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In the framework of Lagrangian perturbation theory in general relativity we discuss the
possibility to split the Einstein equations, written in terms of spatial Cartan coframes
within a 3 + 1 foliation of spacetime, into gravitoelectric and gravitomagnetic parts.
While the former reproduces the full hierarchy of the Newtonian perturbation solutions,
the latter contains non—Newtonian aspects like gravitational waves. This split can be
understood and made unique through the Hodge decomposition of Cartan coframe fields.
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1. Introduction

We discuss an intrinsic formulation of relativistic perturbation theory.! In this novel
approach the perturbation fields evolve on the physical manifold rather than on a
pre—defined background spacetime, as is commonly assumed in the framework of
the standard perturbation theory.

We first motivate our formalism by paraphrasing the Lagrangian perturbation
approach in Newtonian theory. The relativistic approach leads to a closed system
for a single perturbation variable, summarized as the Lagrange-Einstein system. It
is obtained from a 3 + 1 decomposition of the Einstein equations and formulated in
terms of spatial Cartan coframes. We will then employ the gravitoelectromagnetic
analogy that allows us to split the Lagrange—FEinstein system into gravitoelectric
and gravitomagnetic parts. We will explain how the gravitoelectric hierarchy of
perturbation solutions? can be obtained from Newtonian perturbation theory.?

Assuming a closed topological space form for the spatial hypersurfaces, we em-
ploy the Hodge decomposition (that replaces the Helmholtz decomposition in stan-
dard perturbation theory) to fully understand the physical content of the gravito-
electric and gravitomagnetic solutions, exemplified to first order: the gravitoelectric
part will turn out to be the integrable part of the Cartan deformations, while the
nonintegrable, gravitomagnetic part contains the gravitational waves.

2. Intrinsic Lagrangian approach to structure formation
2.1. Newtonian description of structure formation

We consider a dust continuum (i.e., without pressure and velocity dispersion), gov-
erned by the Euler—Newton system of equations:

ov _ . do _
E—i_v'vv_g ) E—FV(QV)_O? (1)

Vxg=0 : V-g=A—-4nGo , (2)
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where v is the Eulerian velocity, g the gravitational field strengh, and o the den-
sity. We represent by f(e,t) the diffeomorphism* between the Lagrangian spatial
coordinates X which label fluid elements, and the Eulerian ones x, which are now
considered as values of a position field f of these elements at time ¢:

flo,t): R — R? ; X+—x=Ff(X,t) and X :=f(x,t;). (3)

We define the determinant of the Jacobian matrix (f;;) by:

J = det (5)2 (X,t)) = %EijkEklmfi\ka“ i (4)
where we have denoted by a vertical slash |; the spatial derivative with respect to
X;, by an overdot the partial time derivative, €;;, being the Levi-Civita symbol.
The volume deformation of fluid elements is described T by J(X,t). To obtain the
Lagrangian formulation of Newtonian gravity, we define the Eulerian fields in terms
of f and its derivatives. The position, velocity, acceleration, density, vorticity, etc.
can be given as functionals of the trajectory function:
. . 6 & Vof

x:=f(X,t); v =1f(X,t); a:=1f(X,t); o(X,t) = TX.0) P w = TX.0) ; ete.,

()
where ¢ and w stand for the initial values of the density and vorticity fields, and
Vo for the nabla operator with respect to the Lagrangian coordinates.

Contrary to the Eulerian description, a single variable describes the gravitational
dynamics: f. In the Lagrangian approach, the Eulerian position x = £(X,¢) is no
longer an independent variable. The independent variables are now (X, ¢).

According to the equivalence of inertial and gravitational masses, we can express
the field strength in terms of the acceleration g = a = f ; also, we have to transform
the Eulerian spatial derivatives in the field equations to Lagrangian coordinates:

. 1 - 3
6abfa|[i fb\j] =0 ; §€abc€lklfa|i fb|k fcu =AJ —4nGo . (6)

This system of equations is the Lagrange-Newton system.
In the Lagrangian perturbative approach, the trajectory field is decomposed into
the sum of a homogeneous deformation plus an inhomogeneous deformation field:

£(X,t) = a(t) (X + P(X,1)) . (7)

The inhomogeneous perturbations can be decomposed into different orders n. Due
to the facts that the perturbed flow is a function of the Lagrangian coordinates
(following the fluid flow) and that the trajectory function is the only perturbed
variable, deviations from the homogeneous flow may be small while the Eulerian

*The description in terms of the trajectory function f is only possible before shell-crossing. Once
caustics have formed, f(e,t) is no longer a diffeomorphism and this description breaks down.

