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Abstract

The Chiral and U(1)4 Symmetries of
the QCD Phase Transition
using Chiral Lattice Fermions

Zhongjie Lin

With regard to the nature of the finite-temperature QCD phase transition and the fate
of the chiral and anomalous axial symmetries associated with it, we present in this thesis
two parallel sets of investigations into the QQCD phase transition region between 139 and
195 MeV. Both studies adopt the Iwasaki gauge action augmented with the dislocation
suppression determinant ratio with 2+1 flavors of chiral fermions. This choice of lattice
action accurately reproduces the SU(2), x SU(2)g and U(1) 4 symmtries of the continuum.

The first study simulates QCD thermodynamics on a line of constant physics that rep-
resents 200 MeV pions and physical kaons using domain wall fermions (DWF) at three
space-time volumes: 163 x 8, 243 x 8, and 323 x 8, where the largest volume varies in linear
size between 5.6 fm (at 7' =139 MeV) and 4.0 fm (at 7' = 195 MeV). The chiral condensates,
connected and disconnected susceptibilities and the Dirac eigenvalue spectrum are reported
and compared between different volumes as well as with the staggered results. We find a
pseudo-critical temperature, T,, of approximately 165 MeV and strong finite volume depen-
dence below T,. Clear evidence is seen for U(1)4 symmetry breaking above T, which is
quantitatively explained by the measured density of near-zero modes in accordance with the
dilute instanton gas approximation.

The second study targets on a line of constant physics with pions of physical mass, which
is the very first study using a chiral lattice fermion formulaation. We continue to use the
basic setup from the m, » 200 MeV simulations, except that we use a generalized form of

domain wall fermions, known as the Mobius fermions, to further reduce the residual chiral



symmetry breaking present in the domain wall formulation with finite extent in the fifth
dimension. Preliminary results including the chiral condensates and the susceptibilities are
reported for two space-time volumes of 323 x 8 and 643 x 8. We observe a dramatic increase
in the disconnected susceptibilities and a shift in the pseudo-critical temperature from 165

MeV to about 154 MeV, when the pion mass is decreased from 200 MeV to 135 MeV.
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Chapter 1

Introduction

1.1 Standard Model

The Standard Model of particle physics [6] represents humans’ current best understanding
for the fundamental building blocks of matter and their interactions. Finally established in
1970s, the Standard Model is the consummation of a series of continuing endeavors ever
since the beginning of the twentieth century, when the study of subatomic physics started
to flourish with both theoretical and experimental approaches.

The Standard Model has successfully predicted and withstood numerous experimental
tests: the discovery of W/Z bosons [7, 8], the discovery of the top quark [9, 10], and the
discovery of the Higgs boson, a long missing piece for the Standard Model [11, 12], just to
name a few.

The Standard Model incorporates three of the four most fundamental forces in nature
(gravitational interaction excluded) into a SU(3) x SU(2) x U(1) gauge theory. The electro-
weak SU(2) x U(1) sector unifies the weak interaction and the electromagnetic interaction,
whereas the remaining SU(3) sector describes the strong interaction.

The abelian U(1) Quantum Electrodynamics (QED) was formulated as a first success of



the application of quantum field theory in the 1940s by Feynman, Schwinger and Tomonaga.
Later in the 1950’s, an enormous population of new subatomic particles was discovered with
the assistance of a new generation of particle accelerators. Weak and strong interactions
were first introduced in the 1950’s [13] to distinguish a class of elementary particles known
as “leptons”, which only participate in the weak interactions usually associated with particle
decays. The other class of particles, the “hadrons”, participate in both types of interactions.

In the following decade, the weak interaction was first successfully decoded by Glashow,
Salam, and Weinberg [14, 15, 16] and unified with the electromagnetic interaction via sponta-
neous symmetry breaking and the Higgs mechanism. For the understanding of the remaining
strong force, the first crucial breakthrough came when the “eight-fold-way” was proposed and
developed by Gell-Mann and independently by Zweig [17, 18, 19, 20] in a effort to categorize
the seemingly erratic “particle zoo”. The “eight-fold-way” introduced a new intrinsic degree
of freedom within the hadrons, a new type of particle named “quarks” by Gell-Mann. The
later discovery of the Q- [21] provided strong evidence in favor of the existence of quarks.
However, the quark model also faced several challenges, for instance, the futile search for
an isolated free quark and the seemingly violation of Pauli exclusion principle for some of
the baryons. It was not until 1973, that the quark model finally triumphed, when Polizer,
Gross and Wilczek independently studied on SU(3) non-abelian gauge theory of the strong
interaction and proved that it is asymptotically free [22, 23]. A unit of any one of the three,
so-called color charges is assigned to each individual quark. Therefore the gauge theory that
describes the strong interaction is named Quantum Chromodynamics (QCD).

In the Standard Model, QCD consists of three generations of quarks that come in pairs:
“up” and “down”, “strange” and “charm”; “bottom” and “top”, with eight gluons which serve
as the mediators for the strong interactions. QCD displays at least two intriguing phases. At
long distances or low energy, the quarks are strongly coupled and they are confined within

the hadrons. At short distances or high temperature, quarks become unbound and only



weakly interacting, which has been observed in the experiments [24]. Between these two
phases, QCD is expected to undergo a phase transition.

The QCD phase transition, separating the low-temperature phase in which the (approx-
imate) SU(2)r x SU(2)r symmetry of QCD with two light flavors is broken by the vacuum
and the high-temperature phase in which this symmetry is restored, has been the subject of
active experimental and theoretical study for more than 30 years. The present expectation
is that this is a second-order transition belonging to the O(4) universality class when the
up and down quark masses are zero [25] and a possibly rapid cross-over for the non-zero,
physical light quark mass.

While in the asymptotically free phase, QCD can be studied using perturbation the-
ory, currently there are no known analytical solutions for the hadronic non-perturbative
regime. Fortunately, constructed from the Feynman path integral approach, the lattice reg-
ularization for QCD introduced by Wilson in 1974 [26] provides a brand new tool to tackle
non-perturbative QCD numerically with assistance from computers. After 30 years of devel-
opment and evolution of the discretization schemes for both the bosonic and fermionic fields
as well as significant improvements in the algorithms and numerical methods, lattice QCD
now stands as the standard ab initio approach to study many phenomena associated with
the strong interaction.

Ever since its inception, the lattice formulation of QCD has been applied to investigate the
QCD phase transition. For instance, a phase transition was observed with pure SU(2) gauge
theory on the lattice [27, 28]. In recent years, the QCD phase transition has been extensively
studied using the staggered formulation [29, 30] of lattice fermions, c.f. [31, 5]. However,
calculations employing chiral fermions are more difficult and less frequent [32, 33, 34, 35, 36].
In contrast to the staggered formulation in which finite lattice spacing effects explicitly break
the anomalous U(1)4 symmetry and all but one of the six SU(2); x SU(2)g symmetry

directions, variants of the chiral fermion formulation accurately reproduce these symmetries.



At low temperatures one finds three degenerate light pions and the U(1)4 current obeys
an anomalous conservation law identical to that in the continuum up to small, controlled
residual chiral symmetry breaking effects.

In this work, we study the temperature region 139 MeV < T < 195 MeV using chiral,
domain wall fermions (DWF) [37, 38] and Mébius domain wall fermions (MDWF) [39, 40]
with a lattice volume having a fixed time extent of 8 in lattice units and a variety of spatial
volume: 163, 243, 323 or 642. The temperature is varied by varying the inverse gauge coupling
B between 1.633 and 1.829 using the Iwasaki gauge action combined with a dislocation
suppressing determinant ratio (DSDR) [41, 42, 43, 44] to reduce the effects of residual chiral
symmetry breaking at these relatively strong couplings. The strange quark mass is set to its
physical value while the light quark mass is tuned carefully so that the pion mass is held fixed
at either a heavier-than-physical 200 MeV value or right around the physical 135 MeV value.
The latter is the first investigation of QCD thermodynamics with chiral lattice fermions at

physical value for the light quark mass.

1.2 Organization of Thesis

This thesis summarizes works published in Refs. [35, 45, 46], for which I am one of the
major contributors. Many discussions presented in this report are excerpted from these
references and most of the citations to them are implicit.

This thesis is organized as follows. In Chapter 2, we describe the QCD lagrangian in
the continuum and then introduce several proposals to discretize the gauge fields and the
fermion fields. We focus on the domain wall fermion formulation, which is used extensively
in our finite-temperature studies, and discuss several methods that can further suppress
the residual chiral symmetry breaking, including the Mobius fermion formulation and the
dislocation suppression determinant ratio and etc..

In Chapter 3, we give a brief introduction to the exploration for the QCD deconfinement



phase transition and the chiral phase transition in the heavy-ion collision experiments as
well as in theory.

In Chapter 4, we describe how we determine the line of constant physics and the corre-
sponding lattice parameters that are used in our simulations. The residual mass plays an
important role in the setup procedure, therefore we present a detailed numerical study for
the residual mass with both domain wall fermions and the Mo6bius fermions.

Chapter 5 reports the results from lattices with a variety of volumes and quark masses
for the chiral observables, e.g. the chiral condensates, connected and disconnected suscepti-
bilities, as probes of the symmetries associated with QCD phase transition.

Chapter 6 is a self-contained discussion for the eigenvalue spectrum of the DWF Dirac
operator. The low-lying part of the spectrum provides an important alternative perspective
for resolving the fate of SU(2) x SU(2)r and U(1) 4 symmetries associated with the QCD
phase transition. Results from 163 x 8 and 323 x 8 lattice space-time volume with 200 MeV
pions are presented and compared.

Chapter 7 concludes the thesis and gives a brief future outlook.

Finally, Appendix A gives a detailed description for the multiple streams within each

ensemble.



Chapter 2

Quantum Chromodynamics and its

Lattice Formulations

In this chapter, we start with a brief introduction to the action of Quantum Chromody-
namics in the continuum. It is then followed by a discussion of how the QCD action shall
be constructed appropriately on a lattice. Several discretization schemes of both the gauge
and the fermion fields are presented. In the later part of this chapter, we discuss several
methods that are utilized to improve the residual chiral symmetry breaking of the domain
wall fermion formulation.

It should be noted that when we start to describe the QCD theory on a lattice, it is
implicitly assumed that we adopt the Euclidean space instead of the Minkowski space as one
usually do for the continuum field theory. These two can be connected by a Wick rotation,

the details of which can be found in many field theory textbooks, e.g. [47].

2.1 Continuum QCD

Quantum Chromodynamics (QQCD) is the current best description for strong interactions.

Formally speaking, it is a non-abelian SU(3) gauge theory, consisting of six flavors of fermions



(quarks) which carry color charges and eight types of bosons (gluons) which mediate the

strong interaction. The QCD Lagrangian is given by,

Loecp = Lrp+La (2.1)
Lp(z) = . dZ bt@f(fff)(lD—mf)Qf(fE) (2.2)
Lalr) =~ Fo()F(x). (23)

Here q(x) and A%(x) are quark fields and gluon fields respectively. The covariant derivative

D and the field strength F%, () are defined as:

D = iy ((9# - gAZ%) (2.4)
Fo, = 9,AUx) - 0,A%(x) - g f*AD (x) A5 (). (2.5)

And X\ (a=1,2,...,8) are the generators of SU(3) symmetry group, which are also known

as the Gell-Mann Matrices. They satisfy the following relations

Tr()\a)\b)

[)‘aa )\b]

264 (2.6)

i fape e (2.7)

fabe that appears both in (2.5) and (2.6) are the structure constants for SU(3).

2.2 Gauge Actions on a Lattice

As pointed out in the previous introductory section, QCD is characterized by a local
non-abelian symmetry group SU(3). Recall that in the continuum theory, in order to find
the action of the gauge fields, we first start with a free fermion action and then introduce a
local gauge transformation to the fermionic fields:

U(x) — dP@Ny(r)
P(x) — Pa)e " @X

!To avoid potential confusion with lattice spacing, we avoid to use a as indices for the gauge fields and

(2.8)

etc. in the following introduction.



Meanwhile, the resulting gauge fields should transform covariantly as,

1
Al — A7 - Ea’ﬁb — frelge Al (2.9)

”w

Then one can prove that the fermionic part of the QCD action 2.2 is manifestly invariant
under such gauge transformations.

However, when we start to discretize the theory on the lattice, we have to replace the
partial derivatives with the finite differences. Hence rigorously speaking, the lattice action
inevitably becomes non-local. Therefore, to ensure a manifest gauge invariance for the lattice

action, we should at least find a way to make the following two-point function gauge invariant,
Pl + fia) — P(a)e @0 @By 0+ ), (2.10)

where i = 1,2,3,4 are unit vectors that point in one of the four possible directions on the

lattice. Fortunately, the Schwinger line integral comes to the rescue,
Uz,y) = o) deutl(2)” (2.11)

It compensates for the difference between the transformation factors associated with two
neighboring sites. It can be readily proved that the sandwiched term v (z)U(z, z + fia)(z +
fia) is gauge invariant with transformation (2.8) and (2.9). When lattice spacing a is small,

the line integral reduces to
Uu(z) = U(z, 2 + jia) = exp (iga Al (z)t"), (2.12)

Now the discretized gauge fields are represented by SU(3) matrices that reside on the links
between the adjacent lattice sites.

With this discretization formulation (2.12), any path ordered product of gauge links that
compose a closed loop on the lattice is manifestly gauge-invariant. The simplest example of

such loop, the elementary 1 x 1 square, is referred as the plaquette,

P, (z) = Uu(x)U,,(:v+ﬂa)Ug(:v+ﬁa)UJ(m), JTES (2.13)



And the renowned Wilson gauge action [26] is expressed in terms of these plaquettes:

Silson _ g Y ReTr(1-Po(x), f=—o (2.14)

2
T uEY g

It can be shown that in the continuum limit, the Wilson gauge action reproduces the
kinetic term of the gauge fields of the QCD action and the leading discretization errors of
the Wilson gauge action are of order O(a?).

It has been found in several studies [48, 49] that lattice calculations with the Wilson gauge
action deviate appreciably from the continuum theory. The Wilson action is by no means the
unique discretization scheme for the QCD gauge action. In fact, any gauge-invariant path
ordered loop can be added to the action, so long as it converges to the correct continuum
action when the limit @ — 0 is taken. A possible choice is the next simplest loop, a planar

1 x 2 rectangular term R, (),
Ry () = Uy (2)U(x + fa)U, (z + 2faa) Ul (x + fra + Da) Ul (x + Da) Ul (z), p#v. (2.15)
Then the gauge action becomes:

Spneroved B > ReTr(1-coPu(z) - c1Ru(2)). (2.16)

T uFV

The constraint that cy + 8¢; = 1 should be imposed to ensure a correct continuum limit.
There are two popular choices of the pair of ¢; and ¢y, Iwasaki (¢; = —0.331)[50] and DBW2
(cp = -1.4069)[51] actions. The Iwasaki gauge action, which has been proved to display
better chiral behavior[52] when coupled with the domain wall fermion action, is adopted

through all of our studies on QQCD thermodynamics.

2.3 Fermion Actions on a Lattice

2.3.1 Failure of Naive Lattice Fermions

As mentioned in previous section, the most straightforward method to discretize the

fermionic part of the QCD action in Euclidean space is simply to replace the derivatives by
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finite differences

1
a,u — % (5:0+/la,x’ - 596—/111»96’) : (2'17)

Such a symmetric difference guarantees a Hermitian Hamiltonian. The resulting discretized

action then takes the following form

Sy = 3 p(x) (é 5 Cibeiny = e o) + ma) V(). (218)
Yy H

If we use a hypercube of extent /N in all direction and calculate the fermion propagator

— 1 — — Naive
(w0) = 5 [ (i ) vwime s 2.19
in the momentum space, it becomes a integral within the first Brillouin zone:

eP@=y) (2.20)

Ly it S e
(v(@)d(y)) = lim B (2m)* L ¥, sin® (pua) + m?

where the continuum limit is taken as a approaches 0 while N goes to infinity and the
total extent in each direction is kept fixed. This solution, however, arrives at an incorrect
continuum limit, which is known as the notorious fermion doubling problem.

When the continuum limit is taken, the propagator in (2.20) receives a “proper” contri-
bution from the origin (p, ~ 0), which equals the correct continuum theory result. However,
it also receives “improper” contributions from the corners of the Brillouin zone (p, » +7/a).
Thus in total, this naive fermion action will produce 16 degenerate fermions instead of the
one that we are looking for.

Unfortunately, the fermion doubling problem cannot be cured in a lattice theory that
respects the usual hermiticity, locality, translational invariance as well as the chiral symmetry
with vanishing quark masses at the same time [53]. Despite this, many efforts and talents
have been devoted to remedy the fermion doubling problem. And in the following two
subsections, we are going to introduce some of these ingenious methods which are closely

related to our QCD finite temperature studies.
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2.3.2 The Wilson Fermions

Bearing in mind that the continuum limit is achieved in the limit a — 0, one would
recognize that actions that only differ by terms which will vanish in the continuum limit
will eventually converge to the same continuum behavior. With this guideline, Wilson [54]
introduced a massive second derivative term into the naive fermion action

. — . 1 e—
St = 2 (@) Dw (w,y)v(y) = Sp™° - 5 ) d(w) o (x) (2.21)
Ty T
where O is the four-dimensional Laplacean operator and Dy, (z,y), the Wilson Dirac operator

is given by

1
Dy (z,y) = (4+m)dg, - ) Z (1 =)0+ iay + (1 +7)0-sia) (2.22)
i

Thus the free fermion propagator in the momentum space can be computed as

(6T) =iy [ 2 o o () £ 1p),

ip(z—y) 2.93
~0Jp (2m)* & ¥, sin® (pua) + m(p)? ’ (2.23)

where

2
m(p) =m+= Y sin? 242, (2.24)
a g 2

For any fixed p,, m(p) reduces to m when a - 0. In other words, the effects of the extra
mass term in the Wilson fermion action vanish in the continuum limit as desired. On the
other hand, at the corners of the first Brillouin zone where p, » 7/a, the m(p) term diverges
in the continuum limit as

1

2
=5 sin? 2% o 2 (2.25)
a‘; 2 a

Furthermore, the m(p) term still contributes the necessary correct piece around the origin
pu ~ 0. Therefore, the Wilson fermion formalism successfully eliminates the 15 extra doublers
in the continuum limit.

However, the benefit of absence of doublers comes with a significant expense, the explicit

breaking of chiral symmetry. This can be easily verified once we take a look at the interacting
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Wilson Dirac operator by coupling the free fermion fields with the lattice gauge links in a
straightforward manner,

Du (2, 3:0) = (44 m)iay = 2 (L= 3 U)oy + (14 UM = )5py) 2 (2:26)

o

Under the axial gauge transformation

U(a) — @y (z)

2.27
) = Pa)erst -

the Wilson mass term fails to preserve the chiral symmetry since it commutes rather than
anti-commutes with 5. The order of the chiral symmetry breaking due to the Wilson mass
term is in general O(1).

We can investigate the effects of this chiral symmetry breaking by looking at the Ward
identity associated with the axial current using the Wilson fermion action. Varying the
fermion path integral with the infinitesimal axial gauge transformation (2.27), we would

obtain the axial current and its divergence in the following form:

Au(ﬂf)

SH@ s U ()0 + 1) + 30+ st UL )o) (229
24+ m) ()5t (2)

—% > (@)t Uy () (x + i) = % S (@)t Ul (- p)wo(e — 1) (2.29)

ApAu(z)

S S0 - U = () - 5 Y0+ st UL )(),

where the lattice version of the divergence operator is defined as the left-associated finite
differences A, f(x) = f(z) - f(x - f1).

As can be read from Eqs. (2.29), apart from the counterpart to the continuum term
2mapystarp, some O(1) terms emerge as a consequence of the Wilson fermion formalism. One
way to handle the effects of this term is to simply absorb them into the mass term. This

yields O(1) additive renormalization of the fermion mass. Thus in practical calculations, the

2From now on, we will suppress the lattice spacing a in the expressions unless necessary.
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input quark mass term must be fine-tuned so that the physical quark mass is in line with
the designated value.

Wilson fermion formalism is very straightforward in both the physical sense and in real
implementation. However, with Wilson fermions, one has to take the continuum limit si-
multaneously with the chiral limit where extreme care needs to be taken and interpretation
of the results of finite lattice spacing can be be quite difficult. Thus the explicit breaking of
the chiral symmetry makes the Wilson fermion formalism much less attractive when we are
studying questions such as the spontaneous chiral symmetry breaking, which is at the heart

of the study on the QCD thermodynamics.

2.3.3 The Domain Wall Fermions

To cure the significant explicit breaking of the chiral symmetry while still taking ad-
vantage of its simple physical interpretation, Kaplan proposed a new variant of the Wil-
son lattice fermion discretization scheme which was later referred as domain wall fermions
(DWF) [37, 38].

The DWF formulation successfully solves the fermion doubling problem while keeping chi-
ral symmetry breaking at a controllable minimum level. This is accomplished by introducing
an auxiliary fifth dimension to the action, which is commonly referred as the s-direction to
be distinguished to the space-time directions z,y,2z and t. The DWF action assumes the

following form

SPWE = Z (z,8)Dpwr(z, 52", 8" (2", s"), (2.30)

! ol
z,s;x’,5

where the domain wall Dirac operator is defined as (0 <'s,s" < Lg—1):
Dpwr(x,s;2",8") = (0p0 + Dw(2,2"))0s,s —m(s)Préssr1 —m(s+1)Prdsg_1. (2.31)

Here Dy (x,x") is the usual Wilson Dirac operator (2.22) with a special mass Ms, which is

defined as the domain wall height. Pj, = 3(1-~5) and Pg = 3(1+73) are projection operators.
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And m(s) is defined as follows

1 s=1,2,---,Ls—1
m(s) = : (2.32)
—my 5s=0

where L, is the extent of the fifth dimension.

As one can observe from the definitions above, DWF can be regarded as a stack of L,
copies of Wilson fermions, which share the same gauge fields. And the s-direction is coupled
by a non-trivial mass matrix m(s). Therefore, superficially DWF still has Ly doublers. How-
ever, L;—1 flavors of these fermions are extremely-heavy (at the order of the UV cutoff) and
can be cancelled with a proper Pauli-Villars subtraction, which corresponds to an additional
term in the action [55]

Spy = Z o' (, s)Dpwr[mys = 1](x,s;2',s")p(2',s"). (2.33)

The surviving physical fermions are represented by a pair of coupled left- and right-
handed Weyl fermions localized on the two ends (walls) of the s-direction. These couple
strongly to the four-dimensional quark fields ¢ and ¢ constructed from the five-dimensional

(5-d) DWF fields 1 and ¥

a(@) = Pu(a,0)+ Path(a, L, - 1) (2.34)

()

(2, Ly~ 1) Py +(x,0) Pg. (2.35)

Starting with the following 5-d current associated with the global U(3) flavor transfor-

mation, we can investigate the conservation of the physical 4-d currents for DWF [38]:

Jp(@,8) = 0@+ f1, ) PRUL ()" (2, 5) = ¥(, ) PLUL ()"0 (@ + i, 5). (2.36)
The definition of the resulting conserved 4-d vector current is unique:

Vi(z) = Szojg(x,s), AV () =0, (2.37)
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The 4-d axial current tolerates a certain arbitrariness, as long as the transformation assigns
opposite signs to left- and right-handed Weyl fermions. We would like to choose one of the

symmetric definitions given as:

Al (x) = L:Z:(:)l sgn (s - L52— 1)j2(x, s). (2.38)

Then we will arrive at the partially-conserved azial current (PCAC) for DWF [38]:

AAL(z) = 2mypJi(x) +2J8 () (2.39)
A {A(2)O()) = 2my (B(2)O()) +2(J5,(2)O(y)) +i{3"O(y)),  (2.40)

where
Jo(2) = —(x, Ly = 1) Ppt®y(x,0) + ¢ (x,0) Pt®y(x, Ly — 1) = q(z)y5t°q(x) (2.41)

is the pseudoscarlar density and
Jb(z) = =¥ (x, Ls[2 = 1) Prtbep(x, Ly [2) + (x, Ly/2) Prt®y(x, Ls[2 - 1) (2.42)

is the midpoint term.

The first term on the right-hand side of the divergence of the PCAC (2.39) is the same
contribution from the bare input quark mass as in the continuum theory. It was also shown
in [38] that for operators O(x) composed of only quark fields ¢(z) and g(x), the second term
involving J5,(x) vanishes in the limit of Ly - oo for flavor non-singlet currents. For flavor
singlet axial current, it generates the correct axial anomaly.

When Lj is finite, the midpoint contribution term symbolizes the residual chiral symmetry
breaking that is unique to the DWF formulation. It is the remnant of the mixing of modes
across the fifth dimension, when L, is finite. And its leading contribution is equivalent to an
additive renormalization to the bare quark mass, which is known as the residual mass m s,
i.e.

J5 (@) & meesq ()5t q (), (2.43)
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so the total effective quark mass becomes
M = Minput + Mies- (2.44)

At fixed bare coupling, the dependence of m,.s on the extent of the fifth direction L, can

be parameterized as [52]:

e~ Aels

1
Myes = ClpH(AC) + C2pH(O)L_7 (245)

S S

where py(\) represents the density of eigenmodes of the effective 4-d Hamiltonian #H =
—log(T), where T is the DWF transfer matrix in the fifth direction that controls the mixing
of chiral modes between the 4-d boundaries. The 4-d Hamiltonian, H is closely related to
the Hermitian Wilson operator, Hyy = 75Dy (~Ms), via H = 2tanh™ (Hy /(2 + Dw)), and
it has been shown that the zero modes of H and Hy, coincide [38].

The first term in Eq. (2.45) represents contributions from eigenmodes with eigenvalues
A greater than the mobility edge, A\.. These modes have extended 4-d support and their
contributions to m.e are exponentially suppressed with L,. The coefficient of the first term
is in proportion to the eigenvalue density near the mobility edge.

The second term in Eq. (2.45) corresponds to contributions from the near-zero eigen-
modes of the 4-d Hamiltonian, i.e. eigenmodes where the 5-d transfer matrix 7 is near
unity, thus allowing nearly unsuppressed mixing of the domain walls in the fifth direction.
Its coefficient scales with the eigenvalue density near the origin.

