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Strange cousin of Z.(4020/4025) as a tetraquark state”
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Abstract: Motivated by the analogous properties of Z.(3900/3885) and Z.5(3985/4000), we tentatively assign
Z,(4020/4025) as the AA-type hidden-charm tetraquark state with JPC = 1*~, where 4 denotes the axialvector
diquark states, and explore AA-type tetraquark states without strange, with strange, and with hidden-strange via
QCD sum rules in a consistent manner. We then explore the hadronic coupling constants in the two-body strong de-
cays of tetraquark states without and with strange via QCD sum rules based on rigorous quark-hadron duality and ac-

quire partial and total decay widths. The present calculations support assigning Z.(4020/4025) as the AA-type tetra-

quark state with J¢ = 1+~

al data in the future.
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I. INTRODUCTION

In 2013, the BESIII Collaboration observed ZZ(4025)
in the n7 recoil mass spectrum of the process
ete” — (D*D*)*n™, where the measured Breit-Wigner
mass and width were M =(4026.3+2.6+3.7)MeV and
I'=(24.8+£5.6+7.7)MeV, respectively [1]. Two years
later, the BESIII Collaboration observed its neutral part-
ner Z2(4025) in the n° recoil mass spectrum of the pro-
cess ete” — (D*D*)°z°, where the measured Breit-Wign-
er mass and width were M = (4025.5*39+3.1)MeV and
I'=(23.0£6.0+1.0)MeV, respectively [2]. The masses
and widths of the charged structures Z*(4025) and neut-
ral structure Z2(4025) were consistent with each other.
Moreover, in 2013, the BESIII Collaboration observed
Z*(4020) in the n*h. mass spectrum of the process
e*e” — n*n"h., where the measured Breit-Wigner mass
and width were M =(40229+0.8+2.7)MeV and
I'=(7.9+2.7+2.6)MeV, respectively [3]. Z.(4020) and
Z.(4025) were assigned to be the same particle by the
Particle Data Group and listed in the Review of Particle
Physics as X(4020) [4], although the widths differed from
each other considerably.

The spin and parity have not yet been measured. S-
wave D*D* systems have the quantum numbers
JPC =0, 1*~, and 2**, S-wave n*h, systems have the
quantum numbers J¢ = 177, P-wave n*h, systems have
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, while the predictions for its strange cousin Z., state can be confronted with experiment-

the quantum numbers JP¢ =0**, 1*~, and 2**, and we
can tentatively assign the quantum numbers J*¢ = 1+~ for
Z.(4020/4025). According to the nearby D*D* threshold,
one may expect to assign Z.(4020/4025) as the tetraquark
molecular state [5—12]. In the picture of tetraquark states,
Z.(4020/4025) can be assigned as the AA-type tetraquark
state with JPC = 1*~ [13—15], whereas Z.(3900) can be
assigned as the SA - AS type tetraquark state according to
calculations via QCD sum rules [16], where S and A4 rep-
resent the scalar and axialvector diquark states, respect-
ively.

In 2020, the BESIII Collaboration observed the
Z-.(3985) structure in a K* recoil-mass spectrum with a
significance of 53 ¢ in the  processes
ete” — K*(D;D**+D:~D" [17]. The measured Breit-
Wigner mass and width were M =3985.2+2!+1.7MeV

20+
and I'=13.8*%) +4.9MeV, respectively [17]. In 2021, the
LHCb Collaboration observed two new exotic states,
Z1(4000) and Z;(4220), in the J/yK* mass spectrum of
the process B* — J/y¢K* [18]. The most significant
state, Z}(4000), had a Breit-Wigner mass and width of
M = 4003 16’_"1‘4 MeV and T'=131+15+26MeV, respect-
ively, and the spin-parity J” = 1* [18]. Although we can
reproduce the mass of Z.;(3985/4000) using QCD sum
rules in the pictures of both the tetraquark and molecular
states [19—26], direct calculations of the decay widths

based on QCD sum rules support assigning Z.,(3985) and
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Z.5(4000) as the hidden-charm tetraquark state and mo-
lecular state with JP€ = 17~, respectively. Alternatively,
at least, Z.,(3985) may have a large diquark-antidiquark
type Fock component, while Z.,(4000) may have a large
color-singlet-color-singlet type Fock component [27].

Z.(3900/3885) and Z.,(3985/4000) are cousins and
have analogous decay modes.

