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Abstract

The Chiral and U(1)A Symmetries of
the QCD Phase Transition

using Chiral Lattice Fermions

Zhongjie Lin

With regard to the nature of the finite-temperature QCD phase transition and the fate

of the chiral and anomalous axial symmetries associated with it, we present in this thesis

two parallel sets of investigations into the QCD phase transition region between 139 and

195 MeV. Both studies adopt the Iwasaki gauge action augmented with the dislocation

suppression determinant ratio with 2+1 flavors of chiral fermions. This choice of lattice

action accurately reproduces the SU(2)L ×SU(2)R and U(1)A symmtries of the continuum.

The first study simulates QCD thermodynamics on a line of constant physics that rep-

resents 200 MeV pions and physical kaons using domain wall fermions (DWF) at three

space-time volumes: 163 × 8, 243 × 8, and 323 × 8, where the largest volume varies in linear

size between 5.6 fm (at T = 139 MeV) and 4.0 fm (at T = 195 MeV). The chiral condensates,

connected and disconnected susceptibilities and the Dirac eigenvalue spectrum are reported

and compared between different volumes as well as with the staggered results. We find a

pseudo-critical temperature, Tc, of approximately 165 MeV and strong finite volume depen-

dence below Tc. Clear evidence is seen for U(1)A symmetry breaking above Tc which is

quantitatively explained by the measured density of near-zero modes in accordance with the

dilute instanton gas approximation.

The second study targets on a line of constant physics with pions of physical mass, which

is the very first study using a chiral lattice fermion formulaation. We continue to use the

basic setup from the mπ ≈ 200 MeV simulations, except that we use a generalized form of

domain wall fermions, known as the Möbius fermions, to further reduce the residual chiral



symmetry breaking present in the domain wall formulation with finite extent in the fifth

dimension. Preliminary results including the chiral condensates and the susceptibilities are

reported for two space-time volumes of 323 × 8 and 643 × 8. We observe a dramatic increase

in the disconnected susceptibilities and a shift in the pseudo-critical temperature from 165

MeV to about 154 MeV, when the pion mass is decreased from 200 MeV to 135 MeV.
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Chapter 1

Introduction

1.1 Standard Model

The Standard Model of particle physics [6] represents humans’ current best understanding

for the fundamental building blocks of matter and their interactions. Finally established in

1970s, the Standard Model is the consummation of a series of continuing endeavors ever

since the beginning of the twentieth century, when the study of subatomic physics started

to flourish with both theoretical and experimental approaches.

The Standard Model has successfully predicted and withstood numerous experimental

tests: the discovery of W /Z bosons [7, 8], the discovery of the top quark [9, 10], and the

discovery of the Higgs boson, a long missing piece for the Standard Model [11, 12], just to

name a few.

The Standard Model incorporates three of the four most fundamental forces in nature

(gravitational interaction excluded) into a SU(3)×SU(2)×U(1) gauge theory. The electro-

weak SU(2) ×U(1) sector unifies the weak interaction and the electromagnetic interaction,

whereas the remaining SU(3) sector describes the strong interaction.

The abelian U(1) Quantum Electrodynamics (QED) was formulated as a first success of

1
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the application of quantum field theory in the 1940s by Feynman, Schwinger and Tomonaga.

Later in the 1950’s, an enormous population of new subatomic particles was discovered with

the assistance of a new generation of particle accelerators. Weak and strong interactions

were first introduced in the 1950’s [13] to distinguish a class of elementary particles known

as “leptons”, which only participate in the weak interactions usually associated with particle

decays. The other class of particles, the “hadrons”, participate in both types of interactions.

In the following decade, the weak interaction was first successfully decoded by Glashow,

Salam, and Weinberg [14, 15, 16] and unified with the electromagnetic interaction via sponta-

neous symmetry breaking and the Higgs mechanism. For the understanding of the remaining

strong force, the first crucial breakthrough came when the “eight-fold-way” was proposed and

developed by Gell-Mann and independently by Zweig [17, 18, 19, 20] in a effort to categorize

the seemingly erratic “particle zoo”. The “eight-fold-way” introduced a new intrinsic degree

of freedom within the hadrons, a new type of particle named “quarks” by Gell-Mann. The

later discovery of the Ω− [21] provided strong evidence in favor of the existence of quarks.

However, the quark model also faced several challenges, for instance, the futile search for

an isolated free quark and the seemingly violation of Pauli exclusion principle for some of

the baryons. It was not until 1973, that the quark model finally triumphed, when Polizer,

Gross and Wilczek independently studied on SU(3) non-abelian gauge theory of the strong

interaction and proved that it is asymptotically free [22, 23]. A unit of any one of the three,

so-called color charges is assigned to each individual quark. Therefore the gauge theory that

describes the strong interaction is named Quantum Chromodynamics (QCD).

In the Standard Model, QCD consists of three generations of quarks that come in pairs:

“up” and “down”, “strange” and “charm”, “bottom” and “top”, with eight gluons which serve

as the mediators for the strong interactions. QCD displays at least two intriguing phases. At

long distances or low energy, the quarks are strongly coupled and they are confined within

the hadrons. At short distances or high temperature, quarks become unbound and only
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weakly interacting, which has been observed in the experiments [24]. Between these two

phases, QCD is expected to undergo a phase transition.

The QCD phase transition, separating the low-temperature phase in which the (approx-

imate) SU(2)L × SU(2)R symmetry of QCD with two light flavors is broken by the vacuum

and the high-temperature phase in which this symmetry is restored, has been the subject of

active experimental and theoretical study for more than 30 years. The present expectation

is that this is a second-order transition belonging to the O(4) universality class when the

up and down quark masses are zero [25] and a possibly rapid cross-over for the non-zero,

physical light quark mass.

While in the asymptotically free phase, QCD can be studied using perturbation the-

ory, currently there are no known analytical solutions for the hadronic non-perturbative

regime. Fortunately, constructed from the Feynman path integral approach, the lattice reg-

ularization for QCD introduced by Wilson in 1974 [26] provides a brand new tool to tackle

non-perturbative QCD numerically with assistance from computers. After 30 years of devel-

opment and evolution of the discretization schemes for both the bosonic and fermionic fields

as well as significant improvements in the algorithms and numerical methods, lattice QCD

now stands as the standard ab initio approach to study many phenomena associated with

the strong interaction.

Ever since its inception, the lattice formulation of QCD has been applied to investigate the

QCD phase transition. For instance, a phase transition was observed with pure SU(2) gauge

theory on the lattice [27, 28]. In recent years, the QCD phase transition has been extensively

studied using the staggered formulation [29, 30] of lattice fermions, c.f. [31, 5]. However,

calculations employing chiral fermions are more difficult and less frequent [32, 33, 34, 35, 36].

In contrast to the staggered formulation in which finite lattice spacing effects explicitly break

the anomalous U(1)A symmetry and all but one of the six SU(2)L × SU(2)R symmetry

directions, variants of the chiral fermion formulation accurately reproduce these symmetries.
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At low temperatures one finds three degenerate light pions and the U(1)A current obeys

an anomalous conservation law identical to that in the continuum up to small, controlled

residual chiral symmetry breaking effects.

In this work, we study the temperature region 139 MeV ≤ T ≤ 195 MeV using chiral,

domain wall fermions (DWF) [37, 38] and Möbius domain wall fermions (MDWF) [39, 40]

with a lattice volume having a fixed time extent of 8 in lattice units and a variety of spatial

volume: 163, 243, 323 or 643. The temperature is varied by varying the inverse gauge coupling

β between 1.633 and 1.829 using the Iwasaki gauge action combined with a dislocation

suppressing determinant ratio (DSDR) [41, 42, 43, 44] to reduce the effects of residual chiral

symmetry breaking at these relatively strong couplings. The strange quark mass is set to its

physical value while the light quark mass is tuned carefully so that the pion mass is held fixed

at either a heavier-than-physical 200 MeV value or right around the physical 135 MeV value.

The latter is the first investigation of QCD thermodynamics with chiral lattice fermions at

physical value for the light quark mass.

1.2 Organization of Thesis

This thesis summarizes works published in Refs. [35, 45, 46], for which I am one of the

major contributors. Many discussions presented in this report are excerpted from these

references and most of the citations to them are implicit.

This thesis is organized as follows. In Chapter 2, we describe the QCD lagrangian in

the continuum and then introduce several proposals to discretize the gauge fields and the

fermion fields. We focus on the domain wall fermion formulation, which is used extensively

in our finite-temperature studies, and discuss several methods that can further suppress

the residual chiral symmetry breaking, including the Möbius fermion formulation and the

dislocation suppression determinant ratio and etc..

In Chapter 3, we give a brief introduction to the exploration for the QCD deconfinement
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phase transition and the chiral phase transition in the heavy-ion collision experiments as

well as in theory.

In Chapter 4, we describe how we determine the line of constant physics and the corre-

sponding lattice parameters that are used in our simulations. The residual mass plays an

important role in the setup procedure, therefore we present a detailed numerical study for

the residual mass with both domain wall fermions and the Möbius fermions.

Chapter 5 reports the results from lattices with a variety of volumes and quark masses

for the chiral observables, e.g. the chiral condensates, connected and disconnected suscepti-

bilities, as probes of the symmetries associated with QCD phase transition.

Chapter 6 is a self-contained discussion for the eigenvalue spectrum of the DWF Dirac

operator. The low-lying part of the spectrum provides an important alternative perspective

for resolving the fate of SU(2)L × SU(2)R and U(1)A symmetries associated with the QCD

phase transition. Results from 163 × 8 and 323 × 8 lattice space-time volume with 200 MeV

pions are presented and compared.

Chapter 7 concludes the thesis and gives a brief future outlook.

Finally, Appendix A gives a detailed description for the multiple streams within each

ensemble.



Chapter 2

Quantum Chromodynamics and its

Lattice Formulations

In this chapter, we start with a brief introduction to the action of Quantum Chromody-

namics in the continuum. It is then followed by a discussion of how the QCD action shall

be constructed appropriately on a lattice. Several discretization schemes of both the gauge

and the fermion fields are presented. In the later part of this chapter, we discuss several

methods that are utilized to improve the residual chiral symmetry breaking of the domain

wall fermion formulation.

It should be noted that when we start to describe the QCD theory on a lattice, it is

implicitly assumed that we adopt the Euclidean space instead of the Minkowski space as one

usually do for the continuum field theory. These two can be connected by a Wick rotation,

the details of which can be found in many field theory textbooks, e.g. [47].

2.1 Continuum QCD

Quantum Chromodynamics (QCD) is the current best description for strong interactions.

Formally speaking, it is a non-abelian SU(3) gauge theory, consisting of six flavors of fermions

6
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(quarks) which carry color charges and eight types of bosons (gluons) which mediate the

strong interaction. The QCD Lagrangian is given by,

LQCD = LF +LG (2.1)

LF (x) = ∑
f∈u,d,s,c,b,t

q̄f(x) (/D −mf) qf(x) (2.2)

LG(x) = −
1

4
F a
µν(x)F a,µν(x). (2.3)

Here qf(x) and Aa
µ(x) are quark fields and gluon fields respectively. The covariant derivative

/D and the field strength F a
µν(x) are defined as:

/D = iγµ (∂µ − gAa
µ

λa

2
) (2.4)

F a
µν = ∂µA

a
ν(x) − ∂νAa

µ(x) − gfabcAb
µ(x)Ac

ν(x). (2.5)

And λa (a = 1,2, . . . ,8) are the generators of SU(3) symmetry group, which are also known

as the Gell-Mann Matrices. They satisfy the following relations

Tr(λaλb) = 2δab (2.6)

[λa, λb] = 2ifabcλc. (2.7)

fabc that appears both in (2.5) and (2.6) are the structure constants for SU(3).

2.2 Gauge Actions on a Lattice

As pointed out in the previous introductory section, QCD is characterized by a local

non-abelian symmetry group SU(3). Recall that in the continuum theory, in order to find

the action of the gauge fields, we first start with a free fermion action and then introduce a

local gauge transformation to the fermionic fields:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ(x) Ð→ eiθ
b(x)λb

ψ(x)

ψ(x) Ð→ ψ(x)e−iθb(x)λb
.1 (2.8)

1To avoid potential confusion with lattice spacing, we avoid to use a as indices for the gauge fields and

etc. in the following introduction.
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Meanwhile, the resulting gauge fields should transform covariantly as,

Aa
µ Ð→ Aa

µ −
1

g
∂µθ

b − f bcdθcAd
µ. (2.9)

Then one can prove that the fermionic part of the QCD action 2.2 is manifestly invariant

under such gauge transformations.

However, when we start to discretize the theory on the lattice, we have to replace the

partial derivatives with the finite differences. Hence rigorously speaking, the lattice action

inevitably becomes non-local. Therefore, to ensure a manifest gauge invariance for the lattice

action, we should at least find a way to make the following two-point function gauge invariant,

ψ(x)ψ(x + µ̂a)Ð→ ψ(x)e−iθb(x)tbeiθb(x+µ̂a)tbψ(x + µ̂a), (2.10)

where µ̂ = 1,2,3,4 are unit vectors that point in one of the four possible directions on the

lattice. Fortunately, the Schwinger line integral comes to the rescue,

U(x, y) = eig ∫
y
x dzµAb

µ(z)tb . (2.11)

It compensates for the difference between the transformation factors associated with two

neighboring sites. It can be readily proved that the sandwiched term ψ(x)U(x,x+ µ̂a)ψ(x+

µ̂a) is gauge invariant with transformation (2.8) and (2.9). When lattice spacing a is small,

the line integral reduces to

Uµ(x) ≡ U(x,x + µ̂a) ≡ exp (igaAb
µ(x)tb) , (2.12)

Now the discretized gauge fields are represented by SU(3) matrices that reside on the links

between the adjacent lattice sites.

With this discretization formulation (2.12), any path ordered product of gauge links that

compose a closed loop on the lattice is manifestly gauge-invariant. The simplest example of

such loop, the elementary 1 × 1 square, is referred as the plaquette,

Pµν(x) = Uµ(x)Uν(x + µ̂a)U †
µ(x + ν̂a)U †

ν(x), µ ≠ ν. (2.13)
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And the renowned Wilson gauge action [26] is expressed in terms of these plaquettes:

SWilson
G = β

3
∑

x;µ≠ν
ReTr (1 − Pµν(x)) , β = 6

g2
. (2.14)

It can be shown that in the continuum limit, the Wilson gauge action reproduces the

kinetic term of the gauge fields of the QCD action and the leading discretization errors of

the Wilson gauge action are of order O(a2).

It has been found in several studies [48, 49] that lattice calculations with the Wilson gauge

action deviate appreciably from the continuum theory. The Wilson action is by no means the

unique discretization scheme for the QCD gauge action. In fact, any gauge-invariant path

ordered loop can be added to the action, so long as it converges to the correct continuum

action when the limit a → 0 is taken. A possible choice is the next simplest loop, a planar

1 × 2 rectangular term Rµν(x),

Rµν(x) = Uµ(x)Uµ(x + µ̂a)Uν(x + 2µ̂a)U †
µ(x + µ̂a + ν̂a)U †

µ(x + ν̂a)U †
ν(x), µ ≠ ν. (2.15)

Then the gauge action becomes:

SImproved
G = β

3
∑

x;µ≠ν
ReTr (1 − c0Pµν(x) − c1Rµν(x)) . (2.16)

The constraint that c0 + 8c1 = 1 should be imposed to ensure a correct continuum limit.

There are two popular choices of the pair of c1 and c2, Iwasaki (c1 = −0.331)[50] and DBW2

(c1 = −1.4069)[51] actions. The Iwasaki gauge action, which has been proved to display

better chiral behavior[52] when coupled with the domain wall fermion action, is adopted

through all of our studies on QCD thermodynamics.

2.3 Fermion Actions on a Lattice

2.3.1 Failure of Naive Lattice Fermions

As mentioned in previous section, the most straightforward method to discretize the

fermionic part of the QCD action in Euclidean space is simply to replace the derivatives by
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finite differences

∂µ Ð→
1

2a
(δx+µ̂a,x′ − δx−µ̂a,x′) . (2.17)

Such a symmetric difference guarantees a Hermitian Hamiltonian. The resulting discretized

action then takes the following form

SNaive
F =∑

x,y

ψ(x)(1
2
∑
µ

(γµδx+µ̂a,y − γµδx−µ̂a,y) +mδx,y)ψ(y). (2.18)

If we use a hypercube of extent N in all direction and calculate the fermion propagator

⟨ψ(x)ψ(y)⟩ = 1

Z ∫
(∏

x

dψ(x)dψ(x))ψ(x)ψ(y)e−SNaive
F (2.19)

in the momentum space, it becomes a integral within the first Brillouin zone:

⟨ψ(x)ψ(y)⟩ = lim
a→0
∫
B

d4p

(2π)4
−i 1a ∑µ γµ sin (pµa) +m

1
a2 ∑µ sin

2 (pµa) +m2
eip(x−y), (2.20)

where the continuum limit is taken as a approaches 0 while N goes to infinity and the

total extent in each direction is kept fixed. This solution, however, arrives at an incorrect

continuum limit, which is known as the notorious fermion doubling problem.

When the continuum limit is taken, the propagator in (2.20) receives a “proper” contri-

bution from the origin (pµ ≈ 0), which equals the correct continuum theory result. However,

it also receives “improper” contributions from the corners of the Brillouin zone (pµ ≈ ±π/a).

Thus in total, this naive fermion action will produce 16 degenerate fermions instead of the

one that we are looking for.

Unfortunately, the fermion doubling problem cannot be cured in a lattice theory that

respects the usual hermiticity, locality, translational invariance as well as the chiral symmetry

with vanishing quark masses at the same time [53]. Despite this, many efforts and talents

have been devoted to remedy the fermion doubling problem. And in the following two

subsections, we are going to introduce some of these ingenious methods which are closely

related to our QCD finite temperature studies.
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2.3.2 The Wilson Fermions

Bearing in mind that the continuum limit is achieved in the limit a → 0, one would

recognize that actions that only differ by terms which will vanish in the continuum limit

will eventually converge to the same continuum behavior. With this guideline, Wilson [54]

introduced a massive second derivative term into the naive fermion action

SWilson
F ≡∑

xy

ψ(x)DW (x, y)ψ(y) ≡ SNaive
F − 1

2
∑
x

ψ(x) ◻ ψ(x) (2.21)

where ◻ is the four-dimensional Laplacean operator andDW (x, y), the Wilson Dirac operator

is given by

DW (x, y) = (4 +m)δx,y −
1

2
∑
µ

((1 − γµ)δx+µ̂a,y + (1 + γµ)δx−µ̂a,y) . (2.22)

Thus the free fermion propagator in the momentum space can be computed as

⟨ψ(x)ψ(y)⟩ = lim
a→0
∫
B

d4p

(2π)4
−i 1a ∑µ γµ sin (pµa) +m(p)

1
a2 ∑µ sin

2 (pµa) +m(p)2
eip(x−y), (2.23)

where

m(p) =m + 2

a
∑
µ

sin2 pµa

2
. (2.24)

For any fixed pµ, m(p) reduces to m when a → 0. In other words, the effects of the extra

mass term in the Wilson fermion action vanish in the continuum limit as desired. On the

other hand, at the corners of the first Brillouin zone where pµ ≈ π/a, the m(p) term diverges

in the continuum limit as
2

a
∑
µ

sin2 pµa

2
∝ 1

a
. (2.25)

Furthermore, the m(p) term still contributes the necessary correct piece around the origin

pµ ≈ 0. Therefore, the Wilson fermion formalism successfully eliminates the 15 extra doublers

in the continuum limit.

However, the benefit of absence of doublers comes with a significant expense, the explicit

breaking of chiral symmetry. This can be easily verified once we take a look at the interacting
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Wilson Dirac operator by coupling the free fermion fields with the lattice gauge links in a

straightforward manner,

DW (x, y;U) = (4 +m)δx,y −
1

2
∑
µ

((1 − γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †
µ(x − µ̂)δx−µ̂,y) .2 (2.26)

Under the axial gauge transformation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ(x) Ð→ eiγ5θ
b(x)tbψ(x)

ψ(x) Ð→ ψ(x)eiγ5θb(x)tb
, (2.27)

the Wilson mass term fails to preserve the chiral symmetry since it commutes rather than

anti-commutes with γ5. The order of the chiral symmetry breaking due to the Wilson mass

term is in general O(1).

We can investigate the effects of this chiral symmetry breaking by looking at the Ward

identity associated with the axial current using the Wilson fermion action. Varying the

fermion path integral with the infinitesimal axial gauge transformation (2.27), we would

obtain the axial current and its divergence in the following form:

Aµ(x) =
1

2
ψ(x)γµγ5tbUµ(x)ψ(x + µ̂) +

1

2
ψ(x + µ̂)γµγ5tbU †

µ(x)ψ(x) (2.28)

∆µAµ(x) = 2(4 +m)ψ(x)γ5taψ(x)

−1
2
∑
µ

ψ(x)γ5tbUµ(x)ψ(x + µ̂) −
1

2
∑
µ

ψ(x)γ5tbU †
µ(x − µ̂)ψ(x − µ̂) (2.29)

−1
2
∑
µ

ψ(x − µ̂)γ5tbUµ(x − µ̂)ψ(x) −
1

2
∑
µ

ψ(x + µ̂)γ5tbU †
µ(x)ψ(x),

where the lattice version of the divergence operator is defined as the left-associated finite

differences ∆µf(x) = f(x) − f(x − µ̂).

As can be read from Eqs. (2.29), apart from the counterpart to the continuum term

2mψγ5taψ, some O(1) terms emerge as a consequence of the Wilson fermion formalism. One

way to handle the effects of this term is to simply absorb them into the mass term. This

yields O(1) additive renormalization of the fermion mass. Thus in practical calculations, the
2From now on, we will suppress the lattice spacing a in the expressions unless necessary.
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input quark mass term must be fine-tuned so that the physical quark mass is in line with

the designated value.

Wilson fermion formalism is very straightforward in both the physical sense and in real

implementation. However, with Wilson fermions, one has to take the continuum limit si-

multaneously with the chiral limit where extreme care needs to be taken and interpretation

of the results of finite lattice spacing can be be quite difficult. Thus the explicit breaking of

the chiral symmetry makes the Wilson fermion formalism much less attractive when we are

studying questions such as the spontaneous chiral symmetry breaking, which is at the heart

of the study on the QCD thermodynamics.

2.3.3 The Domain Wall Fermions

To cure the significant explicit breaking of the chiral symmetry while still taking ad-

vantage of its simple physical interpretation, Kaplan proposed a new variant of the Wil-

son lattice fermion discretization scheme which was later referred as domain wall fermions

(DWF) [37, 38].

The DWF formulation successfully solves the fermion doubling problem while keeping chi-

ral symmetry breaking at a controllable minimum level. This is accomplished by introducing

an auxiliary fifth dimension to the action, which is commonly referred as the s-direction to

be distinguished to the space-time directions x, y, z and t. The DWF action assumes the

following form

SDWF
F = ∑

x,s;x′,s′
ψ(x, s)DDWF(x, s;x′, s′)ψ(x′, s′), (2.30)

where the domain wall Dirac operator is defined as (0 ≤ s, s′ ≤ Ls − 1):

DDWF(x, s;x′, s′) = (δx,x′ +DW (x,x′))δs,s′ −m(s)PRδs,s′+1 −m(s + 1)PLδs,s′−1. (2.31)

Here DW (x,x′) is the usual Wilson Dirac operator (2.22) with a special mass M5, which is

defined as the domain wall height. PL = 1
2(1−γ5) and PR = 1

2(1+γ5) are projection operators.
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And m(s) is defined as follows

m(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 s = 1,2,⋯, Ls − 1

−mf s = 0
, (2.32)

where Ls is the extent of the fifth dimension.

As one can observe from the definitions above, DWF can be regarded as a stack of Ls

copies of Wilson fermions, which share the same gauge fields. And the s-direction is coupled

by a non-trivial mass matrix m(s). Therefore, superficially DWF still has Ls doublers. How-

ever, Ls−1 flavors of these fermions are extremely-heavy (at the order of the UV cutoff) and

can be cancelled with a proper Pauli-Villars subtraction, which corresponds to an additional

term in the action [55]

SPV = ∑
x,s;x′s′

φ†(x, s)DDWF[mf = 1](x, s;x′, s′)φ(x′, s′). (2.33)

The surviving physical fermions are represented by a pair of coupled left- and right-

handed Weyl fermions localized on the two ends (walls) of the s-direction. These couple

strongly to the four-dimensional quark fields q and q̄ constructed from the five-dimensional

(5-d) DWF fields ψ and ψ:

q(x) = PLψ(x,0) + PRψ(x,Ls − 1) (2.34)

q(x) = ψ(x,Ls − 1)PL + ψ(x,0)PR. (2.35)

Starting with the following 5-d current associated with the global U(3) flavor transfor-

mation, we can investigate the conservation of the physical 4-d currents for DWF [38]:

jbµ(x, s) = ψ(x + µ̂, s)PRU
†
µ(x)tbψ(x, s) − ψ(x, s)PLUµ(x)tbψ(x + µ̂, s). (2.36)

The definition of the resulting conserved 4-d vector current is unique:

Vbµ(x) =
Ls−1
∑
s=0

jbµ(x, s), ∆µVbµ(x) = 0. (2.37)
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The 4-d axial current tolerates a certain arbitrariness, as long as the transformation assigns

opposite signs to left- and right-handed Weyl fermions. We would like to choose one of the

symmetric definitions given as:

Ab
µ(x) =

Ls−1
∑
s=0

sgn(s − Ls − 1
2
) jbµ(x, s). (2.38)

Then we will arrive at the partially-conserved axial current (PCAC) for DWF [38]:

∆µAb
µ(x) = 2mfJ

b
5(x) + 2Ja

5q(x) (2.39)

∆µ ⟨Ab
µ(x)O(y)⟩ = 2mf ⟨J b

5(x)O(y)⟩ + 2 ⟨J b
5q(x)O(y)⟩ + i ⟨δbO(y)⟩ , (2.40)

where

J b
5(x) = −ψ(x,Ls − 1)PLt

bψ(x,0) + ψ(x,0)PRt
bψ(x,Ls − 1) = q̄(x)γ5tbq(x) (2.41)

is the pseudoscarlar density and

J b
5q(x) = −ψ(x,Ls/2 − 1)PLt

bψ(x,Ls/2) + ψ(x,Ls/2)PRt
bψ(x,Ls/2 − 1) (2.42)

is the midpoint term.

The first term on the right-hand side of the divergence of the PCAC (2.39) is the same

contribution from the bare input quark mass as in the continuum theory. It was also shown

in [38] that for operators O(x) composed of only quark fields q(x) and ̄q(x), the second term

involving J5q(x) vanishes in the limit of Ls → ∞ for flavor non-singlet currents. For flavor

singlet axial current, it generates the correct axial anomaly.

When Ls is finite, the midpoint contribution term symbolizes the residual chiral symmetry

breaking that is unique to the DWF formulation. It is the remnant of the mixing of modes

across the fifth dimension, when Ls is finite. And its leading contribution is equivalent to an

additive renormalization to the bare quark mass, which is known as the residual mass mres,

i.e.

J b
5q(x) ≈mresq̄(x)γ5tbq(x), (2.43)
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so the total effective quark mass becomes

m̃ =minput +mres. (2.44)

At fixed bare coupling, the dependence of mres on the extent of the fifth direction Ls can

be parameterized as [52]:

mres = c1ρH(λc)
e−λcLs

Ls

+ c2ρH(0)
1

Ls

, (2.45)

where ρH(λ) represents the density of eigenmodes of the effective 4-d Hamiltonian H =

− log(T ), where T is the DWF transfer matrix in the fifth direction that controls the mixing

of chiral modes between the 4-d boundaries. The 4-d Hamiltonian, H is closely related to

the Hermitian Wilson operator, HW = γ5DW (−M5), via H = 2 tanh−1 (HW /(2 +DW )), and

it has been shown that the zero modes of H and HW coincide [38].

