
May 12, 1969 

CORRECTION TO sLAc-TN-69-8 ("THE HEAD-TAIL EFFECT") 

A careless error in the Note "The Head-Tail Effect: An 

Instability Mechanism in Storage Rings "* has been called to my atten- 

tion by Dr. Philip Morton. 

0n page 18 the statement that the first term of Eq. (43) 

integrates to zero is, evidently, true only for modes other than mode 
I, II 0 . The results which follow--including parts of the discussion-- 

are, therefore, completely valid only for u > 0 . For mode "0" alone 

there is a real part of the frequency shift; and from Eq. (43) onward 

the material of the Note needs correction. 

Please substitute the following material for pages 17 and on- 

ward of your copy of TN-69-8. 

MATTHEW SANDS 

P. s. - 

We are also sending herewith a copy of a second Note on the 

same subject: SLAC TN-69-10, "Head-Tail Effect: From a Resistive-Wall 

Wake". 

* SLAC Technical Note: SLAC-TN-69-8, March 28, 1969. 
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I. INTRODUCTION 

The lateral instabilities observed at rather low currents in 

the electron storage rings, AC0 and Adone, are not explained by the usual 

analysis of the resistive-wall effect.& There is, rather, growing 

evidence that the observed instabilities may be caused by a short-range 

interaction among the particles of a bunch which, in combination with the 

interplay of betatron and synchrotron oscillations, can lead to unstable 

motions. One model of such an interaction--called the "head-tail effect"-- 

is analyzed in this note. 

First, we recall the standard resistive-wall mechanism, which, 

for a single circulating bunch, operates in the following way. As a cir- 

culating bunch travels along the vacuum chamber it leaves behind electro- 

magnetic fields--called the "wake"-- some of whose components are propor- 

tional to the lateral coordinate of the center-of-charge of the bunch. As 

the bunch passes each azimuthal position, it goes through the wakes left 

behind on previous turns and receives a lateral kick which is proportional 

to its own lateral displacement on the previous passages. The phase of 

betatron oscillations is displaced from one revolution to the next, so 

the effect of the wake is to drive the coherent oscillation of a bunch 

with a force proportional to the amplitude of displacement but displaced 

in - phase. Depending on the sign of the phase displacement the driving 

term may be stabilizing--leading to increased damping of the coherent 

oscillation --or may be unstabilizing--leading to an antidamped coherent 

oscillation of the bunch. The instabilities observed at AC0 and Adone do - 
not display this expected dependence on the betatron phase shift per revo- 

lution, so another mechanism must be at play. 

Consider now the following possible mechanism of a head-tail 

effect. The particles at the "head" of a bunch deposit fields along the 

orbit; particles of the bunch which arrive later--those in the "tail"-- 

& A discussion of the resistive-wall effect for bunched beams, and refer- 
ences to earlier work, are found in the paper of E. D. Courant and A. M. 
Sessler, Rev. Sci. Inst. 37, 1579 (1966). 
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experience lateral forces from these fields. We postulate that the fields 

under consideration decay rapidly with time so that although they provide 

an interaction between the particles of a bunch they have a negligible effect 

on subsequent passages of the bunch (or of other bunches in the beam). We 

may call these fields a "fast wake." 

If we were to think of a bunch as a single "particle" (with all 

particles oscillating together), we would not expect the fast wake effects 

to produce an instability. Wake fields proportional to the displacement of 

the bunch would merely change the effective restoring force on the bunch 

and produce a small change in the betatron frequency. Fast wake fields 

proportional to the lateral velocity of bunch could, in principle, produce 

an instability; but one can show that for a non-pathological vacuum chamber 

(one without extra reactive elements) such fields will generally produce a 

damping effect. 

We shall show in this note that fast wake fields together with 

the internal circulation of the particles of a bunch can cause certain 

"internal coherent modes" within the bunch to become unstable. In the 

next Section we give a primitive calculation which illustrates the basic 

phenomenon and demonstrates the dependence of the effect on the parameters 

of the guide field. In the subsequent Sections we give a more general 

analysis of the effect and show a complete solution for one special 

case. 

