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Abstract: In this paper, we review some recent findings related to the Casimir effect. Initially, the
thermal corrections to the vacuum Casimir energy density are calculated, for a quantum scalar field,
whose modes propagate in the (3+1)-dimensional Euclidean spacetime, subject to a nontrivial compact
boundary condition. Next, we analyze the Casimir effect induced by two parallel plates placed in a
weak gravitational field background. Finally, we review the three-dimensional wormhole solutions
sourced by the Casimir density and pressures associated with the quantum vacuum fluctuations of
the Yang-Mills field.

Keywords: Casimir effect; finite-temperature effect; nontrivial compact boundary condition; weak
gravitational field; wormhole; Yang–Mills field

1. Introduction

From the classical physics point of view, the phenomenon called the Casimir effect [1]
cannot find its explanation. The effect manifests itself as an attractive force between
the two parallel electrically neutral ideal metallic plates at zero temperature placed at
a certain distance in a vacuum, according to the original configuration. According to
classical electrodynamics, there is no force in such a scenario. Thus, this phenomenon
can only be understood in the context of quantum physics, and its origin is related to
the oscillations of the zero-point (vacuum) energy or, equivalently, to the fluctuations of
the quantum electromagnetic field as a consequence of boundary conditions imposed to
the field due to the presence of the plates. This is the most basic configuration that leads
to the Casimir effect. This phenomenon associated with the vacuum fluctuations of the
quantum electromagnetic field was predicted by Hendrik Casimir [1] in 1948, who obtained
an intriguing and remarkably simple formula for this force per unit area of the plates:

F = − π2

240
h̄c

L4 , (1)

where L denotes the distance between the two plates and h̄ and c are the reduced Planck
constant and the speed of light in vacuum, respectively. That is, the force depends on a
geometrical factor, the distance between the plates, and the two fundamental constants, the
former related to the quantum physics and the latter one to the relativistic consideration.

Originally, the Casimir effect was associated with the electromagnetic field and mate-
rial boundaries made of a perfect conductor. Thus, taking into account that the Casimir
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effect, as originally conceived, is a direct consequence of the vacuum fluctuations of phys-
ical photons, whose propagating behavior depends on the presence of boundaries as
compared with the free spacetime, and assuming the predictions of the quantum field the-
ory that boundaries, independent of their nature, if material or due to the topology, induce
nonzero vacuum expectation values, it is natural to expect that similar phenomena occur
for countless configurations of quantum fields with different spins subject, for example,
to boundary conditions dictated by the nontrivial topology associated with flat or curved
spacetime [2–5].

During seventy-five years, since the discovery of this remarkable pure quantum effect,
specifically from the seventies of the twentieth century up to nowadays, the line of research
along the generalization described just above, in particular, concerning the role played by
the nontrivial topology of spacetime on the quantum vacuum energy in the framework of
the general theory of relativity, has been extensively investigated, with the breakthrough
findings. As pioneering papers about this topic, we mention firstly the one that investigates
the zero-point energy of quantum fields placed in background gravitational fields with a
nontrivial topology [6]. As the second point, we call a cosmological model with a nontrivial
topology, namely the Einstein universe with a topology R1 × S2. In this cosmological
scenario, considering a conformally coupled massless scalar field, the Casimir energy
density and pressure are given by [7]

ε0 =
h̄c

480π2R4 and P0 =
ε0

3
, (2)

respectively, where R denotes the radius of the universe.
These pioneering studies inspired investigations concerning the role of the global

structure of spacetime or, in other words, the role of the nontrivial topology, on the zero-
point energy of quantum fields, placed in flat or curved backgrounds. Some of these studies
related to the role played by boundary conditions imposed by the nontrivial topology in
locally or globally flat spacetimes are given in Refs. [5,8–21]. Concerning the presence of
gravitational fields, some interesting investigations were performed [4,13,22–51].

Over these seventy-five years, since its discovery [1], the Casimir effect has been ac-
tively investigated from theoretical point of view as well as experimentally. Particularly in
the last three decades, and more recently, due to the possibility of numerous applications of
this physical manifestation of zero-point energy, not only in fundamental sciences but also
in applied sciences. It is a multidisciplinary phenomenon that arises when any quantum
field is submitted to boundary conditions caused by material bodies or associated with
a nontrivial space topology. It arises in different contexts, namely, quantum electrody-
namics, condensed matter physics, quantum chromodynamics, gravitation and cosmology,
and nanotechnology.

This paper reviews three different scenarios in which this phenomenon manifests,
confirming the multifaceted and interdisciplinary features of the Casimir effect and its
importance. In order to emphasize this multifaceted character, a revision is made about
three different topics. The first one is related to the thermal corrections to the Casimir
energy of massive and massless scalar fields, under boundary conditions with a nontrivial
topology, in flat spacetime using the zeta function formalism [52]. The second concerns the
investigation on how the Casimir effect manifests itself when the plates are embedded in a
weak gravitational field sourced by a certain mass [50]. The third topic addressed in this
review proposes the generation of wormholes in 2+1 dimensions by the Casimir energy
associated to a Yang–Mills field [53]. Therefore, there is a progression in the scenarios
discussed with respect to spacetime, ranging from flat one, then a slightly curved and
finally a highly curved one.

The different topics considered in this review are believed to give us a better under-
standing of how the structure of spacetime influences a quantum phenomenon, shedding
light on the relation between quantum fields, geometry and topology.
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We begin by reviewing the generalized zeta function method, in Section 2. We calculate
the Casimir energy for a massless scalar field and its respective thermal correction, taking
into account a nontrivial compact boundary condition. In Section 3, we review the formal-
ism to calculate the Casimir energy in a weak static gravitational field and revisit previous
results of the literature. In Section 4, we study what is termed Casimir wormholes, and, in
Sections 5 and 6, the summary of the results obtained and the conclusions are presented.

2. Thermal Corrections to the Casimir Energy Density: Scalar Field Subject to a
Nontrivial Compact Boundary Condition

In what follows, the generalized zeta function method is used to obtain the thermal
corrections to the Casimir energy density of a scalar field, initially calculated at zero
temperature, by imposing a nontrivial compact boundary condition on the field. This
condition was originally called the helix boundary condition in Refs. [18,54].

The expressions for the heat kernel function and free energy density are obtained in
exact and analytic forms. In these calculations, quantum scalar fields with mass and those
massless are taken into account. In particular, for the massless case, the internal energy
density is analyzed concerning the limits corresponding to high and low temperatures. The
influence of the boundary condition is the focus of the analysis along with the contribution
by the thermal corrections to the Casimir energy density of the quantum scalar fields.
It is worth noticing that all calculations are performed in a flat spacetime. Therefore,
all modifications to the local features of the zero-point energy are due to the boundary
conditions imposed on the fields.

2.1. Generalized Zeta Function Method

Let us review in what follows the vacuum energy and its temperature corrections for a
real quantum scalar field with a nontrivial compact boundary condition following studies
presented in Refs. [18,54,55] at zero temperature and in Ref. [52], at finite temperature. We
adopt the method of the generalized zeta function defined as [56–58]

ζ4(s) = ∑
j

λ−s
j , (3)

where λj represents the eigenvalues of a four-dimensional Laplace–Beltrami operator, Â4,
where the subindex refers to the spacetime dimension, and j takes the values 1, 2, . . . , ∞.