The first term in Eq. (2.45) represents contributions from eigenmodes with eigenvalues

λ greater than the mobility edge, λc. These modes have extended 4-d support and their

contributions to mres are exponentially suppressed with Ls. The coefficient of the first term

is in proportion to the eigenvalue density near the mobility edge.

The second term in Eq. (2.45) corresponds to contributions from the near-zero eigen-

modes of the 4-d Hamiltonian, i.e. eigenmodes where the 5-d transfer matrix T is near

unity, thus allowing nearly unsuppressed mixing of the domain walls in the fifth direction.

Its coefficient scales with the eigenvalue density near the origin.

In the Ls →∞ limit, the mixing of domain walls is absent for both the extended and the

local modes, so both contributions vanish and the chiral limit is restored. As a consequence,

the chiral limit and the continuum limit commute and the DWF formalism successfully

limits the residual chiral symmetry breaking to a controllable minimum. Ambiguity in

measurements with Wilson fermions for quantities that are sensitive to chiral symmetry

breaking can now be resolved in a systematic manner with DWF.

In practice, even though the residual chiral symmetry breaking of DWF is already at a

very low level, it is often not sufficiently small when simulating QCD with physical or slightly
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heavier than physical pions. This is of particular importance in QCD thermodynamics since

the simulations are based on coarse lattices with strong couplings, where the density ρH(0)

in (2.45) above can be large.

As the total bare quark mass m̃ is composed of the input quark mass minput and the

residual mass mres, there are several possible choices for us to achieve our target small value

of m̃.

1. Use a negative input quark mass. This is the most simple-minded way to reduce the

total quark mass and is commonly adopted in the Wilson fermion scheme. This method

has the benefits that it does not involving any new schemes or implementations and

it will not increase the computational cost. However, it has the potential to produce

a singularity in the Dirac operator in a dynamical evolution. The conjugate gradient

inversion will fail to converge at when such singularity is present. Although it is not well

defined for each individual configuration, the residual mass provides a “safe cushion”

for the appearance of this singularity when the negative input quark mass is not too

large in magnitude. According to our calculations, if the magnitude of the negative

input quark mass is around or below one-third of the magnitude of the corresponding

residual mass, the evolution is free of these undesired singularities (at least for all our

evolutions with more than 10000 trajectories in total). With the same beta value and

the same total quark mass, ensembles with either negative or positive input quark mass

have been demonstrated to give the same physical results, which will be discussed in

Chap. 4, 5 and 6.

2. Increase the extent of the fifth dimension Ls, which is in general a multiplicative factor

to the computational expense. In practice, the typical value of Ls is between 16 and

32, which results in a computational cost one order of magnitude more expensive than

a similar simulation with Wilson fermions. With larger Ls, the 1/Ls component of

the residual mass will dominate. Thus, it becomes very inefficient to reduce mres by
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increasing Ls and the computational cost of a calculation with reasonable results and

errors will soar to a formidable level. An attempt with Ls = 96 DWF for the QCD

thermodynamics can be found in [35].

3. Möbius fermions [39, 40]. This is a generalized version of DWF which has a pair

of coefficients at each site of the fifth dimension. These coefficients can be tuned to

“customize” the behavior of the chiral symmetry breaking coming from different modes

to attain a smaller mres. Details of the Möbius fermion formulation are discussed in

the subsequent subsection 2.3.4.

4. Dislocation Suppression Determinant Ratio (DSDR) [41, 42, 43]. This is a modification

to the gauge action that will suppress the zero modes of the 4-D Dirac operator DH

and in turns will reduce the 1/Ls contribution to mres. Details of DSDR are elaborated

in Sec. 2.4.

More numerical results concerning the residual mass will be discussed in Sec. 4.

2.3.4 Möbius Fermions

The standard domain wall fermion formulation is characterized by a controllable chiral

symmetry breaking at the expense of a fictitious fifth dimension. It is the simplest formu-

lation of th kind, has the most straightforward physical interpretation and is relatively easy

to implement for all sorts of evolutions and calculations. However, it does not necessarily

offer the minimal residual chiral symmetry breaking for a given Ls. In recent years, many

studies have been carried out to explore a modified or a generalized version of domain wall

fermions that can reduce the residual chiral symmetry breaking at a fixed Ls. Among them,

optimum domain wall fermions proposed in Ref. [56], as suggested by its name, gives the

minimal residual mass for a given Ls, and Möbius domain wall fermions (MDWF/Möbius

Fermions) introduced in Refs. [39, 40] is a highly customizable generalization of plain do-
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main wall fermions. The latter of the two is widely used in our simulation requiring pions

of physical mass. Thus in this subsection, we will focus our introduction on Möbius domain

wall fermions. Many theoretical derivations and details of the technical implementation of

MDWF can be found in Hantao Yin’s thesis [57].

Before we delve into the definition and characteristics of Möbius domain wall fermions,

let us first turn to the Ginsparg-Wilson fermions for a moment. As enforced by the afore-

mentioned Nielsen-Ninomiya no-go theorem [53], we have to give up one or several essential

properties of the continuum theory, for instance, hermiticity, locality, chirality and etc..

However, Ginsparg and Wilson [58] redefined the chiral symmetry on the lattice with the

following so-called GW-relation

γ5D +Dγ5 =Dγ5D . (2.46)

If we “pretend” that the GW-relation is the chiral symmetry for lattice fermions, then we will

be able to construct a lattice fermion formulation that boasts all the important symmetries

and characteristics shared by the continuum theory.

In 1997, Herbert Neuberger proposed a fermion formalism [59, 60], the overlap fermions,

that satisfies the GW-relation. Its Dirac operator depends on a sign function of a certain

Hermitian Wilson-type Dirac operator,

DOV (HW ) =
1

2
(1 +m + (1 −m)γ5ε(HW )) . (2.47)

In Neuberger’s original overlap formalism, the kernel of the sign function is the Hermitian

Wilson Dirac operator HW = γ5DW . Yet there exists an equivalence relation between DWF

and overlap fermions as the former can be regarded as an approximation to the latter. The

plain domain wall formulation (Shamir DWF) can be expressed in the form of of Eq. (2.47),

with HW replaced by the Shamir kernel HT = γ5DW (2 +DW )−1 and the ideal sign function

replace by following truncated version,

ε(x) = (x + 1)
Ls − (x − 1)Ls

(x + 1)Ls + (x − 1)Ls
, (2.48)
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where the exponent Ls is the length of the fifth dimension.

Now we have a new perspective for residual chiral symmetry breaking with the DWF

formulation: the deviation of Eq. (2.48) to the ideal sign function. Fig. 2.1 shows the

numerical results for the approximated ε(x) for DWF and its deviation from the ideal sign

function for a selected set values of Ls [57]. It is also revealed in Fig. 2.1 that the deviation
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Figure 2.1: Left: plot of ε(x) for the domain wall fermion actions with Ls = 4,8,16. Right:

plot of log (1 − ε(x)) for different values of Ls . The shaded region denotes the approximate

range of the eigenvalues of the HT kernel.

comes from two parts, modes that are very close to the origin and modes that approach

infinity. The first contribution is usually dominant since the larger modes always have a

upper bound due to the lattice cut-off. However, both contributions must be considered

when one tries to improve the approximation to the sign function for Shamir domain wall

fermions.

The Möbius domain wall fermion formulation is motivated to augment the plain domain

wall fermions with more parameters that can be tuned to achieve a better approximation to

the sign function. Now let us proceed to give the definitions of the five-dimensional Möbius

fermion action and its Dirac operator,

SM
F = ∑

x,s;x′,s′
ψ(x, s)DM(x, s;x′, s′)ψ(x′, s′), (2.49)
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where DM(x, s;x′, s′) is the Möbius Dirac operator:

Dxs;ys′ =Ds
+(x, y)δs,s′ +Ds

−(x, y)msP+δs,s′+1 +Ds
−(x, y)ms+1P−δs,s′−1. (2.50)

Here Ds
+ and Ds

− are shifted Wilson Dirac operators defined as

Ds
+(x, y) = bsDW (x, y) + 1 (2.51)

Ds
−(x, y) = csDW (x, y) − 1, (2.52)

where DW (x, y) is the Wilson Dirac operator (2.22). The function ms in Eq. (2.50) is the

5-d mass matrix shared with the Shamir domain wall fermion formalism (2.32).

This Möbius Dirac operator is in its most generic form with Ls pairs of free parameters

bs and cs for each five-dimensional plane in addition to the original domain wall fermion

parameters. With transformations and derivations presented in [40], it can be shown that

this Möbius Dirac operator corresponds to a overlap Dirac operator given by an expression

similar to Eq. (2.47):

DOV (HM) =
1

2
(1 +m + (1 −m)γ5ε(HM)) , (2.53)

ε(HM) =
S − 1
S + 1

, (2.54)

S = ∏
s

Hs
T + 1

Hs
T − 1

, (2.55)

Hs
T = (bs + cs)γ5DW (2 + (bs − cs)DW )−1 . (2.56)

These sophisticated expressions can be simplified if we employ the following constraints:

1. All bs = b and cs = c, making bs and cs constant along the s-direction;

2. b − c is fixed to 1.

Now the quivalent overlap operator becomes

ε(x) = (λx + 1)
Ls − (λx − 1)Ls

(λx + 1)Ls + (λx − 1)Ls
, (2.57)
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where λ = b + c is still left as a free parameter subject to tuning. This is the basic setup for

the MDWF we have adopted for our finite temperature simulations.

Following a Taylor expansion of ε(x) about x = 0, the Möbius DWF operator turns out to

be a very good approximation to that of the plain DWF Dirac operator, if we set λ = Ld/Lm.

Here Ld and Lm are respectively extents of the fifth dimension of Shamir DWF and Möbius

DWF under comparison. In other words, we are able to shrink the auxiliary fifth dimension

with a fact of of λ = b+ c = 2c+ 1 once we switch from Shamir DWF to Möbius DWF. Based

on this argument, we can use large λ (or equivalently large c) instead of large Ls to save

computational cost. However there are at least two loopholes behind this simple-minded

deduction [57]:

1. Such great approximation from Taylor expansion no longer holds when λ or λLs is very

large. Keeping Ls×λ fixed, there exists an optimum choice of λ that will minimize the

residual mass;

2. If we adopt λ close to the optimum value or even larger, much of the chiral symmetry

breaking begins to come from large eigenvalues of the overlap kernel while less chiral

symmetry breaking comes from eigenvalues near zero. This is achieved by making the

step function very steep which produces large forces and requires a smaller step size,

slowing down the evolution significantly.

To circumvent these issues, we need to perform several scans in search for the optimum

choice of λ that will minimize the overall computational cost and give minimum mres that

is required for our simulations with physical pions. Details of the scans can be found in [57]

and also in Chap. 4.

The optimum domain wall fermion method, on the other hand, utilizes the Zolotarev

optimal rational approximation to approximate the sign function, which is theoretically the

best one as measured by the minimum of the maximum deviation (L∞ measure). However,

it loses the mirror symmetry in the fifth dimension and thus brings some extra ambiguity
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and difficulty in computation. Moreover, it is plagued with a severe slow-down in evolutions

similar to the one mentioned above. Based on these considerations, we choose the more

flexible MDWF formalism over the optimum DWF in our thermodynamics simulations with

physical pions.

The construction of the 4-d fermions fields and the partially-conserved axial current of

MDWF is more complicated and contains more arbitrariness than the plain DWF. We can

choose a set of definitions parallel to the plain DWF. Details can be found in [57] and we

simply quote the results below. The 4-d physical fermion fields are defined as follows,

q(x) = P−ψ0(x) + P+ψ2N−1(x) (2.58)

q(x) = −∑
y

ψ2N−1(y)D2N−1
− (y, x)P− −∑

y

ψ0(y)D0
−(y, x)P+. (2.59)

Formally J5 and J5q are defined the same as the DWF in Eqs. 2.41 and 2.42. Nevertheless,

the Dirac propagator D−1dwf used in calculating the correlator in the DWF formulation should

be replaced by D−1D− in the MDWF formulation.

2.4 Dislocation Suppression Determinant Ratio (DSDR)

Let us restate below the dependence of mres on Ls in Eq. (2.45):

mres = c1ρH(λc)
e−λcLs

Ls

+ c2ρH(0)
1

Ls

,

The exponentially decaying contribution which results from the extended eigenmodes will

drop shapely when one increases Ls. The second contribution, however comes largely from

localized dislocations in the gauge field corresponding to topology change [61, 62, 63]. At

strong coupling, gauge field dislocations rapidly become more common, so that the dominant

contribution to mres comes from the near-zero eigenmodes of H and the second, power-

suppressed term in Eq. (2.45) dominates. This effect becomes more prominent when Ls is

already very large.
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One method to reduce the large residual chiral symmetry breaking is to augment the

gauge action with the determinant of the 4-d Hermitian Wilson Dirac operator, HW (−M5) =

γ5DW (−M5) [41, 42, 43], where M5 is the domain wall height (M5 = 1.8 in our calculations).

Including this determinant as a weighing factor in the path integral explicitly suppresses

those configurations which have a small eigenvalue of HW , and especially also those with

near-zero modes of H.

Unfortunately, the suppression of the zero modes of HW also suppresses exactly those

configurations that change topology during a molecular dynamics evolution. Therefore, in

order to allow for the correct sampling of all topological sectors, we augment the Wilson

Dirac operator with a chirally twisted mass,

DW (−M5)→DW (−M5 + iεγ5) . (2.60)

We then employ the following ratio of weighting factors on the gauge fields:

W(M5, εb, εf) =
det [D†

W (−M5 + iεfγ5)DW (−M5 + iεfγ5)]
det [D†

W (−M5 + iεbγ5)DW (−M5 + iεbγ5)]
(2.61)

=
det [D†

W (−M5)DW (−M5) + ε2f]
det [D†

W (−M5)DW (−M5) + ε2b]
.

The bosonic and fermionic “twisted-mass” parameters εb, εf can be tuned so that gauge

field topology changes at a reasonable rate during the Hybrid Monte Carlo (HMC) evolution,

but the localized dislocations which contribute to the residual mass are suppressed [44]. We

call the weighting factor W(M5, εb, εf) the Dislocation Suppressing Determinant Ratio.

Employing the DSDR in our action ensures that the ultraviolet modes of the theory

are minimally affected so that bare parameters such as β and the quark masses do not

shift significantly from those used in the standard domain wall fermion action. With these

precautions, the calculations using the DSDR action are very similar to those with the

standard Wilson or Iwasaki action but bring the benefit of a much lower residual mass

c.f. [44].



Chapter 3

QCD Phase Transition and the

Symmetries of QCD

This chapter starts with an overview of the theoretical and experimental investigations

of the QCD phase transition. It is followed by a brief introduction to the chiral and U(1)A

symmetries that are tightly connected with the QCD phase transition.

3.1 Overview of QCD at Finite Temperature and Den-

sity

SU(3) Quantum Chromodynamics is now widely accepted as the fundamental complete

description of the strongly interacting nuclear force. However, due to the non-perturbative

nature of SU(3) gauge theory, many aspects of QCD are yet to be understood. Among them,

the phase structure of QCD is one of the most fundamental issues that intrigues physicists

both in theory and in experiment.

At ordinary temperature and conditions, quarks and gluons are confined within hadrons.

In contrast, at extremely high temperature, quarks become weakly interacting and the

25
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hadronic matter is expected to turn into a brand new state, “the quark gluon plasma”

(QGP) [64], which displays properties that resemble a perfect fluid. Similar transitions may

also take place for quark matters at extreme density, which is speculated to be a candidate

for the composition of a neutron star [65]. Such hot and dense quark matter is presumably

also present at an early stage (⪅ 10µs) of the universe after the Big Bang. Thus, a better

characterization of the QCD phase transition would deepen profoundly our understanding

of the evolution of the universe. Fig. 3.1 shows a qualitative sketch of the phase diagram of

the quark matter [3].

Figure 3.1: A qualitative sketch of the phase diagram of quark matter in temperature-density

space [3].

At present, the heavy-ion community is trying to replicate these extreme conditions

in ongoing as well as future heavy-ion collision experiments that are carried out at various

facilities, for instance Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider (LHC),
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Facility for Antiproton and Ion Research (FAIR), and Nuclotron-based Ion Collider Facility

(NICA). All the following phenomena and many others are expected to be experimental

signatures for the formation of the QGP phase:

Strangeness Enhancement Strangeness is absent from the initial state of the heavy-ion

collision, as the ordinary nucleons are all composed of up and down (u, d) valence

quarks. When the QGP is formed, abundant strange anti-strange quark pairs (ss̄) are

created. As they move freely within the hot and dense medium, s̄ can readily find

a u or d quark to form K+ or K0 mesons. However, it would be less likely for a s

quark to find ū or d̄ quark. Thus, the production of strangeness is a good indicator for

the existence of QGP [66]. This signature has been captured in many experiments, as

reported in [66, 67, 68, 69, 70].

J/Ψ Suppression J/Ψ, or charmonium, is the bound state of a (cc̄) pair that is expected

to be created in the hot QCD medium. The binding force can successfully hold the

pair together if the two quarks are within the color Debye screening length. However,

if the hot matters enters the QGP phase, the decreased screening radius may fall short

of the binding radius, which will result in the meltdown of J/Ψ [71]. Consequently, the

suppression of charmonium production in the heavy-ion collision as compared to that

from baseline production in the nucleon-nucleon collisions provides a signal for the QGP

phase. Some information was collected at Super Proton Synchrotron (SPS) [72, 73].

However, when the abundance of charmonium generated in the heavy-ion collission

exceeds a certain level at sufficiently high energy, charmonium suppression might be

reversed, becoming charmonium enhancement [74].

Jet Quenching In hadronic collisions, due to the hard momentum transfer, some quark-

gluon constituents will be knocked out of the interacting medium and form hadrons,

which are referred as “jets”. However, if these quark-gluon constituents have to ex-

perience the QGP medium before escaping, they will suffer a substantial amount of
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energy loss due to their strong interaction with the medium. This so-called “jet-

quenching” [75] has been observed at RHIC [76, 77] and LHC [78].

Chiral Phase Transition All the above signatures put emphasis on the quark deconfine-

ment aspects of the phase transition. It is also expected that chiral symmetry is also

restored in the QGP phase, although its critical temperature might differ slightly from

the deconfinement critical temperature. The effective mass of some mesons, φ for in-

stance, is sensitive to the chiral symmetry, while the properties of leptons are preserved

as they are not participants in the strong interactions. This would result in a shift of

the decaying branching ratio for these mesons [79], which could provide an informative

probe of the restoration of chiral symmetry. This aspect of the QCD phase transition

is the central topic of this thesis. More discussion can be found in the following section

and in the rest of this thesis.

Despite the success in the discovery of this new form of QCD matter (for reviews c.f. [80,

81, 82]), locating the phase boundaries and pinpointing the pseudo-critical temperature

remain puzzles to be solved.

In theory, the phase transition is indicated by the divergence of a sufficiently high order

derivative of the free energy density at a critical temperature. For a non-vanishing quark

mass, as in the real world, the notion of a critical temperature becomes obscured and a

pseudo-critical temperature is introduced to locate the crossover transition behavior. In this

work, we define a pseudo-critical temperature at the peak of the disconnected piece of the

chiral susceptibility, χdisc.

A variety of continuum studies both from QCD and first principles as well as from its

low energy effective theory have been devoted to resolve the QCD phase transition (for

reviews c.f. [83, 84, 85, 86]). On the other hand, lattice QCD provides important insights

into thermodynamics from many perspectives. For instance, the phase transition for a pure

gauge SU(3) was shown to be first order with Tc ≈ 240 MeV [87, 88], consistent with the



29

effective theory prediction [89]. The equation of state for QCD can also be determined from

the lattice formulation, with some most recent progress reported in Refs. [90, 91]. Despite

the “sign problem” in Euclidean space, many efforts have been devoted to introduce a finite

chemical potential on the lattice so that a study of finite-density QCD is accessible. A variety

of techniques have been developed in [92, 93, 94, 95, 96, 97, 98, 99].

The majority of these exploration of QCD thermodynamics using lattice QCD employ

staggered fermions, which suffer from additional breaking of the full chiral and anomalous

U(1)A symmetries due to lattice artifacts. These effects will not disappear until a continuum

limit is taken where demanding computational cost and careful extrapolation are required.

Domain wall fermions and other variants of chiral fermions are ideally suited to study the

chiral and anomalous U(1)A symmetries and their degree of restoration with increasing

temperature, which is a natural focus of this thesis.

3.2 Symmetries Associated with QCD Phase Transi-

tion

In the limit of Nf flavors of vanishing quark masses, QCD possesses a chiral SU(Nf)L ×

SU(Nf)R symmetry. However, the QCD vacuum does not respect this symmetry. Instead

the non-vanishing vacuum expectation value of SU(Nf)L×SU(Nf)R non-invariant operator

ψψ reflect a smaller, SU(Nf)V vacuum symmetry. This symmetry-breaking vacuum order

parameter ⟨ψψ⟩ is expected to disappear at high temperature implying a phase transition

separating a low-temperature chirally asymmetric phase from a high-temperature phase with

restored chiral symmetry. The order of the transition depends on the number of flavors of

light quarks. As argued in Ref. [25], QCD with Nf ≥ 3 will undergo a first-order chiral phase

transition. For a 2-flavor theory, the order of the phase transition may further depend on the

degree to which the anomalous U(1)A symmetry is realized in QCD. For a massive QCD, the
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order of the phase transition will depend on the quark mass as well as the non-zero baryon

chemical potential as demonstrated in Fig. 3.2([4]).

Figure 3.2: Left panel shows the conjectured phase diagram of QCD in the space of temper-

ature, baryon chemical potential and light quark mass [4]. The solid blue line labelled by

“Lattice” marks the chiral transition region at vanishing baryon chemical potential (µB = 0)

and physical quark masses, the focus of this work. Right panel is the “Columbia plot”, the

phase diagram of QCD in the light-strange quark mass plane at vanishing chemical potential.

The U(1)A symmetry, which is respected by QCD at the classical level, is broken by the

axial anomaly. This results in both the anomalous term in the conservation law for the U(1)A

axial current of Adler [100] and Bell and Jackiw [101] as well as ‘t Hooft’s explicit violation

of the global symmetry [102] arising from fermion zero modes associated with topologically

non-trivial gauge field configurations. At low temperatures this anomalous U(1)A symmetry

is also broken by the QCD vacuum. However, above the QCD phase transition vacuum

symmetry breaking has disappeared and the effects of the axial anomaly can be studied

directly.

At sufficiently high temperatures anomalous U(1)A symmetry breaking can be studied
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using the dilute instanton gas approximation (DIGA) [103, 104]. In this approximation one

finds exponential suppression of the instanton density as the gauge coupling decreases so that

the U(1)A symmetry becomes exact in the limit T → ∞. When the DIGA is justified, the

U(1)A symmetry breaking effects it predicts are very small. With decreasing temperature,

the semi-classical approximation underlying the dilute instanton gas picture becomes unre-

liable and the degree of anomalous symmetry breaking becomes a non-perturbative question

well suited to a DWF lattice study. While one might imagine that anomalous U(1)A break-

ing remains small as the temperature decreases from asymptotically large values, even down

to the critical temperature, Tc, it is also possible that new, non-perturbative phenomena

emerge at lower temperatures leading to a significant topological charge density and to large

U(1)A symmetry breaking.

As aforementioned, the degree of U(1)A symmetry breaking may have interesting con-

sequences for the order of the 2-flavor massless QCD chiral phase transition. Namely, if

the U(1)A breaking is significant near the phase transition, then the resulting four massless

degrees of freedom (π⃗ and σ) can support O(4) critical behavior at Tc, the location of the

phase transition. However, if anomalous breaking of the U(1)A is small so there are eight

light degrees of freedom at Tc (π⃗, σ, δ⃗ and η) then the chiral transition is expected to be

first order, although a second order phase transition may still be permitted with a different

SU(2)L×SU(2)R/U(2)V universality class as suggested in Refs. [105, 106]. Thus, a thorough

study of the behavior of the anomalous U(1)A symmetry has essential consequences for the

nature of the chiral phase transition.

In heavy-ion collision experiments, it may also be possible to observe signatures of U(1)A

symmetry restoration through measurements of low-mass dileptons [107]. Moreover, an ef-

fective restoration of the axial U(1)A symmetry above Tc may lead to softening of the η′ mass

resulting in interesting experimental signatures [108, 109, 110]. In fact, recently it has been

claimed that the results from the RHIC suggest softening of the η′ mass indicating partial
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restoration of the U(1)A symmetry in hot and dense matter [111]. Hence, studies related

to U(1)A symmetry restoration with increasing temperature have important theoretical and

phenomenological consequences.



Chapter 4

Simulation Details

This chapter focuses on setting up the basic parameters for the generation of our finite

temperature ensembles with DWF/MDWF. We start with the determination of the line of

constant physics, followed by several tables listing the parameters that we adopt in prac-

tical simulations. Detailed explanations are provided for certain aspects that need some

attention. We also present some very recent results from a zero temperature ensemble to

verify our choices for the parameters. In the third section, a brief summary for the plaquette

is discussed. In the last section of this chapter, we present a thorough discussion for the

numerical results of the residual mass that is essential for the DWF/MDWF calculation.

Note that the results from the zero-temperature ensembles presented in the chapter are

last updated when the relevant calculations for the line of constant physics were performed.

The results from some of these zero ensembles have since been improved and thus may be

different from those presented here.

4.1 Determine the Line of Constant Physics

In some earlier explorations of QCD phase transition with DWF c.f. [33, 35] the total

bare quark mass wes held constant instead of the total physical quark mass due to the lack of

33
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relevant data and the difficulty in tuning the residual and the total quark mass. This resulted

in a pion mass changing from mπ ≈ 225 MeV at the lowest temperature to mπ ≈ 275 MeV

at the highest temperature for these studies. The 20% difference in the pion mass could in

turn causes ambiguities in determining the pseudo-critical temperature and the breaking and

restoration of various symmetries associated with the QCD phase transition. Fortunately,

we have now collected reasonable statistics from zero-temperature ensembles that allows us

to determine a line of constant physics (LCP) with a pion mass fixed at 200 MeV or even

lower.

Before we start, let us present some of the features of the zero-temperature ensembles

that are listed in Table 4.1. All these ensembles were generated with the Iwasaki + DSDR

# β Nσ Nτ Ls ml ms mres mπ (MeV) Ntraj

1 1.70 16 32 32 0.013 0.047 0.00420(2) 394(9) 1360

2 1.70 16 32 32 0.006 0.047 0.00408(6) 303(7) 1200

3 1.75 16 16 32 0.006 0.037 - - 2242

4 1.75 32 64 32 0.0042 0.045 0.00180(5) 246(5) 1288

5 1.75 32 64 32 0.001 0.045 0.00180(5) 172(4) 1560

6 1.82 16 32 32 0.013 0.040 0.00062(2) 398(9) 2235

7 1.82 16 32 32 0.007 0.040 0.00063(2) 304(7) 2134

Table 4.1: Summary of zero temperature ensembles with the DSDR action. Each lattice

ensemble is given a label for later reference. The total molecular dynamics time per trajectory

is τ = 1.0. The residual mass, mres is also tabulated. The values given for run #5 are zero

temperature results from RBC-UKQCD [1, 2]

.

gauge action and 2 + 1 flavors of DWF action. Some of the ensembles have been expanded

to include additional configurations, which were not used in the process of determining the
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input parameters. Therefore in this section, we present the results just as they were when

we chose the parameters for our finite temperature simulations. A recently generated zero

temperature ensemble with new results will be discussed in Sec. 4.2 after we present choice

of the parameter that were used in the finite temperature ensembles reported here.

