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Abstract: Motivated  by  the  analogous  properties  of    and  ,  we  tentatively  assign
  as  the  -type  hidden-charm  tetraquark  state  with  ,  where  A  denotes  the  axialvector

diquark  states,  and  explore  -type  tetraquark  states  without  strange,  with  strange,  and  with  hidden-strange  via
QCD sum rules in a consistent manner. We then explore the hadronic coupling constants in the two-body strong de-
cays of tetraquark states without and with strange via QCD sum rules based on rigorous quark-hadron duality and ac-
quire partial and total decay widths. The present calculations support assigning   as the  -type tetra-
quark state with  , while the predictions for its strange cousin   state can be confronted with experiment-
al data in the future.
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I.  INTRODUCTION

Z±c (4025)
π∓

e+e−→ (D∗D̄∗)±π∓

M = (4026.3±2.6±3.7)MeV
Γ = (24.8±5.6±7.7)MeV

Z0
c (4025) π0

e+e−→ (D∗D̄∗)0π0

M = (4025.5+2.0
−4.7±3.1)MeV

Γ = (23.0±6.0±1.0)MeV
Z±c (4025)

Z0
c (4025)

Z±c (4020) π±hc

e+e−→ π+π−hc

M = (4022.9±0.8±2.7)MeV
Γ = (7.9±2.7±2.6)MeV Zc(4020)
Zc(4025)

X(4020)

In 2013, the BESIII Collaboration observed 
in  the    recoil  mass  spectrum  of  the  process

,  where  the  measured  Breit-Wigner
mass  and  width  were    and

,  respectively  [1].  Two  years
later, the  BESIII  Collaboration observed its  neutral  part-
ner    in  the    recoil mass  spectrum of  the  pro-
cess  , where the measured Breit-Wign-
er  mass  and  width  were    and

,  respectively  [2].  The  masses
and widths  of  the  charged structures   and neut-
ral  structure    were  consistent  with  each  other.
Moreover,  in  2013,  the  BESIII  Collaboration  observed

  in  the    mass  spectrum  of  the  process
,  where  the  measured  Breit-Wigner  mass

and  width  were    and
,  respectively  [3].    and

  were  assigned  to  be  the  same  particle  by  the
Particle  Data  Group and listed  in  the  Review of  Particle
Physics as   [4], although the widths differed from
each other considerably.

D∗D̄∗

JPC = 0++ 1+− 2++ π±hc

JPC = 1−− π±hc

The  spin  and  parity  have  not  yet  been  measured. S-
wave    systems  have  the  quantum  numbers

,  ,  and  , S-wave    systems  have  the
quantum numbers  , P-wave   systems have

JPC = 0++ 1+− 2++

JPC = 1+−

Zc(4020/4025) D∗D̄∗

Zc(4020/4025)

Zc(4020/4025) AĀ
JPC = 1+− Zc(3900)

S Ā−AS̄

the  quantum  numbers  ,  ,  and  ,  and  we
can tentatively assign the quantum numbers   for

.  According to the nearby   threshold,
one may expect to assign   as the tetraquark
molecular state [5–12]. In the picture of tetraquark states,

 can be assigned as the  -type tetraquark
state  with    [13– 15],  whereas    can  be
assigned as the   type tetraquark state according to
calculations via QCD sum rules [16], where S and A rep-
resent the  scalar  and  axialvector  diquark  states,   respect-
ively.

Z−cs(3985) K+

e+e−→ K+(D−s D∗0+D∗−s D0)
M = 3985.2+2.1

−2.0±1.7MeV
Γ = 13.8+8.1

−5.2±4.9MeV

Z+cs(4000) Z+cs(4220) J/ψK+

B+→ J/ψϕK+

Z+cs(4000)
M = 4003±6+4

−14 MeV Γ = 131±15±26MeV
JP = 1+

Zcs(3985/4000)

Zcs(3985)

In  2020,  the  BESIII  Collaboration  observed  the
  structure  in  a    recoil-mass  spectrum with  a

significance  of  5.3  σ  in  the  processes
  [17].  The  measured  Breit-

Wigner  mass  and  width  were 
and  , respectively [17]. In 2021, the
LHCb  Collaboration  observed  two  new  exotic  states,

 and  ,  in the   mass spectrum of
the  process    [18].  The  most  significant
state,  ,  had  a  Breit-Wigner  mass  and  width  of

  and  ,  respect-
ively, and the spin-parity   [18]. Although we can
reproduce  the  mass  of    using  QCD  sum
rules in the pictures of both the tetraquark and molecular
states  [19– 26],  direct  calculations  of  the  decay  widths
based on QCD sum rules support assigning   and
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Zcs(4000)
JPC = 1+−

Zcs(3985)
Zcs(4000)

  as the  hidden-charm  tetraquark  state  and  mo-
lecular  state  with  ,  respectively.  Alternatively,
at  least,   may  have  a  large  diquark-antidiquark
type Fock component,  while   may have a large
color-singlet-color-singlet type Fock component [27].

Zc(3900/3885) Zcs(3985/4000)  and    are  cousins  and
have analogous decay modes. 

Z±c (3900)→ J/ψπ±, Z+cs(4000)→ J/ψK+, (1)
 

Z±c (3885)→ (DD̄∗)±, Z−cs(3985)→ D−s D∗0, D∗−s D0 , (2)

Zc(4020/4025)
Zcs Zcs

D∗D̄∗s D∗sD̄∗ hcK
Zc(4020/4025) AĀ

JPC = 1+−

Zc(4020/4025)

and  we  expect  that    also  has  strange
cousins  , which have analogous decay modes. The 
states  may be observed in  decays to  final  states,  such as

,  ,  and  . In  this  study,  we  tentatively   as-
sign    as  the  -type hidden-charm   tetra-
quark state with   and extend our previous study
to investigate the mass and width of its strange cousin us-
ing QCD sum rules [20, 23, 27, 28]. The predictions can
be confronted with experimental data in the future, which
may contribute to disentangling the pictures of tetraquark
and molecular states. As a byproduct, we obtain the mass
of the hidden-strange/charm tetraquark state and the par-
tial decay widths of  .

AĀ

Zc Zcs

The  article  is  arranged  as  follows.  We  derive  QCD
sum rules for the masses and pole residues of the  -type
tetraquark  states  without  strange,  with  strange,  and  with
hidden-strange  in  Section  II.  In  section  III,  we  derive
QCD sum rules for the hadronic coupling constants in the
decays of the   and   states. Section IV is reserved for
our conclusion. 