The material presented here was stimulated by--and draws in part-- 

from the work of C. Pellegrini of Frascati (private communication), who 

has obtained all of the significant results presented here. The details 

of the analysis, however, differ somewhat from his. I am grateful to 

Pellegrini for many informative discussions. A group at CERN--H. Hereward, 

P. Morton, and K. Schindl--has also been considering the head-tail effect 

in proton synchrotrons. 

II. A SIMPLE MODEL 

Consider a highly simplified model of a bunch in which there are 

just two particles whose synchrotron oscillations have the same amplitude but 
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opposite phases. One-half of the time particle "1" is at the "head" of 

the bunch and particle "2" is at the "tail"; the other half of the time 

particle "2" is at the "head." The particles exchange places every one- 

half of a synchrotron oscillation. We may describe the synchrotron 

oscillations in terms of the time-displacement r (defined as the time- 

of-arrival of a particle at a reference point on the orbit minus the syn- 

chronous arrival time) and the energy deviation AE . These two coordin- 

ates both oscillate at the synchrotron frequency* ws , but with a relative 

phase of r/2. We show in Fig. 1 the phase and energy coordinates for the 

particles "1" and "2" at four successive quarter periods of the synchrotron 

oscillations. The amplitudes rmaX and AEmax are related by 

AEmax UT =a- s max E (1) 

where a is the momentum compaction and E is the mean energy. 

Now let's consider the betatron oscillations of the two particles 

in, say, the radial coordinate x . (The same consideration would apply 

to vertical oscillations.) The frequency of the betatron oscillations will, 

in general, depend on the energy deviation of the particle (because, in part, 

of the different focussing strength on the displaced equilibrium.orbit). If 

w is the frequency on the nominal orbit and Aw the shift for an energy- 

displaced orbit we can write** 

AU -= 
w 

,+ 
E (2) 

where 5 is a measure of the "chromaticity" of the guide field. 

Now suppose we start our two particles oscillating in x with 

the same betatron amplitude and phase at an instant when they both have 

zero time displacement as in (a) of Fig. 1. Since they have slightly 

9~ By "frequency" we mean always the "angular frequency." 

** This is correct only if 5 is >> l/a ; see Section II. 
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(a) 

Fig.. 1. The &mchrotron oscillations of the two particles. 
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different betatron frequencies --because their energies are different--the 

phases of their betatron oscillations will drift apart reaching a maximum 

difference when they arrive at the situation represented by (b) in Fig. 1. 

The difference between the two betatron phases accumulated between (a) and 

Cb), which we call A$ , is 

A$ = 2 Awdt = 2 5 ; AEdt . 

The integral of AE over a quarter synchrotron period is AEmax/us , so 

we have 

AEmax ' A$=<,- w 
S 

Or, using Eq. (2), 

A@ = : ~~~~~ . 

(3) 

(4) 

When the two particles arrive at the positions shown in (c) of Fig. 1 

the phase difference will be again zero, and the process will begin again. 

Thus the trailing particle always has the same phase displacement with 

respect to the leading particle. It is this oscillating phase displace- --- 
ment (of the betatron oscillations) which can generate an instability from -- - 
the fast wake forces. --- 

Suppose that the leading particle leaves behind a fast wake which 

produces a force on the trailing particle proportional to the displacement 

of the leading particle. -- When a particle which is oscillating with the 

amplitude 2 and frequency w is driven by a synchronous oscillating 

force with the amplitude F and the phase lag A+ , the amplitude a - 
increases at the rate 

da wF -=- 
dt 2K " 
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where K is the restoring force of the oscillator. If we now consider 
what happens on the average over a synchrotron oscillation, we see that 

particle "1" will drive particle "2" for one-half the time and particle "2" 

will drive particle "1" the other half of the time. So on the long-time 

average the oscillation energy of each particle will increase at half the 

rate of Eq. (5) ( in which we may take A$ as approximately equal to the peak 

value calculated earlier). Since we have started both particles with the 

same amplitude 2 we can write F = Sa , and Eq. (5) becomes: 

da 
dt %gA$. 

The amplitudes will vary with time as e Bt , with 

Or, taking A$ from (4), the exponential coefficient is 

(6) 

(7) 

(8) 

We should make an additional observation. If we had chosen our 

initial starting conditions for the two particles with opposite betatron 

displacements, the only effect would be to change the sign of our expression 

for 8 . 