It is worth noticing that ζ4(s) (3) converges for {Re(s) > 2 and it is regular at s = 0,
in four dimensions. It can be analytically extended to the interval Re(s) < 2, with poles
at s = 2 and s = 1. As concerns its spectrum of eigenvalues denoted by λj, it is not
necessarily discrete [58]. The path integral formulation of quantum field theory allows us
to link the zeta function (3) with the partition function, Z, thus providing a way to study
the thermodynamic properties of a quantum system. This connection is made through Â4
and is given by [52,56,58]

Z = det
(

4
πµ2 Â4

)

, (4)

where the parameter µ is a constant with a dimension of mass and stands for an integration
measure in the functional space, and should be suppressed by the renormalization. Note
that, in the case we are considering, the operator Â4 is identified as the Laplace-Beltrami
operator in the four-dimensional Euclidean space. Hence, in natural units, the operator has
a dimension of mass squared, what makes Equation (4) dimensionless.

Upon using the known identity e−ζ ′4(0) = det(Â4), where the prime denotes the
s-derivative, from Equation (4), one finds [52,56,58]:

ln Z =
1
2

ζ ′4(0) +
1
2

ln
(

πµ2

4

)

ζ4(0). (5)
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From Equation (5), we conclude that the partition function (4) can be determined if
the zeta function (3) and its s-derivative at s = 0 are known.

The trace of the operator Â4 defines the heat kernel K(η):

K(η) = Tr
[

e−ηÂ4
]

= ∑
j

e−Ωjη , (6)

where Ωj is the set of eigenvalues of Â4. The generalized zeta function (3) can be written in
terms of Equation (6) as

ζ(s) =
1

Γ(s)

∫ ∞

0
ηs−1Tr

[

e−ηÂ4
]

dη, (7)

where Γ(s) is the Gamma function.
Equation (7) corresponds to another representation of the generalized zeta function (3).

Note that, in representation (7), the generalized zeta function does not depend on the
spacetime coordinates. The form (7) is quite helpful to calculate the vacuum free energy
when the eigenvalues of the operator Â4 are known. With the zeta function in hand, we
just use Equation (5) to calculate the partition function and, immediately, the vacuum-
free energy.

The temperature corrections enter when a periodic boundary condition is imposed on
the imaginary time, τ coordinate, of the scalar field, ϕj(x), whose solution can be written as

ϕj(x) = e−iωnτ φℓ(r) with ω2
n =

(

2πn

β

)2

, (8)

where n = 0,±1,±2, . . ., j = (n, ℓ) are the quantum modes and β = 1/kBT is the period,
with kB being the Boltzmann constant and T the temperature.

The eigenvalues are given by λn = ω2
n + k2 + m2, with k being the three-momentum

and m the mass of the field. The factor φℓ(r) is the part of the solution of the quantum
scalar field ϕj(x), which depends on the spatial coordinates.

It is worth pointing out that the approach we are adopting to calculate the thermal
corrections are, in general, applicable, when the spacetime is ultra static [59–62], in which
case, the solution can be written according to Equation (8).

Using the solution given by Equation (8), the general expression for the zeta function (7)
turns into

ζ4(s) =
β√

4πΓ(s)

{

Γ(s − 1/2)ζ3(s − 1/2) + 2
∞

∑
n=1

∫ ∞

0
ηs− 3

2 e
− (nβ)2

4η Tr
[

e−ηÂ3
]

dη

}

, (9)

where the operator Â3 with eigenvalues k corresponds to the spatial part of the operator
Â4 and ζ3(s) is the zeta function whose general expression is given by Equation (7).

Now, Equations (5) and (9) can be used to calculate the free energy, which is given
as follows:

F = − ln Z

β

=
1
2

ζ3(−1/2)− C̄2

2(4π)2 ln(C2)− 1√
4π

∞

∑
n=1

∫ ∞

0
η− 3

2 e
− (nβ)2

4η Tr
[

e−ηÂ3
]

dη, (10)

where
√

πe2µ/8, with e being the elementary charge.
The first two terms correspond to the vacuum energy at zero temperature, and the

third one furnishes the thermal corrections. Note that the result given by Equation (10)
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presents an ambiguity in the definition of the vacuum energy at zero temperature if the
coefficient C̄2 is different from zero. Let us write C̄2 as [4]

C̄2 = C2 − C1m2 +
C0m4

2
, (11)

where C0, C1, and C2 are the heat kernel coefficients. It is worth calling attention to the
feature that, in the massless case, the ambiguity disappears when C2 vanishes.

The heat kernel coefficients are introduced using the heat kernel expansion [4]:

K(η) =
e−m2η

(4πη)3/2

∞

∑
p=0

Cp/2ηp/2 + ES, (12)

where Cp/2 are the heat kernel coefficients and ”ES” stands for exponentially suppressed
terms.

To proceed with the regularization of the vacuum energy, we can write the first two
terms of Equation (10) as [4]

E0(s) =
C2s

2
ζ3(s − 1/2). (13)

Therefore, the renormalized vacuum energy reads

Eren
0 = lim

s→0
[E0(s)− Ediv

0 (s)], (14)

where Ediv
0 (s) is the divergent contribution of the regularized expression in Equation (13) [4].

This divergent contribution is given in terms of the heat kernel coefficients Cp/2. As shown
in Section 2.2 below, the only divergent contribution is given in terms of C0, which is related
to the Euclidean heat kernel divergent contribution to the zeta function ζ3(s − 1/2). In the
massive case, other coefficients appear, and thus, it is necessary to include an additional
normalization condition to obtain the renormalized vacuum energy, and thus justifying
the subtraction of terms proportional to the positive powers of the mass m [4]. Then, the
normalization condition is given by

lim
m→∞

Eren
0 = 0, (15)

which is satisfied in the case under consideration, as expected. The condition (15) has
been suggested in Ref. [63] and provides a unique physical meaning for the renormalized
vacuum energy, since, in the large (infinite) mass limit, there should be no quantum vacuum
fluctuations. The condition (15) implies that it is necessary to implement a renormalization
of finite terms proportional to the positive powers of mass, in addition to the renormaliza-
tion of infinite terms which, in general, takes place in vacuum energy configurations.

2.2. Nontrivial Compact Boundary Condition, Heat Kernel, and Thermal Corrections

In what follows, we assume that the quantum modes of the scalar field propagate in a
(3+1)-dimensional Euclidean spacetime and experience a boundary condition given by

φ(x + a, y, z) = φ(x, y + h, z), (16)

which is also known as the helix boundary condition in the literature [18,54]. According
to Refs. [18,54], the condition (16) is topologically equivalent to a helix and the geomet-
ric parameters h and a are the pitch and the helix radius, respectively. The boundary
condition expressed by Equation (16) was also considered by investigating the Casimir
effect at zero [18,54] and nonzero [52] temperatures. The helix-like topology of the space-
time codified in Equation (16) is constructed using the mathematical notion of the equiv-
alence relation, equivalence classes, and quotient space as discussed in Refs. [18,54]
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(see also Ref. [64]). For instance, the points (x, y) and (x + nxa, y + nya) in R
2, with

nx, ny = 0,±1,±2,±3, . . ., present an equivalence relation if x → x + nxa and y → y + nyh.
A quotient space may be obtained by separately identifying the endpoints in each di-
mension x and y to form a compact space with topology S1 × S1. Thus, we end up with
two independently compactified dimensions. However, in the present case, a quotient
space R

2/ ∽ is obtained by identifying the points (a, 0) and (0, h), for instance, and conse-
quently, making the direction along the green solid line in Figure 1 compact, with length
d =

√
a2 + h2. Hence, the nontrivial compact condition described in Equation (16) is

presented as R2 ×R
2/ ∽.

z

a

d

h

y

x

Figure 1. Illustration of the direction of the compactification. According to the condition given by
Equation (16), the scalar field has the same value at (a, 0) and (0, h) if one considers (x, y) = (0, 0).
The parameters a and h can be topologically associated with a helix [18,54].

