources combined with the low to medium values of the intensity parameter 𝑎0

implied by the x-ray regime reached by their central frequency.
Before we summarise this section, we honorably mention other types of approximations
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and approaches for strong-field QED, which are beyond the scope of this thesis. First of
all, there are the “localised” approaches, namely the locally-constant field approximation
(LCFA; cf. [62, 81, 116, 134, 191, 244]) and locally-monochromatic approximation (LMA;
cf. [123]), which are motivated by their application to large-scale simulations [27, 44, 81,
97, 104, 105, 146, 156, 214, 244, 245] w.r.t. local informations about the background field.
Furthermore, there is the approximation for slowly varying envelopes within the pulsed
plane-wave approach, which is capable to simplify the mathematical expressions for not
too short pulses (cf. [212, 269, 271, 290]).

Background field approximation
(strong-field QED)

constant cross-field approximation

pulsed plane-wave approach

pulsed-perturbative QED

Infinite plane-wave approach

perturbative QED

Aµ
ccf

Aµ
ppw

a0 � 1

∆φ→∞

∆φ→∞

a0 � 1

a0 � 1,
χ� 1

Figure 3.1: Schematic illustration of some approximations in strong-field QED w.r.t. their
approaches and parametric limits, respectively.

In order to summarise this section, in figure 3.1 the approaches outlined above and their
connections w.r.t. the parameter limits are depicted schematically. In the upper left
corner, we start with strong-field QED as the most general concept, which is generally the
manifestation of the background field approximation outlined in section 2.2. From this
panel, there are the two approaches outlined in this section and given by an ansatz for
the background field: the CCF approach (upper right panel) and the pulsed plane-wave
approach (center left panel). From the pulsed plane-wave panel, the outgoing arrows
indicate the two directions in the parameter space in order to get an approximation: on the
one hand, we have the IPW approximation (center right panel) for infinitely wide pulses,
i.e. 𝛥𝜙 → ∞, but arbitrary intensity parameters 𝑎0. On the other hand, there is the
pulsed-perturbative QED approach for small laser intensity parameter 𝑎0 ≲ 1 but arbitrary
pulse widths. Finally, the connections of these two approximations to the perturbative
monochromatic QED are displayed w.r.t. the two different limits in the respective remaining
parameter space. For the IPW approach, the monochromatic QED description results
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in the low-𝑎0 limit, i.e. the leading order for 𝑎0 → 0. In the case of pulsed-perturbative
QED, the monochromatic QED results from the limit for infinitely wide pulses, i.e. the
reduction to the central frequency of the laser field for 𝛥 → ∞. Therefore, the model of
pulsed-perturbative QED can be seen as a missing piece in the pathway from the pulsed
plane-wave approach back to the perturbative monochromatic QED w.r.t. the impact of the
pulsed structures of the background field. Furthermore, one may read the arrows displayed
in figure 3.1 the other way round, where the panel at the tail of the arrow represents
an extension of the panel at the head of the arrow w.r.t. to a certain feature. Looking
at it this way, pulsed-perturbative QED can also be seen as a possible extension of the
monochromatic QED in order to integrate exclusively the finite spectra of the involved
electromagnetic field.

3.2 Momentum space rules in pulsed-perturbative QED
Within this section, we specialise the laser field 𝐴𝜇 to the pulsed plane-wave case, which
was defined by equation (2.10) and take advantage of the abbreviations introduced in
equation (2.16). The reader is referred to section 2.1 for further discussions on the pulsed
plane-wave background field.
As mentioned at the beginning of this chapter, we want to derive an approximate set
of momentum space rules for the case 𝑎0 < 1, therefore we start with the expansion
of the vertex function (2.46) in powers of the laser intensity parameter 𝑎0, where our
approach is to preserve the terms up to order linear in 𝑎0. First, it is mentioned that
the elementary vertices from equations (2.48) to (2.50), as well as the kinematic factors
(2.55), are independent of the intensity parameter 𝑎0. However, the whole dependency on
the background field 𝐴𝜇, i.e. the intensity parameter 𝑎0, is encoded in the phase integrals.
Since the regularised expression (2.68) for 𝐵0 contains among others the phase integral 𝐵1,
it is reasonable to start with the expansion of the latter.

Expansion of 𝐵𝜇
1

Using equation (2.52), as well as the sum representation of the complex exponential function
the phase integral 𝐵𝜇

1 is expanded as

𝐵𝜇
1 (𝑙) = 𝑎0

ˆ ∞

−∞
d𝜙 (𝜀𝜇

1𝑓1(𝜙) + 𝜀𝜇
2𝑓2(𝜙)) 𝑒𝑖𝑙𝜙

∞∑︁
𝑛=1

(︀
𝑖𝑎0𝛼

𝜈
1𝛽1𝜈(𝜙) + 𝑖𝑎2

0𝛼2𝛽2(𝜙)
)︀𝑛

𝑛! (3.1)

= 𝑎0

ˆ ∞

−∞
d𝜙 (𝜀𝜇

1𝑓1(𝜙) + 𝜀𝜇
2𝑓2(𝜙)) 𝑒𝑖𝑙𝜙 + O(𝑎2

0) (3.2)

= 𝑎0 (𝜀𝜇
1𝐹1(𝑙) + 𝜀𝜇

2𝐹2(𝑙)) + O(𝑎2
0) (3.3)
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where amplitude functions and the internal integrals 𝛽𝜇
1 , 𝛽2 are defined in equations

(2.17) and the following, respectively. We mention the integral and the infinite sum are
interchangeable due to the absolute convergence of the complex exponential function. In
the leading terms of the expansion of 𝐵𝜇

1 in 𝑎0, we abbreviate the Fourier transforms of
the amplitude functions 𝑓𝑖(𝜙) as

𝐹𝑖(𝑙|𝛥𝜙, 𝜉) := FT[𝑓𝑖](𝑙) =
ˆ ∞

−∞
d𝜙𝑓𝑖(𝜙|𝛥𝜙, 𝜉) e𝑖𝑙𝜙, with 𝑖 = 1, 2. (3.4)

These important functions eventually contain the whole pulse shape dependence of the
first order in 𝑎0.
In order to give a notion about the performance of the linearisation for small intensity
parameters 𝑎0, in figure 3.2 the real part of the 𝜇 = 1 component of the phase integral
𝐵𝜇

1 (𝑙) given in equation (2.52) is depicted (including all orders of 𝑎0) for linear polarisation
in 𝜀1-direction, i.e. 𝜉 = 0 as a function of the photon number parameter 𝑙 and for several
combinations of the pulse width 𝛥𝜙 and the laser intensity parameter 𝑎0. Treating only the
1-component of 𝐵𝜇

1 (𝑙) is reasonable since we chose without loss of generality 𝜀1 = (1,0,0) for
the spatial components of the elementary polarisation vector 𝜀𝜇

1 . For comparison we also
depicted the real part of the 1-component of the linear approximation of 𝐵𝜇

1 (𝑙) given by
equation (3.3), neglecting the O(𝑎2

0), for the same polarisation and scaled both quantities
with the factor 𝑒

𝑚𝑎0𝛥𝜙 in order to make them dimensionless as well as bring their respective
distribution in the same order of magnitude. Furthermore, we fixed the kinematic factors
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Figure 3.2: The real part of the 𝜇 = 1 component of the phase integral 𝐵𝜇
1 (𝑙) given in

equation (2.52) is depicted for linear polarisation in 𝜀1-direction, i.e. 𝜉 = 0 with 𝜀1 = (1,0,0), as
a function of the photon number parameter 𝑙 for several combinations of the pulse widths 𝛥𝜙
(left: 5, center: 10, right: 15) and the intensity parameter 𝑎0 (blue: 1.0, red: 0.75, green: 0.5,
purple: 0.25, yellow: 0.1). The kinematic parameters were chosen as 𝛼𝜇

1 𝜀1𝜇 = 𝛼2 = 0.2 and
the function is scaled by the factor |𝑒|

𝑚𝑎0𝛥𝜙 . Additionally, the real part linear approximation of
𝐵1

1(𝑙) w.r.t. the intensity parameter 𝑎0 given in equation (3.3) is depicted (dashed black line)
with the same scaling (which makes it independent of 𝑎0) and for the same pulse widths.
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with 𝛼𝜇
1𝜀1𝜇 = 𝛼2 = 0.2, which are typical values for the kinematic situations investigated in

the context of trident pair production within this thesis. First of all, we mention that for
all depicted values of 𝛥𝜙 and 𝑎0, there are two main maxima grouped around 𝑙 = 0, where
the decreasing of 𝑎0 brings the positions of these maxima closer and closer to 𝑙 = ±1, and
overall the global distributions become more symmetric w.r.t. the axis 𝑙 = 0. Furthermore,
for 𝑎0 ∼ 1, there are several side extrema, which become more distinct if 𝛥𝜙 increases.
The origin of these minor structures can be identified in the phase function 𝐺(𝜙|𝑎0, 𝛥𝜙)
defined in equation (2.54) as part of the oscillatory factor in the integrand of the general
phase integral 𝐵𝜇

1 (𝑙), where 𝐺(𝜙|𝑎0, 𝛥𝜙) becomes more important if 𝑎0 approaches unity.
However, if 𝑎0 decreases, the side structures become smaller, and finally for the depicted
case of 𝑎0 = 0.1, the distribution of the general phase integral (solid yellow line) nearly
perfect matches the linear approximation (dashed black line) for all shown values of 𝛥𝜙.

Expansion of 𝐵2

Since the integrand of the phase integral 𝐵2 defined in equation (2.53) has the pre-
exponential factor 𝐴2

ppw ∼ 𝑎2
0 and its exponential function contains no negative powers of

𝑎0, the expansion of 𝐵2 in 𝑎0 has neither an independent, nor a linear term: 𝐵2(𝑙) = O(𝑎2
0).

Consequently, we may suppress the terms in the vertex function, which contain the phase
integral 𝐵2.

Expansion of 𝐵0

By the use of the regularised expression (2.68) for the phase integral 𝐵0, there are two
components, which we need to expand in 𝑎0. First we start with the prefactor of the
delta-distribution in the first summand of equation (2.68), which results in

G =
∞∑︁

𝑛=0

(𝑖𝐺+)𝑛

𝑛! +
∞∑︁

𝑗=0

(𝑖𝐺−)𝑗

𝑗! (3.5)

= 2 + 𝑖𝑎0 lim
𝜂→∞

(𝛼𝜇
1𝛽1𝜇(𝜂) + 𝛼𝜇

1𝛽1𝜇(−𝜂)) + O(𝑎2
0), (3.6)

where we inserted the function 𝐺(𝜙) given in equation (2.54) into the limits 𝐺± =
lim𝜙→∞𝐺(±𝜙). The second term is given by 𝐵̃0(𝑙) := −P1

𝑙 [𝛼𝜇
1𝐵1𝜇(𝑙) + 𝛼2𝐵2(𝑙)], where

only the first summand contributes to the first order in 𝑎0 since the leading order of 𝐵2 in
𝑎0 is quadratic. Therefore if we use the expansion of 𝐵1 in powers of 𝑎0 given in equation
(3.3), the leading order of 𝐵̃0 in 𝑎0 results in

𝐵̃0 = −𝑎0P

[︂
𝛼𝜇

1
𝑙

(𝜀1𝜇𝐹1(𝑙) + 𝜀2𝜇𝐹2(𝑙))
]︂

+ O(𝑎2
0), (3.7)



3.2 Momentum space rules in pulsed-perturbative QED 49

where the symbol P denotes the Cauchy principal value operator w.r.t. the variable 𝑙 and
the functions 𝐹𝑖 are given in equation (3.4).
Combining the two expansions (3.6) and (3.7), the phase integral 𝐵0 reads

𝐵0(𝑙) = 𝜋

(︂
2 + 𝑖𝑎0𝛼

𝜇
1 lim

𝜂→∞
(𝛽1𝜇(𝜂) + 𝛽1𝜇(−𝜂))

)︂
𝛿(𝑙)

− 𝑎0P

[︂
𝛼𝜇

1
𝑙

(𝜀1𝜇𝐹1(𝑙) + 𝜀2𝜇𝐹2(𝑙))
]︂

+ O(𝑎2
0), (3.8)

which reveals again the importance of the Fourier transforms (3.4) as a distinctive part of
the second summand, i.e. the part with a genuine momentum transfer from the background
field to the vertex.

Vertex function of pulsed-perturbative QED

In order to investigate the pulse width dependence separated from the multi-photon
contributions, we define the pulsed-perturbative QED vertex as the part of the strong-field
QED vertex up to the order which is linear in laser intensity parameter 𝑎0. Combining
the expansions (3.3) and (3.8) with (2.47), the expansion of the strong-field QED vertex
function reads

𝛤𝜇(𝑙) = 𝛤𝜇
pp + O(𝑎2

0), (3.9)

with the pulsed-perturbative QED vertex

𝛤𝜇
pp = 𝜋𝛿(𝑙)

(︂
2 + 𝑎0𝛼

𝜈
1 lim

𝜙→∞
(𝛽1𝜈(𝜙) + 𝛽1𝜈(−𝜙))

)︂
𝛤𝜇

0

+ 𝑎0

(︂
𝛤𝜇𝜈

1 − 𝛤𝜇
0 P

𝛼𝜈
1
𝑙

)︂
(𝜀1𝜈𝐹1(𝑙) + 𝜀2𝜈𝐹2(𝑙)) (3.10)

=: 𝛿(𝑙)𝛤𝜇
0 (𝑝,𝑝′) + 𝑎0𝛤

𝜇
pp(𝑙,𝑝,𝑝′). (3.11)

In analogy to the regularised version of the dressed vertex function given in equation
(2.71), the expansion up to the first order in 𝑎0 contains also two qualitatively different
parts. On the one hand, a term proportional to 𝛿(𝑙) (denoted as 𝛤𝜇

0 ), parametrising the
absence of transitions of momentum from the background field to the vertex. On the
other hand, a term proportional to the intensity parameter 𝑎0 (denoted as 𝛤𝜇

pp), where
the photon number parameter 𝑙 does not vanish across the whole physical phase space,
which is indicated by the Cauchy principal value (see the explanations to equation (2.71)
for further details).
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Momentum space rules of pulsed-perturbative QED

Similar to the momentum space rules given in table 2.2, especially similar to the dressed
vertex, the pulsed-perturbative QED vertex function might be used as a building block of
Feynman diagrams describing a variety of processes. Accordingly, we define the diagram-
matical representation of the pulsed-perturbative vertex as

p p′

k′

lk

= −𝑖𝑒𝛤 𝜇
pp(𝑙, 𝑝, 𝑝′|𝑘) (2𝜋)4 𝛿(4) (︀𝑝+ 𝑙𝑘 − 𝑝′ − 𝑘′)︀ , (3.12)

where the vertex function is given by equation (3.10).
Considering that the other momentum space rules, except the dressed vertex, have no
dependence on the background field, they stay the same as given in table 2.2. According to
the purpose of the model outlined in this section, to derive scattering matrix elements up
to and including the linear order in the intensity parameter 𝑎0, we reduce the full dressed
vertex given in equation (2.47) to its linear approximation in 𝑎0 constituted by the pulsed-
perturbative vertex given in equation (3.12). In fact, the usage of the pulsed-perturbative
vertex might produce scattering matrix elements, which contain higher order terms in 𝑎0 as
the purposed linear order, which is especially the case for multiple-vertex processes like the
trident process investigated within the present thesis. However, since our primary goal is
to derive differential cross sections as defined in equation (2.40) using only the linear order
in 𝑆fi, we can eventually avoid the issue of higher order terms by defining the differential
cross section within this approximation as

d𝜎ppQED := lim
𝑎0→0

d𝜎 ≡ lim
𝑎0→0

d𝜎
⃒⃒⃒⃒
𝛤 𝜇→𝛤 𝜇

pp

. (3.13)

The r.h.s of equation (3.13) denotes the differential cross section as defined in equation
(2.40), but with the usage of the pulsed-perturbative vertex (3.12) instead of the full dressed
vertex. Since the incident photon flux given by equation (2.15) is proportional to 𝑎2

0 and
the cross section is proportional to |𝑆fi|2

𝐼𝛾
, the limit 𝑎0 → 0 cancels out all terms provided

by the scattering matrix element 𝑆fi with higher than the linear order in 𝑎0. However, one
may notice the pulsed-perturbative vertex function (3.10) contains terms independent of
𝑎0, which could produce singularities in the cross section by performing the limit 𝑎0 → 0
due to the appearance of terms scaling with negative powers in 𝑎0. But as it turns out,
there will never be a physical phase space for such contributions to the matrix element.
The 𝑎0-independent terms in the vertex function are proportional to 𝛿(𝑙), where 𝑙 is the
photon number parameter at the respective vertex. This implies, that those terms are
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the contributions to the matrix element, which have no momentum transfer from the
background field to any vertex. However, if we recall the assumption made to define the
cross section given in equation (2.40), that we have a process with exactly one particle
incoming alongside the laser field, terms in the scattering matrix element on tree-level
without any transition of momentum from the background field will not contribute to
the cross section due to the vanishing physical phase space, i.e. there is no emission
nor absorption of a single photon allowed in perturbative QED. Accordingly, this means
that the limit in equation (3.13) leads to a differential cross section, which contains only
contributions from the scattering matrix element linear in 𝑎0. Furthermore, the restriction
to the linear order within the calculation of the scattering matrix element implies, that
each momentum space diagram must contain exactly one vertex with a genuine momentum
transfer from the background field, i.e. per diagram there is exactly one occurrence of the
function 𝛤

𝜇
pp defined in equation (3.11).

Ward identity and gauge invariance

As we mentioned above the elementary spinors, the external photon states as well as the
electron and the photon propagator in the momentum space rules in table 2.2 neither
depend on 𝑎0 nor the laser amplitude functions 𝑓𝑖(𝜙). Accordingly, they build, together
with the pulsed-perturbative vertex function given in equation (3.12), a valid system of
Feynman rules for the linear order in the 𝑎0 expansion as well. However, as we mentioned in
section 2.4, the usage of an approximation within a gauge invariant theory may eventually
break the gauge invariance. Considering that, we need to prove that our approach of
pulsed-perturbative QED and the usage of the momentum space rules w.r.t. the first order
in 𝑎0, still result in gauge invariant expressions for given processes. In order to do that,
we need to show that the pulsed-perturbative vertex function (3.10) also obeys a Ward
identity 𝑘′

𝜇𝛤
𝜇
pp = 0. Following the reasoning in section 2.4, we consider 𝑘′

𝜇𝛤
𝜇
pp sandwiched

between the two respective Dirac bi-spinors, which results in

𝑢(𝑝′)𝑘′
𝜇𝛤

𝜇
pp𝑢(𝑝) = 𝜋𝛿(𝑙)

(︂
2 + 𝑎0𝛼

𝜈
1 lim

𝜙→∞
(𝛽1𝜈(𝜙) + 𝛽1𝜈(−𝜙))

)︂
𝑢(𝑝′)/𝑘′

𝑢(𝑝)

+ 𝑎0

(︂
𝑢(𝑝′)𝑘′

𝜇𝛤
𝜇𝜈
1 𝑢(𝑝) − 𝑢(𝑝′)/𝑘′

𝑢(𝑝)P𝛼
𝜈
1
𝑙

)︂
(𝜀1𝜈𝐹1(𝑙) + 𝜀2𝜈𝐹2(𝑙)) .

(3.14)

Considering the relation 𝑘′ = 𝑝 − 𝑝′ + 𝑙𝑘 obtained from the delta-distribution in the
pulsed-perturbative vertex (3.12) and using the identities 𝑢(𝑝′)/𝑘′

𝑢(𝑝) = 𝑙𝑢(𝑝′)/𝑘𝑢(𝑝) and
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𝑢(𝑝′)𝑘′
𝜇𝛤

𝜇𝜈
1 𝑢(𝑝) = 𝛼𝜈

1𝑢(𝑝′)/𝑘𝑢(𝑝), one has

𝑢(𝑝′)𝑘′
𝜇𝛤

𝜇
pp𝑢(𝑝) = 𝜋𝛿(𝑙)𝑙

(︂
2 + 𝑎0𝛼

𝜈
1 lim

𝜙→∞
(𝛽1𝜈(𝜙) + 𝛽1𝜈(−𝜙))

)︂
𝑢(𝑝′)/𝑘𝑢(𝑝)

+ 𝑎0

(︂
𝛼𝜈

1𝑢(𝑝′)/𝑘𝑢(𝑝) − 𝑙𝑢(𝑝′)/𝑘𝑢(𝑝)P𝛼
𝜈
1
𝑙

)︂
(𝜀1𝜈𝐹1(𝑙) + 𝜀2𝜈𝐹2(𝑙))

(3.15)

= 0, (3.16)

where we used 𝑥𝛿(𝑥) = 0. Therefore, the pulsed-perturbative vertex (3.12) still obeys the
Ward identity, which implies the capability of producing gauge invariant amplitudes as
explained in section 2.4.

3.3 Spectrum of the background field
Since the model of strong-field QED (as well as pulsed-perturbative QED) is based on
Lorenzian null-fields, the dependence of the background field to the laser phase 𝜙 plays a
crucial role for the interpretation of the respective quantities derived within the theory. As
we mentioned above (cf. section 2.5), the usage of light-cone coordinates (see appendix A.2)
is suitable to simplify the appearing mathematical expressions. However, the deeper reason
for this circumstance is given in the laser phase 𝜙 itself, which is a (scaled) light-cone
coordinate:

𝜙 = 𝑘𝜇𝑥𝜇 = 𝜔𝑥−, (3.17)

where 𝜔 ≡ 𝑘+ denotes the reference angular frequency of the laser field and 𝑥− is the
position on the negative branch of the light-cone (w.r.t. the spatial direction 𝑘/𝜔 of reference
momentum 𝑘𝜇 = (𝜔, 𝑘) of the background field), commonly referred to as the light-cone
time. Accordingly, since the photon number parameter 𝑙 defined in equation (2.43) is the
Fourier-conjugate of the laser phase 𝜙 w.r.t. the strong-field vertex function, it is reasonable
to interpret the parameter 𝑙 as the dimensionless counterpart to the energy transferred
from the background field (more precisely the fraction of energy) corresponding to the
light-cone time 𝑥−. With this in mind, we can interpret the Fourier transforms (3.4) w.r.t.
the amplitude functions (2.17) as the (light-cone) spectra of the background field, i.e. the
distribution of the parameter 𝑙. More explicitly, if we consider the light-cone coordinate
representative of the laser phase from equation (3.17), the Fourier transforms (3.4) result
in 𝐹𝑖(𝑙𝜔) = 𝜔

´
d𝑥− 𝑓𝑖(𝜔𝑥−) exp (𝑖𝑙𝜔𝑥−), which implies, that 𝑙𝜔 is the Fourier-conjugate of

the light-cone time 𝑥− and therefore corresponds to the energy fraction of the background
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field, distributed through the Fourier transforms 𝐹𝑖 (see [247] for further discussions).
As we mentioned in section 2.1 one widely considered edge case of the pulsed plane-wave
background field (2.10) is the infinite plane-wave field, which one obtains through the limit
𝛥𝜙 → ∞. For this special case, the parameter 𝑙 is interpreted as the number of photons
with each referenced by the momentum 𝑘𝜇 involved in the respective process (even if there
is no photon in the quantum theoretical sense in a classical background field), which implies
that the parameter 𝑙 has only integer values. However, considering the general pulsed
plane-wave approach (2.10), there is no constraint of such a kind, since, in the case of a
pulsed plane-wave, the parameter 𝑙 may attain every continuous value on the real line.
This is a direct implication of the finite pulse width encoded in the Fourier transform in
the definition of the strong-field vertex function (2.43) as well as more explicitly in the
Fourier transforms (3.4) appearing in the pulsed-perturbative vertex function (3.10). Since
the latter contains the pulse-width effects w.r.t. the first order in the intensity parameter
𝑎0, in the edge case of an infinite plane-wave, the limit 𝛥𝜙 → ∞ reproduces the discrete
behavior of the values of 𝑙 in the sense of

lim
𝛥𝜙→∞

𝐹𝑖(𝑙,𝛥𝜙) ∼ 𝛿(𝑙 + 1) ± 𝛿(𝑙 − 1), (3.18)

which constrains the fraction of momentum transferred from the background field to the
pulsed-perturbative vertex to |𝑙| = 1. Accordingly, this means the model introduced in
section 3.2 is capable of describing QED processes involving apparent multi-photon effects
in the sense of including continuous fractions of the momentum of the background field
but reduces to the one-photon interaction, i.e. perturbative monochromatic QED, in the
case of infinitely wide pulse widths. Therefore we refer to the approximation of strong-field
QED involving at most the linear order of 𝑎0 on the level of matrix elements (introduced
in section 3.2) as pulsed-perturbative QED.
As we mentioned above, each diagram within pulsed-perturbative QED will eventually
contain exactly one vertex with a genuine momentum transfer from the background field,
which is the part, where the spectra 𝐹𝑖 appear as factors in the vertex function. This
means, on the level of cross sections, the impact of the pulse width dependence, encoded
completely in the functions 𝐹𝑖, will eventually factorise out and occur in terms of the
form 𝐹𝑖𝐹

*
𝑗

𝛥𝜙 with 𝑖, 𝑗 = 1, 2, where the asterisk is the complex conjugation and 𝛥𝜙 denotes
the pulse width, which comes from the incident photon flux within the definition of the
differential cross section (cf. equation (2.40)).
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Special case of a cos2-envelope

Here we specialise the envelope function 𝑔(𝜙,𝛥𝜙) of the pulsed plane-wave background field
to the case of a cos2-pulse defined in equation (2.18). In this case, the Fourier transforms
(3.4) can be derived analytically, where the first Fourier transform 𝐹1 is given by

𝐹1(𝑙,𝛥𝜙) = 𝑚

𝑒
cos(𝜉)

ˆ ∞

−∞
d𝜙 cos2

(︂
𝜋𝜙

2𝛥𝜙

)︂
cos(𝜙) e𝑖𝑙𝜙 (𝛩(𝜙+𝛥𝜙) −𝛩(𝜙−𝛥𝜙))

(3.19)

= 𝑚𝜋2

2𝑒 cos(𝜉)𝛥𝜙
[︂

sinc(𝛥𝜙(𝑙 + 1))
𝜋2 −𝛥𝜙2(𝑙 + 1)2 + sinc(𝛥𝜙(𝑙 − 1))

𝜋2 −𝛥𝜙2(𝑙 − 1)2

]︂
. (3.20)

Here the function sinc(𝑥) = sin(𝑥)
𝑥 for 𝑥 ̸= 0 and sinc(0) = 1 denotes the non-normalised

sine cardinal function (also shortly referred to as sinc function), where its appearance is
reasonable since the sinc function is the Fourier transform of the rectangular function
encoded here in the factor (𝛩(𝜙+𝛥𝜙) −𝛩(𝜙−𝛥𝜙)), with the Heaviside step-function
𝛩. We mention that 𝐹1 derived in equation (3.20) is real-valued, which is always the
case, if the function 𝑓1(𝜙,𝛥𝜙) is even (e.g. as for the cos2-pulse), but is, in general, a
complex-valued function. The second Fourier transform 𝐹2 follows analogously:

𝐹2(𝑙,𝛥𝜙) = 𝑚𝜋2

2𝑖𝑒 sin(𝜉)𝛥𝜙
[︂

sinc(𝛥𝜙(𝑙 + 1))
𝜋2 −𝛥𝜙2(𝑙 + 1)2 − sinc(𝛥𝜙(𝑙 − 1))

𝜋2 −𝛥𝜙2(𝑙 − 1)2

]︂
, (3.21)

where in contrast to 𝐹1, the result given in equation (3.21) is an imaginary-valued function,
which is always the case if the function 𝑓2(𝜙,𝛥𝜙) is odd (e.g. as for the cos2 pulse). Using
the analytic expressions given in (3.20) and (3.21), respectively, the infinite plane-wave
limit 𝛥𝜙 → ∞ results in

lim
𝛥𝜙→∞

𝐹1(𝑙,𝛥𝜙) = 2𝜋𝑚
𝑒

cos(𝜉) (𝛿(𝑙 + 1) + 𝛿(𝑙 − 1)) (3.22)

lim
𝛥𝜙→∞

𝐹2(𝑙,𝛥𝜙) = 2𝜋𝑚
𝑖𝑒

sin(𝜉) (𝛿(𝑙 + 1) − 𝛿(𝑙 − 1)) , (3.23)

where we used the limit 𝑎 sinc(𝑎𝑥) → 𝜋𝛿(𝑥) for 𝑎 → ∞ in the distributional sense, which
makes the assumption (3.18) explicit.
As we mentioned above, the impact of the Fourier transforms 𝐹𝑖 on cross sections on
tree-level will always occur as a factor of the form 𝐹𝑖𝐹𝑗

𝛥𝜙 . Considering this as well as the
equations (3.20) and (3.21), in figure 3.3 the expressions |𝐹1|2

𝛥𝜙 and |𝐹2|2
𝛥𝜙 are depicted for the

special case of the cos2-pulse envelope given in equation (2.18) as functions of the photon
number parameter 𝑙 for several values of the pulse width 𝛥𝜙. First of all, we observe that
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Figure 3.3: The expressions |𝐹1|2

𝛥𝜙 (left panel) and |𝐹2|2

𝛥𝜙 (right panel) are depicted for the
cos2-pulse envelope as functions of the photon number parameter 𝑙 for several values of the
pulse width 𝛥𝜙 (blue: 25, orange: 50, green: 250, red: 500).

both functions are symmetric w.r.t. the parameter 𝑙, which results from the fact, that the
function 𝐹1 (𝐹2) is originally even (odd) for the case of a cos2-pulse shape. Furthermore,
we mention that in each panel as well as for each value of 𝛥𝜙, there are two distinct main
maxima centred around the values 𝑙 = 1 and 𝑙 = −1, respectively. This shows explicitly
that the impact of the pulse envelope on cross sections within pulsed-perturbative QED
will occur similar to a one-photon interaction, but with a certain bandwidth indicated
by the non-vanishing of the expressions depicted in figure 3.3 over a wide range of values
𝑙, especially those with |𝑙| ̸= 1. Accordingly, the first side maximum at each side of the
respective main maximum is placed between 𝑙max ± 2𝜋

𝛥𝜙 , and 𝑙max ± 3𝜋
𝛥𝜙 , where 𝑙max = ±1

and their heights are about 6 × 10−4 of the respective main maximum. This means the
contribution of these side effects is not negligible. Moreover, in both panels in figure 3.3
the width (height) of each distinct main maximum decreases (increases) for increasing
pulse widths 𝛥𝜙, which will eventually result in the delta-distributions similar to those in
the equations (3.22) and (3.23), respectively (see equations (4.43) and (4.47)).