Z*(3900) — J/yr*, Z;,(4000) - J/WK*, (1)

7%(3885) — (DD*)*, Z-.(3985) —» D;D*°, D"D°,  (2)

and we expect that Z.(4020/4025) also has strange
cousins Z.,, which have analogous decay modes. The Z
states may be observed in decays to final states, such as
D*D%, D:D*, and h.K.In this study, we tentatively as-
sign Z.(4020/4025) as the AA-type hidden-charm tetra-
quark state with JP¢ = 1*= and extend our previous study
to investigate the mass and width of its strange cousin us-
ing QCD sum rules [20, 23, 27, 28]. The predictions can
be confronted with experimental data in the future, which
may contribute to disentangling the pictures of tetraquark
and molecular states. As a byproduct, we obtain the mass
of the hidden-strange/charm tetraquark state and the par-
tial decay widths of Z.(4020/4025).

The article is arranged as follows. We derive QCD
sum rules for the masses and pole residues of the AA-type
tetraquark states without strange, with strange, and with
hidden-strange in Section II. In section III, we derive
QCD sum rules for the hadronic coupling constants in the
decays of the Z. and Z.; states. Section IV is reserved for
our conclusion.

II. QCD SUM RULES FOR THE Z,, Z,, and Z,;
TETRAQUARK STATES WITH J7€ = 1+-

First, we present the two-point correlation functions
IL,y0p(p) in the QCD sum rules,

Maop(p) =i [ @4 OIT (07,000, )

where J,,(x) = J%4(x), J45(x), and J35(x),

b ﬂV v
_ ijk nimn B
Jd(x) = i (Ul (e (D (0, CEL (x)
— U] (O, el(X)dn(x)y,CE (0)],
ijk nimn
T =2 o C R AT

— 1t} ()CYy ()5 (X, CEZ(x)} ,

s gi Jk Simn - _ r
T30 =——{sT ()Cyuee(0)5m (0, Ca (1)

V2
— sT()CYyer()3n(x)y,CEr (1)}, ©)

where i, j, k, m, and n are color indexes, and C is the
charge conjugation matrix [15, 28]. We choose the cur-
rents J;{f(x), Jis(x), and J3(x) to explore the hidden-
charm tetraquark states without strange, with strange, and
with hidden-strange, respectively.

On the hadronic side, we explicitly isolate the ground
state contributions of the hidden-charm tetraquark states
with JP€ = 1*~ and 17~ and acquire the following results:

2
Muop(P) =—2—(P*8uavs — P*8up&va
H M% _ p2 ( H

—8uaDvPp — 8vBPulPa t+ 8upPvPa + 8mp;4pﬁ)
2
N L( _ _
M2 —p2 8uaPvPp — 8vBPuPa
Y
+ 8upPvPa + GuaPuPp) -+ » )

where Z and Y denote the tetraquark states with J°€ = 1+~
and 177, respectively. The pole residues Az and Ay are
defined by

Ol OIZ(P)) = Az s L P

Ol ONY(P)) = Ay (§upv = Lvpu) - (6)

the ¢, are the polarization vectors of the tetraquark states.
We can rewrite the correlation functions IL,,.s(p) in the
form

Hym,B(P) =HZ(P2)<ngﬂagv,8 - ngﬂﬁgm
—8ualPvPB — 8vBPulPa t 8ugPvPa + gvapppﬁ)
+ Ty (p*)( — uaPvPs = ypPuPe
+ 8uPvPa + 8valuPp) (M
according to Lorentz covariance.

We project the components I1z(p?) and ITy(p?) by the
tensors P’Zv;fﬁ and P"‘,‘;'ﬁ to

Tz(p*) = p*Tz(p*) = P Toap(p),

y(p*) = p*Ty(p*) = Py Thinas(p), (®)

where
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vap V(o PP\ s PPP
e 2Ee-22)

AP6 P p
P,llV(lﬂ _l Ha p/lp(l B _ prﬂ _ l ua vB (9)
va - 6 g p2 g p2 6 g g .

We accomplish operator product expansion up to the

vacuum condensates of dimension 10 and take account of
a,GG

m
(48:0Gq)*, and

the vacuum condensates {gg), ¢ Y, {Ggs0Gq), (E]q)z,

GG
G =

(Gq)*( ), where g =u, d, or s, as in previous studies
T
[14-16, 20, 23]. We project the components

- bR (G9){qgs0Gq),
o, GG

T2(p*) =P ap(p).
Ty (p*) =P} ap(p). (10)

on the QCD side. In the present study, we are only inter-
ested in the component I1,(p?) as we investigate the axi-
alvector tetraquark states. We take the truncations n < 10
and k <1 in a consistent manner, and the operators of the
orders O(a*) with k> 1 are discarded. The operators in

GG
the condensates (g3GGG), ( &Y )2, and
T

(aSGGXE]gso-Gq) are of the orders O(e;)'?), O(a?), and
O(ozs/ 2), respectively, and play minor roles; hence, they
can be safely ignored [12, 29].