Zc Zcs Zcss̄

JPC = 1+−
II.  QCD SUM RULES FOR THE , , and 

TETRAQUARK STATES WITH 

Πµναβ(p)
First,  we  present  the  two-point  correlation  functions

 in the QCD sum rules, 

Πµναβ(p) = i
∫

d4xeip·x⟨0|T
{
Jµν(x)J†αβ(0)

}
|0⟩ , (3)

Jµν(x) = Jud̄
µν (x) Jus̄

µν(x) Jss̄
µν(x)where  ,  , and  ,

 

Jud̄
µν (x) =

εi jkεimn

√
2

{
uT

j (x)Cγµck(x)d̄m(x)γνCc̄T
n (x)

−uT
j (x)Cγνck(x)d̄m(x)γµCc̄T

n (x)
}
,

Jus̄
µν(x) =

εi jkεimn

√
2

{
uT

j (x)Cγµck(x)s̄m(x)γνCc̄T
n (x)

−uT
j (x)Cγνck(x)s̄m(x)γµCc̄T

n (x)
}
,

 

Jss̄
µν(x) =

εi jkεimn

√
2

{
sT

j (x)Cγµck(x)s̄m(x)γνCc̄T
n (x)

− sT
j (x)Cγνck(x)s̄m(x)γµCc̄T

n (x)
}
, (4)

Jud̄
µν (x) Jus̄

µν(x) Jss̄
µν(x)

where  i,  j,  k, m,  and  n  are  color  indexes,  and C  is  the
charge  conjugation  matrix  [15,  28]. We  choose  the   cur-
rents  ,  ,  and    to  explore  the  hidden-
charm tetraquark states without strange, with strange, and
with hidden-strange, respectively.

JPC = 1+− 1−−

On the hadronic side, we explicitly isolate the ground
state  contributions  of  the  hidden-charm  tetraquark  states
with   and   and acquire the following results: 

Πµναβ(p) =
λ2

Z

M2
Z − p2

(
p2gµαgνβ− p2gµβgνα

−gµαpνpβ−gνβpµpα+gµβpνpα+gναpµpβ
)

+
λ2

Y

M2
Y − p2

(
−gµαpνpβ−gνβpµpα

+gµβpνpα+gναpµpβ
)
+ · · · , (5)

JPC = 1+−

1−− λZ λY

where Z and Y denote the tetraquark states with 
and  ,  respectively.  The  pole  residues    and    are
defined by 

⟨0|ηµν(0)|Z(p)⟩ = λZ εµναβ ζ
αpβ ,

⟨0|ηµν(0)|Y(p)⟩ = λY

(
ζµpν− ζνpµ

)
, (6)

ζµ
Πµναβ(p)

the   are the polarization vectors of the tetraquark states.
We can  rewrite  the  correlation  functions    in  the
form 

Πµναβ(p) =ΠZ(p2)
(
p2gµαgνβ− p2gµβgνα

−gµαpνpβ−gνβpµpα+gµβpνpα+gναpµpβ
)

+ΠY (p2)
(
−gµαpνpβ−gνβpµpα

+gµβpνpα+gναpµpβ
)
, (7)

according to Lorentz covariance.
ΠZ(p2) ΠY (p2)

PµναβA,p PµναβV,p

We project the components   and   by the
tensors   and  to
 

Π̃Z(p2) = p2ΠZ(p2) = PµναβA,p Πµναβ(p) ,

Π̃Y (p2) = p2ΠY (p2) = PµναβV,p Πµναβ(p) , (8)

where 
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PµναβA,p =
1
6

(
gµα− pµpα

p2

)(
gνβ− pνpβ

p2

)
,

PµναβV,p =
1
6

(
gµα− pµpα

p2

)(
gνβ− pνpβ

p2

)
− 1

6
gµαgνβ . (9)

⟨q̄q⟩ ⟨αsGG
π
⟩ ⟨q̄gsσGq⟩ ⟨q̄q⟩2

⟨q̄q⟩⟨αsGG
π
⟩ ⟨q̄q⟩⟨q̄gsσGq⟩ ⟨q̄gsσGq⟩2

⟨q̄q⟩2⟨αsGG
π
⟩ q = u

We accomplish operator product expansion up to the
vacuum condensates of dimension 10 and take account of
the vacuum condensates  ,  ,  ,  ,

,  ,  ,  and

, where  , d, or s, as in previous studies
[14–16, 20, 23]. We project the components 

Π̃Z(p2) =PµναβA,p Πµναβ(p) ,

Π̃Y (p2) =PµναβV,p Πµναβ(p) , (10)

Π̃Z(p2)
n ≤ 10

k ≤ 1
O(αk

s) k > 1

⟨g3
sGGG⟩ ⟨αsGG

π
⟩2

⟨αsGG
π
⟩⟨q̄gsσGq⟩ O(α3/2

s ) O(α2
s)

O(α3/2
s )

on the QCD side. In the present study, we are only inter-
ested in the component   as we investigate the axi-
alvector tetraquark states. We take the truncations 
and   in a consistent manner, and the operators of the
orders    with    are  discarded.  The  operators  in
the  condensates  ,  ,  and

  are  of  the  orders  ,  ,  and
,  respectively,  and  play  minor  roles;  hence,  they

can be safely ignored [12, 29].
ρZ(s)We obtain  the  QCD  spectral  densities    through

the dispersion relation, 

ρZ(s) =
ImΠ̃Z(s)

π
, (11)

s0
P2 = −p2

supposing  quark-hadron  duality  below  the  continuum
threshold  , and accomplish a Borel transform in regard
to the variable   to obtain the QCD sum rules 

λ̃2
Z exp

−M2
Z

T 2

 = ∫ s0

4m2
c

dsρZ(s) exp
(
− s

T 2

)
, (12)

λ̃Z = λZ MZwhere  .
1

T 2
λ̃Z

We differentiate Eq. (12) with respect to  , elimin-
ate the re-defined pole residues  , and obtain QCD sum
rules for the masses of the axialvector hidden-charm tet-
raquark states, 

M2
Z =

∫ s0

4m2
c

ds
d

d
(−1/T 2) ρZ(s) exp

(
− s

T 2

)
∫ s0

4m2
c

dsρZ(s) exp
(
− s

T 2

) . (13)