4 | Pulsed-perturbative trident pro-
cess

4.1 Matrix element and cross section
In order to investigate the pulse shape dependence of the strong-field trident process (see
section 2.5) separately from intensity effects, we consider the lowest order of an expansion
in the intensity parameter 𝑎0, which will be referred to as pulsed-perturbative trident
process. However, since the framework of pulsed-perturbative QED envisaged in section
3.2 provides a valid description of the pulse dependence of strong-field QED processes w.r.t.
to the linear order in the intensity parameter 𝑎0 in general, we use pulsed-perturbative
QED to derive the pulsed-perturbative trident process instead of expanding each quantity
derived in section 2.5 in 𝑎0 separately. This convenient approach enables the investigation
of the pulse shape dependency in terms of the general structures illustrated in section 3.3,
i.e. the effect of the spectrum of the background field on the matrix element and cross
sections of the pulsed-perturbative trident process.
In terms of pulsed-perturbative QED, the pulsed-perturbative trident process is described
on tree-level by the momentum space diagrams depicted in figure 4.1, where 𝑝 denotes the

k′

p p3

p2

p1rk

lk

− k′′

p p2

p3

p1rk

lk

Figure 4.1: The diagrammatical representation of the pulsed-perturbative trident in momen-
tum space, where 𝑝 denoted the momentum of the initial electron, 𝑝1 the momentum of the
outgoing positron and 𝑝2, 𝑝3 the momenta w.r.t. the two outgoing electrons, respectively. The
momentum transfer from the background field (with momentum 𝑘) to each vertex is denoted
by 𝑙 and 𝑟, respectively. The respective momentum of the intermediate photon is 𝑘′ for the
first (direct) and 𝑘′′ for the second (exchange) diagram.
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momentum of the incoming electron, 𝑘 the reference momentum of the laser field, 𝑝1 is
the momenta of the outgoing positron, and 𝑝2, 𝑝3 are the momenta of the two outgoing
electrons. The occurring pulsed-perturbative vertices are defined in equation (3.12), where
𝑟, 𝑙 denote the respective photon number parameter at each vertex. Similar to the full
strong-field trident case, there are two diagrams representing the pulsed-perturbative
trident on tree-level, due to the indistinguishability of the two final electrons: the direct
contribution (l.h.s. of figure 4.1) and the exchange contribution (r.h.s. of figure 4.1), where
the relative sign is determined by the Pauli exclusion principle. Using the momentum-space
rules illustrated in section 3.2, the matrix element of the direct part of pulsed-perturbative
trident is given by

𝑆d
fi =
ˆ d𝑙

2𝜋

ˆ d𝑟
2𝜋

ˆ d4𝑘′

(2𝜋)4𝐷𝜇𝜈(𝑘′)

× 𝑢(𝑝3)
(︀
−𝑖𝑒𝛤 𝜇

pp(𝑙, 𝑝, 𝑝3)
)︀
𝑢(𝑝) (2𝜋)4 𝛿(4)(𝑝+ 𝑙𝑘 − 𝑝3 − 𝑘′)

× 𝑢(𝑝2)
(︀
−𝑖𝑒𝛤 𝜈

pp(𝑟,−𝑝1, 𝑝2)
)︀
𝑣(𝑝1) (2𝜋)4 𝛿(4)(𝑘′ + 𝑟𝑘 − 𝑝2 − 𝑝1) (4.1)

= −𝑖𝑒2 (2𝜋)2
ˆ

d𝑙
ˆ

d𝑟 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖
𝛿(4)(𝑝+ (𝑙 + 𝑟)𝑘 − 𝑝𝑡)

×
[︀
𝑢(𝑝3)𝛤𝜇

pp(𝑙, 𝑝, 𝑝3)𝑢(𝑝)
]︀

×
[︀
𝑢(𝑝2)𝛤 𝜈

pp(𝑟,−𝑝1, 𝑝2)𝑣(𝑝1)
]︀
, (4.2)

where we use the abbreviation 𝑝𝑡 := 𝑝1 + 𝑝2 + 𝑝3. The pulsed-perturbative vertex function
𝛤𝜇

pp is defined in equation (3.10) and 𝐷𝜇𝜈 denotes the photon propagator from perturbative
QED, which is given along with all occurring fundamental Dirac bi-spinors in table B.1 in
the appendix. In the last step, we used one delta-distribution to solve the integral over the
four-momentum of the intermediate photon, which leads to 𝑘′ = 𝑝+ 𝑙𝑘− 𝑝3 = 𝑝1 + 𝑝2 − 𝑟𝑘.
This is analogous to the strong-field trident process yielding to the same kinematically
attribution w.r.t. the virtual sub-processes:

𝑝+ 𝑙𝑘 = 𝑘′ + 𝑝3 (virtual) pulsed-perturbative Compton , (4.3)

𝑘′ + 𝑟𝑘 = 𝑝1 + 𝑝2 (virtual) pulsed-perturbative Breit-Wheeler, (4.4)

but with the denotation as pulsed-perturbative (sub-) processes, due to the usage of the
pulsed-perturbative vertex rather than the strong-field vertex. This leads to the global
energy-momentum conservation 𝑝+ (𝑙 + 𝑟)𝑘 = 𝑝𝑡 = 𝑝1 + 𝑝2 + 𝑝3 indicated by the delta-
distribution in equation (4.2).
As shown for the strong-field trident, here it is also suitable to use the light-cone coordinates
for the momenta as illustrated in section A.2 in the appendix with the assumption that
the spatial part of the reference momentum 𝑘 of the laser field is aligned along the 3-axis
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in momentum space, which implies 𝑘+ is the only non-vanishing component of 𝑘. Then
the matrix element results in

𝑆d
fi = −𝑖𝑒2 (2𝜋)2

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
ˆ

d𝑙 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇

pp(𝑙, 𝑝, 𝑝3)𝑢(𝑝)
]︀ [︀
𝑢(𝑝2)𝛤 𝜈

pp(𝑟𝑙,−𝑝1, 𝑝2)𝑣(𝑝1)
]︀
, (4.5)

where we used the identity 𝛿(4)(𝑞) = 𝛿lf(𝑞)𝛿(𝑞+) with the abbreviation 𝛿lf(𝑞) := 1
2𝛿

(2)(𝑞⊥)𝛿(𝑞−)
for an arbitrary four-momentum 𝑞. The resulting delta-distribution for the plus-components
of global energy-momentum conservation yields 𝑝+ + (𝑙+ 𝑟)𝑘+ = 𝑝+

𝑡 and leads to a relation
between the occurring photon number parameters 𝑟𝑙 := 𝑙0 − 𝑙, where

𝑙0 = 𝑝+
𝑡 − 𝑝+

𝑘+ = 𝑝+
1 + 𝑝+

2 + 𝑝+
3 − 𝑝+

𝑘+ , (4.6)

with 𝑙0 = 𝑟0 ̸= 0 (see section 2.5 for a more complete reasoning). Up to this point, the
kinematical behavior of strong-field and pulsed-perturbative trident is the same, of course.
However, due to the restriction on the linear order in the laser intensity parameter 𝑎0, the
pulsed-perturbative vertex function will generate kinematical constraints different from the
corresponding strong-field case. Especially considering the photon number parameter: it
depends in pulsed-perturbative trident only on the final momenta due to equation (4.6) (see
below), but needs to be integrated over for certain contributions in the general strong-field
case (e.g. see equation (2.92)).
Considering the separation of the pulsed-perturbative vertex given in equation (3.11), the
matrix element (4.5) decomposes into four distinct parts:

𝑆d
fi = −𝑖𝑒2 (2𝜋)2

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
ˆ

d𝑙 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖

× 𝑢(𝑝3)
[︀
𝛿(𝑙)𝛤𝜇

0 (𝑝, 𝑝3) + 𝑎0𝛤
𝜇
pp(𝑙, 𝑝, 𝑝3)

]︀
𝑢(𝑝)

× 𝑢(𝑝2)
[︀
𝛿(𝑙0 − 𝑙)𝛤 𝜈

0(−𝑝1, 𝑝2) + 𝑎0𝛤
𝜈
pp(𝑙0 − 𝑙,−𝑝1, 𝑝2)

]︀
𝑣(𝑝1) (4.7)

= 𝑆pp
0 + 𝑆pp

11 + 𝑆pp
12 + 𝑆pp

2 . (4.8)

This decomposition of the matrix element is similar to the case of strong-field trident
given in equation (2.84), but in the case of pulsed-perturbative trident, the expansion in
the intensity parameter 𝑎0 is truncated due to the linear order of 𝑎0 in the respective
pulsed-perturbative vertex. Starting with the first summand in equation (4.8), the term
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𝑆pp
0 is given as

𝑆pp
0 = −𝑖𝑒2 (2𝜋)2

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)𝛿(𝑙0) 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇

0 (𝑝, 𝑝3)𝑢(𝑝)
]︀ [︀
𝑢(𝑝2)𝛤 𝜈

0(−𝑝1, 𝑝2)𝑣(𝑝1)
]︀
, (4.9)

where 𝑙0 is given in equation (4.6). Analogous to the strong-field case stated in equation
(2.86), one has again 1

𝑘+ 𝛿
lf(𝑝 − 𝑝𝑡)𝛿(𝑙0) = 𝛿(4)(𝑝 − 𝑝𝑡), which implies the part 𝑆pp

0 of the
matrix element has no final physical phase space, through 𝑝 = 𝑝𝑡 = 𝑝1 + 𝑝2 + 𝑝3 violates
the energy momentum conservation. This is also clear, since the term 𝑆pp

0 corresponds to
the case, where no momentum from the background field is transferred to either of the
vertices, which is kinematically forbidden as we already mentioned. The second summand
of equation (4.8) is given as

𝑆pp
11 = −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
𝑔𝜇𝜈

(𝑝1 + 𝑝2)2 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇

pp(𝑙0, 𝑝, 𝑝3)𝑢(𝑝)
]︀ [︀
𝑢(𝑝2)𝛤 𝜈

0(−𝑝1, 𝑝2)𝑣(𝑝1)
]︀

(4.10)

= −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)𝑀pp
11 + O(𝑎2

0), (4.11)

where we used the energy-momentum conservation at the upper vertex given in (4.4) with
𝑟 = 0 (implied from 𝑙 = 𝑙0) to replace the intermediate momentum 𝑘′. We introduce the
abbreviation

𝑀pp
11 := 𝑔𝜇𝜈

(𝑝1 + 𝑝2)2 + 𝑖𝜖

[︀
𝑢(𝑝3)𝛤𝜇

pp(𝑙0, 𝑝, 𝑝3)𝑢(𝑝)
]︀

[𝑢(𝑝2)𝛾𝜈𝑣(𝑝1)] , (4.12)

which is a function of all momenta with 𝑙0 is given in equation (4.6) and has no dependence
to the intensity parameter 𝑎0. Here 𝑆pp

11 represents the case, where the momentum transfer
from the background field to the upper vertex vanishes but is finite to the lower vertex due
to 𝑙0 ̸= 0. The third summand in the decomposition in equation (4.8) is given as

𝑆pp
12 = −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
𝑔𝜇𝜈

(𝑝− 𝑝3)2 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇

0 (𝑝, 𝑝3)𝑢(𝑝)
]︀ [︀
𝑢(𝑝2)𝛤 𝜈

pp(𝑙0,−𝑝1, 𝑝2)𝑣(𝑝1)
]︀

(4.13)

= −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)𝑀pp
12 + O(𝑎2

0), (4.14)

where we used the energy-momentum conservation at the lower vertex given in (4.3) with
𝑙 = 0 (implied from 𝑟 = 𝑙0) to replace the intermediate momentum 𝑘′. We introduce the
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abbreviation

𝑀pp
12 := 𝑔𝜇𝜈

(𝑝− 𝑝3)2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)]

[︀
𝑢(𝑝2)𝛤 𝜈

pp(𝑙0,−𝑝1, 𝑝2)𝑣(𝑝1)
]︀
, (4.15)

which is also a function of all momenta and has neither any dependence to the intensity
parameter 𝑎0. Here 𝑆pp

12 represents the case, where the momentum transfer from the
background field to the upper vertex is finite due to 𝑙0 ̸= 0, but the transfer vanishes at
the lower vertex. We mention, that the photon number parameter 𝑙0 present in equation
(4.15) turns out to be the same as occurred in equation (4.12).
The last term in the decomposition (4.8) is given by

𝑆pp
2 = −𝑖𝑒2𝑎2

0 (2𝜋)2

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
ˆ

d𝑙 𝑔𝜇𝜈

𝑘′2 + 𝑖𝜖

×
[︀
𝑢(𝑝3)𝛤𝜇

pp(𝑙, 𝑝, 𝑝3)𝑢(𝑝)
]︀ [︀
𝑢(𝑝2)𝛤 𝜈

pp(𝑙0 − 𝑙,−𝑝1, 𝑝2)𝑣(𝑝1)
]︀

(4.16)

= O(𝑎2
0). (4.17)

Within the framework of pulsed-perturbative QED (see section 3.2), it is assumed that the
only terms of a matrix element, which contribute to the cross section, are linear w.r.t. the
intensity parameter 𝑎0. This is induced automatically on the level of cross sections due to
the definition (3.13) and indicates the main difference to the strong-field case regarded in
section 2.5. Considering this, we can neglect each occurring term with O(𝑎2

0) in equation
(4.10) and (4.13), respectively, and the term 𝑆pp

2 entirely, as well. More precisely compared
to the strong-field case, as it turns out, the derived 𝑎0-linear parts of equation (4.10) and
(4.13) are exactly the 𝑎0-linear terms of the parts 𝑆11, 𝑆12 from the strong-field trident
matrix element (see equation (2.87) and (2.88)), where the vertices have one vanishing and
one non-vanishing momentum transfer from the background field, which is, of course, the
same property as derived above for 𝑆pp

11 and 𝑆pp
12 , respectively. This means one has

𝑆11 = −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)𝑀pp
11 + O(𝑎2

0), (4.18)

𝑆12 = −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡)𝑀pp
12 + O(𝑎2

0), (4.19)

where it is explicitly shown, that in the decomposition (2.93) of the matrix element of
strong-field trident, the linear order in 𝑎0 (and with that the limiting case of perturbative
trident) is only contained in the parts with partial momentum transfer from the background
field.
In order to avoid denotation issues, we define 𝑆d

ppT as the linear part of the matrix element



62 4 Pulsed-perturbative trident process

𝑆d
fi given in equation (4.2) w.r.t. the intensity parameter 𝑎0, i.e. 𝑆d

fi =: 𝑆d
ppT +O(𝑎2

0), where
𝑆d

ppT is given as

𝑆d
ppT = −𝑖𝑒2𝑎0 (2𝜋)3

𝑘+ 𝛿lf(𝑝− 𝑝𝑡) (𝑀pp
11 +𝑀pp

12 ) , (4.20)

where 𝑀pp
11 ,𝑀

pp
12 are defined in equation (4.12) and in equation (4.15), respectively.

Subsequently going forward to the full matrix element of pulsed-perturbative trident
(including the exchange part), we introduce

𝑀pp
C = 𝑀pp

11 −𝑀pp
11 (𝑝2 ↔ 𝑝3), (4.21)

𝑀pp
BW = 𝑀pp

12 −𝑀pp
12 (𝑝2 ↔ 𝑝3), (4.22)

where 𝑀pp
C denotes the virtual Compton part, i.e. the part with a genuine momentum

transfer from the background field at the lower vertex and a vanishing transfer at the
upper vertex, and 𝑀pp

BW denotes the virtual Breit-Wheeler part, i.e. the part with a genuine
momentum transfer from the background field at the upper vertex and a vanishing transfer
at the lower vertex. Accordingly the full matrix element of pulsed-perturbative trident
reads

𝑆ppT = 1
2

(︁
𝑆d

ppT − 𝑆d
ppT(𝑝2 ↔ 𝑝3)

)︁
= −𝑖𝑒2𝑎0 (2𝜋)3

2𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
(︀
𝑀pp

C +𝑀pp
BW

)︀
,

(4.23)

which is by definition linear in the intensity parameter 𝑎0. Therefore, there is no effect
through higher orders in the intensity parameter 𝑎0, but a distinct pulse shape depen-
dence encrypted in the function 𝛤

𝜇
pp (cf. to equation (3.11)) occurring in the expressions

𝑀pp
C ,𝑀pp

BW through equation (4.12) and (4.15).
Using the matrix element from equation (4.23) as well as the definition (3.13), the (six-fold)
differential cross section of pulsed-perturbative trident reads

d𝜎ppT = 𝑎2
0𝑒

4 (2𝜋)6

𝐼𝛾(2𝑘+)2
1
𝑉lf
𝛿lf(𝑝− 𝑝𝑡)

𝑝0

4𝑝+ (2𝜋)3𝑉lf𝑁
∑︁

spins,pol.

⃒⃒
𝑀pp

C +𝑀pp
BW

⃒⃒2 d𝛷3, (4.24)

where 𝐼𝛾 denotes the incident photon flux defined in equation (2.8) and 𝑁 = 1
4 is the

normalization factor caused by averaging over the spin and polarization of the incoming
electron and photon, respectively. Considering the case of a polarized incoming photon,
the normalization factor is given as 𝑁 = 1

2 . Here, d𝛷3 denotes the three-particle invariant
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phase space integral measure, which is given in light-cone coordinates as

d𝛷3 := 𝛩(𝑝−
1 )𝛩(𝑝−

2 )𝛩(𝑝−
3 ) d2𝑝⊥

1 d𝑝−
1

(2𝜋)3 2𝑝−
1

d2𝑝⊥
2 d𝑝−

2
(2𝜋)3 2𝑝−

2

d2𝑝⊥
3 d𝑝−

3
(2𝜋)3 2𝑝−

3
, (4.25)

with 𝛩 denotes the Heaviside step-function (cf. section A.2). Considering the square of
the delta-distribution coming from the square of the absolute value of the matrix element
given in equation (4.23), we used the (Lorentz-invariant) identity (2𝜋)3 (︀𝛿lf(𝑝− 𝑝𝑡)

)︀2 =
𝑉lf

𝑝0

𝑝+ 𝛿
lf(𝑝− 𝑝𝑡) from [247] (cf. [177]). Since this identity is Lorentz-invariant, the quotient

of the initial electron momentum components can be evaluated in its rest system (cf. section
A.3): 𝑝0

𝑝+ = 2. Finally, the differential cross section results in

d𝜎ppT = 𝑎2
0𝑒

4𝜋3

𝐼𝛾(𝑘+)2 𝛿
lf(𝑝− 𝑝𝑡)𝑁

∑︁
spins,pol.

⃒⃒
𝑀pp

C +𝑀pp
BW

⃒⃒2 d𝛷3, (4.26)

where we eventually use the delta-distribution to integrate over one final particle leading
to six remaining independent momentum components in the final phase space, i.e. two
kinematically independent outgoing particles.

Pulse shape dependence: factorisation the differential cross section

As we illustrated in chapter 3, the main conceptional advantage of pulsed-perturbative
QED (i.e. the assumption of small laser intensities and therefore the consideration of the
leading order in 𝑎0 exclusively) is the emphasis of the pulse shape dependence of processes
due to the Fourier transforms 𝐹𝑖(𝑙) defined in (3.4) of the amplitude functions 𝑓𝑖(𝜙) given
in (2.17). Consequently, the dependence of the differential cross section (4.26) on the pulse
shape function 𝑔(𝜙) (in terms of the Fourier transforms 𝐹𝑖) plays a crucial role for the
understanding of the trident process at small intensity parameters 𝑎0, especially compared
to the perturbative case.
Firstly, we mention that the momentum dependence of the photon number parameter
𝑙 occurring in the pulsed-perturbative vertex function (3.10) neither changes through
the exchange 𝑝2 ↔ 𝑝3 nor for the virtual Compton or virtual Breit-Wheeler parts of
the matrix element, i.e. in every part of the matrix element (4.26), the photon number
parameter obeys 𝑙 = 𝑙0, where 𝑙0 is given in equation (4.6). This implies a factorisation
of the pulse shape dependence in terms of the Fourier transforms (3.4) occurring in the
pulsed-perturbative vertex for each term in the matrix element. Considering the part 𝛤𝜇

pp
of the pulsed-perturbative vertex function (3.10) and inserting it in the parts (4.21) and
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(4.22) of the matrix element by the use of the terms (4.12) and (4.15), one has

𝑀pp
C = 𝑀

(1)
C 𝐹1(𝑙0) +𝑀

(2)
C 𝐹2(𝑙0), (4.27)

𝑀pp
BW = 𝑀

(1)
BW𝐹1(𝑙0) +𝑀

(2)
BW𝐹2(𝑙0), (4.28)

where 𝐹𝑖 are the Fourier transforms defined in equation (3.4) (cf. section 3.3). The
remaining factors are given as

𝑀
(𝑖)
C = 𝑔𝜇𝜈𝜀𝑖𝜏

(𝑝1 + 𝑝2)2 + 𝑖𝜖

[︂
𝑢(𝑝3)

(︂
𝛤𝜇𝜏

1 (𝑝,𝑝3) − 𝛤𝜇
0
𝛼𝜏

1(𝑝,𝑝3)
𝑙0

)︂
𝑢(𝑝)

]︂
[𝑢(𝑝2)𝛾𝜈𝑣(𝑝1)]

− (𝑝2 ↔ 𝑝3), (4.29)

𝑀
(𝑖)
BW = 𝑔𝜇𝜈𝜀𝑖𝜏

(𝑝− 𝑝3)2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)]

[︂
𝑢(𝑝2)

(︂
𝛤 𝜈𝜏

1 (−𝑝1,𝑝2) − 𝛤 𝜈
0
𝛼𝜏

1(−𝑝1,𝑝2)
𝑙0

)︂
𝑣(𝑝1)

]︂
− (𝑝2 ↔ 𝑝3), (4.30)

where 𝜀𝑖𝜏 with 𝑖 = 1,2 denote the elementary polarisation vectors introduced according
to the general definition of the pulsed plane-wave background field in equation (2.10).
We mention, that the factors 𝑀 (𝑖)

C ,𝑀
(𝑖)
BW given in (4.29) and (4.30) do not depend on the

pulse shape itself (this dependence is accumulated in the Fourier transforms 𝐹𝑖), but have
a dependence on the momentum transfer from the background field due to the photon
number parameter 𝑙0. Inserting the factorisations (4.27) and (4.28) into the differential
cross section (4.26) leads to

d𝜎ppT = 𝑎2
0𝑒

4𝜋3

𝐼𝛾(𝑘+)2 𝛿
lf(𝑝− 𝑝𝑡)𝑁

×
∑︁

spins,pol.

⃒⃒⃒
(𝑀 (1)

C +𝑀
(1)
BW)𝐹1(𝑙0) + (𝑀 (2)

C +𝑀
(2)
BW)𝐹2(𝑙0)

⃒⃒⃒2
d𝛷3, (4.31)

where indeed on the level of the differential cross section, for general pulse envelope
functions 𝑔(𝜙) there is no complete factorisation w.r.t. the Fourier transforms 𝐹𝑖. However,
as we illustrated in section 3.3, if we assume the pulse envelope function 𝑔(𝜙) is an even
function, which means for the amplitude functions of the background field (cf. equation
(2.17)) one has 𝑓1(𝜙) (𝑓2(𝜙)) is an even (odd) function, the Fourier transform 𝐹1(𝑙) (𝐹2(𝑙))
is a real- (imaginary-)valued function. We mention, this assumption is not far to seek, since
most of the pulse envelope functions used in literature to describe scattering processes are
indeed even functions, e.g. the cos2-pulse used in this thesis, which was defined in (2.18).
Considering this case and using the abbreviation 𝑀 𝑖 := 𝑀

(𝑖)
C + 𝑀

(𝑖)
BW with 𝑖 = 1,2, the
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square of the absolute value in equation (4.31) leads to⃒⃒⃒
𝑀 (1)𝐹1 +𝑀 (2)𝐹2

⃒⃒⃒2
=

⃒⃒⃒
𝑀 (1)𝐹1

⃒⃒⃒2
+

⃒⃒⃒
𝑀 (2)𝐹2

⃒⃒⃒2
+ 2Re

(︁
𝑀 (1)𝐹1𝑀

(2)*𝐹 *
2

)︁
(4.32)

=
⃒⃒⃒
𝑀 (1)

⃒⃒⃒2
𝐹 2

1 +
⃒⃒⃒
𝑀 (2)

⃒⃒⃒2
|𝐹2|2 + 2 (𝑖𝐹1𝐹

*
2 ) Im

(︁
𝑀 (1)𝑀 (2)*

)︁
,

(4.33)

where the asterisk denotes the complex conjugation, Re (Im) the real (imaginary) part of
a complex number and 𝑖𝐹1𝐹

*
2 ∈ R as a result of 𝐹1 (𝐹2) being a real-(imaginary-)valued

function. In the last step, we used the homogeneity of the real-part function, i.e. for 𝑢 ∈ C

and 𝜆 ∈ R it is Re(𝜆𝑢) = 𝜆Re(𝑢), as well as the identity Re(𝑖𝑢) = −Im(𝑢) for 𝑢 ∈ C.
Consequently, the assumption, that the pulse envelope 𝑔(𝜙) is an even function yields a
factorisation of the matrix element w.r.t. the Fourier transforms 𝐹𝑖, i.e. each summand in
equation (4.33) is a product of two factors, one with and one without dependence to the
pulse shape function, hence they can be derived separately.
Furthermore, if we assume the background field to be linearly polarized, say in the 𝜀1-
direction (i.e. 𝜉 = 0), one has 𝑓2(𝜙) = 0, which implies 𝐹2(𝜙) = 0 (cf. equations (2.17) and
(3.4)). Then the differential cross section reads

d𝜎ppT

⃒⃒⃒
𝜉=0

= 𝑎2
0𝑒

4𝜋3

𝐼𝛾(𝑘+)2 𝛿
lf(𝑝− 𝑝𝑡) |𝐹1(𝑙0)|2𝑁

∑︁
spins

⃒⃒⃒
𝑀

(1)
C +𝑀

(1)
BW

⃒⃒⃒2
d𝛷3, (4.34)

yielding again a factorisation of the differential cross section w.r.t. the pulse shape depen-
dence, despite the pulse shape function 𝑔(𝜙) is even or not. In summary, the factorisation
of the differential cross section of pulsed-perturbative trident shown above leads to a more
feasible numerical treatment of the trident process at small intensity parameters 𝑎0, because
mostly the pulse shape dependence can be treated fully analytically, as we illustrated in
section 3.3. Furthermore, it is conceivable, that the factorisation opens up the possibility
to obtain the pulse shape dependence or, more explicitly, the energy distribution of the
laser field from another source, e.g. from experimental data or simulations, rather than the
definition of a pulse envelope function. However, such data-driven approaches are beyond
the scope of this thesis and require further investigations.