In the Ly - oo limit, the mixing of domain walls is absent for both the extended and the
local modes, so both contributions vanish and the chiral limit is restored. As a consequence,
the chiral limit and the continuum limit commute and the DWF formalism successfully
limits the residual chiral symmetry breaking to a controllable minimum. Ambiguity in
measurements with Wilson fermions for quantities that are sensitive to chiral symmetry
breaking can now be resolved in a systematic manner with DWF.

In practice, even though the residual chiral symmetry breaking of DWF is already at a

very low level, it is often not sufficiently small when simulating QCD with physical or slightly
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heavier than physical pions. This is of particular importance in QCD thermodynamics since
the simulations are based on coarse lattices with strong couplings, where the density pg(0)
in (2.45) above can be large.

As the total bare quark mass M is composed of the input quark mass M,y and the
residual mass m,.s, there are several possible choices for us to achieve our target small value

of m.

1. Use a negative input quark mass. This is the most simple-minded way to reduce the
total quark mass and is commonly adopted in the Wilson fermion scheme. This method
has the benefits that it does not involving any new schemes or implementations and
it will not increase the computational cost. However, it has the potential to produce
a singularity in the Dirac operator in a dynamical evolution. The conjugate gradient
inversion will fail to converge at when such singularity is present. Although it is not well
defined for each individual configuration, the residual mass provides a “safe cushion”
for the appearance of this singularity when the negative input quark mass is not too
large in magnitude. According to our calculations, if the magnitude of the negative
input quark mass is around or below one-third of the magnitude of the corresponding
residual mass, the evolution is free of these undesired singularities (at least for all our
evolutions with more than 10000 trajectories in total). With the same beta value and
the same total quark mass, ensembles with either negative or positive input quark mass
have been demonstrated to give the same physical results, which will be discussed in

Chap. 4, 5 and 6.

2. Increase the extent of the fifth dimension L, which is in general a multiplicative factor
to the computational expense. In practice, the typical value of L, is between 16 and
32, which results in a computational cost one order of magnitude more expensive than
a similar simulation with Wilson fermions. With larger L, the 1/L; component of

the residual mass will dominate. Thus, it becomes very inefficient to reduce myes by
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increasing L, and the computational cost of a calculation with reasonable results and
errors will soar to a formidable level. An attempt with Ly = 96 DWF for the QCD

thermodynamics can be found in [35].

3. Mébius fermions [39, 40]. This is a generalized version of DWF which has a pair
of coefficients at each site of the fifth dimension. These coefficients can be tuned to
“customize” the behavior of the chiral symmetry breaking coming from different modes
to attain a smaller m,.. Details of the Mdbius fermion formulation are discussed in

the subsequent subsection 2.3.4.

4. Dislocation Suppression Determinant Ratio (DSDR) [41, 42, 43]. This is a modification
to the gauge action that will suppress the zero modes of the 4-D Dirac operator Dy
and in turns will reduce the 1/Lg contribution to m,s. Details of DSDR are elaborated

in Sec. 2.4.

More numerical results concerning the residual mass will be discussed in Sec. 4.

2.3.4 Mobius Fermions

The standard domain wall fermion formulation is characterized by a controllable chiral
symmetry breaking at the expense of a fictitious fifth dimension. It is the simplest formu-
lation of th kind, has the most straightforward physical interpretation and is relatively easy
to implement for all sorts of evolutions and calculations. However, it does not necessarily
offer the minimal residual chiral symmetry breaking for a given L,. In recent years, many
studies have been carried out to explore a modified or a generalized version of domain wall
fermions that can reduce the residual chiral symmetry breaking at a fixed L. Among them,
optimum domain wall fermions proposed in Ref. [56], as suggested by its name, gives the
minimal residual mass for a given Lg, and Mébius domain wall fermions (MDWF /Mobius

Fermions) introduced in Refs. [39, 40] is a highly customizable generalization of plain do-
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main wall fermions. The latter of the two is widely used in our simulation requiring pions
of physical mass. Thus in this subsection, we will focus our introduction on Moébius domain
wall fermions. Many theoretical derivations and details of the technical implementation of
MDWTF can be found in Hantao Yin’s thesis [57].

Before we delve into the definition and characteristics of Mobius domain wall fermions,
let us first turn to the Ginsparg-Wilson fermions for a moment. As enforced by the afore-
mentioned Nielsen-Ninomiya no-go theorem [53], we have to give up one or several essential
properties of the continuum theory, for instance, hermiticity, locality, chirality and etc..
However, Ginsparg and Wilson [58] redefined the chiral symmetry on the lattice with the

following so-called GW-relation
’}/5D + D’)/g, = D’}/g,D . (246)

If we “pretend” that the GW-relation is the chiral symmetry for lattice fermions, then we will
be able to construct a lattice fermion formulation that boasts all the important symmetries
and characteristics shared by the continuum theory.

In 1997, Herbert Neuberger proposed a fermion formalism [59, 60], the overlap fermions,
that satisfies the GW-relation. Its Dirac operator depends on a sign function of a certain

Hermitian Wilson-type Dirac operator,
1
Dov(Hw)= 5(1+m+(1—m)’}/5€(Hw)) (247)

In Neuberger’s original overlap formalism, the kernel of the sign function is the Hermitian
Wilson Dirac operator Hy = 5Dy . Yet there exists an equivalence relation between DWF
and overlap fermions as the former can be regarded as an approximation to the latter. The
plain domain wall formulation (Shamir DWF) can be expressed in the form of of Eq. (2.47),
with Hy, replaced by the Shamir kernel Hy = 5Dy (2 + Dy )~! and the ideal sign function

replace by following truncated version,

(1)l — (- 1)L
«(w) = (z+1)Ls + (z—1)Ls’

(2.48)
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where the exponent L, is the length of the fifth dimension.

Now we have a new perspective for residual chiral symmetry breaking with the DWF
formulation: the deviation of Eq. (2.48) to the ideal sign function. Fig. 2.1 shows the
numerical results for the approximated e(x) for DWF and its deviation from the ideal sign

function for a selected set values of Ly [57]. It is also revealed in Fig. 2.1 that the deviation
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Figure 2.1: Left: plot of e(x) for the domain wall fermion actions with L, = 4,8 16. Right:
plot of log (1 —€(z)) for different values of Ly . The shaded region denotes the approximate

range of the eigenvalues of the Hp kernel.

comes from two parts, modes that are very close to the origin and modes that approach
infinity. The first contribution is usually dominant since the larger modes always have a
upper bound due to the lattice cut-off. However, both contributions must be considered
when one tries to improve the approximation to the sign function for Shamir domain wall
fermions.

The Mo6bius domain wall fermion formulation is motivated to augment the plain domain
wall fermions with more parameters that can be tuned to achieve a better approximation to
the sign function. Now let us proceed to give the definitions of the five-dimensional Mo6bius
fermion action and its Dirac operator,

SE =% P(x,8)Du(z,s;2", 8 )p(a, "), (2.49)

el ol
z,s;2,s
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where Dy (x,s;2',s") is the Mobius Dirac operator:
D.sysr = D3 (2,y)ds,9 + D (2, y)ms P 541 + D (,y)Msi1 Po0s 1. (2.50)

Here D3 and D? are shifted Wilson Dirac operators defined as

Di(x,y)

Di(l‘,y) = CSDW(m7y)_1’ (252)

bs Dy (z,y) + 1 (2.51)

where Dy (z,y) is the Wilson Dirac operator (2.22). The function m; in Eq. (2.50) is the
5-d mass matrix shared with the Shamir domain wall fermion formalism (2.32).

This Mobius Dirac operator is in its most generic form with L, pairs of free parameters
bs and cs for each five-dimensional plane in addition to the original domain wall fermion
parameters. With transformations and derivations presented in [40], it can be shown that
this Mobius Dirac operator corresponds to a overlap Dirac operator given by an expression

similar to Eq. (2.47):

Dov(Hy) - %(1+m+(1—m)75e(HM)), (2.53)
(Hy) - % (2.54)
S - ngj (2.55)

H = (by+¢)vsDw (2+ (b — ) D) " (2.56)

These sophisticated expressions can be simplified if we employ the following constraints:
1. All bs = b and ¢4 = ¢, making b, and c¢s constant along the s-direction;
2. b—cis fixed to 1.

Now the quivalent overlap operator becomes

Az + )b = Az - 1)k

() = (Ax +1)Ls + (A = 1)Ls”

(2.57)
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where \ = b+ c is still left as a free parameter subject to tuning. This is the basic setup for
the MDWF we have adopted for our finite temperature simulations.

Following a Taylor expansion of e(z) about z = 0, the Mobius DWF operator turns out to
be a very good approximation to that of the plain DWF Dirac operator, if we set A = Ly/L,,.
Here L, and L, are respectively extents of the fifth dimension of Shamir DWF and Mo6bius
DWF under comparison. In other words, we are able to shrink the auxiliary fifth dimension
with a fact of of A =b+c¢ =2c+1 once we switch from Shamir DWF to Moébius DWF. Based
on this argument, we can use large A\ (or equivalently large c¢) instead of large L; to save
computational cost. However there are at least two loopholes behind this simple-minded

deduction [57]:

1. Such great approximation from Taylor expansion no longer holds when A or AL, is very
large. Keeping L x A fixed, there exists an optimum choice of A that will minimize the

residual mass;

2. If we adopt A close to the optimum value or even larger, much of the chiral symmetry
breaking begins to come from large eigenvalues of the overlap kernel while less chiral
symmetry breaking comes from eigenvalues near zero. This is achieved by making the
step function very steep which produces large forces and requires a smaller step size,

slowing down the evolution significantly.

To circumvent these issues, we need to perform several scans in search for the optimum
choice of A that will minimize the overall computational cost and give minimum m,.s that
is required for our simulations with physical pions. Details of the scans can be found in [57]
and also in Chap. 4.

The optimum domain wall fermion method, on the other hand, utilizes the Zolotarev
optimal rational approximation to approximate the sign function, which is theoretically the
best one as measured by the minimum of the maximum deviation (L., measure). However,

it loses the mirror symmetry in the fifth dimension and thus brings some extra ambiguity
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and difficulty in computation. Moreover, it is plagued with a severe slow-down in evolutions
similar to the one mentioned above. Based on these considerations, we choose the more
flexible MDWF formalism over the optimum DWF in our thermodynamics simulations with
physical pions.

The construction of the 4-d fermions fields and the partially-conserved axial current of
MDWEF is more complicated and contains more arbitrariness than the plain DWF. We can
choose a set of definitions parallel to the plain DWF. Details can be found in [57] and we

simply quote the results below. The 4-d physical fermion fields are defined as follows,

q(z) = Po(z)+ Pithon-1(2) (2.58)

q(x) = =Y Uon 1 (y) DNy, 2)Po = > Yo (y) DO (y, ) P (2.59)

Formally J5 and J5, are defined the same as the DWF in Eqgs. 2.41 and 2.42. Nevertheless,
the Dirac propagator D3l used in calculating the correlator in the DWF formulation should

be replaced by D~'D_ in the MDWF formulation.

2.4 Dislocation Suppression Determinant Ratio (DSDR)

Let us restate below the dependence of mye on Ly in Eq. (2.45):

e-AeLs

1
+ CQpH(O)L_7

Myes = ClpH()\c) I

The exponentially decaying contribution which results from the extended eigenmodes will
drop shapely when one increases L,. The second contribution, however comes largely from
localized dislocations in the gauge field corresponding to topology change [61, 62, 63]. At
strong coupling, gauge field dislocations rapidly become more common, so that the dominant
contribution to mye comes from the near-zero eigenmodes of H and the second, power-
suppressed term in Eq. (2.45) dominates. This effect becomes more prominent when L, is

already very large.
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One method to reduce the large residual chiral symmetry breaking is to augment the
gauge action with the determinant of the 4-d Hermitian Wilson Dirac operator, Hy, (-M;5) =
s Dw (—=Ms) [41, 42, 43], where M5 is the domain wall height (M5 = 1.8 in our calculations).
Including this determinant as a weighing factor in the path integral explicitly suppresses
those configurations which have a small eigenvalue of Hy, and especially also those with
near-zero modes of H.

Unfortunately, the suppression of the zero modes of Hy, also suppresses exactly those
configurations that change topology during a molecular dynamics evolution. Therefore, in
order to allow for the correct sampling of all topological sectors, we augment the Wilson

Dirac operator with a chirally twisted mass,
Dy (=Ms) — Dy (=Ms +ievs) . (2.60)

We then employ the following ratio of weighting factors on the gauge fields:

det DT (—M5+i6 ’75)Dw(—M5+i€ ’75)

Wk ae) = u - <)) (2.61)
det [DW(—M5 +i€epys) Dy (- M5 + zeb%)]
det [ Dl (-Ms) Dy (~Ms) + €2]

det [ D}, (-Ms) Dy (-Ms) + €7]

The bosonic and fermionic “twisted-mass” parameters €, €5 can be tuned so that gauge
field topology changes at a reasonable rate during the Hybrid Monte Carlo (HMC) evolution,
but the localized dislocations which contribute to the residual mass are suppressed [44]. We
call the weighting factor W(Ms, €, €5) the Dislocation Suppressing Determinant Ratio.

Employing the DSDR in our action ensures that the ultraviolet modes of the theory
are minimally affected so that bare parameters such as § and the quark masses do not
shift significantly from those used in the standard domain wall fermion action. With these
precautions, the calculations using the DSDR action are very similar to those with the
standard Wilson or Iwasaki action but bring the benefit of a much lower residual mass

c.f. [44].



Chapter 3

QCD Phase Transition and the
Symmetries of QCD

This chapter starts with an overview of the theoretical and experimental investigations
of the QCD phase transition. It is followed by a brief introduction to the chiral and U(1)4

symmetries that are tightly connected with the QCD phase transition.

3.1 Overview of QCD at Finite Temperature and Den-
sity

SU(3) Quantum Chromodynamics is now widely accepted as the fundamental complete
description of the strongly interacting nuclear force. However, due to the non-perturbative
nature of SU(3) gauge theory, many aspects of QCD are yet to be understood. Among them,
the phase structure of QCD is one of the most fundamental issues that intrigues physicists
both in theory and in experiment.

At ordinary temperature and conditions, quarks and gluons are confined within hadrons.

In contrast, at extremely high temperature, quarks become weakly interacting and the
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hadronic matter is expected to turn into a brand new state, “the quark gluon plasma”
(QGP) [64], which displays properties that resemble a perfect fluid. Similar transitions may
also take place for quark matters at extreme density, which is speculated to be a candidate
for the composition of a neutron star [65]. Such hot and dense quark matter is presumably
also present at an early stage (§ 10us) of the universe after the Big Bang. Thus, a better
characterization of the QCD phase transition would deepen profoundly our understanding
of the evolution of the universe. Fig. 3.1 shows a qualitative sketch of the phase diagram of

the quark matter [3].

T

uark—ghuon
plasma (QGP)

170
MeV

fearly uriverse)
§

hieaviy—io
collisions

hadronic
(confined)

phase , nuclear
matter

vacuum fnewtron|stars)

1 Lol

310 MeV L

Figure 3.1: A qualitative sketch of the phase diagram of quark matter in temperature-density

space [3].

At present, the heavy-ion community is trying to replicate these extreme conditions
in ongoing as well as future heavy-ion collision experiments that are carried out at various

facilities, for instance Relativistic Heavy lon Collider (RHIC), Large Hadron Collider (LHC),
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Facility for Antiproton and Ion Research (FAIR), and Nuclotron-based Ion Collider Facility
(NICA). All the following phenomena and many others are expected to be experimental

signatures for the formation of the QGP phase:

Strangeness Enhancement Strangeness is absent from the initial state of the heavy-ion
collision, as the ordinary nucleons are all composed of up and down (u,d) valence
quarks. When the QGP is formed, abundant strange anti-strange quark pairs (ss) are
created. As they move freely within the hot and dense medium, s can readily find
a u or d quark to form K* or K° mesons. However, it would be less likely for a s
quark to find @ or d quark. Thus, the production of strangeness is a good indicator for
the existence of QGP [66]. This signature has been captured in many experiments, as

reported in [66, 67, 68, 69, 70].

J/¥ Suppression J/V, or charmonium, is the bound state of a (c¢) pair that is expected
to be created in the hot QCD medium. The binding force can successfully hold the
pair together if the two quarks are within the color Debye screening length. However,
if the hot matters enters the QGP phase, the decreased screening radius may fall short
of the binding radius, which will result in the meltdown of J/W¥ [71]. Consequently, the
suppression of charmonium production in the heavy-ion collision as compared to that
from baseline production in the nucleon-nucleon collisions provides a signal for the QGP
phase. Some information was collected at Super Proton Synchrotron (SPS) [72, 73].
However, when the abundance of charmonium generated in the heavy-ion collission
exceeds a certain level at sufficiently high energy, charmonium suppression might be

reversed, becoming charmonium enhancement [74].

Jet Quenching In hadronic collisions, due to the hard momentum transfer, some quark-
gluon constituents will be knocked out of the interacting medium and form hadrons,
which are referred as “jets”. However, if these quark-gluon constituents have to ex-

perience the QGP medium before escaping, they will suffer a substantial amount of
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energy loss due to their strong interaction with the medium. This so-called “jet-

quenching” [75] has been observed at RHIC [76, 77| and LHC [78].

Chiral Phase Transition All the above signatures put emphasis on the quark deconfine-
ment aspects of the phase transition. It is also expected that chiral symmetry is also
restored in the QGP phase, although its critical temperature might differ slightly from
the deconfinement critical temperature. The effective mass of some mesons, ¢ for in-
stance, is sensitive to the chiral symmetry, while the properties of leptons are preserved
as they are not participants in the strong interactions. This would result in a shift of
the decaying branching ratio for these mesons [79], which could provide an informative
probe of the restoration of chiral symmetry. This aspect of the QCD phase transition
is the central topic of this thesis. More discussion can be found in the following section

and in the rest of this thesis.

Despite the success in the discovery of this new form of QCD matter (for reviews c.f. [80,
81, 82]), locating the phase boundaries and pinpointing the pseudo-critical temperature
remain puzzles to be solved.

In theory, the phase transition is indicated by the divergence of a sufficiently high order
derivative of the free energy density at a critical temperature. For a non-vanishing quark
mass, as in the real world, the notion of a critical temperature becomes obscured and a
pseudo-critical temperature is introduced to locate the crossover transition behavior. In this
work, we define a pseudo-critical temperature at the peak of the disconnected piece of the
chiral susceptibility, Yaisc-

A variety of continuum studies both from QCD and first principles as well as from its
low energy effective theory have been devoted to resolve the QCD phase transition (for
reviews c.f. [83, 84, 85, 86]). On the other hand, lattice QCD provides important insights
into thermodynamics from many perspectives. For instance, the phase transition for a pure

gauge SU(3) was shown to be first order with T, ~ 240 MeV [87, 88|, consistent with the
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effective theory prediction [89]. The equation of state for QCD can also be determined from
the lattice formulation, with some most recent progress reported in Refs. [90, 91]. Despite
the “sign problem” in Euclidean space, many efforts have been devoted to introduce a finite
chemical potential on the lattice so that a study of finite-density QCD is accessible. A variety
of techniques have been developed in [92, 93, 94, 95, 96, 97, 98, 99].

The majority of these exploration of QCD thermodynamics using lattice QCD employ
staggered fermions, which suffer from additional breaking of the full chiral and anomalous
U(1) 4 symmetries due to lattice artifacts. These effects will not disappear until a continuum
limit is taken where demanding computational cost and careful extrapolation are required.
Domain wall fermions and other variants of chiral fermions are ideally suited to study the
chiral and anomalous U(1)4 symmetries and their degree of restoration with increasing

temperature, which is a natural focus of this thesis.

3.2 Symmetries Associated with QCD Phase Transi-
tion

In the limit of Ny flavors of vanishing quark masses, QCD possesses a chiral SU(Ny)p, x
SU(Ny)r symmetry. However, the QCD vacuum does not respect this symmetry. Instead
the non-vanishing vacuum expectation value of SU(N¢) ., x SU(Ny) g non-invariant operator
) reflect a smaller, SU (Nf)y vacuum symmetry. This symmetry-breaking vacuum order
parameter (Ew) is expected to disappear at high temperature implying a phase transition
separating a low-temperature chirally asymmetric phase from a high-temperature phase with
restored chiral symmetry. The order of the transition depends on the number of flavors of
light quarks. As argued in Ref. [25], QCD with Ny > 3 will undergo a first-order chiral phase
transition. For a 2-flavor theory, the order of the phase transition may further depend on the

degree to which the anomalous U (1) 4 symmetry is realized in QCD. For a massive QCD, the
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order of the phase transition will depend on the quark mass as well as the non-zero baryon

chemical potential as demonstrated in Fig. 3.2([4]).
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Figure 3.2: Left panel shows the conjectured phase diagram of QCD in the space of temper-
ature, baryon chemical potential and light quark mass [4]. The solid blue line labelled by
“Lattice” marks the chiral transition region at vanishing baryon chemical potential (ug = 0)
and physical quark masses, the focus of this work. Right panel is the “Columbia plot”, the

phase diagram of QCD in the light-strange quark mass plane at vanishing chemical potential.

The U(1) 4 symmetry, which is respected by QCD at the classical level, is broken by the
axial anomaly. This results in both the anomalous term in the conservation law for the U(1) 4
axial current of Adler [100] and Bell and Jackiw [101] as well as ‘t Hooft’s explicit violation
of the global symmetry [102] arising from fermion zero modes associated with topologically
non-trivial gauge field configurations. At low temperatures this anomalous U(1) 4 symmetry
is also broken by the QCD vacuum. However, above the QCD phase transition vacuum
symmetry breaking has disappeared and the effects of the axial anomaly can be studied
directly.

At sufficiently high temperatures anomalous U(1)4 symmetry breaking can be studied
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using the dilute instanton gas approximation (DIGA) [103, 104]. In this approximation one
finds exponential suppression of the instanton density as the gauge coupling decreases so that
the U(1)4 symmetry becomes exact in the limit 7" — oo. When the DIGA is justified, the
U(1)4 symmetry breaking effects it predicts are very small. With decreasing temperature,
the semi-classical approximation underlying the dilute instanton gas picture becomes unre-
liable and the degree of anomalous symmetry breaking becomes a non-perturbative question
well suited to a DWF lattice study. While one might imagine that anomalous U(1) 4 break-
ing remains small as the temperature decreases from asymptotically large values, even down
to the critical temperature, T,, it is also possible that new, non-perturbative phenomena
emerge at lower temperatures leading to a significant topological charge density and to large
U(1)4 symmetry breaking.

As aforementioned, the degree of U(1)4 symmetry breaking may have interesting con-
sequences for the order of the 2-flavor massless QCD chiral phase transition. Namely, if
the U(1) 4 breaking is significant near the phase transition, then the resulting four massless
degrees of freedom (7 and o) can support O(4) critical behavior at T, the location of the
phase transition. However, if anomalous breaking of the U(1)4 is small so there are eight
light degrees of freedom at T, (7, o, 6 and n) then the chiral transition is expected to be
first order, although a second order phase transition may still be permitted with a different
SU(2)xSU(2)r/U(2)y universality class as suggested in Refs. [105, 106]. Thus, a thorough
study of the behavior of the anomalous U(1)4 symmetry has essential consequences for the
nature of the chiral phase transition.

In heavy-ion collision experiments, it may also be possible to observe signatures of U(1) 4
symmetry restoration through measurements of low-mass dileptons [107]. Moreover, an ef-
fective restoration of the axial U(1) 4 symmetry above T, may lead to softening of the ' mass
resulting in interesting experimental signatures [108, 109, 110]. In fact, recently it has been

claimed that the results from the RHIC suggest softening of the n’ mass indicating partial
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restoration of the U(1)4 symmetry in hot and dense matter [111]. Hence, studies related
to U(1)4 symmetry restoration with increasing temperature have important theoretical and

phenomenological consequences.



Chapter 4

Simulation Details

This chapter focuses on setting up the basic parameters for the generation of our finite
temperature ensembles with DWF/MDWEF. We start with the determination of the line of
constant physics, followed by several tables listing the parameters that we adopt in prac-
tical simulations. Detailed explanations are provided for certain aspects that need some
attention. We also present some very recent results from a zero temperature ensemble to
verify our choices for the parameters. In the third section, a brief summary for the plaquette
is discussed. In the last section of this chapter, we present a thorough discussion for the
numerical results of the residual mass that is essential for the DWF/MDWF calculation.

Note that the results from the zero-temperature ensembles presented in the chapter are
last updated when the relevant calculations for the line of constant physics were performed.
The results from some of these zero ensembles have since been improved and thus may be

different from those presented here.

4.1 Determine the Line of Constant Physics

In some earlier explorations of QCD phase transition with DWF c.f. [33, 35] the total

bare quark mass wes held constant instead of the total physical quark mass due to the lack of

33



34

relevant data and the difficulty in tuning the residual and the total quark mass. This resulted
in a pion mass changing from m, ~ 225 MeV at the lowest temperature to m, ~ 275 MeV
at the highest temperature for these studies. The 20% difference in the pion mass could in
turn causes ambiguities in determining the pseudo-critical temperature and the breaking and
restoration of various symmetries associated with the QCD phase transition. Fortunately,
we have now collected reasonable statistics from zero-temperature ensembles that allows us
to determine a line of constant physics (LCP) with a pion mass fixed at 200 MeV or even
lower.

Before we start, let us present some of the features of the zero-temperature ensembles

that are listed in Table 4.1. All these ensembles were generated with the Iwasaki + DSDR

# 6 Na NT Ls my mg Myres mey (MGV) Ntraj

1.70 16 32 32| 0.013 0.047 0.00420(2) 394(9) 1360
1.70 16 32 32| 0.006 0.047 0.00408(6) 303(7) 1200
1.75 16 16 32| 0.006 0.037 - - 2242
1.75 32 64 32| 0.0042 0.045 0.00180(5 246(5

1.82 16 32 32| 0.013 0.040 0.00062(2 398(9

N O Ot = W N

(5) ()

175 32 64 32| 0.001 0.045 0.00180(5)  172(4) | 1560
(2) 9)
(2) (7)

1.82 16 32 32| 0.007 0.040 0.00063(2 304(7

Table 4.1: Summary of zero temperature ensembles with the DSDR action. Each lattice
ensemble is given a label for later reference. The total molecular dynamics time per trajectory

is 7 = 1.0. The residual mass, m, is also tabulated. The values given for run # 5 are zero

temperature results from RBC-UKQCD [1, 2]

gauge action and 2 + 1 flavors of DWF action. Some of the ensembles have been expanded

to include additional configurations, which were not used in the process of determining the
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input parameters. Therefore in this section, we present the results just as they were when
we chose the parameters for our finite temperature simulations. A recently generated zero
temperature ensemble with new results will be discussed in Sec. 4.2 after we present choice

of the parameter that were used in the finite temperature ensembles reported here.