⟨q̄q⟩ = −(0.24±0.01GeV)3 ⟨s̄s⟩ = (0.8±0.1)⟨q̄q⟩
⟨q̄gsσGq⟩ = m2

0⟨q̄q⟩ ⟨s̄gsσGs⟩ = m2
0⟨s̄s⟩ m2

0 = (0.8±0.1)
GeV2 µ = 1GeV
MS mc(mc) = (1.275±0.025)GeV
ms(µ = 2GeV) = (0.095±0.005)GeV

mq = mu = md = 0

We take the standard values of the vacuum condens-
ates,  ,  ,

,  , and 
 at the energy scale   [30–32] and take the

  quark  masses    and
  from  the  Particle

Data  Group  [4].  We  set    and  consider
the energy-scale dependence of the input parameters, 

⟨q̄q⟩(µ) =⟨q̄q⟩(1GeV)
[
αs(1GeV)
αs(µ)

] 12
33−2n f

,

⟨s̄s⟩(µ) =⟨s̄s⟩(1GeV)
[
αs(1GeV)
αs(µ)

] 12
33−2n f

,

⟨q̄gsσGq⟩(µ) =⟨q̄gsσGq⟩(1GeV)
[
αs(1GeV)
αs(µ)

] 2
33−2n f

,

⟨s̄gsσGs⟩(µ) =⟨s̄gsσGs⟩(1GeV)
[
αs(1GeV)
αs(µ)

] 2
33−2n f

,

mc(µ) =mc(mc)
[
αs(µ)
αs(mc)

] 12
33−2n f

,

ms(µ) =ms(2GeV)
[

αs(µ)
αs(2GeV)

] 12
33−2n f

,

αs(µ) =
1

b0t

1− b1

b2
0

log t
t
+

b2
1(log2 t− log t−1)+b0b2

b4
0t2

 ,
(14)

t = log
µ2

Λ2
QCD

b0 =
33−2n f

12π
b1 =

153−19n f

24π2

b2 =
2857− 5033

9 n f +
325
27 n2

f

128π3 ΛQCD = 210 292

332 n f = 5 4 3
n f = 4

from  the  renormalization  group  equation,  where

,  ,  ,

,  and    MeV, 
MeV, and   MeV for  the flavors  ,  ,  and  ,  re-
spectively  [4,  33].  We  choose  the  flavor  number 
because there are u, d, s, and c quarks.

As in our previous studies, we acquire the acceptable
energy scales  of  the  QCD spectral  densities  for  the  hid-
den-charm tetraquark states according to the energy scale
formula 

µ =
√

M2
X/Y/Z − (2Mc)2 , (15)

Mc = 1.82GeV
SU(3)

with  the  effective  c-quark  mass    [11,  15,
34–35]. Furthermore, we consider the   mass-break-
ing effects  according  to  the  modified  energy  scale   for-
mula 

µ =
√

M2
X/Y/Z − (2Mc)2− kMs , (16)

Mswhere    is  the  effective  s-quark  mass  and  fitted  to  be
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0.2GeV [23], and k is the number of valence s-quarks.
T 2

s0

JPC = 1+−

Zcs Zcss̄

We search for suitable Borel parameters   and con-
tinuum threshold parameters   to satisfy the two criteria
(pole or ground state dominance and convergence of op-
erator  product  expansion)  via  trial  and  error.  The  Borel
parameters,  continuum  threshold  parameters,  energy
scales  of  the  QCD spectral  densities,  pole  contributions,
and contributions  from  the  vacuum  condensates  of   di-
mension 10 are shown in Table 1. From the table, we can
clearly see that the modified energy scale formula is well
satisfied. Then,  we  consider  the  uncertainties  on  the   in-
put parameters and acquire the masses and pole residues
of  the  hidden-charm  tetraquark  states  without  strange,
with  strange,  and  with  hidden-strange  having  quantum
numbers  ,  which are also shown in Table 1.  In
Fig. 1, we plot the masses of   and   with variations
in the  Borel  parameters.  As  shown  in  the  figure,   plat-
forms appear  in  the  Borel  windows,  thus  enabling   reli-
able extraction of tetraquark masses.

MZc
= (4.02±0.09) GeV

MZ±c = (4026.3±2.6±3.7) MZ±c = (4022.9±0.8±2.7)
MZ0

c
= (4025.5+2.0

−4.7±3.1)
Zc

JPC = 1+−AĀ

The  present  prediction,    (also
in  Ref.  [28]),  is  consistent  with  the  experimental  values

 MeV, 
MeV,  and   MeV from the  BESIII
Collaboration  [1– 3],  which  supports  assigning  (4020/
4025) as the  -type tetraquark state.  We can-
not assign a hadron unambiguously with the mass alone;
we must calculate the partial decay widths and total width
to perform a more robust assignment.
 

Zc ZcsIII.  DECAY WIDTHS OF THE  AND  STATES
WITH QCD SUM RULES

Zcs→
hcK J/ψK ηcK∗

Παβµν(p,q) Π1
αµν(p,q) Π2

αµν(p,q)

We  investigate  the  two-body  strong  decays 
,  ,  and    with  the  three-point  correlation

functions  ,  ,  and  ,  respect-
ively,
 

Παβµν(p,q) =i2
∫

d4xd4yeipxeiqy ⟨0|T
{
Jhc

αβ(x)JK
5 (y)Jus̄†

µν (0)
}
|0⟩ ,

Π1
αµν(p,q) =i2

∫
d4xd4yeipxeiqy ⟨0|T

{
JJ/ψ
α (x)JK

5 (y)Jus̄†
µν (0)

}
|0⟩ ,

Π2
αµν(p,q) =i2

∫
d4xd4yeipxeiqy ⟨0|T

{
Jηc

5 (x)JK∗
α (y)Jus̄†

µν (0)
}
|0⟩ ,
(17)

where the currents
 

Jhc

αβ(x) =c̄(x)σαβc(x) ,

JJ/ψ
µ (x) =c̄(x)γµc(x) ,

JK
5 (y) =ū(y)iγ5s(y) ,

Jηc

5 (x) =c̄(x)iγ5c(x) ,

JK∗
µ (y) =ū(y)γµs(y) , (18)

hc J/ψ ηc K∗

s→ d
Zc

interpolate  the  mesons  ,  , K,  ,  and  ,  respect-
ively.  With  the  simple  substitution  of  ,  we  obtain
the corresponding ones for the   tetraquark state.