Infinitely wide pulses: the perturbative monochromatic limit

Generally, we refer to as the perturbative (monochromatic) limit of a certain scattering
process derived in the framework of strong-field QED in pulsed plane-wave fields, as the
simultaneous limit of weak-fields, i.e. 𝑎0 ≪ 1, and infinitely wide pulses, i.e. 𝛥𝜙 → ∞ (cf.
section 3.1). Since the cross section given in equation (4.26) is by definition the leading term
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in the weak-field limit 𝑎0 → 0 (see equation (3.13)) the perturbative limit of strong-field
trident results as the limiting case of pulsed-perturbative trident for infinitely wide pulses,
i.e. we propose

d𝜎pT = lim
𝛥𝜙→∞

lim
𝑎0→0

d𝜎sfT = lim
𝛥𝜙→∞

d𝜎ppT, (4.35)

where d𝜎pT denotes the differential cross section of perturbative trident given in equation
(C.9), d𝜎sfT is the differential cross section of strong-field trident (see section 2.5) and
d𝜎ppT the differential cross section of pulsed-perturbative trident given in equation (4.26).
In order to actually perform the last limit given in equation (4.35), we exploit the fac-
torization of the differential cross section of pulsed-perturbative trident as illustrated in
equation (4.33) and/or (4.34) w.r.t. the pulse-shape dependent functions 𝐹𝑖(𝑙), which are
defined in equation (3.4). Here, we assume a general pulse envelope function 𝑔(𝜙,𝛥𝜙)
with pulse width 𝛥𝜙, which is defined as part of the pulse plane-wave approach for the
background field defined in equation (2.10). Assuming the pulse envelope function to be
even, i.e. symmetric w.r.t. the 𝑦-axis, there are three types of factors encoding the whole
pulse shape dependence of the differential cross section (cf. equation (4.33)):

|𝐹1(𝑙,𝛥𝜙)|2
𝛥𝜙

,
|𝐹2(𝑙,𝛥𝜙)|2

𝛥𝜙
,

𝑖𝐹1(𝑙,𝛥𝜙)𝐹 *
2 (𝑙,𝛥𝜙)

𝛥𝜙
, (4.36)

where the pulse width 𝛥𝜙 in the respective denominator comes from the normaliza-
tion factor 𝐼𝛾 defined in equation (2.8), which is in the case of wide pulses given by
𝐼𝛾(𝛥𝜙 ≫ 1) = 𝑚2𝑎2

0
2𝑒2 𝜈2[𝑔]𝛥𝜙 with the second momentum 𝜈2[𝑔] :=

´
𝑔2(𝜙) d𝜙 of the pulse

envelope function 𝑔(𝜙,𝛥𝜙).
Independently, the first two terms in (4.36) also occur in the factorisation of the differential
cross section, if one assumes linear polarisation (cf. equation (4.34)).
Using the definition (3.4), one may rewrite the Fourier transforms 𝐹𝑖 as

𝐹1(𝑙,𝛥𝜙) = 𝑚

2𝑒 cos 𝜉 (𝐹𝑔(𝑙 + 1, 𝛥𝜙) + 𝐹𝑔(𝑙 − 1, 𝛥𝜙)) , (4.37)

𝐹2(𝑙,𝛥𝜙) = 𝑚

2𝑖𝑒 sin 𝜉 (𝐹𝑔(𝑙 + 1, 𝛥𝜙) − 𝐹𝑔(𝑙 − 1, 𝛥𝜙)) , (4.38)

where 𝜉 denotes the polarisation parameter, 𝑚 the electron mass, and 𝑒 the absolute value
of the elementary electric charge. The function

𝐹𝑔(𝑙) :=
ˆ ∞

−∞
𝑔(𝜙,𝛥𝜙)𝑒𝑖𝑙𝜙 𝑑𝜙 (4.39)
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denotes the Fourier transform of the pulse envelope function, where we remark the distinc-
tion to the functions 𝐹𝑖(𝑙) with 𝑖 = 1,2, which are the Fourier transforms of the respective
amplitude functions 𝑓𝑖(𝜙,𝛥𝜙), which in turn are the pulse envelope function multiplied by
an oscillatory term (see equation (2.17)). We mention, that the representations (4.37) and
(4.38) in terms of the Fourier transform (4.39) leads easily to the limits

lim
𝛥𝜙→∞

𝐹1(𝑙,𝛥𝜙) = 2𝜋𝑚
𝑒

cos 𝜉(𝛿(𝑙 + 1) + 𝛿(𝑙 − 1)), (4.40)

lim
𝛥𝜙→∞

𝐹2(𝑙,𝛥𝜙) = 2𝜋𝑚
𝑒

sin 𝜉(𝛿(𝑙 + 1) − 𝛿(𝑙 − 1)), (4.41)

where we used the elementary limit 𝐹𝑔(𝑙,𝛥𝜙) → 2𝜋𝛿(𝑙) for 𝛥𝜙 → ∞, which was derived
in lemma D.1 in the appendix. This shows again explicitly the assumption (3.18), but here
for an arbitrary pulse envelope function 𝑔. However, due to the occurrence of a squared
delta-distribution, the application of the limits (4.40) and (4.41) are not expedient for the
terms listed in (4.36). Instead, the limit 𝛥𝜙 → ∞ must be performed explicitly for the
squared Fourier transforms.
Consequently, using equation (4.37), the limiting case 𝛥𝜙 → ∞ of the first factor in (4.36)
leads to

lim
𝛥𝜙→∞

|𝐹1(𝑙,𝛥𝜙)|2
𝛥𝜙

= 𝑚2

4𝑒2 cos2 𝜉 lim
𝛥𝜙→∞[︂

|𝐹𝑔(𝑙 + 1)|2
𝛥𝜙

+ |𝐹𝑔(𝑙 − 1)|2
𝛥𝜙

+ 2
𝛥𝜙

Re
(︀
𝐹𝑔(𝑙 + 1)𝐹 *

𝑔 (𝑙 − 1)
)︀]︂
(4.42)

= 𝜋𝑚2

2𝑒2 𝜈2[𝑔] cos2 𝜉 (𝛿(𝑙 + 1) + 𝛿(𝑙 − 1)) , (4.43)

where 𝜈2[𝑔] = 1
𝛥𝜙

´
𝑔2(𝜙,𝛥𝜙) 𝑑𝜙 denotes the second characteristic moment of the pulse

envelope function, which is by definition independent of the pulse width 𝛥𝜙 (cf. section
2.1). In the last step of equation (4.43), we used the elementary limits

lim
𝛥𝜙→∞

|𝐹𝑔(𝑙,𝛥𝜙)|2
𝛥𝜙

= 2𝜋𝜈2[𝑔]𝛿(𝑙), for all 𝑙, (4.44)

lim
𝛥𝜙→∞

𝐹𝑔(𝑙1, 𝛥𝜙)𝐹 *
𝑔 (𝑙2, 𝛥𝜙)

𝛥𝜙
= 0 for all 𝑙1 ̸= 𝑙2, (4.45)
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which are derived in lemma D.2 in the appendix. Similarly, using equation (4.38), the limit
of the second possible factor listed in (4.36) results in

lim
𝛥𝜙→∞

|𝐹2(𝑙,𝛥𝜙)|2
𝛥𝜙

= 𝑚2

4𝑒2 sin2 𝜉 lim
𝛥𝜙→∞[︂

|𝐹𝑔(𝑙 + 1)|2
𝛥𝜙

+ |𝐹𝑔(𝑙 − 1)|2
𝛥𝜙

− 2
𝛥𝜙

Re
(︀
𝐹𝑔(𝑙 + 1)𝐹 *

𝑔 (𝑙 − 1)
)︀]︂
(4.46)

= 𝜋𝑚2

2𝑒2 𝜈2[𝑔] sin2 𝜉 (𝛿(𝑙 + 1) + 𝛿(𝑙 − 1)) , (4.47)

where in the last step we applied again the elementary limits (4.44) and (4.45), respectively.
In order or perform the limit of the third term given in (4.36), we use again the equations
(4.37) and (4.38), which leads to

lim
𝛥𝜙→∞

𝑖𝐹1(𝑙)𝐹 *
2 (𝑙)

𝛥𝜙
= −𝜋𝑚2

2𝑒2 𝜈2[𝑔] cos 𝜉 sin 𝜉 (𝛿(𝑙 + 1) − 𝛿(𝑙 − 1)) . (4.48)

Summarizing, we showed that, on the level of the differential cross section of pulsed-
perturbative trident given in equation (4.26), the limit 𝛥𝜙 → ∞ results in a constraint of
the photon-number parameter 𝑙 due to the occurrence of the delta-distributions 𝛿(𝑙 ± 1) in
all pulse shape dependent terms listed in (4.36). In the case of pulsed-perturbative trident,
the photon-number parameter is related to the momenta of the external particles due to
equation (4.6), where consequently the constraint of 𝑙0 in the limit 𝛥𝜙 → ∞ results in an
additional constraint in the final phase space yielding a reduction of the dimension of the
final phase space from six to five, which leads to the first hint w.r.t. the five-dimensional
phase space of perturbative trident (see appendix C).
Considering the complicated mathematical structure of the differential cross sections, we
rather show the explicit convergence of pulsed-perturbative trident against perturbative
trident on the level of the scattering matrix element (4.23). In order to have brief
mathematical expressions, we limit the reasoning to the case of linear laser polarisation,
although other polarisation states can be treated similarly. Assuming linear polarisation say
in 𝜀1-direction (i.e. 𝜉 = 0), one has 𝑓2(𝜙) ≡ 0, which implies 𝐹2(𝑙) ≡ 0 due to the definition
of the amplitude function of the pulsed plane-wave background field given in equation
(2.17) as well as the definition (3.4). In this case, the matrix element of pulsed-perturbative
trident given in (4.23) reads

𝑆ppT

⃒⃒⃒
𝜉=0

= −𝑖𝑒2𝑎0(2𝜋)3

2𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
(︁
𝑀

(1)
C +𝑀

(1)
BW

)︁
𝐹1(𝑙0)

⃒⃒⃒
𝜉=0

, (4.49)
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where 𝑝𝑡 = 𝑝1 + 𝑝2 + 𝑝3 denotes the total momentum of the final particles and 𝛿lf(𝑞) =
1
2𝛿(𝑞−)𝛿(2)(𝑞⊥) for an arbitrary four-momentum 𝑞 in light-cone coordinates (see appendix
A.2). The factors 𝑀 (1)

C and 𝑀
(1)
BW are given in (4.29) and (4.30), respectively, and the

Fourier transform 𝐹1(𝑙0) is defined in equation (3.4), where 𝑙0 is related to the final phase
space according to equation (4.6). Considering the limit (4.40), the limiting case 𝛥𝜙 → ∞
for the matrix element (4.49) results in

lim
𝛥𝜙→∞

𝑆ppT

⃒⃒⃒
𝜉=0

= −𝑖𝑒2𝑎0(2𝜋)4

2𝑘+ 𝛿lf(𝑝− 𝑝𝑡)
(︁
𝑀

(1)
C +𝑀

(1)
BW

)︁ 𝑚
𝑒

(𝛿(𝑙0 + 1) + 𝛿(𝑙0 − 1)) .

(4.50)

Consequently, the constraint of the photon number parameter 𝑙0 due to the occurring
delta-distribution, i.e. 𝑙 = ±1, is indeed the same as obtained by the reasoning above on
the level of the differential cross section. The resulting product of delta-distributions in
equation (4.50) can be written in cartesian coordinates as

1
𝑘+ 𝛿

lf(𝑝− 𝑝𝑡)𝛿(𝑙0 ± 1) = 1
2𝑘+ 𝛿(𝑝

− − 𝑝−
𝑡 )𝛿(2)(𝑝⊥ − 𝑝⊥

𝑡 )𝛿
(︂
𝑝+

𝑡 − 𝑝+ ± 𝑘+

𝑘+

)︂
(4.51)

= 1
2𝛿(𝑝

− − 𝑝−
𝑡 )𝛿(2)(𝑝⊥ − 𝑝⊥

𝑡 )𝛿
(︀
𝑝+

𝑡 − 𝑝+ ± 𝑘+)︀
(4.52)

= 𝛿(4)(𝑝∓ 𝑘 − 𝑝𝑡). (4.53)

The plus sign in the resulting delta-distribution encodes the global energy momentum
conservation 𝑝+ 𝑘 = 𝑝𝑡 = 𝑝1 + 𝑝2 + 𝑝3, where the minus sign has no distribution to the
matrix element since 𝑝 = 𝑘 + 𝑝𝑡 is kinematically forbidden. Therefore, the matrix element
(4.50) reads

lim
𝛥𝜙→∞

𝑆ppT

⃒⃒⃒
𝜉=0

= −𝑖𝑒2𝑎0(2𝜋)4

2𝑘+
𝑚

𝑒
𝛿(4)(𝑝+ 𝑘 − 𝑝𝑡)

(︁
𝑀

(1)
C +𝑀

(1)
BW

)︁
(4.54)

where the terms 𝑀 (1)
C and 𝑀 (1)

BW must be evaluated at 𝑙0 = 1. Accordingly, using equation
(4.29) and inserting the elementary vertices (2.48) and (2.49) as well as the kinematic
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factor (2.55), the virtual Compton contribution is given in the case of 𝑙0 = 1 by

𝑀
(1)
C

⃒⃒⃒
𝑙0=1

= 𝑔𝜇𝜈
𝑢(𝑝2)𝛾𝜇𝑣(𝑝1)

(𝑝1 + 𝑝2)2 + 𝑖𝜖
𝑢(𝑝3) [𝛤 𝜈𝜏

1 (𝑝, 𝑝3) − 𝛤 𝜈
0 𝛼

𝜏
1(𝑝, 𝑝3)]𝑢(𝑝)𝜀1𝜏 − (𝑝2 ↔ 𝑝3)

(4.55)

= 𝑒𝑔𝜇𝜈
𝑢(𝑝2)𝛾𝜇𝑣(𝑝1)

(𝑝1 + 𝑝2)2 + 𝑖𝜖
𝑢(𝑝3)

[︂
𝛾𝜈/𝑘𝛾𝜏 + 2𝛾𝜈𝑝𝜏

2(𝑘𝑝) + 𝛾𝜏 /𝑘𝛾𝜈 − 2𝛾𝜈𝑝𝜏
3

2(𝑘𝑝3)

]︂
𝑢(𝑝)𝜀1𝜏

− (𝑝2 ↔ 𝑝3). (4.56)

Here, we rewrite the nominators in the square brackets by using the identities

(/𝑘𝛾𝜏 + 2𝑝𝜏 )𝑢(𝑝) =
(︀
/𝑘 + /𝑝+𝑚

)︀
𝛾𝜏𝑢(𝑝), (4.57)

𝑢(𝑝3) (𝛾𝜏 /𝑘 − 2𝑝𝜏
3) = 𝑢(𝑝3)𝛾𝜏 (/𝑘 − /𝑝3 −𝑚), (4.58)

where we applied the Dirac equation in momentum space (/𝑝−𝑚)𝑢(𝑝) = 0 for the respective
bi-spinor. Furthermore, if we rewrite the respective denominators using 2(𝑘𝑝) = (𝑘 + 𝑝)2 −
𝑚2, and 2(𝑘𝑝3) = −

(︀
(𝑘 − 𝑝3)2 −𝑚

)︀
, respectively, the virtual Compton contribution given

in equation (4.56) reads

𝑀
(1)
C

⃒⃒⃒
𝑙0=1

= 𝑒𝑔𝜇𝜈
𝑢(𝑝2)𝛾𝜇𝑣(𝑝1)

(𝑝1 + 𝑝2)2 + 𝑖𝜖

× 𝑢(𝑝3)
[︃
𝛾𝜈

/𝑘 + /𝑝+𝑚

(𝑘 + 𝑝)2 −𝑚2 𝛾
𝜏 + 𝛾𝜏 /𝑝3 − /𝑘 +𝑚

(𝑘 − 𝑝3)2 −𝑚2 𝛾
𝜈

]︃
𝑢(𝑝)𝜀1𝜏

− (𝑝2 ↔ 𝑝3) (4.59)

= 𝑒𝑔𝜇𝜈
𝑢(𝑝2)𝛾𝜇𝑣(𝑝1)

(𝑝1 + 𝑝2)2 + 𝑖𝜖
𝑢(𝑝3)C𝜈𝜏 (𝑝, 𝑝3|𝑘)𝑢(𝑝)𝜀1𝜏 − (𝑝2 ↔ 𝑝3), (4.60)

where C𝜇𝜈 denotes the Compton tensor defined in equation (C.2) in the context of per-
turbative trident (see appendix C). Analogously, using 𝑙0 = 1, the virtual Breit-Wheeler
contribution (4.30) results in

𝑀
(1)
BW

⃒⃒⃒
𝑙0=1

= 𝑒𝑔𝜇𝜈
𝑢(𝑝3)𝛾𝜇𝑢(𝑝)

(𝑝− 𝑝3)2 + 𝑖𝜖
𝑢(𝑝2)C𝜈𝜏 (−𝑝1, 𝑝2|𝑘)𝑣(𝑝1)𝜀1𝜏 − (𝑝2 ↔ 𝑝3). (4.61)
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Finaly, inserting the expressions (4.60) and (4.61) into the matrix element (4.54), one has

lim
𝛥𝜙→∞

𝑆ppT

⃒⃒⃒
𝜉=0

= −𝑖𝑒2𝑎0𝑚(2𝜋)4

2𝑘+ 𝛿(4)(𝑝+ 𝑘 − 𝑝𝑡)𝑔𝜇𝜈𝜀1𝜏

×
[︂
𝑢(𝑝2)𝛾𝜇𝑣(𝑝1)

(𝑝1 + 𝑝2)2 + 𝑖𝜖
𝑢(𝑝3)C𝜈𝜏 (𝑝, 𝑝3|𝑘)𝑢(𝑝)

+ 𝑢(𝑝3)𝛾𝜇𝑢(𝑝)
(𝑝− 𝑝3)2 + 𝑖𝜖

𝑢(𝑝2)C𝜈𝜏 (−𝑝1, 𝑝2|𝑘)𝑣(𝑝1)
]︂

− (𝑝2 ↔ 𝑝3) (4.62)

= 𝑎0𝑚

𝑒
𝑀pT(2𝜋)4𝛿(4)(𝑝+ 𝑘 − 𝑝𝑡), (4.63)

where 𝑀pT denotes the matrix element of perturbative trident at tree level, which is given
in equation (C.5).
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4.2 Total cross section

To begin with the numerical investigation of the trident process for low intensity parameter
𝑎0, we calculate the total cross section of pulsed-perturbative trident for the special case
of a linearly polarized background field in 𝜀1-direction, i.e. 𝜉 = 0 and 𝜀1 = (1,0,0), with
a cos2-pulse envelope function as defined in equation (2.18). Generally, the total cross
section results from the integration over the whole final phase space:

𝜎ppT

⃒⃒⃒
𝜉=0

:=
ˆ

d𝜎ppT

⃒⃒⃒
𝜉=0

, (4.64)

where d𝜎ppT denotes the six-fold differential cross section of pulsed-perturbative trident
given in equation (4.34) (from here on we only consider 𝜉 = 0 and suppress any annotation).
Accordingly, the total cross section given in equation (4.64) yields a function of the initial
momenta as well as the laser pulse width 𝛥𝜙. Here, we assume the special case of a
heads-on-collision, where the spatial part 𝑘 of the reference momentum 𝑘𝜇 of the laser field
is aligned along the 3-axis in momentum space, and we parameterize the initial momenta
by the center-of-momentum energy

√
𝑠 :=

√︀
(𝑝+ 𝑘)2 (cf. appendix A.3). Since the total

cross section as a function of
√
𝑠 is a Lorentz-invariant quantity, we choose without loss of

generality the frame of reference with the initial electron at rest (within this thesis referred
to as the laboratory system).
Generally, the total cross section is a measure for the probability of a certain process,
here the trident process, to actually happen for a given initial state, here the collision
of a laser with an electron, despite from the actual point in the phase space, where the
final particles are scattered into. More accurately, the total cross section results from
the sum over all possible final states. Considering the perturbative (monochromatic)
case (cf. appendix C), the trident pair production is a threshold process, which means
that for center-of-momentum energies

√
𝑠 lower than a certain level √

𝑠th (also referred
to as the threshold), the process is kinematically forbidden and therefore the total cross
section vanishes exactly: 𝜎pT(

√
𝑠 <

√
𝑠th) ≡ 0, where 𝜎pT denotes the total cross section

of perturbative trident given in equation (C.11) and the threshold center-of-momentum
energy of the trident process is given by √

𝑠th = 3𝑚, with 𝑚 is the rest mass of an electron.
This means, loosely speaking, there is a minimum amount of energy needed for the final
particles to be produced, i.e. to reach the sum of their rest masses. However, as we
mentioned in section 3.3, the presence of a finite pulse width, and especially for short
pulses, the amount of momentum transfer between the background field and the process,
measured with the photon number parameter 𝑙, implies the capability of the process to
absorb more energy from the background field in order to gain a finite signal even below the
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monochromatic threshold. Here we point out, that the used center-of-momentum energy
√
𝑠 is defined w.r.t. the reference momentum 𝑘𝜇 of the laser field, despite its bandwidth.

Therefore, the phrase “below the monochromatic limit” refers to the reference energy
obtained from the central frequency of the laser. In other words, the finite spectrum of
the background field implies an expansion of the kinematic limits, e.g. the monochromatic
threshold, apparently producing new kinematic limits shifted w.r.t. the one obtained from
the reference center-of-momentum energy

√
𝑠.

In figure 4.2, the result of the numerical integration according to equation (4.64) is depicted
as a function of the center-of-momentum energy

√
𝑠 for several values of the pulse width

𝛥𝜙 (solid colored lines), where we used the VEGAS Monte-Carlo integration algorithm
[167, 168, 222] in order to actually perform the numerical integration.
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Figure 4.2: The total cross section 𝜎ppT of pulsed-perturbative trident as a function of
the scaled center-of-momentum energy

√
𝑠/𝑚 for several values of the pulse width 𝛥𝜙 (solid

lines; blue: 25, green: 50, red: 250, pink: 500). Additionally the total cross section 𝜎pT of
perturbative (monochromatic) trident is depicted by black dots.

Additionally, the total cross section of the perturbative trident in the monochromatic limit
is depicted (black dots), which is given in equation (C.11). Firstly, we mention that for
finite values of 𝛥𝜙 < ∞, the (pseudo-) threshold of the total cross section is shifted to
lower values of

√
𝑠 compared to the monochromatic threshold √

𝑠th = 3𝑚, producing a
finite total cross section in this region. Furthermore, the sub-threshold signal increases
for decreasing values of 𝛥𝜙 and reaches a region where, even below the monochromatic
threshold, the pulsed-perturbative trident total cross section has comparable values w.r.t.
the monochromatic case. For instance, considering the depicted value 𝛥𝜙 = 25 for the
pulsed-perturbative trident, the total cross section at the point

√
𝑠 = 2.95𝑚 (slightly below

the threshold) has a comparable value w.r.t. the total cross section of the perturbative case



74 4 Pulsed-perturbative trident process

at the point
√
𝑠 = 3.05𝑚 (slightly above the monochromatic threshold): in both cases

≈ 10−4 mb.
Furthermore, we mention that the total cross section of pulsed-perturbative trident rapidly
decreases for decreasing values of

√
𝑠, but for

√
𝑠 > 0 the total cross section never vanishes

exactly. This is reasonable, since, as we illustrated in section 3.3, the finite spectrum of the
background field caused by the finite pulse duration indeed decreases rapidly for values 𝑙 of
the photon number parameter with 𝑙 ≫ 1, but never vanishes identically beyond a certain
threshold. This behavior is imprinted on the total cross section for finite pulse widths due
to the presence of the Fourier transform 𝐹1 in equation (4.34), causing the absence of a
distinct threshold. Nevertheless, the total cross section of pulsed-perturbative trident has
an apparent threshold behavior, in the sense of decreasing below a level of measurability
for decreasing values of

√
𝑠.