It is initially equal to J(X,t;) = 1 since, by definition, Eulerian coordinates initially coincide
with Lagrangian ones.
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fields, evaluated along the perturbed flow, can experience large changes. Another
way to phrase this aspect is to say that the Lagrangian description of structure
formation intrinsically contains nonlinear Eulerian terms. In the frame of Newtonian
gravity, the Lagrangian approach has proved to be more powerful than the Eulerian
one due to this reason.

In the next section we will present the Lagrangian formulation of the Einstein
equations. Since in general relativity matter is coupled to the geometry of spacetime,
we give up the notion of absolute space and time, and the gradient of the vector
function d f® that describes the embedding into the absolute vector space has to be
replaced by nonexact one—form fields, the Cartan coframes. As we will discuss, this
relativistic formulation exhibits interesting formal similarities with the Newtonian
theory. This can be exploited to build relativistic solutions to any order.

2.2. Relativistic intrinsic Lagrangian theory

Spacetime can be foliated into flow—orthogonal hypersurfaces of constant syn-
chronous time for the fluid model irrotational dust. We here consider a Lagrangian
splitting of the Einstein equations according to the 3 4+ 1 formalism.

As in the Newtonian case, we consider a local Lagrangian coordinate basis
{dX*}, which spans the local cotangent spaces on the manifold. The dynamics
of the fluid is no longer described by the gradient of the Newtonian trajectory func-
tion df* = f‘l‘idX i but by its relativistic counterpart: the nonintegrable Cartan
coframes n® = n%d X", where a = {1,2,3} count the one—forms. These coframes
encode both the geometry of spacetime and the dynamics of the fluid. The 4—
dimensional metric can be decomposed according to

‘g=—dt@dt+*g where *g=Gun"@n’ = g;=GCGann" ; (8

Gap is the Gramian matrix of the coframes n®. This constant matrix can be chosen
such that it encodes the information on the initial deviation fields.

Inserting the metric expression (8) into the Einstein equations, we obtain the
following system of equations, called the Lagrange—Einstein system:’

Gapiifin’; = 0 (9)
1 7 -a c\- A i

5 Cabee kit (n jnbkn ) =-R ;+(AnGo+A) 6" ; (10)
1 mjka b, c R

g Cabee i il 0 = =+ (8nGo+ A) (11)

ikl-a . b c _ ikl-a b ¢
(eabc6 n5mEn l)||i - (eabc6 Uy l)‘j :

The system {(9) — (12)} consists of 13 equations, comprising 9 evolution equations
for the 9 coefficient functions of the 3 coframe fields and 4 evolution equations that
originate from the spatial 3 + 1 constraints. The double vertical slash denotes the
covariant spatial derivative with respect to the 3—metric and the spatial connection is
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assumed to be symmetric. We can eliminate the intrinsic curvature R* ; by inserting
the trace of the second equation into the third to obtain the Raychaudhuri equation:

apee™iisntn = AJ — 471G . (13)

As we will demonstrate below, (9) and (13) can be expressed as identities on the
electric part of the Weyl tensor. This forms the gravitoelectric part of the Einstein
equations being formally similar to (6), where f% is replaced by 1%: the gravito-

electric perturbative solutions can therefore be built from the Newtonian ones.?

3. The Maxwell-Weyl equations, the relativistic generalization of
the Newtonian perturbative solutions, and gravitational waves

The Weyl tensor is the traceless part of the 4-Riemann curvature tensor* repre-
senting the part of the gravitational field that is not directly coupled to the matter
content of the Universe. It can be split in an irreducible way into electric and mag-
netic parts, corresponding to two symmetric and traceless tensors, each of them
containing 5 independent components. Contracting the Bianchi identities, which
link the covariant derivatives of the Weyl tensor to the ones of the Ricci curvature
tensor, we can formulate general relativity in terms of the electric and magnetic
parts of the Weyl curvature tensor. In the restframe of the irrotational dust fluid,
with 4—velocity v = (1,0,0,0), we obtain the Maxwell-Weyl equations in the
present framework.! We only write here the spatial components of the electric part,

i i i 1 i
Ej::—@j—@k@kj—g(z;ng—A)aj, (14)
which can be expressed through the coordinate components of Cartan coframes:
Jo o b+ = (A 4xG2) 5, 5 T = det(n” 15
j = T pCabet 77j77k771+§ —anG )0y s S = et(n%) - (15)