10

Table 1.      Borel parameters, continuum threshold parameters, energy scales, pole contributions, contributions from the vacuum con-
densates of dimension  , and masses and pole residues for the axialvector tetraquark states.

T 2/GeV2 √
s0 /GeV µ/GeV pole |D(10)| MZ/GeV λ̃Z/(10−2GeV5)

Zc 3.3−3.7 4.6±0.1 1.7 (40−59) % ≪ 1 % 4.02±0.09 3.00±0.45

Zcs 3.4−3.8 4.7±0.1 1.7 (41−60) % ≪ 1 % 4.11±0.08 3.49±0.51

Zcss̄ 3.5−3.9 4.8±0.1 1.7 (42−61) % ≪ 1 % 4.20±0.09 4.00±0.58

T 2 Zcs

Zcss̄

Fig. 1.    (color online) Masses of the tetraquark states with variations in the Borel parameters  , where (I) and (II) correspond to 
and  , respectively, and the regions between the two vertical lines are the Borel windows.

 

Zhi-Gang Wang Chin. Phys. C 46, 123106 (2022)

123106-4



We  insert  a  complete  set  of  intermediate  hadronic
states having possible (non-vanishing) couplings with the

current operators  into  the  three-point  correlation   func-
tions and explicitly isolate the ground state contributions.

Παβµν(p,q) =λK fhεαβα
′β′ξα′ pβ′λZε

µνµ′ν′ζ∗µ′ p
′
ν′

−iGZhKε
ρσλτpρξ∗σp′λζτ

(M2
Z − p′2)(M2

h − p2)(M2
K −q2)

+λK fhεαβα
′β′ξα′ pβ′λY

(
ζ∗µp′ν− ζ∗νp′µ

) −GYhKξ
∗ · ζ

(M2
Y − p′2)(M2

h − p2)(M2
K −q2)

+λK f T
J/ψ

(
ξαpβ− ξβpα

)
λZε

µνµ′ν′ζ∗µ′ p
′
ν′

−GZJ/ψKξ
∗ · ζ

(M2
Z − p′2)(M2

J/ψ− p2)(M2
K −q2)

+λK f T
J/ψ

(
ξαpβ− ξβpα

)
λY

(
ζ∗µp′ν− ζ∗νp′µ

) −iGY J/ψKε
ρσλτpρξ∗σp′λζτ

(M2
Y − p′2)(M2

J/ψ− p2)(M2
K −q2)

+ · · · , (19)
 

Π
αµν
1 (p,q) =λKλJ/ψξ

αλZε
µνµ′ν′ζ∗µ′ p

′
ν′

−GZJ/ψKξ
∗ · ζ

(M2
Z − p′2)(M2

J/ψ− p2)(M2
K −q2)

+λKλJ/ψξ
αλY

(
ζ∗µp′ν− ζ∗νp′µ

) −iGY J/ψKε
ρσλτpρξ∗σp′λζτ

(M2
Y − p′2)(M2

J/ψ− p2)(M2
K −q2)

+ · · · , (20)

 

Π
αµν
2 (p,q) =ληλK∗ξ

αλZε
µνµ′ν′ζ∗µ′ p

′
ν′

−GZηK∗ξ
∗ · ζ

(M2
Z − p′2)(M2

η − p2)(M2
K∗ −q2)

+ληλK∗ξ
αλY

(
ζ∗µp′ν− ζ∗νp′µ

) −iGYηK∗ε
ρσλτqρξ∗σp′λζτ

(M2
Y − p′2)(M2

η − p2)(M2
K∗ −q2)

+ · · · , (21)

λK =
fK M2

K

mu+ms
λη =

fηc
M2
ηc

2mc
λJ/ψ = fJ/ψMJ/ψ

λK∗ = fK∗MK∗ p′ = p+q
hc J/ψ ηc K∗

where  ,  ,  ,
,  ,  and  the  decay  constants  of  the

mesons  ,  , K,  , and   are defined by
 

⟨0|Jhc
µν(0)|hc(p)⟩ = fhc

εµναβξ
αpβ ,

⟨0|Jhc
µν(0)|J/ψ(p)⟩ = f T

J/ψ

(
ξµpν− ξνpµ

)
,

⟨0|JJ/ψ
µ (0)|J/ψ(p)⟩ = fJ/ψMJ/ψ ξµ ,

⟨0|JK∗
µ (0)|K∗(p)⟩ = fK∗MK∗ ξµ ,

⟨0|JK
5 (0)|K(p)⟩ =

fK M2
K

mu+ms
,

⟨0|Jηc

5 (0)|ηc(p)⟩ =
fηc

M2
ηc

2mc
, (22)

hc J/ψ K∗where ξ are polarization vectors of  ,  ,  and  ,  and
the hadronic coupling constants are defined by
 

⟨hc(p)K(q)|Zcs(p′)⟩ =GZhK ε
ρσλτpρξ∗σp′λζτ ,

⟨J/ψ(p)K(q)|Ycs(p′)⟩ =GY J/ψK ε
ρσλτpρξ∗σp′λζτ ,

⟨hc(p)K(q)|Ycs(p′)⟩ =− iGYhK ξ
∗ · ζ ,

⟨J/ψ(p)K(q)|Zcs(p′)⟩ =− iGZJ/ψK ξ
∗ · ζ ,

⟨ηc(p)K∗(q)|Zcs(p′)⟩ =− iGZηK∗ ξ
∗ · ζ . (23)

The tensor  structures  in  Eqs.  (19) –(21)  are   suffi-
ciently complex,  and  we  must  project  the  relevant   com-
ponents with suitable tensor operators, 

− 2i
9

(
p2q2− (p ·q)2

)
ΠhcK(p′2, p2,q2)

=PαβηθA,p PµνϕωA,p′ εηθϕωΠαβµν(p,q) ,

−6
(
p2+q2+2p ·q

)
ΠJ/ψK(p′2, p2,q2) = εµνασp′σΠαµν1 (p,q),

−6
(
p2+q2+2p ·q

)
ΠηcK∗ (p′2, p2,q2) = εµνασp′σΠαµν2 (p,q),

(24)

where 

ΠhcK(p′2, p2,q2) =
GZhKλK fhλZ

(M2
Z − p′2)(M2

h − p2)(M2
K −q2)

