May 12, 1969

CORRECTION TO SLAC-TN-69-8 (''THE HEAD-TAIL EFFECT")

A careless error in the Note 'The Head-Tail Effect: An
Instability Mechanism in Storage Rings''* has been called to my atten-

tion by Dr. Philip Morton.

On page 18 the statement that the first term of Eq. (43)
integrates to zero is, evidently, true only for modes other than mode
"0". The results which follow--including parts of the discussion--
are, therefore, completely valid only for u > O . For mode "Q" alone
there is a real part of the frequency shift; and from Eq. (43) onward

the material of the Note needs correction.

Please substitute the following material for pages 17 and on-

ward of your copy of TN-69-8.

MATTHEW SANDS

We are also sending herewith a copy of a second Note on the
same subject: SLAC TN-69-10, ''Head-Tail Effect: From a Resistive-Wall
Wake''.

* SLAC Technical Note: SLAC-TN-69-8, March 28, 1969.
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I. INTRODUCTION

The lateral instabilities observed at rather low currents in
the electron storage rings, ACO and Adone, are not explained by the usual
analysis of the resistive-wall effect.l- There is, rather, growing
evidence that the observed instabilities may be caused by a short-range
interaction among the particles of a bunch which, in combination with the
interplay of betatron and synchrotron oscillations, can lead to unstable
motions. One model of such an interaction--called the "head-tail effect'—

is analyzed in this note.

First, we recall the standard resistive-wall mechanism, which,
for a single circulating bunch, operates in the following way. As a cir-
culating bunch travels along the vacuum chamber it leaves behind electro-
magnetic fields--called the 'wake''--some of whose components are propor-—
tional to the lateral coordinate of the center-of-charge of the bunch. As
the bunch passes each azimuthal position, it goes through the wakes left
behind on previous turns and receives a lateral kick which is proportional
to its own lateral displacement on the previous passages. The phase of
betatron oscillations is displaced from one revolution to the next, so
the effect of the wake is to drive the coherent oscillation of a bunch
with a force proportional to the amplitude of displacement but displaced
in phase. .Depending on the sign of the phase displacement the driving
term may be stabilizing--leading to increased damping of the coherent
oscillation--or may be unstabilizing--leading to an antidamped coherent
oscillation of the bunch. The instabilities observed at ACO and Adone do
not display this expected dependence on the betatron phase shift per revo-

lution, so another mechanism must be at play.

Consider now the following possible mechanism of a head-tail
effect. The particles at the 'head" of a bunch deposit fields along the

orbit; particles of the bunch which arrive later--those in the "tail"--

1 A discussion of the resistive-wall effect for bunched beams, and refer-—
ences to earlier work, are found in the paper of E. D. Courant and A. M.
Sessler, Rev. Sci. Inst. 37, 1579 (1966).
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experience lateral forces from these fields. We postulate that the fields

under consideration decay rapidly with time so that although they provide

an interaction between th

on subsequent passages of the bunch (or of other bunches in the beam). We

may call these fields a ''fast wake."

If we were to think of a bunch as a single "particle" (with all
particles oscillating together), we would not expect the fast wake effects
to produce an instability. Wake fields proportional to the displacement of
the bunch would merely change the effective restoring force on the bunch
and produce a small change in the betatron frequency. Fast wake fields
proportional to the lateral velocity of bunch could, in principle, produce
an instability; but one can show that for a non-pathological vacuum chamber
(one without extra reactive elements) such fields will generally produce a

damping effect.

We shall show in this note that fast wake fields together with
the internal circulation of the particles of a bunch can cause certain
"internal coherent modes'" within the bunch to become unstable. In the
next Section we give a primitive calculation which illustrates the basic
phenomenon and demonstrates the dependence of the effect on the parameters
of the guide field. 1In the subsequent Sections we give a more general
analysis of the effect and show a complete solution for one special

case.

Thé material presented here was stimulated by--and draws in part—-
from the work of C. Pellegrini of Frascati (private communication), who
has obtained all of the significant results presented here. The details
of the analysis, however, differ somewhat from his. I am grateful to
Pellegrini for many informative discussions. A group at CERN--H. Hereward,
P. Morton, and K. Schindl--has also been considering the head-tail effect

in proton synchrotrons.