The electric part of the Weyl tensor is thus (up to a sign) the relativistic counterpart
of the Newtonian tidal tensor c‘,’ij = dg'/0x7 — 1/3(5ijV -g. The gravitoelectric part
of the Einstein equations,

Ef =0 & (13) ; Euy;=0 < (9), (16)

formally corresponds to the (closed) Lagrange—Newton system, if we replace the
nonintegrable coefficients of the Cartan coframes by integrable ones, n% — fa|i’
keeping the speed of light ¢ finite. This mathematical restriction can be reversed
in order to obtain relativistic solutions, denoted by P, from the Newtonian ones
through execution of the following transformation rule:

df’ =a(t) (dX'+dP") —» n* =a(t) (dX" + "P?) . (17)
(We refer the reader to the paper? for explicit solutions.) In the next section, we will

employ the Hodge decomposition in the frame of a global description. Assuming a
closed topology for the spatial sections, we will investigate the physical content of
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the complementary part 7P := P* — PP in the general perturbation, and we will
then discuss the link between these two solutions and the magnetic part of the Weyl
tensor. This also sheds a new light on the relation between topology and geometry.

4. From topology to gravitational waves

We recall that the perturbation fields are defined intrinsically on the perturbed
spatial sections. The powerful Hodge decomposition of Cartan coframes will provide
new results on general first—order perturbations and gravitational waves.

We first note that the gravitomagnetic part that is generated by the first-order
gravitoelectric solution, H;;(FP®), turns out to be harmonic:®

AoHij(EPa) =0 y (18)

Ap denotes the Laplacian operator with respect to local (Lagrangian) coordinates.

The spatial topology determines the boundary conditions needed to solve this
equation. Thurston’s geometrization conjecture presented in® (now proved by Grig-
ori Perelman) asserts that every closed 3—manifold can be decomposed into a con-
nected sum of 3—manifolds modeled after the 8 model geometries listed by William
Thurston. This asserts that any closed and simply—connected 3—manifold is home-
omorphic to the hypersphere S?. Moreover, as a consequence of parallelizability,
the Cartan coframes are defined on the whole manifold continuously while the co-
ordinate charts undergo singularities. In what follows, we will assume S? for the
topology of spatial sections as an example.

The Hodge decomposition” decomposes p—forms into an exact part, a coexact
part and a harmonic part h® = h% dX*. Harmonicity is defined with respect to
the Laplace-De Rham operator A®® that encodes the geometry of the manifold
considered. On a coordinate basis dX?, according to the formula of Weitzenbock,

0= (AdR ha)

1 3
where AP is the Laplace—Beltrami operator. The Hurewicz theorem implies that
the dimension of the harmonic space of one—forms on a closed oriented manifold
is equal to the dimension of the first fundamental group (also called closed path
group).® 19 For simply—connected manifolds the dimension of this group is null, e.g.
for the S* topology. The Laplace equation (18) thus implies, for an S* topology,
that H,;(PP®) = 0. Furthermore, the Cartan coframes, which are one—forms, can
be decomposed on S? as % = da® + §3%, where a® is a scalar, 3% a two—form, d
the exterior derivative and § = *dx its dual, x the Hodge star operator.

The magnetic part is linked at first-order to the Cartan structure coefficients:®
%, dn® = =C4m" An° . H'; = Se;F1CY, . Therefore, the Cartan structure
coefficients calculated from #P® are constant in time. Since they are initially zero

fFor the presentation of the context around the Hodge theorem, from which the Hodge decompo-
sition has been obtained, the reader may refer tol! and references therein.
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(m*(t;) = dX?), PP represents the integrable part da® of the full perturbation.
Deviations from Euclidean space, at first order, are thus fully contained in the
complementary part 7P? that turns out to be trace—free. Gravitational waves, as
a non-Newtonian effect, are contained in #P?, the only curvature-generating part
of the perturbation. These results can be extended to the quotients of S3.

5. Conclusion and outlook

We discussed how the gravitoelectric part of relativistic perturbations can be con-
structed from the Newtonian theory. At first order strong results for the general
perturbation fields can be established by global considerations: for an S? topology
of spatial sections the gravitoelectric part is integrable, while the nonintegrable part
coincides with the gravitomagnetic part that is linked to the gravitational waves.
Formulating the Einstein equations in terms of the Hodge decomposition of Cartan
coframes may be of great use for upcoming research. Investigating the extension of
these results to higher orders and other topologies will then become easier.
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