+ · · · ,

ΠJ/ψK(p′2, p2,q2) =
GZJ/ψKλKλJ/ψλZ

(M2
Z − p′2)(M2

J/ψ− p2)(M2
K −q2)

+ · · · ,

ΠηcK∗ (p′2, p2,q2) =
GZηK∗λK∗ληλZ

(M2
Z − p′2)(M2

η − p2)(M2
K∗ −q2)

+ · · · ,

(25)

Zcs→ hcK J/ψK ηcK∗
which  correspond  to  the  two-body  strong  decays

,  , and  , respectively; the other com-
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Zcs→ hcK Ycs→ hcK Zcs→ J/ψK Ycs→ J/ψK

Zcs→ hcK
Zcs→ J/ψK Ycs→ J/ψK

Zcs→ J/ψK
Zcs→ ηcK∗

ponents in  Eqs.  (19)–(21)  have  no  contributions  or  con-
taminations.  In  Eq. (19),  there  are  four  channels,

,  ,  ,  and  ,
which  correspond  to  four  different  tensor  structures  and
therefore four different components. We project the chan-
nel   explicitly. In Eq. (20), there are two chan-
nels,    and  ,  which  correspond  to
two different  tensor  structures  and  therefore  two   differ-
ent components.  We project  the channel   ex-
plicitly.  In  Eq.  (21),  there  are  two  channels, 

Ycs→ ηcK∗

Zcs→ ηcK∗ · · ·

ChcK CJ/ψK CηcK∗

Zcs

and  , which correspond to two different tensor
structures  and  therefore  two  different  components.  We
project  the channel   explicitly.  The    in  Eq.
(25) represents the neglected contributions from the high-
er  resonances  and  continuum  states.  According  to
the  analysis  in  Refs.  [27,  36– 40],  we  can  introduce  the
parameters  ,  ,  and    to  parametrize  the
higher resonance and continuum states  involving the 
channel,

ΠhcK(p′2, p2,q2) =
GZhKλK fhλZ

(M2
Z − p′2)(M2

h − p2)(M2
K −q2)

+
ChcK

(M2
h − p2)(M2

K −q2)
,

ΠJ/ψK(p′2, p2,q2) =
GZJ/ψKλKλJ/ψλZ

(M2
Z − p′2)(M2

J/ψ− p2)(M2
K −q2)

+
CJ/ψK

(M2
J/ψ− p2)(M2

K −q2)
,

ΠηcK∗ (p′2, p2,q2) =
GZηK∗λK∗ληλZ

(M2
Z − p′2)(M2

η − p2)(M2
K∗ −q2)

+
CηcK∗

(M2
η − p2)(M2

K∗ −q2)
. (26)

Moreover, we perform Fierz re-arrangement both in the color and Dirac-spinor spaces to obtain the result
 

2
√

2Jµνus̄ =is̄u c̄σµνc+ is̄σµνu c̄c+ is̄c c̄σµνu+ is̄σµνc c̄u− i
2
εµναβc̄σαβc s̄iγ5u

− c̄iγ5c s̄σµνγ5u− c̄σµνγ5u s̄iγ5c− s̄iγ5c c̄σµνγ5u+ iεµναβc̄γαγ5c s̄γβu

− iεµναβc̄γαc s̄γβγ5u+ iεµναβc̄γαγ5u s̄γβc− iεµναβc̄γαu s̄γβγ5c , (27)

i
2ε

µναβc̄σαβc s̄iγ5uwhere the component   leads to the correlation function
 

Π̃αβµν(p,q) =
i2εµνλτ

4
√

2

∫
d4xd4yeipxeiqy ⟨0|T

{
Jhc

αβ(x)JK
5 (y) c̄(0)σλτc(0) ū(0)iγ5s(0)

}
|0⟩ ,

→κ
i2εµνλτ

4
√

2

∫
d4xeipx ⟨0|T

{
Jhc

αβ(x) c̄(0)σλτc(0)
}
|0⟩

∫
d4yeiqy ⟨0|T

{
JK

5 (y) ū(0)iγ5s(0)
}
|0⟩ , (28)

Jµνus̄ (0)

κ≪ 1
ΠhcK(p′2, p2,q2)

and we introduce a parameter κ  to represent the possible
factorizable  contributions  on  the  hadron  side  as  we
choose  the  local  currents.  The  conventional  mesons  and
tetraquark  states  have  average  spatial  sizes  of  the  same
order,  and    potentially  couples  to  the  tetraquark
state rather  than  the  two-meson  scattering  states;   there-
fore,   [41]. However, such a term makes a contribu-
tion to the component  ,
 

C̃hcK

(M2
h − p2)(M2

K −q2)
, (29)

C̃hcK

ChcK ChcK

CJ/ψK CηcK∗

where the coefficient   can be absorbed into the coef-
ficient  . We can clearly see that the parameter   is
necessary,  and  the  parameters    and    are  im-
plied in the same way.

We accomplish operator product expansion up to the

ρQCD(p′2, s,u)

vacuum  condensates  of  dimension  5  and  neglect  the
minor  gluon  condensate  contributions  [27,  36– 40].  We
then  obtain  the  QCD  spectral  densities 
through the double dispersion relation,
 

ΠQCD(p′2, p2,q2) =
∫ ∞

∆2
s

ds
∫ ∞

∆2
u

du
ρQCD(p′2, s,u)
(s− p2)(u−q2)

, (30)

∆2
s ∆2

u
ρH(s′, s,u)

where   and   are the thresholds. On the hadron side,
we  obtain  the  hadronic  spectral  densities 
through the triple dispersion relation,
 

ΠH(p′2, p2,q2) =
∫ ∞

∆′2s

ds′
∫ ∞

∆2
s

ds
∫ ∞

∆2
u

du

× ρH(s′, s,u)
(s′− p′2)(s− p2)(u−q2)

, (31)
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∆′2saccording  to  Eq.  (25),  where    are  the  thresholds.  We
match the hadron side with the QCD side below the con-
tinuum thresholds to acquire rigorous quark-hadron dual-
ity [36, 37], 

∫ s0

∆2
s

ds
∫ u0

∆2
u

du
ρQCD(p′2, s,u)
(s− p2)(u−q2)

=

∫ s0

∆2
s

ds
∫ u0

∆2
u

du
[∫ ∞

∆′2s

ds′
ρH(s′, s,u)

(s′− p′2)(s− p2)(u−q2)

]
, (32)

s0 u0

ds′

ChcK CJ/ψK CηcK∗

s′

where    and    are  the  continuum thresholds.  We  first
take  the  integral  over    and  introduce  some  unknown
parameters,  such  as  ,  ,  and  , to   paramet-
rize contributions  involving  higher  resonances  and   con-
tinuum states in the   channel.

p′2 = p2

Π(p′2, p2,q2)
P2 = −p2 Q2 = −q2

T 2
1 = T 2

2 = T 2

We  set    in  the  correlation  functions
 and perform a double Borel transform in re-

gard to the variables   and  . We then set
the  Borel  parameters    to  obtain  three  QCD
sum rules.