We obtain the QCD spectral densities pz(s) through
the dispersion relation,

pa(s) = @ (1n)

supposing quark-hadron duality below the continuum
threshold s¢, and accomplish a Borel transform in regard
to the variable P? = —p? to obtain the QCD sum rules

~2 M% So Ky
A7 exp(—ﬁ]zf4 1dspz(s) exp(—ﬁ), (12)
m?

where 1, = A, M.
We differentiate Eq. (12) with respect to

ate the re-defined pole residues Az, and obtain QCD sum
rules for the masses of the axialvector hidden-charm tet-
raquark states,

1 ..
= elimin-

So d s
fw TRy S eXp(_ﬁ)

L‘m% dspz(s) exp (_ﬁ)

(13)

We take the standard values of the vacuum condens-
ates, (gq) =—(024+0.01GeV)>, (5s)=(0.8+0.1)(gq),
(Ggs0Gq) = m%(ch),(&gso'Gs) = m(%(is),andm(zJ =(0.8+0.1)
GeV? at the energy scale u = 1GeV [30-32] and take the
MS quark masses m.(m.)=(1.275+0.025)GeV and
mg(u=2GeV) = (0.095+0.005)GeV from the Particle
Data Group [4]. We set m, =m, =my=0 and consider
the energy-scale dependence of the input parameters,

(1GeV) | =
@D :@qleeV)[M] ,

a’s(ﬂ)
,(1GeV) |&
()@ =<ss>(1GeV)[M} B
as(u)
i i a,(1GeV) | =
(385G q) (1) =(qg,0Gq)(1GeV) [S—} ,
as(w)
(1GeV) |7
(580G )W) =<§gsoGs><1GeV)[M] |
ag(u)
ag(u) g
me(u) =mc(me) e 4
as(me)
(1) #
s =m;(2GeV) | ———= P
ms(4t) =ms(2Ge )[cys(ZGeV)
1 by logr b3(log*t—logt—1)+byb
as(p)z—l——;£+l(g gr—1)+bobs
bot by t byt?
(14)
from the renormalization group equation, where
2 33-2 153-19
IZIOg = B b0: nf> l:—nfa
Adep 127 24n2
2857 - X2n; + Pn%
by = 12872 =, and AQCD=210 MeV, 292

MeV, and 332 MeV for the flavors ny =5, 4, and 3, re-
spectively [4, 33]. We choose the flavor number n; =4
because there are u, d, s, and ¢ quarks.

As in our previous studies, we acquire the acceptable
energy scales of the QCD spectral densities for the hid-
den-charm tetraquark states according to the energy scale
formula

p= M

X/Y/Z_(ZMC)Za (15)

with the effective c-quark mass M. =1.82GeV [11, 15,
34-35]. Furthermore, we consider the SU(3) mass-break-
ing effects according to the modified energy scale for-

mula
H= VM;(/Y/Z_(ZMC)Z_ICMS7 (16)

where M is the effective s-quark mass and fitted to be
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0.2GeV [23], and £ is the number of valence s-quarks.

We search for suitable Borel parameters T2 and con-
tinuum threshold parameters sy to satisfy the two criteria
(pole or ground state dominance and convergence of op-
erator product expansion) via trial and error. The Borel
parameters, continuum threshold parameters, energy
scales of the QCD spectral densities, pole contributions,
and contributions from the vacuum condensates of di-
mension 10 are shown in Table 1. From the table, we can
clearly see that the modified energy scale formula is well
satisfied. Then, we consider the uncertainties on the in-
put parameters and acquire the masses and pole residues
of the hidden-charm tetraquark states without strange,
with strange, and with hidden-strange having quantum
numbers JP¢ = 17-, which are also shown in Table 1. In
Fig. 1, we plot the masses of Z.; and Z.;; with variations
in the Borel parameters. As shown in the figure, plat-
forms appear in the Borel windows, thus enabling reli-
able extraction of tetraquark masses.

The present prediction, Mz = (4.02+0.09) GeV (also
in Ref. [28]), is consistent with the experimental values
Mz: = (4026.3+2.6+3.7) MeV, Mz. =(4022.9+0.8+2.7)
MeV, and Mz = (4025.5*39£3.1) MeV from the BESIII
Collaboration [1-3], which supports assigning Z.(4020/
4025) as the JP¢ = 1*-AA-type tetraquark state. We can-
not assign a hadron unambiguously with the mass alone;
we must calculate the partial decay widths and total width
to perform a more robust assignment.

Table 1.

III. DECAY WIDTHS OF THE Z. AND Z,, STATES
WITH QCD SUM RULES

We investigate the two-body strong decays Z., —
h K, J/WK, and n.K* with the three-point correlation
funCtiOl‘lS H(y,B,uv(pa LI)’ H(llf;lv(pa q)a and thwv(p’ q)n respeCt_
ively,

(o) =1 [ dxdye® OIT (1,000 0757 0] 0.