The most general form of the betatron oscillations for our two parti- 

cles can be described in terms of two modes--one "symmetric" and the other 

"asymmetric" --which have opposite signs for B . Depending on the algebraic 

signs of the two coefficients c and S, the first mode will be stable and 

the other will be unstable, or vice versa. 

The detailed calculations of the later Sections yield a similar 

result for a more general case--see Eq. (43). In Section V we give a de- 

tailed discussion of the significance of these results. Here we make 

only the following qualitative observation. If the interaction be- 

tween the two particles were symmetric, we would estimate for a rigid bunch 

model that there would be a (real) frequency shift of the oscillations 
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in the amount 

&, s (9) 
w X’ 

We see that the effect of the head-tail effect is to convert some of this 

real frequency shift into a growth constant. We can, indeed, write--using 

(8) and (9)-- 

The "conversion" from &I to B is just proportional to the machine 

parameter E/a and to WT , which is the length of the bunch in units of 

the reduced betatron wavelength. 

III. THE GENERAL EQUATIONS 

We begin by considering the combined betatron and synchrotron 

motion of an unperturbed single particle in a storage ring. We consider 

only betatron motion in the axial direction, which we call x . The treat- 

ment is nearly identical for horizontal oscillations, and we assume a negli- 

gible coupling between the two. In general, the revolution time T and the 

betatron number v of the oscillations in x depend on the instantaneous 

energy E . For small deviations AE from the synchronous energy E. we 

may keep only the linear part of the dependence and write 

T=To (l++) 

and 

(11) 

Cl21 

(The number a is the usual "momentum compaction", and we may call 5 
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the "chromaticity"; both are properties of:the.magnetic guide field.) 

We approximate the betatron motion by a-harmonic oscillator 

whose frequency w is given by 21~vfT . Keeping only first order 

terms in AE/E 0 ' (11) and (12) give 

W=W o l+(C-a)F 

1 

. 
0 I 

(13) 

(Note that we are using w. for the synchronous betatron frequency and 

not for the rotation frequency.) 

Typically, EJ may be of the order of 1 or less; a is approximately 

l/vo2 --which is much less than 1 for a strong focussing machine--and 

AE/E o is typically 10m2 or 10V3 ; so our linearization is quite appro- 

priate. 

We chose to describe the synchrotron oscillations of a particle 

in terms of its time-of-arrival r at some azimuth, measured with resp.ect 

to the time-of-arrival of a synchronous particle of the same bunch.* 

We assume a linear restoring force for the synchrotron oscillations so that 

T oscillates harmonically at the synchrotron frequency ws . Synchrotron 
action associates with this time-oscillation a variation AE of the parti- 

cle energy. From Eq. (ll) T and AE are related by 

AE ? dr -=-- . 
E a ' izdt 

To make later equations less cumbersome, we define 

(14) 

* That is, the particle arrives the time T in advance of a synchronous 
Particle. In terms of the usual phase varixle JI , T = (T /2rh)$ , 
where h is the harmonic number of the accelerating voltagg. 
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so that the varying betatron frequency of Eq. (13) becomes 

w = w. (1 + ?I+> . (16) 

A word about orders of magnitude is now in order. We shall 

assume for the machines of interest (and characteristic of typical prac- 

tical machines) that 0 is of the order of 1 or less, that the synchro- 

tron frequency ws , is much less than the betatron frequency w. , and 

that the typical magnitude of T is less than l/w0 (the bunch length 

is less than the betatron wavelength). Then, nt 2 qwsr << 1 ; and 
. . 
T " w i << wo?. We are, therefore, justified in consistently ignoring 

S 
terms in *</w and I2 

0 
in comparison with the dominant small terms in i . 