λZhKGZhK

M2
Z −M2

h

exp
−M2

h

T 2

− exp
−M2

Z

T 2

exp
−M2

K

T 2

+ChcK exp
−M2

h +M2
K

T 2


=

1

64
√

2π4

∫ s0
h

4m2
c

ds
∫ s0

K

0
du

√
1− 4m2

c

s

(
1− 4m2

c

s

)
exp

(
− s+u

T 2

)
+

ms
[
2⟨q̄q⟩− ⟨s̄s⟩]

48
√

2π2T 2

∫ s0
h

4m2
c

ds

√
1− 4m2

c

s

(
1− 4m2

c

s

)
exp

(
− s

T 2

)

+
ms⟨q̄Gq⟩

96
√

2π2T 2

∫ s0
h

4m2
c

ds
1√

s
(
s−4m2

c

) (
1− 2m2

c

s

)
exp

(
− s

T 2

)
+

ms⟨q̄Gq⟩
96
√

2π2T 2

∫ s0
h

4m2
c

ds

√
1− 4m2

c

s
1
s

exp
(
− s

T 2

)

+
ms⟨q̄Gq⟩

64
√

2π2T 4

∫ s0
h

4m2
c

ds

√
1− 4m2

c

s

(
1− 4m2

c

s

)
exp

(
− s

T 2

)
,

(33)
 

λZJ/ψKGZJ/ψK

M2
Z −M2

J/ψ

exp

−M2
J/ψ

T 2

− exp
−M2

Z

T 2

exp
−M2

K

T 2

+CJ/ψK exp

−M2
J/ψ+M2

K

T 2


=

3

128
√

2π4

∫ s0
J/ψ

4m2
c

ds
∫ s0

K

0
du

√
1− 4m2

c

s

[
2umc+ms

(
s+2m2

c

) (2
3
− u

9s

)]
exp

(
− s+u

T 2

)

− ⟨q̄q⟩+ ⟨s̄s⟩
24
√

2π2

∫ s0
J/ψ

4m2
c

ds

√
1− 4m2

c

s

(
s+2m2

c

)
exp

(
− s

T 2

)
+

msmc
[⟨s̄s⟩−2⟨q̄q⟩]
16
√

2π2

∫ s0
J/ψ

4m2
c

ds

√
1− 4m2

c

s
exp

(
− s

T 2

)

+
⟨q̄Gq⟩+ ⟨s̄Gs⟩

576
√

2π2

∫ s0
J/ψ

4m2
c

ds
s+8m2

c√
s
(
s−4m2

c

) exp
(
− s

T 2

)
− ⟨q̄Gq⟩+ ⟨s̄Gs⟩

576
√

2π2

∫ s0
J/ψ

4m2
c

ds

√
1− 4m2

c

s
exp

(
− s

T 2

)

+
msmc⟨q̄Gq⟩
192
√

2π2

∫ s0
J/ψ

4m2
c

ds
1√

s
(
s−4m2

c

) exp
(
− s

T 2

)
− msmc⟨q̄Gq⟩

192
√

2π2

∫ s0
J/ψ

4m2
c

ds

√
1− 4m2

c

s
1
s

exp
(
− s

T 2

)

− msmc⟨q̄Gq⟩
16
√

2π2T 2

∫ s0
J/ψ

4m2
c

ds

√
1− 4m2

c

s
exp

(
− s

T 2

)
, (34)

 

λZηK∗GZηK∗

M2
Z −M2

η

exp

−M2
η

T 2

− exp
−M2

Z

T 2

exp
−M2

K∗

T 2

+CηcK∗ exp

−M2
η +M2

K∗

T 2


=

3

128
√

2π4

∫ s0
ηc

4m2
c

ds
∫ s0

K∗

0
du

√
1− 4m2

c

s

(
10umc

9
+mss

)
exp

(
− s+u

T 2

)
− ⟨q̄q⟩+ ⟨s̄s⟩

16
√

2π2

∫ s0
ηc

4m2
c

ds

√
1− 4m2

c

s
s exp

(
− s

T 2

)
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+
msmc

[⟨s̄s⟩−6⟨q̄q⟩]
48
√

2π2

∫ s0
ηc

4m2
c

ds

√
1− 4m2

c

s
exp

(
− s

T 2

)
+
⟨q̄Gq⟩+ ⟨s̄Gs⟩

576
√

2π2

∫ s0
ηc

4m2
c

ds
s+2m2

c√
s
(
s−4m2

c

) exp
(
− s

T 2

)

− ⟨q̄Gq⟩+ ⟨s̄Gs⟩
576
√

2π2

∫ s0
ηc

4m2
c

ds

√
1− 4m2

c

s

(
1− 12s

T 2

)
exp

(
− s

T 2

)
+

msmc⟨q̄Gq⟩
96
√

2π2

∫ s0
ηc

4m2
c

ds
1√

s
(
s−4m2

c

) exp
(
− s

T 2

)

+
msmc⟨s̄Gs⟩
288
√

2π2T 2

∫ s0
ηc

4m2
c

ds

√
1− 4m2

c

s
exp

(
− s

T 2

)
, (35)

⟨q̄Gq⟩ = ⟨q̄gsσGq⟩ ⟨s̄Gs⟩ = ⟨s̄gsσGs⟩ λZhK =

λK fhλZ λZJ/ψK = λKλJ/ψλZ λZηK∗ = λK∗ληλZ

ChcK CJ/ψK

CηcK∗ p′2 p2 q2

Zc(4020/4025)
s→ d

where  ,  , 
,  , and  . We neg-

lect the dependencies of the parameters  ,  ,  and
 on  the  Lorentz  invariants  ,  ,  and  .  Instead,

we  take  them as  free  parameters  and  search  for  the  best
values  to  delete  the  contamination from high resonances
and continuum states and hence acquire stable QCD sum
rules. The corresponding hadronic coupling constants for
the    state  can  be  obtained  with  the  simple
substitution of   and are treated in the same manner.