4.1.1 LCP for m, ~ 200 MeV Ensembles

For the DSDR ensembles, we have endeavored to move along a line of fixed physical
pion mass, m, = 200 MeV. Table 4.2 summarizes our results for m,,m,, and 7y on the zero

temperature ensembles.

# g my To m, M 1/at (GeV)
1 170 0013  2.895(11) 0.68(2) 0.310(1) ;

2 0.006  2.992(27) 0.67(2) 0.238(1) ;
Extrapolated -0.0040  3.13(7)  0.66(6) - 1.27(4)
4 175 00042  3.349(20) 0.57(2) 0.1810(3) ;

5 0.0010  3.356(22) 0.56(2) 0.1264(3) ;
Extrapolated -0.0018  3.36(4)  0.56(4) ; 1.36(3)
6 1.82 0013  3.743(28) 0.56(2) 0.255(2) .

7 0.007  3.779(37) 0.53(2) 0.195(2) ;
Extrapolated -0.00064  3.83(9)  0.49(5) ; 1.55(5)

Table 4.2: Results for rg, m,, m,, and the lattice scale, a™'. At each value of 3, we perform
simple linear extrapolations to m; = =My, @.€., the chiral limit, for ry and m,. The lattice
scale is fixed using the extrapolated value for ro. TLattice scale determined using ro = 0.487(9)

fm.

In order to determine the lattice scale, we have used the Sommer parameter ry, deter-

mined from the static quark potential. The quantity rg, extrapolated to the chiral limit, can
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be related to the lattice scale using its physical value r¢ = 0.487(9) fm, determined in earlier
domain wall fermions caculations [112]. The temperature is given by 7' = 1/N,a. The values
for ro/a in Table 4.2 allow us to determine the bare couplings needed for finite temperature
lattice ensembles in the transition region.

To describe T'(/3) in physical units, we use a modified form of the two-loop renormalization

group running, which includes an extra term incorporating the O(a?) lattice artifacts:

1 AQ 1
() = W2(00+61a (5))—&(5) (4.1)
. B\ (6b\ D) 9 64

) = o) (3) e G G .

where a(f) describes the continuum two-loop RG running at the lattice spacing. The left
panel of Fig. 4.1 shows the result of the fit of the S-dependence of the temperature to both
the lattice-corrected RG fit of Eq. (4.1), and to the continuum RG running, i.e., the case
where ¢; = 0. As can be seen, the lattice-corrected fit provides a better description of the
data.

To ensure that we simulate along a line of fixed pion mass, we must account for the
running of the bare quark masses as the bare coupling is changed. Since the residual chiral
symmetry breaking results in an additive shift in the quark mass, to leading order in chiral

perturbation theory, the pion mass depends on the total quark mass, m; = m; + My, as:
m2 o< (Mg + Miyes). (4.3)

This linear quark mass dependence is a surprisingly good description of earlier data [112]
and sufficiently accurate for the present purpose.

This allows us to determine the bare quark masses required for a specific line of constant
physics from the zero temperature ensembles listed in Table 4.2. Figure 4.2 shows the quark
masses required for m, = 200 MeV. We also fit these results for m,(3) to the lattice-corrected

two-loop running of the mass anomalous dimension:

120 )4/9 (4.4)

= () = (A 5229 (120
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Figure 4.1: Left panel: temperature for N, = 8 is plotted versus 5. The solid curve is the fit
to the continuum RG running; ¢y = 25.2(3) MeV. The dashed curve is the result of the fit to
Eq. (4.1) which includes an added a? correction; ¢y = 29.7(2.9) MeV, ¢; = —204(132) MeV.
Right panel: myesa is plotted versus § with an exponential fit: ms(8) = Aexp (-Bpf);
A=8.7(9.7) x 108, B = 15.4(6).
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Figure 4.2: Total light quark mass for the m, =200 MeV line of constant physics, with a fit
to the lattice-corrected mass anomalous dimension. Dashed curves represent the 1-o error

band.
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This lattice-corrected fit provides a good interpolation formula that allows us to achieve a
line of constant physics on the finite temperature ensembles.

Finally, we must estimate the residual mass at different values of 5.. The zero temperature
ensembles show that the residual mass is strongly dependent on the lattice spacing. At
coarser lattice spacings, the localized dislocations of gauge fields are more common and
cause My to increase rapidly as one moves from high to low temperature. The right panel
of Fig. 4.1 shows m,¢ as a function of 5. We find that a simple exponential ansétz describes

the data well.

4.1.2 LCP for m, ~ 135 MeV Ensembles

As revealed by the equivalence relations in Egs. (2.47) and (2.53), both plain DWF
and MDWF are approximations to overlap fermions and are thus approximations to each
other. Consequently the adoption of Mobius domain wall fermions has minimal effects on the
lattice spacing, and we can safelyare keep our [ values and the corresponding temperatures
unchanged from the m, » 200 DWF esembles. Hence the only quantities that need to be
determined for the Mobius domain wall fermion sembles at m, ~ 135 are the total bare quark
mass and the residual mass. In this subsection we will focus on the former and leave the
latter to Section 4.4 later in this chapter.

From our zero temperature ensembles, run #4 and run #5 with 5 =1.75 and L, = 32,
we have determined the following values that should correspond to physical pion and kaon
masses [1, 2], We can calculate the scale change appropriate to a given shift in g from a

simple exponential extrapolation

asfar = exp(s(Ba - B1)), (4.5)

where s = 1.66 can be determined from the extrapolated results of 5 =1.70 and § = 1.82 in
Table 4.2.



al | 1.371 GeV
Myes | 0.001842
m; | 0.001752
ms | 0.048552
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Table 4.3: Extrapolation of ensembles in run # 4 and run # 5 to the physical pion point.

Using the scale factor s, m; and mg from the § = 1.75 ensemble, we can find the total

quark masses at other values of 3, if we know the relative quark renormalization factors, Z.

The Z factors to convert to MS(u = 2 GeV) scheme are given later in Table 6.4. We want

to keep Z,,M¢/a a constant, namely

ms(B) =

Zm(1.75) 4 (1.75)a(3)

Zm(B)a(1.75)

(4.6)

In Table 4.4 we show the estimated values for m,(3) and ms(3) Note that the results

g T (MeV)  mu(B) M (b)
1.633 139 0.00222 0.0616
1.671 149 0.00206 0.0571
1.707 159 0.00192 0.0531
1.740 168 0.00179 0.0496
1.771 177 0.00168 0.0465
1.801 186 0.00158 0.0437
1.829 195 0.00149 0.0414

Table 4.4: The estimated value for the total quark mass of ensembles that lie on a line of

constant physics with m, at physical value.

in Table 4.4 keep the ratio of m,/m; fixed at 27.71, which is the value from the quark

masses for § = 1.75 obtained from our customary global fits. Although the scaling formula in

Eq. (4.6) is simpler than the lattice corrected Eq. (4.4), the lattice scales and temperatures
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are essentially the same.

4.2 Parameter Settings of the Ensembles

4.2.1 m,; ~200 MeV Ensembles

Tables 4.5, 4.6, and 4.7 list the basic parameters for the three sets of ensembles. All of
them share the same choices of the input quark masses, which are adjusted to bring the pion
mass close to the m, = 200 MeV target. They only differ in their spatial volumes, which are
of 323 x 8, 243 x 8, and 163 x 8. All three ensemble sets cover the temperature region around
the QCD phase transition. The 163 x 8 simulations produced 8 ensembles roughly evenly
separated, in a range between T = 139 MeV and 195 MeV with the exception of 2 ensembles
with different input quark masses at T' = 149 MeV. The 243 x 8 ensembles cover a narrower
region with 5 temperatures between 7" = 149 MeV and 186 MeV. The ensembles with the
largest volume 323 x 8 have almost the same temperature values as the 163 x 8 ensembles,
except that there is an extra point at T'= 164 MeV and only one ensemble at T' = 149 MeV,
obtained with a negative input quark mass.

For all the ensembles listed in Tables 4.5, 4.6, and 4.7, we adopt the same Iwasaki
gauge action augmented with the dislocation suppression determinant ratio (DSDR) and
the domain wall fermion (DWF) action with 2 + 1 flavors. The extent of the fifth dimension
L, for all the ensembles is 32, except for the T = 139 MeV ensembles and one of the T" = 149
ensembles with 163 x 8 where L, is set to 48. For the twisted mass coefficients in the
determinant ratio, we found that the choice of € = 0.02 and ¢, = 0.5 allows for a reasonable
rate of tunneling between topological sectors while still suppresses residual chiral symmetry
breaking [44].

Following the method described in the previous section 4.1, the input light quark masses

are adjusted so that all the ensembles lie on a line of constant physics with m, ~ 200 MeV
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and the ratio m,;/m, = 0.088 is fixed to ensure a physical mass strange quark. Here and later
in the text, a tilde indicates the total bare quark mass, given by the sum of the input and
the residual quark masses as in Eq. 2.44.

Because of the rapidly increasing residual mass with decreasing temperature, we use
negative input quark masses for the two ensembles with the lowest temperatures (7' = 139
and 149 MeV). While much larger negative input quark masses are standard for Wilson
fermion calculations, the use of negative My, is uncommon in a DWF calculation and, as
in the Wilson case, could potentially jeopardize the stability of the evolution because of a
singularity in the Dirac operator.

At T =139 MeV, we initially used a negative light quark mass of m; = —0.00786, with
Mmpes ® 0.013 at Ly = 32. It was quickly discovered that this resulted in a singular fermion
matrix, signaled by the non-convergence of the conjugate gradient inversion. As a result,
we switched to Ly = 48 at this temperature, where a smaller, but still negative light quark
m; = —0.00136 could be used to achieve the desired total light quark mass. Fortunately, we
observed no "exceptional configurations” in all the following evolutions with our intentional
choice of negative input quark masses that are small in magnitude.

Since this is the first time a negative input quark mass is introduced in the DWF' evo-
lution, we carried out two simulations, one with positive and one with negative input light
quark masses at T = 149 MeV as a sanity check. Both of these ensembles (ensembles run # 9
and run # 10 in Table 4.5) correspond to approximately the same pion mass, m, ~ 200 MeV
with carefully tuned input quark masses and L,. We did not see any significant differences
between these two ensembles in quantities such as the disconnected chiral susceptibility,
renormalization coefficients, or eigenvalue spectrum. However, in the chiral condensate we
did see a significant difference in the two ensembles, a different that should be expected to
arise from a 1/a3 residual breaking of chiral symmetry present in this local operator. The

consistency between these two ensembles provides strong support that our interpretation of
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my; and choice of negative input quark mass is solid and correct.

# | T (MeV) B L my my Mipes yedul

traj

8 139 1.633 48 | -0.00136 0.0519 0.00588(39) | 2696
9 149 1.671 32| -0.00189 0.0464 0.00643(9) | 5700
10 149 1.671 48 | 0.00173 0.0500 0.00295(3) | 6700
11 159 1.707 32| 0.000551 0.0449 0.00377(11) | 3359
12 168 1.740 32| 0.00175 0.0427 0.00209(9 3043

13 177 1.771 32| 0.00232 0.0403 0.00132(6 3240

)
(6)

14| 186 1.801 32| 0.00258 0.0379 0.00076(3) | 4415
(1)

15 195 1.829 32 | 0.00265 0.0357 0.00047(1 8830

Table 4.5: Summary of input parameters (5, Ls, m; and mg) and the measured results
for myes for each ensembles with m, ~ 200 MeV at 163 x 8 space-time volume. Each is
assigned a label in the first column for later reference. The final Ntegjlﬂ column lists the

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.

The errors quoted in the temperature column in Table 4.7 (suppressed elsewhere) are
the 1-0 error from the extrapolation in Eq. (4.1). The pion mass m, given in Table 4.7
is computed using the Gell-Mann-Oakes-Renner relation [113], indicating the ratio of the
target and the calculated total quark masses, which differes from one because estimate of
the residual quark mass has been replaced by its measured value. Thus, this is not an
actual measurement result for m,, but serves as a proxy of the accuracy of our estimates
for the input parameters, which are interpolated fitting results. These values should not be
mistaken for the actual pion masses extracted from the correlating functions measured on
corresponding zero-temperature enesmbles. Nevertheless, our estimate of the input quark

masses work fairly well as most of the pion masses deviate no more than 3% from the target

value of 200 MeV.



43

# T MeV) B L, m ms Mo Neauil

traj

16 149 1.671 32 | -0.00189 0.0464 0.00659(6) | 4721

17 159 1.707 32 | 0.000551 0.0449 0.00370(4) | 2265

19 177 1.771 32| 0.00232 0.0403 0.00129(3

(6)
(4)

18| 168  1.740 32| 0.00175 0.0427 0.00216(3) | 2423
(3) | 2892
(3)

20 186 1.801 32 | 0.00258 0.0379 0.00084(3) | 3142

Table 4.6: Summary of input parameters (3, Ls, m; and mg) and the measured results
for myes for each ensembles with m, ~ 200 MeV at 243 x 8 space-time volume. FEach is
assigned a label in the first column for later reference. The final Nfrc;“]m column lists the
number of equilibrated trajectories that remain after the imposition of the thermalization
and decorrelation cuts described in the text.

# | T (MeV) B L, m ms Myes my(MeV) | Newut

traj

21 | 139(6 1.633 48 | -0.00136 0.0519 0.00657(2 2700

22 | 149(5 1.671 32| -0.00189 0.0464 0.00653(2 2700

23| 1594 1.707 32| 0.000551 0.0449 0.00366(2 2643

(
(
(
24| 164(4) 1.725 32| 0.00138 0.0436 0.00277(1
(
(
(
(

(6)

(5)

(4)

(4) 2700

25| 168(4) 1.740 32| 0.00175 0.0427 0.00220(2

(4)

(5)

(6)

26 | 177(4 1.771 32| 0.00232 0.0403 0.00135(1 2700

27 | 186(5 1.801 32| 0.00258 0.0379 0.00083(2 2729

28 | 195(6 1.829 32| 0.00265 0.0357 0.00049(1 3112

) (8)
) (5)
) (3)
) (3)
) 200(2) | 2708
) (2)
) (3)
) (4)

Table 4.7: Summary of input parameters (3, Ls, m; and mg) and the measured results for
Mmyes and the projected pion mass for each ensemble with m, ~ 200 MeV at 323 x 8 space-time
volume. Each is assigned a label in the first column for later reference. The final Nfr(;?ﬂ

column lists the number of equilibrated trajectories that remain after the imposition of the

thermalization and decorrelation cuts described in the text.
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The number of effective trajectories for each ensemble that are used in the measurement
reported later is also listed in the right-most column of Tables 4.5, 4.6, and 4.7. For en-
sembles with volume 163 x 8 and 323 x 8, we discard the first 300 trajectories to account
for thermalization. However, because we changed the evolution algorithm during the early
stages of the generation of the 243 x 8 ensembles, a larger number of initial trajectories were
discarded for those. For each ensemble, each trajectory has a uniform length of one molecular
dynamics time unit.

In order to increase the statistics, we have evolved multiple streams for ensembles cor-
responding to run # 16 and run # 17. Ensemble run # 16 is composed of 8 streams, two of
which began from an ordered start, another two from a disordered start and the remaining
four were split from the previous four streams after thermalization. Ensemble run # 17 is
composed of two streams one beginning from an ordered and the other from a disordered
configuration. The multiple streams in each ensemble are pooled together after removing
an initial 300 trajectories from each stream with a fresh start. For streams that were split
from a previously thermalized stream, about 100 initial trajectories of the new stream were

discarded to ensure that the child stream is not correlated with its parent.

4.2.2 m,; ~ 135 MeV Ensembles

With the installation of the supercomputers Sequoia and Vulcan at the Lawrence Liv-
ermore National Laboratory, we are able to extend our study for QCD thermodynamics to
lattices with dynamical physical pions. Table 4.8 summarizes the basic input parameters for
the lattice ensembles simulated using the Iwasaki + DSDR gauge action and 2 + 1 Mobius
fermion action with space-time volume of 323 x 8. Such a combination of lattice actions
allows a small residual mass and makes the simulation of dynamic physical pions possible.

Similar to the m, ~ 200 MeV ensembles, the input quark mass at each temperature is

adjusted so that all each ensemble has a pion mass close to its physical value (m, ~ 135 MeV).
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However, since we had not evolved lattices with Mobius fermions before, we did not have a
good estimate for the residual mass at the starting stage of the simulation. We decided to
begin our simulations with some tentative choices of input light and strange quark mases.
As the simulation took place and statistics were collected, we measured the residual mass at
each temperature. Then for some of the ensembles where the deviation between the estimate
and measured values is substantial, we tuned the input quark mass accordingly toward the
designated value. The initial choices for the parameters and the details of the evolution
history for each stream of evolution are listed in Appendix A.

As shown in Table 4.8, there are 9 temperature values under investigation for our 323 x 8
ensembles with physical pions, each of which contains 2 to 4 streams of evolutions. The
temperature range is still between T' = 139 MeV and 195 MeV, but an extra 17" = 154 MeV
point in the vicinity of the phase transition has been added as compared to the m, » 200
MeV ensemble set. Also there is an additional ¢ column in the table that gives the Mobius
coefficient ¢ for each ensemble. As discussed in subsection 2.3.4, (2¢+1) L is the effective L
that is comparable to a plain DWF (¢ =0) Lg, which shares the same physical parameters.

To study the finite-volume effects, we extend our study of finite temperature QCD with
physical pion mass to a larger 64°x8 space-time volume. Table 4.9 summarizes the parameters
for the four 64 x 8 ensembles at 139 < T < 168 MeV. The details of each ensemble can also
be found in Appendix A.

As most ensembles are composed of more than one evolution stream, we pool together
all the thermalized trajectories from various streams with each individual trajectory equally
weighted. The ensemble average is calculated from the pool using the jackknife method after

binning the results into blocks 50 trajectories to eliminate possible autocorrelations.
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# | T (MeV) I5; L, ¢ m My Myes Nter(i‘;ﬂ
29 139 1.633 24 1.5 |0.00022 0.05960 0.00219(1) | 5768
30 149 1.671 16 1.5 | 0.00034 0.05538 0.00175(1) | 7823
31 154 1.689 16 1.5 | 0.00075 0.05376 0.00120(1) | 6108
32 159 1.707 16 1.5 | 0.00112 0.05230 0.00091(1) | 8714
33 164 1.725 16 1.5 | 0.00120 0.05045 0.00068(1) | 7149
34 168 1.740 16 1.2 | 0.00126 0.04907 0.00057(1) | 5840
35 177 1.771 16 1.0 | 0.00132 0.04614 0.00043(1) | 8603
36 186 1.801 16 1.0 | 0.00133 0.04345 0.00026(1) | 10142
37 195 1.829 16 0.9 | 0.00131 0.04122 0.00019(1) | 10140

Table 4.8: Summary of input parameters (3, Lg, ¢, m; and m,) and the measured results for

Myes fOr each ensembles with m, ~ 135 MeV and with a 322 x 8 space-time volume. Each is

assigned a label in the first column for later reference. The final Nfr(;?ﬂ column lists the total

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.

# | T (MeV) I6; L, ¢ m; M Myes Nfgjlﬂ
38 139 1.633 24 1.5 | 0.00022 0.05960 380

39 149 1.671 16 1.5 ] 0.00034 0.05538 2853
40 159 1.707 16 1.5 ] 0.00112 0.05230 3431
41 168 1.740 16 1.2 | 0.00126 0.04907 1200

Table 4.9: Summary of input parameters (3, L, ¢, m; and mg) and the measured results

for myes for each ensembles with m, ~ 135 MeV with a 643 x 8 spece-time volume. Each is

assigned a label in the first column for later reference. The final fo;‘jlﬂ column lists the total

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.
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4.2.3 Verification of the Input Parameters

To verify our choices for the input parameters for the finite temperature ensembles, we
generate a zero temperature ensemble with the same setup as the run # 29 at T' = 139 MeV
with N, = 8 replaced by N, = 64. Its parameters are listed in Table 4.10. Compared with
the finite temperature results, the change in the residual mass is at a remarkable low level
(about 1%), indicating a minimum finite volume/temperature effect on the MDWEF 1.
This agreement on the coarsest lattice also establishes the accuracy for m, calculated at
other larger 8 values, since any depenendence of m, on temperature can be viewed as a

finite lattice spacing effects.

# 5 Na NT Ls c my msg Myes Nequil

traj

421 1.633 32 64 24 1.5]0.0022 0.05960 0.002167(16) | 500

Table 4.10: Summary of input parameters (§, Lg, ¢, m; and my) and the measured result

for myes for the zero temperature ensemble with the similar setup from run # 29.

A variety of measured results in lattice units as well as in physical units is tabulated in
Table 4.11 with comparisons to the physicals value from experiment. The lattice spacing a~!
and its error are first determined by equating mgq from the lattice to the experimental value.
Then the masses and the decay constants for the pseudoscalar can be computed in physical
units from the lattice results with propagated statistical errors.

Although the measured total light quark mass m,; = 0.002387(16) (Table 4.10) exceeds
our target value m; = 0.222 (Table 4.4) by about 7%, the realized pion mass is actually
smaller than the physical by about 4% reflecting inaccuracy in our target value for the
input quark mass. This error is in line with the deviation for the kaon mass, the decaying
constants and m,e. Moreover, the temperature for g = 1.633 and N, = 8 ensemble can be

readily determined from a~! to be 136.9(5) MeV, which is only about 1.5% away from the
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a! MeV Expt (MeV)
my | 0.11824(49) 129.5(1.0) 135
mi | 0.42301(51)  463.4(2.2) 495
ma | 1.5267(55) 1672.45
fo | 0.12640(25)  138.5(7) 130.4
fr | 0.14852(48) 162.7(1.1) 156.1
a! 1095(4)

Table 4.11: Comparisons of a variety of hadron masses and decay constants between the
lattice results (run #42) and the experimental results. The lattice spacing a~! in the last
row is determined from mgq value and then the lattice results in physical units listed in the

last column is computed.

extrapolated value at 139 MeV!. The discrepancies between the values of 1/a, m,es and m,
result from inaccurate values for our choices of 3, m; and m,. The differences between our
results for f; and fx and their experimental values ~ 5% result from this this miss tuning

of m; and mg as well as finite lattice spacing errors.

4.3 Plaquette
Tables 4.12 and 4.13 show the average plaquette defined as:

(Ug) = N3NtZZReTr P, (x), (4.7)

T v

for ensembles with pion mass of 200 MeV and 135 MeV respectively.
The difference of the average plaquette value between the different volumes is essentially
zero. All the results agree at the 1-0 level or even better. This indicates the effects coming

from the volume difference are minimal.

'In this work, for consistency we will still adopt 139 MeV as the temperature for the 5 = 1.633 and N, =

ensembles in the following analysis and discussions.
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The second row with 7" = 149 MeV in Table 4.12 come from the ensemble with L, = 48
while the first from L, = 32. They show a 0.2% difference in the average plaquette value, as
we should expect from the small change in the fermion determinant caused by the increase
in Ly from 32 to 48. We also expect that similar small discrepancies could result from our
shift of fermion formalisms in the simulation from DWF to MDWEF. However, the differences

are so small that we can neglect in our study for QCD thermodynamics.

163 x 8 243 x 8 323 x 8

T (MeV) B i (Us) # (Us) i (Us)
139 1.633 | 8 0.46913(8 21 0.46898(2)

10 0.48407(2

(8)
149 1.671| 9 0.48491(3) | 16 0.48490(2) | 22 0.48488(1)
(2)
159 1.707 | 11 0.49777(4)

17 0.49783(2) | 23 0.49785(1
164 1.725 24 0.50406(1
168 1.740 | 12 0.50912(4
177 1.771 | 13 0.51916(4

19 0.51916(2) | 26 0.51913(1

(1)
(1)
18 0.50909(2) | 25 0.50911(1)
(1)
(1)
(1)

(4)
(4)

186 1.801 | 14 0.52845(3) | 20 0.52840(2) | 27 0.52844(1
(3)

195 1.829 | 15 0.53672(3 28 0.53674(1

Table 4.12: Summary of the average plaquette value for the various ensembles with m, »

200 MeV. The second row at T = 149 MeV is for the L, = 48 ensemble.

Fig. 4.3 displays a comparison of the average plaquette among different temperatures
and ensembles. It is transparent that the plaquettes for different volumes and input quark

masses agree very well.
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Figure 4.3: Plot of the average plaquette for ensembles with different volumes and pion

masses.
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323 %8 643 x 8

T (MeV) B | # (Uo) # (Us)
139 1.633 |29 0.468194(11) | 38  0.46819(2)

149 1.671 | 30 0.483823(9) | 39 0.483824(5)
154 1.689 | 31  0.490621(9
159 1.707 | 32 0.497145(8) | 40 0.497150(3)
168 1.740 | 34 0.508667(9) | 41 0.508676(8)
177 1.771 | 35 0.518892(6

186 1.801 | 36  0.528245(6

(9)
(9)
(8)
164 1.725 | 33 0.503497(8)
(9)
(6)
(6)
(6)

195 1.829 | 37  0.536612(6

Table 4.13: Summary of the average plaquette value for the various ensembles with m, ~

135 MeV.

4.4 Residual Mass

4.4.1 Measuring Residual Mass
Recall the PCAC relation for DWF in Eq. (2.39)
ALAY () = 2my R (x) + 208, ().

Assuming the midpoint contribution can be similarly described as an ordinary mass term in
the Symanzik effective theory [114] (leading low-energy contributions at large L and small
lattice spacing)

Lot = Locp(myp =0) + (Mg + Myes)7q (4.8)
it should behave at low energies in the same way as Js(x) with a coefficient, which is

proportional to m,.s as one would expect, i.e.