Considering values of
√
𝑠 slightly above the monochromatic threshold, the total cross

section of pulsed-perturbative trident increases for decreasing values of the pulse width 𝛥𝜙

as well. However, the larger the values of
√
𝑠 compared to the monochromatic threshold, the

smaller is the impact of the finite pulse width compared to the perturbative case. Finally,
one observes a convergence of the pulsed-perturbative trident to the monochromatic case
for

√
𝑠 ≫ √

𝑠th.
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4.3 Inclusive positron distributions

The total cross section discussed in section 4.2 provides an assessment in which region
of the initial parameters (i.e. the center-of-momentum energy

√
𝑠 and the pulse width

𝛥𝜙) the impact of the finite pulse width on the trident process at low laser-intensity
parameters 𝑎0 is, in principle, observable compared to the monochromatic case. However,
to understand the kinematical behavior of the final particles in order to provide detector
specifications for possible laser-electron collision experiments, it is necessary to investigate
the differential distributions of the final particles of pulsed-perturbative trident as well.
Considering a possible experimental setup to measure the trident process, it is not always
possible to detect all final particles of a single collision event. This is especially the case, if
one has a competing process, like the Compton process in the case of trident, with the same
initial state, which produces a non-negligible underground to the electron measurements.
However, despite the Compton process, the trident process provides the possibility to
partially distinguish the kind of its final particles due to their charge. Since there is a
positron in the final state, it can be used as a trigger particle to select the trident process
in a laser-electron collision experiment w.r.t. other underground processes. In order to
apply this trigger approach, it is necessary to investigate the inclusive positron distribution
of the (pulsed-perturbative) trident process, which is accumulated over all possible final
states of the electrons.
Accordingly, we calculate the three-fold differential cross section of pulsed-perturbative
trident w.r.t. to the final positron for the special case of a linearly polarized background
field in 𝜀1-direction, i.e. 𝜉 = 0 and 𝜀1 = (1,0,0), with a cos2-pulse envelope function as
defined in equation (2.18):

d𝜎ppT
d3𝑝1

⃒⃒⃒⃒
⃒
𝑝1=𝑝′

1

:=
ˆ
𝛿(3)(𝑝1 − 𝑝′

1) d𝜎ppT, (4.65)

where 𝑝′
1 denotes the three-momentum of the final positron, i.e. the point in the final

phase space the positron is scattered in, and d𝜎ppT the (full) differential cross section of
pulsed-perturbative trident given in equation (4.34). In order to parameterize the final
phase space of the remaining positron, we use the transverse coordinates w.r.t. the beam
axis along the reference three-momentum 𝑘 of the background field: rapidity 𝑦1, transverse
momentum 𝑝𝑇 1 and azimuth angle 𝜑1, which are defined in appendix A.2. Inserting
equation (4.34) into (4.65), the three-fold differential cross section (4.65) of the positron in
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transverse coordinates is given by

d𝜎ppT
d𝑦1 d𝑝𝑇 1 d𝜑1

= |𝑝1|
ˆ

A (𝑝1,𝑝2)𝛩(𝑝−
1 )𝛩(𝑝−

2 )𝛩(𝑝−
3 )

8(2𝜋)9𝑝−
2 𝑝

−
3

d2𝑝⊥
2 d𝑝−

2

⃒⃒⃒⃒
𝑝−

3 =𝑝−−𝑝−
1 −𝑝−

2
𝑝⊥

3 =𝑝⊥−𝑝⊥
1 −𝑝⊥

2

(4.66)

where 𝑝1, 𝑝2, 𝑝3 denote the three-momenta of the final positron as well as the two final
electrons, respectively. We use the invariant three-particle phase space integral measure 𝑑𝛷3

in light-cone coordinates defined in equation (4.25) and transformed the positron-related
part according to equation (A.34). Further, we apply the delta-distribution in equation
(4.34) to solve the integral w.r.t. the final electron with momentum 𝑝3 and we use the
abbreviation

A (𝑝1,𝑝2) = 𝑁
𝑎2

0𝑒
4𝜋4

𝐼𝛾(𝑘+)2 |𝐹1(𝑙0)|2
∑︁
spins

⃒⃒⃒
𝑀

(1)
C +𝑀

(1)
BW

⃒⃒⃒2
, (4.67)

where the occurring quantities are introduced in section 4.1. As already mentioned, the
resulting differential cross section (4.66) does not depend on the laser intensity parameter
𝑎0 due to the relation 𝐼𝛾 ∼ 𝑎2

0 as given in equation (2.15).
In figure 4.3, the inclusive positron distribution is depicted as a contour plot over the
(𝑦1,𝑝𝑇 1)-plane for several values of the pulse width 𝛥𝜙. The center-of-momentum energy
√
𝑠 = 3.353𝑚, is somewhat above the monochromatic threshold √

𝑠th. First of all, we ob-
serve that the distribution has a distinct maximum around the point 𝑦1 = 1.5, 𝑝𝑇 1 = 0.3𝑚
with a value of 0.7×10−2 mb/𝑚, for all depicted values of 𝛥𝜙. For large values of the pulse
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Figure 4.3: Contour plot of the three-fold differential cross section d𝜎ppT
d𝑦1 d𝑝𝑇 1 d𝜑1

in mb/𝑚 of
pulsed-perturbative trident for a linearly polarized background field with the cos2-envelope,
depicted in the (𝑦1,𝑝𝑇 1)-plane for 𝜑1 = 0, for

√
𝑠 = 3.353𝑚 with the initial electron at rest

and for several values of the pulse width 𝛥𝜙 (𝛥𝜙 = 25, 50, 250, 500 f.l.t.r.).
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10−1010−910−810−710−610−510−410−3

Figure 4.4: Same as in figure 4.3 but for a center-of-mass energy of
√
𝑠 = 3.05𝑚, i.e. only

slightly above the monochromatic threshold.

width, e.g. 𝛥𝜙 = 500, there is a sharply bounded region, wherein the distribution is located;
at the boundary, the distribution drops rapidly from 10−4 mb/𝑚 to 10−16 mb/𝑚. This
indicates the shrinking of the physical phase space of the positron of pulsed-perturbative
trident towards the monochromatic case for large pulse widths. However, for decreasing
values of 𝛥𝜙, these sharp boundaries blur out and the phase space of the positron expands,
e.g. for 𝛥𝜙 = 500 the positron distribution at the point 𝑦1 = 1.5, 𝑝𝑇 1 = 0.8𝑚 is negligibly
small (< 10−16 mb/𝑚), but for 𝛥𝜙 = 25, at the same phase space point, there is an
observable signal of about 10−4 mb/𝑚) comparable to the maximum of the distribution.
This behavior is observed to be even stronger, in approaching the monochromatic threshold
√
𝑠th = 3𝑚. In figure 4.4, the inclusive positron distribution is exhibited for the same

setting as in figure 4.3, but for
√
𝑠 = 3.05𝑚, which is only slightly above the monochromatic

threshold. Here, the distinct maximum of the positron distribution is situated around
𝑦1 = 1.25, 𝑝𝑇 1 = 0.125𝑚 and its value is slightly lower compared to the case

√
𝑠 = 3.353𝑚,

which is in accordance with the
√
𝑠 dependence of the total cross section in figure 4.2.

Consequently, for large values of the pulse width, e.g. 𝛥𝜙 = 500, one observes again a
similar sharp-bounded phase space of the positron, which is smaller in size compared to the
case of figure 4.3. However, near but above the monochromatic threshold, the blurring-out
effect of the positron distribution for decreasing pulse widths 𝛥𝜙 is extensively stronger.
For instance, comparing the cases of 𝛥𝜙 = 500 and 𝛥𝜙 = 25 for

√
𝑠 = 3.05𝑚, the area of

the region with values of the distribution above 10−4 mb/𝑚 increases by a factor of about
4.5, where in the case of

√
𝑠 = 3.353𝑚 the area of the same region increases only by a

factor of about 1.5.
Generally, this blurring-out effect of the phase space of the final positron is to be expected,
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Figure 4.5: The same as in figure 4.3 but for
√
𝑠 = 2.95𝑚, i.e. slightly below the monochro-

matic threshold.

since – for decreasing values of the pulse width 𝛥𝜙 – the energy spectrum of the back-
ground field becomes wider, as indicated in section 3.3. Therefore, the positron can, loosely
speaking, gain more energy from the laser field to reach a wider region in the final phase
space. Looking at it the other way round, for increasing values of the pulse width 𝛥𝜙, the
photon number parameter reaches 𝑙 → 1 (cf. section 4.1, e.g. equation (4.43)) implying
the phase space of the positron in pulsed-perturbative trident becomes constrained to
the sharp-bounded region characteristically for the perturbative monochromatic case (cf.
section A.4 in the appendix), which is the exact limiting case for 𝛥𝜙 → ∞, or 𝑙 = 1,
respectively.
However, as mentioned in section 4.2, even for (reference) center-of-momentum ener-
gies lower than the monochromatic threshold, there is a non-negligible signal of pulsed-
perturbative trident for sufficiently small values of the pulse width 𝛥𝜙. Therefore, in
figure 4.5 the inclusive positron distribution of pulsed-perturbative trident is displayed
with the same setting as in figures 4.3 and 4.4, respectively, but for a (reference) center-of-
momentum energy of

√
𝑠 = 2.95𝑚, which is slightly below the monochromatic threshold.

In contrast to the cases above the threshold, for increasing values of 𝛥𝜙, there is no
sharp-bounded region, i.e. the positron distribution vanishes completely due to the absence
of a physical phase space in the monochromatic limit 𝛥𝜙 → ∞. However, for finite and
decreasing values of 𝛥𝜙, one observes a rising distribution, which reaches values of about
10−4 mb/𝑚 for 𝛥𝜙 = 25. This is comparable to the values observed for the cases above
the threshold depicted in figures 4.3 and 4.4, respectively, and can be related to the total
cross section in figure 4.2. Consequently, this means that even if the center-of-mass energy
obtained by the central frequency of the laser is below the monochromatic threshold of the
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trident process, the finite bandwidth of the laser causes a positron signal with comparable
strength, which is not negligible.

Comparison to perturbative (monochromatic) trident
In order to compare the results for the inclusive positron distribution of pulsed-perturbative
trident in figures 4.3, 4.4 and 4.5, with the monochromatic limit, we consider slices through
the distributions along the 𝑦1-axis for a fixed value of 𝑝𝑇 1 = 0.15𝑚. The results of such
slicing are shown in figure 4.6, where we compare the different values of 𝛥𝜙 (solid colored
lines) with the explicit calculation of the perturbative (monochromatic) trident for the
cases

√
𝑠 = 3.353𝑚 (above the threshold; left panel),

√
𝑠 = 3.05𝑚 (only slightly above

the threshold; middle panel) and
√
𝑠 = 2.95𝑚 (slightly below the threshold; right panel).

In the two cases with
√
𝑠 >

√
𝑠th = 3𝑚, we obtain the perturbative trident distribution

(black dashed lines) by transforming equation (C.9) to transverse coordinates (cf. appendix
A.2) and integrating over the remaining final electron momentum-components. First of all,
one observes that, for increasing pulse widths 𝛥𝜙, the pulsed-perturbative distributions
with

√
𝑠 >

√
𝑠th converge against the monochromatic case up to a near-perfect match

for 𝛥𝜙 = 500. In the sub-threshold case of
√
𝑠 = 2.95𝑚, the distributions of pulsed-

perturbative trident vanish for increasing values of 𝛥𝜙, since the limiting monochromatic
case is kinematically forbidden for

√
𝑠 <

√
𝑠th as mentioned above. Looking at it the other

0.5 1.0 1.5 2.0 2.5

y1

10−10

10−8

10−6

10−4

10−2

d
σ

p
p
T

d
y

1
d
p
T

1
d
ϕ

1
[m

b
/m

]

√
s = 3.353m

0.5 1.0 1.5 2.0 2.5

y1

√
s = 3.05m

0.5 1.0 1.5 2.0 2.5

y1

√
s = 2.95m

∆φ

25

50

250

500

Figure 4.6: The three-fold differential cross section d𝜎ppT
d𝑦1 d𝑝𝑇 1 d𝜑1

in mb
𝑚 of pulsed-perturbative

trident for a linearly polarized background field with the cos2-envelope as a function of the
transverse coordinates of the positron, depicted as a function of 𝑦1 for fixed values 𝑝𝑇 1 = 0.15𝑚,
𝜑1 = 0 and for several values of

√
𝑠 (left panel: 3.353, center panel: 3.05, right panel: 2.95)

as well as for several values of the pulse width 𝛥𝜙 (solid lines; blue: 25, green: 50, red:
250, pink: 500). For comparison, the three-fold differential cross section of the perturbative
(monochromatic) trident w.r.t. the positron is depicted in the same setting (black dashed lines),
obtained from the transformation of equation (C.9) to transverse coordinates and numerical
integration over the remaining final electron. The kinematically accessible domain for the
monochromatic case is indicated by a grey shaded area.
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way round, for decreasing 𝛥𝜙 one observes that the distributions of pulsed-perturbative
trident, in general, are lifted up, where within the kinematically accessible region of
perturbative (monochromatic) trident (i.e. the phase space of the final positron; indicated
by the grey shaded area), the increase is larger for values of

√
𝑠 near the threshold.

However, as mentioned above, the upswing of the pulsed-perturbative trident distributions
is not restricted to this monochromatically accessible region, but even stronger outside
of the grey shaded area, where for short pulses, the resulting signal is comparable to
the monochromatically produced distribution. This is most drastically for (reference)
center-of-momenta below the monochromatic threshold, where one has no physical phase
space available for the final positron in the monochromatic case, but for short pulses (e.g.
the depicted case of 𝛥𝜙 = 25) there is a non-zero distribution of the positron, which has
comparable values w.r.t. the case

√
𝑠 = 3.05𝑚, slightly above the threshold.

Summarizing, we observe an important impact of the bandwidth of a pulsed laser field
on the inclusive positron distribution. The finite pulse width causes an expansion of the
accessible phase space of the positron compared to the monochromatic limit. This effect
becomes stronger for center-of-momentum energies closer to the monochromatic threshold.
Furthermore, the finite bandwidth yields a comparable positron distribution even if the
center-of-momentum energy obtained from the reference momentum of the laser field (i.e.
from the central laser frequency) is below the monochromatic threshold. Additionally, we
show that the treatment of the trident process in the context of pulsed-perturbative QED
(as an approximation for small intensity parameters 𝑎0; cf. chapter 3) leads to an explicit
and smooth convergence to the monochromatic case for large pulse widths. This continues
the treatment w.r.t total cross section (cf. section 4.2) and emphasizes the insights on
the level of differential cross sections w.r.t. a tight connection to possible experimental
investigations.
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4.4 Exclusive electron distributions
As mentioned in section 4.3, in a conceivable experimental setup one could use the final
positron as a trigger particle in order to select the trident process w.r.t. possible underground
processes. Applying this trigger-particle approach, the momentum of the final positron has
a fixed (e.g. measured) value and one needs to investigate the respective distribution of the
final electrons. In the case of small intensity parameters 𝑎0, as considered in this thesis,
this leads to the investigation of the exclusive electron distribution of pulsed-perturbative
trident, which is given in the form of the six-fold differential cross section

d6𝜎ppt
d3𝑝1 d3𝑝2

⃒⃒⃒⃒
𝑝1,2=𝑝′

1,2

:=
ˆ
𝛿(3)

(︁
𝑝1 − 𝑝′

1

)︁
𝛿(3)

(︁
𝑝2 − 𝑝′

2

)︁
d𝜎ppT, (4.68)

where 𝑝′
1 (𝑝′

2) denotes the three-momentum of the final positron (electron) and d𝜎ppT is
given in equation (4.26). Since we treat the momentum components of the final positron
as given fixed parameters, the six-fold differential cross section (4.68) is a function of the
final electron momentum. Furthermore, since the positron momentum 𝑝1 is given here, the
electron momentum 𝑝2 is used as an independent variable, where the remaining electron
momentum 𝑝3 is determined by energy-momentum conservation. Therefore, we speak of
an exclusive electron distribution (cf. [48]). Analogous to the discussion of the inclusive
positron distributions in section 4.3, we choose transverse coordinates to parameterize the
final electron momenta (cf. appendix A.2) and we use again a linearly polarized plane-wave
background field (𝜉 = 0 and 𝜀1 = (1, 0, 0)) with a cos2-envelope function, as introduced in
equation (2.10) and (2.18), respectively. Accordingly, we can reuse the factorised version
of 𝑑𝜎ppT in the case of linear polarisation given in equation (4.34), where the six-fold
differential cross section (4.68) results in

d6𝜎ppt
d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2 d𝜑2

=
|𝑝1||𝑝2|

8 (2𝜋)9 𝑝−
3

A (𝑝1,𝑝2)𝛩(𝑝−
1 )𝛩(𝑝−

2 )𝛩(𝑝−
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⃒⃒⃒⃒
𝑝−

3 =𝑝−−𝑝−
1 −𝑝−

2
𝑝⊥

3 =𝑝⊥−𝑝⊥
1 −𝑝⊥

2

,

(4.69)

where we use the invariant three-particle phase space integral measure d𝛷3 in light-cone
coordinates defined in equation (4.25) and transform the (𝑝1, 𝑝2)-related part according
to equation (A.34). Further, we apply the delta-distribution in equation (4.34) to solve
the integral w.r.t. the final electron with momentum 𝑝3 and we use again the abbreviation
given in equation (4.67). At the r.h.s. of equation (4.69), we understand the occurring
light-cone coordinates as functions of the transverse coordinates from the l.h.s. (according
to the transformations given in table A.1).
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Exclusive electron distribution for fixed azimuth

First, we consider the exclusive electron distribution for a fixed azimuthal angle 𝜑2 of the
remaining final electron in the (𝑦2, 𝑝𝑇 2)-plane, where 𝑦2 denotes the rapidity and 𝑝𝑇 2 the
transverse momentum of the electron, respectively.
In figure 4.7 the six-fold differential cross section (4.69) is depicted as a function of 𝑦2 and
𝑝𝑇 2 for a fixed azimuthal angle 𝜑2 = 𝜋/2 and several values of 𝛥𝜙 (column-wise; 1: 25, 2:
50, 3: 250, 4: 500) as well as several values of the reference center-of-momentum energy
√
𝑠/𝑚 (row-wise; top: 3.353, middle: 3.05, bottom: 2.95). The positron’s momentum

components are fixed at 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15𝑚,𝜑1 = 0, which is a point within the
monochromatic phase space in both cases with

√
𝑠 >

√
𝑠th according to the inclusive
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Figure 4.7: Contour plots of d6𝜎ppt
d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2 d𝜑2

given in equation (4.69) in units of mb/𝑚2

for a linearly polarized background field with the cos2-envelope, depicted in the (𝑦2, 𝑝𝑇 2)-plane
with 𝜑2 = 𝜋

2 for several values of the pulse width 𝛥𝜙 (𝛥𝜙 = 25, 50, 250, 500 f.l.t.r.), several
values of the center-of-momentum energy

√
𝑠 (from top to bottom:

√
𝑠/𝑚 = 3.353, 3.05, 2.95)

and for a fixed positron momentum with 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15𝑚,𝜑1 = 0.0. Additionally, the
“physical phase space” of perturbative (monochromatic) trident given in equation (A.94) is
depicted as a single back dashed curve.
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positron distribution in figure 4.3 and 4.4.
Here, we observe, that for values of the center-of-momentum energy with

√
𝑠 >

√
𝑠th and

for increasing values of 𝛥𝜙, the differential cross section is reduced from a widespread
two-dimensional distribution in the (𝑦2, 𝑝𝑇 2)-plane towards a single one-dimensional curve.
This is to be expected, since in the monochromatic case, i.e. the limiting case for 𝛥𝜙 → ∞,
the perturbative (monochromatic) trident has a five-dimensional physical phase space (cf.
appendix A.4), i.e. for fixed positron momentum (three dimensions) and fixed electron
azimuth (the fourth dimension) the remaining phase space is one-dimensional. Therefore,
the six-dimensional phase space of pulsed-perturbative trident (or strong-field trident
in general; cf. section 2.5) needs to be reduced by one dimension. Additionally, the
“phase space” of perturbative (monochromatic) trident, resulting from the four-momentum
conservation given by equation (A.94), is inserted in figure 4.7 (black dashed curve) in
each panel, where it exists. We emphasize that this single line is near perfectly matched
by the pulsed-perturbative trident distribution for large pulse widths 𝛥𝜙 in both cases
where

√
𝑠 >

√
𝑠th (top and middle row).

Looking at it the other way round, for decreasing values of 𝛥𝜙, the exclusive electron
distribution of pulsed-perturbative trident in both cases with

√
𝑠 >

√
𝑠th expands from

this one-dimensional line to a genuinely two-dimensional distribution in the (𝑦2, 𝑝𝑇 2)-plane.
Therefore, the presence of a finite laser pulse (implying a finite bandwidth of the laser)
causes a blow-up of the five-dimensional phase space in the monochromatic case into a
six-dimensional phase space, which is indicated by the blurring of the black dashed curve
depicted in figure 4.7 in the case of pulsed-perturbative trident. This expansion of the
phase space is in agreement with the reasoning about the total cross section (see section
4.2) as well as the inclusive positron distribution (see section 4.3): the shorter the pulse
width the broader is the spectrum of the laser, which means that, loosely speaking, the
final particles (here the electron) can gain more energy from the background field.
Similar to the inclusive positron distribution (see figures 4.3 and 4.4), the phase space
expansion is the stronger the closer to the monochromatic threshold the reference center-
of-momentum energy

√
𝑠 is chosen. Furthermore, one may compare the case

√
𝑠 = 3.353𝑚,

not too close to the threshold (figure 4.7; top row), and the case
√
𝑠 = 3.05𝑚, slightly

above the threshold (figure 4.7; middle row). Considering the case slightly above the
monochromatic threshold, one observes that the one-dimensional monochromatic limit
occupies a smaller area compared to the case

√
𝑠 = 3.353𝑚. However, the dimensional

expansion in the (𝑦2, 𝑝𝑇 2)-plane for decreasing values of 𝛥𝜙 is more extensive and results
in an exclusive electron distribution of comparable area and strength.
Finally, in the bottom row of figure 4.7, the exclusive electron distribution is depicted for
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√
𝑠 = 2.95𝑚 and fixed positron momentum and electron azimuth. This case is slightly below

the monochromatic threshold, and there is no monochromatic limit, due to the absence
of a physical phase space of perturbative (monochromatic) trident for

√
𝑠 <

√
𝑠th = 3𝑚.

Therefore, the exclusive electron distribution of pulsed-perturbative trident vanishes for
large values of the pulse width 𝛥𝜙. However, one observes that for a finite-width laser
pulse, implying higher frequencies in the laser spectrum, a finite electron distribution
emerges for decreasing pulse widths, despite the reference center-of-momentum energy is
below the monochromatic threshold. This “sub-threshold” behavior enhances the electron
signal up to an area and strength, which is comparable to the case of

√
𝑠 = 3.05𝑚 (middle

row of figure 4.7) and therefore not negligible.
Summarizing, we mention that the presence of a finite laser pulse causes two types of
modifications of the physical phase space of perturbative (monochromatic) trident: (𝑖)
the blurring-out w.r.t. the sharp-boundary kinematical region as observed in the inclusive
positron distributions (section 4.3) as well as (𝑖𝑖) the expansion into an additional dimension
in the physical phase space as observed in the exclusive electron distributions. However,
these two effects of the finite pulse width are not independent but interrelated by the
integration of the differential cross section over one or more momentum components.
As mentioned in section 4.3, these modifications might be used to distinguish data obtained
by an experiment into a signal produced by the perturbative (monochromatic) trident,
due to the central frequency of the laser (which is encoded in

√
𝑠), and a signal which is

produced due to the higher frequencies due to the finite bandwidth of the laser pulse.

Azimuthal electron distribution
Within this section, we investigate the dependence of the exclusive electron distribution
of pulsed-perturbative trident on the azimuthal angle. Accordingly, along with the fixed
positron momentum 𝑝1, we keep the rapidity 𝑦2 of the electron fixed, but allow its transverse
momentum 𝑝𝑇 2 and azimuthal angle 𝜑2 to vary in a certain range. On the one hand, this
leads to a better understanding of the electron phase space in the pulsed-perturbative
trident w.r.t. the impact of the finite laser pulse. On the other hand, the azimuthal
distribution provides deeper insights into the connection of pulsed-perturbative trident to its
monochromatic limit. For instance, in the calculation of the perturbative (monochromatic)
trident cross sections, it is common practice to fix the value of the azimuthal angle of one
final particle in order to fulfil the global energy-momentum conservation, which is outlined
in appendix A.4, see equations (A.57) and (A.87).
We begin with the discussion of the case not to close to the monochromatic threshold. In
figure 4.8, the six-fold differential cross section (4.69) is exhibited for the same setting
as in the top row of figure 4.7 (i.e. 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15, 𝜑1 = 0,

√
𝑠 = 3.353𝑚 and
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Figure 4.8: Contour plot of d6𝜎ppt
d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2 d𝜑2

given in equation (4.69) in units of mb/𝑚2

for a linearly polarized background field with the cos2-envelope, depicted as a function of the
azimuthal angle 𝜑2 (polar axis) and the transverse momentum 𝑝𝑇 2 (radial axis) for 𝑦2 = 1.25,√
𝑠 = 3.353𝑚, several values of the pulse width 𝛥𝜙 (top left: 25, top right: 50, bottom left: 250,

bottom right: 500) and for a fixed positron momentum with 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15𝑚,𝜑1 = 0.0.
Additionally, the “physical phase space” of perturbative (monochromatic) trident given in
equation (A.87) is depicted as a single back dashed circle.

𝛥𝜙 = 25, 50, 250, 500), but for a fixed value of the electron rapidity of 𝑦2 = 1.25. The
transverse momentum 𝑝𝑇 2 is assigned to the radial direction and the azimuthal angle to
the polar direction of the diagram, where the azimuthal zero point corresponds to the
1-axis in momentum space. In this representation, the beam axis, i.e. the direction of
the reference three-momentum 𝑘 of the laser field, is positioned in the origin of the polar
diagram and points at the viewer perpendicular to the diagram plane. First, we observe
for all depicted cases a ring-like structure of the distributions, where its origin is slightly
shifted w.r.t. the beam axis, independent of the value of the pulse width. The direction of
this shift (here denoted as 𝜑shift

2 ) only depends on the azimuthal angle 𝜙1 of the positron
due to the relation 𝜑shift

2 = (𝜑1 + 𝜋) mod 2𝜋, i.e. for the displayed setting 𝜑shift
2 = 𝜋. This
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can be understood by the following kinematically reasoning. Since we assume a head-on
collision, there is no momentum component perpendicular to the beam axis in the initial
state, which implies that all azimuths of the final particles need to summed up to zero due
to the global three-momentum conservation. Here, if one assumes a collinear propagation
of the intermediate particles (virtual intermediate photon and “recoil electron”) at the
lower vertex of the diagram representation displayed in figure 4.1, then there is still no
azimuthal direction preferred in this intermediate state. Therefore, if the intermediate
photon decays into an electron-positron pair, the parts of their respective three-momenta
perpendicular to the beam axis need to cancel out each other, i.e. their azimuths need
to include an angle of 𝜋. We mention that this simple reasoning is only kinematical and
only considers the azimuthal angles of the final particles. Furthermore, since there is no
collinear propagation of the intermediate state of the trident process due to a dead-cone
effect (cf. Compton scattering), the reasoning does not predict the actual azimuthal angle
of the electron, but a principle shift of the whole electron distribution dependents on the
azimuth of the final positron.
Considering again figure 4.8, for large values of the pulse width 𝛥𝜙, one observes a reduction
of the two-dimensional ring-like structure to a single one-dimensional circle, similar to the
dimensional reduction in the (𝑦2,𝑝𝑇 2)-plane in figure 4.7 (top row). Therefore, combining
figure 4.8 with the top row of figure 4.7, we observe that in the monochromatic limit and
for a fixed positron momentum, the treated final electron is forced onto the surface of
an ellipsoid-like structure in the cylindric (𝑦2, 𝑝𝑇 2, 𝜑2)-space. Consequently, we insert the
𝜑2-values obtained from the energy-momentum conservation in the monochromatic case
according to equation (A.87), which will be referred to as the monochromatic circle. Here,
we mention again the near-perfect match of the electron phase space of pulsed-perturbative
trident with the monochromatic limit for the case of large 𝛥𝜙, as formerly observed in the
top row of figure 4.7 in the (𝑦2, 𝑝𝑇 2)-plane.
Looking at it the other way round, for decreasing values of the pulse width 𝛥𝜙, the azimuthal
electron distribution is modified from a one-dimensional circle in the case of perturbative
trident to a two-dimensional ring-like structure in the case of pulsed-perturbative trident.
This modification was formerly observed in the (𝑦2, 𝑝𝑇 2)-plane displayed in figure 4.7 and
reaches a finite signal even in the center of the ring-like distribution providing a wider
kinematical range, where the trident process becomes experimental accessible, as mentioned
in section 4.3.
In figure 4.9, the exclusive electron distribution is depicted with the same setting as in
figure 4.8, but for a reference center-of-momentum energy of

√
𝑠 = 3.05𝑚, which is slightly

above the monochromatic threshold of √
𝑠th = 3𝑚. Similar to the behavior observed for the
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Figure 4.9: Exclusive electron azimuthal distribution with same setting as in figure 4.8 but
for a center-of-mass energy of

√
𝑠 = 3.05𝑚.

distribution in the (𝑦2, 𝑝𝑇 2)-plane (cf. figure 4.7, middle row), the dimensional expansion
for decreasing values of 𝛥𝜙 is even stronger near to the monochromatic threshold. Despite
the smaller area occupied by the monochromatic circle, the enhancement due to the finite
pulse width yields for the depicted value of 𝛥𝜙 = 25 a similar area and signal strength as
in the case of

√
𝑠 = 3.353𝑚. Of course, the signal strength, i.e. the maximum values of the

depicted distribution, is slightly lower near the threshold, which was initially indicated by
the total cross section of pulsed-perturbative trident displayed in figure 4.2. Therefore, in
the data analysis related to a conceivable experimental setup, one may introduce a cutoff
in the transverse momentum channel of the electrons, e.g. 𝑝cutoff

𝑇 2 = 0.3𝑚 for the case with
√
𝑠 = 3.05𝑚, in order to remove the electron signal originating from the monochromatic

trident (caused by the central frequency of the laser). The remaining signal is produced
due to the finite bandwidth of the laser.
This also holds, if there is no monochromatic trident signal caused by the central frequency
of the laser in the first place, i.e. even if the reference center-of-momentum energy is below
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the monochromatic threshold. The finite observable signal of the trident process emerges
due to the finite bandwidth of the laser.
Consequently, in figure 4.10 the exclusive electron distribution of pulsed-perturbative trident
is exhibited in the same setting as in figures 4.8 and 4.9, respectively, but for a reference
center-of-momentum energy of

√
𝑠 = 2.95𝑚, which is slightly below the monochromatic

threshold. First, we observe that the exclusive electron distribution vanishes for large values
of 𝛥𝜙 due to the absence of physical phase space in the monochromatic limit. However,
for small pulse widths, e.g. the displayed case of 𝛥𝜙 = 25 (first panel in figure 4.10), the
resulting distribution enhances up to a non-negligible level, which is in phase space area and
signal strength comparable to the case of

√
𝑠 = 3.05𝑚 (see figure 4.9). Additionally, the

ring-like structures observed in cases with
√
𝑠 >

√
𝑠th is dissolved for

√
𝑠 = 2.95𝑚 and one

has a more disk-like structure of the exclusive electron distribution in the (𝑝𝑇 2, 𝜑2)-plane.
Finally, we want to quantify the impact of the finite pulse width of the laser field (see
section 3.3 and especially figure 3.3) on the modification of the electron phase space for
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Figure 4.10: Exclusive electron azimuthal distribution with same setting as in figure 4.8 but
for a center-of-mass energy of

√
𝑠 = 2.95𝑚. There is no physical phase space of perturbative

(monochromatic) trident in this case.
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a fixed positron momentum. Accordingly, we mention additional monochromatic circles
given by

𝜑
(1,2)
2 (𝑙) ≡ 𝜑

(1,2)
2 (√𝑠𝑙), (4.70)

where 𝜑(1,2)
2 (

√
𝑠) is given in equation (A.87), 𝑠𝑙 = (𝑝+ 𝑙𝑘)2 denotes the shifted center-of-

momentum energy with 𝑝 (𝑘) is the momentum of the initial electron (photon) and 𝑙 is the
photon number parameter, i.e. the argument of the Fourier transform 𝐹1(𝑙) given in equation
(3.4) encoding the laser spectrum (see section 3.3). In contrast to the calculation of the
pulsed-perturbative trident matrix element (where 𝑙 is given as a function of the external
momenta), we gather the values of 𝑙 directly from the (squared) spectral distribution
of the laser field depicted in figure 3.3, e.g. by considering the first side maxima of the
spectrum on both sides at the main maximum, which results in 𝑙 = 1 ± 3𝜋

𝛥𝜙 . The resulting
monochromatic circles 𝜑(1,2)

2

(︁
1 ± 3𝜋

𝛥𝜙

)︁
obtained from equation (4.70), supposing they exist,

are inserted in the figures 4.8, 4.9, and 4.10, respectively. We mention, that in every
displayed case, this shifted monochromatic circles provide a good approximation of the
inner and outer boundaries of the extent of the exclusive electron distribution due to
the finite pulse width. Accordingly, one has an explicit connection between the width of
the laser spectrum and the enlarged electron phase space of pulsed-perturbative trident,
despite the complicated structure of the trident matrix element. This leads to an easy to
use method in order to predict the expansion of the phase space of pulsed-perturbative
trident, at least w.r.t. the momentum components transverse to the beam axis, directly
from the laser spectrum. For instance, considering

√
𝑠 = 2.95𝑚, the outer boundary given

by equation (4.70) provides a good estimation of the kinematical boundaries of trident
electrons expected for short laser pulses, even if the reference center-of-momentum energy,
related to the central frequency of the laser, is below the monochromatic threshold.