In the present study, we are interested in reviewing some important aspects of the
problem related to heat kernel coefficient contributions and also to divergences associated
with these coefficients.

The corresponding eigenvalues of the problem are written as [52]

λℓ = k2
x +

(

kxa

h
− 2πn

h

)2

+ k2
z + m2

=

(

kyh

a
+

2πn

a

)2

+ k2
y + k2

z + m2. (17)

As the components of the momentum kx and ky are related, the spatial quantum modes
are indexed by ℓ = (n, ky, kz) or ℓ = (n, kx, kz). In the calculation that follows, the latter
option is assumed. Taking into account the recently obtained result concerning the heat
kernel for the problem under consideration [52]:

K(η) = V
e−m2η

(4πη)3/2

∞

∑
n=−∞

e
− n2d2

4η , (18)

where the Euclidean contribution to the heat kernel is given by [60–62]

KE(η) = V
1

(4πη)3/2 e−m2η , (19)

where only the term n = 0 was taken into account. Note that the heat kernel (18) can be
interpreted as the one obtained from space with topology R

2 × S1, with d being the size of



Physics 2024, 6 1052

the compact dimension. This becomes clear if, in the first line of Equation (17), we perform
the substitution

kx =
h

d

(

kX +
2aπn

hd

)

, (20)

where kX is the momentum in the new direction, X. Hence, Equation (17) can be written as

λℓ = k2
X +

4π2n2

d2 + k2
z + m2. (21)

The problem considered here is equivalent to the one in a four-dimensional spacetime
with Cartesian coordinates (t, X, Y, z), with the Y dimension compactified into a circle of
length d [65]. In other words, the spacetime topology characterized by the condition (16) is
effectively equivalent to a space with topology R

2 × S1, as previously noted. That is why
we have also called Equation (16) a nontrivial compact boundary condition.

Comparing the heat kernel (18) with the heat kernel expansion (18), we find that the
C0 is only coefficient different from zero and given by C0 = V, where V is the volume of
the (3+1)-dimensional Euclidean spacetime. It is worth calling attention to the feature that
C0 is responsible for the divergent contribution to the zeta function (7) and, thus, should be
cancelled to obtain a finite result for the Casimir energy density. On the other hand, the
contribution of the third term of the free energy (10), which arises from the Euclidean heat
kernel (19), corresponds to the scalar thermal (blackbody) radiation contribution [56]. To
find a renormalized result for the thermal correction contributions [39,40], the appropriate
subtractions have to be performed. As a result, the classical limit for the free energy is
recovered for high temperatures, as expected.

Now, substracting the Euclidean heat kernel contribution equation (19) from the heat
kernel (18) and assuming the boundary condition given by Equation (16), the renormalized
heat kernel for the field φℓ(r) reads as :

Kren(η) = V
e−m2η

4(πη)3/2

∞

∑
n=1

e
− n2(a2+h2)

4η . (22)

Let us return to the generalized zeta function (7), which can be written as

ζ3(s − 1/2) = V
23−sm4−2s

(4π)3/2Γ(s − 1/2)

∞

∑
n=1

f2−s(mnd). (23)

where

fµ(x) =
Kµ(x)

xµ , (24)

with Kµ(x) being the modified Bessel function of the second kind.
Let us consider the free energy (10), where the first two terms correspond to the

Casimir energy at zero temperature. Thus, using Equations (13) and (14), the following
expression is obtained:

Eren
0 = −V

m4

2π2

∞

∑
n=1

f2(mnd). (25)

The result given by Equation (25) is the renormalized Casimir energy at zero tempera-
ture [18,54,55]. Taking into account the massless field, the renormalized Casimir energy
can be obtained from Equation (25) assuming that the arguments of the modified Bessel
function are very small, such that Kµ(x) ≃ (2/x)µ

Γ(µ)/2 [66,67]. Thus, the following
result is obtained [18,54,55]:

Eren
0 = −V

π2

90d4 , (26)

where the Riemann zeta function, ζR(4) = π4/90, was used [58,66,67].
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Notice that the results obtained do not depend on the energy scale, M, and as a
consequence, there is no ambiguity. One should remember that the term containing
the parameter M in Equation (10), which introduces an ambiguity in the definition of the
vacuum energy at zero temperature, is nonzero only when the coefficient C̄2 in Equation (11)
exists. As in the the case considered here, where C̄2 = C0m4/2, with C0 = V, as already
stated in this Section. Actually, the second term on the right-hand side of Equation (10)
is nonzero. However, as we expect a decreasing in the vacuum energy for large masses,
this term should be discarded, since it grows with the mass m and must be subtracted
in order to obey the normalization (15). Such a process, in the massive case, leads to the
renormalized vacuum energy in Equation (25). On the other hand, the massless vacuum
energy case does not carry the term depending on M in Equation (10) since C̄2 = 0. So,
naturally, one obtains Equation (26).

As discussed above, the results for the Casimir energies given by Equations (25) and (26)
can be obtained, effectively, by considering a space with topology R

2 × S1, where one of
the dimensions has been compactified into a circle of length d. But, then, what are the new
features here? To answer this question, one should remember that the length d is defined in
terms of the radius a and pitch h of the helix in Figure 1, i.e., d =

√
a2 + h2. This makes it

possible to calculate the Casimir force both along h and a, as shwon in Ref. [18]. In Ref. [18],
it is also shown that the Casimir force in the h direction behaves according to Hooke’s law
in the regime when the parameter ratio, r = h/a, is exceptionally small, i.e., r ≪ 1, whereas
in the opposite regime, r ≫ 1, the Casimir force behaves according to an inverse square law.
The helix-like topology also allows us to apply the results presented here to investigate the
influence of the Casimir energy in an RNA structure of a virus like SARS-CoV-2, as has
been performed in a simplified initial study in Ref. [68].

In what follows, the thermal corrections to the renormalized Casimir energy densities
given by Equations (25) and (26), for the massive and massless cases, respectively, will be
calculated. To do this end, the following results will be considered:

FE
T = −V

m4

2π2

∞

∑
n=1

f2(mnβ), (27)

and

FE
T = −V

π2

90
(kBT)4 (28)

for the massive and massless cases, respectively. Equations (27) and (28) are obtained using
the Euclidean heat kernel (19). Equation (28) corresponds to the massless scalar thermal
(blackbody) radiation contribution [56]. It should be subtracted from the temperature
correction to obtain the classical limit at high temperatures [39,40].

The normalized temperature correction, Fren
T (25), to the Casimir energy density is

obtained with the use of the renormalized heat kernel equation (22).
Then, we arrives at

Fren
T = −V

m4

π2

∞

∑
j=1

∞

∑
n=1

f2

[

mβ(j2 + n2γ2)1/2
]

, (29)

where γ = d/β = kBTd. It is worth calling attention to the feature that the result (29) is
exponentially suppressed at low temperatures, which means that βm ≫ 1, in which case,

Kµ(x) ≃
√

π
2x e−x [66,67]. Thus, the result expressed by Equation (29) is consistent with the

requirement that the temperature corrections must vanish for low temperatures. For high
temperatures, which means βm ≪ 1, we obtain:

Fren
T = −V

2
π2

∞

∑
n=1

∞

∑
j=1

1
(j2β2 + n2d2)2 . (30)

Taking into account the massive case, the renormalized free energy is given by
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Fren
T = −V

m4

2π2

∞

∑
n=1

f2(mnd)− V
m4

π2

∞

∑
j=1

∞

∑
n=1

f2

[

mβ(j2 + n2γ2)
1
2

]

, (31)

where the sum of Equations (25) and (29) was considered. Note that the second term in
Equation (31) is exponentially suppressed, and only the first term contributes [18,54,55].