n f = 4 µ = 1.3GeV
Zcs(3985/4000)

MK = 0.4937GeV Mπ = MK∗ =

Mρ = MJ/ψ = Mηc
=

Mhc
= fK = fπ =

fK∗ = fρ =
√

s0
K =√

s0
π =

√
s0

K∗ =

√
s0
ρ =

fhc
= fJ/ψ = fηc

=√
s0

hc
=

√
s0

J/ψ =√
s0
ηc
=

fK M2
K

mu+ms
=−⟨q̄q⟩+ ⟨s̄s⟩

fK(1−δK)
fπM2

π

mu+md
= −2⟨q̄q⟩

fπ

On  the  QCD  side,  we  choose  the  flavor  number
 and set the energy scale to be  , as in a

previous study on the decays of   [27]. On
the  hadron  side,  we  take  the  parameters  as

,    0.13957  GeV,    0.8917
GeV,    0.77526  GeV,    3.0969  GeV, 
2.9834 GeV,   3.525 GeV [4],   0.156 GeV, 
0.130 GeV [4],   0.220 GeV,   0.215 GeV, 

1.0 GeV,   0.85 GeV,   1.3 GeV,   1.2
GeV  [42],    0.235  GeV,    0.418  GeV, 
0.387  GeV  [43],    4.05  GeV,    3.6  GeV,

  3.5  GeV  [4],  ,  and

  from  the  Gell-Mann-Oakes-Renner

δK = 0.50relation   [44].

ChcK = 0.000064+0.000014×T 2GeV4 Chcπ = 0.00006+
0.000010×T 2GeV4 CJ/ψK = 0.00335+0.000096×T 2GeV7

CJ/ψπ = 0.00305+0.000096×T 2GeV7 CηcK∗ = 0.00368+
0.00012×T 2 GeV7 Cηcρ = 0.00302+0.00012×
T 2 GeV7

T 2
max−T 2

min = 1GeV2

T 2
hcK
= (4.0−5.0)GeV2 T 2

hcπ
= (4.0−5.0)

GeV2 T 2
J/ψK = (4.3−5.3)GeV2 T 2

J/ψπ = (4.1−5.1)GeV2

T 2
ηcK∗
= (3.9−4.9)GeV2 T 2

ηcρ
= (3.9−4.9)GeV2

hcK hcπ · · ·

δG T 2

0.01(GeV)

GZcshcK

GZcs J/ψK GZcsηcK∗ GZchcπ GZc J/ψπ GZcηcρ

In calculations,  we fit  the unknown parameters  to  be
, 

,  ,
, 

,  and 
 to acquire flat Borel platforms with the interval

,  where  max  and  min  represent  the
maximum and  minimum values,  respectively.  The  Borel
windows  are  , 

,  ,  ,
, and  , where

we  add  the  subscripts  ,    to denote  the   corres-
ponding decay  channels.  In  the  Borel  windows,  the   un-
certainties    originating  from the  Borel  parameters 
must  be  less  than  or  approximately  .  Such  a
strict  and  powerful  constraint  plays  a  decisive  role  and
works well, as in our previous studies [27, 36–40]. In Fig.
2,  we  plot  the  hadronic  coupling  constants  ,

,  ,  ,  ,  and    with  vari-
ations in the Borel parameters. We can explicitly observe
flat  platforms,  which  enable  reliable  extraction  of  the
hadronic coupling constants.

If  we  take  the  symbol  ξ  to represent  the  input   para-
meters on the QCD side, then, for example, the uncertain-

T 2

GZcshcK GZcs J/ψK GZcsηcK∗ GZchcπ GZc J/ψπ GZcηcρ

Fig. 2.    (color online) Hadronic coupling constants with variations in the Borel parameters  , where A, B, C, D, E, and F correspond
to  ,  ,  ,  ,  , and  , respectively.
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ξ̄→ ξ̄+δξ

f̄J/ψ f̄K λ̄ZḠZJ/ψK → f̄J/ψ f̄K λ̄ZḠZJ/ψK +δ fJ/ψ fKλZGZJ/ψK

C̄J/ψK → C̄J/ψK +δCJ/ψK

ties    result  in  the  uncertainties
a n d

, where 

δ fJ/ψ fKλZGZJ/ψK = f̄J/ψ f̄K λ̄ZḠZJ/ψK

×
(
δ fJ/ψ

f̄J/ψ
+
δ fK

f̄K
+
δλZ

λ̄Z
+
δGZJ/ψK

ḠZJ/ψK

)
,

(36)

−

δCJ/ψK

δ fJ/ψ

f̄J/ψ
=
δ fK

f̄K
=
δλZ

λ̄Z
=
δGZJ/ψK

ḠZJ/ψK

δCJ/ψK
δξ δCJ/ψK

δξ
ξ̄ C̄J/ψK

δ fJ/ψ

f̄J/ψ
=
δ fK

f̄K
=
δλZ

λ̄Z
= 0

δGZJ/ψK

in which we add the index   to all the variables to denote
the  central  values.  In  the  case  where  the  uncertainty

  is  small  enough  to  be  ignored,  error  analysis  is
easy  to  perform  by  approximately  setting

.  However, if  the   uncer-

tainty    is  considerable,  it  must  be  considered  for
every uncertainty  . We must adjust   via fine tun-
ing with the help of trial and error according to the vari-
ation   to acquire enough flat platforms in the same re-
gion,  as  in  the  case  of  the  central  values    and  .
This  error  analysis  is  difficult  to  perform.  We  typically

set    to  estimate  the  uncertainty

; however, the validity of  such an approximation
is yet to be proved.

Now, let  us  methodically  obtain  the  hadronic   coup-
ling constants according to above error analysis. 