We 'can, then, say that in the absence of perturbing forces on 

the particles Eq. (16) implies that the betatron motion is described by the 

differential equation 

ii + w 
0 

2(1 + Q-i-)2X = 0 , (17) 

which, in turn, is satisfied in our approximation by 

x = Zeiwo(t + v) (18) 

(real part understood); where Z is an arbitrary complex constant and the 

explicitly shown phase is just the time integral of the w of Eq. (16)-- 

with the initial phase absorbed into Z . (More accurately, x would have 

also a small periodic modulation of amplitude at the synchrotron frequency, 

but since this modulation is small we may ignore it.) We should, however, 

for consistency rewrite Eq. (17) as 

ii +a0 2(1 + 2rl?)x = 0 c19> 
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Now consider the interaction between two particles which circulate in 

the same bunch. Imagine that as a leading particle k travels along it 

continuously* leaves behind a wake field which is traversed by a trailing 

particle R . We take that the force Fak(t) on particle R at the time 

t is proportional to the betatron displacement of particle k at the 

earlier time t' =t- r +r k R' modified by some '"wake function" 

P(Tk - T& which describes the transient decay of the wake. Note that 

we are assuming that the force on particle R is independent of its 

lateral position. This is generally justified for wakes which are medi- 

ated by the walls of the vacuum chamber. A more subtle complication arises 

if one wishes to consider the head-tail effect for radial betatron oscil- 

lations. Strictly speaking, the wake effect must then depend on the sum 

of the radial betatron and synchrotron displacements. But the only effect 

of the extra term is to induce a very small forced betatron oscillation 

modulated at the synchrotron frequence. Neglecting this effect, the rest 

of the analysis is equally applicable to vertical and radial instabilities. 

In any case we shall take that the wake force on particle R 

due to particle k is given by 

Fka(t) = “k’t - Tk  + TL)P(Tk - Ta) l (20) 

For the wake function p , we ask only that it go to zero at sufficiently 

large arguments so that there are no forces on the particles of the follow- 

ing bunch. 

We are now ready to consider the effects of a whole bunch. We 

may let k be a running index so that the total force on particle R 

becomes the sum of the force in (20) for all of the particles of the 

bunch. We use this total force as a driving term in Eq. (19), and get 

. . 
XR 0 

+ w 2(1 4- 2$)X% 
= 1 %(t - Tk  + TR)P(Tk - Ta> l 

k 

* We could, alternatively, consider an impulsive wake--the leading particle 
excites fields in localized elements of the chamber which give impulsive 
forces to the trailing particle; however, we show in the Appendix that the 
significant effects are identical, so we treat in detail only the case of 
a continuous wake. 
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(In keeping with our other approximations, we are neglecting a small modu- 

lation of the "effective mass" of the betatron oscillation which should 

multiply the force term.) 

We wish to consider only the situation in which the total 

driving force is small in comparison with the restoring force, so that the 

solutions of Eq. (21) will differ only slightly from the free solution of 

Eq. (18). It is, then, convenient to write 

x,(t) = ZR(t)e iw,(t + 0~~) , (22) 

where now Z,(t) is a slowly varying function of t--including both the 

amplitude and phase perturbation on the betatron motion. Substituting 

this form into Eq. (21), and dropping terms of second order smallness 

(namely in i', Zp, it, .t2, and F ), we find that the amplitude Z,(t) 

satisfies 

2iwoYg(t) = CZ 
kk 

(t)e -iw,(l - ri)(T, - T ) 
g P(T, - 'la> , (23) 

where all T'S are to be evaluated at t . Eq. (23) is the basic 

equation of the head-tail effect--and it is the imaginary part of the ex- 

ponential on the right which can give rise to unstable solutions. 

Before considering the solution for a particular case, we can 

make some further simplifications. Let's write Eq. (23) as 

ii,(t) = &k(t)Zk(t) 

with 

WakW = $--- e -iWo(l - rl> (Tk - T > 
0 

’ P(‘k - ‘a> 

-ll- 
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We also write explicitly that 

T 
R 

= AR cos(iriSt + $,) , 

(26) 

rk 
= Ak cos(wst + Qk) . 

Since we are generally interested in small perturbations which 

give only small changes in Z and Z in one synchrotron period, we can 

for most purposes replace Wka(t) by its average value over a synchro- 

tron period. We define 

I WQk(t)dt * (27) 
S 

T 
S 

(The integral is to be taken over a time interval Ts = ~IT/W s ) . 

The matrix WRk is then independent of time and depends only on the two 

amplitudes % R and A and the relative phase (4, - 4,) ; 

We can then write Eq. (24) as 

ii,(t) = 1 W Z k Rkk (t) , (28) 

where it is understood that we have now suppressed a very small modulation 

of Z at the synchrotron frequency. 
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Given the form of p(r) and the synchrotron coordinates of all particles, 

the matrix w Rk is determined, and the set of differential equations (24) 

can in principle be solved. We shall consider in the next Section a solu- 

tion for a particular p(t) and for a special distribution of particles in 

synchrotron phase space. 