4.1.1 LCP for mπ ≈ 200 MeV Ensembles

For the DSDR ensembles, we have endeavored to move along a line of fixed physical

pion mass, mπ = 200 MeV. Table 4.2 summarizes our results for mπ,mρ, and r0 on the zero

temperature ensembles.

# β ml r0 mρ mπ 1/a† (GeV)

1 1.70 0.013 2.895(11) 0.68(2) 0.310(1) -

2 0.006 2.992(27) 0.67(2) 0.238(1) -

Extrapolated -0.0040 3.13(7) 0.66(6) - 1.27(4)

4 1.75 0.0042 3.349(20) 0.57(2) 0.1810(3) -

5 0.0010 3.356(22) 0.56(2) 0.1264(3) -

Extrapolated -0.0018 3.36(4) 0.56(4) - 1.36(3)

6 1.82 0.013 3.743(28) 0.56(2) 0.255(2) -

7 0.007 3.779(37) 0.53(2) 0.195(2) -

Extrapolated -0.00064 3.83(9) 0.49(5) - 1.55(5)

Table 4.2: Results for r0, mρ, mπ, and the lattice scale, a−1. At each value of β, we perform

simple linear extrapolations to ml = −mres, i.e., the chiral limit, for r0 and mρ. The lattice

scale is fixed using the extrapolated value for r0. †Lattice scale determined using r0 = 0.487(9)

fm.

In order to determine the lattice scale, we have used the Sommer parameter r0, deter-

mined from the static quark potential. The quantity r0, extrapolated to the chiral limit, can
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be related to the lattice scale using its physical value r0 = 0.487(9) fm, determined in earlier

domain wall fermions caculations [112]. The temperature is given by T = 1/Nτa. The values

for r0/a in Table 4.2 allow us to determine the bare couplings needed for finite temperature

lattice ensembles in the transition region.

To describe T (β) in physical units, we use a modified form of the two-loop renormalization

group running, which includes an extra term incorporating the O(a2) lattice artifacts:

T (β) = 1

Nτa(β)
= (c0 + c1â2(β))

1

â(β)
(4.1)

â(β) = exp(− β

12b0
)(6b0

β
)
−b1/(2b20)

; b0 =
9

(4π)2
; b1 =

64

(4π)4
, (4.2)

where â(β) describes the continuum two-loop RG running at the lattice spacing. The left

panel of Fig. 4.1 shows the result of the fit of the β-dependence of the temperature to both

the lattice-corrected RG fit of Eq. (4.1), and to the continuum RG running, i.e., the case

where c1 = 0. As can be seen, the lattice-corrected fit provides a better description of the

data.

To ensure that we simulate along a line of fixed pion mass, we must account for the

running of the bare quark masses as the bare coupling is changed. Since the residual chiral

symmetry breaking results in an additive shift in the quark mass, to leading order in chiral

perturbation theory, the pion mass depends on the total quark mass, m̃l =ml +mres, as:

m2
π ∝ (ml +mres). (4.3)

This linear quark mass dependence is a surprisingly good description of earlier data [112]

and sufficiently accurate for the present purpose.

This allows us to determine the bare quark masses required for a specific line of constant

physics from the zero temperature ensembles listed in Table 4.2. Figure 4.2 shows the quark

masses required for mπ = 200 MeV. We also fit these results for m̃l(β) to the lattice-corrected

two-loop running of the mass anomalous dimension:

m̃l ≡ (ml +mres) = (A +Bâ2(β)) (
12b0
β
)
4/9

(4.4)
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Figure 4.1: Left panel: temperature for Nτ = 8 is plotted versus β. The solid curve is the fit

to the continuum RG running; c0 = 25.2(3) MeV. The dashed curve is the result of the fit to

Eq. (4.1) which includes an added a2 correction; c0 = 29.7(2.9) MeV, c1 = −204(132) MeV.

Right panel: mresa is plotted versus β with an exponential fit: mres(β) = A exp (−Bβ);

A = 8.7(9.7) × 108, B = 15.4(6).
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Figure 4.2: Total light quark mass for the mπ = 200 MeV line of constant physics, with a fit

to the lattice-corrected mass anomalous dimension. Dashed curves represent the 1-σ error

band.



38

This lattice-corrected fit provides a good interpolation formula that allows us to achieve a

line of constant physics on the finite temperature ensembles.

Finally, we must estimate the residual mass at different values of β.. The zero temperature

ensembles show that the residual mass is strongly dependent on the lattice spacing. At

coarser lattice spacings, the localized dislocations of gauge fields are more common and

cause mres to increase rapidly as one moves from high to low temperature. The right panel

of Fig. 4.1 shows mres as a function of β. We find that a simple exponential ansätz describes

the data well.

4.1.2 LCP for mπ ≈ 135 MeV Ensembles

As revealed by the equivalence relations in Eqs. (2.47) and (2.53), both plain DWF

and MDWF are approximations to overlap fermions and are thus approximations to each

other. Consequently the adoption of Möbius domain wall fermions has minimal effects on the

lattice spacing, and we can safelyare keep our β values and the corresponding temperatures

unchanged from the mπ ≈ 200 DWF esembles. Hence the only quantities that need to be

determined for the Möbius domain wall fermion sembles at mπ ≈ 135 are the total bare quark

mass and the residual mass. In this subsection we will focus on the former and leave the

latter to Section 4.4 later in this chapter.

From our zero temperature ensembles, run #4 and run #5 with β = 1.75 and Ls = 32,

we have determined the following values that should correspond to physical pion and kaon

masses [1, 2], We can calculate the scale change appropriate to a given shift in β from a

simple exponential extrapolation

a2/a1 = exp(s(β2 − β1)), (4.5)

where s = 1.66 can be determined from the extrapolated results of β = 1.70 and β = 1.82 in

Table 4.2.
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a−1 1.371 GeV

mres 0.001842

m̃l 0.001752

m̃s 0.048552

Table 4.3: Extrapolation of ensembles in run #4 and run #5 to the physical pion point.

Using the scale factor s, m̃l and m̃s from the β = 1.75 ensemble, we can find the total

quark masses at other values of β, if we know the relative quark renormalization factors, Z.

The Z factors to convert to MS(µ = 2 GeV) scheme are given later in Table 6.4. We want

to keep Zmm̃f/a a constant, namely

m̃f(β) =
Zm(1.75)m̃f(1.75)a(β)

Zm(β)a(1.75)
. (4.6)

In Table 4.4 we show the estimated values for m̃l(β) and m̃s(β) Note that the results

β T (MeV) m̃l(β) m̃s(β)

1.633 139 0.00222 0.0616

1.671 149 0.00206 0.0571

1.707 159 0.00192 0.0531

1.740 168 0.00179 0.0496

1.771 177 0.00168 0.0465

1.801 186 0.00158 0.0437

1.829 195 0.00149 0.0414

Table 4.4: The estimated value for the total quark mass of ensembles that lie on a line of

constant physics with mπ at physical value.

in Table 4.4 keep the ratio of m̃s/m̃l fixed at 27.71, which is the value from the quark

masses for β = 1.75 obtained from our customary global fits. Although the scaling formula in

Eq. (4.6) is simpler than the lattice corrected Eq. (4.4), the lattice scales and temperatures
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are essentially the same.

4.2 Parameter Settings of the Ensembles

4.2.1 mπ ≈ 200 MeV Ensembles

Tables 4.5, 4.6, and 4.7 list the basic parameters for the three sets of ensembles. All of

them share the same choices of the input quark masses, which are adjusted to bring the pion

mass close to the mπ = 200 MeV target. They only differ in their spatial volumes, which are

of 323 × 8, 243 × 8, and 163 × 8. All three ensemble sets cover the temperature region around

the QCD phase transition. The 163 × 8 simulations produced 8 ensembles roughly evenly

separated, in a range between T = 139 MeV and 195 MeV with the exception of 2 ensembles

with different input quark masses at T = 149 MeV. The 243 × 8 ensembles cover a narrower

region with 5 temperatures between T = 149 MeV and 186 MeV. The ensembles with the

largest volume 323 × 8 have almost the same temperature values as the 163 × 8 ensembles,

except that there is an extra point at T = 164 MeV and only one ensemble at T = 149 MeV,

obtained with a negative input quark mass.

For all the ensembles listed in Tables 4.5, 4.6, and 4.7, we adopt the same Iwasaki

gauge action augmented with the dislocation suppression determinant ratio (DSDR) and

the domain wall fermion (DWF) action with 2+ 1 flavors. The extent of the fifth dimension

Ls for all the ensembles is 32, except for the T = 139 MeV ensembles and one of the T = 149

ensembles with 163 × 8 where Ls is set to 48. For the twisted mass coefficients in the

determinant ratio, we found that the choice of εf = 0.02 and εb = 0.5 allows for a reasonable

rate of tunneling between topological sectors while still suppresses residual chiral symmetry

breaking [44].

Following the method described in the previous section 4.1, the input light quark masses

are adjusted so that all the ensembles lie on a line of constant physics with mπ ≈ 200 MeV
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and the ratio m̃l/m̃s = 0.088 is fixed to ensure a physical mass strange quark. Here and later

in the text, a tilde indicates the total bare quark mass, given by the sum of the input and

the residual quark masses as in Eq. 2.44.

Because of the rapidly increasing residual mass with decreasing temperature, we use

negative input quark masses for the two ensembles with the lowest temperatures (T = 139

and 149 MeV). While much larger negative input quark masses are standard for Wilson

fermion calculations, the use of negative minput is uncommon in a DWF calculation and, as

in the Wilson case, could potentially jeopardize the stability of the evolution because of a

singularity in the Dirac operator.

At T = 139 MeV, we initially used a negative light quark mass of ml = −0.00786, with

mres ≈ 0.013 at Ls = 32. It was quickly discovered that this resulted in a singular fermion

matrix, signaled by the non-convergence of the conjugate gradient inversion. As a result,

we switched to Ls = 48 at this temperature, where a smaller, but still negative light quark

ml = −0.00136 could be used to achieve the desired total light quark mass. Fortunately, we

observed no ”exceptional configurations” in all the following evolutions with our intentional

choice of negative input quark masses that are small in magnitude.

Since this is the first time a negative input quark mass is introduced in the DWF evo-

lution, we carried out two simulations, one with positive and one with negative input light

quark masses at T = 149 MeV as a sanity check. Both of these ensembles (ensembles run #9

and run #10 in Table 4.5) correspond to approximately the same pion mass, mπ ≈ 200 MeV

with carefully tuned input quark masses and Ls. We did not see any significant differences

between these two ensembles in quantities such as the disconnected chiral susceptibility,

renormalization coefficients, or eigenvalue spectrum. However, in the chiral condensate we

did see a significant difference in the two ensembles, a different that should be expected to

arise from a 1/a3 residual breaking of chiral symmetry present in this local operator. The

consistency between these two ensembles provides strong support that our interpretation of
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m̃l and choice of negative input quark mass is solid and correct.

# T (MeV) β Ls ml ms mres N equil
traj

8 139 1.633 48 -0.00136 0.0519 0.00588(39) 2696

9 149 1.671 32 -0.00189 0.0464 0.00643(9) 5700

10 149 1.671 48 0.00173 0.0500 0.00295(3) 6700

11 159 1.707 32 0.000551 0.0449 0.00377(11) 3359

12 168 1.740 32 0.00175 0.0427 0.00209(9) 3043

13 177 1.771 32 0.00232 0.0403 0.00132(6) 3240

14 186 1.801 32 0.00258 0.0379 0.00076(3) 4415

15 195 1.829 32 0.00265 0.0357 0.00047(1) 8830

Table 4.5: Summary of input parameters (β, Ls, ml and ms) and the measured results

for mres for each ensembles with mπ ≈ 200 MeV at 163 × 8 space-time volume. Each is

assigned a label in the first column for later reference. The final N equil
traj column lists the

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.

The errors quoted in the temperature column in Table 4.7 (suppressed elsewhere) are

the 1-σ error from the extrapolation in Eq. (4.1). The pion mass mπ given in Table 4.7

is computed using the Gell-Mann-Oakes-Renner relation [113], indicating the ratio of the

target and the calculated total quark masses, which differes from one because estimate of

the residual quark mass has been replaced by its measured value. Thus, this is not an

actual measurement result for mπ, but serves as a proxy of the accuracy of our estimates

for the input parameters, which are interpolated fitting results. These values should not be

mistaken for the actual pion masses extracted from the correlating functions measured on

corresponding zero-temperature enesmbles. Nevertheless, our estimate of the input quark

masses work fairly well as most of the pion masses deviate no more than 3% from the target

value of 200 MeV.
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# T (MeV) β Ls ml ms mres N equil
traj

16 149 1.671 32 -0.00189 0.0464 0.00659(6) 4721

17 159 1.707 32 0.000551 0.0449 0.00370(4) 2265

18 168 1.740 32 0.00175 0.0427 0.00216(3) 2423

19 177 1.771 32 0.00232 0.0403 0.00129(3) 2892

20 186 1.801 32 0.00258 0.0379 0.00084(3) 3142

Table 4.6: Summary of input parameters (β, Ls, ml and ms) and the measured results

for mres for each ensembles with mπ ≈ 200 MeV at 243 × 8 space-time volume. Each is

assigned a label in the first column for later reference. The final N equil
traj column lists the

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.

# T (MeV) β Ls ml ms mres mπ(MeV) N equil
traj

21 139(6) 1.633 48 -0.00136 0.0519 0.00657(2) 205(8) 2700

22 149(5) 1.671 32 -0.00189 0.0464 0.00653(2) 201(5) 2700

23 159(4) 1.707 32 0.000551 0.0449 0.00366(2) 200(3) 2643

24 164(4) 1.725 32 0.00138 0.0436 0.00277(1) 202(3) 2700

25 168(4) 1.740 32 0.00175 0.0427 0.00220(2) 200(2) 2708

26 177(4) 1.771 32 0.00232 0.0403 0.00135(1) 198(2) 2700

27 186(5) 1.801 32 0.00258 0.0379 0.00083(2) 197(3) 2729

28 195(6) 1.829 32 0.00265 0.0357 0.00049(1) 195(4) 3112

Table 4.7: Summary of input parameters (β, Ls, ml and ms) and the measured results for

mres and the projected pion mass for each ensemble with mπ ≈ 200 MeV at 323×8 space-time

volume. Each is assigned a label in the first column for later reference. The final N equil
traj

column lists the number of equilibrated trajectories that remain after the imposition of the

thermalization and decorrelation cuts described in the text.
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The number of effective trajectories for each ensemble that are used in the measurement

reported later is also listed in the right-most column of Tables 4.5, 4.6, and 4.7. For en-

sembles with volume 163 × 8 and 323 × 8, we discard the first 300 trajectories to account

for thermalization. However, because we changed the evolution algorithm during the early

stages of the generation of the 243 × 8 ensembles, a larger number of initial trajectories were

discarded for those. For each ensemble, each trajectory has a uniform length of one molecular

dynamics time unit.

In order to increase the statistics, we have evolved multiple streams for ensembles cor-

responding to run #16 and run #17. Ensemble run #16 is composed of 8 streams, two of

which began from an ordered start, another two from a disordered start and the remaining

four were split from the previous four streams after thermalization. Ensemble run #17 is

composed of two streams one beginning from an ordered and the other from a disordered

configuration. The multiple streams in each ensemble are pooled together after removing

an initial 300 trajectories from each stream with a fresh start. For streams that were split

from a previously thermalized stream, about 100 initial trajectories of the new stream were

discarded to ensure that the child stream is not correlated with its parent.

4.2.2 mπ ≈ 135 MeV Ensembles

With the installation of the supercomputers Sequoia and Vulcan at the Lawrence Liv-

ermore National Laboratory, we are able to extend our study for QCD thermodynamics to

lattices with dynamical physical pions. Table 4.8 summarizes the basic input parameters for

the lattice ensembles simulated using the Iwasaki + DSDR gauge action and 2 + 1 Möbius

fermion action with space-time volume of 323 × 8. Such a combination of lattice actions

allows a small residual mass and makes the simulation of dynamic physical pions possible.

Similar to the mπ ≈ 200 MeV ensembles, the input quark mass at each temperature is

adjusted so that all each ensemble has a pion mass close to its physical value (mπ ≈ 135MeV).



45

However, since we had not evolved lattices with Möbius fermions before, we did not have a

good estimate for the residual mass at the starting stage of the simulation. We decided to

begin our simulations with some tentative choices of input light and strange quark mases.

As the simulation took place and statistics were collected, we measured the residual mass at

each temperature. Then for some of the ensembles where the deviation between the estimate

and measured values is substantial, we tuned the input quark mass accordingly toward the

designated value. The initial choices for the parameters and the details of the evolution

history for each stream of evolution are listed in Appendix A.

As shown in Table 4.8, there are 9 temperature values under investigation for our 323 ×8

ensembles with physical pions, each of which contains 2 to 4 streams of evolutions. The

temperature range is still between T = 139 MeV and 195 MeV, but an extra T = 154 MeV

point in the vicinity of the phase transition has been added as compared to the mπ ≈ 200

MeV ensemble set. Also there is an additional c column in the table that gives the Möbius

coefficient c for each ensemble. As discussed in subsection 2.3.4, (2c+1)Ls is the effective Ls

that is comparable to a plain DWF (c = 0) Ls, which shares the same physical parameters.

To study the finite-volume effects, we extend our study of finite temperature QCD with

physical pion mass to a larger 643×8 space-time volume. Table 4.9 summarizes the parameters

for the four 643 × 8 ensembles at 139 ≤ T ≤ 168 MeV. The details of each ensemble can also

be found in Appendix A.

As most ensembles are composed of more than one evolution stream, we pool together

all the thermalized trajectories from various streams with each individual trajectory equally

weighted. The ensemble average is calculated from the pool using the jackknife method after

binning the results into blocks 50 trajectories to eliminate possible autocorrelations.
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# T (MeV) β Ls c ml ms mres N equil
traj

29 139 1.633 24 1.5 0.00022 0.05960 0.00219(1) 5768

30 149 1.671 16 1.5 0.00034 0.05538 0.00175(1) 7823

31 154 1.689 16 1.5 0.00075 0.05376 0.00120(1) 6108

32 159 1.707 16 1.5 0.00112 0.05230 0.00091(1) 8714

33 164 1.725 16 1.5 0.00120 0.05045 0.00068(1) 7149

34 168 1.740 16 1.2 0.00126 0.04907 0.00057(1) 5840

35 177 1.771 16 1.0 0.00132 0.04614 0.00043(1) 8603

36 186 1.801 16 1.0 0.00133 0.04345 0.00026(1) 10142

37 195 1.829 16 0.9 0.00131 0.04122 0.00019(1) 10140

Table 4.8: Summary of input parameters (β, Ls, c, ml and ms) and the measured results for

mres for each ensembles with mπ ≈ 135 MeV and with a 323 × 8 space-time volume. Each is

assigned a label in the first column for later reference. The final N equil
traj column lists the total

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.

# T (MeV) β Ls c ml ms mres N equil
traj

38 139 1.633 24 1.5 0.00022 0.05960 380

39 149 1.671 16 1.5 0.00034 0.05538 2853

40 159 1.707 16 1.5 0.00112 0.05230 3431

41 168 1.740 16 1.2 0.00126 0.04907 1200

Table 4.9: Summary of input parameters (β, Ls, c, ml and ms) and the measured results

for mres for each ensembles with mπ ≈ 135 MeV with a 643 × 8 spece-time volume. Each is

assigned a label in the first column for later reference. The final N equil
traj column lists the total

number of equilibrated trajectories that remain after the imposition of the thermalization

and decorrelation cuts described in the text.
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4.2.3 Verification of the Input Parameters

To verify our choices for the input parameters for the finite temperature ensembles, we

generate a zero temperature ensemble with the same setup as the run #29 at T = 139 MeV

with Nτ = 8 replaced by Nτ = 64. Its parameters are listed in Table 4.10. Compared with

the finite temperature results, the change in the residual mass is at a remarkable low level

(about 1%), indicating a minimum finite volume/temperature effect on the MDWF mres.

This agreement on the coarsest lattice also establishes the accuracy for mres calculated at

other larger β values, since any depenendence of mres on temperature can be viewed as a

finite lattice spacing effects.

# β Nσ Nτ Ls c ml ms mres N equil
traj

42 1.633 32 64 24 1.5 0.0022 0.05960 0.002167(16) 500

Table 4.10: Summary of input parameters (β, Ls, c, ml and ms) and the measured result

for mres for the zero temperature ensemble with the similar setup from run #29.

A variety of measured results in lattice units as well as in physical units is tabulated in

Table 4.11 with comparisons to the physicals value from experiment. The lattice spacing a−1

and its error are first determined by equating mΩ from the lattice to the experimental value.

Then the masses and the decay constants for the pseudoscalar can be computed in physical

units from the lattice results with propagated statistical errors.

Although the measured total light quark mass m̃l = 0.002387(16) (Table 4.10) exceeds

our target value m̃l = 0.222 (Table 4.4) by about 7%, the realized pion mass is actually

smaller than the physical by about 4% reflecting inaccuracy in our target value for the

input quark mass. This error is in line with the deviation for the kaon mass, the decaying

constants and mres. Moreover, the temperature for β = 1.633 and Nτ = 8 ensemble can be

readily determined from a−1 to be 136.9(5) MeV, which is only about 1.5% away from the
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a−1 MeV Expt (MeV)

mπ 0.11824(49) 129.5(1.0) 135

mK 0.42301(51) 463.4(2.2) 495

mΩ 1.5267(55) 1672.45

fπ 0.12640(25) 138.5(7) 130.4

fK 0.14852(48) 162.7(1.1) 156.1

a−1 1095(4)

Table 4.11: Comparisons of a variety of hadron masses and decay constants between the

lattice results (run #42) and the experimental results. The lattice spacing a−1 in the last

row is determined from mΩ value and then the lattice results in physical units listed in the

last column is computed.

extrapolated value at 139 MeV1. The discrepancies between the values of 1/a, mres and mπ

result from inaccurate values for our choices of β, m̃l and m̃s. The differences between our

results for fπ and fK and their experimental values ∼ 5% result from this this miss tuning

of m̃l and m̃s as well as finite lattice spacing errors.

4.3 Plaquette

Tables 4.12 and 4.13 show the average plaquette defined as:

⟨U◻⟩ =
1

6N3
sNt
∑
x
∑
µ,ν

ReTr Pµν(x) , (4.7)

for ensembles with pion mass of 200 MeV and 135 MeV respectively.

The difference of the average plaquette value between the different volumes is essentially

zero. All the results agree at the 1-σ level or even better. This indicates the effects coming

from the volume difference are minimal.
1In this work, for consistency we will still adopt 139 MeV as the temperature for the β = 1.633 and Nτ = 8

ensembles in the following analysis and discussions.
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The second row with T = 149 MeV in Table 4.12 come from the ensemble with Ls = 48

while the first from Ls = 32. They show a 0.2% difference in the average plaquette value, as

we should expect from the small change in the fermion determinant caused by the increase

in Ls from 32 to 48. We also expect that similar small discrepancies could result from our

shift of fermion formalisms in the simulation from DWF to MDWF. However, the differences

are so small that we can neglect in our study for QCD thermodynamics.

163 × 8 243 × 8 323 × 8

T (MeV) β # ⟨U◻⟩ # ⟨U◻⟩ # ⟨U◻⟩

139 1.633 8 0.46913(8) 21 0.46898(2)

149 1.671 9 0.48491(3) 16 0.48490(2) 22 0.48488(1)

10 0.48407(2)

159 1.707 11 0.49777(4) 17 0.49783(2) 23 0.49785(1)

164 1.725 24 0.50406(1)

168 1.740 12 0.50912(4) 18 0.50909(2) 25 0.50911(1)

177 1.771 13 0.51916(4) 19 0.51916(2) 26 0.51913(1)

186 1.801 14 0.52845(3) 20 0.52840(2) 27 0.52844(1)

195 1.829 15 0.53672(3) 28 0.53674(1)

Table 4.12: Summary of the average plaquette value for the various ensembles with mπ ≈

200 MeV. The second row at T = 149 MeV is for the Ls = 48 ensemble.

Fig. 4.3 displays a comparison of the average plaquette among different temperatures

and ensembles. It is transparent that the plaquettes for different volumes and input quark

masses agree very well.
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Figure 4.3: Plot of the average plaquette for ensembles with different volumes and pion

masses.
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323 × 8 643 × 8

T (MeV) β # ⟨U◻⟩ # ⟨U◻⟩

139 1.633 29 0.468194(11) 38 0.46819(2)

149 1.671 30 0.483823(9) 39 0.483824(5)

154 1.689 31 0.490621(9)

159 1.707 32 0.497145(8) 40 0.497150(3)

164 1.725 33 0.503497(8)

168 1.740 34 0.508667(9) 41 0.508676(8)

177 1.771 35 0.518892(6)

186 1.801 36 0.528245(6)

195 1.829 37 0.536612(6)

Table 4.13: Summary of the average plaquette value for the various ensembles with mπ ≈

135 MeV.

4.4 Residual Mass

4.4.1 Measuring Residual Mass

Recall the PCAC relation for DWF in Eq. (2.39)

∆µA
b
µ(x) = 2mfJ

b
5(x) + 2Ja

5q(x).

Assuming the midpoint contribution can be similarly described as an ordinary mass term in

the Symanzik effective theory [114] (leading low-energy contributions at large Ls and small

lattice spacing)

Leff = LQCD(mf = 0) + (mf +mres)qq , (4.8)

it should behave at low energies in the same way as J5(x) with a coefficient, which is

proportional to mres as one would expect, i.e.

J b
5q =mresJ

b
5 =mresqγ5τ

bq . (4.9)
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Thus we can calculate the residual mass from the ratio [115, 116, 114, 117]:

R(t) =
⟨∑
x⃗
J b
5q(x⃗, t)πb(0)⟩

⟨∑
x⃗
J b
5(x⃗, t)πb(0)⟩

, (4.10)

where no summations over b are implied. Here πb can be any pion interpolating operator.

In our practical computation, it is chosen to be J b
5 . At a sufficiently large time separation

t where the low-energy physics dominates, J5q should have the form given in Eq. (4.9), and

R(t) should show a plateau at the value of mres. In numerical calculation, mres is obtained

from the average value of R(t) over points in the plateau.

For finite temperature ensembles, a ratio R(x) of spatially separated correlation functions

is used instead of the temporal separated ones in Eq. (4.10).

4.4.2 Residual Mass Tuning

Enforcing a line of constant physics for DWF simulations often requires some fine tuning

of the input quark masses as the residual masses for most of the planned ensembles are not

known beforehand. It is thus extremely beneficial to determine the dependence of mres on

different variables such as Ls, β, the Möbius coefficient c, etc.. In the rest of this section, we

will discuss our studies of such dependence and how they provided crucial guidelines that

helped us in determining the parameters for the MDWF simulations with physical pions.

Dependence of mres on Ls

The extent of the fictitious fifth dimension has an significant impact on the magnitude of

the residual chiral symmetry breaking of DWF, signaled by the additive mass renormalization

mres. There exists an expression for the dependence of mres on Ls given in Eq. (2.45), and

rewritten below in a simplified form,

mres = a
e−λLs

Ls

+ b 1

Ls

, (4.11)
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where a, b and λ are the three parameters to be fitted.