., (p.q) =P f d*xdtyelPe® O (72 (0K ()5 (0)) 0),

n@mgaﬂ&wwwwmﬂﬂmﬁnwﬂwm,

(17)
where the currents
JZ;(X) =C(x)0qpc(x),
T () =e(x)yuc(x),
TE) =a(y)iyss),
T2 (x) =e(x)iysc(x),
T8 ) =iu()yus). (18)

interpolate the mesons k., J/y, K, 5., and K*, respect-
ively. With the simple substitution of s — d, we obtain
the corresponding ones for the Z, tetraquark state.

Borel parameters, continuum threshold parameters, energy scales, pole contributions, contributions from the vacuum con-

densates of dimension 10, and masses and pole residues for the axialvector tetraquark states.

T?/GeV? V/50/GeV u/GeV pole [D(10)| Mz/GeV A2/(1072GeV?)
Z 3.3-3.7 4.6+0.1 1.7 (40-59) % <1% 4.02+0.09 3.00+£0.45
Zes 34-38 47+0.1 1.7 (41-60) % <1 % 4.11+£0.08 3.49+0.51
Zess 3.5-39 4.8+0.1 1.7 42-61) % <1% 4.20+0.09 4.00+0.58
5.0 L L L L L L 5.0 L L L L L L L L
48| 4 48| -
46 ] 46 ]
44l ] 44l ]
r ] P |- - --=-= ]
] f—————== B B2z ==== oo ———
QuofF=----- L---mm " 4 Qaof n
=38[ ] Sagl ]
36 ] 36 L ]
34l 0 — Central value| 34l (1) ——Central value| ]
32 - — —Error bounds | ] 32 - — -Error bounds | ]
30 [ YR [T SR N SR (NSNS SR N TR [T TN S T N T i 30 [ PO T SR T SR (NN TN (NN T [T RN [T NS S S
31 32 33 34 35 36 37 38 39 40 4.1 32 33 34 35 36 37 38 39 40 41 42
TA(GeV?) TA(GeV?)

Fig. 1.

(color online) Masses of the tetraquark states with variations in the Borel parameters 72, where (I) and (II) correspond to Z

and Z.;, respectively, and the regions between the two vertical lines are the Borel windows.
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We insert a complete set of intermediate hadronic
states having possible (non-vanishing) couplings with the

current operators into the three-point correlation func-
tions and explicitly isolate the ground state contributions.

—iGznk €7 ppéinpLe

P (p,q) =2k fue™F & pp A28 i Py

(M7= p*)(Mj; = p*)(M§ — )

~Gyngé™ L

+ /lehgaﬁa,ﬁ,fa’pﬁ'/ly (é,*,up/v _ é«*vp/p) (M

7= PHM; = pH(My — %)

~Gzyyké ¢

+ Ak [y (PP =€) Aze™ £,

+ Ak f 1, (€ 7F =& p") Ay (' p =7 p™) o

(M= p)(M,, - P (M~ %)

—iGy sk pplip’ e

~Gzyyxé ¢

I (p.q) =Ak Ayjyé® Az £ p),

(M3 = p (M3, = p)(M — )

+/l/l (1/1 HU IV Y I
kAspE* Ay (P =p )(M

-Gz &L

5" (p.q) =4y Ak-£" A2 £l

(M2 - p) (M} - pP) (M. —¢?)
—iGyyk- &7 qpé i L

S N- HL IV RV I
pAk-E8 Ay ({*p é“p)(M

MZ fMZ
where Ax = feM ,  Ay= 1 oy
my, + my 2m

sy = fapMipy s
C

Ak = fx Mk, p’ = p+¢q, and the decay constants of the

mesons h., J/y, K, n., and K* are defined by

O (O)he(p)) =fi Evap” PP .
O O /YY) =1y (£upy —EvP) -
O O 1Y (D)) =FruMijy s
OLIK (0)IK*(p)) =fx-Mk- &, ,
M2
O O)K (p)) = n{ K+ K

u A

2

Jo. M,
O O)lne(p)) =5,

(22)

where ¢ are polarization vectors of 4., J/y, and K*, and
the hadronic coupling constants are defined by

(he(PYK(\Zes(P')) =Gznk &7 ppéi il
JIWPIK@Yes(P)) =Gy gpuk &7 ppéinpile.