IV. AN ILLUSTMTIVE EXAMPLE 

The head-tail effect can produce an instability only if P(T) is 

an asymmetric function. In the following, we will take a particularly 

simple model for p(r) , namely 

P(T) = { 0; I- < 0 
1 s;T>o . (29) 

We are imagining a wake which is zero in front of, and constant behind, 

the particle.* (We must also assume that it eventually drops to zero 

after all the particles of a bunch have passed.) 

We shall also make an approximation for WRk which is quite 

appropriate for electron storage rings for which WOT << 1 . The exponent 

in W Rk is then small, so Eq. (25) takes on the simpler form (we have 

also replaced T-I by its equivalent from Eq. (15) ) 

‘a#> = $- { 1 - k 
0 

We are now ready to evaluate kkk . The phase difference (-ck - -ra) 

can be written--see (26)--as 

~~ - -ck = RRk cos(wst + $fik) , (31) 

* We have also considered a wake which corresponds to the resistive-wall 
effect; the results are qualitatively similar. See SLAC-TN-69-10. 
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with 

Rfk = 2 + A2 - 2AkAa cos('$ 
4, 2 k - @,) * (32) 

Since we are going to integrate over a full synchrotron period, we do not 

need to evaluate %k ' The behavior of (-c k - ra) and of p(rk - ra) 

are shown in Fig. 2. Since (rk - 'la> is a sinusoidal function, the 

mean value of p is just S/2 ; and the mean value of (-c k - sR)*p is 

SRRk/r . We get 

5 i%WR o Rk I 
(33) 

Now we suppose that we are given the distribution of particles in 

synchrotron phase space. Let n(A,$)AdAd$ be the number of particles in 

an element of area at A and Cp . The sum in Eq. (28) becomes an integral, 

and we have 

iZ(A,$,t) = 
I 

~(A,A',$-$')Z(A',$',t)n(A1,$')A'dA1d$l (34) 

(where A,$ identify the particle R and A',$' identify the particle k ). 

This equation would be the starting point for a complete treatment of a 

real bunch. We will, however, not consider further the general case, but 

rather show a solution of (34) for an artificial model of a bunch. 

We consider now a model of a bunch in which there are N parti- 

cles all with the same synchrotron amplitude A , but distributed uniformly 

in the variable 41 of the synchrotron oscillations. Equation (34) then 

simplifies to 

+r 
ii($,t) = g J %+#WW,t)d$’ (35) 

-T 
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Fig. 2. The functions (TV - T~) and p(~~ - -ca> . 

-15- 



This equation is readily solved by expanding Z in a Fourier series in 

9 ' Let 

Z(lp,d = y in@ 
an(t)e , 

n= 0 

with n = 0,1,2,3,.... Substitution in (35) gives 

+?I 

i 1 dn(t)eind = &- 
I 

im$'d$f 
n. m - II 

The right-hand side can be written as 

(36) 

(37) 

The integral is a function only of (+'-a) 3 so the integral is just a 

number. We define 

+Tr 
N Aurn = - z f(-$)eim'd+ , 

and Eq. (36) becomes 

i 1 an(t)einQ = - 1 eim9Awmam(t) . 
n m 

(38) 

(39) 

Now multiply this equation by e -i" (with 1~ = 0,1,2,...) and integrate 

over all 4 . In each sum only the 1-1 term remains, and we have 

idP(t) = - Aw a 
1-I 1-I (40) 
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The solutions are, evidently, 

ay (t) = aP(0)eiAwUt 

We have found that for the special distribution under consider- 

ation there are normal modes (mode number 1-1 ) in which the amplitude 

function depends on p and t according to 

(41) 

We must now evaluate AU., from the integral of Eq. (38). For 
1-1 

our assumed distribution Eq. (32) gives 

Rllk = 8% I1 - cos(@k - 4,) I l/2 

which we can write more conveniently as 

Rllk = 2A(sin( 'k 2 " J I . 