Jé’q = Myes J0 = Myes@V5T7q - (4.9)
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Thus we can calculate the residual mass from the ratio [115, 116, 114, 117]:

(22, .07(0))

xT

(£ 5. 0m(0)

R(t) = (4.10)
where no summations over b are implied. Here 7® can be any pion interpolating operator.
In our practical computation, it is chosen to be J2. At a sufficiently large time separation
t where the low-energy physics dominates, .Js, should have the form given in Eq. (4.9), and
R(t) should show a plateau at the value of ms. In numerical calculation, m,e is obtained
from the average value of R(t) over points in the plateau.

For finite temperature ensembles, a ratio R(x) of spatially separated correlation functions

is used instead of the temporal separated ones in Eq. (4.10).

4.4.2 Residual Mass Tuning

Enforcing a line of constant physics for DWF simulations often requires some fine tuning
of the input quark masses as the residual masses for most of the planned ensembles are not
known beforehand. It is thus extremely beneficial to determine the dependence of m,.s on
different variables such as L, 3, the Mobius coefficient ¢, etc.. In the rest of this section, we
will discuss our studies of such dependence and how they provided crucial guidelines that

helped us in determining the parameters for the MDWF simulations with physical pions.

Dependence of m,.e on L

The extent of the fictitious fifth dimension has an significant impact on the magnitude of
the residual chiral symmetry breaking of DWF', signaled by the additive mass renormalization
Myres- There exists an expression for the dependence of mye on Lg given in Eq. (2.45), and
rewritten below in a simplified form,

AL
eL + bLi, (4.11)

Myes = G
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where a, b and \ are the three parameters to be fitted.

While an explicit check for the validity of the form in Eq. (4.11) with dynamical fermions
requires a set of ensembles of different L, and is thus fairly expensive, a partially quenched
calculation is quite accessible. In order to determine the minimum L, that is compatible with
a physical pion mass for Shamir DWF formulation, we performed several partially quenched
calculation on a selected set of 162 x 8 ensembles.

The results are presented in Fig. 4.4. Each panel displays a fit result for the form of
Eq. (4.11) at a given temperature. The label of the dynamic ensemble and the input valence
quark mass is given in the legend. Given the fitted parameters and x?/dof shown in the
plots, Eq. (4.11) does indeed give a accurate description for the residual mass for a given
value of (.

The target value of the total light quark mass proposed in Table 4.4 is also marked in
the plots as a black dotted line. It is worth noting that the minimum L, required for a zero
input quark mass is about 40 at 7" = 159 MeV and about 60 T = 149 MeV. Naturally, at
T =139 MeV, which is absent from this study, the minimum L, would be even larger. These
constraints can of course be loosed slightly if we adopt a negative input quark mass but it
will not exempt us completely from the burden of a large Ls. Therefore it motivated us to
shift from plain DWF to the MDWF formalism to reduce the extent of the fifth dimension

significantly, especially for the ensembles below the pseudo-critical temperature.

mres Dependence on Mobius Coefficient ¢

In Mobius construction, when L, is sufficiently large and ¢ is not too large, ensembles
with fixed (b+ ¢)L4 are related by the equivalence relation presented in 2.3.4 and hence
should give the same residual mass. To verify the equivalence, we generated a dynamical
MDWTF evolution whose setup is identical to the T = 149 MeV, L, = 48 ensemble (run # 10)
except that Ly = 18, ¢ = 0.832 (we label it as run # ?7?) [57] and collected 950 thermalized
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Figure 4.4: L, dependence of m,e for partially quenched, 162 x 8 ensembles measured on
every 10 trajectory after thermalization using a point source and correlation function stud-
ied with increasing separations along the z direction. The corresponding run number and
valence quark mass is shown in the legend. The fitted parameters and y2/dof for the form in
Eq. (4.11) are also shown. The target total quark mass that corresponds to a physical pion

is marked with a dotted horizontal black line.
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trajectories. Again, we performed a partially quenched calculation with various L, and

compared it with the results from run # 10, which is shown in Fig. 4.5. After we normalize

x T T T T T T T T
run # 7?7:Mobius ¢ = 0.832, m;=1.73e-3 —+—
x Fit: (aeMs +b)/Ly -~
0.01 f \\ run # 10:DWF ¢ =0, my=1.73e-3 —*— |
Fit: (ae™ s +0)/Lg -
‘::;*::\
3 T
0.001 N i
EaS—_
0‘0001 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
(b+c)Ls

Figure 4.5: Comparison of m,es using a normalized (b + ¢)Ls for two sets of ensembles with

otherwise identical parameters except L, and c. A logarithm scale is used on the y axis.

the effective fifth dimension to be (b+ ¢)Ls, the equivalence of fixed (b+ ¢)Ls MDWF with
respect to myes is remarkable as the two fitted lines lie almost on top of each other for the
region Lg < 100.

This equivalence allows us to estimate m,. for MDWEF based on results from DWF
simulations. As we have explained in Section 2.3.4, when the Mo6bius coefficient ¢ passes a
certain threshold, there is a dramtic slowing down in the HMC evolution which overwhelms
the benefits obtained from a smaller L,. The threshold for ¢ is often located around the
point where m,e is minimized for a fixed L,. Hence we need to determine the combinations
of ¢ and L that will minimize the overall computational cost.

To this end, we performed another series of valence calculation with different ¢ on the
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162 x 8 DWF ensembles. Fig. 4.6 shows the results at T = 139 MeV for three different L.
Obviously, Ly = 16 MDWF cannot reduce m,. to be lower than the target m; with any
choice of ¢. Ly =20 can narrowly meet the requirement, but the Mobius coefficient could be
too close to the “critical slowing down” region. Therefore, we decided to adopt L, =24 and

¢ =1.5 in our practical simulation.

0,007 T T T T T T T
b L,=16, m=0 —+—
0.006 [ Ls=20, m=0 .
Ly=20, m;=0.00314
0.005 T Ly=24, m=0.00314 =8 ]
: Target m; = 0.00222 ------

. 0.004 ]
0.003 | 6 ]
0.002 [T N T 1

............ S
0.001 [ E .
0 Il Il Il Il Il Il Il

Figure 4.6: m,.s measured from a partially quenched calculation at 7' =139 MeV (run #38)
with Lg = 16, 20 and 24 and two valence quark masses. Target m that corresponds to a

physical pion is marked as a horizontal black line.

On the other hand, L, = 16 is large enough to satisfy the constraint imposed by m; for
all the other temperatures. The results for the partially quenched calculation with L, = 16
is shown in Fig. 4.7.

All these studies set a starting point for our choice of the input parameters of the MDWF
thermodynamics simulation with physical pions. One should keep in mind that they are

based on the partially quenched results and there is an appreciable dependence of m,.s on the
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input quark mass. Moreover, the parameter determining studies from the zero-temperature
ensemble contains errors as well. Therefore, the input quark masses we adopt in Table A.3
and 4.8 are by no means precise values that correspond to a line of constant physics with
a physical pion and kaon. However, with careful adjustments during the evolution, we are

able to stay close to the line of constant physics with an error less than 5%.



Chapter 5

Chiral Symmetry with Correlation

Functions

In this Chapter we will discuss Green’s functions constructed from the eight scalar and
pseudoscalar operators: 1,1y, Um0y, Uy5ily, UTiySy. Here 4y is a doublet of up and
down quark fields and {7;}1<;<3 the usual Pauli matrices. These operators are related by the
SU(2) x SU(2)g chiral symmetry of QCD and the anomalously broken U(1)4 symmetry.
In Sec. 5.1 we review the relations among these eight operators and their Green’s functions
implied by the SU(2), x SU(2)g and U(1) 4 symmetries, paying particular attention to the
degree to which these relations should hold at finite lattice spacing for the DWF formulation.

In Sec. 5.2 we present our numerical results, focusing on those relations implied by
SU(2) x SU(2)g chiral symmetry and examining their dependence on temperature. Some
empirical fittings for ygic are then discussed in order to locate the pseudo-critical temper-
ature. In the final section, Sec. 5.3, we examine the relations implied by U(1)4 symmetry,
including evidence for non-zero anomalous, U(1)4 symmetry breaking above the pseudo-
critical temperature 7T,, a non-vanishing asymmetry which disappears rapidly as the temper-

ature increases above T..

59
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The numerical results from m, ~ 200 MeV ensembles discussed in this Chapter are com-
plete, while those from m, » 135 MeV ensembles are preliminary. The connected susceptibil-

ities at volume 643 x 8 have not yet been measured at the time when this thesis is composed.

5.1 Preliminaries

In this section, we present a brief review of a variety of chiral observables and the relations
among them implied by the SU(2);xSU(2)r and U(1) 4 symmetries as illustrated in Fig. 5.1.

A detailed description can also be found in Ref. [35].

SU(2); x SU(2)x

X5,.conn T - q7’75%q< > 0:qq Xconn T 2Xdisc
Xconn 0: q_%q - > 1] q/)/g)q X5,conn 2X5,disc

SU(2), xSU(2)r

Figure 5.1: A graphical presentation for the symmetry transformations that relate the scalar

and pseudoscalar mesons in flavor singlet and flavor non-singlet channels.

The standard order parameter for the chiral phase transition is the single-flavor, light-
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quark chiral condensate,

5= - {Ta) (1)
1T 0InZ
1
- N3N (Teds ), (53)

where M is the single-flavor, light-quark Dirac matrix and the brackets (...) in the bottom
equation indicate an average over gauge fields. However, this quantity contains an ultraviolet
divergent contribution that is proportional to m,/a? for the case of a lattice regularization.
In order to remove this ultraviolet divergence, it is standard to introduce a subtracted chiral
condensate constructed from a weighted difference between the chiral condensates of the
light and strange quarks [118]:

Ay =xy-Tus (5.4)

s

Here X is defined using the strange quark Dirac matrix in a manner analogous to Eq. (5.3).
For domain wall fermions there is a further difficulty associated with the short distance
contributions to ¥, and the subtracted quantity A,;,. For a finite fifth dimensional extent,
Ly < oo, the DWF chiral symmetry is only approximate and residual chirally symmetry
breaking effects appear. The largest such effect is a small additive shift in the quark mass:
the residual mass m,.s mentioned in Chap. 2. Similar residual chiral breaking will appear
in ¥, and will be of order myes/a? if we express mye in physical units. However, since the
detailed mechanism which generates the residual mass is not directly related to that which
introduces the additive constant into ¥, the subtraction coefficient o that would be needed
to remove both the m,/a? and the O(mye/a?) terms in ¥; — X, is not known.

Thus, the subtracted quantity A;; defined in Eq. (5.4) will contain an unphysical,
O(myesfa®) constant which will decrease the utility of A;; computed in a DWF simula-
tion. In particular, we cannot compare A;, with the same difference of chiral condensates

obtained from other lattice fermion formulations. While this added unphysical constant does
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not depend on temperature, it does depend strongly on the gauge coupling g so the usual
procedure of varying the temperature by varying ¢ at fixed N, will induce an apparent tem-
perature dependence in this unphysical contribution to A; ;. However, the definition of A,
given in Eq. (5.4) (which differs from that used in the earlier paper [35]) does have a useful
property. As will be discussed in Chap. 6, this subtraction using for « the physical quark
mass ratio, a = i /M, will lead to a more convergent spectral expression for A ;.

Results for the quantities ¥;, ¥, and A;, are given in Tables 5.3 and 5.4. For each
configuration used in the calculation, the volume-averaged, chiral condensate is computed
from the right hand side of Eq. (5.3), using 10 Gaussian random volume sources to estimate
the trace. In the later part of this introductory section, we will use the Gell-Mann-Oakes-
Renner (GMOR) relation to define an improved, subtracted chiral condensate Kl,s, which
contains a much smaller unknown correction and can be compared with the results from
other formulations of lattice fermions.

The chiral condensate >; and the various subtracted versions discussed above can be
used to explore the vacuum breaking of SU(2), x SU(2)r and U(1)4 symmetry and their
restoration (or partial restoration) as the temperature is increased. However, much more
information can be obtained from the susceptibilities defined as integrated correlation func-

tions of the eight local operators,

o o= P (5.5)
5 = T (5.6)
no= s (5.7)
T = T sy (5.8)

Such susceptibilities are both much more sensitive to the transition from the ordered to the
disordered state and also allow independent measures of SU(2), x SU(2)g and U(1) 4 sym-
metry breaking. The operator quadruplets (o, 7?) and (7, 0?) each transform as an irreducible

4-dimensional representation of SU(2)y x SU(2)g. The four pairs, (o,n), (6, 7)1<i<3 each
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transform under the simple, two-dimensional representation of U(1)4. We then identify the

four distinct susceptibilities which are allowed by isospin symmetry:

Xo = f d*z (o(z)o(0)) (5.9)
6 = 3 [ d'z (57(2)8'(0)) (5.10)
W = 5 [ de@no) (5.11)
Xr = % / d*z (7‘(‘2(1])71'1(0» (5.12)
where the factor 1/2 has been introduced so that these correspond to the single flavor quan-
tities that are typically computed using lattice methods and no sum over the repeated index

1 is intended. In light of the multiplet structure defined above, the following relations are

implied by SU(2);, x SU(2)g and U(1)4 symmetry (c.f. 5.1):

Xo = Xn

Xn = X8
Xoo = X U(1) . (5.14)
Xr = Xs

These susceptibilities can be written in terms of the Dirac operator M;. For the correlators

of the operators 7t and ¢*, which introduce non-zero isospin, only connected combinations
) )

appear:
1 _ .
X = Tr (s My M) (5.15)
1
Y = To (M M) (5.16)

where the notation “Tr” indicates a trace over spinor and color indices as well as the space-
time volume. The o and n susceptibilities are a combination of the connected parts which

appear in ys and x, respectively and a disconnected part:

Xo X5t 2Xdisc (517)

X77 = Xﬂ_2X57disc (518)
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where the disconnected parts Xaqise and xs qgisc are given by

Xdise = NglNT {{(meag 1)) = (e 1)) (5.19)

((Tr]\/[l_l%)Q). (5.20)

X5,disc -
N3N,

As is conventional, we have removed the truly disconnected piece 2N3N,¥? from the expres-
sion for x, given in Eq. (5.17). This extra term would appear if the right hand side of the
definition given by Eq. (5.9) where completely evaluated. The factor of two that appears in
Egs. (5.17) and (5.18) was mistakenly omitted from the published version of Ref. [35] and
arises when these relations are written in terms of single flavor quantities. The signs of Ygisc
and x5 gisc have been chosen so that each is positive.

We can combine Eqs. (5.13), (5.17) and (5.18) to obtain relations between the U(1)4

symmetry breaking difference x, — x5 and xaise and xs.aisc if SU(2)r x SU(2) g symmetry is

assumed:
Xe=Xs = (Xr=Xo)+(Xo— X6) (5.21)
= 2Xdisc (522>
= 2X5,disc (523>

where the second equation is true if the SU(2), x SU(2)g relation x, = x, of Eq. (5.13) is
valid while the third is obtained by a similar manipulation and the second SU(2), xSU(2)g
relation xs = xy-

The connected Green’s functions can be computed from the lattice by integrating the
two-point correlators from a point source over the whole volume. This method was used for
the calculations on the 163 x 8 and 243 x 8 ensembles with m, ~ 200 MeV. On the 323 x 8
ensembles with either pion mass we achieved a reduced statistical error by using instead
a random Z, wall source. The disconnected parts are calculated by averaging products of
chiral condensates where the stochastic evaluation of the trace appearing in each factor is

obtained from different stochastic sources.
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The SU(2), x SU(2)g relations given in Egs. (5.13) should be valid in the continuum
for T > T, when SU(2)r, x SU(2)g becomes an accurate symmetry. They should also be
true when 7" > T, in a lattice formulation which preserves chiral symmetry. However, for
our DWF formulation we should expect deviations arising from residual chiral symmetry
breaking. For low energy quantities, m,e should provide a good measure of this residual
chiral symmetry breaking, with effects that are well described as arising simply from the
total bare quark mass m; = My + Myes.

However, the four susceptibilities being discussed are not simple long-distance quantities
since the space-time integrals that appear in their definitions include points where the two
local operators collide. In fact, the connected parts of the susceptibilities contain quadratic
divergences while the disconnected parts diverge logarithmically. The presence of quadratic
divergences in the connected susceptibilities, e.g. x, and ys, can be easily deduced from
the Wilson operator product expansion and dimensional arguments. The product of two
dimension-three fermion bilinears separated by a space-time distance x should contain a
constant behaving as 1/2% as x - 0. When integrated over space-time to form the suscep-
tibility, this 1/25 term will give a quadratic divergence. For the disconnected parts of the
susceptibilities, a similar dimensional argument applies. However, the disconnected parts
are constructed from the product of two independent fermion loops, each evaluated as a
separate trace. For the case of scalar or pseudoscalar susceptibilities, chiral symmetry re-
quires that each trace be proportional to m; so the product will behave as m?/z* leading to
a logarithmic divergence multiplied by the very small factor m?. Thus, if the continuum reg-
ulator respects chiral symmetry, then the SU(2), x SU(2)r and U(1)4 breaking differences
Xr = Xo» X6 = Xns X — Xs and X, — X, will all contain only small, logarithmic singularities
proportional to m? In(my;/A) if evaluated order-by-order in QCD perturbation theory, where
A is the continuum cutoff scale.

In our lattice-regulated domain wall theory, the residual chiral symmetry breaking will
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result in these same differences containing small unphysical pieces of order m2,,. As in the

res’

case of the chiral condensate, m,.s does not literally enter these differences but instead we

2

expect that mz

will provide a reasonable estimate of their size. Note, when expressed in
physical units myes ~ e7*%s/a so that our estimate m2, ~ e2%Ls /a2 of a chiral symmetry

breaking difference remains quadratically divergent but is suppressed by the same factor

that makes m?2

2. small. (Here, for simplicity, we assume that the residual chiral symmetry

breaking effects fall exponentially with increasing L, with an exponent «, unrelated to the «
used earlier in this Section.) For the purposes of this paper m2, ~ (10 MeV)?, a quantity that
is negligible on the (Aqcp)? » (300 MeV)? scale of the physical parts of the susceptibilities
being subtracted.

Finally we examine two additional identities that hold in the continuum limit. The first

is the relation between xs qisc and the topological susceptibility xiop. This relation begins

with the identity

. 1
Qtop = my Tr {%M} (5.24)

which for the continuum theory will hold for each gauge configuration. Here for clarity we
have introduced the quantity mj to represent the light quark mass in the continuum theory.
This is easily understood by using a sum over Dirac operator eigenvectors to evaluate the
trace and recognizing that the result is simply the number of right- minus the number of
left-handed zero modes [119] which is equal to Qop by the Atiyah-Singer theorem. Recall
that

92 a Ta
Qu = 55— [ d'zFg,(@)Fa (). (5.25)

= 1 . . . . .. .
Here F,, = 5%, €upoFpo Where €,,,, is the usual anti-symmetric Levi-Civita tensor with

€1234 = 1.

The desired identity:
Xtop = (mlc)2X5,disc (526)

is simply the ensemble average of the square of Eq. (5.24). This continuum equation should
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also relate DWF lattice quantities provided the total bare quark mass m is used in place of
the continuum mass m§. As was explored at length in Ref. [35], this relation is badly violated
for our lattice calculation because at our relatively coarse lattice spacing the quantity Qiop
is difficult to compute directly. The right hand side of Eq. (5.26) appears to nicely define
the topological susceptibility giving the same answer even when the light quark quantity
M2 X5 dise 1S replaced with the corresponding strange quark quantity or the product of strange
and light quark expressions. (Note the right hand side of Eq. (5.24) is expected to give the
same result on a given gauge configuration independent of the quark mass.) For completeness
Xs.dise/T? and xiop/ (y1)? are tabulated in the two right-most columns of Table 5.3, where
Xtop 18 computed using the procedure described in Ref. [35]. As can be seen in Table 5.3,
their disagreement is substantial. However, the fractional discrepancy does decrease with
increasing temperature (and decreasingly lattice spacing) as should be expected if this is a
finite lattice spacing artifact. We will not make further use of yiop.

The second identity is the usual Ward identity connecting x, and the chiral condensate.
This can be derived in the continuum for non-zero quark mass by evaluating the following

integrated divergence:

o
Il

[, (olr (A (@)7(0)) o) (5.27)
f d*z (0|T (-2myim*(x)7*(0))]0) - 2i (0| (0)|0) 5 (5.28)

where a and b are isospin indices. Here the left term in the second line comes from the
divergence of the axial current, 0,A(z)*, while the right term results from the equal-time
commutator that arises when the partial derivative with respect to the time is brought inside

the time-ordered product. The result is the Gell-Mann-Oakes-Renner relation [113]:
miX. = 2. (5.29)

While this relation should be true in a continuum theory which has been regulated in a

chirally symmetric way, both the right- and left-hand sides of Eq. (5.29) contain quadratic
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divergences as discussed earlier. Thus, we should not expect this equation to be obeyed in
our DWF theory unless we take the limit of infinite L, at finite a so that our theory has an
exact chiral symmetry.

However, this equation has two important uses. First, we can repeat its derivation in our
lattice theory using the partially conserved, 5-dimensional axial current A% constructed by

Furman and Shamir [38] and the divergence equation obeyed by 4%
0, A = ~2imm® + 2J2, (5.30)

which has also been discussed in Eq. (2.39) in Chap. 2. When used in the above derivation

this relation yields the lattice identity:
X + f A4z (0T (i s, (2)27%(0))) = 25, (5.31)

for a =1, 2 and 3. In the usual application of Eq. (5.30), iJg, is replaced in Eq. (5.31) by
Myres™® which would provide a DWF derivation of Eq. (5.29) in which the continuum light
quark mass mJ is replaced by 7y = my +myes. However, the low-energy relation z'ng N Mypes T
cannot be used here because short-distances are involved. Nevertheless, we can simply
evaluate both sides of Eq. (5.31) in our lattice calculation as a check of this discussion and
find agreement within errors. Our numerical results for the three quantities which appear
in Eq. (5.31) are tabulated in Tables 5.1, 5.2, 5.3, and 5.4 as well as the right- and left-hand
sides of Eq. (5.31) after a common factor of 2 has been removed.

We also plot in Fig. 5.2 both the left- and right-hand sides of Eq. (5.31) as well i, x%
(¢ = 1,s), as the result of the naive use of the low-energy relation iJg, ~ MyesT®. The left
panel of Fig. 5.2 shows these quantities for the light-quark case discussed here while the right
panel shows the same quantities computed using the strange quark. In Tables 5.1 and 5.2

and Fig. 5.2, the mixed susceptibility appearing in Eq. (5.31) is represented by Af,:

A‘}npzfd4x<O|T(iJ5(3)(x)7r(‘1)(O))). (5.32)
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where in this equation we construct the quark bilinears Jég) and 7(9 from a single flavor of
quark specified by ¢ = [ or s and include only connected graphs, in which the quark fields
are contracted between Js, and 7.

In these tables and figures and those which follow, when a combination of quantities that
were computed separately are combined, such as m;xt +Al | we will use the jackknife method
to compute the error on the combined quantity so that the effects of statistical correlations
between the quantities being combined are included. However, for simplicity, if a computed
renormalization factor, factor of a expressed in physical units or factor of m,e appears, these
factors usually have smaller errors than the quantities they multiply and their fluctuations
will be ignored.

The top panel of Fig. 5.2 clearly reveal the perfect agreement between >, and qufr+Afnp
for both light and strange quarks as enforced exactly by the DWF Ward identity. The
finite discrepancy between i, x5 and the two quantities above implies short-distance effects
that cannot be represented by an additive m,s. As expected, the discrepancy is most
pronounced at the lowest temperature where the residual chiral symmetry breaking is the
most significant. Since a similar Ward identity holds for Mobius fermions, similar patterns
also exist in the lower panel of Fig. 5.2 in which the results from the m, ~ 135 MeV are
presented. Furthermore, the reduced residual chiral symmetry breaking for these Mobius
ensembles is also reflected in the much suppressed short-distance effects, signaled by the
narrowed or even closed gap between ¥, /m,x% + Al and X7

A second use of Eq. (5.29) is to provide a method to compute a more physical result for
A s in a DWF calculation. Since no chiral limit has been taken in the continuum derivation
of Eq. (5.29), it will hold equally well if applied to either strange or light quarks. If we use

the resulting equations for ¥; and X, to determine the weighted difference A; ; we obtain:

Aps =m (Xa, = Xa,) » (5.33)

where we use the symbol x,. to represent the “pion” susceptibility that results if the light
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BIT(MV) B | AL TS Ag, /T8 | Ml mouiln,
21 139 1.633 13.34(8) 1.833(11) 9.94(6) 41.21(2)
22 149 1.671 11.14(14) 1.939(10) 7.11(10) 36.52(3)
23 159 1.707 | 4.77(7) 1.038(6) 5.71(9) 33.71(5)
24 164 1.725 2.99(7) 0.757(5) 5.05(10) 32.00(5)
25 168 1.740 | 1.91(6) 0.576(5) | 4.16(11)  30.70(7)
26 177 1.771 0.83(3) 0.329(2) 3.23(9) 27.94(3)
27 186 1.801 0.33(1) 0.193(2) 2.39(6) 25.42(4)
28 195 1.829 0.18(1) 0.118(1) 2.15(6) 23.20(2)
16| 149  1.671| 11.6(7)  2.02(7) | 7.5(5)  36.6(3)
17| 159  1.707 | 4.3(3) 1.05(4) | 5.2(4)  33.6(3)
18| 168  1.740 | 1.96(15)  0.61(3) | 4.3(3)  31.2(2)
19| 177 1771| 0.79(12)  0.33(2) | 3.1(3)  28.0(2)
20| 186  1.801 | 0.31(2)  0.184(7) | 2.35(8)  25.2(1)
8 139 1.633 | 12.6(2) 1.825(21) | 9.30(18)  41.26(8)
9 149 1.671| 10.1(2) 1.922(13) | 6.34(14)  36.43(6)
10| 149  1.671| 4.84(8)  0.815(7) | 8.40(12) 38.24(6)
11| 159  1.707 | 4.09(16) 1.034(10) | 4.92(19)  33.64(7)
12| 168 1.740 | 1.83(11) 0.573(7) | 4.00(19)  30.73(8)
13| 177 1771 | 0.80(7)  0.326(4) | 3.15(19)  27.89(7)
14| 186  1.801| 0.35(3)  0.196(3) | 2.46(11)  25.50(6)
15| 195  1.829| 0.17(1)  0.118(1) | 2.10(5)  23.22(4)
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Table 5.1: The unrenormalized iso-vector pseudoscalar and mixed pseudoscalar/mid-point

susceptibilities from ensembles with m, ~ 200 MeV for the light and strange quarks as well as

the combinations (mgx%+Afy)/T? for ¢ = 1, s, which appear in the Ward identity, Eq. (5.31).