(he(P)K (@Y es(p')) == iGyng £+ £,
JIW(PIK(@\Zes(P))) = =iGryyx &L,

Me(PK (PIZes(p)) =—iGzpx- &+ . (23)

v =P Mj = p)(ME. — )

+ (19)
=P, = )My =)
s o (20)
3 _ p/Z)(Mg/w —Pz)(M12< -4?) >
@1

The tensor structures in Egs. (19) —(21) are suffi-
ciently complex, and we must project the relevant com-
ponents with suitable tensor operators,

2i
-5 (77 - - @)k (0?, p%. )
:Pj’ﬁpngpﬁ‘;frwgn&]ﬁwnaﬁyv(p’ 6]),

=6(p* +4* +2p- @)1k (0. P*.4°) = Euvae P T (P, @)

=6(p* +4* +2p- @)y k- (P, P*.4) = a0 T (P ),

(24)
where
Wk (p”,p*,q%) = (M2 _prG)(ZZ/II(;fJIZI;;fMIZ( -q%) T
k(P p*.q7) = (M2 - p'GZi;lZI;ZK—/lIJJ/f)/(lJZVI?( -7 '
)~
(25)

which correspond to the two-body strong decays
Zes — h K, J/YyK, and n.K*, respectively; the other com-
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ponents in Egs. (19)—(21) have no contributions or con-
taminations. In Eq.(19), there are four channels,
Zes > hK, Yy > h K, Z.s— JJWK, and Y. — J/YK,
which correspond to four different tensor structures and
therefore four different components. We project the chan-
nel Z.; — h K explicitly. In Eq. (20), there are two chan-
nels, Z.; — J/yK and Y., — J/¥K, which correspond to
two different tensor structures and therefore two differ-
ent components. We project the channel Z.;, —» J/yK ex-
plicitly. In Eq. (21), there are two channels, Z.; — n.K*

Gzix Ak fudz

and Y., — n.K*, which correspond to two different tensor
structures and therefore two different components. We
project the channel Z.; — n.K* explicitly. The --- in Eq.
(25) represents the neglected contributions from the high-
er resonances and continuum states. According to
the analysis in Refs. [27, 36—40], we can introduce the
parameters Cjkx, Cyyk, and C, g to parametrize the
higher resonance and continuum states involving the Z
channel,

Chx

0, x(p?, p*.q%) =

+ 9’
(M3 = p)(M; = p)Y(Mz—q*) (M — p)(My — %)
G719k Ak gy dz

Ciuk

k(P p* g =

(M3 = p) (M3, = PME — )
Gz Ak A4z

+ 9’
(M3, = PP )(ME —¢?)
Cpx-

I, k- (p% %, q%) =

+ .
(M3 = p)(Mj = p)(My. — %) (M —p?) (M. —q?)

(26)

Moreover, we perform Fierz re-arrangement both in the color and Dirac-spinor spaces to obtain the result

i

2V2J" =isucot c +isot ucc +isc e u +1isot” c tu — —&" e, pe Siysu

us

2

— Giysc 507 ysu — e ysu siysc — siysc et ysu + i Py ysc 57Pu

—ie" Py 5yPysu + i Peylysu syPc — i P ey u syPysc,

27

where the component %e"""ﬁéaaﬁc siysu leads to the correlation function

-2
UEyyar

42
izgpvﬂr

Ewvar
442

ﬁaﬁyv(p, q) =

—

and we introduce a parameter x to represent the possible
factorizable contributions on the hadron side as we
choose the local currents. The conventional mesons and
tetraquark states have average spatial sizes of the same
order, and J.X(0) potentially couples to the tetraquark
state rather than the two-meson scattering states; there-
fore, k < 1 [41]. However, such a term makes a contribu-

tion to the component IT;, x(p'%, p>,¢%),

Chk
(M} - p)(ME-q*)’

(29)

where the coefficient 5;,[ x can be absorbed into the coef-
ficient Cj, k. We can clearly see that the parameter Cj, g is
necessary, and the parameters Cyyx and C, k- are im-
plied in the same way.

We accomplish operator product expansion up to the

d*xe? (0T {2 (x) 2(0)0 " c(0)} [0) f d*ye OIT {JX () a(0)iyss(0)}10),

d*xd*yeP*el® (0|7 {ng(x)Jg ) &(0) T c(0) @(0)iys s(O)} 0y,

(28)

[
vacuum condensates of dimension 5 and neglect the
minor gluon condensate contributions [27, 36—40]. We
then obtain the QCD spectral densities pqcp(p’?, s,u)
through the double dispersion relation,

oep(p?, p%.q%) = fdsf du
A A;

where A2 and A2 are the thresholds. On the hadron side,
we obtain the hadronic spectral densities pg(s’,s,u)
through the triple dispersion relation,

a2 = [ ds f ds f du
A? A A

(s, s,u)
(5" =p)(s—pu—-q?)

pacp(p’?, s,u)