Comparison to monochromatic limit
We found that one of the major differences in the exclusive electron distribution comparing
the pulsed-perturbative QED calculation with the monochromatic case is the dimension
of the respective phase space: (𝑖) six-dimensional for pulsed-perturbative trident and
(𝑖𝑖) five-dimensional for perturbative (monochromatic) trident. Considering the exclusive
electron distribution, we observed that the extent of the dimensional expansion highly
depends on the bandwidth of the laser field, caused by the finite pulse duration. As
mentioned above, this dimensional expansion is connected to the blurring and broadening
of the monochromatic phase space boundaries in partially or fully integrated cross sections
of pulsed-perturbative , e.g. as set out for the inclusive positron distribution in section 4.3



90 4 Pulsed-perturbative trident process

and the total cross section in section 4.2, respectively. In order to illustrate this connection,
here we compute the electron distribution given by equation (4.69) with a fixed positron
momentum, but integrated over one momentum component of the electron, say 𝜑2. The
resulting five-fold differential cross section reads

d5𝜎ppt
d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2

=
ˆ d6𝜎ppt

d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2 d𝜑2
d𝜑2. (4.71)

In order to numerically perform the integration (4.71), we apply the method of shifted
monochromatic circles as introduced by the use of equation (4.70).
In figure 4.11 a circle-shaped slice through the exclusive electron distribution displayed in
figure 4.8 for a constant 𝑝𝑇 2 = 0.6𝑚 is depicted. One observes for increasing pulse widths
𝛥𝜙 the above mentioned reduction of the dimension of the electron phase space due to
the transition to the monochromatic case, which is indicated by the resulting two sharp
peaks. Additionally, where they exist we insert in figure 4.11 the distinct values of 𝜑2

for the monochromatic case (black dashed lines) given in equation (A.87), as well as the
expected boundaries of the spectral expansion (grey dashed lines) according to equation
(4.70). We mention that, on the one hand, the centers of the forming peaks in the high
𝛥𝜙 case match near to perfectly with the monochromatic values of 𝜑2. On the other hand,
considering the dimensional expansion for decreasing 𝛥𝜙, one observes that the expected
boundaries, if they exist, enclose the peaks fairly well. Therefore, in general, one can apply
the boundary expectation of the peaks according to equation (4.70), in order to adapt the
domain of the 𝜑2-integration. Considering this adaption method, the integration in (4.71)

0 1 2 3 4 5 6
φ2

0.0

0.5

1.0

1.5

d
6
σ

d
y
1
d
p
T

1
d
φ
1
d
y
2
d
p
T

2
d
φ
2

[m
b
/
m

2
]

×10−2

0 1 2 3 4 5 6
φ2

0 1 2 3 4 5 6
φ2

0 1 2 3 4 5 6
φ2

Figure 4.11: Exclusive electron azimuthal distribution with same setting as in figure 4.8 but
as a function of 𝜑2 for 𝑝𝑇 2 = 0.6𝑚 (i.e. a circle-shaped slice through the distributions exhibited
in figure 4.8). Additionally, the fixed values 𝜑(1,2)

2 ≈ 𝜋± 1.09, given in the monochromatic case
by equation (A.87), are depicted by black dashed lines along with the expected boundaries
(grey dashed lines) caused by the finite pulse width according to equation (4.70) and considering
the first side maximum of the laser spectrum, i.e. 𝑙 = 1 ± 3𝜋

𝛥𝜙 (cf. figure 3.3).
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Figure 4.12: A contour plot of d5𝜎ppt
d𝑦1 d𝑝𝑇 1 d𝜑1 d𝑦2 d𝑝𝑇 2

in units of mb/𝑚2, given in equation (4.71)
for a linearly polarized background field with the cos2-envelope, depicted in the (𝑦2, 𝑝𝑇 2)-plane
for

√
𝑠 = 3.353𝑚, several values of the pulse width 𝛥𝜙 (𝛥𝜙 = 25, 50, 250, 500 f.l.t.r.) and for a

fixed positron momentum with 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15𝑚,𝜑1 = 0.0. Additionally, the boundaries
of the physical phase space of perturbative (monochromatic) trident given in equation (A.94)
are depicted by back dashed curves.

becomes numerically very stable, even if the peaks are steep (as observed in figure 4.11 for
large values of 𝛥𝜙).
In figure 4.12 the resulting five-fold differential cross section (4.71) is depicted as a function
of the rapidity 𝑦2 and the transverse momentum 𝑝𝑇 2 of the remaining final electron for
a linearly polarized background field (𝜉 = 0) with a cos2-pulse envelope and for several
values of the pulse width 𝛥𝜙. Here, we choose

√
𝑠 = 3.353𝑚 (i.e. above the threshold) and

fix the positron momentum at 𝑦1 = 1.0, 𝑝𝑇 1 = 0.15𝑚,𝜑1 = 0.0. First, we mention that the
respective monochromatic exclusive electron distribution covers a two-dimensional area in
the (𝑦2, 𝑝𝑇 2)-plane with sharp arc-shaped boundaries, in difference to the one-dimensional
curves shown above for a fixed value of 𝜑2 (see figure 4.7). For large 𝛥𝜙 the pulsed-
perturbative QED calculation approaches this sharp-bounded area indicating that the
𝜑2-integration in (4.71) extracts the correct monochromatic values of 𝜑2 given in equation
(A.87). Loosely speaking, this property is a sort of a numerical representation of the delta-
distribution, which is used to analytically fix the values of 𝜑2 in the monochromatic case (cf.
appendix A.4). On the other hand, for decreasing values of 𝛥𝜙, one observes an enlargement
of the exclusive electron distribution beyond the sharp kinematic boundaries, similar to
the expansion previously seen in the inclusive positron distributions (cf. section 4.3).
In order to directly compare the values of the exclusive electron distribution of pulsed-
perturbative trident integrated over 𝜑2 with the respective monochromatic case, we consider
a slice through the distribution displayed in figure 4.12 for 𝑝𝑇 2 = 0.6𝑚. The resulting
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Figure 4.13: The exclusive 𝜑2-integrated electron distribution with the same setting as in
figure 4.12 but as a function of 𝑦2 for 𝑝𝑇 2 = 0.6𝑚. Additionally, the case of an ultra-wide pulse
with 𝛥𝜙 = 1000 is exhibited as well as the respective monochromatic distribution obtained
from equation (C.9) by transformation to transverse coordinates due to table A.2 and equation
(A.35), repsectively.

curves are depicted in figure 4.13 for the already considered values of 𝛥𝜙 = 25, 50, 250, 500
as well as an ultra-wide pulse with 𝛥𝜙 = 1000. Additionally, we insert the respective
slice through the monochromatic exclusive electron distribution (black dashed line), which
is given by the transformation of equation (C.9) to transverse coordinates according to
table A.2 and equation (A.35). For increasing values of 𝛥𝜙, one has again a near perfect
match of the pulsed-perturbative QED calculation with the monochromatic distribution.
We mention especially the formation of the steep edges of the distribution, which are
kinematically indicated by the coordinate singularities outlined in appendix A.4 for the
monochromatic case.
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4.5 Experimental capability
Within this section, we illustrate briefly the (possible) experimental scenarios in order to
measure in principle the features of the trident process w.r.t. the dependence to the finite
spectrum of the impinging electromagnetic field, as illustrated in sections 4.2, 4.3 and 4.4,
respectively. We point out that this can be done within this thesis only as a conceptional
study excluding concerns directly related to the experimental setup, e.g. electron bunching,
repetition rates, synchronization, laser focusing and detector specification, to name a few.
The evaluation of these issues is beyond the present thesis and will be left for further
investigations.
Considering the pulsed-perturbative trident investigated within this chapter, the following
parameter constraints need to be met in an experiment.

high center-of-momentum energy: As we observed in several distributions of pulsed-per-
turbative trident, the strongest impact of the pulse width can be seen near to the
monochromatic threshold of √

𝑠th = 3𝑚. Therefore, it seems convenient to choose
an experimental setup, where the encountered center-of-momentum energy is in the
region of this threshold. In the assumed case of a laser-electron collision with a
fixed central frequency (energy) of the laser, this can, in principle, be achieved by a
high-energetic electron beam. However, for optical laser frequencies, say 𝜔 = 1 eV,
the needed electron energy would be 𝐸 ∼ 106𝑚 ≈ 0.5 TeV, which is not reachable by
current electron accelerators (for comparison, the Large Electron–Positron Collider
LEP [210] had a maximal electron energy of ≈ 104 GeV). We honorably mention
the upcoming capabilities of laser wake-field acceleration (cf. [51]), which predict
electron energies in the 100 GeV to TeV range. However, for this conceptional study,
it is more convenient to go to higher central frequencies of the used photon source in
order to decrease the needed electron energy up to a manageable level. For instance,
in a heads-on collision of 10 keV photons (e.g. from an x-ray free-electron laser or a
secondary x-ray source; see below) with an electron beam, the electron energy needs
to be at least 50 MeV to operate slightly above the monochromatic trident threshold.

low-to-medium laser intensity parameter: Since the pulsed-perturbative QED introduced
in chapter 3 is a low-𝑎0 approximation to the pulsed plane-wave approach of strong-
field QED, we consider experimental setups with 𝑎0 < 1. As we indicated in section
3.2, the first order approximation in 𝑎0 is reasonably close to the full calculation
of the vertex function for 𝑎0 ≤ 0.1 (as shown for the phase integral 𝐵1 in figure
3.2), where we assume the pulsed-perturbative QED to be a valid approximation.
Considering the above mentioned x-ray sources, this constraint is naturally fulfilled,
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because for a fixed laser peak intensity 𝐼, the respective laser intensity parameter
𝑎0 scales inversely proportional with photon energy: 𝑎0 ∼ 1

𝜔 . For instance, if one
has a light source with an intensity of 𝐼 = 1018 W/cm2 and central frequency of
𝜔 = 10 keV (both reachable with the modern XFEL experiments; see below) the
resulting intensity parameter yields 𝑎0 ≈ 10−4.

short pulses/wide spectra: As we observed in section 4.3 and 4.4, the strongest impact
of the laser spectrum can be seen, of course, in the short-pulse regime. However,
considering for instance the exclusive electron distributions near the monochromatic
threshold (cf. section 4.4), we observe that even for relatively large pulse widths,
e.g. in the order of 𝛥𝜙 ∼ 102, the dimensional broadening of the distribution is
not negligible: even for 𝛥𝜙 = 250, there is significant signal strength outside of the
monochromatic phase space (see figure 4.7 middle row). Accordingly, we assume that
an experimental setup needs to produce pulses shorter than 𝛥𝜙 ∼ 102 in order to be
capable to observe the spectral effects in the trident process near the monochromatic
threshold. Admittedly, this is the most difficult task to be accomplished, because if
one considers a temporal duration 𝜏 of a laser pulse with a reference energy of 𝜔,
the corresponding pulse width behaves like 𝛥𝜙 ∼ 𝜔𝜏/2, where we neglect spatial
inhomogeneities. Therefore, if we assume a high-energy light source, according to the
reasoning given above, the resulting pulse width 𝛥𝜙 yields naturally larger values.
Accordingly, one needs to be aware of a compromise between the reference energy
(i.e. the central frequency) of a light source and its pulse width. As we will see below,
especially the upcoming/planned attosecond (sub-femtosecond) sources in the soft
x-ray regime might be such a compromise.

In order to evaluate the above mentioned parameter ranges w.r.t. present or planed
experimental facilities, we consider the following light sources/collision experiments.

• The European X-Ray Free-Electron Laser Facility (European XFEL; [11, 211]) as
used from the HiBEF collaboration [130] in order to detect i.a. vacuum birefringence
[259], here representative of a primary x-ray source,

• LCLS-II XLEAP [171] (see also [1, 75, 115, 172, 260]) as an example for the upcoming
sub-femtosecond x-ray sources,

• SYLOS-SHHG@ELI-ALPS [165] (see also [195, 201]) representative of an upcoming
secondary source with planed applications in attosecond science (see for instance
[111] and the references given there),

• LUXE@DESY [2] (see also [34, 46, 114]) as an example for an electron collision
experiment with an optical high-power laser. Additionally, we consider the pioneering
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E-144@SLAC [20, 40, 41, 47], where through the combined Compton- and Breit-
Wheeler process, multi-photon interactions were experimentally verified for the first
time. In a similar category of these experiments, we mention also the upcoming
FACET-II experiment [310].

We note that the above list is not complete and only representative for certain experimental
aspects w.r.t. the above mentioned parameter ranges for pulsed-perturbative trident.
In figure 4.14, the experimental parameters of the above considered light sources are
depicted. On the l.h.s., the Mandelstam-𝑠 (i.e. the square of the center-of-momentum
energy

√
𝑠) is displayed as a function of the energy 𝐸 of the initial electron for several

reference energies of the incident photon (i.e. of the background field in the context of
strong-field QED). Additionally to the above considered experiments (blue dots), we
inserted several regimes of the photon energy: the optical regime (𝜔 ∼ 1 eV; turquoise line),
the typical XFEL regime (𝜔 ∼ 1 − 10 keV; red area) and the typical synchrotron regime
(𝜔 ∼ 1 MeV; green line), respectively, as well as the monochromatic threshold 𝑠th = 9𝑚2
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Figure 4.14: Characteristic quantities of several (partially) assumed experimental setups
depicted in the (𝑠, 𝐸)-plane (left panel), where 𝑠 is the Mandelstam variable and 𝐸 the electron
energy, as well as in the (𝑎0, 𝛥𝜙)-plane (right panel), where 𝑎0 denotes the laser intensity
parameter and 𝛥𝜙 the pulse width in an pulsed plane-wave approach for the light-source.
The experimental values are considered from: HiBEF [11] (𝜔 = 15 keV, 𝐸 = 50 MeV, 𝑎0 = 5 ×
10−5, 𝛥𝜙 = 11.4×103), LUXE [2] (𝜔 = 1.55 eV, 𝐸 = 17.7 GeV, 𝑎0 = 16, 𝛥𝜙 = 35.3), LCLS-II [1]
(𝜔 = 248 eV, 𝐸 = 2 GeV, 𝑎0 = 3×10−3, 𝛥𝜙 = 37.7), ALPS [165] (𝜔 = 1 keV, 𝐸 = 250 MeV, 𝑎0 =
7.5 × 10−6, 𝛥𝜙 = 38) and E-144 [20] (𝜔 = 1.18 eV, 𝐸 = 46.6 GeV, 𝑎0 = 0.45, 𝛥𝜙 = 536.7),
respectively. If necessary, the electron energies are assumed according to the operation near
the monochromatic trident threshold (black dot-dashed line) and the quantities are calculated
from the referenced parameters. Additionally, several reference regimes are depicted. Left
panel: optical laser regime (𝜔 ∼ 1 eV; turquoise line), typical XFEL regime (𝜔 ∼ 1 − 10 keV;
red area) and synchrotron regime (𝜔 ∼ 1 MeV; green line), as well as, right panel: the assumed
parameter regime for pulsed-perturbative trident (blue shaded) and the typical XFEL regime
(red area).
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of the trident process (black dot-dashed line). In order to reach the monochromatic trident
threshold, we consider possible electron energies of 𝐸 = 50 MeV (HiBEF), 250 MeV (ALPS)
and 2 GeV (LCLS-II), respectively. For the considered collision experiments (LUXE, E-144)
we depicted the actual electron energies used or planed in the respective experiment:
𝐸 = 17.7 GeV (LUXE) and 46.6 GeV (E-144). We mention that the considered examples
of light-sources in the x-ray regime are capable to operate near the monochromatic trident
threshold using manageable electron energies and therefore might be sensitive for the
spectral broadening w.r.t. the pulsed-perturbative trident. The situation is different for
the considered optical experiments, which operate far below the monochromatic trident
threshold and therefore they are more sensitive for genuine multi-photon effects at higher
𝑎0 > 1, where the pulsed-perturbative QED approach is not applicable; this is/was, of
course, the intension of these experiments.
A further light source class not exhibited in the left panel of figure 4.14 is related to
Compton-backscattered and coherent bremsstrahlung photons. These operate currently
in the energy range of 1 − 10 GeV and above, however, as photon beams and not as
coherent electromagnetic fields. Despite their high degree of (linear) polarisation – which
is of paramount interest for hadron physics experiments [3, 12] – they are in our context
valuable as probe photons, e.g. in non-linear Breit-Wheeler process. We emphasize that
the azimuthal angle distribution of the “recoil electron” in the trident process is routinely
used to control the polarisation of such photon beams [72, 95]. The “recoil electron” is
here the slowest outgoing electron 𝑒−′ in the process 𝛾 + 𝑒− → 𝑒−′ + (𝑒+𝑒−) at atomic
target-material electrons 𝑒− (cf. appendix C.3).
In the right panel of figure 4.14, the parameters of the considered experiments are depicted
in the (𝑎0, 𝛥𝜙)-plane. Additionally we inserted the typical XFEL regime (red area) as
well as the parameter regime, where we assume the pulsed-perturbative trident yields a
measurable contribution (blue shaded area). Firstly, we mention that the considered optical
collision experiments have parameters outside the sensitivity area of pulsed-perturbative
trident due to high laser intensity parameters 𝑎0 in the case of LUXE and wide pulses
in the case of E-144, respectively. Secondly, the considered collision experiment at the
european-XFEL (e.g. as conceivable for HiBEF) is also not sensitive to the spectral effects
described by the pulsed-perturbative trident due to the narrow bandwidth of the XFEL.
However, the considered secondary (soft) x-ray sources (here LCLS-II XLEAP and SYLOS-
SHHG at ELI-ALPS) might be sensitive for the bandwidth effects of pulsed-perturbative
trident. Combined with the energy properties of these (conceivable) experiments mentioned
above, we assume that the phenomena due to broad bandwidth of the light source become
important for a precise data analysis of the detected particles produced by the collision.
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Within this thesis, we investigated the strong-field trident process at low to medium intensity
parameters, but by considering the spectral information of the light source involved in
the scattering due to its short temporal structure. Thereby we revealed in a transparent
manner, that the correct regularisation of the dressed vertex in momentum space (see
section 2.71) is key for the reconstruction of the perturbative monochromatic QED in
the combined limiting cases of infinitely wide pulses and weak fields. Consequently, we
introduced in chapter 3 an approximation to strong-field QED for low intensity parameters
𝑎0 but arbitrary finite pulse widths. This fills a missing gap on the pathway from the
general pulsed plane-wave approach to the common perturbative monochromatic QED, as
we illustrated in section 3.1. Furthermore, we showed that this new approximation leads to
a factorisation of the dressed vertex w.r.t. the dependence to the background field in terms
of its Fourier transform (see equation (3.10)), which is directly connected to the spectrum
of the used light source, as we discussed in section 3.3.
In chapter 4, we applied this new approximation to the trident process and numerically
calculated a portfolio of different distributions, e.g. differential and total cross sections,
respectively. In section 4.1 we derived the pulsed-perturbative trident matrix element for
arbitrary pulse shapes and polarisations, where revealed that the mentioned factorisation
is also present in the trident matrix element and to some extent on the probability level as
well. This led to a general proof of the convergence of the pulsed-perturbative trident for
infinitely wide pulses to the monochromatic case2, where we considered both levels, the
matrix element and the differential cross section, respectively.
In order to numerically evaluate the pulsed-perturbative trident process, we first considered
in section 4.2 the dependence of the trident total cross section at low-to-medium intensities

2 This proofs by implication also the convergence of the strong-field trident to the monochromatic case in
the combined limit of infinitely wide pulses and weak fields.
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to the finite width of a smooth pulse envelope function3. This reveals for the first time,
that for short pulses the trident process produces a non-vanishing total cross section below
its monochromatic threshold, even if the intensity parameter 𝑎0 is below unity. A similar
behavior was observed in the Breit-Wheeler process, for instance in [221, 290].
Following this, in section 4.3 we numerically calculated the inclusive positron distribution
by integrating fully over the final electrons, which mimics the experimental case, where
the positron is measured accumulatively for all possible final electron states. This is
motivated by the consideration, that the positron can be used as a trigger particle in
order to select the trident signals in a laser-electron collision. Considering these inclusive
positron distributions, we observed and quantified an enhancement of the physical phase
space of the positron w.r.t. the monochromatic case, which is originated in the finite
bandwidth of the used light source. Furthermore, we revealed that there is a finite inclusive
distribution of the positron with non-negligible height, even if there is no physical phase
space according to the monochromatic case. This will be an important property if one
assumes an experimental laser-collision setup, where the central frequency of the used light
source is too low to succeed the monochromatic trident threshold but has such a short
temporal structure, that the tails of the laser spectrum will provide enough energy to yet
cause the trident process.
In order to continue the elaboration of the trigger particle approach w.r.t. the positron,
we subsequently calculated in section 4.4 the exclusive electron distributions as well as its
azimuthal distribution by considering a fixed phase space point for the positron momentum.
This mimics the trigger in a conceivable experimental setup. According to these exclusive
electron distributions, we clarified that the enhancement of the trident final phase space
observed in the inclusive distributions is originated in a dimensional extension of the phase
space due to the appearance of an additional degree of freedom for the final particles. This
is a common property for processes in pulsed plane-wave background fields. However, we
quantified this dimension-related behavior in the case of the trident process and showed
transparently that it is originated in the finite pulse width of the used laser. Furthermore
we derived an analytical formula for the assumed dimensional extent based on the width
of the laser spectrum, which we were able to verify by comparison with the numerically
calculated exclusive electron distributions. Finally, we demonstrated an application of this
analytical formula by using it to adapt the domain of the azimuthal angle of the electron
to regions with assumingly the most importance, which led to numerically very stable

3 There are similar results given in [69, 133], but without the consideration of a smooth pulse envelope
function.
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integration schemes.
On every stage of calculation of the pulsed-perturbative trident distributions, i.e. the total
cross section, the inclusive as well as the exclusive distributions, we compare the resulting
curves (or several slices) with a direct calculation of the perturbative monochromatic trident
(see appendix C). For large values of the pulse width, we found in every considered case a
smooth approach of the pulsed-perturbative QED calculations with the monochromatic
results, which finally led to near perfect agreements. Accordingly, we conclude that the
pulsed-perturbative QED approach can be seen from two different points of view. First
as a low-intensity approximation on the general strong-field QED in pulsed plane-wave
background fields in order to provide a numerically staple framework for processes at the
lower intensity parameter range. Second as a clean extension of the monochromatic QED
calculations in order to involve the broad spectrum of modern short-pulsed light sources.
Conclusively, we examined in section 4.5 several existing or planned experimental facilities
due to their provided light sources w.r.t. the capability to measure the spectral effects
according to pulsed-perturbative trident calculations. As it turns out, a combination of
the sub-femtosecond soft x-ray sources with an electron beam of ∼ 10 MeV up to several
GeV energy would be sensitive for the pulsed-perturbative trident effects elaborated within
this thesis.

Outlook
From the conceptional point of view, an important problem to treat, would be the behavior
of the trident process for intensity parameters 𝑎0 approaching unity. In the context of
our pulsed-perturbative approach, going to larger values of the laser intensity parameter
means checking whether an analogue of the Fourier transform of the electromagnetic field
can be isolated as a crucial element of the phase space distribution of produced particles.
Accordingly, a direct comparison to the calculations coming from investigations for higher
values of 𝑎0, for instance from [69, 70], would provide very interesting insights into the
analytical structure of the trident process.
Another conceivable direction for further investigations is the application of pulsed-
perturbative trident to a broader range of properties given by recent or future experiments.
For instance, the distribution of the final “recoil” electron is key for the polarisation control
of high energy gamma-ray sources, which could benefit from the involvement of the spec-
tral information via the pulsed-perturbative trident process. Therefore, the investigation
of pulsed-perturbative trident for more general polarisations as well as a more explicit
consideration of these experimental setups seems to be a promising starting point for such
investigations.



100 5 Summary and Outlook

Speaking of the experimental applications, another important extension of the investigations
within this thesis is the consideration of more general laser field configurations. For instance,
the factorisation of the amplitude w.r.t. the pulse shape dependence in pulsed-perturbative
QED could be convenient for the development of a more data-driven approach for the
considered scattering processes. Thereby, one could analyse the spectrum of the laser
field instead of an a-priori field model (e.g. by using external data from experiments or
simulations) and still would be able to predict the probability of the considered process4.
Since the pulsed-perturbative QED processes can be implemented in a numerically stable
fashion – among other things due to the above mentioned factorisation – there is another
conceivable application closely related to the data-driven approach mentioned above: based
on a Monte Carlo event generator, our pulsed-perturbative approach could be implemented
in large-scale simulations like the prolific particle-in-cell codes. This would be a rather
complementary approach to the locally constant field approximation w.r.t. the involvement
of (non-linear) QED processes in such simulations for plasma-related investigations and
the computation of QED cascades. Thus, our pulsed-perturbative approach can be seen
as a modification of the monochromatic QED, which includes spectral effects from the
lower end of the intensity scale, i.e. the description evolves in the same direction as further
experimental developments.
Conclusively, we mentioned in appendix C.4, another different kind of application lies
in the dark matter search, where the trident process might be capable to give access to
dark photon resonances. Accordingly, an interesting direction for further investigations is
the consideration of the phase space modifications according to our pulsed-perturbative
approach in order to generalise the respective monochromatic treatments.