IT. A SIMPLE MODEL

Consider a highly simplified model of a bunch in which there are

just two particles whose synchrotron oscillations have the same amplitude but
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opposite phases. One-half of the time particle "1" is at the "head" of
the bunch and particle ''2" is at the "tail"; the other half of the time
particle "2" is at the "head." The particles exchange places every one-
half of a synchrotron oscillation. We may describe the synchrotron
oscillations in terms of the time-displacement 1T (defined as the time-
of-arrival of a particle at a reference point on the orbit minus the syn-
chronous arrival time) and the energy deviation AE . These two coordin-
ates both oscillate at the synchrotron frequency* wg but with a relative
phase of 1w/2. We show in Fig. 1 the phase and energy coordinates for the

particles "1" and "2" at four successive quarter periods of the synchrotron

oscillations. The amplitudes T hax and AEmax are related by
AE
W T = q —28X
s max E (1)

where a is the momentum compaction and E is the mean energy.

Now let's consider the betatron oscillations of the two particles
in, say, the radial coordinate x . (The same consideration would apply
to vertical oscillations.) The frequency of the betatron oscillations will,
in general, depend on the energy deviation of the particle (because, in part,
of the different focussing strength on the displaced equilibrium orbit). If
w 1is the frequency on the nominal orbit and Aw the shift for an energy-

displaced orbit we can write**

Y 2)

where £ is a measure of the 'chromaticity" of the guide field.

Now suppose we start our two particles oscillating im x with
the same betatron amplitude and phase at an instant when they both have

zero time displacement as in (a) of Fig. 1. Since they have slightly

* By "frequency" we mean always the "angular frequency."

%% This is correct only if & is >> 1l/a ; see Section II.
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Fig.. 1. The éynchrotron oscillations of the two particles.



different betatron frequencies—-because their energies are different-~—the
phases of their betatron oscillations will drift apart reaching a maximum
difference when they arrive at the situation represented by (b) in Fig. 1.
The difference between the two betatron phases accumulated between (a) and
(b), which we call A¢ , is

The integral of AE over a quarter synchrotron period is AEmaX/w , SO

we have

AEmax v
A¢=£~E—'w— . (3)
s
Or, using Eq. (2),
- &
Ap = o “Tmax - ()

When the two particles arrive at the positions shown in (c) of Fig. 1

the phase difference will be again zero, and the process will begin again.
Thus the trailing particle always has the same phase displacement with
respect to the leading particle. It is this oscillating phase displace-

ment (of the betatron oscillations) which can generate an instability from

the fast wake forces.

Suppose that the leading particle leaves behind a fast wake which

produces a force on the trailing particle proportional to the displacement

of the leading particle. When a particle which is oscillating with the

amplitude a and frequency w 1is driven by a synchronous oscillating

force with the amplitude F and the phase lag A¢ , the amplitude

a
increases at the rate

da _ wF

It - o 8¢ (5)



where K 1is the restoring force of the oscillator. If we now consider

what happens on the average over a synchrotron oscillation, we see that

particle "1" will drive particle "2" for one-half the time and particle "2"
will drive particle "1" the other half of the time. So on the long-time
average the oscillation energy of each particle will increase at half the
rate of Eq. (5) (in which we may take A¢ as approximately equal to the peak
value calculated earlier) Since we have started both particles with the

same amplitude a we can write F = Sa , and Eq. (5) becomes:
da . wSa

dc 4 - ©

The amplitudes will vary with time as eBt , with

Bz-a"d_t~ZR'A¢- (7)

T . (8)

=
=]
o
4]

We should make an additional observation. If we had chosen our
initial starting conditions for the two particles with opposite betatron
displacements, the only effeét would be to change the sign of our expression
for B8 .

The most general form of the betatron oscillations for our two parti-
cles can be described in terms of two modes--one "symmetric' and the other
"asymmetric"--which have opposite signs for B8 . Depending on the algebraic
signs of the two coefficients & and S , the first mode will be stable and
the other will be unstable, or vice versa.

The detailed calculations of the later Sections yield a similar
result for a more general case--see Eq. (43). In Section V we give a de-
tailed discussion of the significance of these results. Here we make
only the following qualitative observation. If the interaction be-
tween the two particles were symmetric, we would estimate for a rigid bunch

model that there would be a (real) frequency shift of the oscillations
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in the amount

Sw

s (9)
w K

We see that the effect of the head-tail effect is to convert some of this
real frequency shift into a growth constant. We can, indeed, write—-using
(8) and (9)-- |

Q

wt Sw . (10)

The "conversion" from &w to B is just proportional to the machine
parameter &/a and to wt , which is the length of the bunch in units of

the reduced betatron wavelength.