While an explicit check for the validity of the form in Eq. (4.11) with dynamical fermions

requires a set of ensembles of different Ls and is thus fairly expensive, a partially quenched

calculation is quite accessible. In order to determine the minimum Ls that is compatible with

a physical pion mass for Shamir DWF formulation, we performed several partially quenched

calculation on a selected set of 163 × 8 ensembles.

The results are presented in Fig. 4.4. Each panel displays a fit result for the form of

Eq. (4.11) at a given temperature. The label of the dynamic ensemble and the input valence

quark mass is given in the legend. Given the fitted parameters and χ2/dof shown in the

plots, Eq. (4.11) does indeed give a accurate description for the residual mass for a given

value of β.

The target value of the total light quark mass proposed in Table 4.4 is also marked in

the plots as a black dotted line. It is worth noting that the minimum Ls required for a zero

input quark mass is about 40 at T = 159 MeV and about 60 T = 149 MeV. Naturally, at

T = 139 MeV, which is absent from this study, the minimum Ls would be even larger. These

constraints can of course be loosed slightly if we adopt a negative input quark mass but it

will not exempt us completely from the burden of a large Ls. Therefore it motivated us to

shift from plain DWF to the MDWF formalism to reduce the extent of the fifth dimension

significantly, especially for the ensembles below the pseudo-critical temperature.

mres Dependence on Möbius Coefficient c

In Möbius construction, when Ls is sufficiently large and c is not too large, ensembles

with fixed (b + c)Ls are related by the equivalence relation presented in 2.3.4 and hence

should give the same residual mass. To verify the equivalence, we generated a dynamical

MDWF evolution whose setup is identical to the T = 149 MeV, Ls = 48 ensemble (run #10)

except that Ls = 18, c = 0.832 (we label it as run # ??) [57] and collected 950 thermalized
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Figure 4.4: Ls dependence of mres for partially quenched, 163 × 8 ensembles measured on

every 10 trajectory after thermalization using a point source and correlation function stud-

ied with increasing separations along the x direction. The corresponding run number and

valence quark mass is shown in the legend. The fitted parameters and χ2/dof for the form in

Eq. (4.11) are also shown. The target total quark mass that corresponds to a physical pion

is marked with a dotted horizontal black line.
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trajectories. Again, we performed a partially quenched calculation with various Ls and

compared it with the results from run #10, which is shown in Fig. 4.5. After we normalize

0.0001

0.001

0.01

0 20 40 60 80 100 120 140 160 180

m
re

s

(b + c)Ls

run # ??:Möbius c = 0.832, ml=1.73e-3
Fit: (ae−λLs + b)/Ls

run #10:DWF c = 0, ml=1.73e-3
Fit: (ae−λLs + b)/Ls

Figure 4.5: Comparison of mres using a normalized (b + c)Ls for two sets of ensembles with

otherwise identical parameters except Ls and c. A logarithm scale is used on the y axis.

the effective fifth dimension to be (b + c)Ls, the equivalence of fixed (b + c)Ls MDWF with

respect to mres is remarkable as the two fitted lines lie almost on top of each other for the

region Ls ≤ 100.

This equivalence allows us to estimate mres for MDWF based on results from DWF

simulations. As we have explained in Section 2.3.4, when the Möbius coefficient c passes a

certain threshold, there is a dramtic slowing down in the HMC evolution which overwhelms

the benefits obtained from a smaller Ls. The threshold for c is often located around the

point where mres is minimized for a fixed Ls. Hence we need to determine the combinations

of c and Ls that will minimize the overall computational cost.

To this end, we performed another series of valence calculation with different c on the
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163 × 8 DWF ensembles. Fig. 4.6 shows the results at T = 139 MeV for three different Ls.

Obviously, Ls = 16 MDWF cannot reduce mres to be lower than the target m̃l with any

choice of c. Ls = 20 can narrowly meet the requirement, but the Möbius coefficient could be

too close to the “critical slowing down” region. Therefore, we decided to adopt Ls = 24 and

c = 1.5 in our practical simulation.
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Figure 4.6: mres measured from a partially quenched calculation at T = 139 MeV (run #8)

with Ls = 16, 20 and 24 and two valence quark masses. Target m̃ that corresponds to a

physical pion is marked as a horizontal black line.

On the other hand, Ls = 16 is large enough to satisfy the constraint imposed by m̃l for

all the other temperatures. The results for the partially quenched calculation with Ls = 16

is shown in Fig. 4.7.

All these studies set a starting point for our choice of the input parameters of the MDWF

thermodynamics simulation with physical pions. One should keep in mind that they are

based on the partially quenched results and there is an appreciable dependence ofmres on the
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Figure 4.7: mres measured from a partially quenched calculation at 149 MeV≤ T ≤ 195MeV
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input quark mass. Moreover, the parameter determining studies from the zero-temperature

ensemble contains errors as well. Therefore, the input quark masses we adopt in Table A.3

and 4.8 are by no means precise values that correspond to a line of constant physics with

a physical pion and kaon. However, with careful adjustments during the evolution, we are

able to stay close to the line of constant physics with an error less than 5%.



Chapter 5

Chiral Symmetry with Correlation

Functions

In this Chapter we will discuss Green’s functions constructed from the eight scalar and

pseudoscalar operators: ψlψl, ψlτ
iψl, ψlγ

5ψl, ψlτ
iγ5ψl. Here ψl is a doublet of up and

down quark fields and {τi}1≤i≤3 the usual Pauli matrices. These operators are related by the

SU(2)L × SU(2)R chiral symmetry of QCD and the anomalously broken U(1)A symmetry.

In Sec. 5.1 we review the relations among these eight operators and their Green’s functions

implied by the SU(2)L ×SU(2)R and U(1)A symmetries, paying particular attention to the

degree to which these relations should hold at finite lattice spacing for the DWF formulation.

In Sec. 5.2 we present our numerical results, focusing on those relations implied by

SU(2)L × SU(2)R chiral symmetry and examining their dependence on temperature. Some

empirical fittings for χdisc are then discussed in order to locate the pseudo-critical temper-

ature. In the final section, Sec. 5.3, we examine the relations implied by U(1)A symmetry,

including evidence for non-zero anomalous, U(1)A symmetry breaking above the pseudo-

critical temperature Tc, a non-vanishing asymmetry which disappears rapidly as the temper-

ature increases above Tc.

59
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The numerical results from mπ ≈ 200 MeV ensembles discussed in this Chapter are com-

plete, while those from mπ ≈ 135 MeV ensembles are preliminary. The connected susceptibil-

ities at volume 643×8 have not yet been measured at the time when this thesis is composed.

5.1 Preliminaries

In this section, we present a brief review of a variety of chiral observables and the relations

among them implied by the SU(2)L×SU(2)R and U(1)A symmetries as illustrated in Fig. 5.1.

A detailed description can also be found in Ref. [35].

π ∶ q̄γ5 τ2q σ ∶ q̄q

δ ∶ q̄ τ2q η ∶ q̄γ5q

SU(2)L × SU(2)R

SU(2)L × SU(2)R

U(1)A U(1)A

χ5,conn χconn + 2χdisc

χconn χ5,conn − 2χ5,disc

Figure 5.1: A graphical presentation for the symmetry transformations that relate the scalar

and pseudoscalar mesons in flavor singlet and flavor non-singlet channels.

The standard order parameter for the chiral phase transition is the single-flavor, light-
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quark chiral condensate,

Σl ≡ −
1

2
⟨ψlψl⟩ (5.1)

= 1

2

T

V

∂ lnZ

∂ml

(5.2)

= 1

N3
σNτ

⟨TrM−1
l ⟩ , (5.3)

where Ml is the single-flavor, light-quark Dirac matrix and the brackets ⟨. . .⟩ in the bottom

equation indicate an average over gauge fields. However, this quantity contains an ultraviolet

divergent contribution that is proportional to mq/a2 for the case of a lattice regularization.

In order to remove this ultraviolet divergence, it is standard to introduce a subtracted chiral

condensate constructed from a weighted difference between the chiral condensates of the

light and strange quarks [118]:

∆l,s = Σl −
m̃l

m̃s

Σs. (5.4)

Here Σs is defined using the strange quark Dirac matrix in a manner analogous to Eq. (5.3).

For domain wall fermions there is a further difficulty associated with the short distance

contributions to Σq and the subtracted quantity ∆l,s. For a finite fifth dimensional extent,

Ls < ∞, the DWF chiral symmetry is only approximate and residual chirally symmetry

breaking effects appear. The largest such effect is a small additive shift in the quark mass:

the residual mass mres mentioned in Chap. 2. Similar residual chiral breaking will appear

in Σq and will be of order mres/a2 if we express mres in physical units. However, since the

detailed mechanism which generates the residual mass is not directly related to that which

introduces the additive constant into Σq, the subtraction coefficient α that would be needed

to remove both the mq/a2 and the O(mres/a2) terms in Σl − αΣs is not known.

Thus, the subtracted quantity ∆l,s defined in Eq. (5.4) will contain an unphysical,

O(mres/a2) constant which will decrease the utility of ∆l,s computed in a DWF simula-

tion. In particular, we cannot compare ∆l,s with the same difference of chiral condensates

obtained from other lattice fermion formulations. While this added unphysical constant does
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not depend on temperature, it does depend strongly on the gauge coupling g so the usual

procedure of varying the temperature by varying g at fixed Nτ will induce an apparent tem-

perature dependence in this unphysical contribution to ∆l,s. However, the definition of ∆l,s

given in Eq. (5.4) (which differs from that used in the earlier paper [35]) does have a useful

property. As will be discussed in Chap. 6, this subtraction using for α the physical quark

mass ratio, α = m̃l/m̃s will lead to a more convergent spectral expression for ∆l,s.

Results for the quantities Σl, Σs and ∆l,s are given in Tables 5.3 and 5.4. For each

configuration used in the calculation, the volume-averaged, chiral condensate is computed

from the right hand side of Eq. (5.3), using 10 Gaussian random volume sources to estimate

the trace. In the later part of this introductory section, we will use the Gell-Mann-Oakes-

Renner (GMOR) relation to define an improved, subtracted chiral condensate ∆̃l,s, which

contains a much smaller unknown correction and can be compared with the results from

other formulations of lattice fermions.

The chiral condensate Σl and the various subtracted versions discussed above can be

used to explore the vacuum breaking of SU(2)L × SU(2)R and U(1)A symmetry and their

restoration (or partial restoration) as the temperature is increased. However, much more

information can be obtained from the susceptibilities defined as integrated correlation func-

tions of the eight local operators,

σ = ψlψl (5.5)

δi = ψlτ
iψl (5.6)

η = iψlγ5ψl (5.7)

πi = iψlτ
iγ5ψl. (5.8)

Such susceptibilities are both much more sensitive to the transition from the ordered to the

disordered state and also allow independent measures of SU(2)L ×SU(2)R and U(1)A sym-

metry breaking. The operator quadruplets (σ,πi) and (η, δi) each transform as an irreducible

4-dimensional representation of SU(2)L × SU(2)R. The four pairs, (σ, η), (δi, πi)1≤i≤3 each
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transform under the simple, two-dimensional representation of U(1)A. We then identify the

four distinct susceptibilities which are allowed by isospin symmetry:

χσ =
1

2 ∫
d4x ⟨σ(x)σ(0)⟩ (5.9)

χδ =
1

2 ∫
d4x ⟨δi(x)δi(0)⟩ (5.10)

χη =
1

2 ∫
d4x ⟨η(x)η(0)⟩ (5.11)

χπ =
1

2 ∫
d4x ⟨πi(x)πi(0)⟩ (5.12)

where the factor 1/2 has been introduced so that these correspond to the single flavor quan-

tities that are typically computed using lattice methods and no sum over the repeated index

i is intended. In light of the multiplet structure defined above, the following relations are

implied by SU(2)L × SU(2)R and U(1)A symmetry (c.f. 5.1):

χσ = χπ

χη = χδ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
SU(2)L × SU(2)R, (5.13)

χσ = χη

χπ = χδ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
U(1)A. (5.14)

These susceptibilities can be written in terms of the Dirac operatorMl. For the correlators

of the operators πi and δi, which introduce non-zero isospin, only connected combinations

appear:

χπ =
1

N3
σNτ

Tr ⟨γ5M−1
l γ5M

−1
l ⟩ (5.15)

χδ = −
1

N3
σNτ

Tr ⟨M−1
l M−1

l ⟩ (5.16)

where the notation “Tr” indicates a trace over spinor and color indices as well as the space-

time volume. The σ and η susceptibilities are a combination of the connected parts which

appear in χδ and χπ respectively and a disconnected part:

χσ = χδ + 2χdisc (5.17)

χη = χπ − 2χ5,disc (5.18)
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where the disconnected parts χdisc and χ5,disc are given by

χdisc =
1

N3
σNτ

{⟨(TrM−1
l )

2⟩ − (⟨TrM−1
l ⟩)

2} (5.19)

χ5,disc =
1

N3
σNτ

⟨(TrM−1
l γ5)

2⟩ . (5.20)

As is conventional, we have removed the truly disconnected piece 2N3
sNτΣ2

l from the expres-

sion for χσ given in Eq. (5.17). This extra term would appear if the right hand side of the

definition given by Eq. (5.9) where completely evaluated. The factor of two that appears in

Eqs. (5.17) and (5.18) was mistakenly omitted from the published version of Ref. [35] and

arises when these relations are written in terms of single flavor quantities. The signs of χdisc

and χ5,disc have been chosen so that each is positive.

We can combine Eqs. (5.13), (5.17) and (5.18) to obtain relations between the U(1)A

symmetry breaking difference χπ − χδ and χdisc and χ5,disc if SU(2)L × SU(2)R symmetry is

assumed:

χπ − χδ = (χπ − χσ) + (χσ − χδ) (5.21)

= 2χdisc (5.22)

= 2χ5,disc (5.23)

where the second equation is true if the SU(2)L × SU(2)R relation χπ = χσ of Eq. (5.13) is

valid while the third is obtained by a similar manipulation and the second SU(2)L×SU(2)R

relation χδ = χη.

The connected Green’s functions can be computed from the lattice by integrating the

two-point correlators from a point source over the whole volume. This method was used for

the calculations on the 163 × 8 and 243 × 8 ensembles with mπ ≈ 200 MeV. On the 323 × 8

ensembles with either pion mass we achieved a reduced statistical error by using instead

a random Z2 wall source. The disconnected parts are calculated by averaging products of

chiral condensates where the stochastic evaluation of the trace appearing in each factor is

obtained from different stochastic sources.
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The SU(2)L × SU(2)R relations given in Eqs. (5.13) should be valid in the continuum

for T > Tc when SU(2)L × SU(2)R becomes an accurate symmetry. They should also be

true when T > Tc in a lattice formulation which preserves chiral symmetry. However, for

our DWF formulation we should expect deviations arising from residual chiral symmetry

breaking. For low energy quantities, mres should provide a good measure of this residual

chiral symmetry breaking, with effects that are well described as arising simply from the

total bare quark mass m̃l =ml +mres.

However, the four susceptibilities being discussed are not simple long-distance quantities

since the space-time integrals that appear in their definitions include points where the two

local operators collide. In fact, the connected parts of the susceptibilities contain quadratic

divergences while the disconnected parts diverge logarithmically. The presence of quadratic

divergences in the connected susceptibilities, e.g. χπ and χδ, can be easily deduced from

the Wilson operator product expansion and dimensional arguments. The product of two

dimension-three fermion bilinears separated by a space-time distance x should contain a

constant behaving as 1/x6 as x → 0. When integrated over space-time to form the suscep-

tibility, this 1/x6 term will give a quadratic divergence. For the disconnected parts of the

susceptibilities, a similar dimensional argument applies. However, the disconnected parts

are constructed from the product of two independent fermion loops, each evaluated as a

separate trace. For the case of scalar or pseudoscalar susceptibilities, chiral symmetry re-

quires that each trace be proportional to ml so the product will behave as m2
l /x4 leading to

a logarithmic divergence multiplied by the very small factor m2
l . Thus, if the continuum reg-

ulator respects chiral symmetry, then the SU(2)L ×SU(2)R and U(1)A breaking differences

χπ − χσ, χδ − χη, χπ − χδ and χη − χσ will all contain only small, logarithmic singularities

proportional to m2
l ln(ml/Λ) if evaluated order-by-order in QCD perturbation theory, where

Λ is the continuum cutoff scale.

In our lattice-regulated domain wall theory, the residual chiral symmetry breaking will
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result in these same differences containing small unphysical pieces of order m2
res. As in the

case of the chiral condensate, mres does not literally enter these differences but instead we

expect that m2
res will provide a reasonable estimate of their size. Note, when expressed in

physical units mres ∼ e−αLs/a so that our estimate m2
res ∼ e−2αLs/a2 of a chiral symmetry

breaking difference remains quadratically divergent but is suppressed by the same factor

that makes m2
res small. (Here, for simplicity, we assume that the residual chiral symmetry

breaking effects fall exponentially with increasing Ls, with an exponent α, unrelated to the α

used earlier in this Section.) For the purposes of this paperm2
res ∼ (10MeV)2, a quantity that

is negligible on the (ΛQCD)2 ≈ (300 MeV)2 scale of the physical parts of the susceptibilities

being subtracted.

Finally we examine two additional identities that hold in the continuum limit. The first

is the relation between χ5,disc and the topological susceptibility χtop. This relation begins

with the identity

Qtop =mc
l Tr{γ5

1

Ml

} (5.24)

which for the continuum theory will hold for each gauge configuration. Here for clarity we

have introduced the quantity mc
l to represent the light quark mass in the continuum theory.

This is easily understood by using a sum over Dirac operator eigenvectors to evaluate the

trace and recognizing that the result is simply the number of right- minus the number of

left-handed zero modes [119] which is equal to Qtop by the Atiyah-Singer theorem. Recall

that

Qtop =
g2

32π2 ∫ d4xF a
µν(x)F̃ a

µν(x). (5.25)

Here F̃µν = 1
2 ∑ρσ εµνρσFρσ where εµνρσ is the usual anti-symmetric Levi-Civita tensor with

ε1234 = 1.

The desired identity:

χtop = (mc
l )2χ5,disc (5.26)

is simply the ensemble average of the square of Eq. (5.24). This continuum equation should
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also relate DWF lattice quantities provided the total bare quark mass m̃ is used in place of

the continuum mass mc
l . As was explored at length in Ref. [35], this relation is badly violated

for our lattice calculation because at our relatively coarse lattice spacing the quantity Qtop

is difficult to compute directly. The right hand side of Eq. (5.26) appears to nicely define

the topological susceptibility giving the same answer even when the light quark quantity

m̃2
l χ5,disc is replaced with the corresponding strange quark quantity or the product of strange

and light quark expressions. (Note the right hand side of Eq. (5.24) is expected to give the

same result on a given gauge configuration independent of the quark mass.) For completeness

χ5,disc/T 2 and χtop/(m̃lTc)2 are tabulated in the two right-most columns of Table 5.3, where

χtop is computed using the procedure described in Ref. [35]. As can be seen in Table 5.3,

their disagreement is substantial. However, the fractional discrepancy does decrease with

increasing temperature (and decreasingly lattice spacing) as should be expected if this is a

finite lattice spacing artifact. We will not make further use of χtop.

The second identity is the usual Ward identity connecting χπ and the chiral condensate.

This can be derived in the continuum for non-zero quark mass by evaluating the following

integrated divergence:

0 = ∫ d4x∂µ ⟨0∣T (Aaµ(x)πb(0)) ∣0⟩ (5.27)

= ∫ d4x ⟨0∣T (−2mc
l iπ

a(x)πb(0)) ∣0⟩ − 2i ⟨0∣σ(0)∣0⟩ δab (5.28)

where a and b are isospin indices. Here the left term in the second line comes from the

divergence of the axial current, ∂µA(x)aµ, while the right term results from the equal-time

commutator that arises when the partial derivative with respect to the time is brought inside

the time-ordered product. The result is the Gell-Mann-Oakes-Renner relation [113]:

mc
lχπ = Σl. (5.29)

While this relation should be true in a continuum theory which has been regulated in a

chirally symmetric way, both the right- and left-hand sides of Eq. (5.29) contain quadratic
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divergences as discussed earlier. Thus, we should not expect this equation to be obeyed in

our DWF theory unless we take the limit of infinite Ls at finite a so that our theory has an

exact chiral symmetry.

However, this equation has two important uses. First, we can repeat its derivation in our

lattice theory using the partially conserved, 5-dimensional axial current Aaµ constructed by

Furman and Shamir [38] and the divergence equation obeyed by Aaµ:

∂µAaµ = −2imlπ
a + 2Ja

5q (5.30)

which has also been discussed in Eq. (2.39) in Chap. 2. When used in the above derivation

this relation yields the lattice identity:

2mlχπ + ∫ d4x ⟨0∣T (iJ5q(x)aπa(0))⟩ = 2Σl (5.31)

for a = 1, 2 and 3. In the usual application of Eq. (5.30), iJa
5q is replaced in Eq. (5.31) by

mresπa which would provide a DWF derivation of Eq. (5.29) in which the continuum light

quark mass mc
l is replaced by m̃l =ml +mres. However, the low-energy relation iJa

5q ≈mresπa

cannot be used here because short-distances are involved. Nevertheless, we can simply

evaluate both sides of Eq. (5.31) in our lattice calculation as a check of this discussion and

find agreement within errors. Our numerical results for the three quantities which appear

in Eq. (5.31) are tabulated in Tables 5.1, 5.2, 5.3, and 5.4 as well as the right- and left-hand

sides of Eq. (5.31) after a common factor of 2 has been removed.

We also plot in Fig. 5.2 both the left- and right-hand sides of Eq. (5.31) as well m̃qχ
q
π

(q = l, s), as the result of the naive use of the low-energy relation iJa
5q ≈ mresπa. The left

panel of Fig. 5.2 shows these quantities for the light-quark case discussed here while the right

panel shows the same quantities computed using the strange quark. In Tables 5.1 and 5.2

and Fig. 5.2, the mixed susceptibility appearing in Eq. (5.31) is represented by ∆q
mp:

∆q
mp = ∫ d4x ⟨0∣T (iJ(q)5q (x)π(q)(0))⟩ . (5.32)
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where in this equation we construct the quark bilinears J(q)5q and π(q) from a single flavor of

quark specified by q = l or s and include only connected graphs, in which the quark fields

are contracted between J5q and π.

In these tables and figures and those which follow, when a combination of quantities that

were computed separately are combined, such asmlχl
π+∆l

mp we will use the jackknife method

to compute the error on the combined quantity so that the effects of statistical correlations

between the quantities being combined are included. However, for simplicity, if a computed

renormalization factor, factor of a expressed in physical units or factor of mres appears, these

factors usually have smaller errors than the quantities they multiply and their fluctuations

will be ignored.

The top panel of Fig. 5.2 clearly reveal the perfect agreement between Σq andmqχ
q
π+∆l

mp

for both light and strange quarks as enforced exactly by the DWF Ward identity. The

finite discrepancy between m̃qχ
q
π and the two quantities above implies short-distance effects

that cannot be represented by an additive mres. As expected, the discrepancy is most

pronounced at the lowest temperature where the residual chiral symmetry breaking is the

most significant. Since a similar Ward identity holds for Möbius fermions, similar patterns

also exist in the lower panel of Fig. 5.2 in which the results from the mπ ≈ 135 MeV are

presented. Furthermore, the reduced residual chiral symmetry breaking for these Möbius

ensembles is also reflected in the much suppressed short-distance effects, signaled by the

narrowed or even closed gap between Σq/mqχ
q
π +∆l

mp and m̃qχ
q
π.

A second use of Eq. (5.29) is to provide a method to compute a more physical result for

∆l,s in a DWF calculation. Since no chiral limit has been taken in the continuum derivation

of Eq. (5.29), it will hold equally well if applied to either strange or light quarks. If we use

the resulting equations for Σl and Σs to determine the weighted difference ∆l,s we obtain:

∆l,s =mc
l (χπl

− χπs) , (5.33)

where we use the symbol χπs to represent the “pion” susceptibility that results if the light
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# T (MeV) β ∆l
mp/T 3 ∆s

mp/T 3 mlχ
l
π+∆l

mp

T 3

msχs
π+∆s

mp

T 3

21 139 1.633 13.34(8) 1.833(11) 9.94(6) 41.21(2)

22 149 1.671 11.14(14) 1.939(10) 7.11(10) 36.52(3)

23 159 1.707 4.77(7) 1.038(6) 5.71(9) 33.71(5)

24 164 1.725 2.99(7) 0.757(5) 5.05(10) 32.00(5)

25 168 1.740 1.91(6) 0.576(5) 4.16(11) 30.70(7)

26 177 1.771 0.83(3) 0.329(2) 3.23(9) 27.94(3)

27 186 1.801 0.33(1) 0.193(2) 2.39(6) 25.42(4)

28 195 1.829 0.18(1) 0.118(1) 2.15(6) 23.20(2)

16 149 1.671 11.6(7) 2.02(7) 7.5(5) 36.6(3)

17 159 1.707 4.3(3) 1.05(4) 5.2(4) 33.6(3)

18 168 1.740 1.96(15) 0.61(3) 4.3(3) 31.2(2)

19 177 1.771 0.79(12) 0.33(2) 3.1(3) 28.0(2)

20 186 1.801 0.31(2) 0.184(7) 2.35(8) 25.2(1)

8 139 1.633 12.6(2) 1.825(21) 9.30(18) 41.26(8)

9 149 1.671 10.1(2) 1.922(13) 6.34(14) 36.43(6)

10 149 1.671 4.84(8) 0.815(7) 8.40(12) 38.24(6)

11 159 1.707 4.09(16) 1.034(10) 4.92(19) 33.64(7)

12 168 1.740 1.83(11) 0.573(7) 4.00(19) 30.73(8)

13 177 1.771 0.80(7) 0.326(4) 3.15(19) 27.89(7)

14 186 1.801 0.35(3) 0.196(3) 2.46(11) 25.50(6)

15 195 1.829 0.17(1) 0.118(1) 2.10(5) 23.22(4)

Table 5.1: The unrenormalized iso-vector pseudoscalar and mixed pseudoscalar/mid-point

susceptibilities from ensembles with mπ ≈ 200 MeV for the light and strange quarks as well as

the combinations (mqχ
q
π+∆q

mp)/T 3 for q = l, s, which appear in the Ward identity, Eq. (5.31).