Then, using (33) with (38) we get 

Au c-x 
Y 4Trw 

0 J -IT 
1 2EwoA -- 
2 i- ITa jsin t 1 1 eili'd$ 

(42) 

(43) 
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The first term in the brackets integrates to TT for mode "0" , and to 

zero for all other modes. For the second term, only the even part of the 

exponential will contribute; we must evaluate 

+7T 7T 

JI 
sin $1 cos &d$ = 2 

0 J 
$ sin - 2 ~0s vWl.l , 

- 7T 

which is just 

We get, finally, that* 

NS 2i NSSA Awo=-4w+~~ 
0 

(44) 

Aw =- 2i NSCA 
?J G-5(4$-1) ; IJ'O 

For our particular model Aw 
Fr 

is purely imaginary for v > 0 . 

(Other forms of p would, in general, give a complex AU 
lJ 

for all modes.) 

Suppose we write 

AU =a -iB 
Ft u !J 

where CL and S are real numbers. Then a 
i-I ,I.r !J 

is the real frequency 

change, and f3 1-I 
is the exponential growth constant of each mode. 

* A closely similar result was first obtained by C. Pellegrini of Frascati 
from a somewhat different analysis. 
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We have 

NS ct = -- . 
0 4wo ’ 

a = 
1-1 

0 , lJ’0 ; (45) 

V. DISCUSSION 

We have solved the head-tail effect for a special distribution 

of synchrotron oscillations in a bunch--namely, one in which all particles 

have the same amplitude A of synchrotron oscillations but are uniformly 

distributed in the phase I+ of these oscillations. For such a distribution 

we have found that the betatron oscillations within the bunch can be de- 

scribed as a sum of discrete normal modes. In each mode--mode number u-- 

all of the particles have the same (real) amplitude [au] of betatron 

oscillation, but have (time average) relative phase shifts of the betatron 

oscillation equal to P$ . The amplitude of‘each mode varies with time as 

all(0)e 
iAwut 

, 

where Aw 1-I is given by Eq. (44). We recall that the symbols used there are 

N ; number of electrons in a bunch. 

s ; wake coupling strength. (It is the wake force divided by 

ymO 
the effective mass of the oscillator.) 

w ; 0 
the unperturbed betatron (angular) frequency. 

A ; amplitude (in time units) of the synchrotron phase 
oscillations. 

a ; momentum compaction. 

5 ; chromaticity, (E/v) l (dv/dE) . 
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Our solution has the following properties. If cS/ol is positive, 

mode "0" will be stable, and all other modes may be unstable. If <s/a 

is negative, the opposite is true. Since the chromaticity 5 is proportional 

to the effective sextupole terms in the guide field, a change in the sign 

of E; can be made by a sextupole correction, and the relative stability of 

the modes can be reversed. Or, indeed, 5 can be made zero so that all 

modes should be stable. 

Our analysis would predict that all modes with f3 > 0 would be 
1J 

unstable and would grow exponentially with a growth constant f3 --which is 
1-1 

for all modes proportional to N , the number of particles. But we have, 

of course, neglected the effects of Landau damping due to the spread of 

unperturbed betatron frequencies in a bunch. We have not carried out a 

detailed analysis, but we may make the following qualitative observations. 

The "unstable" modes will be stabilized by the Landau damping until the 

magnitude of the frequency shift 1~~~1 is roughly comparable with the 

frequency spread of betatron oscillations due to octupole nonlinearities in 

the guide field. For a given nonlinearity, an unstable motion will appear 

at a particular value of Aw 
F-l 

; and each mode will, therefore, be stable 

until the number of particles N reaches the level which produces this 

Aw 
1-I * 

Since the coefficients in AU 
P 

decrease with increasing 1-1 ' we 

would expect the instability to appear first in either mode II II 0 or mode 

"l" depending on the algebraic signs of the various parameters. In par- 

ticular, if the wake field follows our model (decays only slowly with time), 

we would expect all modes with 1-1 > 0 to have a threshold beam current 

(the current is proportional to N > which varies inversely with the bunch 

length. For mode "0" the behavior is less clear since it depends on the 

relative magnitudes of the real and imaginary parts of Aw . If 8 
0 

dominates, the threshold would vary inversely with the bunch length; but 

if c1 o dominates the threshold would be relatively independent of bunch 

length. 