IITI. THE GENERAL EQUATIONS

We begin by considering the combined betatron and synchrotron
motion of an unperturbed single particle in a storage ring. We consider
only betatron motion in the axial direction, which we call =x . The treat-
ment is nearly identical for horizontal oscillations, and we assume a negli-
gible coupling between the two. In general, the revolution time T and the
betatron number v of the oscillations in x depend on the instantaneous
energy E ., For small deviations AE from the synchronous energy Eo we

may keep only the linear part of the dependence and write

- AE
T = To (l + o E ) 1L
0
and
_ AE
v = vo <l + £ Eo ) . (12)

(The number o is the usual "momentum compaction", and we may call &
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the "chromaticity"; both are properties of:thé'magnetic guide field.)

We approximate the betatron motionypy'a'harmonic oscillator
whose frequency w is given by 27v/T . Keeping only first order
terms in AE/Eo , (11) and (12) give

AE
W= 14+ (¢ - 0) E; . (13)

(Note that we are using 0y for the synchronous betatron frequency and

not for the rotation frequency.)

Typically, & may be of the order of 1 or less; o is approximately
l/voz——which is much less than 1 for a strong focussing machine--and
AE/E0 is typically 10 2 or 1073 ; so our linearization is quite appro-

priate.

We chose to describe the synchrotron oscillations of a particle
in terms of its time-of-arrival Tt at some azimuth, measured with respgect
to the time-of-arrival of a synchronous particle of the same bunch.*

We assume a linear restoring force for the synchrotron oscillations so that

T oscillates harmonically at the synchrotron frequency we . Synchrotron
action associates with this time-oscillation a variation AE of the parti-

cle energy. From Eq. (11) 1 and AE are related by

. . dr

AE _ _ 1, -
a

’ T dt (14)

To make later equations less cumbersome, we define

ns (1- 5) , ' (15)

* That is, the particle arrives the time <t in advance of a synchronous
Particle. In terms of the usual phase variable ¢ , t = (T /2rth)vy ,
where h is the harmonic number of the accelerating voltage.



so that the varying betatron frequency of Eq. (13) becomes

w=uw (1+nt). (16)

A word about orders of magnitude is now in order. We shall
assume for the machines of interest (and characteristic of typical prac-
tical machines) that n is of the order of 1 or less, that the synchro-
tron frequency wg is much less than the betatron frequency W, s and
that the typical magnitude of <t is less than l/w0 (the bunch length
is less than the betatron wavelength). Then, nt = ne T << 1 ; and
T w T << wo%. We are, therefore, justified in consistently ignoring

terms in 'f/wo and 12 in comparison with the dominant small terms in 1

We can, then, say that in the absence of perturbing forces on
the particles Eq. (16) implies that the betatron motion is described by the

differential equation
¥ + w02(1 + nt)2x = 0, (17)

which, in turn, is satisfied in our approximation by

x = 2eiwo(t + nt) (18)

(real part understood); where Z is an arbitrary complex constant and the
explicitly shown phase is just the time integral of the w of Eq. (16)--
with the initial phase absorbed into Z . (More accurately, x would have
also a small periodic modulation of amplitude at the synchrotron frequency,
but since this modulation is small we may ignore it.) We should, however,

for consistency rewrite Eq. (17) as

X + woz(l + 2nt)x =0 (19)



Now consider the interaction between two particles which circulate in
the same bunch. Imagine that as a leading particle k travels along it
continuously* leaves behind a wake field which is traversed by a trailing
particle £ . We take that the force sz(t) on particle % at the time
t 1is proportional to the betatron displacement of particle k at the

earlier time t' =1t - 7 modified by some 'wake function"

X + TQ s
p(Tk - Tl), which describes the transient decay of the wake. Note that

we are assuming that the force on particle £ is independent of its
lateral position. This is generally justified for wakes which are medi-
ated by the walls of the vacuum chamber. A more subtle complication arises
if one wishes to consider the head-tail effect for radial betatron oscil-
lations. Strictly speaking, the wake effect must then depend on the sum
of the radial betatron and synchrotron displacements. But the only effect
of the extra term is to induce a very small forced betatron oscillation

modulated at the synchrotron frequence. Neglecting this effect, the rest

of the analysis is equally applicable to vertical and radial instabilities.