The Ward identity requires second- and first-from-right columns to agree with the fourth

and the fifth columns from the left in Table 5.3 respectively. Moving from top to bottom,

the three sections in this table correspond to the volumes 323 × 8, 243 × 8 and 163 × 8.
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Figure 5.2: The left panel shows the light-quark chiral condensate, Σl, and the sum of

mlχπ and the mixed π − J5q/2 susceptibility to which it should be equal according to the

Ward identity in Eq. (5.31). Also shown is m̃lχπ which would equal Σl if mres were the

only effect of residual chiral symmetry breaking. The right panel shows the same quantities

computed using the strange instead of the light quark. The top panel displays results from

mπ ≈ 200 MeV while the bottom panel from mπ ≈ 135 MeV. Similar agreement between the

right and left hand sides of Eq. (5.31) is found for the 243 and 163 volumes, as can be seen

from Table 5.1
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# T (MeV) β ∆l
mp/T 3 ∆s

mp/T 3 mlχ
l
π+∆l

mp

T 3

msχs
π+∆s

mp

T 3

29 139 1.633 8.59(8) 0.532(5) 9.56(9) 45.08(4)

30 149 1.671 5.37(7) 0.442(3) 6.58(8) 41.07(3)

31 154 1.689 3.02(6) 0.306(2) 5.24(10) 39.31(4)

32 159 1.707 1.76(4) 0.227(2) 4.42(8) 37.68(3)

33 164 1.725 0.95(3) 0.171(1) 3.12(8) 35.70(3)

34 168 1.740 0.65(3) 0.126(1) 2.65(10) 34.40(4)

35 177 1.771 0.27(1) 0.085(1) 1.65(5) 31.30(2)

36 186 1.801 0.12(1) 0.048(1) 1.27(4) 28.70(2)

37 195 1.829 0.06(1) 0.034(1) 1.01(2) 26.55(2)

Table 5.2: The same quantities as tabulated in Table 5.1 for the ensembles with mπ ≈

135 MeV. The Ward identity identity requires second- and first-from-right columns to agree

with the fourth and the fifth columns from the left in Table 5.4 respectively.

quark mass is replaced by that of the strange quark and add the subscript l to the usual

pion susceptibility for clarity. From the perspective of the continuum theory both sides of

Eq. (5.33) provide an equally good value for the subtracted chiral condensate. Neither quan-

tity contains a quadratic divergence and the much smaller logarithmic divergences present

on both sides are equal. For a DWF theory with residual chiral symmetry breaking this

equation does not hold and the left hand side ∆l,s contains an unphysical additive constant

O(mres/a2). However, the right-hand side is much better defined with no 1/a2 term. Thus,

we can use the right-hand side of Eq. (5.33) to provide a more physical result for ∆l,s which

will contain only a small, unphysical piece of order mlm2
s ln(msa). Thus, we can define an

improved value for ∆l,s:

∆̃l,s = m̃l (χπl
− χπs) (5.34)

which we will use to compare with spectral formulae and with the results for ∆l,s from other
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lattice fermion formulations.

5.2 Chiral Symmetry Restoration

In this section we present and discuss our numerical results for the chiral condensate and

for the disconnected chiral susceptibility as a function of temperature.

5.2.1 Chiral Condensate

Fig. 5.3 shows the Monte Carlo time histories of the light-quark chiral condensate for

seven of the temperatures studied with mπ ≈ 200 MeV. The time evolutions for the 323 × 8

ensembles are displayed in the top left panel, those from 243 × 8 in the right left and 16×8 in

the bottom. The evolutions of the light-quark condensates from all sets of ensembles appear

to follow the same trend. For the lower temperature region (T ≤ 168 MeV), the light quark

condensate fluctuates around its average value. However, as temperature grows higher, the

fluctuations can better be described as upward spikes added to an otherwise flat base line.

This behavior is typically seen in finite temperature DWF calculations and arises because

above Tc the main contribution to the chiral condensate comes from isolated, near-zero

modes [120]. These modes become increasingly infrequent as the temperature is increased

but, when present, produce a noisy, non-zero chiral condensate. The noise results from

the relatively small space-time extent of each zero mode which is therefore sampled in our

stochastic determination with relatively few random numbers.

Such behavior becomes most pronounced for T ≥ 186 MeV in the 323 × 8 calculations. At

T = 177 MeV, the 243 × 8 Monte Carlo time evolution shows this characteristic plateau-spike

structure more distinctly than does the comparable 323 × 8 time history. This suggests a

lower pseudo-critical transition temperature for the smaller volume or that the larger 323

volume supports a larger number of such zero modes, reducing the size of the intervals when
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none are present and the chiral condensate is nearly zero.

If the correlation length is finite, the fluctuations of chiral condensate from the gauge

noise should be suppressed by a factor in proportion to
√
V . Such volume effect can be

observed from the evolution plots with different lattice sizes.

The Monte Carlo time histories of the light-quark chiral condensate for nine of the tem-

peratures studied with mπ ≈ 135 MeV are illustrated in Fig. 5.4. One stream of evolution at

each temperature is presented for the 323 × 8 lattices (left panel) and for the 643 × 8 (right

panel). The suppression of fluctuation from the volume effect is transparent from the com-

parison of the two panels. At the 643 × 8 volume, the short-term fluctuations can be easily

seen to almost absent by examining the plot.

Moreover, the fluctuations of the chiral condensate are also inversely related to the quark

mass, an effect which can be seen from a comparison of the 323 × 8 ensembles with different

light quark masses. The plateau-spike structure starts to emerge at T = 168 MeV and

becomes very pronounced at T = 177 MeV, which happens at lower temperatures than the

mπ ≈ 200 MeV ensembles. This indicates a lower pseudo-critical temperature for the physical

pion ensembles as compared with those for heavier pions.

In the lower panel of Fig. 5.4, we also present four averaged time histories of the light

quark chiral condensate on the 323 × 8 lattice with mπ ≈ 135 MeV at T = 154 MeV, which

is chosen to be very close to the pseudo-critical temperature. Two of the evolutions started

with ordered ensembles (labeled as “ord” in the figure) while the other two with disordered

ensembles (labeled as “dis” in the figure). Each point with separation of 20 configurations

in the plot is an average of ψlψl on 20 consecutive configurations All four streams converge

quickly, no later than 200 trajectories, and no signal for the “two-state” fluctuation expected

for a first-order transition are observed. This provides clear evidence for the absence of a

first order phase transition for physical pion mass.

The ensemble averages of the light, subtracted and strange chiral condensates are sum-
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Figure 5.3: Monte Carlo time histories of the light-quark chiral condensate Σl/T 3 for the

323 × 8 (top left), 243 × 8 (top right) and 163 × 8 (bottom) ensembles with mπ ≈ 200 MeV.

(Only the longest streams from 16 and 17 are displayed.) There is a vertical offset of 5

units between successive data sets with the β = 1.829 results unshifted. Note that the time

evolution corresponding to β = 1.725, 323 × 8 (24) behaves in a similar manner to those of

its neighboring ensembles, but is omitted from the graph to preserve a uniform separation

between each ensemble.
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Figure 5.4: Monte Carlo time histories of the light-quark chiral condensate Σl/T 3 for the

323 × 8 (top left) and 643 × 8 (top right) ensembles with mπ ≈ 135 MeV. (Only the longest

streams at each temperature are displayed.) There is a vertical offset of 5 units between

successive data sets from the 323 × 8 ensembles with the β = 1.829 results unshifted. The

data from the 643 × 8 ensembles are vertically aligned with the corresponding 323 × 8 results.

The bottom panel plot the four streams of time histories of the light-quark chiral condensate

at T = 154 MeV. Each point represents the average of measurements made with 10 random

sources on each of 20 successive configurations.
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marized in Tables 5.3 and 5.4. The temperature dependence of the light and the subtracted

condensates is also illustrated in Fig. 5.5. As that figure shows, for the mπ ≈ 200 MeV

ensembles, results from 323 × 8 and 243 × 8 ensembles agree well throughout the transition

region, whereas those from the 163×8 ensembles show an appreciable discrepancy for T < 168

MeV, indicating a small but well-resolved finite volume effect. For the mπ ≈ 200 MeV en-

sembles, both volumes give very similar results for all the temperatures under inspection,

which suggests that 323 × 8 should be large enough even for the physical pion lattices.

Due to the mq/a2 divergence in the chiral condensate, the agreement of Σl between

different pion masses depends on the subtraction scheme. Without subtraction, the divergent

piece dominates at high temperature, where Σl differs between ensembles with different pion

mass (upper panel in Fig. 5.5). With the subtraction scheme of Eq. 5.4, they agree well at

temperatures above the transition region but differ at low temperatures. With ∆̃l,s defined

in Eq. (5.34), they tend to be consistent for all temperatures.

5.2.2 Chiral Susceptibilities

A second measure of the restoration of SU(2)L×SU(2)R symmetry is the two differences

χπ−χσ and χη−χδ, following Eq. (5.13). These two SU(2)L×SU(2)R-breaking differences are

plotted in Fig. 5.6. The quantity χπ−χσ shows the behavior that might be expected from the

temperature dependence of the chiral condensate shown Fig. 5.5. A large SU(2)L×SU(2)R-

breaking difference is seen for T ≤ 159 MeV which becomes zero for T ≥ 168 MeV with

mπ ≈ 200 MeV and T ≥ 164 MeV with mπ ≈ 135 MeV. A finite small SU(2)L × SU(2)R-

breaking difference is still present at T = 164 MeV with mπ ≈ 200 MeV. The second difference

χη − χδ is more surprising, being essentially zero throughout our temperature range. While

we do not have a crisp explanation for this unexpected SU(2)L × SU(2)R symmetry below

Tc we do expect this difference to vanish for T > Tc and to be small relative to χπ − χσ for

T < Tc since the large value of χπ reflects the small pion mass while the δ, σ and η are all
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# T (MeV) β Σl/T 3 Σs/T 3 ∆l,s/T 3 χdisc/T 2 χ5,disc/T 2 χtop/(m̃lT )2

21 139 1.633 10.07(4) 41.27(2) 6.40(4) 20(2) 118(7) 261(11)

22 149 1.671 7.03(6) 36.48(2) 3.84(5) 28(3) 94(8) 177(11)

23 159 1.707 5.80(6) 33.73(2) 2.83(6) 33(3) 70(8) 118(10)

24 164 1.725 5.02(7) 32.04(3) 2.16(7) 38(3) 49(4) 78(4)

25 168 1.740 4.16(8) 30.72(3) 1.46(7) 37(3) 38(5) 54(4)

26 177 1.771 3.17(5) 27.94(2) 0.71(5) 22(2) 24(3) 37(3)

27 186 1.801 2.46(4) 25.38(2) 0.22(4) 12(2) 10(2) 15(2)

28 195 1.829 2.15(3) 23.20(1) 0.14(3) 7(1) 10(1) 15(2)

16 148 1.671 7.10(6) 36.53(2) 3.90(6) 31(2) 89(5) 165(7)

17 159 1.707 5.58(10) 33.68(3) 2.66(10) 36(3) 64(6) 110(6)

18 168 1.740 4.40(10) 30.84(4) 1.69(10) 32(3) 47(6) 67(6)

19 177 1.771 3.03(7) 27.90(3) 0.57(7) 19(2) 21(3) 32(3)

20 186 1.801 2.58(6) 25.41(2) 0.34(6) 13(2) 14(2) 18(2)

8 139 1.633 9.26(13) 41.02(4) 5.61(12) 36(3) 113(7) 252(11)

9 149 1.671 6.26(12) 36.42(5) 3.07(12) 44(3) 89(6) 159(6)

10 149 1.671 8.39(10) 38.30(3) 5.00(10) 41(2) 90(6) 168(7)

11 159 1.707 5.25(17) 33.81(6) 2.27(16) 43(4) 55(6) 97(7)

12 168 1.740 4.03(18) 30.66(7) 1.33(18) 35(5) 37(5) 60(7)

13 177 1.771 3.16(15) 27.88(6) 0.71(15) 25(4) 24(4) 36(4)

14 186 1.801 2.44(9) 25.43(4) 0.20(9) 11(4) 9(3) 21(6)

15 195 1.829 2.10(5) 23.22(3) 0.09(5) 6(2) 6(2) 11(2)

Table 5.3: The unrenormalized chiral condensates and disconnected chiral susceptibilities

for ensembles with mπ ≈ 200 MeV. The two right-most columns should agree according to

Eq. (5.26). As discussed, we attribute their large difference to inaccuracy in the strong-

coupling measurement of χtop. Moving from top to bottom, the three sections correspond to

the volumes 323 × 8, 243 × 8 and 163 × 8.
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# T (MeV) β Σl/T 3 Σs/T 3 ∆l,s/T 3 χdisc/T 2 χ5,disc/T 2

29 139 1.633 9.59(3) 45.08(1) 9.43(3) 44(2) 232(9)

30 149 1.671 6.70(4) 41.09(1) 6.58(4) 67(3) 186(7)

31 154 1.689 5.25(6) 39.30(1) 4.70(6) 79(4) 140(7)

32 159 1.707 4.42(5) 37.70(1) 3.62(5) 71(3) 100(5)

33 164 1.725 3.32(5) 35.79(1) 2.46(5) 63(3) 79(5)

34 168 1.740 2.57(6) 34.31(1) 1.69(6) 55(4) 61(7)

35 177 1.771 1.63(3) 31.34(1) 0.73(3) 22(2) 23(2)

36 186 1.801 1.25(2) 28.70(1) 0.37(2) 13(1) 14(2)

37 195 1.829 1.04(2) 26.55(1) 0.20(2) 8(2) 7(1)

38 139 1.633 9.69(6) 45.08(2) 9.52(6) 42(9) 213(37)

39 148 1.671 6.76(3) 41.07(1) 6.64(3) 65(5) 187(11)

40 159 1.707 4.46(3) 37.68(1) 3.65(3) 75(7) 120(9)

41 168 1.740 2.53(6) 34.31(1) 1.65(6) 67(14) 58(15)

Table 5.4: The same quantities as are tabulated in Table 5.3 for the ensembles with mπ ≈

135 MeV. The topological charge is not measured for these ensembles. Thus, the χtop column

is excluded. Moving top to bottom, the two sections correspond to the volumes 323 × 8 and

643 × 8.
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Figure 5.5: Comparison of light-quark (upper), subtracted (lower left) and improved sub-

tracted (lower right) chiral condensates computed on different volumes with different pion

masses. For mπ ≈ 200 MeV, the 323 and 243 volumes agree reasonably well for all tem-

peratures but are 5-10% larger than the corresponding values from the 163 volume for

T < 168 MeV. The results appear to be volume independent for T ≥ 168 MeV. Results

from mπ ≈ 135 MeV agree very well at all temperatures, but differ from the heavier pion

mass results. The discrepancies depend on the subtraction scheme.
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expected to be relatively massive below Tc.
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Figure 5.6: The two SU(2)L × SU(2)R-breaking susceptibility differences χMS
π − χMS

σ and

χMS
δ − χMS

η plotted as a function of temperature for our three spatial volumes: 163, 243 and

323 with mπ ≈ 200 MeV as well as for 323 with mπ ≈ 135 MeV. For temperatures of 168 MeV

(164 MeV for mπ ≈ 135 MeV) and above these differences are consistent with zero and the

expected restoration of chiral symmetry above Tc. The quantity χπ −χσ becomes very large

below Tc reflecting the small mass of the pseudo-Goldstone π meson below Tc. In contrast,

the second difference χη −χδ remains relatively small as the temperature decreases below Tc,

reflecting the relatively large masses of the δ and η mesons.

While the chiral condensate is the order parameter for the chiral transition, its strong ap-
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parent temperature dependence results from a combination of the finite temperature physics

of interest and its dependence on the lattice scale as a dimension 3 operator. (This can

be recognized by noting that we often discuss the dimensionless quantity Σl/T 3 which will

change significantly with temperature simply because of the 1/T 3 factor.) The location of the

pseudo-critical temperature is much more easily seen by examining the disconnected chiral

susceptibility χdisc. This has dimension 2 and so varies a little less strongly with the lattice

scale (which we are changing to varyint T on our Nτ = 8 lattice) and shows a dramatic peak

near the transition which can be used to define the the pseudo-critical temperature Tc as

discussed in Chap. 3. Numerical results for χdisc before renormalization are presented in Ta-

ble 5.3 for ensembles with mπ ≈ 200 MeV and in Table 5.4 for ensembles with mπ ≈ 135 MeV.

The corresponding normalized values in the MS(µ = 2 GeV) scheme are listed in Tables 5.5

and 5.7 in order to allow a comparison with results from the staggered formalism. Suscepti-

bilities normalized in the MS scheme at 2 GeV can be obtained from the directly-computed

lattice quantities using the relation:

χMS =
⎛
⎝

1

Zmf→MS

⎞
⎠

2

χbare. (5.35)

The renormalization factor Zmf→MS is discussed in Chap. 6 when we discuss the renormal-

ization of the eigenvalue distribution. They are obtained from the dependence of the pion

mass, expressed in physical units, on the input quark mass and the known value of m̃l

which corresponds to the physical value of mπ [112]. These values for Zmf→MS are listed in

Table 6.4.

The dependence of the renormalized χdisc on volume is shown in the left panel of Fig. 5.7.

At T = 168 MeV and above the disconnected chiral susceptibilities from all volumes with

mπ ≈ 200 MeV agree within errors. For T ≥ 177 MeV, they further converge to results from

the mπ ≈ 135 MeV ensembles.

However, at lower temperatures there is a large discrepancy between the 163 × 8 and the

323×8 ensembles withmπ ≈ 200MeV which becomes larger as temperature decreases. Results
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from 243 × 8, fall in between, although they tend to lie closer to the 323 × 8 points. This

volume effect is predicted with the O(4) finite volume scaling behavior in Refs. [121, 122].

For ensembles with mπ ≈ 135 MeV, the disconnected chiral susceptibilities from volumes 323

and 643 are consistent, though the errors for the results from the larger volume are still

substantial. This is another piece of evidence strongly in favor of the absence of a first order

phase transition.

Since we are studying only a single value of Nτ , it is premature to draw a definite quan-

titative conclusion about the pseudo-critical transition temperature. However, a qualitative

examination of the left panel in Fig. 5.7 for ensembles with mπ ≈ 200 MeV suggests that a

peak in χdisc occurs for the 163 and 243 volumes at approximately 160 MeV and that this

peak position increases to slightly above 165 MeV as the volume is increased to 323. For

ensembles with mπ ≈ 135 MeV, a distinct peak can be observed for the 328 volume at the

T = 154MeV point, while the curve for the 648 volume with fewer points and larger error-bars

is peaked around T = 160 MeV. A quantitative extraction of the pseudo-critical temperature

using a empirical formula will be discussed in the next subsection Sec. 5.2.3.

The right panel of Fig. 5.7 compares both the mπ ≈ 200 MeV, DWF and mπ ≈ 135 MeV

MDWF results at volume 323×8 for χdisc with those obtained from staggered fermions using

an 483 × 12 volume and the HISQ and ASQTAD staggered actions with mπ = 161 and 179

MeV respectively [5]. Again, the disconnected chiral condensates are consistent among these

three methods for T ≥ 175 MeV. However, the ASQTAD results lie substantially below the

DWF and HISQ results for temperatures at and below the transition region. The HISQ

results are in good agreement with the 323 × 8 mπ ≈ 200 MeV DWF results. However, this

agreement appears to be coincidental, since the HISQ results are obtained for a quoted pion

mass of 161 MeV, significantly smaller than the 200 MeV pion mass of the DWF ensembles.

The expected strong dependence of χdisc near Tc on the pion mass suggests that mπ = 160

MeV DWF results would lie above those found with HISQ. The discrepancy between the
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DWF and ASQTAD results and the expected discrepancy with comparable HISQ results

are likely explained by lattice discretization errors associated with staggered taste symmetry

breaking. The disconnected chiral susceptibilities from the DWF ensembles with physical

pions lie well above those with heavier pions for T ≤ 168 MeV.
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Figure 5.7: The left panel compares χMS
disc computed using DWF on 323, 243 and 163 volumes

with mπ ≈ 200 MeV. Significant volume dependence can be seen between 323 and 163, while

the 243 results agree with those from 323 within errors. The left panel also plots χMS
disc from

DWF ensembles with mπ ≈ 135 MeV on 323 and 643 volumes, where no substantial volume

effect is observed. The right panel compares the 323, Nτ = 8 DWF results for χMS
disc with those

from staggered fermions on a 483×12 volume using both the ASQTAD and HISQ actions [5].

In each case χMS
disc is renormalized in the MS(µ = 2 GeV) scheme.

5.2.3 Determining Tc

In this subsection, we intend to determine the pseudo-critical temperature from our

results for the disconnected chiral susceptibilities with mπ ≈ 135 MeV.

If the QCD phase transition is described by the universality class of three-dimensional

O(2) or O(4) model the scaling function for the order parameter (subtracted chiral conden-
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sate) and its susceptibilities (the full chiral susceptibilities) should behave as one of the two

shown in Fig. 5.8. Details of the scaling analysis as well as the effects of finite volume can

be found in Refs. [123, 124, 122, 125].
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Figure 5.8: The left panel shows the scaling function for the order parameter for the uni-

versality classes of the three-dimensional O(2) and O(4) models. The right panel shows the

scaling function for the chiral susceptibility.

With ensembles of two pion masses and several space-time volumes, we might venture

to carry out a thorough scaling analysis of the chiral condensate and the full chiral sus-

ceptibility, including both the regular and sigular contributions. However, this analysis is

beyond the scope of thie thesis. Instead, we are going to use some empirical formulae to

describe the disconnected chiral susceptibilities near the phase transition region to locate

the pseudo-critical temperature. These empirical formulae lack a deep physical interpre-

tation, yet provide a quantitative tool to extract the pseudo-critical temperature from the

dependence of the disconnected chiral susceptibility on temperature.

We adopt three fitting functions. The first is a Gaussian function for the three points

within range 149 MeV ≤ T ≤ 159 MeV. Our empirical fitting is performed with a “super-

jackknife” method (for details c.f. [126]). Since the number of jackknife blocks from each
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Figure 5.9: Empirical fits for the disconnected chiral susceptibilities. the red dashed line is

the fitted curve for the Gaussian function within range 149 MeV ≤ T ≤ 159 MeV. The black

dotted line is the fitted curve for the cubic function within range 149 MeV ≤ T ≤ 164 MeV.

However, neither of them give a good description of the points that lie outside the fitting

region.
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ensemble is different, we join results from all three ensembles together in a larger jack-

knife data set, where each of three subsets contains one jackknife re-sampled χMS
disc at one

temperature and two ensemble averaged χMS
disc from the other temperatures. Therefore the

total number of elements in the super-jackknife data set N is the sum of numbers of jack-

knife data from each of the three ensembles. This factor N is also used to scale up the

variance of the re-sampled data to get the estimator for the true error. The fitted result

is χMS
disc/T 2 = 35.1 exp{−0.00514(T − 154.3)2} which is represented by a red dotted line in

Fig. 5.9. The pseudo-critical temperature is at Tc = 154.3(6) MeV, which is not far from

the T = 154 MeV point. Outside the fitting range, the fitting curve quickly deviates from

the data points, as the Gaussian form has little physical significance. We also employ a

quadratic form for fitting the three points, the cyan line on the plot. Its fitting result,

χMS
disc/T 2 = −0.0169T 2 + 52.1T − 3986, is very close to the Gaussian form within the fitting

region and so is its fitted pseudo-critical temperature Tc = 154.3(6) MeV.

In order to incorporate the skewness, we also tried a cubic fitting form for the four points

within range 149 MeV ≤ T ≤ 164 MeV with the super-jackknife method, which results in

χMS
disc/T 2 = 0.0108T 3 − 5.15T 2 + 818T − 43280, represented by a black dotted line in Fig. 5.9.

The pseudo-critical temperature is quoted as Tc = 153.5(8)MeV, consistent with the previous

form, which is quite consistent with the other fitting result. However, the credibility of these

fitted results for Tc should be discounted since all fitting forms fail outside the fitting region.

There are several issues that might affect the fitting results for the pseudo-critical tem-

perature. Firstly, we adopt the temperature T rather than the β as the fitting variable.

T is a derived quantity computed from the lattice spacing which contains errors in itself.

However, within such a small interval, the relation between β and T is almost linear. If

we had used β in the fit and then converted it back to the temperature, we will not shift

the relative position of the peak. Secondly, the renormalization factors Zm contain errors,

which are not considered in the fitting. However, from Table 6.4, these factors are almost
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uniform within the transition region. Even though a small overall shift in Zm is possible, its

effect on the fitting is insignificant. Thirdly, we the dimensionless quantity χMS
disc/T 2 rather

than χMS
disc in physical units is used in the empirical fittings. This would lead to about 10%

relative change in χdisc. However, the peak point at T = 154 MeV is so sharp that it easily

overwhelms this relative change. Nevertheless, a small increase in Tc is expected if we had

used χMS
disc in physical units.

Therefore, based on the fitting presented in Fig. 5.9 and arguments in the previous

paragraph, we would argue the Tc for Nτ = 8 and mπ ≈ 135 MeV should be close to T =

154 MeV, and is located by a distinct peak. If we take the expected discretization error

(5%×154 MeV ≈ 8 MeV) into account, it would dominate the error estimated for the pseudo-

critical temperature. A more realistic value and error for Tc with finite lattice spacing and

finite volume corrections would be expected if we were able to perform a complete O(4)

scaling analysis. Furthermore, additional ensembles in the vicinity of the peak would also

be very beneficial.

5.3 U(1)A symmetry

We will now discuss the degree to which the anomalous U(1)A symmetry is restored above

Tc by examining the two implications of this symmetry for the four susceptibilities given in

Eq. (5.14): χπ = χδ and χσ = χη. The numerical results for each of these four susceptibilities

are summarized in Table 5.5 for ensembles withmπ ≈ 200 MeV and in Table 5.7 for ensembles

with mπ ≈ 135 MeV as well as their U(1)A-breaking differences χπ −χδ and χσ −χη which we

will often abbreviate as ∆π,δ = χπ −χδ and ∆σ,η = χσ −χη. The integrated susceptibilities χπ

and χδ are calculated from the corresponding two point correlation functions by summing the

position of the sink over the entire space-time volume. For the 163×8 and 243×8 ensembles,

we use a single point source located at (0,0,0,0), while for the 323 ×8 ensembles with either

pion masses, we use a random Z2 wall source located at a fixed, 3-dimensional spatial slice,
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perpendicular to one of the three spatial directions, e.g. x = 0.
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Figure 5.10: The two U(1)A-violating susceptibility differences, χπ − χδ and χσ − χη plotted

as a function of temperature for our three spatial volumes with mπ ≈ 200 MeV and for 323×8

with mπ ≈ 135 MeV. As expected these quantities are very different below Tc. However, even

for temperatures of 159 MeV and above these quantities differ from zero by many standard

deviations, providing clear evidence for anomalous symmetry breaking above Tc. The near

equality of these two differences above Tc, which are related by SU(2)L ×SU(2)R symmetry

suggests that the effects of explicit chiral symmetry breaking are much smaller (as expected)

than this anomalous symmetry breaking.