4 This might be somewhat similar to the data-driven form factor approach applied in the parton model of
hadrons (see for instance [311] and the references given there).
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A | Relativistic Kinematics

In this section, the conventions and notations from relativistic particle kinematics used
within this thesis are summarised. These explanations are rather incomplete, and we
refer the reader to the extensive literature about this topic related to particle physics and
classical electrodynamics: e.g. [48, 108, 179, 235], chapter 47 of [286].

A.1 Preliminary remarks

Generally, a particle is described in the theory of special relativity by its 4-momentum
𝑝𝜇 =

(︀
𝑝0, 𝑝1, 𝑝2, 𝑝0)︀ =

(︀
𝑝0, 𝑝

)︀
, where the components are given in Cartesian coordinates

of the respective Minkowski space and the spatial components 𝑝 = (𝑝1, 𝑝2, 𝑝3) denote the
3-momentum of the particle. We mention, to distinguish the spatial components of a
4-momentum from the position vector 𝑥𝜇, we refer the 3-momentum axes as (1, 2, 3) rather
than (𝑥, 𝑦, 𝑧).
The 4-momentum of a particle causes a splitting in two distinct classes: a particle is called
on-shell, if its 4-momentum obeys

𝑝𝜇𝑝𝜇 = 𝑔𝜇𝜈𝑝
𝜇𝑝𝜈 = 𝑚2, (A.1)

where 𝑚 is the particles rest mass and 𝑔𝜇𝜈 = diag(1,−1,−1,−1) the Minkowski metric.
Otherwise, if 𝑝𝜇𝑝𝜇 ≠ 𝑚2, the particle is called off-shell (also loosely referred as a virtual
particle). Most often, off-shell particles appear as intermediate particles in scattering and
decay processes, such as the trident process investigated within this thesis. For an on-shell
particle, the components of its 4-momentum are not independent, but connected due to the
energy-momentum relation 𝐸2 :=

(︀
𝑝0)︀2 =

(︀
𝑝1)︀2 +

(︀
𝑝2)︀2 +

(︀
𝑝3)︀2 +𝑚2 = 𝑝2 +𝑚2, where

in this case, the 0-th component of the 4-momentum is referred as the energy 𝐸 of the
particle, which obeys 𝐸 ≥ 𝑚. The set of all possible 4-momenta describing an on-shell
particle is within this thesis referred to as the (one-particle) phase space of the particle.
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The invariant integral measure on such a phase space reads

d𝛷1 = d3𝑝

(2𝜋)32𝑝0

⃒⃒⃒⃒
𝑝𝜇𝑝𝜇=𝑚2

= d𝑝1d𝑝2d𝑝3

(2𝜋)32𝐸 , (A.2)

where the energy 𝐸 =
√︁
𝑝2 +𝑚2 is understood as a dependent quantity and the factor

(2𝜋)−3 is conventionally inserted concerning the normalisation of possible Fourier transforms
between position and momentum space descriptions of the particle within a quantum field
theory. However, in a physical process, the involved momenta need to obey kinematical
conditions, e.g. global energy-momentum conservation, which causes constraints of the
respective phase space. Consequently, the set of all momenta of all particles involved in a
physical process, which fulfil the respective kinematical conditions is also referred to as the
physical phase space to this process.

A.2 Coordinate systems: parametrisation of 4-momenta
The 4-momentum 𝑝𝜇 of a particle is generally regarded with its Cartesian components.
However, in some cases, it is convenient to transform these components into a coordinate
system, which is more suitable to the respective circumstances, e.g. the encountered
mathematical expressions become more handy in special coordinate systems, or if in an
experiment a specific kinematical quantity is measured.

Spherical coordinates

In a spherical coordinate system, the 4-momentum of a particle is given in terms of the
energy 𝐸, the magnitude of the 3-momentum 𝜚, the polar angle 𝜃 and the azimuth angle
𝜑, which are defined by

𝐸 := 𝑝0, (A.3)

𝜚 :=
√︀

(𝑝1)2 + (𝑝2)2 + (𝑝3)2 (A.4)

𝜃 := arccos
(︂
𝑝3

𝜌

)︂
, (A.5)

𝜑 := atan2
(︀
𝑝2,𝑝1)︀ ∈ [0, 2𝜋), (A.6)

where atan2 denotes the 2-argument arctangent [313], which defines the angle between the
1-axis and the vector (𝑝1, 𝑝2) in the (1,2)-plane of the particle’s phase space, i.e. it shifts
the arctan(𝑝2/𝑝1) w.r.t. the correct quadrant to yield an azimuth angle in the interval
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[0, 2𝜋). The on-shell condition from equation (A.1) is then given as

𝜚 =
√︀
𝐸2 −𝑚2, (A.7)

where the remaining independent spherical coordinates are (𝐸, 𝜃, 𝜑). The inverse transfor-
mation is given by

𝑝0 = 𝐸, (A.8)

𝑝1 = 𝜚 sin 𝜃 cos𝜑, (A.9)

𝑝2 = 𝜚 sin 𝜃 sin𝜑, (A.10)

𝑝3 = 𝜚 cos 𝜃. (A.11)

For an on-shell particle the invariant phase space measure transformed to spherical coordi-
nates reads

(2𝜋)3 d𝛷1 = 𝜚2

2𝐸 d𝜚 d cos 𝜃 d𝜑 = 𝜚

2d𝐸 d cos 𝜃 d𝜑, (A.12)

where in the last step we used the identity 𝜚d𝜚 = 𝐸 d𝐸. We mention, within this thesis
we often use cos 𝜃 ∈ [−1, 1] as a coordinate instead of 𝜃 itself.

Light-cone coordinates

In the light-cone coordinate system w.r.t. the 3-axis of the Minkowski space (also referred
as light-front coordinates), the 4-momentum of a particle is described in terms of

𝑝− := 1
2
(︀
𝑝0 − 𝑝3)︀ , (A.13)

𝑝+ := 1
2
(︀
𝑝0 + 𝑝3)︀ , (A.14)

𝑝𝑥 := 𝑝1, (A.15)

𝑝𝑦 := 𝑝2, (A.16)

where we often use the abbreviation 𝑝⊥ := (𝑝𝑥, 𝑝𝑦) for the projection of the respective
3-momentum 𝑝 to the plane perpendicular to the 3-axis. These coordinates are proven to
be practical to describe massless particles, whose kinematical behavior is strongly related
to the light-cone (here w.r.t. the 3-axis), e.g. if one has a photon propagating along the
3-axis, only one of the light-cone coordinates does not vanish, i.e. only 𝑝+ ̸= 0 (𝑝− ̸= 0) if
the photon moves in the positive (negative) 3-direction. The on-shell condition (A.1) is
in light-cone coordinates given as 4𝑝+𝑝− −

(︀
𝑝⊥)︀2 = 𝑚2 or equivalently as the coordinate
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relation

𝑝+ =
(︀
𝑝⊥)︀2 +𝑚2

4𝑝− . (A.17)

The inverse transformation from light-cone coordinates to cartesian coordinates reads

𝑝0 = 𝑝+ + 𝑝−, (A.18)

𝑝1 = 𝑝𝑥, (A.19)

𝑝2 = 𝑝𝑦, (A.20)

𝑝3 = 𝑝+ − 𝑝−, (A.21)

which leads to the invariant phase space integral measure transformed to light-cone
coordinates:

(2𝜋)2 d𝛷1 = 𝛩(𝑝−)d𝑝− d2𝑝⊥

2𝑝− , (A.22)

where 𝛩(𝑥) denotes the Heaviside step-function.

Transverse coordinates

In a transverse coordinate system w.r.t. the 3-axis, the 4-momentum of a particle is param-
eterised in terms of the rapidity 𝑦, the transverse energy 𝑚𝑇 , the transverse momentum
𝑝𝑇 and the azimuth angle 𝜑, which are given by

𝑦 := 1
2 ln

(︂
𝑝0 + 𝑝3

𝑝0 − 𝑝3

)︂
(A.23)

𝑚𝑇 :=
√︀

(𝑝0)2 − (𝑝3)2 (A.24)

𝑝𝑇 :=
√︀

(𝑝1)2 + (𝑝2)2 (A.25)

𝜑 := atan2
(︀
𝑝2,𝑝1)︀ ∈ [0, 2𝜋), (A.26)

where atan2 is the 2-argument arctangent, firstly mentioned w.r.t. the spherical coordinates
in definition (A.6). According to these coordinates, the on-shell condition (A.1) is equivalent
to the coordinate relation

𝑚𝑇 =
√︁
𝑝2

𝑇 +𝑚2, (A.27)

where 𝑚 denotes the particle’s mass. The relation (A.27) is the reason, why 𝑚𝑇 is referred
as transversal energy of the particle. The transverse coordinates are widely used in the
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description of collision experiments in particle physics [286]. The advantage of these
coordinates lies in their properties w.r.t. Lorentz boosts along its defining axis (here the
3-axis). As it turns out, all transverse coordinates except the rapidity are invariant under
such boost transformations. The rapidity itself is additive w.r.t. the boost from one system
to another, i.e. the rapidity in a new system is given by 𝑦′ = 𝑦+ 𝑦𝑆 , where 𝑦 ist the particle
rapidity in the old system and 𝑦𝑆 denotes the relative rapidity the systems move w.r.t. each
other. This leads to an easy understanding of Lorentz invariant observables in different
systems: to get a certain invariant quantity in another system, one only needs to shift
(i.e. rescale) the respective distribution along its rapidity axis by the relative rapidity 𝑦𝑆

between the systems, where the shape of the distribution itself, expressed in the other
transverse coordinates, remains unchanged.
The inverse transformation from transverse to cartesian coordinates reads

𝑝0 = 𝑚𝑇 cosh 𝑦, (A.28)

𝑝1 = 𝑝𝑇 cos𝜑, (A.29)

𝑝2 = 𝑝𝑇 sin𝜑, (A.30)

𝑝3 = 𝑚𝑇 sinh 𝑦, (A.31)

where the invariant phase space integral measure transformed to transverse coordinates
results in

(2𝜋)3 d𝛷1 = 𝑝𝑇

2 d𝑦 d𝑝𝑇 d𝜑. (A.32)

Transformation between the coordinate systems

Using the definitions of the coordinate systems in terms of the Cartesian coordinates
as well as their respective inverse transform within the section above, one can easily
derive the transform between each coordinate system via bypassing: old coordinates
→ Cartesian coordinates → new coordinates. In table A.1 we depicted the respective
coordinate transforms, where the columns denote the original coordinates and the respective
row the target coordinate system. The coordinate transforms are given in the general
formulation suitable for either on- or off-shell particle, respectively. For the special case of
an on-shell momentum, the respective coordinate transform eventually becomes simpler
due to relations between the coordinates. The respective Jacobian determinants necessary
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Table A.1: Coordinate transforms between spherical, light-cone and transverse coordinates,
respectively. The top row denotes the source coordinates and the first column denotes the
target coordinates. The coordinate systems are defined in section A.2.

spherical light-cone transverse

sp
he

ric
al

𝐸 = 𝑝+ + 𝑝−

𝜚 = ((𝑝− − 𝑝+)2 + (𝑝⊥)2)
1
2

cos 𝜃 = 𝑝+ − 𝑝−

𝜚

𝜑 = atan2(𝑝𝑦,𝑝𝑥)

𝐸 = 𝑚𝑇 cosh 𝑦

𝜚 =
√︁

(𝑝2
𝑇 +𝑚2

𝑇 sinh2 𝑦)

cos 𝜃 = 𝑚𝑇

𝜚
sinh 𝑦

𝜑sph = 𝜑trans

lig
ht

-c
on

e 𝑝− = 1
2(𝐸 − 𝜚 cos 𝜃)

𝑝𝑥 = 𝜚 sin 𝜃 cos𝜑
𝑝𝑦 = 𝜚 sin 𝜃 sin𝜑

𝑝+ = 1
2(𝐸 + 𝜚 cos 𝜃)

𝑝− = 𝑚𝑇

2 𝑒−𝑦

𝑝𝑥 = 𝑝𝑇 cos𝜑
𝑝𝑦 = 𝑝𝑇 sin𝜑

𝑝+ = 𝑚𝑇

2 𝑒𝑦

tr
an

sv
er

se

𝑦 = tanh−1
(︂
𝜚 cos 𝜃
𝐸

)︂
𝑚𝑇 =

√︀
𝐸2 − 𝜌2 cos2 𝜃

𝑝𝑇 = 𝜚 sin 𝜃
𝜑trans = 𝜑sph

𝑦 = 1
2 ln

(︂
𝑝+

𝑝−

)︂
𝑚𝑇 =

√︀
4𝑝+𝑝−

𝑝𝑇 =
√︀

(𝑝𝑥)2 + (𝑝𝑦)2

𝜑 = atan2(𝑝𝑦,𝑝𝑥)

for the transformation of the invariant phase space integral measures are given as

𝛩(𝑝−) d𝑝− d2𝑝⊥ = 𝜚𝑝−(𝐸, 𝜃) d𝐸 d cos 𝜃 d𝜑 (light-cone → spherical), (A.33)

𝛩(𝑝−) d𝑝− d2𝑝⊥ = 𝑝−(𝑦,𝑝𝑇 )𝑝𝑇 d𝑦 d𝑝𝑇 d𝜑 (light-cone → transverse), (A.34)

d𝐸 d cos 𝜃 d𝜑 = 𝑝𝑇

𝜚(𝑦,𝑝𝑇 ) d𝑦 d𝑝𝑇 d𝜑 (spherical → transverse), (A.35)

where the Jacobians of the inverse transformations simply result from the reciprocal
expressions.
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A.3 Frames of reference
Within this thesis, we mostly investigate processes of the form 2 → 𝑁 with two incoming
and 𝑁 outgoing particles. In this section we outline the frames of reference the incoming
particles are described in. However, due to global energy-momentum conservation during
an examined process, the phase space distribution of the outgoing particles depend on the
choice of the frame of reference.
Let 𝑝𝜇

𝐴 = (𝐸𝐴,𝑝𝐴
) and 𝑝𝜇

𝐵 = (𝐸𝐵,𝑝𝐵
) be the 4-momenta of the two incoming particles 𝐴

and 𝐵, respectively, where these particles are on-shell, i.e. 𝐸𝑖 =
√︁
𝑝2

𝑖
+𝑚𝑖 with 𝑖 = 𝐴,𝐵.

In particle physics, an important parameter to describe two-particle scattering is the
Mandelstam-𝑠 [108, 182, 235], which is defined by

𝑠 = (𝑝𝐴 + 𝑝𝐵)2 = (𝐸𝐴 + 𝐸𝐵)2 − (𝑝
𝐴

+ 𝑝
𝐵

)2 = 𝑚2
𝐴 +𝑚2

𝐵 + 2(𝐸𝐴𝐸𝐵 − 𝑝
𝐴
𝑝

𝐵
),

(A.36)

where the square in the first equation is performed w.r.t. the Minkowski metric, which
makes the Mandelstam-𝑠 a Lorentz scalar. We mention, due to 𝐸𝑖 ≥ 𝑚𝑖 for 𝑖 = 𝐴,𝐵, the
Mandelstam-𝑠 obeys 𝑠 ≥ (𝑚𝐴 +𝑚𝐵)2. Within this thesis, as well as commonly in particle
physics, we often use

√
𝑠 as the parameter instead the Mandelstam-𝑠 itself and refer

√
𝑠 as

the center-of-momentum energy of the incoming particles.
The relation between 𝑠, 𝑝𝐴 and 𝑝𝐵 becomes eventually simpler, if one chooses a special
frame of reference for the 4-momenta 𝑝𝜇

𝐴, 𝑝
𝜇
𝐵 . However, an important feature is, the change

of the frame may change the relation of the Mandelstam-𝑠 to the momentum coordinates,
but not the value of 𝑠 due to its Lorentz invariance.

One particle at rest: the laboratory system

Within this thesis, we refer to a frame of reference as laboratory frame (shortly: lab frame),
where one of the scattering partners is at rest. Without loss of generality we choose the
particle 𝐵 to be at rest, i.e.

𝑝lab
𝐵

= 0, (A.37)

where this implies 𝐸lab
𝐵 = 𝑚𝐵, due to the on-shell condition. The Mandelstam-𝑠 from

equation (A.36) results in this frame as 𝑠 = 𝑚2
𝐴 +𝑚2

𝐵 + 2𝑚𝐵𝐸
lab
𝐴 . This implies the energy

of particle 𝐴 only depends on the particle masses and the Mandelstam-𝑠:

𝐸lab
𝐴 = 𝑠−𝑚2

𝐴 −𝑚2
𝐵

2𝑚𝐵
. (A.38)



110 A Relativistic Kinematics

We mention, equation (A.38) is in our case only reasonable, if 𝑚𝐵 ̸= 0, which means the
lab frame is only well defined w.r.t. a massive particle. However, there are exceptions, e.g.
the infinite momentum frame used in hadron physics, but this is beyond the ambition of
this thesis.
Since there is kinematically no other spatial direction given in the lab frame except the
direction of 𝑝

𝐴
, we can without loss of generality choose the 3-vector 𝑝

𝐴
to lie along the

3-axis, which yields for the 4-momenta of the incoming particles as

𝑝𝜇
𝐴

⃒⃒⃒
lab

=
(︁
𝐸lab

𝐴 (𝑠), 0, 0, 𝜚lab
𝐴 (𝑠)

)︁
, (A.39)

𝑝𝜇
𝐵

⃒⃒⃒
lab

= (𝑚𝐵, 0, 0, 0) , (A.40)

where 𝜚lab
𝐴 =

√︁
(𝐸lab

𝐴 )2 −𝑚2
𝐴 and the energy is given by equation (A.38). This shows the

importance of the Mandelstam-𝑠: the incoming momenta in the lab frame only depend on
the masses and the Mandelstam-𝑠.

Vanishing total 3-momentum: the center-of-momentum frame

Another often used frame of reference is the center-of-momentum frame, where the total
3-momentum of the incoming particles vanish:

𝑝cms
𝐴

+ 𝑝cms
𝐵

= 0. (A.41)

This leads to a relation between both energies of the incoming particles:

𝐸cms
𝐵 =

√︁
(𝐸cms

𝐴 )2 −𝑚2
𝐴 +𝑚2

𝐵. (A.42)

In this case, the Mandelstam-𝑠 reads:

𝑠 = (𝐸cms
𝐴 + 𝐸cms

𝐵 )2 , (A.43)

which is the reason, why the quantity
√
𝑠 is referred as center-of-momentum energy, i.e. it

is the total energy of the incoming particles w.r.t. the center-of-momentum frame. Using
(A.43), the energies of particles 𝐴 and 𝐵 in the center-of-momentum frame only depend
on the masses and the Mandelstam-𝑠:

𝐸cms
𝐴 = 𝑠+𝑚2

𝐴 −𝑚2
𝐵

2
√
𝑠

, (A.44)

𝐸cms
𝐵 = 𝑠+𝑚2

𝐵 −𝑚2
𝐴

2
√
𝑠

. (A.45)
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Since the defining equation (A.41) is only satisfiable if the 3-momenta 𝑝
𝐴
, 𝑝

𝐵
lying along

the same axis, i.e. the particles are either co- or counter propagating, we can choose without
loss of generality the 3-direction as the propagation axis. Consequently, the 4-momenta of
the two incoming particles result in the center-of-momentum frame as

𝑝𝜇
𝐴

⃒⃒⃒
cms

= (𝐸cms
𝐴 (𝑠), 0, 0, 𝜚cms

𝐴 (𝑠)) , (A.46)

𝑝𝜇
𝐵

⃒⃒⃒
cms

= (𝐸cms
𝐵 (𝑠), 0, 0, 𝜚cms

𝐵 (𝑠)) , (A.47)

where 𝜚cms
𝑖 (𝑠) =

√︁
(𝐸cms

𝑖 (𝑠))2 −𝑚2
𝑖 for 𝑖 = 𝐴,𝐵 and the energies expressed in terms of

the Mandelstam-𝑠 are given in the equations (A.44) and (A.45).

Transition between lab and center-of-momentum frame

Since the Mandelstam-𝑠 (with that also the center-of-mass energy
√
𝑠) is a Lorentz scalar,

one may directly derive a relation of lab and center-of-momentum quantities. However,
within this thesis, this is not necessary, because the investigated observable quantities, e.g.
cross sections, are also Lorentz invariant, hence the relation between the energies of the
incoming particles to

√
𝑠 depends on the frame, albeit the relation of

√
𝑠 to the respective

quantity is independent to the choice of the frame of reference. Although we note, that the
dependence of the investigated quantity to the phase space coordinates of the outgoing
particles may depend on the frame of reference due to the global energy-momentum
conservation.

A.4 Kinematics of 2 → 3 processes
Within this section, we outline some useful kinematical relations for the scattering of
one photon with momentum 𝑘 and one electron with momentum 𝑝 producing three
outgoing fermions, as encountered in the (perturbative) trident process (see appendix C
and the references given there). Since the electrons and the positron in the final state
are kinematically equivalent, we refer the outgoing particles as 𝐴 (with four-momentum
𝑝𝑎), 𝐵 (with four-momentum 𝑝𝑏), and 𝐶 (with four-momentum 𝑝𝑐), respectively, without
distinguishing the kind of fermion these momenta describe. Then the external momenta
obey the global energy-momentum conservation

𝑝+ 𝑘 = 𝑝𝑎 + 𝑝𝑏 + 𝑝𝑐, (A.48)

where we refer to 𝑝𝑡 := 𝑝+ 𝑘 as the total momentum transferred through the process.
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The invariant three-body phase space integral measure

We assume the external particles to obey the on-shell condition (A.1) as well as having
the same masses, i.e. 𝑚𝑎 = 𝑚𝑏 = 𝑚𝑐 = 𝑚, where 𝑚 denotes the electron mass. Then the
invariant physical 3-particle phase space integral measure reads

d𝛷phys
3 := (2𝜋)4 𝛿(4)(𝑝+ 𝑘 − 𝑝𝑎 − 𝑝𝑏 − 𝑝𝑐) d𝛷3 (A.49)

= 𝛿(4)(𝑝+ 𝑘 − 𝑝𝑎 − 𝑝𝑏 − 𝑝𝑐)
1

(2𝜋)5
d3𝑝𝑎

2𝐸𝑎

d3𝑝𝑏

2𝐸𝑏

d3𝑝𝑐

2𝐸𝑐
(A.50)

= 1
4 (2𝜋)5

d3𝑝𝑎 d3𝑝𝑏

𝐸𝑎𝐸𝑏
𝛿(𝑝2

𝑐 −𝑚2)𝛩(𝐸𝑐)
⃒⃒⃒
𝑝𝑐=𝑝𝑡−𝑝𝑎−𝑝𝑏

, (A.51)

where 𝐸𝑖 with 𝑖 = 𝑎, 𝑏, 𝑐 denotes the energy of the respective particle. In the last step we
used d3𝑝𝑐

2𝐸𝑐
= d4𝑝𝑐𝛿(𝑝2

𝑐 −𝑚2)𝛩(𝐸𝑐) with the Heaviside step-function 𝛩 and integrated over
d4𝑝𝑐 applying the delta-distribution in equation (A.50). Using spherical coordinates (see
section A.2), the physical phase space integral measure ensues from equation (A.51) as

d𝛷phys
3 = 𝜚𝑎𝜚𝑏

4 (2𝜋)5 d𝐸𝑎 d cos 𝜃𝑎 d𝜑𝑎 d𝐸𝑏 d cos 𝜃𝑏 d𝜑𝑏 𝛿(𝑝2
𝑐 −𝑚2)𝛩(𝐸𝑐)

⃒⃒⃒
𝑝𝑐=𝑝𝑡−𝑝𝑎−𝑝𝑏

.

(A.52)

Without loss of generality we assume the spatial components 𝑝
𝑡

of the total momentum
𝑝+ 𝑘 = 𝑝𝑡 =: (𝐸𝑡, 𝑝𝑡

) is aligned along the 3-axis, which causes the polar angles 𝜃𝑖 and the
azimuthal angles 𝜙𝑖 with 𝑖 = 𝑎, 𝑏, 𝑐 to be defined w.r.t the axis defined along 𝑝

𝑡
. As an

example, the schematic figure A.1 displays the three-momenta involved in a 2 → 3 process
in spherical coordinates in the special case of the laboratory system of the initial electron,
which was defined in section A.3.
According to the delta-distribution in equation (A.52), there is an additional condition for
the remaining coordinates, which leads to a relation of one coordinate, say 𝜑𝑏, to the other
coordinates 𝜉 := (𝐸𝑎, cos 𝜃𝑎, 𝜑𝑎, 𝐸𝑏, cos 𝜃𝑏). Using the abbreviation ℎ(𝜑𝑏|𝜉) := 𝑝2

𝑐(𝜑𝑏|𝜉)−𝑚2,
where the coordinates 𝜉 are assumed to be fixed and applying the energy-momentum
conservation 𝑝𝑐 = 𝑝𝑡 − 𝑝𝑎 − 𝑝𝑏, the condition due to the remaining delta-function in
equation (A.52) is equivalent to

0 = ℎ(𝜑𝑏|𝜉) = 𝑝2
𝑡 +𝑚2 + 2 (𝑝𝑎𝑝𝑏 − 𝑝𝑡𝑝𝑎 − 𝑝𝑡𝑝𝑏) . (A.53)

Since the terms 𝑝𝑡𝑝𝑎 and 𝑝𝑡𝑝𝑎 are not dependent on 𝜑𝑏, we mention 𝑝𝑎𝑝𝑏 = 𝐸𝑎𝐸𝑏 −
𝜚𝑎𝜚𝑏 cos 𝜃𝑎𝑏, where 𝜃𝑎𝑏 denotes the angle between 𝑝

𝑎
and 𝑝

𝑏
. According to the assumption

to define the angles of the particles w.r.t. the total three-momentum 𝑝
𝑡
, one has cos 𝜃𝑎𝑏 =
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Figure A.1: Schematic illustration of the three-momenta during a 2 → 3 scattering of a
photon and an electron in the rest frame of the latter in spherical coordinates. The momenta of
the incoming photon is represented by the black arrow aligned along the 3-axis and the target
electron is situated at the point of origin, represented by a black dot. The three-momenta of
the outgoing particles are represented by coloured arrows (red: 𝑝

𝑎
, green: 𝑝

𝑏
, blue: 𝑝

𝑐
), where

the respective polar angle is assigned between the projection of the three-momentum on the
(2, 3)-plane (coloured dashed line) and the 3-axis. The respective azimuthal angle is assigned
between the projection of the three-momentum on the (1, 2)-plane (thin coloured solid line)
and the 1-axis. The longitudes of the depicted arrows are not correctly scaled.

cos 𝜃𝑎 cos 𝜃𝑏 + sin 𝜃𝑎 sin 𝜃𝑏 cos(𝜑𝑏 − 𝜑𝑎). Therefore the condition (A.53) results in

0 = ℎ(𝜑𝑏|𝜉) = 𝑎1(𝜉) − 𝑏1(𝜉) cos(𝜑𝑏 − 𝜑𝑎), (A.54)

where the coefficients are given as

𝑎1 = 𝑝2
𝑡 +𝑚2 − 2𝑝𝑡(𝑝𝑎 + 𝑝𝑏) + 2(𝐸𝑎𝐸𝑏 − 𝜌𝑎𝜌𝑏 cos 𝜃𝑎 cos 𝜃𝑏), (A.55)

𝑏1 = 2𝜌𝑎𝜌𝑏 sin 𝜃𝑎 sin 𝜃𝑏. (A.56)

Consequently, the equation (A.54) has two solutions given as

𝜑
(1)
𝑏 = arccos

(︂
𝑎1
𝑏1

)︂
+ 𝜑𝑎, 𝜑

(2)
𝑏 = 2𝜋 − arccos

(︂
𝑎1
𝑏1

)︂
+ 𝜑𝑎, (A.57)
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where 𝜑
(1)
𝑏 , 𝜑

(2)
𝑏 denote the physical values of 𝜑𝑏 for a given set of coordinates 𝜉 =

(𝐸𝑎, cos 𝜃𝑎, 𝜑𝑎, 𝐸𝑏, cos 𝜃𝑏). Furthermore, one has 𝜕ℎ(𝜑𝑏|𝜉)
𝜕𝜑𝑏

= −𝑏1 sin(𝜑𝑏 − 𝜑𝑎), which leads to⃒⃒⃒⃒
𝜕ℎ(𝜑𝑏|𝜉)
𝜕𝜑𝑏

⃒⃒⃒⃒
𝜑𝑏=𝜑

(1)
𝑏

=
⃒⃒⃒⃒
𝜕ℎ(𝜑𝑏|𝜉)
𝜕𝜑𝑏

⃒⃒⃒⃒
𝜑𝑏=𝜑

(2)
𝑏

=
√︁
𝑏2

1 − 𝑎2
1, (A.58)

where we applied the identity sin(arccos(𝑥)) =
√

1 − 𝑥2. Summarising, the physical
three-body phase space integral measure (A.52) results in

d𝛷phys
3 = 𝜚𝑎𝜚𝑏

4 (2𝜋)5
d𝐸𝑎 d cos 𝜃𝑎 d𝜑𝑎 d𝐸𝑏 d cos 𝜃𝑏 d𝜑𝑏√︀

𝑏2
1 − 𝑎2

1

(︁
𝛿(𝜑𝑏 − 𝜑

(1)
𝑏 ) + 𝛿(𝜑𝑏 − 𝜑

(2)
𝑏 )

)︁
,

(A.59)

where the physical values for 𝜑𝑏 are given in (A.57) and the coefficients 𝑎1, 𝑏1 are defined in
(A.55) and (A.56), respectively. We mention the denominator in equation (A.59) possibly
produces a coordinate singularity, which we need to be aware of below.