In any case we shall take that the wake force on particle 1%

due to particle k is given by

sz(t) = xk(t - Ty + Tz)p(Tk - Tz) . (20)

For the wake function p , we ask only that it go to zero at sufficiently
large arguments so that there are no forces on the particles of the follow-

ing bunch.

We are now ready to consider the effects of a whole bunch. We
may let k be a running index so that the total force on particle 2
becomes the sum of the force in (20) for all of the particles of the

bunch. We use this total force as a driving term in Eq. (19), and get

k& + w02(1 + ZH%Q)XQ = E Xk(t - Ty + Tg)p(Tk - TQ) . (21)

* We could, alternatively, consider an impulsive wake--the leading particle
excites fields in localized elements of the chamber which give impulsive
forces to the trailing particle; however, we show in the Appendix that the
significant effects are identical, so we treat in detail only the case of
a continuous wake.
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(In keeping with our other approximations, we are neglecting a small modu-—
lation of the "effective mass" of the betatron oscillation which should

multiply the force term.)

We wish to consider only the situation in which the total
driving force is small in comparison with the restoring force, so that the
solutions of Eq. (21) will differ only slightly from the free solution of

Eq. (18). It is, then, convenient to write
x, (8) =z, (£)elvolt ¥ MTp) (22)

where now Zz(t) is a slowly varying function of t--including both the
amplitude and phase perturbation on the betatron motion. Substituting
this form into Eq. (21), and dropping terms of second order smallness
(namely in Z, Zp, 7%, t2, and % ), we find that the amplitude Z, ()

satisfies

210 7 () = ZZk(t)e‘iwo(l BRI JCHEEI I (23)
K

where all Tt's are to be evaluated at t . Eq. (23) is the basic
equation of the head-tail effect--and it is the imaginary part of the ex-

ponential on the right which can give rise to unstable solutions.

Before considering the solution for a particular case, we can

make some further simplifications. Let's write Eq. (23) as

12, (x) = szk(t)zk(t) (24)
with
- L _miwg(T - m(r, - 1))
Wlk(t) 7- 2(DO e o k 2 p('rk - T,Q) (25)
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We also write explicitly that

-
It

Al cos(wst + ¢2) s

(26)

'_‘
Il

A éos(w t+ ¢,)
k s k

Since we are generally interested in small perturbations which
give only small changes in Z and Z in one synchrotron period, we can
for most purposes replace sz(t) by its average value over a synchro-

tron period. We define
W.=x | w_ (o)at . (27)
2k Ts 1k

T
S

(The integral is to be taken over a time interval TS = Zw/ws )

The matrix Wzk is then independent of time and depends only on the two

amplitudes Ak and A2 and the relative phase (¢k - ¢£) 3

W = WA, A, by = 90)
We can then write Eq. (24) as
iz, (t) = 12{ oo 2y (E) | (28)

where it is understood that we have now suppressed a very small modulation

of Z at the synchrotron frequency.

~12-



Given the form of p(tr) and the synchrotron coordinates of all particles,

the matrix Wij is determined, and the set of differential equations (24)
can in principle be solved. We shall consider in the mnext Section a solu-
tion for a particular p(t) and for a special distribution of particles in

synchrotron phase space.

IV. AN ILLUSTRATIVE EXAMPLE

The head-tail effect can produce an instability only if p(t) is
an asymmetric function. In the following, we will take a particularly

simple model for p(t) , namely

o ={ g0 . (29)

We are imagining a wake which is zero in front of, and constant behind,
the particle.* (We must also assume that it eventually drops to zero

after all the particles of a bunch have passed.)