These two U(1)A-breaking differences are plotted in Fig. 5.10. As can be seen, these
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# T (MeV) χMS
π /T 2 χMS

δ /T 2 χMS
σ /T 2 χMS

η /T 2 ∆MS
π,σ/T 2 ∆MS

η,δ /T 2 ∆MS
π,δ /T 2 ∆MS

σ,η /T 2

21 139 144.7(7) 34.0(3) 53(2) 35(6) 92(2) 1(6) 111(1) 18(6)

22 149 120.1(1.3) 33.1(6) 58(2) 36(6) 62(3) 3(6) 87(2) 22(7)

23 159 94.0(1.1) 34.3(5) 63(3) 36(6) 31(3) 2(5) 60(2) 27(6)

24 164 80.8(1.3) 33.2(8) 66(3) 39(4) 15(3) 5(4) 48(2) 28(5)

25 168 68.7(1.4) 33.6(9) 65(3) 37(4) 4(3) 3(4) 35(2) 28(4)

26 177 53.8(1.3) 30.8(1.1) 49(2) 34(2) 5(3) 3(2) 23(2) 15(3)

27 186 40.6(8) 34.1(6) 44(1) 32(1) -4(1) -2(1) 6(1) 12(2)

28 195 37.2(9) 31.1(8) 37(1) 29(1) 0.4(1.4) -2(2) 6(2) 8(2)

16 149 122(6) 32(2) 61(4) 38(9) 61(8) 6(10) 90(8) 23(10)

17 159 87(5) 37(2) 66(4) 31(7) 20(8) -6(8) 50(6) 35(10)

18 168 70(3) 36(2) 64(3) 30(7) 6(6) -6(7) 34(5) 34(9)

19 177 52(4) 31(3) 47(4) 34(4) 4(7) 3(7) 20(7) 13(8)

20 186 40(1) 34(1) 44(1) 29(2) -4(2) -4(2) 7(2) 15(3)

8 139 140(2) 33(2) 66(3) 34(7) 74(4) 1(6) 107(4) 32(8)

9 149 111(2) 33(2) 73(2) 38(6) 39(4) 5(5) 78(4) 35(7)

11 159 83(2) 38(2) 75(3) 35(4) 8(3) -3(3) 45(4) 40(6)

12 168 66(3) 33(2) 64(4) 34(5) 3(4) 0.3(4.7) 33(4) 30(9)

13 177 53(3) 31(2) 51(2) 33(3) 2(3) 2(3) 22(5) 19(5)

14 186 41(1) 34(1) 43(2) 34(2) -1(1) 0.1(1.3) 8(3) 9(4)

15 195 36(1) 32(1) 37(1) 31(1) -1(1) -0.5(8) 5(2) 6(2)

Table 5.5: Results for the four independent susceptibilities χπ, χδ, χσ and χη as well as the

two pairs of differences, ∆π,σ = χπ−χσ, ∆η,δ = χη−χδ and ∆π,δ = χπ−χδ, ∆σ,η = χσ−χη which

measure the degree of SU(2)L × SU(2)R and U(1)A symmetry, respectively for ensembles

with mπ ≈ 200 MeV. All of these susceptibilities are renormalized in the MS(µ = 2 GeV)

scheme using the renormalization factors listed in Table 6.4. Moving from top to bottom,

the three sections correspond to the volumes 323 × 8, 243 × 8 and 163 × 8.
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# T (MeV) χs,MS
π /T 2 χs,MS

δ /T 2 χs,MS
σ /T 2 χs,MS

η /T 2 ∆s,MS
π,σ /T 2 ∆s,MS

η,δ /T 2 ∆s,MS
π,δ /T 2 ∆s,MS

σ,η /T 2

21 139 43.89(3) 31.50(2) 33.7(2) 42.9(4) 10.1(2) 11.4(4) 12.39(5) -9.2(4)

22 149 41.96(3) 31.70(3) 33.8(2) 41.6(3) 8.2(2) 9.9(3) 10.26(5) -7.9(4)

23 159 39.89(4) 31.71(3) 34.8(4) 39.0(3) 5.1(4) 7.3(3) 8.18(7) -4.2(4)

24 164 38.77(5) 31.74(4) 35.6(4) 38.1(4) 3.2(4) 6.4(4) 7.02(8) -2.6(5)

25 168 37.68(6) 31.67(3) 35.3(4) 37.1(3) 2.4(4) 5.4(3) 6.00(9) -1.8(5)

26 177 35.65(5) 31.39(2) 33.4(3) 35.1(3) 2.2(3) 3.7(4) 4.26(6) -1.7(5)

27 186 33.75(5) 30.83(3) 32.7(3) 33.4(3) 1.1(3) 2.5(3) 2.93(6) -0.7(3)

28 195 32.37(4) 30.46(2) 31.7(1) 32.2(2) 0.7(1) 1.7(2) 1.91(4) -0.5(3)

16 149 42.0(3) 31.57(16) 34.0(5) 41.5(5) 7.9(6) 10.0(5) 10.4(4) -7.5(7)

17 159 39.7(3) 31.82(12) 34.4(3) 39.0(5) 5.3(4) 7.2(6) 7.9(4) -4.6(6)

18 168 38.3(3) 31.73(11) 33.9(4) 37.7(4) 4.3(6) 5.9(4) 6.5(3) -3.7(6)

19 177 35.7(2) 31.45(9) 33.5(2) 35.5(4) 2.2(3) 4.1(4) 4.2(3) -2.0(5)

20 186 33.5(1) 30.84(7) 32.3(2) 32.9(3) 1.2(2) 2.0(3) 2.7(2) -0.6(4)

8 139 43.95(7) 31.52(5) 33.8(2) 43.6(3) 10.2(2) 11.5(3) 12.44(11) -9.3(4)

9 149 41.87(6) 31.79(5) 34.8(3) 41.1(4) 7.1(3) 9.4(4) 10.08(9) -6.4(5)

11 159 39.81(8) 31.72(6) 34.6(3) 39.7(3) 5.2(3) 8.0(3) 8.09(13) -5.1(4)

12 168 37.72(10) 31.68(6) 34.7(4) 38.0(4) 3.0(4) 6.4(4) 6.04(14) -3.3(5)

13 177 35.58(9) 31.41(6) 33.9(2) 35.6(3) 1.6(2) 4.2(3) 4.18(13) -1.7(3)

14 186 33.86(8) 30.87(4) 32.7(1) 34.0(2) 1.2(2) 3.1(2) 2.99(10) -1.3(3)

15 195 32.41(6) 30.48(3) 31.8(1) 32.2(3) 0.6(1) 1.7(3) 1.92(5) -0.3(3)

Table 5.6: The same quantities as tabulated in Table 5.5 but with the light quark replaced

by the strange quark.
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diminish rapidly with temperature but are many standard deviations from zero even at the

temperatures of 177 and 186 MeV, well above Tc for ensembles with either pion mass. We

expect that the effect of explicit chiral symmetry breaking, either from the non-zero input

quark mass or finite-Ls, residual chiral symmetry breaking, on these differences will be much

smaller.

5.3.1 Results from Ensembles with mπ ≈ 200 MeV

With regard to ensembles with mπ ≈ 200 MeV, we might estimate the contribution of

explicit U(1)A breaking at T > Tc to be of order m̃2
l /T 2 ∼ (0.004 × 8)2 = 0.001 compared to

results between 3 and 7 shown in Table 5.5. 1 Numerical evidence for the absence of explicit

chiral symmetry breaking is provided by the near equality of the two differences χπ −χδ and

χσ −χη which are related by SU(2)L ×SU(2)R symmetry, a symmetry also explicitly broken

by ml and mres.

Strong evidence for the small size of possible explicit chiral symmetry breaking also comes

from the results for χπ − χδ computed for the strange quark. It is the explicit breaking of

chiral symmetry by the valence propagators which can create a non-anomalous signal for

χπ − χδ. As can be seen from Table 5.6 the results for χπ − χδ are smaller for the strange

than for the light quark. If the strange quark results are interpreted as coming entirely from

explicit chiral symmetry breaking, the corresponding effects for the light quarks should be

reduced by a factor of (m̃l/m̃s)2 ≈ 0.008. At T = 177 MeV, this approach gives explicit chiral

symmetry breaking for the light quark quantity χπ −χδ of order 4.26× 0.008 = 0.034. This is

larger than the 0.001 estimate above but only a fraction of a percent of the signal.
1This assumed quadratic dependence on m̃l does not allow for a possible combined effect of explicit chiral

symmetry breaking and the sort of non-analytic behavior above Tc that we are trying to study. We do not

have sufficient numerical results to study such effects which we view as “second order” since they require

both non-perturbative chiral breaking above Tc and m̃l ≠ 0.
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5.3.2 Results from Ensembles with mπ ≈ 135 MeV

# T (MeV) χMS
π /T 2 χMS

δ /T 2 χMS
σ /T 2 χMS

η /T 2 ∆MS
π,σ/T 2 ∆MS

η,δ /T 2 ∆MS
π,δ /T 2 ∆MS

σ,η /T 2

29 139 254(3) 35(1) 78(4) 42(17) 176(5) 7(17) 219(3) 35(17)

30 149 199(2) 32(1) 92(4) 41(12) 107(5) 7(11) 165(4) 51(13)

31 154 164(3) 40(2) 103(5) 37(10) 61(6) 1(10) 128(5) 66(12)

32 159 130(2) 39(1) 96(5) 42(6) 34(5) 8(6) 95(3) 54(8)

33 164 98(2) 38(1) 90(4) 35(5) 8(4) 0(5) 63(3) 55(7)

34 168 85(3) 28(3) 82(5) 28(8) 3(6) -4(8) 53(5) 54(11)

35 177 55(2) 34(2) 53(2) 34(2) 1(3) 0(3) 21(3) 20(4)

36 186 44(1) 35(1) 42(1) 32(2) 2(2) 0(2) 12(3) 10(3)

37 195 36(1) 32(1) 39(2) 33(1) -2(2) 0(2) 4(1) 6(3)

Table 5.7: The same quantities as tabulated in Table 5.5 for the 323 × 8 ensembles with

mπ ≈ 135 MeV.

For ensembles with mπ ≈ 135 MeV, χπ − χδ remains at approximately the same level

as seen for mπ ≈ 200 MeV (Table 5.7), in contrast to the explicit chiral symmetry breaking

contribution which is expected to decrease with decreasing quark masses. A similar argument

for the strange susceptibility and light susceptibility discussed in the previous subsection

applies here as well. Moreover, the agreement between the two differences χπ − χδ and

χσ − χη are remarkable for T ≥ 168 MeV, providing strong support for the restoration of

chiral symmetry.

In sum, we interpret the results for χπ −χδ and χσ −χη shown in Tables 5.5 and 5.7 and

Fig. 5.10 as clear evidence for the anomalous breaking of U(1)A symmetry for T > Tc with

both mπ ≈ 200 MeV and mπ ≈ 135 MeV.
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# T (MeV) χs,MS
π /T 2 χs,MS

δ /T 2 χs,MS
σ /T 2 χs,MS

η /T 2 ∆s,MS
π,σ /T 2 ∆s,MS

η,δ /T 2 ∆s,MS
π,δ /T 2 ∆s,MS

σ,η /T 2

29 139 43.24(4) 31.19(2) 33.0(2) 42.4(6) 10.2(2) 11.2(6) 12.05(4) -9.4(6)

30 149 41.30(3) 31.35(2) 33.9(2) 41.0(6) 7.4(2) 9.7(6) 9.95(4) -7.1(6)

31 154 40.30(4) 31.36(2) 33.7(2) 40.4(5) 6.7(2) 9.1(5) 8.94(5) -6.8(5)

32 159 39.26(3) 31.34(2) 33.6(2) 38.9(4) 5.7(2) 7.5(4) 7.92(4) -5.3(5)

33 164 38.10(3) 31.41(2) 33.6(2) 38.1(4) 4.5(2) 6.6(4) 6.69(4) -4.5(5)

34 168 37.29(4) 31.21(2) 33.5(3) 37.1(5) 3.8(3) 5.9(4) 6.08(5) -3.6(6)

35 177 35.20(3) 30.90(2) 32.7(1) 35.2(4) 2.5(1) 4.3(4) 4.29(3) -2.5(4)

36 186 33.44(2) 30.37(1) 31.9(1) 33.1(4) 1.5(1) 2.8(4) 3.07(3) -1.2(4)

37 195 32.21(2) 30.03(1) 31.2(1) 32.7(3) 1.0(1) 2.7(3) 2.18(2) -1.5(3)

Table 5.8: The same quantities as are tabulated in Table 5.7 but with the light quark replaced

by the strange quark.



Chapter 6

Eigenvalue Distributions of the Dirac

Operator

The spectrum of eigenvalues of the Hermitian Dirac operator provides important insights

into the physics of QCD. The Dirac spectrum depends dramatically on the temperature and

is fundamentally connected with both the spontaneous and the anomalous chiral symmetry

breakings.

This chapter starts with an introduction to the connections between the Dirac eigenvalue

spectrum and a variety of physical quantities that are closely related to the QCD phase

transition. In Sec. 6.2, we explain how the continuum Dirac spectrum can be determined

from the distribution of these eigenvalues. And in Sec. 6.3, we briefly describe how the

eigenvalues on the five-dimensional lattice are collected with Ritz and Lanczos methods.

The resulting DWF Dirac eigenvalue spectrum for the finite temperature DWF ensembles

withmπ ≈ 200MeV, computed and normalized following these methods will be presented and

analyzed in an effort to determine the temperature dependence and the origin of the chiral

and the anomalous U(1)A symmetry breakings in the last three sections of this chapter.

95
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6.1 Preliminaries

The most familiar relation between the Dirac spectrum and an important QCD observable

is the spectral expression for the chiral condensate,

Σq = − ⟨ψψ⟩q = ∫
∞

0
dλρ(m̃l, m̃s, λ)

2m̃q

m̃2
q + λ2

, q = l, s. (6.1)

Here we have used the symmetry ρ(λ) = ρ(−λ), limiting the integral to non-negative values of

λ and introducing the compensating factor of 2 in the numerator. In the infinite volume and

chiral limits and applied to the light quark condensate, this equation becomes the well-known

Banks-Casher relation [127]:

− lim
m̃l→0

lim
V→∞
⟨ψψ⟩

l
= lim

λ→0
lim
m̃l→0

lim
V→∞

πρ(m̃l, m̃s, λ). (6.2)

Therefore, if the eigenvalue density ρ(m̃, λ) is non-vanishing in infinite volume at λ and m̃

approaches zero, chiral symmetry will be broken by a non-vanishing quark condensate.

While we have used the lattice variable m̃q to represent the quark mass in this equation,

it should be emphasized that this is an equation derived in continuum field theory. The

equivalent expression, derived for DWF in a lattice theory will be quite different. For exam-

ple, a spectral expression for Σq derived from an eigenmode expansion of the DWF lattice

propagator will involve wave functions for the five-dimensional modes evaluated on and in-

tegrated over the two s = 0 and s = Ls − 1, four-dimensional faces, yielding an expression

significantly more complex than that given in Eq. (6.1) [116]. However, when appropriately

renormalized, the eigenvalue density ρ(m̃, λ) is a physical quantity that can be computed

using lattice methods [128]. How we collect the eigenvalues of the lattice Dirac operator and

how we renormalize the eigenvalue distributions will be discussed in detail in Sec. 6.3 and

Sec. 6.2 respectively.

Since in a lattice calculation the Banks-Casher limit of infinite volume and vanishing

quark mass cannot be easily evaluated, we would like to use Eq. (6.2) for the case of fi-

nite volume and non-zero quark mass. However, in that case the integral over λ diverges
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quadratically. As a result, this equation is dominated by the region of large λ where the

DWF lattice and continuum formalisms should not agree. This region is also well outside

the limited range of the 100 lowest eigenvalues which we have computed. However, much

can be learned from Eq. (6.2) if we use it to evaluate the difference ∆l,s, subtracting the

light and strange quark equations. This difference will be studied in Sec. 6.6, comparing

the subtracted spectral integral with both the simple difference of condensates, ∆l,s and the

improved quantity ∆̃l,s defined in Eqs. (5.4) and (5.34) respectively.

In a similar manner, the difference between the connected pseudoscalar and scalar light-

quark susceptibilities, χπ−χδ, which serves as a good indicator of U(1)A symmetry breaking,

can be expressed as a spectral integral [129]:

∆π,δ ≡ χπ − χδ = ∫
∞

0
dλρ(m̃l, λ)

4m̃2
l

(m̃2
l + λ2)2

, (6.3)

where again this is a continuum equation which requires that all of the quantities which

appear are renormalized in a consistent scheme. In contrast to Eq. (6.2), this expression is

only logarithmically divergent and for our values of the lattice spacing and quark masses,

is dominated by the region where λ is small – the region in which we have measured the

spectrum and in which the lattice and continuum spectral functions should agree, except for

the usual O(a2) errors inherent in a calculation at non-zero lattice spacing.

In order to distinguish and to better understand the effects of different possible behaviors

of ρ(m̃l, λ) we will also make use of the small λ and small m̃ parametrization for ρ(m̃l, λ),

ρ(m̃, λ) = c0m̃2δ(λ) + c1∣λ∣ + c2m̃ +⋯, (6.4)

appropriate for T ≥ Tc and introduced in Ref. [35]. Each term provides an ansätz for a

possible behavior of ρ(m̃l, λ) and results in a different contribution to the susceptibility

difference. In particular, ∆π,δ will receive three corresponding contributions:

∆π,δ ≈ 2c0 + 2c1 + πc2 ≡∆0
π,δ +∆1

π,δ +∆2
π,δ. (6.5)
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Once the eigenvalue density has been computed and fit to the form assumed in Eq. (6.4),

the resulting coefficients can be used to calculate ∆π,δ and discover which of these three

behaviors gives the dominant contribution to the spectral integral.

In addition to allowing a quantitative measure of the relative importance of these three

possible behaviors, the use of the analytic expression in Eq. (6.4) also allows us to potentially

correct finite-lattice spacing errors which may be important for small λ in our DWF formu-

lation with finite Ls. Although much more accurate, the Hermitian DWF spectrum, like the

Wilson spectrum, does not have the continuum form Λ = ±
√
λ2 + m̃2

l where m̃l = ml +mres,

at least for finite volume, finite Ls and non-zero lattice spacing. For eigenvalues Λ of DH

on the order of mres, i.e. Λ ⪅ 10 MeV, we expect deviations from the continuum ±
√
λ2 + m̃2

l

form because of residual chiral symmetry breaking. These effects do not occur if we use ρ(λ)

given by Eq. (6.4). In fact, comparing results obtained by direct summation over the mea-

sured spectrum with those obtained using Eq. (6.4) provides an estimate of the importance

of these finite lattice spacing errors.

Each of the three terms in Eq. (6.4) corresponds to potentially interesting behavior. The

λ-independent c2m̃ term is expected to dominate the behavior below Tc and should describe

the Banks-Casher contribution to the chiral condensate Σl. For T < Tc the factor of m̃ should

not appear but has been introduced here because above Tc the condensate should vanish in

the limit m̃ → 0. As can be seen in Eq. (6.5), this c2m̃ term will result in ∆l,s ≠ 0 and

anomalous symmetry breaking. Likewise, the linear c1 term provides a possible mechanism

for U(1)A symmetry breaking above Tc. Both the c1 and c2 terms are sufficiently regular

as λ and m̃ approach 0 that they do not result in an explicit SU(2)L × SU(2)R symmetry

breaking chiral condensate but have sufficient infra-red singularity that the presence of either

does result in a non-zero value for χπ − χδ. Thus, either term in ρ(λ) could describe the

behavior we see for T > Tc where Σl should vanish as m̃l → 0 but χπ −χδ is non-zero. As we

will see, neither term appears to be present with a sufficient magnitude to describe χπ − χδ
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for T > Tc.

As is discussed below, the c0 term has the greatest relevance. This term represents

the Dirac spectrum that results from the dilute instanton gas approximation (DIGA) [104].

Asymptotic freedom implies that at sufficiently high temperature, the QCD partition func-

tion will be governed by weak-coupling phenomena. These should include a ”dilute gas” of

instantons and anti-instantons of radius ≈ 1/T and density∝ m̃2
l exp{−8π2/g2(T )} decreasing

with increasing temperature, where g(T ) is the running QCD coupling constant evaluated

at the energy scale T . The number of such instantons and anti-instantons is proportional to

the volume and each will induce a near-zero mode in the Dirac eigenvalue spectrum. (These

eigenvalues will not be exactly zero because of the overlap of the “zero-mode” wave functions

associated with neighboring instantons.) The factor of m̃2 in the instanton density arises

from the fermion determinant for two light flavors of quarks. The contribution of such a di-

lute gas of instantons and anti-instantons to the Dirac spectrum will be accurately described

by the c0 term in Eq. (6.4), at least for sufficiently high temperatures. As can be seen from

Eq. (6.5), such a term will result in a non-zero value for the difference χπ − χδ even in the

chiral limit, m̃l → 0. The expected presence of such effects leads to the phrase “effective

restoration of U(1)A symmetry”, since these effects, which should appear as T becomes very

large, will lead to a possibly very small but non-vanishing result of χπ − χδ.

As we will demonstrate in Sec. 6.7 we find a significant cluster of near-zero modes in

the Dirac spectrum whose number is proportional to the volume with the characteristics

expected from the DIGA. We conclude that the non-zero value of χπ − χδ in the region

just above Tc is explained by the DIGA and that this is the dominant mechanism for our

observed, non-zero breaking of U(1)A just above Tc.
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6.2 Renormalization of the Domain Wall Eigenvalue

Distribution

6.2.1 Relating the Continuum and DWF Dirac Spectrum

The domain wall fermion formulation can be viewed as a five-dimensional theory whose

low energy properties accurately reproduce four-dimensional QCD. All low energy Green’s

functions and matrix elements are expected to agree with those of a four-dimensional theory

and it is only at high momenta or short distances that the five dimensional character of the

theory becomes visible. This perspective applies also to the five-dimensional DWF Dirac

operator whose small eigenvalues and corresponding eigenstates should closely approximate

those of a continuum four-dimensional theory. This can be shown explicitly for the free

theory, order-by-order in perturbation theory and by direct numerical evaluation in lattice

QCD. With the exception of gauge configurations which represent changing topology, the

modes with small eigenvalues are literally four-dimensional with support concentrated on

the four-dimensional left and right walls of the original five-dimensional space.

Thus, we can learn about the continuum Dirac eigenvalue spectrum by directly studying

that of the DWF Dirac operator, DDWF, as defined by Eqs. (2.31) and (2.32) in Chap. 2. Of

course, just as with other regulated versions of the continuum theory, explicit renormalization

is needed to convert from a bare to a renormalized eigenvalue density. Because the continuum

Dirac operator, /D+m, is linear in the quark mass, we should expect the Dirac eigenvalues to

be related between different renormalization schemes by the same factor Zm that connects

the masses. If we have two regularized theories which describe the same long distance physics

with bare masses m and m′ = Zm→m′m, then we should expect that their eigenvalue densities

would be related by:

ρ′(λ′) = 1

Zm→m′
ρ (λ′/Zm→m′) . (6.6)

Note this expectation is consistent with the form of the Banks-Casher relation, ⟨ψψ⟩ = πρ(0),
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as the equality of the mass term in equivalent theories requires ⟨ψ′ψ′⟩ = ⟨ψψ⟩/Zm→m′ .

The renormalization of the bare input quark mass, mf , for DWF has been extensively

studied and the factor Zmf→MS(µ2) needed to convert this input bare mass to a continuum,

MS value at the scale µ is accurately known [112] and will be summarized later in Sec. 6.2.3.

However, in contrast to the continuum theory or staggered or Wilson lattice fermions, the

input quark mass for DWF does not enter as an additive constant but instead appears as

a coupling strength between the two four-dimensional walls. Thus, for DWF the Dirac

spectrum and the quark mass will in general be related to their continuum counterparts

by different renormalization factors. To properly renormalize the DWF Dirac spectrum we

should begin with the Hermitian operator γ5R5DDWF and then add a multiple of the identity:

γ5R5DDWF +mtw = γ5R5 (DDWF + γ5R5mtw) , (6.7)

where R5 is the fifth dimension reflection operator introduced in the previous section. The

renormalization factor, Ztw→MS, needed to convert the DWF spectrum to the continuum,

MS spectrum then relates this new DWF pseudoscalar operator to the corresponding MS

continuum operator:

(ψ(x)γ5ψ(x))
MS ≈ 1

Ztw→MS

Ls−1
∑
s=0

Ψ(x, s)γ5Ψ(x,Ls − 1 − s), (6.8)

where Ψ(x, s) is the five-dimensional DWF field. These two operators, which appear in

different theories, are equated in Eq. (6.8) in the sense that they give the same matrix

elements when inserted in corresponding long-distance Green’s functions.

It is convenient to determine the renormalization constant Ztw→MS in two steps. In the

first we determine the constant Ztw→mf
which relates this reflected pseudoscalar term and

the standard pseudoscalar term belonging to the same chiral representation as the usual

DWF mass term ψψ:

ψ(x)γ5ψ(x) =
1

Ztw→mf

Ψ(x)R5γ5Ψ(x), (6.9)
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where the operator on the right-hand side is the same as that in the right-hand side of

Eq. (6.8) with the explicit sum over the s coordinate suppressed.

Then in the second step we perform the well-understood conversion between the standard

DWF mass operator and a continuum, MS normalized mass operator using Zmf→MS:

Ztw→MS = Zmf→MSZtw→mf
. (6.10)

After the first step, we can compare the eigenvalue density ρ(λ) for the lattice DWF op-

erator with the usual lattice result for the chiral condensate using the Banks-Casher relation,

⟨ψψ⟩ = π

Ztw→mf

ρ(0), (6.11)

since both the left- and right-hand sides now use the same bare normalization conventions.

In the second step we are simply dividing both sides of Eq. (6.11) by the common factor

Zmf→MS to convert from lattice to MS normalization.

6.2.2 Calculation of Ztw→mf

Because the operators ψ(x)γ5ψ(x) and Ψ(x)R5γ5Ψ(x)/Ztw→mf
are supposed to be equiv-

alent at long distances, we can determine the needed factor Ztw→mf
by simply taking the

ratio of equivalent Green’s functions, evaluated at distances greater than the lattice spacing

a, containing these two operators:

Ztw→mf
=
⟨O1 . . .OnΨ(x)R5γ5Ψ(x)⟩
⟨O1 . . .Onψ(x)γ5ψ(x)⟩

, (6.12)

where the numerator and denominator in this expression are intended to represent identical

Green’s functions except for the choice of pseudoscalar vertex.

We will now determine Ztw→mf
and test the accuracy to which the ratio given in Eq. (6.12)

defines a unique constant by studying the ratio of two types of matrix elements. In the first we

examine simple two-point correlators between each of the pseudoscalar densities in Eq. (6.12)
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and the operator Oπ(t) which creates a pion from a Coulomb gauge fixed wall source located

at the time t:

Rπ(t) =
⟨∑x⃗Ψ(x⃗, t)R5γ5Ψ(x⃗, t)Oπ(0)⟩
⟨∑x⃗ψ(x⃗, t)γ5ψ(x⃗, t)Oπ(0)⟩

, (6.13)

which for large t is the ratio of matrix elements of our two pseudoscalar operators between

a pion state and the vacuum. Results are presented in Table 6.1.

# β T (MeV) Rπ

2 1.70 0 1.774(5)

3 1.75 0 1.570(4)

7 1.82 0 1.397(2)

9 1.671 149 1.905(6)

10 1.671 149 1.980(7)

11 1.707 159 1.725(8)

12 1.740 168 1.631(11)

13 1.771 177 1.476(4)

14 1.801 186 1.439(3)

15 1.829 195 1.365(3)

Table 6.1: Values for the renormalization factor Ztw→mf
obtained from the ratio of pseu-

doscalar correlators Rπ defined in Eq. (6.13).

Second we examine off-shell, three-point Green’s functions evaluated in Landau gauge

which again contain each of the pseudoscalar densities being compared and a quark and an

anti-quark field carrying momenta p1 and p2, allowing us to see the degree to which the ratio

in Eq. (6.12) does not depend on the small external momenta p1 and p2.

RMOM(p1, p2) =
Tr ⟨∑x2,x1

ei(p2x2−p1x1)ψ(x2)Ψ(0)R5γ5Ψ(0)ψ(x1)⟩
Tr ⟨∑x1,x2

ei(p2x2−p1x1)ψ(x2)ψ(0)γ5ψ(0), ψ(x1)⟩
. (6.14)
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Here we are using the well-studied methods of Rome/Southampton non-perturbative renor-

malization [130] to compare the normalizations of the operators ΨR5γ5Ψ and ψγ5ψ. For a

recent application of this method to other operators in a DWF context see Ref. [131]. For

both Eqs. (6.13) and (6.14), we expect the ratio to be independent of t and of p1 and p2 and

to yield the same value Ztw→mf
.

When evaluating the momentum space Green’s functions in Eq. (6.14) we generate the

needed quark propagators using a series of volume sources [132]. For each specific four-

momentum p we evaluate twelve propagators, one for each spin and color, using the sources

η(x, p)α,a;β,b = eip⋅xδαβδab, (6.15)

where α and a are the spin and color indices of the source η while β and b label the spins

and colors of the twelve sources evaluated for each four-momentum p. We perform our

calculation using both non-exceptional kinematics, p21 = p22 = (p1 − p2)2, and exceptional

kinematics, p1 = p2. Results for the ratios Rnon-ex
MOM (p1, p2) and Rex

MOM(p1, p2) for the three

zero-temperature ensembles are presented in Table 6.3 and Fig. 6.1. The specific momentum

components used to construct p1 and p2 are listed in Table 6.2.