R 30
(s—pHu—-q?) (30)

; €2))

123106-6



Strange cousin of Z,(4020/4025) as a tetraquark state

Chin. Phys. C 46, 123106 (2022)

according to Eq. (25), where A?? are the thresholds. We
match the hadron side with the QCD side below the con-
tinuum thresholds to acquire rigorous quark-hadron dual-
ity [36, 37],

Joe,

pQCD(p , 8, 1)

o= )

where so and ug are the continuum thresholds. We first
take the integral over ds’ and introduce some unknown
parameters, such as Cjk, Cjyk, and C, k-, to paramet-
rize contributions involving higher resonances and con-
tinuum states in the s channel.
We set p?=p?> in the correlation functions

(p"?, p?,4%) and perform a double Borel transform in re-

) gard to the variables P> = —p? and Q? = —¢*>. We then set
= f ds f du [ f ds’ pu(s’, s, u) ] (32)  the Borel parameters 77 =T, =T? to obtain three QCD
A? A2 A? (S/ - p’z)(s - p2)(u - qz) sum mles
AznkGzik M; M% My M; + My
W [exp(—ﬁ —EXpP| == ||EXP| — T +C/1 K E€Xp T
4 [2( 4
64 \/' 74 Jame T 48 \/' n2T? 4mz T
L Ms$qGq) f ( ) (_ i _ms(gGq) f /
96 VI T June / (5—4m2) 72" 962212 June
_my(gGq) / 4mc 4m B i )
64 22T+ 4mz %)’
(33)

M2 - M2 T2 T2 T2

A21ukG M; M2
21wk GzijuK {exp [_ Iy ] ~exp ( Z )
I

M2
exp( )+CJ/.,,K exp{ /i

2 2
M;,, + My
T2

i 4m? 2 s+u
—2 [ Tas| a ,/ 2 emy(s+2m2)(5 - = (-—)
128\/_7r4 e Sf ! umc ms s+ 2m )(3 9s )] T

_{gq) +(5s)

sf/w
dsA f s + 2m exp )
24 \/571' 2 4m?

G 5G oM
N (qGq) +(5Gs) ds

s +8m? ( s)
—————eX

5 2
576 \/§7T2 4m? S(S—4mg> T
mm(aGq) [ 1 exn(—2) -
192 V2r2 ’ / e
Am; s 4m )
_ mm{qGq) W m%
16 \/_7T2 T2 4m? s T2

T2

msme [<§S> - 2@@]

(qGq) +(5Gs) S
576 \/571'2 4m?

msme <qu> S
192v2R? 2

\/7

F

16 V2n2

(34

T2

Azuk-Gznk- M M2 M. M2+ M2
M[exp(__nJ_exp( z]] Xp( )+Cn,(exp M+ Mie

M2 _ M2 T2 T2

4mc

dsf du
128 «/' 4 Jam

10umc s+u
+mys exp( )

{qq) +(5s)
16 V2n2

\fl——sexp
4m?
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| Mshe [<5S>—6<5]6]>]f (qu>+<sGs) s+2m ( )
48 V2n2 4 V 2 576V 4mz (s—4m2)
Fm Sl 2 [ )
576 \/_ﬂz 4m? T2 T2 96 V272 Jam 4m

Smc(sGs)
" 88 Va2 4mz T2
where (GGq) =(Gg,0Gq), (3Gs)=(38,0Gs), Azk =

/l](ﬁ,/lz, /lzj/lp[( = /11(/1]/¢/lz, and /lZnK‘ = /lK»/l,]/lz. We neg-
lect the dependencies of the parameters Cj x, Cjyk, and
C,.kx- on the Lorentz invariants p?, p?, and ¢*. Instead,
we take them as free parameters and search for the best
values to delete the contamination from high resonances
and continuum states and hence acquire stable QCD sum
rules. The corresponding hadronic coupling constants for
the Z.(4020/4025) state can be obtained with the simple
substitution of s — d and are treated in the same manner.
On the QCD side, we choose the flavor number
ny =4 and set the energy scale to be u=1.3GeV, asin a
previous study on the decays of Z.,(3985/4000) [27]. On
the hadron side, we take the parameters as
Mg =0.4937GeV, M,= 0.13957 GeV, Mg = 0.8917
GeV, M,= 0.77526 GeV, M,y = 3.0969 GeV, M, =
2.9834 GeV, M, = 3.525 GeV [4], fx = 0.156 GeV, f; =

0.130 GeV [4], fic = 0.220 GeV, f, = 0215 GeV, s} =
1.0 GeV, 5] = 0.85 GeV, \[s%. = 1.3 GeV, [0 = 12
GeV [42], fi = 0.235 GeV, fi, = 0418 GeV, f, =
0387 GeV [43], \[s) = 4.05 GeV, [, = 3.6 GeV,

: y e =
\/:2; 3.5 GeV [4], kM :_<q61>+<ss)’ o

"2 G my +mg fK(1_5K)
JrMx =- (aq) from the Gell-Mann-Oakes-Renner
my, +my fr
S0 777717171
a5r —A ‘
40| ---B | A
35} —=-C | ]
ok y
02.5 o 1
Xl = i 3
15[ 5
10[ 5
05 ]
0 0 1 1 1 1 1 1 1 " 1 " i
36 38 40 42 44 46 48 50 52 54
(GeV )
Fig. 2.