GZcshcK =1.68±0.10 ,
GZcs J/ψK =2.08±0.08GeV ,
GZcsηcK∗ =2.84±0.09GeV ,

GZchcπ =1.69±0.09 ,
GZc J/ψπ =2.08±0.08GeV ,

GZcηcρ =2.80±0.09GeV , (37)

by setting 

δ fJ/ψ fKλZGZJ/ψK = f̄J/ψ f̄K λ̄ZḠZJ/ψK
4δGZJ/ψK

ḠZJ/ψK
, (38)

If we set 

δ fJ/ψ fKλZGZJ/ψK = f̄J/ψ f̄K λ̄ZḠZJ/ψK
δGZJ/ψK

ḠZJ/ψK
, (39)

δGZJ/ψK

SU(3)

the uncertainty   will be four times as large as that
given in  Eq.  (37).  Other  uncertainties  can be understood
in the same way. According to Eq. (37), the   break-
ing effects in the hadronic coupling constants are small.

It  is  then  easy  to  obtain  the  partial  decay  widths  by
taking the  relevant  masses  from the Particle  Data  Group

[4], 

Γ (Zcs→ hcK) =1.83±0.22MeV ,

Γ (Zcs→ J/ψK) =8.05±0.62MeV ,

Γ
(
Zcs→ ηcK∗

)
=12.83±0.81MeV ,

Γ (Zc→ hcπ) =6.86±0.73MeV ,

Γ (Zc→ J/ψπ) =8.82±0.68MeV ,

Γ (Zc→ ηcρ) =13.89±0.89MeV , (40)

and the total widths, 

ΓZcs
=22.71±1.65(or ±6.60)MeV ,

ΓZc
=29.57±2.30(or ±9.20) MeV , (41)

ΓZc
= 29.57±2.30(or ±9.20) MeV

Γ = (24.8±5.6±7.7)MeV (23.0±6.0±1.0)MeV
(7.9±2.7±2.6)MeV

Zc(4020/4025)
AĀ JPC = 1+−

Zc(4020/4025)→ D∗D̄∗ Zcs→ D∗D̄∗s D∗sD̄∗

Zc Zcs

Zcs→ ηcK∗ Zc→ ηcρ
Zc(4020/4025) Zc(4020/4025)→ ηcρ

Zc Zcs
hcK J/ψK ηcK∗ D∗D̄∗s

D∗sD̄∗

where  the  values  in  the  brackets  are  obtained  from  Eq.
(39).  The  prediction    is
compatible with the upper bound of the experimental data

  [1],    [2],
and    [3] from  the  BESIII  Collabora-
tion and also supports assigning    to be the

-type  hidden-charm  tetraquark  states  with  .
In  the  present  study,  we  neglect  the  decays

  and  ,    because
the    and    states  lie  near  the  corresponding  two-
meson  thresholds,  and  the  available  phase-spaces  are
small and  even  lead  to  the  possible  assignments  of  mo-
lecular  states  [5– 12].  The  most  favorable  channels  are

  and    at  present,  even  for
.  The  decay    has  not

yet  been  observed,  and  observation  of  this  channel  may
lead  to  a  more  robust  assignment  and  shed  light  on  the
nature of   states. We can search for the   state in the
invariant  mass  spectra  of  ,  ,  ,  ,  and

 in the future.

Zc(3900) Zcs(3985)
S Ā−AS̄

|GZD∗D̄/ZDD̄∗ | ≪ |GZJ/ψπ/Zηcρ| |GZD∗D̄s/ZDD̄∗s | ≪
|GZJ/ψK/ZηcK∗ |

Zc(4020/4025) Zcs(4110)

Γ
(
Zc→ D∗D̄/DD̄∗

)
< 1MeV Γ

(
Zcs→ D∗D̄s/DD̄∗s

)
< 1

In  the  picture  of  diquark-antidiquark  type  tetraquark
states,   and   can be assigned tentatively
as  the    type  hidden-charm tetraquark  states,  and
the  hadronic  coupling  constants  have  the  relations

  and 
.  Furthermore,  the  allowed  phase-spaces  in

the  decays  to  open-charm  meson  pairs  are  significantly
smaller  than  those  of  decays  to  meson  pairs  involving
charmonium. The contributions of decays to open-charm
meson pairs to the total decay widths can be ignored [27,
36].  We  expect  that  the  conclusion  holds  in  the  present
study  for  the    and    states  and
make  a  crude  estimation  of  the  partial  decay  widths,

  and 
MeV, based on the relations between the hadronic coup-
ling  constants  obtained  in  Refs.  [27,  36]; the   contribu-
tions to the total widths from the decays to the final states
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D∗D̄/DD̄∗ D∗D̄s/DD̄∗s and   are also ignored. 

IV.  CONCLUSION

Zc(4020/4025)
AĀ

JPC = 1+− AĀ

µ =
√

M2
X/Y/Z − (2Mc)2− kMs SU(3)

In this article, we tentatively assign   as
the  -type  hidden-charm  tetraquark  state  with

  and  construct  -type tensor  currents  to   in-
vestigate  the  tetraquark  states  without  strange,  with
strange, and with hidden-strange via QCD sum rules. We
consider the contributions of the vacuum condensates up
to dimension-10 in operator product expansion. Then, we
resort  to  the  modified  energy  scale  formula

  to  account  for  the 
mass-breaking effects to choose suitable energy scales for
the  QCD  spectral  densities  and  obtain  the  tetraquark
masses  in  a  self-consistent  manner.  We  introduce  three-
point  correlation  functions  to  investigate  the  hadronic

SU(3)

Zc Zcs

ΓZc

Zc(4020/4025)
Zc(4020/4025) JPC = 1+−AĀ

Zc(4020/4025)
J/ψπ ηcρ

Zcs D∗D̄∗s
D∗sD̄∗ hcK J/ψK ηcK∗

Zc

coupling  constants  in  the  two-body  strong  decays  of  the
tetraquark  states  without  strange  and  with  strange  via
QCD sum rules  based on rigorous  quark-hadron duality,
which  is  a  unique  feature  of  our  studies.  The  numerical
results indicate that the   breaking effects in the had-
ronic  coupling  constants  are  small.  We  then  obtain  the
partial  decay  widths  and  total  widths  of  the    and 
states and find that the total width   is compatible with
that  of    and  also  supports  assigning

  as  the  -type  tetraquark  state.
Further experimental data are required to achieve a more
robust  assignment  because    has  not  yet
been  observed  in  the    and    channels.  In  future,
we  may  search  for  the  strange  cousin    in  the  ,

,  ,  ,  and    invariant  mass  spectra,  the
observation of which would shed light on the nature of 
states.
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