In the massless case, Equations (26) and (30) can be combined and written as

Fren = −V
π2

90d4 − V
2

π2

∞

∑
n=1

∞

∑
j=1

1
(j2β2 + n2d2)2 . (32)

In this case, the low and high temperatures limit can be analyzed and interesting
results are obtained. Firstly, let us perform the sum in j in Equation (32), to obtain the
high-temperature limit. In what concerns the limit of low temperatures, it is obtained by
performing the sum in n, firstly. Taking these procedures into account, the result obtained
for the high-temperature limit, kBTd ≫ 1, is as follows:

Fren ≃ − kBT

2πd3 ζ3 −
2(kBT)2

d2 e−2πγ. (33)

Note that the second term in Equation (33) is exponentially suppressed, while the first one
corresponds to the classical scenario and dominates in this limit.

In the low-temperature limit, Equation (32) turns into

Fren ≃ − π2

90d4 +
π2

90
(kBT)4 − (kBT)3

2πd
ζ(3)− 2(kBT)3

πd
e
− 2π

kBTd . (34)

Note that the first term corresponds to the Casimir energy at zero temperature and is the
dominant one. In what concerns to the third term, it is exponentially suppressed.

3. Casimir Energy in Weak Static Gravitational Field

When comprehensively examining the Casimir Effect in curved spacetime, special con-
sideration should be given to scenarios involving weak background gravity. This assertion
stems from the anticipation that feasible laboratory conditions for assessing the interaction
between vacuum energy and gravity will likely involve relatively small gravitational effects.
For instance, the Archimedes experiment [69,70] aims to measure the weight of the vacuum
and is expected to occur in such a setting. The initial results of this experiment are eagerly
awaited, as they may offer a means to scrutinize the reality of the vacuum fluctuation energy
and its gravitational behavior further. From a theoretical standpoint, researchers generally
expect the vacuum energy to behave following the principle of equivalence, a fundamental
aspect of general relativity. However, experimental confirmation is still pending.

In this Section, we review the fundamentals of the Casimir effect in curved spacetime
and revisit several works from the literature that delve into the simplest case of a Casimir
apparatus subjected to weak, spherically symmetrical gravity, a suitable approximation for
Earth’s gravitational field. We begin with an elegant and explicit calculation introduced by
Francesco Sorge in Ref. [44], along with similar findings from other sources. Subsequently,
we discuss the corrections proposed by Augusto Lima and colleagues in Ref. [50], leading
to a somewhat surprising prediction of null corrections to the measured “vacuum weight”
at the first relevant order. This contradicts some earlier works that suggest that the Casimir
energy should be affected by gravity like any other form of energy. We then briefly outline
how Sorge resolves this issue in Ref. [71].

3.1. General Method

Firstly, let us review the method for computing the Casimir effect in curved spacetime
highlighting a simplified approach proposed in Ref. [44]. This involves studying the
Casimir effect in the basic scenario of rectangular parallel plates under Dirichlet boundary



Physics 2024, 6 1055

conditions, considering a real massless scalar field within a static weak gravitational field.
The configuration is shown in Figure 2.

R

z

xL{

Figure 2. Diagram illustrating the placement of plates and the observer’s coordinate system.

In a curved spacetime, the action of the scalar field, ϕ, can be written as

S =
∫

d4x
√

g

[

1
2

gµν∂µϕ∂νϕ +
1
2

ϵRϕ2
]

, (35)

and the field equation as
1√
g

∂µ[
√

ggµν∂νϕ] + ϵRϕ = 0, (36)

where gµν is the 4-dimensional metric tensor with a signature (+,−,−,−), the Greek in-
dices take the values 0 (temporal component), 1, 2, and 3 (spatial components), g is the
determinant of gµν, ϵ denotes the vacuum energy, R is the Ricci scalar, and ∂µ ≡ ∂/∂xµ.

In order to get a simple enough expression for the energy density, we consider a static
observer who performs measurements with the four-velocity:

uµ = g−1/2
00 δ

µ
0 , (37)

where δ
µ
ν is the Kronecker delta.

The orthonormal mode solutions obey the scalar product:

⟨ϕn, ϕm⟩ =
∫

Σ

√
gΣnµ[ϕ∗

n∂µϕm − (∂µϕ∗
n)ϕm]dΣ, (38)

where Σ stands for the boundaries, and

⟨(ϕn, k⃗n), (ϕm, k⃗m)⟩ = δ(⃗kn − k⃗m)δnm, (39)

with n and m representing discrete modes, while k⃗ refers to the transverse wave numbers,
and δ(⃗kn − k⃗m) is the Dirac delta function.

The mean vacuum energy is defined as

ϵ̄ =
1

Vp

∫

Σ
d3x

√
gΣuµuν⟨0|Tµν|0⟩, (40)

where Vp is the proper volume of the cavity Vp =
∫

Σ
d3x

√
gΣ and Tµν represents the

stress–momentum–energy of the scalar field. In terms of the field modes, Equation (40) can
be written in terms of the orthonormal mode solutions as [44]

ϵ̄ =
1

Vp
∑
n

∫

d2k
√

gΣ(g00)
−1T00[ϕ

∗
n, ϕn], (41)
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where, T00[ϕ
∗
n, ϕn] represents a bilinear form analogous to the time–time component of the

stress–energy tensor:

T00[ϕ
∗
n, ϕn] = ∂0ϕ∗

n∂0ϕn − g00gµν∂µϕ∗
n∂νϕn. (42)

3.2. Sorge’s Result and Generalizations

The field is governed by the ordinary Klein–Gordon equation; the boundaries are
planes with coordinate separation, L; and field obeys the conditions ϕ(z = 0) = ϕ(z =
L) = 0. The orthonormal solutions are given by

ϕ(x) =
1

2π
√

ωnFL
sin
(nπz

L

)

exp[i(ωnFt − k⊥x⊥)], (43)

where ωnF =
√

k2
⊥ + (nπ/L)2 is the mode frequency (with the ⊥ subscript denoting the

transverse component and the “F” subscript standing for a flat spacetime). Using these
mode solutions in Equations (41) and (42), we obtain:

ϵ̄ =
1

8π2L ∑
n

∫

d2k⊥ωnF. (44)

Employing Schwinger’s proper time representation and zeta function regularization,
we arrive at the renormalized value for the Casimir energy in Minkowski spacetime:

ϵ̄Cas = − π2

1440L4 . (45)

To explore the curved case, we commence with the explicit calculation proposed by
Sorge [44]. The spacetime metric is defined as

ds2 = −(1 + 2Φ(r))dt2 + (1 − 2Φ(r)(dr2 + r2dΩ2)), (46)

where r is the radius-vector, Ω is the space solid angle, Φ(r) = −M/r is the Newtonian
gravitational potential, with M being the mass parameter, in the framework of the weak
field approximation of the Schwarzschild spacetime. In this background, the Casimir
energy is sought in a scenario where two parallel rectangular plates are present. To simplify
the calculations, a Cartesian-like coordinate system is employed between the plates, whose
origin is located at the center of the lower plate, and the z-axis is aligned parallel with the
radial direction (see Figure 2).

Concerning the metric, it is written as

ds2 = −(1 + 2Φ0 + 2Υz)dt2 + (1 − 2Φ0 − 2Υz)(dx2 + dy2 + dz2). (47)

Applying the following coordinate changes: dt → (1 + 2Φ0)
−1dt, d⃗x → (1 −

2Φ0)
−1d⃗x, the metric (47) turns into

ds2 = −(1 + 2Υz)dt2 + (1 − 2Υz)d⃗x
2
, (48)

which reduces to Equation (47) with Φ0 = 0. Therefore, up to order (M/R)2, the relevant
parameter is Υ. Notice that, in the case where there are no crossing terms in the metric, the
Casimir energy for a general constant perturbation measured by the observer, given by
Equation (37), remains unaltered [72]. This is what is expected because this spacetime is
equivalent to the Minkowski one.