10 Gz.n k> Gzesiuk s Gzenck* s Gzehens Gzoapyms and Gz,yp, TESpeCtively.

(35)

relation 6x = 0.50 [44].

In calculations, we fit the unknown parameters to be
Cix = 0.000064 +0.000014 x T2GeV*,  Cj, = 0.00006+
0.000010 x T2GeV*, C 1y x = 0.00335 +0.000096 x T>GeV’,
Cpyn = 0.00305 +0.000096 x T>GeV’,  C, k- = 0.00368+
0.00012x T?GeV’, and Cy.p =0.00302 +0.00012x
T?GeV’ to acquire flat Borel platforms with the interval
T2, -T2 =1GeV?, where max and min represent the
maximum and minimum values, respectively. The Borel
windows are T,ZK (4.0-5.0)GeV?, Tiﬂ =(4.0-5.0)
GeV?, T%K (4.3-5.3)GeV?, Tf/w (4.1-5.1)GeV?,
T2 =(39-49)GeV?, and T} , = (3.9-4.9)GeV?, where
we add the subscripts 4K, h.m--- to denote the corres-
ponding decay channels. In the Borel windows, the un-
certainties 6G originating from the Borel parameters 77
must be less than or approximately 0.01(GeV). Such a
strict and powerful constraint plays a decisive role and
works well, as in our previous studies [27, 36—40]. In Fig.
2, we plot the hadronic coupling constants Gz jk,
GZ“JN,K, GZ“T](K’a Gzch(ﬂ, GZ(_[/wn-, and Gz(,](p Wlth vari-
ations in the Borel parameters. We can explicitly observe
flat platforms, which enable reliable extraction of the
hadronic coupling constants.

If we take the symbol ¢ to represent the input para-
meters on the QCD side, then, for example, the uncertain-

50— T 7T 7T T 71—

45l —pl A
a0l ---E|
35 —-—-F ]

sof ]
o2sf T ]
) e ]
15[ ]
10 ]
05f ]

Oloh.l.l.l.l.l.l.l.l.-
36 38 40 42 44 46 48 50 52 54

T’ (GeV?)

(color online) Hadronic coupling constants with variations in the Borel parameters 72, where A, B, C, D, E, and F correspond
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ties E—E&+6¢& result in the  uncertainties
Jif/lﬂfK/lZG_ZJ/'J/K - fJ/l//fK/lZGZJ/L//K + 5fj/¢,f](/lszj/¢]( and
CJ/LpK - CJ/,J,[( +6CJ/L/,K , where

S fi1ufxAzGzipuk =f110 fxA2G 210k
0 1) oAl oG
x( {CW’ +£+_—Z+—ZJN/K),
Sy Sk Az

Gziuk

in which we add the index ~ to all the variables to denote
the central values. In the case where the uncertainty
6Cyyk 1s small enough to be ignored, error analysis is
easy to perform by  approximately  setting
0fiw _6fx _ 04z _ 6Gziyk
R L A T
tainty 6Cjyx is considerable, it must be considered for
every uncertainty 6¢. We must adjust 6C/yx via fine tun-
ing with the help of trial and error according to the vari-
ation 6¢ to acquire enough flat platforms in the same re-
gion, as in the case of the central values & and Cyyk.
This error analysis is difficult to perform. We typically

0 0 oA . .
set M = i =22 -0 to estimate the uncertainty

S ko Az o
6Gzyyk; however, the validity of such an approximation

is yet to be proved.
Now, let us methodically obtain the hadronic coup-
ling constants according to above error analysis.

. However, if the

uncer-

Gz nx =1.68+0.10,
Gz jwk =2.08£0.08GeV,
Gz .k =2.84+0.09GeV,

Gznr=1.69+0.09,
Gz jjyn =2.08+£0.08 GeV,

Gy p =2.80+0.09GeV, (37)
by setting
_ - 446Gz 1uk
0 f11ufxA2Gzypyk = fl/t//fK/lZGZJ/L/rK——/w, (38)
Gzyuk
If we set
= == = 6Gzyyk
O frwfxAzGzyyk = f19 fxAzGzik —= WK (39
Gzyuk

the uncertainty 6Gz;,x Wwill be four times as large as that
given in Eq. (37). Other uncertainties can be understood
in the same way. According to Eq. (37), the SU(3) break-
ing effects in the hadronic coupling constants are small.