The Ward identity requires second- and first-from-right columns to agree with the fourth

and the fifth columns from the left in Table 5.3 respectively. Moving from top to bottom,

the three sections in this table correspond to the volumes 323 x 8, 243 x 8 and 163 x 8.
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Figure 5.2: The left panel shows the light-quark chiral condensate, ¥;, and the sum of

miXr and the mixed m - J5,/2 susceptibility to which it should be equal according to the

Ward identity in Eq. (5.31). Also shown is i x, which would equal ¥, if m,.s were the

only effect of residual chiral symmetry breaking. The right panel shows the same quantities

computed using the strange instead of the light quark. The top panel displays results from

my, ~ 200 MeV while the bottom panel from m, » 135 MeV. Similar agreement between the

right and left hand sides of Eq. (5.31) is found for the 242 and 163 volumes, as can be seen

from Table 5.1
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B TOMV) B AT Ay T | Mt Mtk
29 | 139 1.633 | 8.59(8) 0.532(5) | 9.56(9)  45.08(4)
30| 149  1.671 | 5.37(7) 0.442(3) | 6.58(8)  41.07(3)
31| 154 1.689 | 3.02(6) 0.306(2) | 5.24(10)  39.31(4)
32| 159 1707 | 1.76(4) 0.227(2) | 4.42(8)  37.68(3)
33| 164 1.725 | 0.95(3) 0.171(1) | 3.12(8)  35.70(3)
34| 168  1.740 | 0.65(3) 0.126(1) | 2.65(10)  34.40(4)
35| 177 1771 | 0.27(1) 0.085(1) | 1.65(5)  31.30(2)
36| 186 1.801 | 0.12(1) 0.048(1) | 1.27(4)  28.70(2)
37| 195  1.829 | 0.06(1) 0.034(1) | 1.01(2)  26.55(2)

Table 5.2: The same quantities as tabulated in Table 5.1 for the ensembles with m, =
135 MeV. The Ward identity identity requires second- and first-from-right columns to agree

with the fourth and the fifth columns from the left in Table 5.4 respectively.

quark mass is replaced by that of the strange quark and add the subscript [ to the usual
pion susceptibility for clarity. From the perspective of the continuum theory both sides of
Eq. (5.33) provide an equally good value for the subtracted chiral condensate. Neither quan-
tity contains a quadratic divergence and the much smaller logarithmic divergences present
on both sides are equal. For a DWF theory with residual chiral symmetry breaking this
equation does not hold and the left hand side A; ; contains an unphysical additive constant
O(myesfa®). However, the right-hand side is much better defined with no 1/a? term. Thus,
we can use the right-hand side of Eq. (5.33) to provide a more physical result for A; ¢ which
will contain only a small, unphysical piece of order m;m?2In(msa). Thus, we can define an

improved value for A g:

zl,s = ml (Xm - st) (534)

which we will use to compare with spectral formulae and with the results for A, ; from other
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lattice fermion formulations.

5.2 Chiral Symmetry Restoration

In this section we present and discuss our numerical results for the chiral condensate and

for the disconnected chiral susceptibility as a function of temperature.

5.2.1 Chiral Condensate

Fig. 5.3 shows the Monte Carlo time histories of the light-quark chiral condensate for
seven of the temperatures studied with m, ~ 200 MeV. The time evolutions for the 323 x 8
ensembles are displayed in the top left panel, those from 243 x 8 in the right left and 16*8 in
the bottom. The evolutions of the light-quark condensates from all sets of ensembles appear
to follow the same trend. For the lower temperature region (7" < 168 MeV), the light quark
condensate fluctuates around its average value. However, as temperature grows higher, the
fluctuations can better be described as upward spikes added to an otherwise flat base line.

This behavior is typically seen in finite temperature DWF calculations and arises because
above T, the main contribution to the chiral condensate comes from isolated, near-zero
modes [120]. These modes become increasingly infrequent as the temperature is increased
but, when present, produce a noisy, non-zero chiral condensate. The noise results from
the relatively small space-time extent of each zero mode which is therefore sampled in our
stochastic determination with relatively few random numbers.

Such behavior becomes most pronounced for 7" > 186 MeV in the 323 x 8 calculations. At
T =177 MeV, the 242 x 8 Monte Carlo time evolution shows this characteristic plateau-spike
structure more distinctly than does the comparable 323 x 8 time history. This suggests a
lower pseudo-critical transition temperature for the smaller volume or that the larger 323

volume supports a larger number of such zero modes, reducing the size of the intervals when
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none are present and the chiral condensate is nearly zero.

If the correlation length is finite, the fluctuations of chiral condensate from the gauge
noise should be suppressed by a factor in proportion to v/V. Such volume effect can be
observed from the evolution plots with different lattice sizes.

The Monte Carlo time histories of the light-quark chiral condensate for nine of the tem-
peratures studied with m, ~ 135 MeV are illustrated in Fig. 5.4. One stream of evolution at
each temperature is presented for the 323 x 8 lattices (left panel) and for the 643 x 8 (right
panel). The suppression of fluctuation from the volume effect is transparent from the com-
parison of the two panels. At the 643 x 8 volume, the short-term fluctuations can be easily
seen to almost absent by examining the plot.

Moreover, the fluctuations of the chiral condensate are also inversely related to the quark
mass, an effect which can be seen from a comparison of the 323 x 8 ensembles with different
light quark masses. The plateau-spike structure starts to emerge at 7' = 168 MeV and
becomes very pronounced at T = 177 MeV, which happens at lower temperatures than the
m, ~ 200 MeV ensembles. This indicates a lower pseudo-critical temperature for the physical
pion ensembles as compared with those for heavier pions.

In the lower panel of Fig. 5.4, we also present four averaged time histories of the light
quark chiral condensate on the 323 x 8 lattice with m, ~ 135 MeV at T = 154 MeV, which
is chosen to be very close to the pseudo-critical temperature. Two of the evolutions started
with ordered ensembles (labeled as “ord” in the figure) while the other two with disordered
ensembles (labeled as “dis” in the figure). Each point with separation of 20 configurations
in the plot is an average of 1,1, on 20 consecutive configurations All four streams converge
quickly, no later than 200 trajectories, and no signal for the “two-state” fluctuation expected
for a first-order transition are observed. This provides clear evidence for the absence of a
first order phase transition for physical pion mass.

The ensemble averages of the light, subtracted and strange chiral condensates are sum-
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Figure 5.3: Monte Carlo time histories of the light-quark chiral condensate 3;/T? for the
323 x 8 (top left), 243 x 8 (top right) and 163 x 8 (bottom) ensembles with m, ~ 200 MeV.
(Only the longest streams from 16 and 17 are displayed.) There is a vertical offset of 5
units between successive data sets with the g = 1.829 results unshifted. Note that the time
evolution corresponding to 5 = 1.725, 323 x 8 (24) behaves in a similar manner to those of
its neighboring ensembles, but is omitted from the graph to preserve a uniform separation

between each ensemble.
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Figure 5.4: Monte Carlo time histories of the light-quark chiral condensate 3;/T? for the
323 x 8 (top left) and 643 x 8 (top right) ensembles with m, ~ 135 MeV. (Only the longest
streams at each temperature are displayed.) There is a vertical offset of 5 units between
successive data sets from the 323 x 8 ensembles with the 5 = 1.829 results unshifted. The
data from the 642 x 8 ensembles are vertically aligned with the corresponding 322 x 8 results.
The bottom panel plot the four streams of time histories of the light-quark chiral condensate
at T = 154 MeV. Each point represents the average of measurements made with 10 random

sources on each of 20 successive configurations.
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marized in Tables 5.3 and 5.4. The temperature dependence of the light and the subtracted
condensates is also illustrated in Fig. 5.5. As that figure shows, for the m, ~ 200 MeV
ensembles, results from 323 x 8 and 243 x 8 ensembles agree well throughout the transition
region, whereas those from the 163 x8 ensembles show an appreciable discrepancy for T' < 168
MeV, indicating a small but well-resolved finite volume effect. For the m, » 200 MeV en-
sembles; both volumes give very similar results for all the temperatures under inspection,
which suggests that 323 x 8 should be large enough even for the physical pion lattices.

Due to the m,/a? divergence in the chiral condensate, the agreement of 3; between
different pion masses depends on the subtraction scheme. Without subtraction, the divergent
piece dominates at high temperature, where ¥; differs between ensembles with different pion
mass (upper panel in Fig. 5.5). With the subtraction scheme of Eq. 5.4, they agree well at
temperatures above the transition region but differ at low temperatures. With 5173 defined

in Eq. (5.34), they tend to be consistent for all temperatures.

5.2.2 Chiral Susceptibilities

A second measure of the restoration of SU(2), x SU(2)g symmetry is the two differences
Xr—Xo and x,—xs, following Eq. (5.13). These two SU(2),xSU(2) g-breaking differences are
plotted in Fig. 5.6. The quantity x,— X, shows the behavior that might be expected from the
temperature dependence of the chiral condensate shown Fig. 5.5. A large SU(2);, x SU(2)g-
breaking difference is seen for 7' < 159 MeV which becomes zero for T' > 168 MeV with
m. ~ 200 MeV and T > 164 MeV with m, ~ 135 MeV. A finite small SU(2). x SU(2) -
breaking difference is still present at 7' = 164 MeV with m, ~ 200 MeV. The second difference
Xn — Xs is more surprising, being essentially zero throughout our temperature range. While
we do not have a crisp explanation for this unexpected SU(2). x SU(2)g symmetry below
T, we do expect this difference to vanish for 7' > T, and to be small relative to x, — x, for

T < T, since the large value of x, reflects the small pion mass while the §, o and n are all
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# T (Mev) ﬁ 2l/czj3 ES/T3 Al,s/jﬂ’3 Xdisc/T2 X5,disc/T2 Xtop/(fflljﬂ)2

17| 159  1.707 | 5.58(10) 33.68(3) 2.66(10)  36(3

21| 139  1.633 | 10.07(4) 41.27(2) 6.40(4)  20(2)  118(7) 261(11)
22| 149  1.671| 7.03(6) 36.48(2) 3.84(5)  28(3)  94(8) 177(11)
23| 159  1.707 | 5.80(6) 33.73(2) 2.83(6)  33(3) 70(8) 118(10)
24| 164  1.725 | 5.02(7) 32.04(3) 2.16(7)  38(3)  49(4) 78(4)
25| 168 1.740 | 4.16(8) 30.72(3) 1.46(7)  37(3)  38(5) 54(4)
26| 177 1771 3.17(5) 27.94(2) 0.71(5)  22(2)  24(3) 37(3)
27| 186 1.801 | 2.46(4) 25.38(2) 0.22(4)  12(2) 10(2) 15(2)
28 | 195  1.829 | 2.15(3) 23.20(1) 0.14(3)  7(1) 10(1) 15(2)
16 | 148  1.671| 7.10(6) 36.53(2) 3.90(6)  31(2 89(5) 165(7)

(6)

(6)

(3)

(2)

(2)
(2)
(2)
(3)
(3)
(2)
(2)
(1)
(2)
(3)
18| 168 1.740 | 440(10) 30.84(4) 1.69(10)  32(3
(3)
(2)
(4)
(5)
(3)
(6)
(7)
(6)
(4)
(3)

(2)

(3)

(3)  47(6 67(6)
19| 177 1771 3.03(7) 27.90(3) 0.57(7)  19(2)  21(3 32(3)
20| 186  1.801 | 2.58(6) 25.41(2) 0.34(6)  13(2) 14(2 18(2)
8 | 139 1.633]9.26(13) 41.02(4) 5.61(12) 36(3)  113(7) 252(11)
9 | 149  1.671|6.26(12) 36.42(5) 3.07(12) 44(3)  89(6) 159(6)
10| 149  1.671 | 8.39(10) 38.30(3) 5.00(10) 41(2)  90(6) 168(7)
11| 159  1.707 | 5.25(17) 33.81(6) 2.27(16) 43(4)  55(6) 97(7)
12| 168  1.740 | 4.03(18) 30.66(7) 1.33(18) 35(5)  37(5) 60(7)
13| 177 1771 | 3.16(15) 27.88(6) 0.71(15) 25(4)  24(4) 36(4)
14| 186  1.801 | 2.44(9) 25.43(4) 0.2009)  11(4) 9(3) 21(6)
15| 195  1.829 | 2.10(5) 23.22(3) 0.09(5)  6(2) 6(2) 11(2)

Table 5.3: The unrenormalized chiral condensates and disconnected chiral susceptibilities
for ensembles with m, » 200 MeV. The two right-most columns should agree according to
Eq. (5.26). As discussed, we attribute their large difference to inaccuracy in the strong-
coupling measurement of xi.,. Moving from top to bottom, the three sections correspond to

the volumes 322 x 8, 243 x 8 and 163 x 8.
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B TMV) B | YT ST AT Xaw/T? Xoise/ T?
20 | 139 1.633 [ 9.59(3) 45.08(1) 9.43(3) 44(2)  232(9)
30 | 149 1671 |6.70(4) 41.09(1) 6.58(4) 67(3)  186(7)
31| 154  1.689 | 5.25(6) 39.30(1) 4.70(6) 79(4)  140(7)
32| 159 1707 [ 4.42(5) 37.70(1) 3.62(5) 7L(3)  100(5)
33| 164  1.725 [ 3.32(5) 35.79(1) 246(5) 63(3)  79(5)
34| 168 1.740 | 2.57(6) 34.31(1) 1.69(6) 55(4)  61(7)
35| 177 1771 [1.63(3) 3L34(1) 0.73(3) 22(2)  23(2)
36 | 186  1.801 | 1.25(2) 28.70(1) 0.37(2)  13(1) 14(2)
37| 195  1.829 | 1.04(2) 26.55(1) 0.20(2)  8(2) 7(1)
38| 139 1.633 | 9.69(6) 45.08(2) 9.52(6) 42(9)  213(37)
39| 148 1671 |6.76(3) 41.07(1) 6.64(3) 65(5)  187(11)
40 | 159 1707 | 4.46(3) 37.68(1) 3.65(3) 75(7)  120(9)
41| 168  1.740 | 2.53(6) 34.31(1) 1.65(6) 67(14)  58(15)

Table 5.4: The same quantities as are tabulated in Table 5.3 for the ensembles with m, »
135 MeV. The topological charge is not measured for these ensembles. Thus, the X0, column
is excluded. Moving top to bottom, the two sections correspond to the volumes 323 x 8 and

643 x 8.
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Figure 5.5: Comparison of light-quark (upper), subtracted (lower left) and improved sub-
tracted (lower right) chiral condensates computed on different volumes with different pion
masses. For m, ~ 200 MeV, the 323 and 243 volumes agree reasonably well for all tem-
peratures but are 5-10% larger than the corresponding values from the 163 volume for
T < 168 MeV. The results appear to be volume independent for 7" > 168 MeV. Results
from m, ~ 135 MeV agree very well at all temperatures, but differ from the heavier pion

mass results. The discrepancies depend on the subtraction scheme.
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expected to be relatively massive below T..
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Figure 5.6: The two SU(2), x SU(2)z-breaking susceptibility differences yMS — xMS and
Xg/TS - anst plotted as a function of temperature for our three spatial volumes: 163, 243 and
323 with m, ~ 200 MeV as well as for 323 with m, ~ 135 MeV. For temperatures of 168 MeV
(164 MeV for m, ~ 135 MeV) and above these differences are consistent with zero and the
expected restoration of chiral symmetry above T.. The quantity x, — x, becomes very large
below T, reflecting the small mass of the pseudo-Goldstone m meson below T,. In contrast,
the second difference x,, — x5 remains relatively small as the temperature decreases below T¢,

reflecting the relatively large masses of the ¢ and 1 mesons.

While the chiral condensate is the order parameter for the chiral transition, its strong ap-
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parent temperature dependence results from a combination of the finite temperature physics
of interest and its dependence on the lattice scale as a dimension 3 operator. (This can
be recognized by noting that we often discuss the dimensionless quantity >;/7° which will
change significantly with temperature simply because of the 1/T3 factor.) The location of the
pseudo-critical temperature is much more easily seen by examining the disconnected chiral
susceptibility xgise. This has dimension 2 and so varies a little less strongly with the lattice
scale (which we are changing to varyint 7" on our N, = 8 lattice) and shows a dramatic peak
near the transition which can be used to define the the pseudo-critical temperature T, as
discussed in Chap. 3. Numerical results for ygisc before renormalization are presented in Ta-
ble 5.3 for ensembles with m, ~ 200 MeV and in Table 5.4 for ensembles with m, ~ 135 MeV.
The corresponding normalized values in the MS(u = 2 GeV) scheme are listed in Tables 5.5
and 5.7 in order to allow a comparison with results from the staggered formalism. Suscepti-
bilities normalized in the MS scheme at 2 GeV can be obtained from the directly-computed
lattice quantities using the relation:
2
X = (—Z ! ) X (5.35)
my—MS

The renormalization factor L NS 19 discussed in Chap. 6 when we discuss the renormal-
ization of the eigenvalue distribution. They are obtained from the dependence of the pion
mass, expressed in physical units, on the input quark mass and the known value of m;

which corresponds to the physical value of m, [112]. These values for Z ;

m —>

s are listed in
Table 6.4.

The dependence of the renormalized X gisc On volume is shown in the left panel of Fig. 5.7.
At T = 168 MeV and above the disconnected chiral susceptibilities from all volumes with
m, ~ 200 MeV agree within errors. For T" > 177 MeV, they further converge to results from
the m, ~ 135 MeV ensembles.

However, at lower temperatures there is a large discrepancy between the 163 x 8 and the

323x8 ensembles with m, » 200 MeV which becomes larger as temperature decreases. Results
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from 243 x 8, fall in between, although they tend to lie closer to the 323 x 8 points. This
volume effect is predicted with the O(4) finite volume scaling behavior in Refs. [121, 122].
For ensembles with m, ~ 135 MeV, the disconnected chiral susceptibilities from volumes 323
and 643 are consistent, though the errors for the results from the larger volume are still
substantial. This is another piece of evidence strongly in favor of the absence of a first order
phase transition.

Since we are studying only a single value of N, it is premature to draw a definite quan-
titative conclusion about the pseudo-critical transition temperature. However, a qualitative
examination of the left panel in Fig. 5.7 for ensembles with m, ~ 200 MeV suggests that a
peak in ygise occurs for the 162 and 243 volumes at approximately 160 MeV and that this
peak position increases to slightly above 165 MeV as the volume is increased to 323. For
ensembles with m, ~ 135 MeV, a distinct peak can be observed for the 32% volume at the
T = 154 MeV point, while the curve for the 648 volume with fewer points and larger error-bars
is peaked around T = 160 MeV. A quantitative extraction of the pseudo-critical temperature
using a empirical formula will be discussed in the next subsection Sec. 5.2.3.

The right panel of Fig. 5.7 compares both the m, » 200 MeV, DWF and m, » 135 MeV
MDWTF results at volume 323 x 8 for ygisc With those obtained from staggered fermions using
an 483 x 12 volume and the HISQ and ASQTAD staggered actions with m, = 161 and 179
MeV respectively [5]. Again, the disconnected chiral condensates are consistent among these
three methods for 7' > 175 MeV. However, the ASQTAD results lie substantially below the
DWF and HISQ results for temperatures at and below the transition region. The HISQ
results are in good agreement with the 323 x 8 m, ~ 200 MeV DWF results. However, this
agreement appears to be coincidental, since the HISQ results are obtained for a quoted pion
mass of 161 MeV, significantly smaller than the 200 MeV pion mass of the DWF ensembles.
The expected strong dependence of ygisc near T, on the pion mass suggests that m, = 160

MeV DWF results would lie above those found with HISQ. The discrepancy between the
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DWF and ASQTAD results and the expected discrepancy with comparable HISQ results
are likely explained by lattice discretization errors associated with staggered taste symmetry
breaking. The disconnected chiral susceptibilities from the DWF ensembles with physical

pions lie well above those with heavier pions for 7" < 168 MeV.
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Figure 5.7: The left panel compares yMS M5 computed using DWF on 323, 24% and 16° volumes
with m, ~ 200 MeV. Significant volume dependence can be seen between 323 and 162, while
the 242 results agree with those from 323 within errors. The left panel also plots x dlfc from
DWF ensembles with m, » 135 MeV on 322 and 64 volumes, where no substantial volume
effect is observed. The right panel compares the 323, N, =8 DWF results for XMSSC with those
from staggered fermions on a 483 x 12 volume using both the ASQTAD and HISQ actions [5].

In each case Xdlsc is renormalized in the MS(p = 2 GeV) scheme.

5.2.3 Determining 7.

In this subsection, we intend to determine the pseudo-critical temperature from our
results for the disconnected chiral susceptibilities with m, ~ 135 MeV.
If the QCD phase transition is described by the universality class of three-dimensional

O(2) or O(4) model the scaling function for the order parameter (subtracted chiral conden-
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sate) and its susceptibilities (the full chiral susceptibilities) should behave as one of the two
shown in Fig. 5.8. Details of the scaling analysis as well as the effects of finite volume can

be found in Refs. [123, 124, 122, 125].

0@ ——
035 O(4) ——

‘ 0(2) T
o4) —

fx(2)

0.5

0.05

Figure 5.8: The left panel shows the scaling function for the order parameter for the uni-
versality classes of the three-dimensional O(2) and O(4) models. The right panel shows the

scaling function for the chiral susceptibility.

With ensembles of two pion masses and several space-time volumes, we might venture
to carry out a thorough scaling analysis of the chiral condensate and the full chiral sus-
ceptibility, including both the regular and sigular contributions. However, this analysis is
beyond the scope of thie thesis. Instead, we are going to use some empirical formulae to
describe the disconnected chiral susceptibilities near the phase transition region to locate
the pseudo-critical temperature. These empirical formulae lack a deep physical interpre-
tation, yet provide a quantitative tool to extract the pseudo-critical temperature from the
dependence of the disconnected chiral susceptibility on temperature.

We adopt three fitting functions. The first is a Gaussian function for the three points
within range 149 MeV < T < 159 MeV. Our empirical fitting is performed with a “super-

jackknife” method (for details c.f. [126]). Since the number of jackknife blocks from each
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Figure 5.9: Empirical fits for the disconnected chiral susceptibilities. the red dashed line is
the fitted curve for the Gaussian function within range 149 MeV < T < 159 MeV. The black
dotted line is the fitted curve for the cubic function within range 149 MeV < T < 164 MeV.
However, neither of them give a good description of the points that lie outside the fitting

region.
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ensemble is different, we join results from all three ensembles together in a larger jack-
knife data set, where each of three subsets contains one jackknife re-sampled X MS i at one
temperature and two ensemble averaged X S from the other temperatures. Therefore the
total number of elements in the super-jackknife data set N is the sum of numbers of jack-
knife data from each of the three ensembles. This factor N is also used to scale up the
variance of the re-sampled data to get the estimator for the true error. The fitted result
is XdlSSC/T2 = 35.1exp{-0.00514(T" - 154.3)?} which is represented by a red dotted line in
Fig. 5.9. The pseudo-critical temperature is at T, = 154.3(6) MeV, which is not far from
the T' = 154 MeV point. Outside the fitting range, the fitting curve quickly deviates from
the data points, as the Gaussian form has little physical significance. We also employ a
quadratic form for fitting the three points, the cyan line on the plot. Its fitting result,
XdlSC/T2 = -0.016972 + 52.1T — 3986, is very close to the Gaussian form within the fitting
region and so is its fitted pseudo-critical temperature T, = 154.3(6) MeV.

In order to incorporate the skewness, we also tried a cubic fitting form for the four points
within range 149 MeV < T < 164 MeV with the super-jackknife method, which results in
Xdle/T2 0.010873 - 5.15T72 + 818T — 43280, represented by a black dotted line in Fig. 5.9.
The pseudo-critical temperature is quoted as T, = 153.5(8) MeV, consistent with the previous
form, which is quite consistent with the other fitting result. However, the credibility of these
fitted results for T, should be discounted since all fitting forms fail outside the fitting region.

There are several issues that might affect the fitting results for the pseudo-critical tem-
perature. Firstly, we adopt the temperature 7" rather than the [ as the fitting variable.
T is a derived quantity computed from the lattice spacing which contains errors in itself.
However, within such a small interval, the relation between 5 and T is almost linear. If
we had used [ in the fit and then converted it back to the temperature, we will not shift
the relative position of the peak. Secondly, the renormalization factors Z,, contain errors,

which are not considered in the fitting. However, from Table 6.4, these factors are almost
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uniform within the transition region. Even though a small overall shift in Z,, is possible, its
effect on the fitting is insignificant. Thirdly, we the dimensionless quantity XgSSC/T2 rather
than Xﬁ: in physical units is used in the empirical fittings. This would lead to about 10%
relative change in ygisc. However, the peak point at 7" = 154 MeV is so sharp that it easily
overwhelms this relative change. Nevertheless, a small increase in T, is expected if we had

MS
disc

used ;> in physical units.

Therefore, based on the fitting presented in Fig. 5.9 and arguments in the previous
paragraph, we would argue the T, for N, = 8 and m, ~ 135 MeV should be close to T =
154 MeV, and is located by a distinct peak. If we take the expected discretization error
(5% %154 MeV »~ 8 MeV) into account, it would dominate the error estimated for the pseudo-
critical temperature. A more realistic value and error for 7, with finite lattice spacing and
finite volume corrections would be expected if we were able to perform a complete O(4)

scaling analysis. Furthermore, additional ensembles in the vicinity of the peak would also

be very beneficial.