The vacuum expected value of the energy–momentum tensor can then be determined
by the standard manner using orthonormal solutions of the Klein–Gordon Equation (36)
and substituting into Equation (41).
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The perturbative calculation is performed, order by order [44], starting with the zeroth
order (flat spacetime) and, in the sequel, to the first order (up to Φ0 in Equation (47)). An
intriguing observation is that, when calculating to the order of Φ0—constant perturbative
terms relative to Minkowski spacetime—it is demonstrated that there is no correction to the
conventional flat spacetime Casimir energy. This stems from the observation that setting
Υ = 0 in Equation (47) results in a flat spacetime with a gauge transformation [44]. Then,
we proceed to the second-order calculation following these steps.

The case Υ = 0 corresponds to the first-order approximation being calculated explicitly,
with a null result [44]. In the sequel, the correction of the second order of the metric (48) is
taken into account. In this case, the field equation turns into

−(1 − 4Υz)∂2
t ϕ +∇2ϕ = 0, (49)

where ∇2 ≡ δij∂i∂j. The solutions are, then, given by

ϕn,k = χn(z)e
iωnt−ik⊥x⊥ , (50)

and asymptotically turn into

χn(u) = Anu−1/4 sin
(

2
3

u3/2 + φ

)

, (51)

where
u(z) = −(z − p/q)q1/3, q = 4Υω2

n, p = ω2
n − k2

⊥, (52)

and ωn = (1 + ΥL)ωnF are the frequencies. In the results obtained in Ref. [44], the
expansion is performed in terms of the solution for the flat case, as follows:

ϕn = ϕ
(0)
n + δϕn. (53)

Using this approach, the energy–momentum tensor and Casimir energy can be written as

T00[ϕ
∗
n, ϕn] = T00[ϕ

(0)∗
n , ϕ

(0)
n ] + {T00[δϕ∗

n, ϕ
(0)
n ] + c.c}, (54)

and ϵ̄ = ϵ̄(0) + δϵ̄. Here, “c.c.” stands for complex conjugate.
Substituting the first term on the right-hand side of Equation (54) into Equation (41)

and subsequently renormalizing, we obtain:

ϵ̄
(0)
ren = −(1 − 2ΥLp)

π2

1440L4
p

. (55)

In the expression (55), Lp =
∫

dz
√

|g33| represents the proper separation distance
between the plates.

Considering the second term, which is analogous to the flat spacetime expression (44),
the calculation is performed by integrating the frequency change of the modes (neglecting
other terms since δϕ itself is of order Υ):

δϵ̄ =
1

8π2L ∑
n

∫

d2k⊥δωn = ΥLp

(

− π2

1440L4
p

)

, (56)

with the following result:

ϵ̄Cas = −(1 − ΥLp)
π2

1440L4
p
= −(1 − ΥL)ϵ̄0, (57)
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with ϵ̄0 being the standard flat spacetime result. Notably, in Ref. [44] it is meticulously
ensured that the result is expressed exclusively in terms of proper quantities, not in the
coordinate ones. This constitutes the original outcome presented in Ref. [44].

Several generalizations to the result (57) have been proposed, such as one in Ref. [73]
where a general weak field metric is suggested by considering distincts Φ and Υ parameters
as follows:

ds2 = −(1 + 2Φ0 + 2Υ0z)dt2 + (1 − 2Φ1 − 2Υ1z)(dx2 + dy2 + dz2). (58)

Taking into account the Neumann boundary conditions, a calculation can be carried
out for both scalar and vector fields. In particular, for a real scalar massless field, the
following result for the proper energy density is obtained:

ϵ̄ = −(1 + Φ0 + Υ0
Lp

2
)ϵ̄0. (59)

This approach can be applied to specific cases, including the far-field limit of Kerr
spacetime (also discussed in Ref. [74]), Fermi spacetime, and the scenario of Horava–Lifshitz
gravity with a cosmological constant. This can be achieved by adjusting the coefficients
Φ and Υ. It is important to note however, that Equation (59) does not seem to recover the
result obtained in Equation (57). Several additional examples involving spacetimes sharing
some similarity with Equation (58) are explored. These include the study of a similar model
for extended theories of gravity [75], the Casimir effect in post-Newtonian gravity with
Lorentz violation [76], and the Casimir effect in quadratic theories of gravity [77].

3.3. Revisiting

Recently, Lima and colleagues [50] have revisited the the problem we consider here
addressed by Sorge in Ref. [44]. Let us first revisit Sorge’s approach [44] to calculate
second-order corrections. The same reasoning that leads to the second-order calculations
can be applied to compute the first-order correction; let us examine the outcome.

Assuming that Φ = Φ0 in Equation (46) and substituting Equation (45) into Equation (42)
and integrating, we obtain

ϵ̄0 =
1

Vp

1
(2π)22L

(1 − 3Φ0)∑
n

∫

d2kω0. (60)

Performing the renormalization and writing the result in terms of LP, we find

ϵ̄0
ren = −(1 − 4Φ0)

π2

1440L4
p

. (61)

The frequencies are ω ≃ (1 + 2Φ0)ω0, so we should have

δϵ̄ = −2Φ0
π2

1440L4
p

. (62)

Adding the contributions given in Equations (61) and (62), a nonzero energy shift is
found. The method falters due to the assumption that δϵ̄ can be computed by substituting
ω0 for δω, as in the flat spacetime case.

Lima and colleagues [50] demonstrated that this is not the case and that the correction
factor is linked to a geometrical term reminiscent of the normalization condition (38). In
what follows, the details are presented.

Let us begin by writing Equation (51) as a perturbative expansion in terms of Υ,
as follows

χ(z) =
1

2π
√

ω0L
sin
(nπz

L

)

+ Υχ(1)(z) +O(M/R)3, (63)
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where χ(1) defines the first order correction. To obtain χ(1), we have to determine An, φ
and ωn. The frequencies are obtained by imposing the periodicity of the solution, namely,
ϕ(0) = ϕ(L) = 0, which gives us

ωn ≃ (1 + ΥL)ω0, where ω0 = [k2 + (nπ/L)2]1/2. (64)

Imposing that χ(z = 0) = 0, the following solution is obtained:

ϕ = −2
3

u3/2(0). (65)

To obtain the coefficients An, let us write Equation (38) by restricting to the hypersur-
face t = 0. Thus, the following normalization condition is obtained:

⟨χ(n, k1), χ(n, k2)⟩ = δ2(k1⊥ − k2⊥)δnm, (66)

and as a consequence,

An =

[

(2π)22ω
∫

V
d3x(1 − 4Υz))Θ2

n]

]−1/2

with Θn = u−1/4 sin
(

2
3

u3/2 + φ

)

. (67)

Now, let us use the results for An, φ and ωn in the expansion of Equation (51) in
powers of Υ, similarly to Equation (63). As a result, we get

χ(1)(z) = [2nπω2
0 L2(L − z)z cos(nπz/L)

+L(2n2π2z + 2k2L2z − k2L3) sin(nπz/L)]/4Ln2π3
√

ω0L. (68)

The solution given by Equation (63), can be used to verify that the Klein–Gordon
equation given by Equation (36), along with the boundary condition and normalization
relation, is satisfied up to order (M/R)2.