The ratios presented in Tables 6.1 and 6.3 and plotted in Fig. 6.1 at a given value of β

are all expected to equal the common renormalization factor Ztw→mf
. However, as is evident

from these tables and figure this expectation is realized at only the 20% level, suggesting

the presence of significant O ((pa)2) errors and implying a similar uncertainty in extracting

a consistent value for the important quantity Ztw→mf
. In fact, the behavior of these results

is consistent with an O ((pa)2) origin for these discrepancies. The larger dependence on

momentum of the non-exceptional ratio Rnon-ex
MOM (p1, p2) than seen in Rex

MOM(p1, p2) and its

larger deviation from the more consistent quantities Rex
MOM(p1, p2) and Rπ is reasonable since

the non-exceptional kinematics were originally introduced to ensure that large momenta flow

everywhere in the corresponding Green’s function [131]. The better agreement between the

quantities Rex
MOM(p1, p2) and Rπ and the smaller momentum dependence of Rex

MOM(p1, p2) is
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Figure 6.1: Plots of the results for the quantity Ztw→mf
given in Tables 6.1 and 6.3 for each

of the three values of β that were studied at zero temperature. The single value of Rπ is

plotted as an “×” in each panel and given the value (pa)2 = 0. (The scale on the left-most

y-axis applies to all three plots.) As discussed in the text, the discrepancies between Rnon-ex
MOM

and Rnon-ex
MOM are indicative of O ((pa)2) errors, so we use the value of Rπ for Ztw→mf

.
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(pa)2 pAL/2π pBL/2π

0.308 (1,1,0,0) (0,1,1,0)

0.671 (1,1,1,1) (1,1,1,-1)

0.925 (2,1,1,0) (2,0,-1,1)

1.234 (2,2,0,0) (0,2,2,0)

1.542 (2,2,1,1) (2,-1,2,1)

2.467 (2,2,2,2) (2,2,2,-2)

2.776 (3,2,2,1) (3,2,-1,-2)

Table 6.2: The components of the two momentum four-vectors pA and pB used to compute

the quantitiesRMOM(p1, p2) given in Table 6.3. For non-exceptional momenta, we use p1 = pA

and p2 = pB, while for exceptional momenta, only a single momentum, either p1 = p2 = pA or

p1 = p2 = pB is used. Here L = 16 is the spatial size of the lattice.

also consistent with the smaller internal momenta expected in these Green’s functions with

exceptional kinematics. Finally the decreasing differences between these three quantities as

β increases from 1.70 to 1.82 with the corresponding decrease in a is also consistent with

these violations of universality arising from finite lattice spacing errors.

We therefore adopt the hypothesis that the discrepancies between these different deter-

minations of Ztw→mf
arise from finite lattice spacing effects and that the most reliable value

for Ztw→mf
will be obtained at smallest momentum. Hence, we use the ratio Rπ to provide

values for Ztw→mf
. This choice has the additional benefit that we have evaluated this ratio on

the finite temperature ensembles allowing us to use Rπ to provide values of Ztw→mf
for each

of our values of β, avoiding extrapolation. Note that the discrepancy between the finite and

zero temperature results for Rπ shown in Table 6.1 for the near-by β values β = 1.700,1.707

and β = 1.820,1.829 indicate remaining systematic a2 errors in our determination of Ztw→mf

that are on the order of 5%.
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β = 1.70 β = 1.75 β = 1.82

(pa)2 Rnon-ex
MOM Rex

MOM Rnon-ex
MOM Rex

MOM Rnon-ex
MOM Rex

MOM

0.308 1.673(5) 1.759(4) 1.507(5) 1.566(4) 1.352(2) 1.393(2)

0.617 1.591(5) 1.745(4) 1.450(5) 1.562(4) 1.320(2) 1.390(2)

0.925 1.536(3) 1.745(3) 1.418(3) 1.562(4) 1.312(1) 1.394(2)

1.234 1.508(2) 1.744(3) 1.412(2) 1.564(4) 1.3165(7) 1.404(1)

1.542 1.493(2) 1.742(3) 1.406(1) 1.570(4) 1.3233(6) 1.416(1)

2.467 1.4933(10) 1.766(3) 1.4313(7) 1.613(3) 1.3670(4) 1.484(1)

2.776 1.4977(8) 1.796(3) - - - -

Table 6.3: Values for the ratio RMOM(p1, p2) defined in Eq. (6.14). For non-exceptional

momenta, the quantity Rnon-ex
MOM (p1 = pA, p2 = pB) is shown. For exceptional momenta, the

average of Rnon-ex
MOM (p1 = p2 = pA) and Rnon-ex

MOM (p1 = p2 = pB) is shown. The first column shows

the value of (p1a)2 = (p2a)2 = (pa)2. Results from 12, 20 and 21 configurations have been

averaged to give the values for β = 1.70,1.75 and 1.82, respectively. The quark mass values

and lattice sizes used for these results are given in Table 6.1. The significant variation among

the results for a given value of β indicate large O ((pa)2) errors.
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6.2.3 Normalization Conventions

Using the methods described above, we can convert our results for the quark mass, chiral

condensate, and Dirac spectrum into a single normalization scheme, allowing a meaningful

comparison between the eigenvalues in the Dirac spectrum and the corresponding quark

mass. We adopt the commonly-used MS scheme, normalized at a scale µ = 2 GeV.

We use the DWF results for the continuum, µ = 2 GeV, MS quark masses determined

in Ref. [112], mMS
s (2 GeV) = (96.2 ± 2.7) MeV and mMS

ud (2 GeV) = (3.59 ± 0.21) MeV and

the accurate linear dependence of m2
π and m2

K on the quark masses in the region studied to

convert a lattice light quark mass, m̃l =mf +mres corresponding to a pion mass mπ(m̃l) into

this same MS scheme using the relation:

mMS
l (2 GeV) = (3.59 + 96.2) MeV

(mπ(m̃l))
2

2(mK)2
, (6.16)

where mK = 495 MeV denotes the physical value of the Kaon mass. The renormalization

factor is then given by:

Zmf→MS =
99.79 MeV

2m̃
( mπ(m̃l)
495 MeV)

2

(6.17)

for each of our ensembles. Note the lattice quark mass, m̃, substituted in Eq. (6.17) must

be expressed in units of MeV to define a conventional, dimensionless value for Zmf→MS. The

resulting Zmf→MS factors for each β value and the associated ensembles are given in Table 6.4.

The factors given in Table 6.4 will also be used to convert values of the chiral condensate

ψψ (when constructed from the usual 4-D surface, lattice operators), a variety of suscepti-

bilities and Dirac spectrum (when normalized with the same conventions as ψψ) into µ = 2
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# T (MeV) Zmf→MS(2 GeV)

8, 21, 29, . . . 139 1.47(14)

10, 22, 30, . . . 149 1.49(10)

31, . . . 154 1.50(9)

11, 23, 32, . . . 159 1.51(7)

24, 33, . . . 164 1.52(7)

12, 25, 34, . . . 168 1.53(6)

13, 26, 35, . . . 177 1.55(6)

14, 27, 36, . . . 186 1.57(7)

15, 28, 37, . . . 195 1.58(9)

Table 6.4: Results for the factors Zmf→MS(2 GeV) which convert a lattice quark mass, m̃

into a mass normalized in the MS conventions at µ = 2 GeV.

GeV, MS values according to the relations:

(ψψ)MS = (ψψ)lat

Zmf→MS
(6.18)

χMS = χlat

Z2
mf→MS

(6.19)

ρ(λ)MS =
ρlat(λ/Zmf→MS)

Zmf→MS
. (6.20)

Of course, because the quark masses and lattices scales that we use are interpolated and

extrapolated from only three zero temperature ensembles, there is significant uncertainty

in our determination of the renormalization factors. And it is strongly correlated with the

lattice scale when we determine the line of constant physics in Eq. (4.1) in Chap .4. However,

since this renormalization factor Zmf→MS is a smooth uniform value within the region under

our investigation, we believe that these renormalization factors in Table 6.4 have sufficient

accuracy for the purposes of the present report.
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6.3 Computation of the Low-lying Eigenvalue Distri-

bution of the DWF

As much information concerning the symmetry breaking and restoration for the QCD

phase transition is contained in the low-lying part of the eigenvalue spectrum of the Dirac

operator, we will be focusing on collecting the lowest Neig = 100 eigenvalues of the 5-d

Hermitian DWF Dirac operator DH = R5γ5DDWF. Here R5 performs a simple reflection

in the fifth dimension, taking the point (x, s) to the point (x,Ls − 1 − s), where x is the

space-time coordinate and 0 ≤ s ≤ Ls − 1 the coordinate in the fifth dimension. The input

light quark mass we used in the eigenvalue calculation is the same as that was used in the

ensemble evolution.

The Dirac operator is a vast sparse matrix. To utilize and preserve the structure of the

Dirac matrix, the class of Krylov space solvers is preferred for calculating the eigenvalues.

In this work, we adopt the following two diagonalization methods in our eigenvalue finding

tasks:

1. An improved Ritz method proposed by Kalkreuter and Simma [133]. We accomplished

most of our computations for eigenvalues with this method.

2. An implicitly restarted Lanczos algorithm proposed in [134, 135] and implemented by

our UK colleagues [136, 137].

6.3.1 Ritz and Kalkreuter-Simma Method

Ritz algorithm computes one by one the low-lying eigenvalues by minimizing the Ritz

functional

µ(Ψ) =
⟨Ψ∣D2

H ∣Ψ⟩
⟨Ψ∣Ψ⟩

(6.21)
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with a conjugate gradient method in a sequence of subspaces orthogonal to the space spanned

by the eigenvectors that have already been identified. Here the positive-definite operator

D2
H is used as the kernel instead of DH to ensure the convergence. Theoretically, if the

minimization and the projection operations are exact for every eigenvector, a single iteration

of the algorithm would give accurate results.

Nevertheless, in practical numerical calculations, small imprecision in the early steps

can finally lead to a large deviation or even incorrect results. The final convergence of

Neig eigenvectors usually requires too high a precision when Neig is large. Kalkreuter and

Simma [133] proposed to alternate the CG searches for eigenvectors with an intermediate

diagonalization for the Neig ×Neig Hermitian matrix

⟨Ψi∣D2
H ∣Ψj⟩ , i, j = 1,2,3, . . . ,Neig. (6.22)

This is a dense matrix and its diagonalization is realized with iterations of Jacobi transfor-

mations. The transformed Neig trial eigenvectors are then sent back to another sequence

of CG minimization. Kalkreuter and Simma proved that the alternate minimization in the

global space and diagonalization in the subspace will accelerate the overall convergence of

the algorithm, and a rigorous bound can be derived from the last CG iteration.

The kernel in the minimization, D2
H , however, introduces extra degeneracies. An eigen-

vector of D2
H is not necessarily the eigenvector of DH , but could be a linear combination of

two almost degenerate eigenvectors with eigenvalues of opposite signs.

Replacing D2
H with DH in the Jacobi diagonalization step would resolve the degeneracy

if the whole degenerate subspace is within the Neig ×Neig subspace. However, a “spurious

eigenmode” problem may arise if only one of the paired eigenvectors is included in the

solved subspace. We can resolve this problem by applying DH to the problematic vector

and project out one of the unnecessary component. The coefficient in the projection can be

determined if we know the corresponding eigenvalue of DH , for which we use the square-root

of the corresponding eigenvalue for D2
H as a proxy. However, this remedy is not precise.
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Fortunately, these spurious modes are always at the high-energy end and the number of

these spurious modes is bounded by the degeneracy and is thus usually much smaller than

Neig. Therefore we are able tolerate the inaccuracy caused by the spurious modes.

Because the intermediate Jacobi transformations on the dense matrix is inefficient and

cannot be easily parallelized, the Kalkreuter and Simma Ritz algorithm suffers from a severe

performance loss when Neig is large. We later switched to the implicit restarted Lanczos

algorithm as we adopted the bagel/bfm package and our major computation resource changed

to BG/Q from QCDOC and BG/L.

6.3.2 Implicitly Restarted Lanczos Algorithm

This Lanczos algorithm is a simplified version for Arnoldi algorithm [138] in that it

applies for a Hermitian matrix H. Through iterations involving matrix multiplication and

linear algebra, it transforms H to a truncated tridiagonal matrix TK ,

TK = V †
KHVK , (6.23)

whose eigenvalues are approximates for those of H. Since TK is usually of a much smaller

size (K ×K) than H, it can be diagonalized using the QR algorithm or other algorithms

that are suitable for a small dense matrix.

Generally speaking, the Lanczos algorithm is much more efficient than the Ritz algorithm.

However, due to loss of orthogonality during the iteration process, it is very likely to produce

“spurious modes” in numerical calculations. Usually, one should restart the iteration after

some steps by using a new starting vector, which removes or reduces the components in the

eigen-space that has already been obtained. But it may lose the information contained in the

residual vector. Refs. [134, 135] proposed a scheme that corrects for the loss of orthogonality

without explicitly constructing a restarting vector.

The details of the properties and the implementation of the implicitly restarted Lanczos

algorithm is described in depth in Refs. [135, 136] together with some improvements. We
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will not repeat them here.

6.3.3 Summary of the Results

In Table 6.5, we summarize the number of configurations we used in the calculation of

the eigenvalue spectrum for each finite temperature ensemble with volume 163×8 and 323×8

as well as a 164 zero temperature ensemble.

Also presented in this table is the RπΛ0, the average smallest renormalized eigenvalue.

Here, Λ denotes an eigenvalue of the full Hermitian DWF Dirac operator. These eigenvalues

include the effect of the quark mass and in the continuum limit would have the form:

Λ =
√
λ2 + m̃2

l . (6.24)

In the continuum theory the mass is conventionally removed from the Dirac operator

before its eigenvalues are determined so that the usual eigenvalue distribution is given for

the quantity λ in Eq. (6.24). In our case, the transformation to this more usual eigenvalue

distribution requires converting each eigenvalue Λn into a corresponding λn =
√
Λ2

n − m̃2
l .

Unfortunately, this step is vulnerable to finite lattice spacing effects which allow an occasional

value of Λn to be smaller than m̃l, leading to an unphysical, imaginary result for λn. This

should become increasingly rare in the limit a→ 0 of vanishing lattice spacing. In this limit,

the quantity m̃l accurately corresponds to the light quark mass describing the long distance

physics determined by our lattice theory. Likewise, the arguments following Ref. [128] given

in the appendix of Ref. [35] imply that in this limit, the spectral density ρ(Λ) also approaches

a continuum limit which requires Λ ≥ m̃l.

On the othere hand, the total number modes is proportional to the lattice volume. There-

fore, with fluctuations, the number of the “unphysical” modes are also proportional to the

volume. This is represented by a much lower RΛ0 at a larger volume in Table 6.5. For

T ≤ 168 MeV with 323 × 8 volume, RΛ0 ⪅ m̃l, indicating an appreciable amount of un-
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physical modes. In the following section, we will introduce an graphical illustration that

accommodates these modes.

163 323

T (MeV) m̃l # Ncfg RπΛ0 # Ncfg RπΛ0

149 0.00464 9 340 0.00632 22 158 0.00361

149 0.00469 10 340 0.00606

159 0.004211 11 408 0.00828 23 109 0.00366

168 0.00395 12 239 0.01334 25 83 0.00409

177 0.00367 13 246 0.02170 26 170 0.00483

186 0.00341 14 374 0.03131 27 171 0.01126

195 0.00314 15 1140 0.03837 28 76 0.01457

- 0.00488 3 252 0.00489

Table 6.5: List of the number of configurations used in the Dirac spectrum calculation

for both the 163 × 8 and 323 × 8 ensembles, as well as the results for the average smallest

normalized eigenvalue (RΛ0). Here Ncfg gives the total number of configurations on which

the spectrum was determined. The first row of T = 149 MeV represents data from Ls = 32

ensembles while the second from Ls = 48. The last row summarize the data from the zero

temperature lattice with volume 163 × 16.

6.4 Normalized Spectral Density: A Showcase at T = 0

The results for the Dirac spectrum at finite temperature obtained using these methods

will be presented and analyzed in Sec. 6.5, 6.6 and 6.7, where the restorations of chiral and

UA(1) symmetries are studied. In this section we examine the Dirac spectrum obtained on

the zero temperature ensemble labeled # 3, with volume 164 and β = 1.75.
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The discussion in the present section has three objectives. First we explicitly apply the

normalization factors to convert the bare eigenvalues of the DWF Dirac operator into the

MS scheme. The resulting spectral density is expressed in physical units and can easily be

compared with both physical and simulated MS values of the quark masses as well as with the

QCD scale, ΛQCD ∼ 300 MeV. Second, we convert the spectrum of the Hermitian DWF Dirac

operator, which includes the effects of the non-zero quark masses to the more conventional

spectrum from which the mass has been removed, a step which depends critically on the

normalization procedure and is sensitive to finite lattice spacing errors. Finally we examine

the Banks-Casher relation between the resulting spectrum and the chiral condensate.
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Figure 6.2: Histogram of the spectrum of eigenvalues Λ of the Hermitian DWF Dirac operator

normalized in the MS scheme at the scale µ = 2 GeV (left). These eigenvalues are calculated

on the zero-temperature ensemble run #3. The right hand panel shows a histogram of the

eigenvalues λ =
√
Λ2 − m̃2

l from which the quark mass has been removed. In this panel, the

region λ > 0 shows those values for which Λ2 > m̃2
l , i.e., λ is purely real, a condition that

should be obeyed in the continuum limit. The region λ < 0 shows those eigenvalues with

Λ2 < m̃2
l , i.e., λ pure imaginary, plotted on the negative part of the x-axis as λ = −∣

√
Λ2 − m̃2

l ∣.

These unphysical values give a visible measure of the finite lattice spacing distortions to the

region of small λ > 0.
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Fig. 6.2 shows histograms of the Dirac eigenvalues measured on 252 configurations from

the zero-temperature, 164 ensemble run #3 in Table 6.5. In the left-hand panel of this figure,

the histogram of eigenvalues Λ is obtained by converting the eigenvalues of the lattice DWF

Dirac operator, as described above, to the MS scheme with µ = 2 GeV. On each configuration

the 100 eigenvalues of smallest magnitude have been determined. Fig. 6.2 shows histograms

of these 25,200 eigenvalues. The rightmost vertical line in both panels identifies the minimum

value from the set of the 100th largest eigenvalues on each of the 252 configurations. For

eigenvalues less than this “minmax” value the histogram accurately represents the complete

spectrum, undistorted by our cutoff of 100 eigenvalues per configuration.

The left-hand panel of Fig. 6.2 demonstrates the effect of using a consistent normalization

scheme for the quark masses. The two left-most vertical lines in that plot correspond to the

simulated light and strange quark masses, m̃l and m̃s, in the same MS normalization. The

expected coincidence between the peak in the Λ distribution at the smallest eigenvalues and

the vertical line representing the light quark mass occurs only after the relative normalization

R = 1.570 from Table 6.1 between the DWF operator and the conventional input quark mass

discussed above has been applied.

As has been discussed in the previous section, in the calculation presented here the lattice

spacing a is relatively large and deviations from the inequality Λ ≥ m̃l should be expected.

In order to present the more conventional eigenvalue distribution ρ(λ) while at the same

time displaying the imperfections arising from finite a, we choose to plot the eigenvalue

histograms in a hybrid form. For each of the original eigenvalues Λ we compute the derived

eigenvalue λn =
√
Λ2 − m̃2

l . If λn is real, it is included in the histogram in the normal way,

along the positive x-axis. However, if λn is imaginary it is displayed in the same histogram

along the negative x-axis in a bin corresponding to −∣λ∣.

This has been done in the right-hand panel of Fig. 6.2. The histogram for λ > 0 is

the conventional eigenvalue distribution, normalized in the µ = 2 GeV, MS scheme. The
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histogram bins for λ < 0 are unphysical and directly result from finite lattice spacing artifacts.

By showing both on the same plot, we make it easy to recognize the magnitude of the errors

inherent in ρ(λ), λ > 0 introduced by lattice artifacts. For example, it is likely that a majority

of the gap in ρ(λ) for λ positive but near zero in the right-hand panel of Fig. 6.2 would be

filled in as a→ 0 by the imaginary values of λ plotted as −∣λ∣ < 0, and should not be attributed

to the effects of finite volume.

An interesting test of these methods can be made by comparing the spectrum shown in the

right-hand panel of Fig. 6.2 with the predictions of the Banks-Casher formula which relates

the eigenvalue density ρ(λ) at λ = 0 and the chiral condensate Σl when both are evaluated

in the limit of infinite volume and vanishing quark mass, as in Eq. (6.1) or abbreviated as

follows

Σl = πρ(0). (6.25)

The right- and left-hand sides of Eq. (6.25) can be compared by examining the right-hand

panel of Fig. 6.2 where we have superimposed the quantity Σl/π as horizontal lines on the

histogram. Also shown is the subtracted chiral condensate ∆l,s defined in Eq. (5.4), which

attempts to partially remove the ultraviolet divergent contribution to the chiral condensate

in proportion to m/a2. The right panel of Fig. 6.2 shows that ρ(0) tends to agree well

with ∆l,s if we take a linear extrapolation for the ρ(λ) as λ → 0. Although neither the

infinite volume nor the chiral limits are taken, and ∆l,s does not perfectly eliminate the large

term proportional to m, this agreement still serves as a good indication for our success in

renormalizing the eigenvalue spectrum. More about the Banks-Casher relation reflected in

the low-lying eigenvalue distribution will be touched on in a quantitative way in Sec. 6.6.
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6.5 Renormalized Eigenvalue Distributions at Finite

Temperature

Fig. 6.3 shows the distributions, renormalized in the MS scheme at the scale µ = 2 GeV,

determined from the lowest 100 eigenvalues (λ) for six ensembles at temperatures from 149

MeV to 195 MeV. The eigenvalue densities for the 323 × 8 space-time volumes are plotted as

solid histograms, while the 163×8 results are plotted as black, solid lines. The aforementioned

imaginary, “unphysical” modes are plotted as −
√
∣Λ2 − m̃2

l ∣ on the negative axis. The values

for the total mass of light and strange quarks, m̃MS
l and m̃MS

s , are indicated by vertical dashed

lines, which give a physical scale for the eigenvalue distribution. Since we have determined

only a fixed number of eigenvalues, the spectral distributions will be distorted at their upper

ends. The third vertical dashed line in these plots, which appears with various x-coordinates,

locates the smallest value for λ100 found for each ensemble. The spectrum shown to the left

of this line will then be undistorted by our failure to include larger eigenvalues in the figure.

Since the number of eigenmodes is proportional to the space-time volume, a fixed number

of the lowest modes will become more concentrated at the lower-end of the spectrum as

the volume increases. This phenomena can be easily seen in Fig. 6.3 where the range of

eigenvalues studied decreases dramatically as the space-time volume is increased from 163×8

to 323 × 8. However, while the range of eigenvalues covered by the larger 323 × 8 volume

is reduced, this larger volume provides a better sampling and more convincing view of the

spectrum near zero, the region of greatest interest.

For T = 149 and 159 MeV, the eigenvalue distributions can be characterized as a linear

function with a non-vanishing intercept for eigenvalues of order 10 MeV or larger. Below 10

MeV the spectrum is distorted by a combination of finite volume and residual chiral sym-

metry breaking effects. The non-vanishing intercept, interpreted through the Banks-Casher

relation, is consistent with the non-vanishing chiral condensate and vacuum chiral symmetry
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Figure 6.3: The eigenvalue spectrum for T = 149 − 195 MeV, expressed in the MS scheme at

the scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√
∣Λ2 − m̃2

l ∣.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line). The

spectrum from each of the 163 × 8 ensembles is plotted as a black solid line.
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Figure 6.4: (Left to right) The renormalized eigenvalue spectrum for T = 177 − 195 MeV

without the removal of the bare quark mass. The statistics are likely insufficient for 186

MeV on the 163 × 8 ensemble; only 5 instances of ”near-zero modes” are collected.

breaking observed at these temperatures which lie below the pseudo-critical temperature.

For T = 168 MeV, the linear behavior continues to be visible, but the intercept has

essentially vanished, suggesting that 168 MeV is close to the pseudo-critical temperature

for mπ ≈ 200 MeV, consistent with the temperature dependence of the SU(2)L × SU(2)R-

breaking susceptibility difference χπ − χσ shown in Fig. 5.6.

For T = 177 MeV, a small peak in ρ(λ) near the origin emerges as a cluster of near-zero

modes. Such a cluster of near-zero modes might result from the Atiyah-Singer theorem and

non-vanishing topological charge or from the dilute instanton gas approximation (DIGA). As

is discussed below, the volume dependence of this peak and the distribution of the chirality

of these modes is consistent with the DIGA and inconsistent with their arising from non-zero

global topology. This small eigenvalue region can be best seen in the expanded view given

in Fig. 6.4.

For T = 186 and 195 MeV, this small peak survives although it diminishes in size with

increasing temperature. In addition, the peak becomes increasingly separated from the rest

of the spectrum by a gap containing few eigenvalues. As a result the remainder of the

spectrum, excluding this peak, can no longer be fit using a linear function. A quadratic fit

is possible at T = 186 but an even higher power may be needed to describe the 195 MeV
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spectrum.

Fig. 6.5 shows the comparison of renormalized eigenvalue distributions at T = 149 MeV

with Ls = 32 (left) and Ls = 48 (right) for the 163 × 8 ensembles. The consistency of the two

distribution is another proof for the equivalence of these two ensembles and the validity of a

mild negative input quark mass.
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Figure 6.5: The eigenvalue spectrum at T = 149 MeV with Ls = 32 (left) and Ls = 48 (right)

for volume 163 × 8, expressed in the MS scheme at the scale µ = 2 GeV. The imaginary,

“unphysical” eigenvalues are plotted as −
√
∣Λ2 − m̃2

l ∣.

6.6 Subtracted Chiral Condensate

It is not difficult to see very approximate agreement between the intercept of the spectral

density at λ = 0 (ignoring obvious distortions to the spectrum near λ = 0) and the measured

value of Σl implied by the Banks-Casher relation. However, a careful, quantitative test

of Eq. (6.1) must overcome two obstacles: both the finite volume suppression of ρ(λ) as

λ → 0 and the quadratic divergence present in Σq for non-zero quark mass. For a DWF

calculation such a test is further complicated by the quite different contributions of residual

chiral symmetry breaking to Σq and to ρ(λ) for small λ. As suggested above, all of these
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difficulties can be overcome. The first step is to consider the subtracted chiral condensate,

∆l,s defined in Eq. (5.4). If Eq. (6.1) is used to express ∆l,s in terms of the spectral density,

we obtain the more convergent result:

∆l,s = ∫
∞

0
dλρ(λ)

2m̃l(m̃2
s − m̃2

l )
(λ2 + m̃2

l )(λ2 + m̃2
s)
. (6.26)

While this expression still receives a contribution from large eigenvalues, well above the

group of low modes studied here, this high-mode contribution is expected to be of order

mlm2
s ln(msa) which is possibly 1% of the (250 MeV)3 value of the zero temperature chiral

condensate. Thus, we expect that for our present quark masses and lattice spacing, we can

evaluate the right hand side of Eq. (6.26) using our 100 low modes to at least a few percent

accuracy, at least for T ≤ Tc.

We can evaluate the integral in Eq. (6.26) using our measured eigenvalues in two ways.