Some of these results may explain the apparently different be- 

havior observed in the various electron storage rings. The Princeton- 

Stanford Ring and the Novosibirsk Rings (Vep 1 and Vepp 2) are weak 
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focussing and so have an CY " 1 . Also, the Princeton-Stanford Ring was 

designed to have 5 = 0 . On the other hand, AC0 and Adone have a z 0.1 
and 0.06 , and 5 = 1 . The head-tail effect would explain the observed 

fact that these latter machines have much lower thresholds for lateral 

instabilities. 

It is also reported that the AC0 instability has little visible 

coherent motion, while at Adone a large unstable coherent motion is observed 

which can be stabilized by an external feedback system. A large coherent 

amplitude is expected for the mode 1~ = 0 but not for other modes. The 

observed disparity in the behavior of AC0 and Adone would be expected if 

it happened that <S were positive for the former and negative for the 

latter. 

The bunch length dependence we have found agrees only in part with 

the observations at Adone; there, the threshold current was proportional to 

bunch length in some circumstances and independent of bunch length in others. 
Such a behavior might be explained by changes in the form of the wake function 

P . (For example, a wake function which corresponds to the resistive-wall 
effect gives a similar result for f.3 

lJ ' 
but with A replaced by fi .) 

If the wake field were independent of the particle energy, the 

parameter S would (as we have defined it) be inversely proportional to E . 

If the instability threshold is controlled by Landau damping, which we ex- 

pect to go as E2 , the threshold current would, for our model, vary as 

E3 or as E3/A depending on whether a or B dominates. For an ideal 

ring with constant r-f voltage A should vary a: E312 , so the threshold 

would vary as E3 or ES/2 . The lateral instability observed at Adone has 

an energy dependence close to E3 , as might be expected for mode II 11 0 . 

Finally, we have said nothing about the mechanism of the produc- 

tion of fast wakes. It has been suggested that they may be due to discon- 

tinuities or other effects from the vacuum chamber. We have, as yet, no 

theory of such effects which can give a quantitative explanation of the 

observed thresholds. 
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APPENDIX 

We wish to show that Eq. (23) is also obtained for an impulsive 

wake --one which is generated in a localized region of the orbit and gives 

an impulsive force when traversed by a particle. 

Write the displacement of the particle R as 

where Z is a(complex) constant during any one revolution but which changes 

disconti&ously by the amount 6Zi when the particle goes through a local- 

ized field. Say that the impulsive force of such a field produces a change 

in the slope of xR at the time ti in the amount 6ki . Then 

BZpi) = t bkie -iwo(ti + Vi) 
, (A-1) 

where TR is to be evaluated at ti , and w 2 w. + '71% , which can be 

approximated by o. . 

Now let 6x1 be proportional to the displacement x of the 

particle k on its i-th traversal of the same spot and to a wake factor 

dTk - Ta> l We write 

Ski = Re Zkeiwocti ' nTk)o(rk - ril) 

CA-2 > 
eiWo (t! + IITk)+ z*e-iwO(t; + -rlTk) 

1 k 
O(Tk - Ta> 

where t! is the time of passage of the particle k , and ~~ is to be 1 
evaluated at t i.' 
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Substituting in (A-l), 

6X 
i 

- t; + ?-l(TR - Tk) 1 
I 

+ Zp-iOJo (ti + t; + rl (Ta + Tk) d.rk - T,jj ] 

Now (ti - t;) is just equal to --(TV - -ck) . so that the first term in 

the curly brackets of (A-3) is just 

z .-iwo t + (1 - n) (rk - Ta> * 
k (A-4) 

Next, we take into account that we are only interested in the 

average of 6Z 
R 

over many revolutions. Since the T'S vary only slowly, 

and since w,(t i+l - ti> is not generally close to an integral multiple 

of 271 , there is from t i lZo ti + 1 a large, non-resonant phase advance 
of the second term in (A-3); this term will then average to zero. 

We can write that Z, = dyi/T , where T is the mean revolution 

time. We get 

* i, = - & Zke-lwo L rt + (1 - rl) bk - Ta) dTk - T$-j , 
0 

which is the same as Eq. (23) if we make the identification 

P(Tk - Ta> = 
o cTk - Ta) 

T . 
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