Now, we have all the necessary information to write Equation (41). In order to do this,
let us express Equation (42) in terms of χ(z), as

T00[ψ
∗
n, ψn] =

1
2

ω2
nχ2

n +
1
2
(1 + 4Υz)[k2

⊥χ2
n + (∂zχn)

2]. (69)

Thus, the unnormalized vacuum energy density reads

ϵ̄ =
1

Vp

S

8π2L
(1 + ΥL/2)∑

n

∫

d2k⊥ω0, (70)

while the renormalized Casimir energy density is given by

ϵ̄Cas = − π2

1440L4 (1 + 2ΥL) = − π2

1440L4
p
= ϵ̄0. (71)

Therefore, regarding the proper length of the cavity, measured by a static observer, the
mean value of the Casimir energy density is identical to the one obtained in a flat spacetime
case, for a rigid cavity.

Verify if the result (71) has important consequences is challenging. As it is written in
generalized coordinates, this verification should be not straightforward.

To distinguish between physical effects and those arising due to the choice of coordi-
nates. The Casimir energy density appears to be the same as that obtained in the case of flat
spacetime, where there is no imposition of boundary onditions, for instance. Setting aside



Physics 2024, 6 1060

these considerations from a heuristic perspective, it is intriguing that the shift in the field
solution found in this calculation is sufficient to compensate for the geometrical factors.

Furthermore, in Ref. [50], it is demonstrated that the above conclusion also holds for
the case of the more general metric (58). According to the this new result (71), there would
be no correction to the Casimir energy and, consequently, no correction to the force between
the plates, in the presence of weak field gravity. The initial calculation seems to yield a
seemingly controversial result, which might not align with the equivalence principle.

The question of whether or not the vacuum should gravitate by the principle of
equivalence has been explored in earlier papers [78–81]. These papers are dedicated to
the question “How does Casimir energy fall?” and conduct in-depth analyses with a
seemingly general agreement that the buoyancy of the vacuum energy should indeed obey
the equivalence principle. Following this line of reasoning, we conclude that, although the
calculations following from the definition given by Equation (40) have been performed
correctly, the obtained result, given by Equation (71), is not consistent with the equivalence
principle, since to obey this principle in the order of approximation considered, a term of
Newtonian potential energy would be expected, highly suggesting there is a problem with
the initial proposition.

Returning to the earlier discussion, presented in Section 3.2, a new calculation for the
Casimir energy in the presence of weak gravity was conducted in Ref. [31], this time and
using the Schwinger method [82,83], the same result given by Equation (57) was obtained.
With respect to the results expressed by Equation (71), it was also obtained in Ref. [84].

Going deeper, in Ref. [71], Sorge proposes another method of obtaining the vacuum
energy by calculating the quasi-local Tolman mass of the vacuum between the plates.
Additional insight is provided for the meaning (or lack thereof) of expression (41), which
represents a summation of the expectation value for the energy–momentum tensor taken in
the frame of a series of different observers. Since a single observer cannot simultaneously
measure values for the entire region with infinite points, this does not reflect a measurable
experimental result.

Through a detailed formal calculation, the Sorge demonstrates that the total measured
energy for the system at a specific instant in time should be

Et =
∫

Σ
d3x
√

|g|⟨T0
0⟩vac. (72)

When compared to the density definition (41), it becomes apparent that the former is
missing an extra

√

|g00| factor, attributed to a redshift factor between the local observer
and an ideal one at spatial infinity.

It is then demonstrated through a Lagrangian method that the energy attributed to the
Casimir apparatus subjected to a weak gravitational field at a given time t, in the laboratory
frame of a Fermi observer, is

E = −
[

1 + Υ

(

H +
Lp

2

)]

Sp
π2

1400L3
p
=

[

1 + Υ

(

H +
Lp

2

)]

Vp ϵ̄0, (73)

where H is the reference height of the lower plate in the laboratory frame. This implies that
the correction,

δE = Υ

(

H +
Lp

2

)

Vp ϵ̄0, (74)

acts as a gravitational potential energy, where zcm ≡ H + Lp/2 is the vertical coordinate
of the center of mass of the vacuum field, being then in concordance with the principle of
equivalence. Notice that this result is in accordance with the one obtained in Ref. [73] if
one takes H → R. Nazari also proposes a quasi-local stress–tensor formalism in Ref. [85],
although the results differ from those obtained by Sorge [31].
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As it is stressed by Sorge and Nazari, for typical values of the Υ factor on Earth’s
surface, corrections proposed to the Casimir energy due to the planet’s gravitational field
are quite small (approximately 10−22-times the value of the ordinary Casimir interaction),
but the possibilities of measuring these effects have been discussed since Ref. [43]. Those
discussions may be of help to fuel the idealization of the Archimedes experiment [69,70].

In Ref. [86], an instructive analysis is carried out for the problem of a rigid Casimir
cavity radially falling in geodesic motion towards a Schwarzschild event horizon. In this
case, on the comoving observer frame, the horizon gives rise to a non-static background.
It is found that, still in a perturbative approach (although it is outlined that the method
proposed could be a starting point to a nonperturbative one), through the effective action
method, somewhat small corrections to the proper energy density related to vacuum
polarization (static Casimir effect) and the creation of quanta inside the cavity. It is shown
that the energy variations considering both aspects coincide precisely, suggesting the two
contributions might be intrinsically related, although, as already pointed out this is quite
complicated to ensure because of the perturbative first-order nature of the calculations
carried out.

In Ref. [87], several earlier results are generalized in the analysis of a Casimir apparatus
orbiting in a background described by the Kerr spacetime. In paper [87], rather than
calculating the effects due to the variation of the geometry inside the cavity, the metric
components are taken as approximately constant inside the plates, and instead, lower order
(bigger magnitude) corrections due to the nonstatic nature of spacetime are obtained, related
to the loss of azimuthal symmetry in this scenario. Some limiting cases are considered such
as those when the orbit is close to a null path, and thus, the measured energy approaches
zero; this case is also close to the case of the innermost stable circular orbits of extremal
Kerr black holes, as pointed out in Ref. [87]. Another noticeable result of Ref. [87] is that
observers with zero angular momentum relative to the source will detect no disturbance in
the ordinary Casimir interaction.

References [86,87] exemplify even more relevant subjects such as tidal and dynamic
effects on the vacuum state, which may be found considering time-dependent backgrounds
and stronger gravitational effects. Further details of the Casimir effect in gravitational
spacetimes such as Kerr and Schwarzschild ones are forseeing to be uncovered in the
forthcoming years, although more detailed calculations involving variations of the energy–
momentum tensor in small Casimir cavities involving factors such as plate finiteness and
anisotropies in the field solutions may prove to be cumbersome. Likewise, one may also
expect many exciting results to arise from the study of vacuum energy in the context of
other feature-rich objects, such as wormholes.