5.3 U(1)4 symmetry

We will now discuss the degree to which the anomalous U(1) 4 symmetry is restored above
T, by examining the two implications of this symmetry for the four susceptibilities given in
Eq. (5.14): x» = xs and X, = X5 The numerical results for each of these four susceptibilities
are summarized in Table 5.5 for ensembles with m, ~ 200 MeV and in Table 5.7 for ensembles
with m, ~ 135 MeV as well as their U(1)4-breaking differences x, —xs and x, — X, which we
will often abbreviate as Ay 5 = xr — x5 and A, , = X» — X5- The integrated susceptibilities x
and y;s are calculated from the corresponding two point correlation functions by summing the
position of the sink over the entire space-time volume. For the 163 x8 and 243 x 8 ensembles,
we use a single point source located at (0,0,0,0), while for the 323 x 8 ensembles with either

pion masses, we use a random Z, wall source located at a fixed, 3-dimensional spatial slice,
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Figure 5.10: The two U(1)4-violating susceptibility differences, x» - xs and x, — x, plotted

as a function of temperature for our three spatial volumes with m, ~ 200 MeV and for 323 x8

with m, » 135 MeV. As expected these quantities are very different below T,.. However, even

for temperatures of 159 MeV and above these quantities differ from zero by many standard

deviations, providing clear evidence for anomalous symmetry breaking above T,.. The near

equality of these two differences above T, which are related by SU(2); x SU(2)r symmetry

suggests that the effects of explicit chiral symmetry breaking are much smaller (as expected)

than this anomalous symmetry breaking.

These two U(1)4-breaking differences are plotted in Fig. 5.10. As can be seen, these
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Table 5.5: Results for the four independent susceptibilities x, xs, X» and x;, as well as the

Xo — Xy Which

Xr = Xos An,é = Xn—Xé and AW,5 = Xm— X6, Aa,n

two pairs of differences, A, ,

measure the degree of SU(2), x SU(2)g and U(1)4 symmetry, respectively for ensembles

with m, ~ 200 MeV. All of these susceptibilities are renormalized in the MS(pu = 2 GeV)

scheme using the renormalization factors listed in Table 6.4. Moving from top to bottom,

the three sections correspond to the volumes 323 x 8, 243 x 8 and 163 x 8.
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TMeV) | T2 N T NS AT AT ARSI ANST?
139 43.89(3)  31.50(2) 33.7(2)  42.9(4)  10.1(2)  11.4(4) 12.39(5)  -9.2(4)
149 41.96(3)  31.70(3)  33.8(2)  41.6(3)  8.2(2) 9.9(3)  10.26(5)  -7.9(4)
159 39.89(4)  31.71(3) 34.8(4) 39.03)  5.1(4) 7.3(3) 8.18(7) 4.2(4)
164 38.77(5)  31.74(4) 35.6(4) 38.1(4)  3.2(4) 6.4(4) 7.02(8) 2.6(5)
168 37.68(6) 31.67(3) 35.3(4) 37.1(3)  2.4(4) 5.4(3) 6.00(9) 1.8(5)
177 35.65(5)  31.39(2) 33.4(3) 35.1(3)  2.2(3) 3.7(4) 4.26(6) 1.7(5)
186 33.75(5)  30.83(3)  32.7(3)  33.4(3) 1.1(3) 2.5(3) 2.93(6) 0.7(3)
195 32.37(4)  30.46(2) 31.7(1)  32.2(2)  0.7(1) 1.7(2) 1.91(4) 0.5(3)
149 42.0(3)  31.57(16) 34.0(5) 41.5(5) 7.9(6) 10.0(5) 10.4(4) 7.5(7)
159 39.7(3) 31.82(12)  34.4(3) 39.0(5) 5.3(4) 7.2(6) 7.9(4) -4.6(6)
168 38.3(3) 31.73(11)  33.9(4) 37.7(4) 4.3(6) 5.9(4) 6.5(3) 3.7(6)
177 35.7(2) 31.45(9) 33.5(2) 35.5(4) 2.2(3) 4.1(4) 4.2(3) -2.0(5)
186 33.5(1) 30.84(7) 32.3(2) 32.9(3) 1.2(2) 2.0(3) 2.7(2) -0.6(4)
139 43.95(7)  31.52(5) 33.8(2)  43.6(3)  10.2(2)  11.5(3) 12.44(11) -9.3(4)
149 41.87(6)  31.79(5)  34.8(3)  41.1(4)  7.1(3) 9.4(4)  10.08(9) 6.4(5)
159 39.81(8)  31.72(6) 34.6(3) 39.7(3)  5.2(3) 8.0(3)  8.09(13) 5.1(4)
168 | 37.72(10) 31.68(6) 34.7(4)  38.0(4)  3.0(4) 6.4(4)  6.04(14)  -3.3(5)
177 35.58(9)  31.41(6) 33.9(2) 35.6(3)  1.6(2) 4.2(3)  4.18(13) 1.7(3)
186 33.86(8)  30.87(4) 32.7(1)  34.0(2)  1.2(2) 3.1(2)  2.99(10)  -1.3(3)
195 32.41(6) 30.48(3) 31.8(1)  32.2(3)  0.6(1) 1.7(3) 1.92(5)  -0.3(3)

Table 5.6: The same quantities as tabulated in Table 5.5 but with the light quark replaced

by the strange quark.
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diminish rapidly with temperature but are many standard deviations from zero even at the
temperatures of 177 and 186 MeV, well above T, for ensembles with either pion mass. We
expect that the effect of explicit chiral symmetry breaking, either from the non-zero input
quark mass or finite- Ly, residual chiral symmetry breaking, on these differences will be much

smaller.

5.3.1 Results from Ensembles with m, ~ 200 MeV

With regard to ensembles with m, ~ 200 MeV, we might estimate the contribution of
explicit U(1)4 breaking at 7' > T, to be of order 7 /T? ~ (0.004 x 8)2 = 0.001 compared to
results between 3 and 7 shown in Table 5.5. ' Numerical evidence for the absence of explicit
chiral symmetry breaking is provided by the near equality of the two differences x,. — xs and
Xo — Xy Which are related by SU(2);, x SU(2) g symmetry, a symmetry also explicitly broken
by m; and myes.

Strong evidence for the small size of possible explicit chiral symmetry breaking also comes
from the results for y, — xs computed for the strange quark. It is the explicit breaking of
chiral symmetry by the valence propagators which can create a non-anomalous signal for
Xx — Xs- As can be seen from Table 5.6 the results for x, — xs are smaller for the strange
than for the light quark. If the strange quark results are interpreted as coming entirely from
explicit chiral symmetry breaking, the corresponding effects for the light quarks should be
reduced by a factor of (7;/m,)? ~ 0.008. At T' =177 MeV, this approach gives explicit chiral
symmetry breaking for the light quark quantity y, — xs of order 4.26 x 0.008 = 0.034. This is

larger than the 0.001 estimate above but only a fraction of a percent of the signal.

! This assumed quadratic dependence on i, does not allow for a possible combined effect of explicit chiral
symmetry breaking and the sort of non-analytic behavior above T, that we are trying to study. We do not
have sufficient numerical results to study such effects which we view as “second order” since they require

both non-perturbative chiral breaking above T, and m; # 0.
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5.3.2 Results from Ensembles with m, ~ 135 MeV

#| T (MeV) | XAS/T2 XNS/T2 \ASIT2 \S/T? ANSIT? AMS/T? AMS/T2 ANS/T?
20 | 139 | 254(3)  35(1)  78(4)  42(17) 176(5)  7(17)  219(3)  35(17)
30| 149 199(2)  32(1)  92(4)  41(12) 107(5)  7(11)  165(4)  51(13)
31| 154 164(3)  40(2)  103(5) 37(10)  61(6)  1(10)  128(5)  66(12)
32| 159 130(2)  39(1)  96(5)  42(6)  34(5) 8(6) 95(3)  54(8)
33| 164 98(2)  38(1)  90(4)  35(5)  8(4) 0(5)  63(3)  55(7)
34| 168 85(3)  28(3)  82(5)  28(8)  3(6) A(8)  53(5)  54(11)
35| 177 55(2)  34(2)  B53(2)  34(2)  1(3) 0(3) 21(3)  20(4)
36| 186 44(1)  35(1)  42(1)  32(2)  2(2) 0(2) 12(3)  10(3)
37| 195 36(1)  32(1)  39(2)  33(1)  -2(2) 0(2) A(1) 6(3)

Table 5.7: The same quantities as tabulated in Table 5.5 for the 323 x 8 ensembles with
m, ~ 135 MeV.

For ensembles with m, ~ 135 MeV, x, — xs remains at approximately the same level
as seen for m, » 200 MeV (Table 5.7), in contrast to the explicit chiral symmetry breaking
contribution which is expected to decrease with decreasing quark masses. A similar argument
for the strange susceptibility and light susceptibility discussed in the previous subsection
applies here as well. Moreover, the agreement between the two differences x, — xs and
Xo — Xn are remarkable for T > 168 MeV, providing strong support for the restoration of
chiral symmetry.

In sum, we interpret the results for x — xs and x, — X, shown in Tables 5.5 and 5.7 and
Fig. 5.10 as clear evidence for the anomalous breaking of U(1) 4 symmetry for T' > T, with

both m, ~ 200 MeV and m, ~ 135 MeV.
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# | T (MeV) | X2 M xS NS ARSI AT AYE T AL T
29 139 43.24(4) 31.19(2) 33.0(2)  42.4(6)  10.2(2)  11.2(6)  12.05(4)  -9.4(6)
30 149 41.30(3) 31.35(2) 33.9(2) 41.0(6)  7.4(2) 9.7(6) 9.95(4)  -7.1(6)
31 154 40.30(4) 31.36(2) 33.7(2)  40.4(5)  6.7(2) 9.1(5) 8.94(5)  -6.8(5)
32 159 39.26(3) 31.34(2) 33.6(2)  38.9(4) 5.7(2) 7.5(4) 7.92(4)  -5.3(5)
33 164 38.10(3) 31.41(2) 33.6(2)  38.1(4) 4.5(2) 6.6(4) 6.69(4)  -4.5(5)
34 168 37.29(4) 31.21(2) 33.5(3) 37.1(5)  3.8(3) 5.9(4) 6.08(5)  -3.6(6)
35 177 35.20(3) 30.90(2) 32.7(1)  35.2(4)  2.5(1) 4.3(4) 4.29(3)  -2.5(4)
36 186 33.44(2) 30.37(1) 31.9(1)  33.1(4) 1.5(1) 2.8(4) 3.07(3)  -1.2(4)
37 195 32.21(2)  30.03(1)  31.2(1)  32.7(3) 1.0(1) 2.7(3) 2.18(2)  -1.5(3)

Table 5.8: The same quantities as are tabulated in Table 5.7 but with the light quark replaced

by the strange quark.



Chapter 6

Eigenvalue Distributions of the Dirac

Operator

The spectrum of eigenvalues of the Hermitian Dirac operator provides important insights
into the physics of QCD. The Dirac spectrum depends dramatically on the temperature and
is fundamentally connected with both the spontaneous and the anomalous chiral symmetry
breakings.

This chapter starts with an introduction to the connections between the Dirac eigenvalue
spectrum and a variety of physical quantities that are closely related to the QCD phase
transition. In Sec. 6.2, we explain how the continuum Dirac spectrum can be determined
from the distribution of these eigenvalues. And in Sec. 6.3, we briefly describe how the
eigenvalues on the five-dimensional lattice are collected with Ritz and Lanczos methods.
The resulting DWF Dirac eigenvalue spectrum for the finite temperature DWF ensembles
with m, ~ 200 MeV, computed and normalized following these methods will be presented and
analyzed in an effort to determine the temperature dependence and the origin of the chiral

and the anomalous U(1)4 symmetry breakings in the last three sections of this chapter.
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6.1 Preliminaries

The most familiar relation between the Dirac spectrum and an important QCD observable
is the spectral expression for the chiral condensate,
2,
m2 + A2’

Sy=-(00), = fow A (g, e, A) g=1s. (6.1)

Here we have used the symmetry p(\) = p(=)), limiting the integral to non-negative values of
A and introducing the compensating factor of 2 in the numerator. In the infinite volume and
chiral limits and applied to the light quark condensate, this equation becomes the well-known

Banks-Casher relation [127]:

- lim lim (E;D)l =lim lim lim 7p(y, Mg, A). (6.2)

i —>0 V—o0 A—0 iy —0 V00
Therefore, if the eigenvalue density p(7, \) is non-vanishing in infinite volume at A and m
approaches zero, chiral symmetry will be broken by a non-vanishing quark condensate.

While we have used the lattice variable 7, to represent the quark mass in this equation,
it should be emphasized that this is an equation derived in continuum field theory. The
equivalent expression, derived for DWF in a lattice theory will be quite different. For exam-
ple, a spectral expression for ¥, derived from an eigenmode expansion of the DWF lattice
propagator will involve wave functions for the five-dimensional modes evaluated on and in-
tegrated over the two s = 0 and s = Ly — 1, four-dimensional faces, yielding an expression
significantly more complex than that given in Eq. (6.1) [116]. However, when appropriately
renormalized, the eigenvalue density p(7,\) is a physical quantity that can be computed
using lattice methods [128]. How we collect the eigenvalues of the lattice Dirac operator and
how we renormalize the eigenvalue distributions will be discussed in detail in Sec. 6.3 and
Sec. 6.2 respectively.

Since in a lattice calculation the Banks-Casher limit of infinite volume and vanishing
quark mass cannot be easily evaluated, we would like to use Eq. (6.2) for the case of fi-

nite volume and non-zero quark mass. However, in that case the integral over A diverges
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quadratically. As a result, this equation is dominated by the region of large A\ where the
DWEF lattice and continuum formalisms should not agree. This region is also well outside
the limited range of the 100 lowest eigenvalues which we have computed. However, much
can be learned from Eq. (6.2) if we use it to evaluate the difference A, subtracting the
light and strange quark equations. This difference will be studied in Sec. 6.6, comparing
the subtracted spectral integral with both the simple difference of condensates, A; ; and the
improved quantity A, defined in Egs. (5.4) and (5.34) respectively.

In a similar manner, the difference between the connected pseudoscalar and scalar light-
quark susceptibilities, xr—xs, which serves as a good indicator of U(1) 4 symmetry breaking,
can be expressed as a spectral integral [129]:
4m?

@ o

Ars = Xr — X5 = fo dX p(7ig, A)

where again this is a continuum equation which requires that all of the quantities which
appear are renormalized in a consistent scheme. In contrast to Eq. (6.2), this expression is
only logarithmically divergent and for our values of the lattice spacing and quark masses,
is dominated by the region where A is small — the region in which we have measured the
spectrum and in which the lattice and continuum spectral functions should agree, except for
the usual O(a?) errors inherent in a calculation at non-zero lattice spacing.

In order to distinguish and to better understand the effects of different possible behaviors

of p(iy, A) we will also make use of the small A and small 72 parametrization for p(#, A),
p(M, N) = com?5(N\) + ci|A| + coft + -+, (6.4)

appropriate for 7' > T, and introduced in Ref. [35]. Each term provides an ansétz for a
possible behavior of p(7;, A) and results in a different contribution to the susceptibility

difference. In particular, A, ; will receive three corresponding contributions:

Ars~2c)+2c +Teg = A?r,(; + A}r,é + A?ws. (6.5)
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Once the eigenvalue density has been computed and fit to the form assumed in Eq. (6.4),
the resulting coefficients can be used to calculate A;s and discover which of these three
behaviors gives the dominant contribution to the spectral integral.

In addition to allowing a quantitative measure of the relative importance of these three
possible behaviors, the use of the analytic expression in Eq. (6.4) also allows us to potentially
correct finite-lattice spacing errors which may be important for small A in our DWF formu-
lation with finite L,. Although much more accurate, the Hermitian DWF spectrum, like the
Wilson spectrum, does not have the continuum form A = i\/m where my; = m; + Myes,
at least for finite volume, finite L, and non-zero lattice spacing. For eigenvalues A of Dy
on the order of my, 7.e. A 510 MeV, we expect deviations from the continuum i\/m
form because of residual chiral symmetry breaking. These effects do not occur if we use p(\)
given by Eq. (6.4). In fact, comparing results obtained by direct summation over the mea-
sured spectrum with those obtained using Eq. (6.4) provides an estimate of the importance
of these finite lattice spacing errors.

Each of the three terms in Eq. (6.4) corresponds to potentially interesting behavior. The
A-independent com term is expected to dominate the behavior below 7. and should describe
the Banks-Casher contribution to the chiral condensate ¥;. For T' < T, the factor of m should
not appear but has been introduced here because above T, the condensate should vanish in
the limit M — 0. As can be seen in Eq. (6.5), this cofit term will result in A; 4 # 0 and
anomalous symmetry breaking. Likewise, the linear ¢; term provides a possible mechanism
for U(1)4 symmetry breaking above T.. Both the ¢; and ¢, terms are sufficiently regular
as A and m approach 0 that they do not result in an explicit SU(2) x SU(2)r symmetry
breaking chiral condensate but have sufficient infra-red singularity that the presence of either
does result in a non-zero value for x, — xs. Thus, either term in p(\) could describe the
behavior we see for T' > T, where ¥; should vanish as m; — 0 but x, — xs is non-zero. As we

will see, neither term appears to be present with a sufficient magnitude to describe x, — xs
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for T'>T.,.

As is discussed below, the ¢y term has the greatest relevance. This term represents
the Dirac spectrum that results from the dilute instanton gas approximation (DIGA) [104].
Asymptotic freedom implies that at sufficiently high temperature, the QCD partition func-
tion will be governed by weak-coupling phenomena. These should include a "dilute gas” of
instantons and anti-instantons of radius ~ 1/7 and density o ii? exp{-872/¢?(T")} decreasing
with increasing temperature, where ¢(7") is the running QCD coupling constant evaluated
at the energy scale T'. The number of such instantons and anti-instantons is proportional to
the volume and each will induce a near-zero mode in the Dirac eigenvalue spectrum. (These
eigenvalues will not be exactly zero because of the overlap of the “zero-mode” wave functions
associated with neighboring instantons.) The factor of m? in the instanton density arises
from the fermion determinant for two light flavors of quarks. The contribution of such a di-
lute gas of instantons and anti-instantons to the Dirac spectrum will be accurately described
by the ¢y term in Eq. (6.4), at least for sufficiently high temperatures. As can be seen from
Eq. (6.5), such a term will result in a non-zero value for the difference x, — x5 even in the
chiral limit, m; - 0. The expected presence of such effects leads to the phrase “effective
restoration of U(1)4 symmetry”; since these effects, which should appear as T becomes very
large, will lead to a possibly very small but non-vanishing result of ., — xs.

As we will demonstrate in Sec. 6.7 we find a significant cluster of near-zero modes in
the Dirac spectrum whose number is proportional to the volume with the characteristics
expected from the DIGA. We conclude that the non-zero value of x, — xs in the region
just above T, is explained by the DIGA and that this is the dominant mechanism for our

observed, non-zero breaking of U(1)4 just above T..
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6.2 Renormalization of the Domain Wall Eigenvalue

Distribution

6.2.1 Relating the Continuum and DWF Dirac Spectrum

The domain wall fermion formulation can be viewed as a five-dimensional theory whose
low energy properties accurately reproduce four-dimensional QCD. All low energy Green’s
functions and matrix elements are expected to agree with those of a four-dimensional theory
and it is only at high momenta or short distances that the five dimensional character of the
theory becomes visible. This perspective applies also to the five-dimensional DWF Dirac
operator whose small eigenvalues and corresponding eigenstates should closely approximate
those of a continuum four-dimensional theory. This can be shown explicitly for the free
theory, order-by-order in perturbation theory and by direct numerical evaluation in lattice
QCD. With the exception of gauge configurations which represent changing topology, the
modes with small eigenvalues are literally four-dimensional with support concentrated on
the four-dimensional left and right walls of the original five-dimensional space.

Thus, we can learn about the continuum Dirac eigenvalue spectrum by directly studying
that of the DWF Dirac operator, Dpwr, as defined by Egs. (2.31) and (2.32) in Chap. 2. Of
course, just as with other regulated versions of the continuum theory, explicit renormalization
is needed to convert from a bare to a renormalized eigenvalue density. Because the continuum
Dirac operator, [P +m, is linear in the quark mass, we should expect the Dirac eigenvalues to
be related between different renormalization schemes by the same factor Z,, that connects
the masses. If we have two regularized theories which describe the same long distance physics
with bare masses m and m’ = Z,,_,,,»m, then we should expect that their eigenvalue densities

would be related by:

PO = oV Zop) (6.6)

m—m/

Note this expectation is consistent with the form of the Banks-Casher relation, (1)) = 7p(0),
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as the equality of the mass term in equivalent theories requires (@lqﬂ’) = (V)] Z s -

The renormalization of the bare input quark mass, my, for DWF has been extensively
studied and the factor me_)m( p?) needed to convert this input bare mass to a continuum,
MS value at the scale y is accurately known [112] and will be summarized later in Sec. 6.2.3.
However, in contrast to the continuum theory or staggered or Wilson lattice fermions, the
input quark mass for DWF does not enter as an additive constant but instead appears as
a coupling strength between the two four-dimensional walls. Thus, for DWF the Dirac
spectrum and the quark mass will in general be related to their continuum counterparts
by different renormalization factors. To properly renormalize the DWF Dirac spectrum we

should begin with the Hermitian operator 75 Rs Dpwr and then add a multiple of the identity:

V5 s Dpwr + My = V5125 (DDWF + 75Rsmtw) ) (6-7)

where Ry is the fifth dimension reflection operator introduced in the previous section. The
renormalization factor, Z, g, needed to convert the DWE spectrum to the continuum,
MS spectrum then relates this new DWF pseudoscalar operator to the corresponding MS

continuum operator:

1

(B(x)(a))™ » Z S W(a, )30 (x, Ly — 1 5), (6.8)

tw—MS 5=0
where W(z,s) is the five-dimensional DWF field. These two operators, which appear in
different theories, are equated in Eq. (6.8) in the sense that they give the same matrix
elements when inserted in corresponding long-distance Green’s functions.

It is convenient to determine the renormalization constant Z, 3 in two steps. In the
first we determine the constant Ziyw_m ; which relates this reflected pseudoscalar term and

the standard pseudoscalar term belonging to the same chiral representation as the usual

DWF mass term )

) (e) = () Ris U(). (69

twomy
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where the operator on the right-hand side is the same as that in the right-hand side of
Eq. (6.8) with the explicit sum over the s coordinate suppressed.
Then in the second step we perform the well-understood conversion between the standard

DWF mass operator and a continuum, MS normalized mass operator using me—quS‘
th—»W = meemztw—wnlw (610)

After the first step, we can compare the eigenvalue density p(\) for the lattice DWF op-

erator with the usual lattice result for the chiral condensate using the Banks-Casher relation,

— ™

(o)

p(0), (6.11)

- th—>mf
since both the left- and right-hand sides now use the same bare normalization conventions.

In the second step we are simply dividing both sides of Eq. (6.11) by the common factor

Z,. s to convert from lattice to MS normalization.
f

6.2.2 Calculation of Ziy-m,

Because the operators 9 ()5 (z) and U (2)R5v5W(2)/ Zyy—m, are supposed to be equiv-
alent at long distances, we can determine the needed factor Ziy ..., by simply taking the
ratio of equivalent Green’s functions, evaluated at distances greater than the lattice spacing
a, containing these two operators:

(O1...0,9(z)Rsy5¥(2))
(O1-.. Ot ()59 (2))

where the numerator and denominator in this expression are intended to represent identical

Ziseoomy = , (6.12)

Green’s functions except for the choice of pseudoscalar vertex.
We will now determine Ziy, .., and test the accuracy to which the ratio given in Eq. (6.12)
defines a unique constant by studying the ratio of two types of matrix elements. In the first we

examine simple two-point correlators between each of the pseudoscalar densities in Eq. (6.12)
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and the operator O, (t) which creates a pion from a Coulomb gauge fixed wall source located

at the time ¢: _ )
R(1) < (22 V@D R (@,00:(0)) (6.13)
(25 0(2,)750(2,1)04(0))

which for large t is the ratio of matrix elements of our two pseudoscalar operators between

a pion state and the vacuum. Results are presented in Table 6.1.

# 8 TOM&) R,

10 1.671 149 1.980(7

2 1.70 0 1.774(5)
3 175 0 1.570(4)
7 1.82 0 1.397(2)
9 1.671 149  1.905(6)
(7)
(8)

11 1707 159  1.725(8
12 1740 168  1.631(11)
13 1771 177 1.476(4)
14 1.801 186  1.439(3)
15 1.829 195  1.365(3)

Table 6.1: Values for the renormalization factor Zi .,,, obtained from the ratio of pseu-

doscalar correlators R, defined in Eq. (6.13).

Second we examine off-shell, three-point Green’s functions evaluated in Landau gauge
which again contain each of the pseudoscalar densities being compared and a quark and an
anti-quark field carrying momenta p; and po, allowing us to see the degree to which the ratio
in Eq. (6.12) does not depend on the small external momenta p; and ps.

Tt (X,, 4, € P22 7109 (22) U (0) Ry )5 ¥ (0) ) (a1) )

: — = . (6.14)
Tr (¥, 2, €272 21201 (22)10(0) 50 (0), (1))

Ravom (pl ) pz) =
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Here we are using the well-studied methods of Rome/Southampton non-perturbative renor-
malization [130] to compare the normalizations of the operators WRsvs ¥ and Yy51. For a
recent application of this method to other operators in a DWF context see Ref. [131]. For
both Eqgs. (6.13) and (6.14), we expect the ratio to be independent of ¢ and of p; and py and
to yield the same value Ziy .-

When evaluating the momentum space Green’s functions in Eq. (6.14) we generate the
needed quark propagators using a series of volume sources [132]. For each specific four-

momentum p we evaluate twelve propagators, one for each spin and color, using the sources

n(xup)a,a;ﬁ,b = eip.zéozﬁ(saba (615)

where a and a are the spin and color indices of the source n while 5 and b label the spins
and colors of the twelve sources evaluated for each four-momentum p. We perform our
calculation using both non-exceptional kinematics, p? = p2 = (p1 — p2)?, and exceptional
kinematics, p; = pa. Results for the ratios RS (p1,p2) and R$Goy (p1,p2) for the three
zero-temperature ensembles are presented in Table 6.3 and Fig. 6.1. The specific momentum
components used to construct p; and p, are listed in Table 6.2.