First for each measured configuration we can replace the integral over λ on the right hand

side of Eq. (6.26) by a sum over the measured eigenvalues. In addition we can express

the integrand in Eq. (6.26) in terms of the directly measured eigenvalues Λn so that the

uncertainties associated with those values of Λn lying below m̃l are avoided. The resulting

expression for ∆l,s becomes

∆ms
l,s =

1

N3
σNτ

⟨
100

∑
n=1

m̃l(m̃2
s − m̃2

l )
Λ2

n(Λ2
n + m̃2

s − m̃2
l )
⟩ , (6.27)

where ⟨. . .⟩ indicates an average over configurations and we use the notation “ms” (mode

sum) to identify the result obtained from this summation over modes.

In the second approach to Eq. (6.26) we replace the spectral density ρ(λ) by the fitted

expression given in Eq. (6.4) and then perform the integration over λ analytically with the

result:

∆eig
l,s ≡ c0m̃l + c1m̃l ln(

m̃2
s

m̃2
l

) + c2πm̃l, (6.28)

where terms of order m̃l/m̃s have been neglected and the label “eig” has been introduced

to distinguish this expression from those resulting from the three other approaches to the
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calculation of this quantity.

In Table 6.6 we compare these two spectral methods for computing ∆l,s (Eq. (5.4)) with

the results from both the direct subtraction of the measured condensates (which we continue

to label as ∆l,s) and the improved quantity ∆̃l,s (Eq. (5.34)) which is less contaminated

by residual DWF chiral symmetry breaking effects. As can be seen from the table, for

the temperatures at which the fit form given in Eq. (6.4) provides a good description of the

eigenvalue distribution, 139 MeV ≤ T ≤ 168 MeV, analytic integration of this three-parameter

function and the direct sum over the lowest 100 modes agree reasonably well. This supports

the use of the three-parameter function to provide an interpretation of our results. This

agreement also suggests that the region ∣Λ∣ ⪅ 10 MeV, which is distorted in our computed

Dirac eigenvalue spectrum by finite volume and residual chiral symmetry breaking effects but

treated in a fashion consistent with infinite volume, continuum expectations by the fitting

function, does not play a large role in these results. The difference between ∆eig
l,s and ∆ms

l,s

can serve as an estimate for the systematic error in the fit coefficients, a difference which at

its largest is about 15%.

A second observation that can be drawn from the data in Table 6.6 is that the quantity

∆̃l,s agrees reasonably well with the result obtained directly from the Dirac spectrum over the

full temperature range. This suggests that a good representation for the chiral condensate

can be obtained by performing the subtraction of light and strange quark Green’s functions

and that in the case of DWF it is best to use the GMOR relation and subtract connected

pseudoscalar susceptibilities rather than the condensates themselves which contain relatively

large, uncontrolled residual chiral symmetry breaking effects. We would like to emphasize

that our use of the continuum spectral Eq. (6.4) combined with the renormalized DWF

spectrum makes strong assumptions about the validity of continuum methods in our lattice

calculation at reasonably strong coupling. It is impressive that on the larger 323 volume,

where the statistical errors are likely most reliable, Table 6.6 shows agreement between ∆ms
l,s
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and ∆̃l,s consistently at the 1 sigma level, which in some cases represent an accuracy of 4%

or less.

# T (MeV) Nσ Ls m̃l m̃s ∆eig
l,s /T 3 ∆ms

l,s /T 3 ∆l,s/T 3 ∆̃l,s/T 3

9 149 16 32 0.00464 0.05293 6.72 6.00 3.07(12) 5.7(2)

10 149 16 48 0.00468 0.05295 6.85 5.65 5.00(10) 6.3(1)

10 149 16 64 0.00459 0.05289 - - 5.57(10) 6.2(1)

22 149 32 32 0.00464 0.05293 6.45 6.39 3.84(5) 6.4(1)

23 159 32 32 0.00421 0.04856 3.86 4.28 2.83(6) 4.2(1)

25 168 32 32 0.00395 0.04490 1.64 2.19 1.46(7) 2.3(1)

26 177 32 32 0.00367 0.04165 - 1.21 0.71(5) 1.3(1)

27 186 32 32 0.00341 0.03873 - 0.42 0.22(4) 0.46(5)

28 195 32 32 0.00314 0.03619 - 0.25 0.14(3) 0.30(6)

Table 6.6: Comparison of the unrenormalized results for ∆l,s computed using four different

methods at various temperatures and values of Ls. The data in the 163 × 8, Ls = 64 row

results from a valence calculation performed on the Ls = 48, β = 1.671 (run #10) ensemble.

(While these quantities are all expressed in the scheme defined by the bare lattice mass, mq,

this is not the scheme in which the eigenvalues of the 5-dimensional DWF Dirac operator are

defined and renormalization using the factor Ztw→mf
defined in Table 6.4 has been carried

out.)

Finally we examine the results at T = 149 MeV where multiple ensembles with different

values of Ls are available, shown in the first four lines of Table 6.6. Here results are shown

for three values of Ls: 32, 48 and 64. As expected, the simple difference ∆l,s shows a very

strong dependence on Ls. While there should be substantial cancellation between the large,

continuum-like modes in this difference, at the very highest energies this cancellation will be

distorted by residual chiral symmetry breaking effects. The use of the factor (ml+mres)/(ms+

mres) in the subtracted strange condensate will not, in general, cause these effects to cancel.
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However, this argument suggests that as Ls increases and these residual chiral symmetry

breaking effects are suppressed, ∆l,s should approach ∆̃l,s, behavior that can be seen in

Table 6.6. Less consistent is the apparent increase in the value of ∆̃l,s/T 3 with increasing Ls

seen on the 163 volume, where an increase by more than two standard deviation from 5.7(2)

to 6.2(1) is seen as Ls grows from 32 to 64. Since ∆̃l,s is supposed to already be close to its

Ls = ∞ value such Ls dependence is not expected and we attribute this discrepancy to the

under estimation of statistical errors for this small, 163 volume.

6.7 Near-Zero Modes and U(1)A Symmetry

We now turn to one of the central questions addressed in this report, the origin of

the observed U(1)A symmetry breaking above Tc. We will focus on the quantity ∆π,δ =

χπ − χδ since this difference of susceptibilities can be expressed in terms of the spectral

density using Eq. (6.3). Table 6.7 shows this difference at six temperatures as determined

from the integrated connected Green’s functions. This difference contains only a very small

logarithmic singularity after multiplicative renormalization by 1/Z2
mf→MS

in the continuum,

∼ (ml+mres)2 lnmla, where the sum ml+mres represents schematically the effects of both the

input quark mass and DWF residual chiral symmetry breaking. This controlled high-energy

behavior is realized by the convergence of the integral in Eq. (6.3), even when ρ(λ) increases

linearly or quadratically with λ.

Therefore, in Table 6.7 we also show the contributions to the spectral integral in Eq. (6.3)

of each of the three separate ansätze in Eq. (6.4), given in Eq. (6.5). Some cells are left blank

because the corresponding behavior cannot be seen in the spectral data. For example, at

T ≤ 168 MeV, there is no visible accumulation of near-zero modes that might be described

by a δ(λ) term in ρ(λ). However, at T ≥ 177 MeV and above we can count a number of

near-zero modes that form a small but visible peak in ρ(λ) near λ = 0. Assuming a Poisson

distribution, we take the square root of the total number of these near-zero modes as a rough
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estimate of errors for the corresponding contribution. Similarly the constant contribution

or intercept has vanished for T ≥ 177 MeV and above T = 177 MeV the linear term is

also difficult to determine and the eigenvalue density is dominated by what appears to be

quadratic behavior.

We can also determine the susceptibility difference ∆π,δ by using a direct sum over modes

as was done for ∆l,s in Eq. (6.27) and tabulated as ∆ms
l,s in Table 6.6. Examining the

continuum spectral Eq. (6.3), we can write an expression for ∆π,δ analogous to that in

Eq. (6.27) for ∆l,s:

∆ms
π,δ =

1

N3
σNτ

⟨
100

∑
n=1

2m̃2
l

Λ4
n

⟩ . (6.29)

The results from this mode sum are shown in the second column from the right in Table 6.7

where very good agreement is seen with the explicit difference of correlation functions. This

substitution of our renormalized DWF eigenvalue spectrum directly into the continuum

equation for ∆π,δ is a stringent test of that spectrum. The infra-red singular factor 1/Λ4
n

appearing in Eq. (6.29) might have shown large, unphysical fluctuations associated with

configuration-by-configuration fluctuations in residual chiral symmetry breaking. In fact, it

is possible that the larger values shown in Table 6.7 for ∆ms
π,δ relative to the actual correlator

difference ∆π,δ at the two lowest temperatures are a result of this effect. However, overall

the agreement between ∆ms
π,δ and ∆π,δ is remarkably good.

The separate contributions to ∆π,δ presented in Table 6.7 give a clear, quantitative de-

scription of how the contribution of each piece evolves as the temperature increases. For

T ≤ Tc, the constant, or Banks-Casher term, gives the major contribution to ∆π,δ. In con-

trast, in the region above the pseudo-critical temperature, the delta function term dominates

and its contribution alone agrees well with the result from the difference of integrated corre-

lators. We conclude that the non-zero U(1)A symmetry breaking that we observe above Tc

in the correlator difference χπ − χδ results from this small cluster of near-zero modes which

can be seen in the spectral distributions shown in Fig. 6.3 for T = 177, 186 and 195 MeV and
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more easily in the expanded plots in Fig. 6.4.

It is possible that these near-zero modes become exact zero modes in the continuum limit

and are a result of non-zero global topology and the Atiyah-Singer theorem. If this is the

case, the number of these zero modes should increase in proportion to
√
V with increasing

space-time volume. Thus, for zero modes resulting from non-zero global topology we expect

the corresponding density per space-time volume to be proportional to 1/
√
V . Were such

exact zero modes the only contribution to U(1)A symmetry breaking then we would conclude

that U(1)A symmetry will be restored in the limit of infinite volume.

However if we compare the results for 323 (solid red histograms) and 163 (black lines)

in the expanded view of these peaks shown in Fig. 6.4 1 for T = 177, 186 and 195 MeV, we

easily see that the density is volume independent, instead of shrinking by a factor of
√
8

as the volume is increased from 163 to 323. Thus, the volume dependence of these near-

zero modes corresponds to what is expected if they result from a relatively dilute gas of

instantons and anti-instantons whose number, and whose corresponding near-zero modes,

will grow proportional to the volume.

We have also examined the chirality of these near-zero modes. In particular, if these

modes are the result of non-zero global topology, then, for a single configuration, all these

modes should be of the same chirality, that of the global topological charge ν. If ν is

positive then each of the zero modes should be right-handed and in our DWF case have

support primarily on the right-hand, s = Ls − 1 boundary. If ν is negative then all modes

should be left-handed and their wave functions should be largest on the left-hand, s = 0

boundary. In contrast, if these modes arise from a dilute instanton gas, they are produced

by a mixture of instantons and anti-instantons and the chirality of each mode should have

an equal probability to be either positive or negative within a single configuration.

We choose the T = 177 MeV ensemble to study the chirality of the near-zero modes since
1Here we use the distributions of Λ instead of λ near the origin, since it allows us to ignore the large

relative fluctuations in these small eigenvalues below m̃l.
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it has the most near-zero modes among the three highest temperature ensembles, where these

modes are seen. We did not save the full five-dimensional eigenfunctions when computing

the lowest 100 modes and have available only values for the squared modulus of the five-

dimensional wave function, integrated over the left- and right- hand wall for each mode.

Therefore we define the chirality of the nth mode as

χn = ∫
d4xΨn(x,0)(1 + γ5)Ψn(x,0) − ∫ d4xΨn(x,Ls − 1)(1 − γ5)Ψ(x,Ls − 1)
∫ d4xΨn(x,0)(1 + γ5)Ψ(x,0) + ∫ d4xΨn(x,Ls − 1)(1 − γ5)Ψ(x,Ls − 1)

(6.30)

which compensates for the fact that even for a chirality eigenstate, the five-dimensional

wave function will not be localized solely on one of the four-dimensional walls but will

spread into the fifth dimension. If we examine the zero modes, we find that some of them

have chiralilty near zero. This might be expected for a not-too-dilute instanton gas where

the two modes of a nearby instanton-anti-instanton pair will mix so that neither have a

definite chirality, However, such behavior could also be the result of our strong coupling and

gauge configurations with changing topology producing zero modes of uncertain chirality.

As a result we choose to examine only those near-zero modes whose chirality is greater than

0.7 in magnitude. The effects of this choice choice can be seen in Fig. 6.6 where we plot

the histogram of the near-zero modes for T = 177, 186 and 195 MeV. It appears that at

these temperatures, almost all of the near-zero modes are localized on one of the two four-

dimensional walls and thus have a chirality very close to +1 or -1. Our restriction that the

magnitude of the chirality is greater than 0.7 captures approximately 95% of the near-zero

modes. Fig. 6.6 suggests that this concentration of chirality at ±1 increases with increasing

temperature. Determining whether this apparent trend is the result of i) limited statistics at

the higher temperatures, ii) increasing spatial localization of the zero modes and therefore

less mixing as T increases or iii) better defined gauge field topology at weaker coupling

requires further study.

Table 6.8 lists the number of configurations which have N0 near-zero modes, N+ of which

have positive chirality. Those modes included in the counts presented in Table 6.8 must lie
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Figure 6.6: (Left to right) The distribution of chiralities for the near-zero modes at the three

temperatures T = 177, 186 and 195 MeV and the 323 × 8 volume. Here we only use modes

lying in the first four histogram bins in Fig. 6.4 which corresponds to Λ ≲ 12.5 MeV.

in the peak region (first four bins) shown in Fig. 6.4, with Λ at or below approximately 12.5

MeV and with a chirality of magnitude 0.7 or greater. A binomial distribution consistent

with the DIGA describes the data in a more convincing way than the bimodal distribution

that would be seen for the exact zero modes resulting from non-zero global topology.

We conclude that the agreement between the value of ∆π,δ measured from the differ-

ence of correlators and the delta-function contribution ∆0
π,δ shown in Table 6.7 implies that

the anomalous breaking of chiral symmetry for T > Tc results from these near-zero modes.

Further, the volume dependence and chirality distribution of the modes making up this

delta-function contribution gives strong evidence that the non-zero anomalous symmetry

breaking found above Tc is the result of a dilute gas of instantons and anti-instantons and

that no new mechanism of anomalous symmetry breaking is needed.
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# T (MeV) β m̃l ∆0
π,δ/T 2 ∆1

π,δ/T 2 ∆2
π,δ/T 2 ∆ms

π,δ/T 2 ∆π,δ/T 2

22 149 1.671 0.00464 - 3.7(3) 76(2) 109 87(2)

23 159 1.707 0.00421 - 4.6(1) 42(1) 70 60(2)

25 168 1.740 0.00395 - 4.9(1) 11(1) 35 35(2)

26 177 1.771 0.00367 23(1) 5.0(1) - 25 23(2)

27 186 1.801 0.00341 8(1) - - 8 6(1)

28 195 1.829 0.00314 7(1) - - 6 6(2)

Table 6.7: A comparison of ∆π,δ measured from the difference of correlation functions with

the three contributions computed from fitting the eigenvalue density to the expression in

Eq. (6.4) and with the result ∆ms
π,δ obtained from the mode sum given in Eq. (6.29), for the

323 × 8 ensembles. All results are renormalized in the MS(µ = 2 GeV) scheme.

N+/N0 0 1 2 3 4 5

N0 = 1 40 29 - - - -

N0 = 2 11 20 12 - - -

N0 = 3 3 11 6 2 - -

N0 = 4 0 1 2 1 0 -

N0 = 5 0 2 0 0 0 0

Table 6.8: The number of configurations found in the 177 MeV (run #26) ensemble with

given values for the total number (N0) of near-zero modes and total number (N+) of those

modes with positive chirality. We consider only modes with Λ ≤ 12.5 MeV and a chirality

whose magnitude exceeds 0.7. The distribution is clearly different from the bimodal dis-

tribution N+ = N0 or 0 expected if these near-zero modes were induced by non-zero global

topology and the Atiyah-Singer theorem.
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Conclusion

We will now briefly summarize our results. This work is a natural extension of earlier

studies on the finite temperature QCD using DWF with relatively heavy fixed bare quark

masses [32, 33] now to a line of constant physics with physical or almost physical quark

masses on a variety of lattices with Nτ = 8.

For ensembles with mπ ≈ 200 MeV, the disconnected chiral susceptibility χdisc shows a

distinct peak as the temperature increases through the critical region on volume 243 × 8

and 323 × 8. This is the quantity of choice for locating the pseudo-critical temperature and

showed a quite broad peak when studied on the 163 × 8 volume. The 243 and 323 results

presented here show a significant volume dependence when compared with 163 results with

the large shoulder just below Tc ≈ 164 MeV decreasing by between 30 and 50% as the

volume is increased and the peak itself moving to higher temperature and decreasing in

height by approximately 15%. The 243 and 323 volumes give similar results. This behavior

is predicted by finite size scaling in O(4) models in the presence of an external symmetry

breaking field [139] and could be anticipated from the first comparison made with QCD

data [123] and the recent work of Braun et al. [122].

For ensembles with physical pions (mπ ≈ 135MeV), the peak of χdisc is even more dramatic

and shifted slightly to a lower temperature as compared with χdisc curve from mπ ≈ 200 MeV.

131
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Results from both 323 × 8 and 643 × 8 show great consistency within errors, implying the

absence of volume effects. And no evidence is present for a metastable behavior in the

evolution of the chiral condensate near Tc. Both observations are strong evidence that we are

seeing the cross-over behavior expected when the actual QCD phase transition is a second-

order critical point at m̃l = 0. Although a complete finite volume O(4) scaling analysis is not

available at the moment, a qualitative examination as well as some empirical fits suggest a

pseudo-critical temperature for the 2+1 flavors of physical quarks to be Tc = 154(1)(8) MeV.

The first, statistical error from the fitting is overwhelmed by the second, discretization error.

We investigate U(1)A symmetry breaking above Tc by examining the two U(1)A symme-

try breaking differences χπ −χδ and χσ −χη. These vanish if U(1)A symmetry is realized and

are clearly non-zero at T = 177 MeV, although they decrease quickly as T is increased above

this value. These two quantities are related by SU(2)L × SU(2)R symmetry and are equal

within errors for T ≥ 177 MeV. We conclude that for temperatures at which SU(2)L×SU(2)R

symmetry has been restored, U(1)A symmetry breaking is still present.

The Dirac eigenvalue spectra per unit space-time volume seen on the 163 × 8 and 323 ×

8 volumes with mπ ≈ 200 MeV are very similar. However, the larger volume results are

more accurate in the region of small eigenvalues. We find that appropriately convergent

combinations of spectral integrals agree well with the observed Green’s functions to which

they are related in continuum field theory. Of particular importance is the agreement between

a spectral integral and χπ − χδ. For T = 177 MeV we find a small cluster of near-zero Dirac

eigenvalues, such as are expected from the dilute instanton gas approximation (DIGA) [104]

and it is these eigenvalues which, when included in the spectral formula, reproduce the

measured result for χπ−χδ. This relation continues to hold, although within larger errors, at

T = 186 and 195 MeV. The number of these near-zero modes is found to be proportional to the

volume and their chiralities show a mixture of positive and negative values per configuration,

as is expected in the DIGA. We conclude that U(1)A symmetry is broken in the region
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immediately above Tc and this breaking is explained by the DIGA. No additional mechanism

is necessary.

For the completeness of this exploration, we still need to check our control of the finite

lattice spacing errors. To this end, we are now carrying out simulations on a lattice of

643 × 12 with β = 1.943 and physical quarks, aiming at T ≈ 154 MeV, which is in the

vicinity of the phase transition (conditions similar to run #31). We may also extend our

Dirac eigenvalue spectrum calculation to the Möbius domain wall fermions. The definition

of a Hermitian Dirac operator involves much more subtleties than the ordinary DWF Dirac

operator. The most promising candidate is γ5R5(D−)−1D (c.f. Chap. 2 and [57]), a non-local

operator. However, the physical picture of spontaneous vacuum chiral symmetry breaking

and anomalous symmetry breaking arising from a gas of dilute instantons is already clean

for mπ ≈ 200 MeV with no indications that different phenomena will appear at smaller quark

mass. Thus, it appears likely that th present study reveals quite completely the crossover

nature of the QCD phase transition at physical quark mass and the present of anomalous

symmetry breaking above Tc, well described by the DIGA.
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Appendix A

List of Lattice Ensembles

In the appendix, we list the details of the ensembles where multiples streams of evolutions

are involved.

Tables A.1, A.2 and A.3 give the details of parameters for the 323 × 8 ensembles evolved

using MDWF with mπ ≈ 135 MeV. Among them, the first two tables A.1 and A.2 show

the streams at 139 MeV ≤ T ≤ 159 MeV and 164 MeV ≤ T ≤ 195 MeV respectively. The

last table A.3 shows the streams before the input quark masses were adjusted to be better

aligned with the expected physical values.

The first column of the tables assigns a label to each individual evolution. The second

to the fifth columns show the temperature, β, fifth dimension extent Ls and the Möbius

coefficient c. The next three columns show the input light and strange quark masses as well

as mres which is measured from each individual stream.

The “Start” column indicates how this stream was begun, categorized as “ord” (a fresh

start with an ordered gauge configuration), “dis” (a fresh start with a random gauge config-

uration), or a label of a stream with a trajectory number that specifies the trajectory where

this stream began. The N tot
traj column gives the last trajectory number of the stream. Note

that when a stream is split from another, the trajectory number will be carried on rather

than reset to 0.
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The “Cut” column indicates where the thermalization or the decorrelation cuts are im-

posed. We usually take the thermalization cut at trajectory 300 measured in units of molecu-

lar dynamic time separation. However, we, in some cases, accidentally enforced a maximum

conjugate gradient step at 10000, which is too low for almost all these ensembles with phys-

ical pions. This results in an inaccuracy in Metropolis ”Accept/Reject” step in the Hybrid

Monte Carlo simulation causing errors at O(δτ 2) level. We would allow 100 or more trajec-

tories for thermalization for such instances. Moreover, as mentioned earlier, in many cases,

there is also a small adjustment in the input quark masses. Again we allow 100 or more time

units for the re-thermalization.

The last column, N equil
traj = N tot

traj − Cut gives the number of equilibrated trajectories used

from each stream. The sum of total numbers of N equil
traj at each temperature was already

presented in Table 4.8.

Table A.4 gives the similar information for the 643 × 8 ensembles.
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# T (MeV) β Ls c ml ms mres Start N tot
traj Cut N equil

traj

43 139 1.633 24 1.5 0.00022 0.05960 0.00221(3) ord 2172 400 1773

44 139 1.633 24 1.5 0.00022 0.05960 0.00218(2) 43: 468 2081 550 1531

45 139 1.633 24 1.5 0.00022 0.05960 0.00214(2) dis 1848 300 1548

46 139 1.633 24 1.5 0.00022 0.05960 0.00224(2) 45: 788 1648 900 749

47 149 1.671 16 1.5 0.00034 0.05538 0.00174(2) 70: 692 3393 800 2593

48 149 1.671 16 1.5 0.00034 0.05538 0.00176(1) 47: 724 3142 800 2342

49 149 1.671 16 1.5 0.00034 0.05538 0.00176(2) dis 2267 300 1967

50 149 1.671 16 1.5 0.00034 0.05538 0.00176(2) 49:1657 2267 1750 517

51 154 1.689 16 1.5 0.00075 0.05376 0.00119(2) dis 1787 300 1487

52 154 1.689 16 1.5 0.00075 0.05376 0.00120(2) dis 1746 300 1446

53 154 1.689 16 1.5 0.00075 0.05376 0.00118(2) ord 1842 300 1542

54 154 1.689 16 1.5 0.00075 0.05376 0.00121(2) ord 1768 300 1468

55 159 1.707 16 1.5 0.00112 0.05230 0.00092(1) 71: 494 4036 700 3336

56 159 1.707 16 1.5 0.00112 0.05230 0.00089(1) 55:1000 3784 1100 2684

57 159 1.707 16 1.5 0.00112 0.05230 0.00089(2) dis 2809 300 2509

Table A.1: Summary of input parameters and trajectory information for each ensemble with

mπ ≈ 135 MeV at 323 × 8 for 139 MeV ≤ T ≤ 159 MeV. Details of each column are explained

in the main text of this appendix.
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# T (MeV) β Ls c ml ms mres Start N tot
traj Cut N equil

traj

58 164 1.725 16 1.5 0.00120 0.05045 0.00066(1) dis 2204 300 1904

59 164 1.725 16 1.5 0.00120 0.05045 0.00066(2) dis 2060 300 1760

60 164 1.725 16 1.5 0.00120 0.05045 0.00066(2) ord 2126 300 1826

61 164 1.725 16 1.5 0.00120 0.05045 0.00066(2) ord 1959 300 1659

62 168 1.740 16 1.2 0.00126 0.04907 0.00058(1) 72: 604 4338 700 3638

63 168 1.740 16 1.2 0.00126 0.04907 0.00055(2) dis 2502 300 2202

64 177 1.771 16 1.0 0.00132 0.04614 0.00044(2) 73: 708 5991 800 5191

65 177 1.771 16 1.0 0.00132 0.04614 0.00039(2) dis 3712 300 3412

66 186 1.801 16 1.0 0.00133 0.04345 0.00024(1) 74: 781 7374 900 6474

67 186 1.801 16 1.0 0.00133 0.04345 0.00025(2) dis 3968 300 3668

68 195 1.829 16 0.9 0.00131 0.04122 0.00018(1) 75: 780 7335 900 6435

69 195 1.829 16 0.9 0.00131 0.04122 0.00018(1) dis 4005 300 3705

Table A.2: Summary of input parameters and trajectory information for each ensemble with

mπ ≈ 135 MeV at 323 × 8 for 164 MeV ≤ T ≤ 195 MeV. Details of each column are explained

in the main text of this appendix.
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# T (MeV) β Ls c ml ms mres Start N tot
traj Cut N equil

traj

70 149 1.671 16 1.5 0.00016 0.05520 0.00171(3) ord 692 - -

71 159 1.707 16 1.5 0.00092 0.05210 0.00085(2) ord 494 - -

72 168 1.740 16 1.2 0.00119 0.04900 0.00057(3) ord 604 - -

73 177 1.771 16 1.0 0.00158 0.04640 0.00038(2) ord 708 - -

74 186 1.801 16 1.0 0.00148 0.04360 0.00026(2) ord 781 - -

75 195 1.829 16 0.9 0.00139 0.04130 0.00018(2) ord 780 - -

Table A.3: Summary of input parameters and trajectory information for the intial trial

ensembles with mπ ≈ 135 MeV at 323×8. The input masses of these runs were later adjusted.

Details of each column are explained in the main text of this appendix.

# T (MeV) β Ls c ml ms mres Start N tot
traj Cut N equil

traj

76 139 1.633 24 1.5 0.00022 0.05960 - 657 ord 300 357

77 149 1.671 16 1.5 0.00034 0.05538 - 1504 ord 300 1204

78 149 1.671 16 1.5 0.00034 0.05538 - 1229 dis 300 929

79 149 1.671 16 1.5 0.00034 0.05538 - 1520 77: 700 800 720

80 159 1.707 16 1.5 0.00112 0.05230 - 2737 ord 300 2437

81 159 1.707 16 1.5 0.00112 0.05230 - 2541 80:1500 1600 941

82 168 1.740 16 1.2 0.00126 0.04907 - 1394 ord 300 1002

Table A.4: Summary of input parameters and trajectory information for the ensembles with

mπ ≈ 135 MeV at 643 × 8 for 139 MeV ≤ T ≤ 168 MeV. Details of each column are explained

in the main text of this appendix.