Different extensions of the elementary particles Standard Model predict the existence
of light massive and massless elementary particles [88,89], which can be exchanged between
atoms of material bodies separated by a given distance implying the appearance of correc-
tions to Newton’s gravitational law of the Yukawa-type as well as the power type [90]. The
deviation from Newtonian gravity is commonly investigated by fixing the constraints on
the parameters of non-Newtonian gravity performed using the experiments of Eötvos and
Cavendish types [90]. One limitation of this kind of experiments is that the strength of the
obtained constraints quickly decreases when the bodies are separated by distances below a
few micrometers. At such distances, the Casimir force [1] becomes dominant as compared
to Newton’s gravitational force. In this case, the investigations concerning non-Newtonian
interactions are of crucial importance as may reveal some insight into how to connect
the two apparently incompatible theoretical pillars of modern physics, namely quantum
mechanics and general relativity. This makes the search for non-Newtonian gravity at
considerably short separations an important scientific problem to be considered, and, in ad-
dition, the measurements of the Casimir force appear as important data that can be used to
obtain stronger constraints on the parameters that measure the deviations from Newtonian
gravity, due to hypothetical interactions predicted in different unification schemes beyond
the Standard Model. During the last two decades, measurements of the Casimir interaction
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were performed using different configurations [91–99], and, as a consequence, there was
a significant improvement concerning the constraints on the Yukawa-type corrections to
Newton’s gravitational law. The present generation of experiments to measure the Casimir
force permits us to impose strong constraints on chameleon cosmological models [100].
Concerning the symmetrons [101], some results were addressed recently [102], even in
a scenario of a hypothetical Casimir experiment. As was shown above, to explain the
deviations from Newton’s law of gravitation at sub-millimeter separations between macro-
scopic bodies, the measure of the Casimir force with high accuracy has a fundamental role,
not only concerning the comprehension of this specific point, but also to clarify on the
questions related to the dark sector and a new physics phenomenology. To improve the
acquisition of data related to this measurements. The Casimir And Non-Newtonian force
EXperiment (CANNEX) is a project to allow for the measurements of the force between
parallel macroscopic plates separated by distances between 3 and 30 micrometers [103,104].
The improvement of the apparatus sensitivity, with the CANNEX, may potentially open a
window to detect several physical phenomena beyond the Standard Model and general
relativity based on the quantum phenomenon termed the Casimir effect.

4. Casimir Wormholes

The distinctive feature of the Casimir energy density lies in its ability to violate energy
conditions, notably attaining negative values for specific configurations. This unique
property turns the Casimir energy density a rare energy source with the potential to facilitate
the existence of traversable wormholes, as discussed in Ref. [105]. These objects are
solutions to Einstein’s equations, akin to hypothetical spacetime tunnels connecting distant
points in the universe. Traversable wormholes typically necessitate the presence of exotic
matter, as outlined in Ref. [106]. However, it is worth noting that certain modified theories of
gravity, as explored in Ref. [107], have offered alternative perspectives on this requirement,
which has proven to be instrumental in the study of such exotic structures [108,109].

The pioneering exploration of the energy–momentum tensor associated with the
Casimir effect as a potential contributor to the building of four-dimensional traversable
wormholes within the framework of general relativity emerged in 2019 through the research
of Remo Garattini [110]. Garattini’s study [110] resulted in the derivation of the following
“Casimir” wormhole solution, characterized by a throat radius denoted as r0. In the form of
a Morris–Thorne solution, one has:

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)/r
+ r2dΩ2, (75)

with the shape function b(r) given by

b(r) =
2r0

3
+

r2
0

3r
, (76)

and the redshift function Φ(r) is

Φ(r) = log
(

3r

3r + r0

)

. (77)

It is worth calling attention to the feature that such a solution obeys the traversability
conditions that should be satisfied by a wormhole, namely:

(i) the flaring-out condition, determined by the minimality of the wormhole throat,
which imposes that (b − b′r)/b2 > 0, where the “prime” means derivative with
respect to r and at the throat, b(r0) = r0;

(ii) the condition to guarantee the existence of wormholes, given by 1 − b/r ≥ 0;
and finally,
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(iii) the condition that there are no horizons, which are identified by the existence of
surfaces with eΦ → 0, so that Φ(r) is finite everywhere [106].

It is worth mentioning that the solution given by Equations (75)–(77) adheres to the
Casimir equation of state (EoS), pr = 3ρ = −3π2/(720r4), where the radial coordinate
replaces the customary separation between plates, hence the denomination “Casimir worm-
holes”. A criticism that can be made to this direct approach is that, to build a complete
wormhole solution using quantum fields, one must simultaneously solve the quantum
field theory and the gravitational equations, thus accounting for the backreaction of the
renormalized stress–energy tensor of the quantum fields beyond the linearized (or pertur-
bative) approximation.

Soon after, the Garattini study [110] was followed by various others in the same line
of investigation, including modified theories [111–118], and expanded to encompass d
spacetime dimensions, as documented in Ref. [119]. Nonetheless, the research of Geová
Alencar, Valdir Bezerra and Celio Muniz [120] has revealed that, within the context of
2+1 dimensions, the Casimir energy density and pressure alone do not have the necessary
attributes to support a wormhole structure. Consequently, it is not feasible to create
what may be referred to as “pure” Casimir wormholes within this reduced dimension, as
elaborated upon in Ref. [120].

Three-Dimensional Casimir–Yang–Mills Wormholes

Motivated by earlier investigations that explored the utilization of quarkonic matter as
a catalyst for wormholes, as referenced in Ref. [121], the pursuit of discovering traversable
Casimir wormholes confined to 2+1 dimensions has been revisited. This re-evaluation
was prompted by adopting a perspective based on the Casimir effect of gluon fields, as
expounded upon in Ref. [53]. This new approach involves considering the potentials
derived from lattice simulations based on first principles within the Yang–Mills theory,
characterizing the interactions between perfect chromoelectric conductors at both short
and long distances, as initially presented in Ref. [122]. In Ref. [122], the lattice calculation
of the Casimir energy for the SU(N) gauge theory was fitted by the following expression:

E
L
= −DimG

ζ(3)
16π

(

R
√

σ
)−ν

R2 e−MCasR, (78)

where DimG is the dimension of the group (Dim(SU(3)) = 3; for the group SU(3), L is the
length of each wire, R is the distance between them, and σ is the tension of the confining
(fundamental) Yang–Mills string at zero temperature). The exponent ν represents an
anomalous dimension of the Casimir potential at short distances and MCas represents the
effective Casimir mass associated with the nonperturbative mass gap at large distances.
The quantities ν and MCas are free parameters that can be controlled to obtain the best
lattice fit. It is worth mentioning that the Casimir energy of the non-interacting case (short
distances) is obtained by performing ν = MCas = 0 in the expression (78) above.

With this motivation, an innovative approach has been introduced in the quest for
a traversable Casimir wormhole solution within lower dimensions in the context of the
vacuum fluctuations of Yang–Mills fields. This approach entails introducing a subtle
perturbation to the EoS, which relates Casimir energy density to the corresponding pressure,
by incorporating a series of functions characterized by inverse power laws relative to
the radial coordinate. This perturbation was taken into account in both the short- and
long-range interactions of the referenced quantum fields, as comprehensively detailed in
Ref. [53], yielding distinct classes of static and circularly symmetric Casimir wormhole
solutions. By averaging such deformation in the EoS, the authors identified that the original
equation of state is maintained, and therefore, it forms a legitimate Casimir source on
average. The energy conditions and stability of these novel solutions were studied in detail.
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In this context of three-dimensional Casimir–Yang–Mills wormholes, we focus on the
long-range interaction case, where a Casimir mass, denoted as MCas, is associated with
gluons. The simplest wormhole solution within the obtained spectrum of solutions can
succinctly be described as follows. In terms of the shape function, we have [53]:

b(r) = r0 + 2κλσ− ν
2 Mν+1

Cas r[Γ(−ν − 1, MCasr)− Γ(−ν − 1, MCasr0)], (79)

where Γ(a, z) is the incomplete gamma function. For the redshift function, we obtain

Φ(r) =
r0

2r
(2 + ν + MCasr0) +

1
2

MCasr0 ln
(

r

r0

)

− r0(ν − MCasr0)

r − r0
ln
(

r

r0

)

. (80)

The metric functions (79) and (80) ensure the asymptotic local flatness and flaring-
out conditions of the wormhole solution. It is interesting to note the nontrivial topology
that emerges from this solution, since asymptotically, it presents a conical singularity
behavior, i.e.,

b(r)

r
≈ −2κλσ− ν

2 MCasΓ(−ν − 1, MCasr0), (81)

which does not happen in the short-distance scenario.
Another interesting aspect of the analysis involves the examination of the solution

stability through the adiabatic sound velocity, vs, within the source, vs, defined as

v2
s (r) =

1
2

[

d(pr + pθ)

dρ

]