The ratios presented in Tables 6.1 and 6.3 and plotted in Fig. 6.1 at a given value of 8
are all expected to equal the common renormalization factor Ziy ., ;- However, as is evident
from these tables and figure this expectation is realized at only the 20% level, suggesting
the presence of significant O ((pa)?) errors and implying a similar uncertainty in extracting
a consistent value for the important quantity Ziym,. In fact, the behavior of these results
is consistent with an O ((pa)?) origin for these discrepancies. The larger dependence on
momentum of the non-exceptional ratio RS (p1,p2) than seen in R§Yo(p1,p2) and its
larger deviation from the more consistent quantities RS, ;(p1,p2) and R is reasonable since
the non-exceptional kinematics were originally introduced to ensure that large momenta flow
everywhere in the corresponding Green’s function [131]. The better agreement between the

quantities Ry (P1,p2) and R, and the smaller momentum dependence of R§y(p1,p2) is
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Figure 6.1: Plots of the results for the quantity Ziy, given in Tables 6.1 and 6.3 for each

of the three values of g that were studied at zero temperature. The single value of R is

plotted as an “x” in each panel and given the value (pa)? = 0. (The scale on the left-most

y-axis applies to all three plots.) As discussed in the text, the discrepancies between RySGT

and Ryp5x are indicative of O ((pa)?) errors, so we use the value of Ry for Zyy ., -
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(pa)®> pal/2m  ppL[2m
0.308 (0,1,1,0)
(1,1,1-1)
(2,0,-1,1)

0.671
0.925

1.542 (2,-1,2,1)
( )

2.467 2,2,2,-2

(

(

(
1234 (2,2,0,

(

(
2.776

)
)
)
) (0,2,2,0)
)
)
)

(3,2,-1,-2)

Table 6.2: The components of the two momentum four-vectors p4 and pp used to compute
the quantities Ryom(p1,p2) given in Table 6.3. For non-exceptional momenta, we use p; = pa
and py = pp, while for exceptional momenta, only a single momentum, either p; = py = p4 or

p1 = p2 = pp is used. Here L = 16 is the spatial size of the lattice.

also consistent with the smaller internal momenta expected in these Green’s functions with
exceptional kinematics. Finally the decreasing differences between these three quantities as
[ increases from 1.70 to 1.82 with the corresponding decrease in a is also consistent with
these violations of universality arising from finite lattice spacing errors.

We therefore adopt the hypothesis that the discrepancies between these different deter-
minations of Ziy.,,, arise from finite lattice spacing effects and that the most reliable value
for Ziy—m, will be obtained at smallest momentum. Hence, we use the ratio R, to provide
values for Zyym,. This choice has the additional benefit that we have evaluated this ratio on
the finite temperature ensembles allowing us to use R, to provide values of Ziy .., ; for each
of our values of 3, avoiding extrapolation. Note that the discrepancy between the finite and
zero temperature results for R, shown in Table 6.1 for the near-by § values 5 =1.700,1.707
and [ =1.820,1.829 indicate remaining systematic a? errors in our determination of Ziy_n, ;

that are on the order of 5%.
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B=1.70 B=1.75 B=1.82
(ra? | RESE Rfow | RAEE RSow | RMSE  Rifou
0.308 | 1.673(5 1.759(4 1.507(5 1.566(4 1.352(2 1.393(2

)
0.617 | 1.591(5 1.450(5 1.320(2)  1.390(2
)

0.925 | 1.536(3 1.312(1

)
)
) 1.745(3
1.234 | 1.508(2)
)

)
)
1.418(3)  1.562(4
)
)

1.406(1

(4) (
(4) (
(4) (
1.564(4) | 1.3165(7) 1.404(1
(4) | 1.3233(6) 1.416(1
(3) (

(
(
1.542 | 1.493(2
2.467 | 1.4933(10) 1.766(3

2.776 | 1.4977(8) 1.796

1.4313(7) 1.613(3

(4)

(4)

(3) (
1.744(3) | 1.412(2

(3) (

(3) 1.3670(4) 1.484(1

(3)

Table 6.3: Values for the ratio Ryom(p1,p2) defined in Eq. (6.14). For non-exceptional
momenta, the quantity RS (p1 = pa,p2 = pp) is shown. For exceptional momenta, the
average of RYST(p1 = p2 = pa) and Ry8¥(p1 = p2 = pp) is shown. The first column shows
the value of (pia)? = (p2a)? = (pa)?. Results from 12, 20 and 21 configurations have been
averaged to give the values for g =1.70,1.75 and 1.82, respectively. The quark mass values

and lattice sizes used for these results are given in Table 6.1. The significant variation among

the results for a given value of 3 indicate large O ((pa)?) errors.
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6.2.3 Normalization Conventions

Using the methods described above, we can convert our results for the quark mass, chiral
condensate, and Dirac spectrum into a single normalization scheme, allowing a meaningful
comparison between the eigenvalues in the Dirac spectrum and the corresponding quark
mass. We adopt the commonly-used MS scheme, normalized at a scale j =2 GeV.

We use the DWF results for the continuum, g = 2 GeV, MS quark masses determined
in Ref. [112], mMS(2 GeV) = (96.2 2.7) MeV and mM3(2 GeV) = (3.59 + 0.21) MeV and
the accurate linear dependence of m2 and m? on the quark masses in the region studied to
convert a lattice light quark mass, 7y = m g+ myes corresponding to a pion mass m,(7;) into

this same MS scheme using the relation:

(motm))

MS -
my (2 GGV) = (359 + 962) MGVW,

(6.16)

where my = 495 MeV denotes the physical value of the Kaon mass. The renormalization
factor is then given by:

A

m NS =

(6.17)

99.79 MeV ( m () )2
495 MeV

2m
for each of our ensembles. Note the lattice quark mass, 7, substituted in Eq. (6.17) must
be expressed in units of MeV to define a conventional, dimensionless value for me_)M—S. The
resulting me—>1\/Ts factors for each [ value and the associated ensembles are given in Table 6.4.

The factors given in Table 6.4 will also be used to convert values of the chiral condensate

P (when constructed from the usual 4-D surface, lattice operators), a variety of suscepti-

bilities and Dirac spectrum (when normalized with the same conventions as 1) into p = 2
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# T (MeV)  Z, _ys(2 GeV)

8,21, 29, ... 139 1.47(14)
10, 22,30, ... 149 1.49(10)
31, ... 154 1.50(9)

11, 23,32, ... 159 1.51(7)
24, 33, ... 164 1.52(7)
12, 25,34, ... 168 1.53(6)
13, 26,35, ... 177 1.55(6)
14, 27,36, ... 186 1.57(7)
15, 28,37, ... 195 1.58(9)

Table 6.4: Results for the factors me—>1st(2 GeV) which convert a lattice quark mass, m

into a mass normalized in the MS conventions at u =2 GeV.

GeV, MS values according to the relations:

(Y)'t

@S = = — (6.18)
my—MS
__ Xlat
M= 7 (6.19)
m s —~MS
o P(NZ, )
PV = el (6.20)
v

Of course, because the quark masses and lattices scales that we use are interpolated and
extrapolated from only three zero temperature ensembles, there is significant uncertainty
in our determination of the renormalization factors. And it is strongly correlated with the
lattice scale when we determine the line of constant physics in Eq. (4.1) in Chap .4. However,
since this renormalization factor me—>1\/Ts is a smooth uniform value within the region under
our investigation, we believe that these renormalization factors in Table 6.4 have sufficient

accuracy for the purposes of the present report.
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6.3 Computation of the Low-lying Eigenvalue Distri-
bution of the DWF

As much information concerning the symmetry breaking and restoration for the QCD
phase transition is contained in the low-lying part of the eigenvalue spectrum of the Dirac
operator, we will be focusing on collecting the lowest Ng, = 100 eigenvalues of the 5-d
Hermitian DWF Dirac operator Dy = RsvsDpwr. Here Rj performs a simple reflection
in the fifth dimension, taking the point (x,s) to the point (z,Ls—1-s), where x is the
space-time coordinate and 0 < s < L, — 1 the coordinate in the fifth dimension. The input
light quark mass we used in the eigenvalue calculation is the same as that was used in the
ensemble evolution.

The Dirac operator is a vast sparse matrix. To utilize and preserve the structure of the
Dirac matrix, the class of Krylov space solvers is preferred for calculating the eigenvalues.
In this work, we adopt the following two diagonalization methods in our eigenvalue finding

tasks:

1. An improved Ritz method proposed by Kalkreuter and Simma [133]. We accomplished

most of our computations for eigenvalues with this method.

2. An implicitly restarted Lanczos algorithm proposed in [134, 135] and implemented by
our UK colleagues [136, 137].

6.3.1 Ritz and Kalkreuter-Simma Method

Ritz algorithm computes one by one the low-lying eigenvalues by minimizing the Ritz

functional
(V| DF[W)

() = s (6.21)
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with a conjugate gradient method in a sequence of subspaces orthogonal to the space spanned
by the eigenvectors that have already been identified. Here the positive-definite operator
D? is used as the kernel instead of Dy to ensure the convergence. Theoretically, if the
minimization and the projection operations are exact for every eigenvector, a single iteration
of the algorithm would give accurate results.

Nevertheless, in practical numerical calculations, small imprecision in the early steps
can finally lead to a large deviation or even incorrect results. The final convergence of
Neig eigenvectors usually requires too high a precision when N, is large. Kalkreuter and
Simma [133] proposed to alternate the CG searches for eigenvectors with an intermediate

diagonalization for the Ngg x Neje Hermitian matrix

(0| D2|W,),  4,5=1,2,3,..., Nug. (6.22)

)

This is a dense matrix and its diagonalization is realized with iterations of Jacobi transfor-
mations. The transformed Ng, trial eigenvectors are then sent back to another sequence
of CG minimization. Kalkreuter and Simma proved that the alternate minimization in the
global space and diagonalization in the subspace will accelerate the overall convergence of
the algorithm, and a rigorous bound can be derived from the last CG iteration.

The kernel in the minimization, D%, however, introduces extra degeneracies. An eigen-
vector of D% is not necessarily the eigenvector of Dy, but could be a linear combination of
two almost degenerate eigenvectors with eigenvalues of opposite signs.

Replacing D? with Dy in the Jacobi diagonalization step would resolve the degeneracy
if the whole degenerate subspace is within the Ny x Ngie subspace. However, a “spurious
eigenmode” problem may arise if only one of the paired eigenvectors is included in the
solved subspace. We can resolve this problem by applying Dy to the problematic vector
and project out one of the unnecessary component. The coefficient in the projection can be
determined if we know the corresponding eigenvalue of Dy, for which we use the square-root

of the corresponding eigenvalue for D? as a proxy. However, this remedy is not precise.
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Fortunately, these spurious modes are always at the high-energy end and the number of
these spurious modes is bounded by the degeneracy and is thus usually much smaller than

Nz Therefore we are able tolerate the inaccuracy caused by the spurious modes.

ig-
Because the intermediate Jacobi transformations on the dense matrix is inefficient and
cannot be easily parallelized, the Kalkreuter and Simma Ritz algorithm suffers from a severe
performance loss when N, is large. We later switched to the implicit restarted Lanczos

algorithm as we adopted the bagel /bfm package and our major computation resource changed

to BG/Q from QCDOC and BG/L.

6.3.2 Implicitly Restarted Lanczos Algorithm

This Lanczos algorithm is a simplified version for Arnoldi algorithm [138] in that it
applies for a Hermitian matrix H. Through iterations involving matrix multiplication and

linear algebra, it transforms H to a truncated tridiagonal matrix T,
Ty = VI HV, (6.23)

whose eigenvalues are approximates for those of H. Since Ty is usually of a much smaller
size (K x K) than H, it can be diagonalized using the QR algorithm or other algorithms
that are suitable for a small dense matrix.

Generally speaking, the Lanczos algorithm is much more efficient than the Ritz algorithm.
However, due to loss of orthogonality during the iteration process, it is very likely to produce
“spurious modes” in numerical calculations. Usually, one should restart the iteration after
some steps by using a new starting vector, which removes or reduces the components in the
eigen-space that has already been obtained. But it may lose the information contained in the
residual vector. Refs. [134, 135] proposed a scheme that corrects for the loss of orthogonality
without explicitly constructing a restarting vector.

The details of the properties and the implementation of the implicitly restarted Lanczos

algorithm is described in depth in Refs. [135, 136] together with some improvements. We
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will not repeat them here.

6.3.3 Summary of the Results

In Table 6.5, we summarize the number of configurations we used in the calculation of
the eigenvalue spectrum for each finite temperature ensemble with volume 163 x 8 and 323 x 8
as well as a 164 zero temperature ensemble.

Also presented in this table is the R, A, the average smallest renormalized eigenvalue.
Here, A denotes an eigenvalue of the full Hermitian DWF Dirac operator. These eigenvalues

include the effect of the quark mass and in the continuum limit would have the form:

A=\/A2+ 2. (6.24)

In the continuum theory the mass is conventionally removed from the Dirac operator
before its eigenvalues are determined so that the usual eigenvalue distribution is given for
the quantity A in Eq. (6.24). In our case, the transformation to this more usual eigenvalue
distribution requires converting each eigenvalue A, into a corresponding A, = \/Aiffﬁl2
Unfortunately, this step is vulnerable to finite lattice spacing effects which allow an occasional
value of A, to be smaller than 7, leading to an unphysical, imaginary result for \,. This
should become increasingly rare in the limit a — 0 of vanishing lattice spacing. In this limit,
the quantity m; accurately corresponds to the light quark mass describing the long distance
physics determined by our lattice theory. Likewise, the arguments following Ref. [128] given
in the appendix of Ref. [35] imply that in this limit, the spectral density p(A) also approaches
a continuum limit which requires A > m;.

On the othere hand, the total number modes is proportional to the lattice volume. There-
fore, with fluctuations, the number of the “unphysical” modes are also proportional to the
volume. This is represented by a much lower RAy at a larger volume in Table 6.5. For

T < 168 MeV with 323 x 8 volume, RAy $ 7y, indicating an appreciable amount of un-

~
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physical modes. In the following section, we will introduce an graphical illustration that

accommodates these modes.

163 323

T (MeV) iy # N Rilo | # Neag Rilo
149 0.00464 | 9 340 0.00632 | 22 158 0.00361
149 0.00469 | 10 340 0.00606
159 0.004211 [ 11 408 0.00828 [ 23 109 0.00366
168 0.00395 | 12 239 0.01334 [ 25 83  0.00409
177 0.00367 | 13 246 0.02170 [ 26 170 0.00483
186 0.00341 |14 374 0.03131 |27 171 0.01126
195 0.00314 | 15 1140 0.03837 |28 76 0.01457
- 0.00488 | 3 252 0.00489

Table 6.5: List of the number of configurations used in the Dirac spectrum calculation

for both the 163 x 8 and 323 x 8 ensembles, as well as the results for the average smallest

normalized eigenvalue (RAg). Here N, gives the total number of configurations on which

the spectrum was determined. The first row of T = 149 MeV represents data from L, = 32

ensembles while the second from L, = 48. The last row summarize the data from the zero

temperature lattice with volume 162 x 16.

6.4 Normalized Spectral Density: A Showcase at T =0

The results for the Dirac spectrum at finite temperature obtained using these methods

will be presented and analyzed in Sec. 6.5, 6.6 and 6.7, where the restorations of chiral and

Ua(1) symmetries are studied. In this section we examine the Dirac spectrum obtained on

the zero temperature ensemble labeled # 3, with volume 16* and 5 = 1.75.
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The discussion in the present section has three objectives. First we explicitly apply the
normalization factors to convert the bare eigenvalues of the DWF Dirac operator into the
MS scheme. The resulting spectral density is expressed in physical units and can easily be
compared with both physical and simulated MS values of the quark masses as well as with the
QCD scale, Agep ~ 300 MeV. Second, we convert the spectrum of the Hermitian DWF Dirac
operator, which includes the effects of the non-zero quark masses to the more conventional
spectrum from which the mass has been removed, a step which depends critically on the
normalization procedure and is sensitive to finite lattice spacing errors. Finally we examine

the Banks-Casher relation between the resulting spectrum and the chiral condensate.
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Figure 6.2: Histogram of the spectrum of eigenvalues A of the Hermitian DWF Dirac operator
normalized in the MS scheme at the scale y = 2 GeV (left). These eigenvalues are calculated
on the zero-temperature ensemble run # 3. The right hand panel shows a histogram of the
eigenvalues \ = \/Amel2 from which the quark mass has been removed. In this panel, the
region A > 0 shows those values for which A2 > m?, i.e., A is purely real, a condition that
should be obeyed in the continuum limit. The region A < 0 shows those eigenvalues with
A? <7, i.e., A pure imaginary, plotted on the negative part of the x-axis as A = —|\/A% - 2.
These unphysical values give a visible measure of the finite lattice spacing distortions to the

region of small X\ > 0.
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Fig. 6.2 shows histograms of the Dirac eigenvalues measured on 252 configurations from
the zero-temperature, 16* ensemble run # 3 in Table 6.5. In the left-hand panel of this figure,
the histogram of eigenvalues A is obtained by converting the eigenvalues of the lattice DWF
Dirac operator, as described above, to the MS scheme with = 2 GeV. On each configuration
the 100 eigenvalues of smallest magnitude have been determined. Fig. 6.2 shows histograms
of these 25,200 eigenvalues. The rightmost vertical line in both panels identifies the minimum
value from the set of the 100th largest eigenvalues on each of the 252 configurations. For
eigenvalues less than this “minmax” value the histogram accurately represents the complete
spectrum, undistorted by our cutoff of 100 eigenvalues per configuration.

The left-hand panel of Fig. 6.2 demonstrates the effect of using a consistent normalization
scheme for the quark masses. The two left-most vertical lines in that plot correspond to the
simulated light and strange quark masses, ; and i, in the same MS normalization. The
expected coincidence between the peak in the A distribution at the smallest eigenvalues and
the vertical line representing the light quark mass occurs only after the relative normalization
R =1.570 from Table 6.1 between the DWF operator and the conventional input quark mass
discussed above has been applied.

As has been discussed in the previous section, in the calculation presented here the lattice
spacing a is relatively large and deviations from the inequality A > 7, should be expected.
In order to present the more conventional eigenvalue distribution p(A) while at the same
time displaying the imperfections arising from finite a, we choose to plot the eigenvalue
histograms in a hybrid form. For each of the original eigenvalues A we compute the derived
eigenvalue A, = \/A2f7’”ﬁl2 If X\, is real, it is included in the histogram in the normal way,
along the positive x-axis. However, if )\, is imaginary it is displayed in the same histogram
along the negative x-axis in a bin corresponding to —|\|.

This has been done in the right-hand panel of Fig. 6.2. The histogram for A > 0 is

the conventional eigenvalue distribution, normalized in the p = 2 GeV, MS scheme. The
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histogram bins for A < 0 are unphysical and directly result from finite lattice spacing artifacts.
By showing both on the same plot, we make it easy to recognize the magnitude of the errors
inherent in p(\), A > 0 introduced by lattice artifacts. For example, it is likely that a majority
of the gap in p(A\) for X positive but near zero in the right-hand panel of Fig. 6.2 would be
filled in as @ - 0 by the imaginary values of A plotted as —|A| < 0, and should not be attributed
to the effects of finite volume.

An interesting test of these methods can be made by comparing the spectrum shown in the
right-hand panel of Fig. 6.2 with the predictions of the Banks-Casher formula which relates
the eigenvalue density p(A) at A = 0 and the chiral condensate ¥; when both are evaluated
in the limit of infinite volume and vanishing quark mass, as in Eq. (6.1) or abbreviated as

follows

Y =mp(0). (6.25)

The right- and left-hand sides of Eq. (6.25) can be compared by examining the right-hand
panel of Fig. 6.2 where we have superimposed the quantity 3;/7 as horizontal lines on the
histogram. Also shown is the subtracted chiral condensate A;; defined in Eq. (5.4), which
attempts to partially remove the ultraviolet divergent contribution to the chiral condensate
in proportion to m/a?. The right panel of Fig. 6.2 shows that p(0) tends to agree well
with A, if we take a linear extrapolation for the p(\) as A - 0. Although neither the
infinite volume nor the chiral limits are taken, and A; ; does not perfectly eliminate the large
term proportional to m, this agreement still serves as a good indication for our success in
renormalizing the eigenvalue spectrum. More about the Banks-Casher relation reflected in

the low-lying eigenvalue distribution will be touched on in a quantitative way in Sec. 6.6.
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6.5 Renormalized Eigenvalue Distributions at Finite
Temperature

Fig. 6.3 shows the distributions, renormalized in the MS scheme at the scale y =2 GeV,
determined from the lowest 100 eigenvalues (A) for six ensembles at temperatures from 149
MeV to 195 MeV. The eigenvalue densities for the 323 x 8 space-time volumes are plotted as
solid histograms, while the 163 x8 results are plotted as black, solid lines. The aforementioned
imaginary, “unphysical” modes are plotted as —\/m on the negative axis. The values
for the total mass of light and strange quarks, m}\TS and ﬁ"LﬁTS, are indicated by vertical dashed
lines, which give a physical scale for the eigenvalue distribution. Since we have determined
only a fixed number of eigenvalues, the spectral distributions will be distorted at their upper
ends. The third vertical dashed line in these plots, which appears with various z-coordinates,
locates the smallest value for \jgy found for each ensemble. The spectrum shown to the left
of this line will then be undistorted by our failure to include larger eigenvalues in the figure.

Since the number of eigenmodes is proportional to the space-time volume, a fixed number
of the lowest modes will become more concentrated at the lower-end of the spectrum as
the volume increases. This phenomena can be easily seen in Fig. 6.3 where the range of
eigenvalues studied decreases dramatically as the space-time volume is increased from 163 x 8
to 323 x 8. However, while the range of eigenvalues covered by the larger 323 x 8 volume
is reduced, this larger volume provides a better sampling and more convincing view of the
spectrum near zero, the region of greatest interest.

For T = 149 and 159 MeV, the eigenvalue distributions can be characterized as a linear
function with a non-vanishing intercept for eigenvalues of order 10 MeV or larger. Below 10
MeV the spectrum is distorted by a combination of finite volume and residual chiral sym-
metry breaking effects. The non-vanishing intercept, interpreted through the Banks-Casher

relation, is consistent with the non-vanishing chiral condensate and vacuum chiral symmetry
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Figure 6.3: The eigenvalue spectrum for T’ = 149 — 195 MeV, expressed in the MS scheme at
the scale 1 = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as —/|A% —m7|.
The spectra from the 323 x 8 ensembles are plotted as histograms and fit with a linear
(T =149 - 178 MeV) or a quadratic (7 = 186 — 195 MeV) function (blue dashed line). The

spectrum from each of the 162 x 8 ensembles is plotted as a black solid line.
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Figure 6.4: (Left to right) The renormalized eigenvalue spectrum for 7" = 177 - 195 MeV
without the removal of the bare quark mass. The statistics are likely insufficient for 186

MeV on the 163 x 8 ensemble; only 5 instances of "near-zero modes” are collected.

breaking observed at these temperatures which lie below the pseudo-critical temperature.

For T' = 168 MeV, the linear behavior continues to be visible, but the intercept has
essentially vanished, suggesting that 168 MeV is close to the pseudo-critical temperature
for m, ~ 200 MeV, consistent with the temperature dependence of the SU(2), x SU(2)x-
breaking susceptibility difference x, — x» shown in Fig. 5.6.

For T'= 177 MeV, a small peak in p()\) near the origin emerges as a cluster of near-zero
modes. Such a cluster of near-zero modes might result from the Atiyah-Singer theorem and
non-vanishing topological charge or from the dilute instanton gas approximation (DIGA). As
is discussed below, the volume dependence of this peak and the distribution of the chirality
of these modes is consistent with the DIGA and inconsistent with their arising from non-zero
global topology. This small eigenvalue region can be best seen in the expanded view given
in Fig. 6.4.

For T' = 186 and 195 MeV, this small peak survives although it diminishes in size with
increasing temperature. In addition, the peak becomes increasingly separated from the rest
of the spectrum by a gap containing few eigenvalues. As a result the remainder of the
spectrum, excluding this peak, can no longer be fit using a linear function. A quadratic fit

is possible at T" = 186 but an even higher power may be needed to describe the 195 MeV
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spectrum.

Fig. 6.5 shows the comparison of renormalized eigenvalue distributions at 7' = 149 MeV
with Ly = 32 (left) and L, = 48 (right) for the 163 x 8 ensembles. The consistency of the two
distribution is another proof for the equivalence of these two ensembles and the validity of a

mild negative input quark mass.
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Figure 6.5: The eigenvalue spectrum at 7' = 149 MeV with Lg = 32 (left) and L, = 48 (right)
for volume 163 x 8, expressed in the MS scheme at the scale u = 2 GeéV. The imaginary,

“unphysical” eigenvalues are plotted as —/|A? — 7.

6.6 Subtracted Chiral Condensate

It is not difficult to see very approximate agreement between the intercept of the spectral
density at A = 0 (ignoring obvious distortions to the spectrum near A = 0) and the measured
value of ¥; implied by the Banks-Casher relation. However, a careful, quantitative test
of Eq. (6.1) must overcome two obstacles: both the finite volume suppression of p()\) as
A = 0 and the quadratic divergence present in >, for non-zero quark mass. For a DWF
calculation such a test is further complicated by the quite different contributions of residual

chiral symmetry breaking to 3, and to p(\) for small A\. As suggested above, all of these
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difficulties can be overcome. The first step is to consider the subtracted chiral condensate,
A} defined in Eq. (5.4). If Eq. (6.1) is used to express A in terms of the spectral density,
we obtain the more convergent result:

2y (M2 - m3)

02+ 12) (2 + 72) (6.26)

A= [T
0

While this expression still receives a contribution from large eigenvalues, well above the
group of low modes studied here, this high-mode contribution is expected to be of order
mym?In(msa) which is possibly 1% of the (250 MeV)? value of the zero temperature chiral
condensate. Thus, we expect that for our present quark masses and lattice spacing, we can
evaluate the right hand side of Eq. (6.26) using our 100 low modes to at least a few percent
accuracy, at least for T' < T,..

We can evaluate the integral in Eq. (6.26) using our measured eigenvalues in two ways.
First for each measured configuration we can replace the integral over A on the right hand
side of Eq. (6.26) by a sum over the measured eigenvalues. In addition we can express
the integrand in Eq. (6.26) in terms of the directly measured eigenvalues A, so that the
uncertainties associated with those values of A, lying below m; are avoided. The resulting
expression for A; ; becomes

1 W00y (m2 - m?)

Ls © N3N, 2. AZ(A2 +m2—m2) [’

n=1

(6.27)

where (...) indicates an average over configurations and we use the notation “ms” (mode
sum) to identify the result obtained from this summation over modes.