It is then easy to obtain the partial decay widths by
taking the relevant masses from the Particle Data Group

(4],

' (Zs — hoK)=1.83£0.22MeV,
' (Z; — JJWK) =8.05+0.62MeV,
[(Zes — n.K*) =12.83+0.81MeV,
[ (Z. = her) =6.86£0.73MeV,
T'(Z, — J/yn) =8.82+0.68MeV,
T'(Z. — 7p) =13.89+0.89MeV, (40)

and the total widths,

Iz =22.71+1.65(or £6.60)MeV,
Iz =29.57+2.30 (or +9.20) MeV, (41)

where the values in the brackets are obtained from Eq.
(39). The prediction I'y =29.57+2.30(or £9.20) MeV is
compatible with the upper bound of the experimental data
=Q4.8+5.6+x7.7)MeV [1], (23.0£6.0+1.00MeV [2],
and (7.9+£2.7+£2.6)MeV [3] from the BESIII Collabora-
tion and also supports assigning Z.(4020/4025) to be the
AA-type hidden-charm tetraquark states with JP€ =1+,
In the present study, we neglect the decays
Z.(4020/4025) —» D*D* and Z., — D*D%, D:D* because
the Z. and Z. states lie near the corresponding two-
meson thresholds, and the available phase-spaces are
small and even lead to the possible assignments of mo-
lecular states [5—12]. The most favorable channels are
Zes—on.K* and Z.—-n.,p at present, even for
Z.(4020/4025). The decay Z.(4020/4025) — n.p has not
yet been observed, and observation of this channel may
lead to a more robust assignment and shed light on the
nature of Z, states. We can search for the Z., state in the
invariant mass spectra of h.K, J/WK, n.K*, D*D%, and
D:D* in the future.

In the picture of diquark-antidiquark type tetraquark
states, Z.(3900) and Z.4(3985) can be assigned tentatively
as the SA—AS type hidden-charm tetraquark states, and
the hadronic coupling constants have the relations
\Gzp 5/zpD | < 1G211ym1 20| and IGzp-b,/zDD: | <
|Gzy/wk/zn k| Furthermore, the allowed phase-spaces in
the decays to open-charm meson pairs are significantly
smaller than those of decays to meson pairs involving
charmonium. The contributions of decays to open-charm
meson pairs to the total decay widths can be ignored [27,
36]. We expect that the conclusion holds in the present
study for the Z.(4020/4025) and Z.(4110) states and
make a crude estimation of the partial decay widths,
I (2. - D*D/DD") < IMeV and T(Z.; — D*D,/DD;) < 1
MeV, based on the relations between the hadronic coup-
ling constants obtained in Refs. [27, 36]; the contribu-
tions to the total widths from the decays to the final states

123106-9



Zhi-Gang Wang

Chin. Phys. C 46, 123106 (2022)

D*D/DD* and D*D,/DD? are also ignored.

IV. CONCLUSION

In this article, we tentatively assign Z.(4020/4025) as
the AA-type hidden-charm tetraquark state with
JP€ =1*" and construct AA-type tensor currents to in-
vestigate the tetraquark states without strange, with
strange, and with hidden-strange via QCD sum rules. We
consider the contributions of the vacuum condensates up
to dimension-10 in operator product expansion. Then, we
resort to the modified energy scale formula

U= M}z(/y/z—(ZMc)z—kMS to account for the SU(3)

mass-breaking effects to choose suitable energy scales for
the QCD spectral densities and obtain the tetraquark
masses in a self-consistent manner. We introduce three-
point correlation functions to investigate the hadronic

coupling constants in the two-body strong decays of the
tetraquark states without strange and with strange via
QCD sum rules based on rigorous quark-hadron duality,
which is a unique feature of our studies. The numerical
results indicate that the SU(3) breaking effects in the had-
ronic coupling constants are small. We then obtain the
partial decay widths and total widths of the Z. and Z
states and find that the total width I'z is compatible with
that of Z.(4020/4025) and also supports assigning
Z,.(4020/4025) as the JFC = 1*-AA-type tetraquark state.
Further experimental data are required to achieve a more
robust assignment because Z.(4020/4025) has not yet
been observed in the J/ym and 5.0 channels. In future,
we may search for the strange cousin Z. in the D*D%,
D:D*, h.K, J/yK, and n.K* invariant mass spectra, the
observation of which would shed light on the nature of Z.
states.
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