Boundaries of the physical phase space

We mention, that the physical values for 𝜑𝑏 given in equations (A.57) only exist, if the
remaining coordinates 𝜉 = (𝐸𝑎, cos 𝜃𝑎, 𝜙𝑎, 𝐸𝑏, cos 𝜃𝑏) fulfil the condition⃒⃒⃒⃒

𝑎1(𝜉)
𝑏1(𝜉)

⃒⃒⃒⃒
≤ 1, (A.60)

where 𝑎1, 𝑏1 are given in equations (A.55) and (A.56), respectively. This condition restricts
the allowed values of all coordinates 𝜉 and defines the physical phase space of the 2 → 3
process. The condition (A.60) leads to 𝑎2

1 − 𝑏2
1 ≤ 0, which is for fixed 𝐸𝑎, 𝐸𝑏 and cos 𝜃𝑏

equivalent to a conditional equation for the coordinate cos 𝜃𝑎:

0 ≥ 𝑎2 cos2 𝜃𝑎 + 𝑏2 cos 𝜃𝑎 + 𝑐2, (A.61)

where we define the coefficients as

𝑎2 = 4𝜚2
𝑎

(︀
𝜚2

𝑡 + 𝜚2
𝑏 − 2𝜚𝑡𝜚𝑏 cos 𝜃𝑏

)︀
, (A.62)

𝑏2 = 4𝜚𝑎 (𝜚𝑡 − 𝜚𝑏 cos 𝜃𝑏)
(︀
𝑝2

𝑡 +𝑚2 − 2(𝑝𝑡𝑝𝑏) + 2𝐸𝑎𝐸𝑏 − 2𝐸𝑎𝐸𝑡

)︀
, (A.63)

𝑐2 =
(︀
𝑝2

𝑡 +𝑚2 − 2(𝑝𝑡𝑝𝑏) + 2𝐸𝑎𝐸𝑏 − 2𝐸𝑎𝐸𝑡

)︀2 − 4𝜚2
𝑎𝜚

2
𝑏 sin2 𝜃𝑏, (A.64)
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where 𝜚𝑡 = |𝑝
𝑡
|. Assuming 𝑎2 ̸= 0, the inequality (A.61) yields

min(cos 𝜃−
𝑎 ,− 1) ≤ cos 𝜃𝑎 ≤ max(cos 𝜃+

𝑎 ,1) (A.65)

where cos 𝜃−
𝑎 , cos 𝜃+

𝑎 denote the lower and upper boundary of the coordinate cos 𝜃𝑎, respec-
tively, which are given by

cos 𝜃±
𝑎 := 1

2𝑎2

(︂
−𝑏2 ±

√︁
𝑏2

2 − 4𝑎2𝑐2

)︂
. (A.66)

Since these boundaries are assumed to be real values, the radicand of the definition (A.66)
must be positive, which leads to a restriction of the coordinate cos 𝜃𝑏, if the energies 𝐸𝑎, 𝐸𝑏

as well as the momenta of the incoming particles are fixed:

min(cos 𝜃−
𝑏 ,− 1) ≤ cos 𝜃𝑏 ≤ max(cos 𝜃+

𝑏 ,1), (A.67)

where cos 𝜃+
𝑏 , cos 𝜃−

𝑏 denote the upper and lower boundary of cos 𝜃𝑏, respectively, which
result in

cos 𝜃±
𝑏 := 1

2𝑎3

(︂
−𝑏3 ±

√︁
𝑏2

3 − 4𝑎3𝑐3

)︂
. (A.68)

(A.69)

The occurring coefficients are given as

𝑎3 = 𝜚𝑏𝜚
2
𝑡 , (A.70)

𝑏3 = 2𝜚𝑡𝜚𝑏

(︀
𝜚2

𝑎 + 𝑑3
)︀
, (A.71)

𝑐3 = −𝜚2
𝑎𝜚

2
𝑡 + 𝜚2

𝑎𝜚
2
𝑏 + 𝑑2

3, (A.72)

𝑑3 = 𝑝2
𝑡 +𝑚2

2 − 𝐸𝑡(𝐸𝑎 + 𝐸𝑏) + 𝐸𝑎𝐸𝑏. (A.73)

Again we assume the boundaries of cos 𝜃𝑏 to be real values, i.e. the radicand of definition
(A.68) must be positive, which results in a constraint for the energy 𝐸𝑎:

min(𝐸−
𝑎 ,𝑚) ≤ 𝐸𝑎 ≤ 𝐸+

𝑎 , (A.74)
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where the boundaries of 𝐸𝑎 result to

𝐸±
𝑎 := 1

2

⎛⎝𝐸𝑡 − 𝐸𝑏 ± (𝜚𝑡 − 𝜚𝑏)

√︃
1 − 4𝑚2

𝑑4

⎞⎠ , (A.75)

with the abbreviation 𝑑4 = 𝑝2
𝑡 + 𝑚2 − 2𝐸𝑡𝐸𝑏 + 2𝜚𝑡𝜚𝑏. The positivity of the radicand of

definition (A.75) yields a constraint for 𝐸𝑏:

min(𝐸−
𝑏 ,𝑚) ≤ 𝐸𝑏 ≤ 𝐸+

𝑏 , (A.76)

where the boundaries only depend on the momenta of the incoming particles and are given
as

𝐸±
𝑏 := 1

2𝑝2
𝑡

(︂
𝐸𝑡(𝑝2

𝑡 − 3𝑚2) ± 𝜚𝑡

√︁
(𝑝2

𝑡 −𝑚2)(𝑝2
𝑡 − 9𝑚2)

)︂
. (A.77)

Using the definition of the Mandelstam-𝑠 given in equation (A.36) as well as the interpre-
tation as the center-of-momentum energy (see equation (A.43)), we mention, the positivity
of the radicand in the definition (A.77) leads to the threshold condition:

√
𝑠 =

√︀
(𝑘 + 𝑝)2 =

√︁
𝑝2

𝑡 ≥ 3𝑚 =: √
𝑠th, (A.78)

where √
𝑠th is called the threshold of the 2 → 3 process. The existence of this threshold has

another simple explanation (cf. [145]). Since the threshold of a 2 → 3 process is defined as
the least total energy of the incoming particle (in their center-of-momentum frame; see
section A.3) which is needed to produce the outgoing particle. This threshold energy is
reached, if all outgoing particles are produced at rest, where all the remaining energy of
the outgoing particles is condensed in their masses. According to the assumption from the
beginning of this section, we have equal masses of the outgoing particles, the threshold
results in √

𝑠th = 3𝑚.

Coordinate singularity

As we mentioned earlier, the physical three-body phase space integral measure given in
equation (A.59) possibly forms a singularity due to the choice of the coordinate system.
First, we want to understand the singularity to be formed in one coordinate, say cos 𝜃𝑎, if
the other coordinates are assumed to be fixed. Expressed w.r.t. cos 𝜃𝑎, the singularity is
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formed if the radicand of the denominator in equation (A.59) vanished, which yields

0 = 𝑏2
1 − 𝑎2

1 = −𝑎2 cos2 𝜃𝑎 − 𝑏2 cos 𝜃𝑎 − 𝑐2, (A.79)

where the coefficients 𝑎2, 𝑏2, 𝑐2 are given in the equations (A.62) to (A.64). Since the
equation (A.79) happens to be the edge case of the conditional equation (A.61) of the
coordinate cos 𝜃𝑎, the solution of equation (A.79) are the boundaries cos 𝜃±

𝑎 of cos 𝜃𝑎,
which are defined in equation (A.66). This leads to a factorisation of the radicand of
the denominator in equation (A.59), where the physical three-body phase space integral
measure results in

d𝛷phys
3 = 𝜚𝑎𝜚𝑏

4 (2𝜋)5
d𝐸𝑎 d cos 𝜃𝑎 d𝜑𝑎 d𝐸𝑏 d cos 𝜃𝑏 d𝜑𝑏√︁
𝑎2

(︀
cos 𝜃+

𝑎 − cos 𝜃𝑎

)︀ (︀
cos 𝜃𝑎 − cos 𝜃−

𝑎

)︀
×

[︁
𝛿
(︁
𝜑𝑏 − 𝜑

(1)
𝑏

)︁
+ 𝛿

(︁
𝜑𝑏 − 𝜑

(2)
𝑏

)︁]︁
. (A.80)

Assuming 𝑎2 ̸= 0 and the other coordinates 𝐸𝑎, 𝜑𝑎, 𝐸𝑏, cos 𝜃𝑏 to be fixed, i.e. the boundaries
cos 𝜃±

𝑎 are fixed, the singularity is caused by cos 𝜃𝑎 reaching its boundaries: cos 𝜃𝑎 → cos 𝜃±
𝑎 .

However, since the function 𝑥 ↦→
√
𝑥 is integrable on the whole positive real line, there is a

transformation in the coordinate cos 𝜃𝑎, which regularises the coordinate singularity. As
shown in [13], a suitable transformation is given by the Euler substitution:

𝜏 := cos 𝜃+
𝑎 − cos 𝜃𝑎

cos 𝜃𝑎 − cos 𝜃−
𝑎
, (A.81)

where the cos 𝜃𝑎-dependent part of the physical three-body phase space integral measure
results in

d cos 𝜃𝑎√︁(︀
cos 𝜃+

𝑎 − cos 𝜃𝑎

)︀ (︀
cos 𝜃𝑎 − cos 𝜃−

𝑎

)︀ = 2 d𝜏
1 + 𝜏2 . (A.82)

Here the boundaries of the Euler coordinate 𝜏 result to

𝜏 → ∞
(︀
⇔ cos 𝜃𝑎 → cos 𝜃−

𝑎

)︀
, (A.83)

𝜏 → 0
(︀
⇔ cos 𝜃𝑎 → cos 𝜃+

𝑎

)︀
. (A.84)
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Finally the physical three-body phase space integral measure of a 2 → 3 process results in

d𝛷phys
3 = 𝜚𝑎𝜚𝑏

2 (2𝜋)5
d𝐸𝑎 d𝜏 d𝜑𝑎 𝑑𝐸𝑏 d cos 𝜃𝑏 d𝜑𝑏√

𝑎2(1 + 𝜏2)

[︁
𝛿
(︁
𝜑𝑏 − 𝜑

(1)
𝑏

)︁
+ 𝛿

(︁
𝜑𝑏 − 𝜑

(2)
𝑏

)︁]︁
,

(A.85)

where the coefficient 𝑎2 is defined in equation (A.62). This integral measure is essentially
5-dimensional due to the delta-distributions w.r.t. 𝜑𝑏 and finite due to the introduction of
the Euler coordinate 𝜏 defined in equation (A.81).

Transformation to transverse coordinates

Since the transverse coordinates (see section A.2) are widely used within this thesis due to
the simple behavior under Lorentz boosts w.r.t. the beam axis, here we summarise some
relation similar to those derived above in spherical coordinates, but here for transverse
coordinates. The latter are given by the rapidity 𝑦𝑖, the transverse momentum 𝑝𝑇 𝑖 and
the azimuthal angle 𝜑𝑖 of the respective particle 𝑖 = 𝑎, 𝑏, 𝑐. First we recapitulate that all
constraints derived for spherical coordinates are based on a single delta-distribution in the
three-body invariant phase space measure (A.51):

0 != 𝑝2
𝑐 −𝑚2, (A.86)

combined with the relation 𝑝𝑐 = 𝑝𝑡 − 𝑝𝑎 − 𝑝𝑏, where 𝑝𝑡 = 𝑝 + 𝑘 denotes the total four-
momentum of the incoming particles. Since this is independent of the choice of the
coordinate systems, one can evaluate the condition (A.86) obtained from the mentioned
delta-distribution directly in transverse coordinates. Accordingly, for the fixed values of
the azimuthal angle 𝜑𝑏, the version of equation (A.57) in transverse coordinates reads

𝜑
(1)
𝑏 = arccos

(︂
𝑎̃1

𝑏̃1

)︂
+ 𝜑𝑎, 𝜑

(1)
𝑏 = 2𝜋 − arccos

(︂
𝑎̃1

𝑏̃1

)︂
+ 𝜑𝑎, (A.87)

where the coefficients are given by

𝑎̃1 = 𝑝2
𝑡 +𝑚2 − 2𝑚𝑇 𝑎 (𝐸𝑡 cosh(𝑦𝑎) − 𝜚𝑡 sinh(𝑦𝑎))

− 2𝑚𝑇 𝑏 (𝐸𝑡 cosh(𝑦𝑏) − 𝜚𝑡 sinh(𝑦𝑏))

+ 2𝑚𝑇 𝑎𝑚𝑇 𝑏 cosh(𝑦𝑎 − 𝑦𝑏), (A.88)

𝑏̃1 = 2𝑝𝑇 𝑎𝑝𝑇 𝑏. (A.89)
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Here 𝑚𝑇 :=
√︁
𝑝2

𝑇 +𝑚2 denotes the transverse energy and the quantities related to the
incoming total momentum are given in the laboratory system by 𝑝2

𝑡 = 𝑠, 𝐸𝑡 = 𝑠+𝑚2

2𝑚 and
𝜚𝑡 = 𝑠−𝑚2

2𝑚 , where 𝑠 is the already mentioned Mandelstam variable. Similarly, one can
obtain all boundaries of the transverse coordinates as derived above in spherical coordinates.
For instance, one has 𝑝−

𝑇 𝑏 ≤ 𝑝𝑇 𝑏 ≤ 𝑝+
𝑇 𝑏, there the boundaries for the transverse momentum

𝑝𝑇 𝑏 yield

𝑝±
𝑇 𝑏 =

𝑎̃2𝑐̃2 ±
√︁
𝑎̃2

2𝑏̃
2
2 − 𝑏̃

4
2 + 𝑐̃2

2𝑏̃
2
2

𝑏̃
2
2 − 𝑐̃2

2
. (A.90)

Here the coefficients are given as

𝑎̃2 = 𝑝2
𝑡 +𝑚2 − 2𝑚𝑇 𝑎 (𝐸𝑡 cosh(𝑦𝑎) − 𝜚𝑡 sinh(𝑦𝑎)) , (A.91)

𝑏̃2 = −2 (𝐸𝑡 cosh(𝑦𝑏) − 𝜚 sinh(𝑦2)) + 2𝑚𝑇 𝑎 cosh(𝑦𝑎 − 𝑦𝑏), (A.92)

𝑐̃2 = −2𝑝𝑇 𝑎. (A.93)

Furthermore, instead of the azimuthal angle 𝜑𝑏 it is sometimes convenient to fix another
coordinate, say 𝑝𝑇 𝑏, especially if one is interested in the azimuthal dependence w.r.t. the
particle 𝑏. Therefore, assuming a fixed set of coordinates (𝑦𝑎, 𝑝𝑇 𝑎, 𝜑𝑎, 𝑦𝑏, 𝜑𝑏), the values of
𝑝𝑇 𝑏 in order to fulfil the condition (A.86) are given as

𝑝
(1,2)
𝑇 𝑏 =

𝑎̃3𝑐̃3 ±
√︁
𝑎̃2

3𝑏̃
2
3 − 𝑏̃

4
3 + 𝑐̃2

3𝑏̃
2
3

𝑏̃
2
3 − 𝑐̃2

3
, (A.94)

where the coefficients 𝑎̃3 = 𝑎̃2, 𝑏̃3 = 𝑏̃2, are the same as for the boundaries of 𝑝𝑇 𝑏 in the
fixed-𝜑𝑏 case and the coefficient 𝑐̃3 is given as 𝑐̃3 = −2𝑝𝑇 𝑎 cos(𝜑𝑏 −𝜑𝑎). Note that these are
fixed values for 𝑝𝑇 𝑏 and not boundaries as derived above, i.e. in the three-body invariant
integral measure, there are in this case delta-distributions 𝛿

(︁
𝑝𝑇 𝑏 − 𝑝

(1)
𝑇 𝑏

)︁
+ 𝛿

(︁
𝑝𝑇 𝑏 − 𝑝

(2)
𝑇 𝑏

)︁
,

similar to those in equation (A.59).
Finally, we mention that in practice, especially if one integrates over all momentum
components of one particle, it is more convenient to perform the occurring integrals in
spherical coordinates as well as using the mentioned Euler substitution (A.81) in order
to improve numerical stability and transform the remaining coordinate dependence to
transverse coordinates afterwards.





B | Feynman rules of QED

Within this section, we summarise the Feynman rules of the perturbative monochromatic
QED. Therefore, in table B.1 we listed the respective Feynman rules in momentum space
as used within this thesis, for instance to derive the matrix element of the perturbative
monochromatic trident (see section C). Excluding the vertex, these rules are also appearing
to some extent as the momentum space rules in strong-field and pulsed-perturbative QED
(see section 2.3 and 3.2). In order to numerically compute probabilities using the rules
listed in table B.1, we displayed the explicitly used formulas in the second column, where
the respective spinor bases are given by

𝜂1 = (1, 0, 0, 0)𝑇 , 𝜂2 = (0, 1, 0, 0)𝑇 , (B.1)

𝜒1 = (0, 0, 1, 0)𝑇 , 𝜒2 = (0, 0, 0, 1)𝑇 . (B.2)

The respective fundamental bi-spinors obey the Dirac equation in momentum space:

0 = (/𝑝−𝑚)𝑢𝜎𝑝, 0 = 𝑢𝜎𝑝(/𝑝−𝑚), 0 = (/𝑝+𝑚)𝑣𝜎𝑝, 0 = 𝑣𝜎𝑝(/𝑝+𝑚). (B.3)

The used polarisation vectors are given by

𝜖𝜇1 = (0, 1, 0, 0), 𝜖𝜇2 = (0, 0, 1, 0), (B.4)

for the incoming photon, and

𝜖′𝜇1 = (0, cos 𝜃′ cos𝜑′, cos 𝜃′ sin𝜑′,− sin 𝜃′), (B.5)

𝜖′𝜇2 = (0,− sin𝜑′, cos 𝜃′, 0), (B.6)

for the outgoing photon, where 𝜃′, 𝜑′ denote the polar and azimuthal angle of the momentum
𝑘′ of the outgoing photon in spherical coordinates. Additionally, we deployed the Feynman
slash notation /𝑎 = 𝛾𝜇𝑎𝜇, where 𝛾𝜇 denote the Dirac gamma matrices, which obey the
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122 B Feynman rules of QED

Table B.1: Momentum space rules of perturbative monochromatic QED (e.g. from [236]). In
the first column the diagrammatical representation of the respective rule is depicted, in the
second column the mathematical expression used within this thesis is shown, the third column
indicates the common name of the expression.

p 𝑢𝜎𝑝 = /𝑝+𝑚√
|𝑝0|+𝑚

𝜂𝜎 incoming fermion

p 𝑣𝜎𝑝 = 𝑣†
𝜎𝑝𝛾0 incoming anti-fermion

p′ 𝑢𝜎𝑝 = 𝑢†
𝜎𝑝𝛾0 outgoing fermion

p′ 𝑣𝜎𝑝 = −/𝑝+𝑚√
|𝑝0|+𝑚

𝜒𝜎 outgoing anti-fermion

p p′

k′

−𝑖𝑒𝛾𝜇 QED vertex

K 𝐷𝜇𝜈(𝐾) = 𝑖𝑔𝜇𝜈

𝐾2+𝑖𝜖
photon propagator

P 𝑆(𝑃 ) = 𝑖( /𝑃 +𝑚)
𝑃 2−𝑚2+𝑖𝜖

fermion propagator

k 𝜀′𝜇
𝜆 (𝑘′) incoming photon

k′ 𝜀′*𝜇
𝜆 (𝑘′) outgoing photon

Clifford algebra {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 with the Minkowski metric 𝑔𝜇𝜈 = diag(1,−1,−1,−1). For
numerical calculations, we used the gamma matrices in its Dirac representation

𝛾0 =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎠ , 𝛾1 =

⎛⎜⎜⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎠ , (B.7)

𝛾2 =

⎛⎜⎜⎜⎜⎝
0 0 0 𝑖

0 0 −𝑖 0
0 −𝑖 0 0
𝑖 0 0 0

⎞⎟⎟⎟⎟⎠ , 𝛾3 =

⎛⎜⎜⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎠ . (B.8)
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For further details on the usage of these Feynman rules and their properties the reader is
referred to the common text books on quantum field theory, e.g. [25, 107, 139, 145, 179,
236, 253, 282, 308, 309].





C | Perturbative trident pair pro-
duction

Within this thesis, we refer to as perturbative trident pair production the collision of a single
photon with an electron causing the production of one positron as well as two electrons
𝛾 + 𝑒− → 𝑒+ + 𝑒− + 𝑒− in the framework of perturbative quantum electrodynamics. As
the infinite plane-wave limit of pulsed-perturbative trident, therefore as the simultaneous
infinite plane-wave and weak-field limit of strong-field trident, the perturbative trident
pair production plays a crucial role for the understanding of the more general cases, both
kinematically and on the level of (differential) cross sections.
The investigation of perturbative trident has a long history. Starting with the pioneering
work of [32, 33, 96, 118–120, 144, 160, 197, 198, 284, 302, 303, 306] and others (see
the reviews [200] and [147] as well as [145]) to comprehend the upcoming quantum elec-
trodynamics by calculating higher-order tree-level processes and to develop a variety of
approximations of the perturbative trident differential and total cross sections. Further-
more, there are also more recent investigations of perturbative trident in the context of
astrophysical questions [13, 55, 56, 138, 184, 185, 239], related to polarisation effects [13,
31, 49, 93, 95], as well as possible dark-photon capabilities [94].
Since the perturbative trident is used within this thesis as a verification limit of more general
treatments (pulsed-perturbative and strong-field trident), we outline the calculations of
cross sections including all encountered contributions, i.e. without any approximations
except the tree-level approach of perturbative QED.

C.1 Matrix element and cross section
The perturbative trident process is described on tree-level by the Feynman diagrams
depicted in figure C.1, where 𝑝, 𝑘 denote the momenta of the incoming electron and photon,
respectively, 𝑝1 is the momenta of the outgoing positron and 𝑝2, 𝑝3 are the momenta
of the two outgoing electrons. The first pair of Feynman diagrams depicted in figure

125



126 C Perturbative trident pair production

C.1(a) are called virtual Compton diagrams, due to their similarity to the perturbative
Compton process on tree-level, except the scattered photon stays virtual and produces
an electron-positron pair. Analogously, the second pair of diagrams in figure C.1(b)
are called virtual Breit-Wheeler diagrams, since these are similar to the perturbative
Breit-Wheeler process on tree-level, but one of the initial photons is virtual due to the
coupling to an additional fermion line. The momenta of the intermediate particles are

p′C

k′C
p p3

p2

p1
k

p′′C

k′′C

k

p

p3

p2

p1

(a) Virtual Compton diagrams.

k′BW

p′BW

p

k

p3

p2

p1

k′′BW

p′′BW

p

k

p3

p1

p2

(b) Virtual Breit-Wheeler diagrams.