In the second approach to Eq. (6.26) we replace the spectral density p(A) by the fitted
expression given in Eq. (6.4) and then perform the integration over A analytically with the
result:

2

. — — m —
Alef = cofny + ¢y In (m—;) + CoTiTY, (6.28)

!
where terms of order 7/, have been neglected and the label “eig” has been introduced

to distinguish this expression from those resulting from the three other approaches to the
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calculation of this quantity.

In Table 6.6 we compare these two spectral methods for computing A, s (Eq. (5.4)) with
the results from both the direct subtraction of the measured condensates (which we continue
to label as A;,) and the improved quantity A;, (Eq. (5.34)) which is less contaminated
by residual DWEF chiral symmetry breaking effects. As can be seen from the table, for
the temperatures at which the fit form given in Eq. (6.4) provides a good description of the
eigenvalue distribution, 139 MeV < T < 168 MeV, analytic integration of this three-parameter
function and the direct sum over the lowest 100 modes agree reasonably well. This supports
the use of the three-parameter function to provide an interpretation of our results. This
agreement also suggests that the region |A| § 10 MeV, which is distorted in our computed
Dirac eigenvalue spectrum by finite volume and residual chiral symmetry breaking effects but
treated in a fashion consistent with infinite volume, continuum expectations by the fitting
function, does not play a large role in these results. The difference between Af}f and AJ?
can serve as an estimate for the systematic error in the fit coefficients, a difference which at
its largest is about 15%.

A second observation that can be drawn from the data in Table 6.6 is that the quantity
El,s agrees reasonably well with the result obtained directly from the Dirac spectrum over the
full temperature range. This suggests that a good representation for the chiral condensate
can be obtained by performing the subtraction of light and strange quark Green’s functions
and that in the case of DWF it is best to use the GMOR relation and subtract connected
pseudoscalar susceptibilities rather than the condensates themselves which contain relatively
large, uncontrolled residual chiral symmetry breaking effects. We would like to emphasize
that our use of the continuum spectral Eq. (6.4) combined with the renormalized DWF
spectrum makes strong assumptions about the validity of continuum methods in our lattice
calculation at reasonably strong coupling. It is impressive that on the larger 323 volume,

where the statistical errors are likely most reliable, Table 6.6 shows agreement between A
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and &75 consistently at the 1 sigma level, which in some cases represent an accuracy of 4%

or less.

#|T (MeV) N, L, iy My | APE/TS ARSITS AT A T3

9 149 16 32 0.00464 0.05293 | 6.72 6.00  3.07(12) 5.7(2
10 149 16 48 0.00468 0.05295 | 6.85 5.65  5.00(10) 6.3(1

)

(1)

10| 149 16 64 0.00459 0.05289 | - - 557(10)  6.2(1)
22 | 149 32 32 0.00464 0.05293 | 645 639  3.84(5) 6.4(1)
23| 159 32 32 0.00421 0.04856 | 3.86 428  2.83(6) 4.2(1)
25 | 168 32 32 0.00395 0.04490 | 1.64 219  146(7) 2.3(1)
26 | 177 32 32 0.00367 0.04165 | - 121 0.71(5)  1.3(1)
27| 186 32 32 0.00341 0.03873| - 042  0.22(4) 0.46(5)
28 | 195 32 32 0.00314 0.03619 | - 0.25  0.14(3) 0.30(6)

Table 6.6: Comparison of the unrenormalized results for A; ; computed using four different
methods at various temperatures and values of L,. The data in the 163 x 8, L, = 64 row
results from a valence calculation performed on the Lg =48, f=1.671 (run # 10) ensemble.
(While these quantities are all expressed in the scheme defined by the bare lattice mass, my,
this is not the scheme in which the eigenvalues of the 5-dimensional DWF Dirac operator are
defined and renormalization using the factor Ziy_n, ; defined in Table 6.4 has been carried

out.)

Finally we examine the results at T' = 149 MeV where multiple ensembles with different
values of L, are available, shown in the first four lines of Table 6.6. Here results are shown
for three values of L,: 32, 48 and 64. As expected, the simple difference A; s shows a very
strong dependence on L. While there should be substantial cancellation between the large,
continuum-like modes in this difference, at the very highest energies this cancellation will be
distorted by residual chiral symmetry breaking effects. The use of the factor (m;+myes)/(ms+

Myes) in the subtracted strange condensate will not, in general, cause these effects to cancel.
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However, this argument suggests that as L, increases and these residual chiral symmetry
breaking effects are suppressed, A; should approach EZ,S, behavior that can be seen in
Table 6.6. Less consistent is the apparent increase in the value of Zl,s /T3 with increasing Ly
seen on the 163 volume, where an increase by more than two standard deviation from 5.7(2)
to 6.2(1) is seen as L, grows from 32 to 64. Since 3178 is supposed to already be close to its
L = oo value such L, dependence is not expected and we attribute this discrepancy to the

under estimation of statistical errors for this small, 163 volume.

6.7 Near-Zero Modes and U(1)4 Symmetry

We now turn to one of the central questions addressed in this report, the origin of
the observed U(1)4 symmetry breaking above T.. We will focus on the quantity A;s =
X= — Xs since this difference of susceptibilities can be expressed in terms of the spectral
density using Eq. (6.3). Table 6.7 shows this difference at six temperatures as determined
from the integrated connected Green’s functions. This difference contains only a very small
logarithmic singularity after multiplicative renormalization by 1/ anf—»W in the continuum,
~ (Mg +Myes )? Inmya, where the sum m; +myes represents schematically the effects of both the
input quark mass and DWF residual chiral symmetry breaking. This controlled high-energy
behavior is realized by the convergence of the integral in Eq. (6.3), even when p(\) increases
linearly or quadratically with A.

Therefore, in Table 6.7 we also show the contributions to the spectral integral in Eq. (6.3)
of each of the three separate ansétze in Eq. (6.4), given in Eq. (6.5). Some cells are left blank
because the corresponding behavior cannot be seen in the spectral data. For example, at
T < 168 MeV, there is no visible accumulation of near-zero modes that might be described
by a 6(A) term in p(A). However, at T > 177 MeV and above we can count a number of
near-zero modes that form a small but visible peak in p(\) near A = 0. Assuming a Poisson

distribution, we take the square root of the total number of these near-zero modes as a rough
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estimate of errors for the corresponding contribution. Similarly the constant contribution
or intercept has vanished for T > 177 MeV and above T = 177 MeV the linear term is
also difficult to determine and the eigenvalue density is dominated by what appears to be
quadratic behavior.

We can also determine the susceptibility difference A s by using a direct sum over modes
as was done for Ay in Eq. (6.27) and tabulated as AJY in Table 6.6. Examining the
continuum spectral Eq. (6.3), we can write an expression for A, analogous to that in

Eq. (6.27) for A 4:

100 9752
B, (Z T ) | (6:29)
The results from this mode sum are shown in the second column from the right in Table 6.7
where very good agreement is seen with the explicit difference of correlation functions. This
substitution of our renormalized DWF eigenvalue spectrum directly into the continuum
equation for A, s is a stringent test of that spectrum. The infra-red singular factor 1/A?}
appearing in Eq. (6.29) might have shown large, unphysical fluctuations associated with
configuration-by-configuration fluctuations in residual chiral symmetry breaking. In fact, it
is possible that the larger values shown in Table 6.7 for A% relative to the actual correlator
difference A, s at the two lowest temperatures are a result of this effect. However, overall
the agreement between AT'; and A ; is remarkably good.

The separate contributions to Ay s presented in Table 6.7 give a clear, quantitative de-
scription of how the contribution of each piece evolves as the temperature increases. For
T < T, the constant, or Banks-Casher term, gives the major contribution to A, ;. In con-
trast, in the region above the pseudo-critical temperature, the delta function term dominates
and its contribution alone agrees well with the result from the difference of integrated corre-
lators. We conclude that the non-zero U(1)4 symmetry breaking that we observe above T,
in the correlator difference x, — xs results from this small cluster of near-zero modes which

can be seen in the spectral distributions shown in Fig. 6.3 for 7' =177, 186 and 195 MeV and
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more easily in the expanded plots in Fig. 6.4.

It is possible that these near-zero modes become exact zero modes in the continuum limit
and are a result of non-zero global topology and the Atiyah-Singer theorem. If this is the
case, the number of these zero modes should increase in proportion to v/V with increasing
space-time volume. Thus, for zero modes resulting from non-zero global topology we expect
the corresponding density per space-time volume to be proportional to 1/ VV. Were such
exact zero modes the only contribution to U(1) 4 symmetry breaking then we would conclude
that U(1)4 symmetry will be restored in the limit of infinite volume.

However if we compare the results for 323 (solid red histograms) and 163 (black lines)
in the expanded view of these peaks shown in Fig. 6.4 ' for T' =177, 186 and 195 MeV, we
easily see that the density is volume independent, instead of shrinking by a factor of /8
as the volume is increased from 163 to 323. Thus, the volume dependence of these near-
zero modes corresponds to what is expected if they result from a relatively dilute gas of
instantons and anti-instantons whose number, and whose corresponding near-zero modes,
will grow proportional to the volume.

We have also examined the chirality of these near-zero modes. In particular, if these
modes are the result of non-zero global topology, then, for a single configuration, all these
modes should be of the same chirality, that of the global topological charge v. If v is
positive then each of the zero modes should be right-handed and in our DWF case have
support primarily on the right-hand, s = L, — 1 boundary. If v is negative then all modes
should be left-handed and their wave functions should be largest on the left-hand, s = 0
boundary. In contrast, if these modes arise from a dilute instanton gas, they are produced
by a mixture of instantons and anti-instantons and the chirality of each mode should have
an equal probability to be either positive or negative within a single configuration.

We choose the T' = 177 MeV ensemble to study the chirality of the near-zero modes since

'Here we use the distributions of A instead of A near the origin, since it allows us to ignore the large

relative fluctuations in these small eigenvalues below ;.
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it has the most near-zero modes among the three highest temperature ensembles, where these
modes are seen. We did not save the full five-dimensional eigenfunctions when computing
the lowest 100 modes and have available only values for the squared modulus of the five-
dimensional wave function, integrated over the left- and right- hand wall for each mode.

Therefore we define the chirality of the n** mode as

_ [ d*a W, (2,0)(1+75) U, (2,0) - [ A2V, (z, L~ 1)(1 - ~5)¥(x, Ly~ 1)
[ d*2,,(2,0)(1+75)¥(z,0) + [ "2, (x, Ly~ 1)(1 - 75)¥ (2, Ly~ 1)

Xn (6.30)

which compensates for the fact that even for a chirality eigenstate, the five-dimensional
wave function will not be localized solely on one of the four-dimensional walls but will
spread into the fifth dimension. If we examine the zero modes, we find that some of them
have chiralilty near zero. This might be expected for a not-too-dilute instanton gas where
the two modes of a nearby instanton-anti-instanton pair will mix so that neither have a
definite chirality, However, such behavior could also be the result of our strong coupling and
gauge configurations with changing topology producing zero modes of uncertain chirality.
As a result we choose to examine only those near-zero modes whose chirality is greater than
0.7 in magnitude. The effects of this choice choice can be seen in Fig. 6.6 where we plot
the histogram of the near-zero modes for T = 177, 186 and 195 MeV. It appears that at
these temperatures, almost all of the near-zero modes are localized on one of the two four-
dimensional walls and thus have a chirality very close to +1 or -1. Our restriction that the
magnitude of the chirality is greater than 0.7 captures approximately 95% of the near-zero
modes. Fig. 6.6 suggests that this concentration of chirality at +1 increases with increasing
temperature. Determining whether this apparent trend is the result of i) limited statistics at
the higher temperatures, ii) increasing spatial localization of the zero modes and therefore
less mixing as 7' increases or iii) better defined gauge field topology at weaker coupling
requires further study.

Table 6.8 lists the number of configurations which have Ny near-zero modes, N, of which

have positive chirality. Those modes included in the counts presented in Table 6.8 must lie
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Figure 6.6: (Left to right) The distribution of chiralities for the near-zero modes at the three
temperatures T' = 177, 186 and 195 MeV and the 323 x 8 volume. Here we only use modes

lying in the first four histogram bins in Fig. 6.4 which corresponds to A $12.5 MeV.

in the peak region (first four bins) shown in Fig. 6.4, with A at or below approximately 12.5
MeV and with a chirality of magnitude 0.7 or greater. A binomial distribution consistent
with the DIGA describes the data in a more convincing way than the bimodal distribution
that would be seen for the exact zero modes resulting from non-zero global topology.

We conclude that the agreement between the value of A; s measured from the differ-
ence of correlators and the delta-function contribution A% s shown in Table 6.7 implies that
the anomalous breaking of chiral symmetry for T" > T, results from these near-zero modes.
Further, the volume dependence and chirality distribution of the modes making up this
delta-function contribution gives strong evidence that the non-zero anomalous symmetry
breaking found above T is the result of a dilute gas of instantons and anti-instantons and

that no new mechanism of anomalous symmetry breaking is needed.



# | T (MeV)  p My | AYST? ALST? AL GT? ARST? Ay [T?
22| 149  1.671 0.00464 | - 37(3)  76(2) 109 87(2)
23| 159 1.707 0.00421 - 46(1)  42(1) 70 60(2)
25| 168 1.740 0.00395 | - 49(1)  11(1) 35 35(2)
26| 177 1771 0.00367 | 23(1)  5.0(1) - 25 23(2)
27| 186  1.801 0.00341 | 8(1) - - 8 6(1)
28 | 195  1.829 0.00314 | 7(1) - - 6 6(2)
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Table 6.7: A comparison of A; s measured from the difference of correlation functions with

the three contributions computed from fitting the eigenvalue density to the expression in

Eq. (6.4) and with the result A’j obtained from the mode sum given in Eq. (6.29), for the

323 x 8 ensembles. All results are renormalized in the MS(p = 2 GeV) scheme.

NA\No | 0 1 2 3 5
No=1[40 29 - - -
No=2 |11 20 12 - -
No=3|3 11 6 2 -
No=4|0 1 2 1 -
No=5|0 2 0 0 0

Table 6.8: The number of configurations found in the 177 MeV (run # 26) ensemble with

given values for the total number (V) of near-zero modes and total number (NN,) of those

modes with positive chirality. We consider only modes with A < 12.5 MeV and a chirality

whose magnitude exceeds 0.7. The distribution is clearly different from the bimodal dis-

tribution N, = Ny or 0 expected if these near-zero modes were induced by non-zero global

topology and the Atiyah-Singer theorem.



Chapter 7

Conclusion

We will now briefly summarize our results. This work is a natural extension of earlier
studies on the finite temperature QCD using DWF with relatively heavy fixed bare quark
masses [32, 33] now to a line of constant physics with physical or almost physical quark
masses on a variety of lattices with N, = 8.

For ensembles with m, ~ 200 MeV, the disconnected chiral susceptibility xgisc shows a
distinct peak as the temperature increases through the critical region on volume 243 x 8
and 323 x 8. This is the quantity of choice for locating the pseudo-critical temperature and
showed a quite broad peak when studied on the 163 x 8 volume. The 242 and 323 results
presented here show a significant volume dependence when compared with 163 results with
the large shoulder just below T, ~ 164 MeV decreasing by between 30 and 50% as the
volume is increased and the peak itself moving to higher temperature and decreasing in
height by approximately 15%. The 243 and 323 volumes give similar results. This behavior
is predicted by finite size scaling in O(4) models in the presence of an external symmetry
breaking field [139] and could be anticipated from the first comparison made with QCD
data [123] and the recent work of Braun et al. [122].

For ensembles with physical pions (m, » 135 MeV), the peak of ygisc is even more dramatic

and shifted slightly to a lower temperature as compared with yqis. curve from m, ~ 200 MeV.
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Results from both 323 x 8 and 643 x 8 show great consistency within errors, implying the
absence of volume effects. And no evidence is present for a metastable behavior in the
evolution of the chiral condensate near T.. Both observations are strong evidence that we are
seeing the cross-over behavior expected when the actual QCD phase transition is a second-
order critical point at m; = 0. Although a complete finite volume O(4) scaling analysis is not
available at the moment, a qualitative examination as well as some empirical fits suggest a
pseudo-critical temperature for the 2+ 1 flavors of physical quarks to be T, = 154(1)(8) MeV.
The first, statistical error from the fitting is overwhelmed by the second, discretization error.

We investigate U(1) 4 symmetry breaking above T, by examining the two U(1)4 symme-
try breaking differences x, — xs and x, —x,. These vanish if U(1) 4 symmetry is realized and
are clearly non-zero at T' = 177 MeV, although they decrease quickly as 7" is increased above
this value. These two quantities are related by SU(2)r x SU(2)g symmetry and are equal
within errors for 7' > 177 MeV. We conclude that for temperatures at which SU(2);,xSU(2)r
symmetry has been restored, U(1) 4 symmetry breaking is still present.

The Dirac eigenvalue spectra per unit space-time volume seen on the 163 x 8 and 323 x
8 volumes with m, ~ 200 MeV are very similar. However, the larger volume results are
more accurate in the region of small eigenvalues. We find that appropriately convergent
combinations of spectral integrals agree well with the observed Green’s functions to which
they are related in continuum field theory. Of particular importance is the agreement between
a spectral integral and x, — x5. For T'=177 MeV we find a small cluster of near-zero Dirac
eigenvalues, such as are expected from the dilute instanton gas approximation (DIGA) [104]
and it is these eigenvalues which, when included in the spectral formula, reproduce the
measured result for y,—xs. This relation continues to hold, although within larger errors, at
T =186 and 195 MeV. The number of these near-zero modes is found to be proportional to the
volume and their chiralities show a mixture of positive and negative values per configuration,

as is expected in the DIGA. We conclude that U(1)4 symmetry is broken in the region
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immediately above T, and this breaking is explained by the DIGA. No additional mechanism
is necessary.

For the completeness of this exploration, we still need to check our control of the finite
lattice spacing errors. To this end, we are now carrying out simulations on a lattice of
643 x 12 with 8 = 1.943 and physical quarks, aiming at 7"~ 154 MeV, which is in the
vicinity of the phase transition (conditions similar to run # 31). We may also extend our
Dirac eigenvalue spectrum calculation to the Mébius domain wall fermions. The definition
of a Hermitian Dirac operator involves much more subtleties than the ordinary DWF Dirac
operator. The most promising candidate is 5 R5(D-)"1D (c.f. Chap. 2 and [57]), a non-local
operator. However, the physical picture of spontaneous vacuum chiral symmetry breaking
and anomalous symmetry breaking arising from a gas of dilute instantons is already clean
for m, » 200 MeV with no indications that different phenomena will appear at smaller quark
mass. Thus, it appears likely that th present study reveals quite completely the crossover
nature of the QCD phase transition at physical quark mass and the present of anomalous

symmetry breaking above T, well described by the DIGA.
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Appendix A

List of Lattice Ensembles

In the appendix, we list the details of the ensembles where multiples streams of evolutions
are involved.

Tables A.1, A.2 and A.3 give the details of parameters for the 323 x 8 ensembles evolved
using MDWF with m, » 135 MeV. Among them, the first two tables A.1 and A.2 show
the streams at 139 MeV < T' < 159 MeV and 164 MeV < T < 195 MeV respectively. The
last table A.3 shows the streams before the input quark masses were adjusted to be better
aligned with the expected physical values.

The first column of the tables assigns a label to each individual evolution. The second
to the fifth columns show the temperature, 3, fifth dimension extent L, and the Mobius
coefficient ¢. The next three columns show the input light and strange quark masses as well
as Myes Which is measured from each individual stream.

The “Start” column indicates how this stream was begun, categorized as “ord” (a fresh
start with an ordered gauge configuration), “dis” (a fresh start with a random gauge config-
uration), or a label of a stream with a trajectory number that specifies the trajectory where
this stream began. The Ngfatj column gives the last trajectory number of the stream. Note
that when a stream is split from another, the trajectory number will be carried on rather

than reset to 0.
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The “Cut” column indicates where the thermalization or the decorrelation cuts are im-
posed. We usually take the thermalization cut at trajectory 300 measured in units of molecu-
lar dynamic time separation. However, we, in some cases, accidentally enforced a maximum
conjugate gradient step at 10000, which is too low for almost all these ensembles with phys-
ical pions. This results in an inaccuracy in Metropolis ”Accept/Reject” step in the Hybrid
Monte Carlo simulation causing errors at O(d72) level. We would allow 100 or more trajec-
tories for thermalization for such instances. Moreover, as mentioned earlier, in many cases,
there is also a small adjustment in the input quark masses. Again we allow 100 or more time
units for the re-thermalization.

The last column, Nf&lﬂ = N{%; — Cut gives the number of equilibrated trajectories used
from each stream. The sum of total numbers of Nfgjlﬂ at each temperature was already

presented in Table 4.8.

Table A.4 gives the similar information for the 643 x 8 ensembles.
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# | T (MeV) 15 L, ¢ m; my Miyes Start Nttr(’;j Cut Nfgjlil
43 139 1.633 24 1.5 0.00022 0.05960 0.00221(3) ord 2172 400 1773
44 139 1.633 24 1.5 |0.00022 0.05960 0.00218(2) | 43: 468 2081 550 1531
45 139 1.633 24 1.5 (0.00022 0.05960 0.00214(2) dis 1848 300 1548
46 139 1.633 24 1.5 0.00022 0.05960 0.00224(2) | 45: 788 1648 900 749
47 149 1.671 16 1.5 |0.00034 0.05538 0.00174(2) | 70: 692 3393 800 2593
48 149 1.671 16 1.5 |0.00034 0.05538 0.00176(1) | 47: 724 3142 800 2342
49 149 1.671 16 1.5 |0.00034 0.05538 0.00176(2) dis 2267 300 1967
50 149 1.671 16 1.5 |0.00034 0.05538 0.00176(2) | 49:1657 2267 1750 517
51 154 1.689 16 1.5 | 0.00075 0.05376 0.00119(2) dis 1787 300 1487
52 154 1.689 16 1.5 | 0.00075 0.05376 0.00120(2) dis 1746 300 1446
53 154 1.689 16 1.5 |0.00075 0.05376 0.00118(2) ord 1842 300 1542
54 154 1.689 16 1.5 | 0.00075 0.05376 0.00121(2) ord 1768 300 1468
55 159 1.707 16 1.5 |0.00112 0.05230 0.00092(1) | 71: 494 4036 700 3336
56 159 1.707 16 1.5 ] 0.00112 0.05230 0.00089(1) | 55:1000 3784 1100 2684
57 159 1.707 16 1.5 |0.00112 0.05230 0.00089(2) dis 2809 300 2509

Table A.1: Summary of input parameters and trajectory information for each ensemble with

m, ~ 135 MeV at 323 x 8 for 139 MeV < T <159 MeV. Details of each column are explained

in the main text of this appendix.
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# | T (MeV) I5; L, ¢ my Mg Meres Start N Cut N&g?ﬂ
58 164 1.725 16 1.5 | 0.00120 0.05045 0.00066(1) dis 2204 300 1904
59 164 1.725 16 1.5 | 0.00120 0.05045 0.00066(2) dis 2060 300 1760
60 164 1.725 16 1.5 | 0.00120 0.05045 0.00066(2) ord 2126 300 1826
61 164 1.725 16 1.5 | 0.00120 0.05045 0.00066(2) ord 1959 300 1659
62 168 1.740 16 1.2 | 0.00126 0.04907 0.00058(1) | 72: 604 4338 700 3638
63 168 1.740 16 1.2 | 0.00126 0.04907 0.00055(2) dis 2502 300 2202
64 177 1.771 16 1.0 | 0.00132 0.04614 0.00044(2) | 73: 708 5991 800 5191
65 177 1.771 16 1.0 | 0.00132 0.04614 0.00039(2) dis 3712 300 3412
66 186 1.801 16 1.0 | 0.00133 0.04345 0.00024(1) | 74: 781 7374 900 6474
67 186 1.801 16 1.0 | 0.00133 0.04345 0.00025(2) dis 3968 300 3668
68 195 1.829 16 0.9 | 0.00131 0.04122 0.00018(1) | 75: 780 7335 900 6435
69 195 1.829 16 0.9 | 0.00131 0.04122 0.00018(1) dis 4005 300 3705

Table A.2: Summary of input parameters and trajectory information for each ensemble with

m, ~ 135 MeV at 323 x 8 for 164 MeV < T < 195 MeV. Details of each column are explained

in the main text of this appendix.
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# | T (MeV) o] L, ¢ m; M Myes Start ]\fttroatJ Cut Nfr‘;;.l“
70 149 1.671 16 1.5 |0.00016 0.05520 0.00171(3) | ord 692 - -
71 159 1.707 16 1.5 | 0.00092 0.05210 0.00085(2) | ord 494 - -
72 168 1.740 16 1.2 ] 0.00119 0.04900 0.00057(3) | ord 604 - -
73 177 1.771 16 1.0 | 0.00158 0.04640 0.00038(2) | ord 708 - -
74 186 1.801 16 1.0 | 0.00148 0.04360 0.00026(2) | ord 781 - -
75 195 1.829 16 0.9 | 0.00139 0.04130 0.00018(2) | ord 780 - -

Table A.3: Summary of input parameters and trajectory information for the intial trial

ensembles with m, ~ 135 MeV at 323 x8. The input masses of these runs were later adjusted.

Details of each column are explained in the main text of this appendix.

# | T (MeV) o] L, ¢ m; My Myes | Start Nttf;j Cut Nfr‘i?ﬂ
76 139 1.633 24 1.5 | 0.00022 0.05960 - 657 ord 300 357
77 149 1.671 16 1.5 | 0.00034 0.05538 - 1504 ord 300 1204
78 149 1.671 16 1.5 ] 0.00034 0.05538 - 1229 dis 300 929
79 149 1.671 16 1.5 ] 0.00034 0.05538 - 1520 77: 700 800 720
80 159 1.707 16 1.5 ] 0.00112 0.05230 - 2737 ord 300 2437
81 159 1.707 16 1.5 ] 0.00112 0.05230 - 2541 80:1500 1600 941
82 168 1.740 16 1.2 | 0.00126 0.04907 - 1394 ord 300 1002

Table A.4: Summary of input parameters and trajectory information for the ensembles with

m, ~ 135 MeV at 643 x 8 for 139 MeV < T < 168 MeV. Details of each column are explained

in the main text of this appendix.