=
1
2

[

p′r(r) + p′θ(r)
ρ′(r)

]

. (82)

In the expression (82), pr and pθ represent the radial and lateral pressures, respectively. It
is worth noting that, in contrast to the short-range case, only the long-range interaction
case exhibits stability (vs ≥ 0), and the sound velocity remains less than 1 nearby and on
the wormhole throat, lending physical significance to this solution as can be seen in the
parameter space depicted in Figure 3.
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Figure 3. Parameter space (r0, MCas) nearby the Casimir–Yang–Mills wormhole throat (r ≈ r0) for
the simplest solution of the interacting scenario, pointing out the region in which 0 ≤ v2

s ≤ 1, with
ν = 0.05, λ = 3ζ(3)/(16π). See text for details.
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Energy conditions also were evaluated, and as anticipated, violations were indeed
observed. This finding is in line with the expectations, since it is consistent with the negative
Casimir energy density serving as the primary source for these wormhole solutions.

5. Summary of Results

The generalized zeta function method and the heat kernel expansion were used
to obtain the renormalized free energy for massive and massless scalar fields, at zero
temperature, as well as the thermal corrections, in a closed and analytic form. These studies
were performed in Minkowski spacetime, by imposing on the fields a nontrivial compact
boundary condition. In the massless case, the limits of high and low temperatures were
obtained and discussed.

A discussion was presented about the explicit derivation of the Casimir interaction
from quantum field orthonormal solutions. It emphasizes the problem related to the energy
definition in the equation and its implications, in particular the conclusion of the absence
of sensible corrections to the Casimir force due to gravity. This is a reminder that energy,
as a non-local quantity, presents difficulty with its definition in curved spacetime. It was
shown that this problem is solved with more thorough treatment involving the quasi-local
formalism, and the results were reconciled with the principle of equivalence.

Finally, a traversable wormhole solution was obtained by considering the Casimir
energy associated with the quantum vacuum fluctuations of the Yang–Mills field in a
three-dimensional spacetime, as a source of the gravitating body.

Quantum fields, as exemplified in this study, are confined to a bounded domain with
nontrivial compact boundary conditions. These fields experience influences due to the
bounded nature of the space and the imposed boundary conditions. Additionally, when a
finite temperature is considered, it also impacts the Casimir effect, as expected.

Concerning the Casimir energy of a scalar field placed in a weak gravitational field,
between two parallel plates, the obtained result tells us that this energy depends exclusively
on the proper values of the quantities involved in the energy expression.

Finally, the wormhole solution sourced by a Casimir energy of Yang–Mills origin was
considered. It was shown that the energy conditions are violated, as expected. Another
point analyzed concerns the stability of the solution, which is present only in the long-range
interaction regime. In this regime, an asymptotic conical singularity also occurs.

6. Conclusions and Discussion

Let us summarize the findings of this study.
First, we have obtained the Casimir energy density with thermal corrections for a

quantum scalar field, with and without mass, in a (3+1)-dimensional Euclidean spacetime,
under the restriction that the field obeys a nontrivial compact boundary condition. To
find this result, we used the generalized zeta function method and the renormalized heat
kernel expansion given by Equation (22), which can be written as the sum of the n = 0
term, corresponding to the Euclidean contribution, given by Equation (19). When using the
Euclidean heat kernel to obtain the free energy at zero temperature, we faced a problem,
namely the appearance of a divergence term. This problem is solved by appropriately
subtracting this divergence. Concerning the thermal corrections, in the massive case, the
Euclidean heat kernel gives a finite contribution, while for the massless case, a blackbody
radiation contribution is obtained, as shown in Equation (27)). Even being finite, these
contributions should also be subtracted, to obtain the correct classical limit at high tem-
perature, for the massless scalar field. The renormalization approach used to calculate the
vacuum energy at zero temperature and nonzero temperatures gives us exact and analytic
results for the renormalized free energy (31) and (32) for both cases, namely massive and
massless, respectively.
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In the particular case of the massless field, it was shown that the free energy density (32)
has asymptotic behaviors, concerning the temperature, which permits us to write down
the free energy density in a relatively simple and appropriate form to analyze the high-
temperature and low-temperature limits. Performing the sum concerning j, the high-
temperature limit is obtained as in Equation (33), and the correct classical limit is confirmed,
as one would expect. On the other hand, when the sum is firstly performed over n in
Equation (32), the low-temperature limit is achieved, as shown in Equation (34).

As a final observation related to this topic on the influence of nontrivial compact
boundary conditions, as well as of the finite temperature, the results obtained show explic-
itly the changes in the physical observables due to the nontrivial condition imposed on the
quantum scalar fields, for both cases, massive and massless, as well as the changes due to
the finite-temperature effect, expressed by the thermal correction.

In Section 3, in the second part of this paper, we briefly discussed the explicit derivation
of the Casimir interaction from quantum field orthonormal solutions in a weak gravita-
tional field. However, as demonstrated, an issue arises due to the energy definition in
Equation (41), leading to the conclusion that meaningful corrections to the Casimir force
caused by gravity are absent. This highlights the challenge of obtaining total energies, which
are non-local quantities in curved spacetime. A more comprehensive treatment involving
quasi-local formalism reconciles the results with the equivalence principle. Although it is
predicted that vacuum energy should gravitate like any other form of energy, experimental
confirmation is still pending. Therefore, the results of the Archimedes experiment are
eagerly awaited as they are believed to bring breakthrough measurements.

The Casimir energy’s capacity to violate energy conditions has moved researchers
to explore its potential in forming traversable wormholes, which connect distant regions
or universes. Garattini’s paper introduced the concept of Casimir wormholes [110], but
integrating quantum field theory and gravity to form complete solutions consistently is still
a challenge. Studies exploring modified theories and higher dimensions have demonstrated
that Casimir energy does not provide support for wormholes in 2+1 dimensions. However,
as we have shown, a recent investigation into the Casimir effects associated with Yang–Mills
fields ([53]) uncovered various feasible classes of three-dimensional traversable Casimir
wormholes by introducing perturbations to the linear equation of state. While energy
condition violations were observed, stable solutions emerged in the long-range interaction
scenario hinting at potential physical validity. In addition, an asymptotic conical singularity-
like behavior emerged due to the intricate interplay between the strong Yang–Mills field
dynamics and the spacetime geometry. The study aimed to enhance the comprehension of
the relationship between the Casimir energy and the emergence of spacetime structures
including those with nontrivial topologies.

Thus, we reviewed three theoretical scenarios that have been approached in recent
years. The one scenario considered was one related to thermal corrections of the Casimir
effect considering the influence of helix boundary conditions dictated by the topology. In
the other case, the influence of a weak gravitational field on a Casimir apparatus formed
by two parallel plates placed in a vacuum with this field was considered. Finally, a three-
dimensional configuration corresponding to a non-Abelian field as a source to shape a
static and circularly symmetric traversable wormhole was considered where the Casimir
effect is present.

There are several directions research connected with the Casimir effect. For example,
those concerning the interaction between two mirrors mediated by massive fermion fields,
such as quarks or neutrinos, and the effect of the topology, among many others. However,
despite the intensive researches in the field over the last seventy-five years, quite a number
of problems stay unsolved up to nowadays. Thus, after seventy-five years, scientists will
have several mysteries to discover and applications to find, certainly, related to the Casimir
effect, a pure quantum manifestation of zero-point energy.
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