Figure C.1: Feynman diagrams of perturbative trident on tree-level, where 𝑝, 𝑘, 𝑝1, 𝑝2, 𝑝3
denote the momenta of the initial electron and photon as well as the final positron, and the two
final electrons, respectively. The two diagrams C.1(a) on the l.h.s. are referred as the virtual
Compton diagrams, where 𝑘′

C = 𝑝1 + 𝑝2, 𝑝
′
C = 𝑝+ 𝑘 and 𝑘′′

C = 𝑝1 + 𝑝2, 𝑝
′′
C = 𝑝3 − 𝑘 denote the

momenta of the intermediate photon and electron, respectively. The two diagrams C.1(b) on
the r.h.s. are referred as the virtual Breit-Wheeler diagrams, where 𝑘′

BW = 𝑝−𝑝3, 𝑝
′
BW = 𝑘−𝑝1

and 𝑘′′
BW = 𝑝− 𝑝3, 𝑝

′′
BW = 𝑝2 − 𝑘 denote the momenta of the intermediate photon and electron,

respectively. Additionally, the exchange diagrams are given by the substitution 𝑝2 ↔ 𝑝3 w.r.t.
the depicted diagrams.

given by the local energy momentum conservation at each vertex: 𝑘′
C = 𝑘′′

C = 𝑝1 + 𝑝2,
and 𝑝′

C = 𝑝 + 𝑘, 𝑝′′
C = 𝑝3 − 𝑘 for the intermediate photons and electrons in the virtual

Compton diagrams as well as 𝑘′
BW = 𝑘′′

BW = 𝑝− 𝑝3, and 𝑝′
BW = 𝑘 − 𝑝1, 𝑝

′′
BW = 𝑝2 − 𝑘 for

the intermediate photons and electrons in the virtual Breit-Wheeler diagrams, respectively.
Considering the indistinguishability of the final electrons, there is an additional set of four
Feynman diagrams emerging from the diagrams depicted in figure C.1 by the exchange
𝑝2 ↔ 𝑝3, which are also referred the exchange diagrams.
Using the Feynman rules of perturbative QED given in table B.1, the part of matrix
element related to the sum of the virtual Compton diagrams C.1(a) is given by

𝑀C = −𝑖𝑒3 𝑔𝜇𝜏

(𝑝1 + 𝑝2)2 + 𝑖𝜖
[𝑢(𝑝3)C𝜇𝜈(𝑝, 𝑝3|𝑘)𝑢(𝑝)] × [𝑢(𝑝2)𝛾𝜏𝑣(𝑝1)] 𝜀𝜈 , (C.1)

where we suppress the spins and photon polarisation for now. Here, 𝑒 is the electric charge
of the electron, 𝑔𝜇𝜈 the Minkowski metric, 𝜖 is the regulator of the photon propagator and
𝛾𝜇 denote the Dirac gamma matrices. The occurring function C𝜇𝜈 denotes the Compton
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tensor [145], which is given by

C𝜇𝜈(𝑞1, 𝑞2|𝑘) :=
𝛾𝜇(/𝑞1 + /𝑘 +𝑚)𝛾𝜈

(𝑞1 + 𝑘)2 −𝑚2 + 𝑖𝜖
+

𝛾𝜈(/𝑞2 − /𝑘 +𝑚)𝛾𝜇

(𝑞1 − 𝑘)2 −𝑚2 + 𝑖𝜖
, (C.2)

where 𝑞1, 𝑞2 are two arbitrary four-momenta, 𝑚 denotes the electron mass and 𝜖 is the
regulator of the appearing fermion propagators. We use the Feynman slash notation
/𝑞 := 𝛾𝜇𝑞𝜇 with an arbitrary four-momentum 𝑞𝜇. Analogously, the part of the matrix
element related to the sum of the virtual Breit-Wheeler diagrams C.1(b) results in

𝑀BW = −𝑖𝑒3 𝑔𝜇𝜈

(𝑝− 𝑝3)2 + 𝑖𝜖
[𝑢(𝑝3)𝛾𝜇𝑢(𝑝)] × [𝑢(𝑝2)C𝜈𝜏 (−𝑝1,𝑝2|𝑘)𝑣(𝑝1)] 𝜀𝜏 , (C.3)

where C𝜇𝜈 again denotes the Compton tensor given in equation (C.2). The parts of the
matrix element related to the respective exchange diagrams ensue from the interchange of
the final electron momenta:

𝑀Cx = 𝑀C(𝑝2 ↔ 𝑝3), 𝑀BWx = 𝑀BW(𝑝2 ↔ 𝑝3). (C.4)

The full matrix element of perturbative trident on tree-level is then given as

𝑀pT = 1
2 (𝑀C +𝑀BW −𝑀Cx −𝑀BWx) , (C.5)

where the relative signs between the direct and the exchange parts are a consequence of
the Pauli exclusion principle, caused by the exchange of two fermions and the prefactor
results from the normalisation of this exchange. Additionally, we mention the crossing
symmetry between the virtual Compton and virtual Breit-Wheeler part of the matrix
element apparitional in the relations

𝑀C = 𝑀BWx(𝑝 ↔ −𝑝1, 𝑢(𝑝) ↔ 𝑣(𝑝1)), 𝑀Cx = 𝑀BW(𝑝 ↔ −𝑝1, 𝑢(𝑝) ↔ 𝑣(𝑝1)),
(C.6)

where the mixing between direct and exchange parts is caused by the arbitrary naming
convention of the two unchanged final electrons. Consequentially, there is only one
independent part of the matrix element, e.g. 𝑀C, and the other parts result from 𝑀C due
to exchange and crossing symmetry.
Using the matrix element given in equation (C.5) the polarisation and spin averaged
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(fivefold) differential cross section of perturbative trident on tree-level is given as

d𝜎pT = 1
4𝐼

1
𝑁

∑︁
spins,pols

|𝑀pT|2 (2𝜋)4 𝛿(4)(𝑝+ 𝑘 − 𝑝1 − 𝑝2 − 𝑝3) d𝛷3, (C.7)

where 𝐼 = (𝑘𝑝) denotes the incident energy flux and 𝑁 = 1
4 is the normalisation factor

caused by averaging over the spin and polarisation from the incoming electron and photon,
respectively. Additionally, we sum over the spins of the final particles, but considering
the case of a polarised initial photon, we mention the usage of the normalisation factor
𝑁 = 1

2 , due to the absence of the polarisation average. Here, d𝛷3 denotes the three-particle
invariant phase space integral measure given by

d𝛷3 := d3𝑝1

(2𝜋)3 2𝑝0
1

d3𝑝2

(2𝜋)3 2𝑝0
2

d3𝑝3

(2𝜋)3 2𝑝0
3
, (C.8)

which results from the product of three one-particle measures defined in equation (A.2), i.e.
one for each outgoing particle. The treatment of the physical invariant three-body phase
space integral measure, i.e. the invariant integral measure d𝛷3 combined with the delta-
distribution in equation (C.7), is treated in section A.4. Here, we leave the choice, which
momentum of 𝑝𝑎, 𝑝𝑏, 𝑝𝑐 in equation (A.49) represents which particle in the perturbative
trident process, and we will specify the assignment in the respective example. Summarising,
the (five-fold) differential cross section of perturbative trident pair production is given in
spherical coordinates as

d𝜎pT = 1
4𝐼

1
𝑁

𝜚𝑎𝜚𝑏

4 (2𝜋)5

∑︁
spins,pols

|𝑀pT|2

× d𝐸𝑎 d cos 𝜃𝑎 d𝜑𝑎 d𝐸𝑏 d cos 𝜃𝑏√︁
𝑎2

(︀
cos 𝜃+

𝑎 − cos 𝜃𝑎

)︀ (︀
cos 𝜃𝑎 − cos 𝜃−

𝑎

)︀ ⃒⃒⃒⃒
𝜑𝑏∈{𝜑

(1)
𝑏 ,𝜑

(2)
𝑏 }

, (C.9)

where the boundaries cos 𝜃±
𝑎 are defined in the equations (A.66) and the physical values

𝜑
(1,2)
𝑏 are given in equations (A.57). The boundaries of the remaining coordinates are

derived in section A.4.
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C.2 Numerical implementation and comparison to litera-
ture

Since the analytical structure of the matrix element (C.5) in terms of scalar products of the
occurring four-momenta (using the common technics of Casimir’s trick and trace technology;
cf. [236]) is very extensive (see e.g. [13, 93, 118, 197]), the numerical implementation of
the differential cross section (C.9) is very cumbersome. Therefore, we choose a different
path and start the implementation on the fundamental level of the occurring mathematical
expressions: spinors, matrices and four-vectors. We understand these mathematical objects
as abstract multidimensional arrays and use extensive numerical libraries (in our case the
python libraries “numpy” and “scipy”; cf. [300, 304]) to manipulate them in a numerical
linear algebraic way. This leads directly to numerical representations of the products
of spinors, matrices and four-vectors occurring in the matrix element (C.5) and results
in a numerical representation of the differential cross section (C.9) depending on the
coordinate tuple (

√
𝑠, 𝐸𝑎 cos 𝜃𝑎, 𝜑𝑎, 𝐸𝑏, cos 𝜃𝑏). Here, the assignment of those coordinates

to the respective particles is optional and can be adjusted to specific cases of distributions.
In order to verify this kind of implementation, we compare several distributions given in
literature with a recalculation using our numerical code (the respective data we compare
with is extracted using a plot digitizer).
As an example, we calculate the double-differential cross section w.r.t. the outgoing positron
in spherical coordinates 𝐸1, cos 𝜃1 in the rest frame of the initial electron, i.e. the laboratory
system defined in section A.3. For this purpose, we assign the general coordinates used in
equation (C.9) as 𝑎 = 2 (first final electron), 𝑏 = 1 (final positron) and 𝑐 = 3 (second final
electron). Then the double-differential cross section of the final positron is given by the
integration of (C.9) over the coordinates of the remaining final electron:

d𝜎pT
d𝐸1 d cos 𝜃1

= 1
4𝐼

1
𝑁

ˆ d𝐸2 d cos 𝜃2 d𝜑2

4 (2𝜋)5

×
𝜚1𝜚2

∑︀
spins,pols|𝑀pT|2√︁

𝑎2
(︀
cos 𝜃+

2 − cos 𝜃2
)︀ (︀

cos 𝜃2 − cos 𝜃−
2
)︀ ⃒⃒⃒⃒

𝜑1∈{𝜑
(1)
1 ,𝜑

(2)
1 }

, (C.10)

where the boundaries cos 𝜃±
2 are defined in the equations (A.66) and the physical values

𝜑
(1,2)
1 are given in equations (A.57), with the assignment of the subscripts 𝑎, 𝑏, 𝑐 to the

final particles as given above.
In figure C.2 the double differential cross section defined in equation (C.10) is depicted as
a function of the positron energy 𝐸1 for several values of its polar angle cos 𝜃1. In order to
perform the integral in equation (C.10), we used the VEGAS algorithm, which is a Monte
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Figure C.2: The double differential cross section d𝜎pT
d𝐸1 d cos 𝜃1

of perturbative trident w.r.t. the
outgoing positron in the laboratory system as a function of the positron energy 𝐸1 (scaled
with the electron mass 𝑚) for several values of the positron polar angle cos 𝜃1 (top row:
cos 𝜃1 = 0.895, 0.93, bottom row: cos 𝜃1 = 0.965, 1.0), with the center-of-momentum energy√
𝑠 = 3.353𝑚, which corresponds to a photon energy of 𝜔 = 𝑘0 = 5.12𝑚 and the initial

electron at rest, i.e. 𝐸 = 𝑚 (choice of the values is made to compare results to [144]). The
results obtained from equation (C.10) are depicted as black solid curves, and the respective
statistical error estimation is shown as grey shadowed area. The respective literature data
was taken from [144] (figure 7) and are depicted as green dashed curves. The stated relative
statistical accuracy of this data was indicated as < 5% and is depicted as green shadowed area.

Carlo method for numerical integration including importance sampling to iteratively adapt
the evaluation points to regions with the highest contribution to the integral (cf. [167, 168,
222]). Additionally, we depicted the reference data extracted from [144] (figure 7) along
with the stated numerical error of up to 5%. We mention the sufficiently good match of
our calculation with the literature data in the stated error limits, where the numerical
instabilities in our results are originated in the used Monte Carlo integration, which is
depicted as statistical error in figure C.2 as well.
Another example, where we compare our implementation to literature data, is the total
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Figure C.3: Total cross section 𝜎pT of perturbative trident as a function of the center-of-
momentum energy

√
𝑠 (scaled with the electron mass 𝑚). The result of equation (C.11) is

depiced as a solid black curve. The literature data points were taken from [118] (table 1) and
is depicted as a green dots.

cross section of perturbative trident, which is defined as the five-fold integral

𝜎pT :=
ˆ

d𝜎pT, (C.11)

where the differential cross section is given in equation (C.9). In figure C.3 the total cross
section of perturbative trident is depicted as a function of the center-of-momentum energy
√
𝑠 scaled by the electron mass 𝑚, where we used again the VEGAS algorithm for the

five-fold integration. We mention the near perfect match of our calculation to the literature
data, as well as the vanishing of the total cross section for values of

√
𝑠 lower than the

threshold-energy of √
𝑠th = 3𝑚, as afore-stated in equation (A.78).
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C.3 Differential cross sections in transverse coordinates
Within this section, we consider the exclusive electron distribution of the perturbative
trident, i.e. the double-differential cross section similar to equation (C.10), but with the
particle assignment: 𝑎 = 1 (for the final positron), 𝑏 = 2 (first final electron) and 𝑐 = 3
(second final electron). Here we integrate over the momentum components of the final
positron (cf. equation (C.9)), which leads to

d𝜎pT
d𝐸2 d cos 𝜃2

= 1
4𝐼

1
𝑁

ˆ d𝐸1 d cos 𝜃1 d𝜑1

4 (2𝜋)5

×
𝜚1𝜚2

∑︀
spins,pols|𝑀pT|2√︁

𝑎2
(︀
cos 𝜃+

1 − cos 𝜃1
)︀ (︀

cos 𝜃1 − cos 𝜃−
1
)︀ ⃒⃒⃒⃒

𝜙2∈{𝜑
(1)
2 ,𝜑

(2)
2 }

, (C.12)

where the coordinate boundaries cos 𝜃±
1 as well as the physical values of the electron

azimuths 𝜑(1,2)
2 are given in equation (A.66) and (A.57), respectively. In order to have a

simple behavior of the inclusive electron distribution w.r.t. a Lorentz boost along the beam
axis (i.e. along 𝑘), we transform the double-differential cross section (C.12) to transverse
coordinates (cf. section A.2). In figure C.4 the resulting d𝜎pT

d𝑦2 d𝑝𝑇 2
is depicted as a contour

plot in the (𝑦2, 𝑝𝑇 2)-plane for the center-of-momentum energies of
√
𝑠 = 3.353𝑚 (near

to the threshold) and
√
𝑠 = 10𝑚 (far above the threshold). We mention, that a priori

the final electrons are not distinguishable due to the anti-symmetrisation of the matrix
element following the Pauli principle. Thus, in the left panel of figure C.4 one observes a
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Figure C.4: The contour plot of the inclusive electron distribution of perturbative trident
d𝜎pT

d𝑦2 d𝑝𝑇 2
in units of mb/𝑚 depicted in the (𝑦2, 𝑝𝑇 2)-plane for two values of the center-of-

momentum energies:
√
𝑠 = 3.353𝑚 (left panel) and

√
𝑠 = 10𝑚 (right panel).
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Figure C.5: Same as in the right panel of figure C.4, but without the exchange part of the
matrix element (see text), depicted as a function of 𝑦2, 𝑝𝑇 2 for the pair electron (left panel)
and 𝑦3, 𝑝𝑇 3 for the recoil electron (right panel). Over the respective remaining momentum
components is integrated.

smooth single blob, where the interference of the direct and exchange parts of the matrix
element (C.5) leads to the mentioned indistinguishability of the final electrons. However, in
contrast to that, in the right panel of figure C.4, there is a separation of the final electron
distribution for high center-of-momentum energies in two distinct sub-distributions: (i)
near the origin and (ii) around the point 𝑦2 = 4, 𝑝𝑇 2 = 0.5𝑚.
In order to assign these two sub-distributions to the respective electron, we consider
a similar exclusive electron distribution, except we omit the exchange terms: 𝑀pT →
𝑀noex

pT := 𝑀C +𝑀BW, where the direct virtual Compton part 𝑀C and the virtual Breit-
Wheeler part 𝑀BW are given in equation (C.1) and (C.3), respectively. Furthermore, we
omit the normalisation factor 1

2 from the anti-symmetrisation. Note that this leads to an
unphysical distribution, but allows to directly distinguish the two electrons in the pair
electron with momentum 𝑝2 and the recoil electron with momentum 𝑝3, according to the
diagrams depicted in figure C.1.
In figure C.5 these the two distributions are depicted w.r.t. the recoil and the pair electron,
respectively. There we observe that the recoil electron distribution is situated near the origin
and the pair electron distribution turns out to be around the point 𝑦2 = 4, 𝑝𝑇 2 = 0.5𝑚.
Therefore, by comparing these (unphysical) distributions with figure C.4, one can assume,
that in the full distribution in the right panel of figure C.4 the two distinct sub-distributions
can be assigned to the recoil electron (near the origin) and the pair electron (around the
point 𝑦2 = 4, 𝑝𝑇 2 = 0.5𝑚). This kinematic distinction of the two kinds of electrons in
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perturbative trident was also discussed in [55, 56, 138] and it leads to the estimation of
the polarisation of the incoming photon according to the measurement of recoil electron
(cf. [72]). A similar distinction can also be observed in the strong field case (e.g. in [158]
for constant crossed background fields), which leads to an interesting conceivable transfer
of experience w.r.t. the polarisation measurements in strong laser fields using the trident
process.

C.4 Dark photons
A currently discussed extension of the standard model of particle physics assumes the
(hypothetical) existence of a massive photon-like particle as a quantum of an additional
𝑈(1) symmetry [21, 94, 250], which is termed as dark photon or 𝑈 -boson. Via kinetic
mixing, the standard model photon can convert itself into such dark photon, which appears
in the Feynman diagrams by using diagram elements of the type , where the double
wiggly line stands for the dark photon. This scenario implies that the diagram in figure
C.1 must be supplemented by the ones in figure C.6.

p p3
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p1

k

k

p

p3

p2

p1

(a) Virtual Compton diagrams.
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p
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(b) Virtual Breit-Wheeler diagrams.

Figure C.6: Feynman diagrams for the (hypothetical) contribution of a dark photon to
the perturbative (monochromatic) trident process. Same as in figure C.1 but with kinetic
mixing propagator instead of the photon propagator and the dark photon vertex
coupled to the electron-positron pair.

The vertex stands for the decay of the dark photon into an electron-positron pair.
The dark photon propagator generates a resonance type contribution (cf. [24] for instance),
which – when strong enough – leads to a peak structure at (𝑝(𝑒+) + 𝑝(𝑒−))2 = 𝑚2

darkphoton.
In such a way, the (hypothetical) kinematic mixing strength is accessible in experiments.
Given the urgent interest in standard model extensions w.r.t. the dark matter/energy
problem in cosmology, a plenty of experimental searches as been performed or are under
construction (cf. [52] for a review). Up to now, only upper limits on the kinetic mixing
have been reported.
Some authors (e.g. [94]) analysed the perturbative (monochromatic) trident w.r.t. the
discovery potential of dark photons. In particular, one has to find a kinematical situation,
where the virtual Compton diagrams C.1(a) and C.6(a) deliver a significant contribution
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to the (differential) cross section, since only these cause a resonant contribution. For a
first inspection, it is sufficient to consider the diagrams in figure C.1. In order to evaluate
the relevant parts of the differential cross section of the perturbative trident, we consider
the invariant mass distribution of the produced pair w.r.t. either of the final electrons:

d2𝜎pT
d𝑠12 d𝑠13

=
ˆ
𝛿(𝑠12 − (𝑝1 + 𝑝2)2)𝛿(𝑠13 − (𝑝1 + 𝑝3)2) 𝑑𝜎pT, (C.13)

where 𝑠1𝑖 = (𝑝1 + 𝑝𝑖)2 with 𝑖 = 2, 3 denotes the invariant mass of the trident pair w.r.t.
the outgoing electron with the four-momentum 𝑝𝑖 and 𝑑𝜎pT is the differential trident cross
section given in equation (C.9). For the virtual Compton and the virtual Breit-Wheeler
parts of the differential cross section, we replace the full perturbative trident matrix element
by the respective matrix element of the subprocess and neglect the interference terms:

d2𝜎vBW
d𝑠12 d𝑠13

:= d2𝜎pT
d𝑠12 d𝑠13

⃒⃒⃒⃒
𝑀pT→𝑀BW

, (C.14)

d2𝜎vC
d𝑠12 d𝑠13

:= d2𝜎pT
d𝑠12 d𝑠13

⃒⃒⃒⃒
𝑀pT→𝑀C

, (C.15)

where 𝑀BW (𝑀C) denotes the matrix element of the virtual Breit-Wheeler (Compton)
subprocess given in equation (C.3) and (C.1), respectively. In figure C.7 the resulting
double-differential cross sections are exhibited as contour plots in the (𝑠12, 𝑠13)-plane for a
center-of-momentum energy of

√
𝑠 = 3.353𝑚, which is somewhat above the threshold √

𝑠th.

10−810−710−6

Figure C.7: Contour plots of the invariant mass distributions d2𝜎pT
d𝑠12 d𝑠13

(left panel), d2𝜎vBW
d𝑠12 d𝑠13

(middle panel) and d2𝜎vC
d𝑠12 d𝑠13

(right panel) in units of mb/𝑚4, depicted in the (𝑠12, 𝑠13)-plane
for

√
𝑠 = 3.353𝑚.
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Figure C.8: Contour plot of the single differential invariant mass distribution d𝜎
d𝑠12

for the
cases of the full monochromatic trident, the virtual Breit-Wheeler- and the virtual Compton
subprocesses.

First we mention for all considered cases the same elliptically shaped phase space regime
with sharp boundaries, where inside the invariant mass distributions are smooth and only
slow varying. We mention also the symmetry of the distributions w.r.t. the interchange
𝑠12 ↔ 𝑠13. Furthermore, one observes that the case of the full perturbative trident (C.13)
and the virtual Breit-Wheeler part (C.14) have comparable signal strength, where the
virtual Compton part (C.15) is suppressed by almost an order of magnitude. This kind of
behavior of the monochromatic trident cross section is well known (see for instance [56])
and was even one of the first approximations considered for the monochromatic trident [32,
33]. Nevertheless, this suppression of the virtual Compton contribution does not exclude
the dark photon capabilities, but makes the observation of a dark photon resonance in
the invariant mass spectrum of the trident pair fairly challenging. However, the inclusion
of spectral effects via the pulsed-perturbative trident, especially the modifications of the
respective phase space might provide a kinematical regime with more promising capabilities.
A similar behavior can be seen in the single-differential invariant mass distribution w.r.t.
for instance 𝑠12, i.e. the cross sections (C.13), (C.14) and (C.15) integrated over 𝑠13. In
figure C.8, the resulting single-differential invariant mass distribution d𝜎

d𝑠12
is depicted for

the considered cases. Again, we observe a similar signal strength of the full perturbative
trident calculation and the virtual Breit-Wheeler subprocess. We mention that the larger
height of the virtual Breit-Wheeler distribution w.r.t. the full calculation indicates, that
the interference terms have a decreasing contribution to the full perturbative trident
distribution. Similar to the double-differential invariant mass distribution, the virtual
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Compton contribution exhibited in figure C.8 is again suppressed by almost an order of
magnitude. Nevertheless, especially at the boundaries of the single-differential invariant
mass distribution, the respective contributions become to some extent comparable. This
is important, since one can assume that the involvement of the spectrum of the used
light-source causes a modification of these boundaries in the same manner as shown in
section 4.3 in the case of the inclusive positron distribution. Consequently, it remains
an open question, whether strong-field (multi-photon) effects could lift dedicated trident
investigations on a competitive level.





D | Useful mathematical statements

Within this section, we summarise mathematical statements related to the pulse envelope
function. Firstly, we recapitulate the definition: let 𝛥𝜙 ∈ R with 𝛥𝜙 ̸= 0 be a pulse
width, then a smooth function 𝑔𝛥𝜙 : R → R+ is referred as a pulse envelope function, if
for an arbitrary but fixed 𝛥𝜙 the function 𝑔(𝜙,𝛥𝜙) has a local maximum at 𝜙 = 0 and is
monotonically increasing (decreasing) for all 𝜙 < 0 (𝜙 > 0) as well as the assumptions

𝑔(0, 𝛥𝜙) = 1 for all 𝛥𝜙, (D.1)

lim
𝜙→∞

𝑔(𝜙,𝛥𝜙) = 0 for all 𝛥𝜙, (D.2)

lim
𝛥𝜙→∞

𝑔(𝜙,𝛥𝜙) = 1 for all 𝜙, (D.3)

are fulfilled. Additionally, one assumes the characteristic moments

𝜈𝑛[𝑔] := 1
𝛥𝜙

ˆ ∞

−∞
𝑔𝑛(𝜙,𝛥𝜙) d𝜙 (D.4)

does not depend on 𝛥𝜙 for all 𝑛 > 0.

Lemma D.1
Let 𝑔𝛥𝜙 : R → R+ be a pulse envelope function with width 𝛥𝜙 and

𝐹𝑔(𝑙,𝛥𝜙) :=
ˆ ∞

−∞
𝑔(𝜙,𝛥𝜙)𝑒𝑖𝑙𝜙 d𝜙, (D.5)

its (inverse) Fourier transform. Then for all 𝑙 ∈ R one has

lim
𝛥𝜙→∞

𝐹𝑔(𝑙,𝛥𝜙) = 2𝜋𝛿(𝑙) (D.6)

Proof: Since the function 𝑔 is smooth and bounded above, one can exchange the limit and

139
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the integral, which leads to the limit of the Fourier transform defined in equation (D.5)

lim
𝛥𝜙→∞

𝐹𝑔(𝑙,𝛥𝜙) = lim
𝛥𝜙→∞

ˆ ∞

−∞
𝑔(𝜙,𝛥𝜙)𝑒𝑖𝑙𝜙 d𝜙 (D.7)

=
ˆ ∞

−∞
lim

𝛥𝜙→∞
𝑔(𝜙,𝛥𝜙)𝑒𝑖𝑙𝜙 d𝜙 (D.8)

=
ˆ ∞

−∞
𝑒𝑖𝑙𝜙 𝑑𝜙 (D.9)

= 2𝜋𝛿(𝑙). (D.10)

Similarly, the limit of the complex-conjugate results in

lim
𝛥𝜙→∞

𝐹 *
𝑔 (𝑙,𝛥𝜙) = 2𝜋𝛿(𝑙). (D.11)

In contrast to the limit shown in lemma D.1, the limit of the function 𝐹 2
𝑔 (𝑙,𝛥𝜙) for

𝛥𝜙 → ∞ diverges for all 𝑙 ∈ R. However, including an additional suppressing factor results
in a finite limit in the distributional sense.
Lemma D.2

Let 𝑔𝛥𝜙 : R → R+ be a pulse envelope function with width 𝛥𝜙,

𝐹𝑔(𝑙,𝛥𝜙) :=
ˆ ∞

−∞
𝑔(𝜙,𝛥𝜙)𝑒𝑖𝑙𝜙 d𝜙, (D.12)

its (inverse) Fourier transform. Then, assuming 𝑔 is an even function, one has for all
𝑙 ∈ R and all 𝑙1,𝑙2 ∈ R with 𝑙1 ̸= 𝑙2

(i) lim
𝛥𝜙→∞

𝐹 2
𝑔 (𝑙,𝛥𝜙)

𝛥𝜙 = 2𝜋𝜈2[𝑔]𝛿(𝑙),

(ii) lim
𝛥𝜙→∞

𝐹𝑔(𝑙1,𝛥𝜙)𝐹𝑔(𝑙2,𝛥𝜙)
𝛥𝜙 = 0,

where 𝜈2[𝑔] denotes the second characteristic moment of 𝑔 defined in (D.4).

Proof: Considering the case (𝑖) and using the convolution theorem (see e.g. [16, 35]) for
the product of Fourier transforms, one has

lim
𝛥𝜙→∞

𝐹 2
𝑔 (𝑙,𝛥𝜙)
𝛥𝜙

= lim
𝛥𝜙→∞

1
𝛥𝜙

ˆ ∞

−∞
(𝑔 * 𝑔) (𝜙)𝑒𝑖𝑙𝜙 d𝜙, (D.13)
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where (𝑔 * 𝑔) (𝜙) denotes the convolution of 𝑔 w.r.t. itself, which is defined by

(𝑔 * 𝑔) (𝜙) :=
ˆ ∞

−∞
𝑔(𝜙′)𝑔(𝜙− 𝜙′) d𝜙′. (D.14)

Expanding this convolution in 𝜙 leads to

(𝑔 * 𝑔) (𝜙) = 𝛥𝜙𝜈2[𝑔] +
ˆ ∞

−∞
𝑔(𝜙′)

∞∑︁
𝑛=1

𝜕𝑛

𝜕𝜙𝑛
𝑔(𝜙− 𝜙′) d𝜙′, (D.15)

where the second term is suppressed by a factor of 1
𝛥𝜙 compared to the first summand

and therefore negligible for 𝛥𝜙 ≫ 1. This approximation is also referred to as the slowly
varying envelope approximation and was illustrated in [212, 269, 271, 290]. Inserting this
expansion into (D.13) results in

lim
𝛥𝜙→∞

𝐹 2
𝑔 (𝑙,𝛥𝜙)
𝛥𝜙

= lim
𝛥𝜙→∞

[︂
𝜈2[𝑔]

ˆ ∞

−∞
𝑒𝑖𝑙𝜙 d𝜙+ O

(︂
1
𝛥𝜙

)︂]︂
(D.16)

= 2𝜋𝜈2[𝑔]𝛿(𝑙), (D.17)

where we used the integral representation of the delta-distribution 2𝜋𝛿(𝑙) =
´∞

−∞ 𝑒𝑖𝑙𝜙 d𝜙.
For the case (ii), we apply equation (D.6) to both factors yielding

lim
𝛥𝜙→∞

𝐹𝑔(𝑙1, 𝛥𝜙)𝐹𝑔(𝑙2, 𝛥𝜙)
𝛥𝜙

= lim
𝛥𝜙→∞

(2𝜋)2 𝛿(𝑙1)𝛿(𝑙2)
𝛥𝜙

= 0, (D.18)

considering the assumption 𝑙1 ̸= 𝑙2.
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A.1 Schematic illustration of the three-momenta during a 2 → 3 scattering
of a photon and an electron in the rest frame of the latter in spherical
coordinates. The momenta of the incoming photon is represented by the
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𝑎
, green: 𝑝
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C.1 Feynman diagrams of perturbative trident on tree-level, where 𝑝, 𝑘, 𝑝1, 𝑝2, 𝑝3
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positron, and the two final electrons, respectively. The two diagrams C.1(a)
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𝑝1 + 𝑝2, 𝑝

′
C = 𝑝 + 𝑘 and 𝑘′′

C = 𝑝1 + 𝑝2, 𝑝
′′
C = 𝑝3 − 𝑘 denote the momenta

of the intermediate photon and electron, respectively. The two diagrams
C.1(b) on the r.h.s. are referred as the virtual Breit-Wheeler diagrams, where
𝑘′

BW = 𝑝 − 𝑝3, 𝑝
′
BW = 𝑘 − 𝑝1 and 𝑘′′

BW = 𝑝 − 𝑝3, 𝑝
′′
BW = 𝑝2 − 𝑘 denote the

momenta of the intermediate photon and electron, respectively. Additionally,
the exchange diagrams are given by the substitution 𝑝2 ↔ 𝑝3 w.r.t. the
depicted diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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√
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√
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C.6 Feynman diagrams for the (hypothetical) contribution of a dark photon to
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