We shall also make an approximation for W which is quite

2k
appropriate for electron storage rings for which w T << 1 . The exponent

in ng is then small, so Eq. (25) takes on the simpler form (we have

also replaced n by its equivalent from Eq. (15) )
W.(t) = -l;~{l - iw E(T - TR) tp(T - T.) (30)
Lk 2wo Oa"'k } k [ A

We are now ready to evaluate ﬁkk . The phase difference (Tk - Tz)

can be written--see (26)--as

T T Ty = le cos(wst + ¢lk) , (31)

* We have also considered a wake which corresponds to the resistive-wall

effect; the results are qualitatively similar. See SLAC-TN-69-10.
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with

Since we are going to integrate over a full synchrotron period, we do not

need to evaluate ¢2k . The behavior of (Tk - Tz) and of p('rk - Tz)
are shown in Fig. 2. Since (Tk - TR) is a sinusoidal function, the
mean value of p 1is just 8/2 ; and the mean value of (Tk - TK)-p is

SRzk/ﬂ . We get
= S 1 . &

== | =-1i—=uR
w 2 * O wo 2k

(33)

Now we suppose that we are given the distribution of particles in
synchrotron phase space. Let n(A,¢)AdAd¢ be the number of particles in

an element of area at A and ¢ . The sum in Eq. (28) becomes an integral,

and we have

iZ(A,4,t) = J'W(A,A',¢—¢')Z(A',¢',t)n(A',¢')A'dA'd¢' (34)

(where A,¢ didentify the particle £ and A',¢' identify the particle k ).
This equation would be the starting point for a complete treatment of a
real bunch. We will, however, not consider further the general case, but

rather show a solution of (34) for an artificial model of a bunch.

We consider now a model of a bunch in which there are N parti-
cles all with the same synchrotron amplitude A , but distributed uniformly

in the variable ¢ of the synchrotron oscillations. Equation (34) then
simplifies to

+ T
12(4,8) = 5 J W(p-6")2(8",t)dp" (35)

-7
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Fig. 2. The functions (Tk - TZ) and p(-rk - T£) .
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This equation is readily solved by expanding Z in a Fourier series in

¢ . Let

2G6,0) = ] a (0!,
n
n=20
with n = 0,1,2,3,.... Substitution in (35) gives
+ 7

. . ing _ N Tl img'
i E an(t)e = 5 J W(o—¢") g am(t)e de (36)

‘ -

The right-hand side can be written as
rp) eimq’am(t)f W(p-g )™ gy (37)

The integral is a function only of (¢'~¢), so the integral is just a

number. We define

+ 7
boy = - 5= J -0 ™ay (38)
- T
and Eq. (36) becomes
i g én(t)ein¢ - _ g eim¢Awmam(t) . (39)

Now multiply this equation by e—1u¢ (with p =0,1,2,...) and integrate

over all ¢ . In each sum only the u term remains, and we have

1au(t) = - Awuau (40)
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The solutions are, evidently,
iAw t

a (t) = a (0)et
u( ) u( ) u

We have found that for the special distribution under consider-
ation there are normal modes (mode number 1y ) in which the amplitude

function depends on p and t according to

A

i(ALU t-rpq'))

zu(¢,t) = au(O)e u . (41)

We must now evaluate AwlJ from the integral of Eq. (38). For

our assumed distribution Eq. (32) gives

Ry =728 {1 - cos(d - ¢,) j1/2

which we can write more conveniently as
O ’
R, = ZA]sin[—-u} | . (42)

1k 2

Then, using (33) with (38) we get

NS 1 A ) aw
bo, = " T J [ 5 -1 |sin - | ] e Tdy (43)
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The first term in the brackets integrates to 7 for mode "0" , and to

zero for all other modes. For the second term, only the even part of the

exponential will contribute; we must evaluate

+ 7 ﬂ

J ] sin %—I cos updy = 2 J sin %—cos upduy

0

We get, finally, that*

NS 2i NSEA

fug =~ 4wo 2 a
(44)
_ _ 21 __ NSEA )
My T TR - v

‘For our particular model Awu is purely imaginary for wu > 0 .

(Other forms of p would, in general, give a complex Awu for all modes.)

Suppose we write

where o and Bu are real numbers. Then uu is the real frequency

change, and Bu is the exponential growth constant of each mode.

* A closely similar result was first obtained by C. Pellegrini of Frascati
from a somewhat different analysis.

~18~
(Revised)



We have

=N
0 4w ?
o =0 , u>0 3 (45)
U
g =2 NSEA
u o w2 alep? - 1)

V. DISCUSSION

We have solved the head-tail effect for a special distribution
of synchrotron oscillations in a bunch--namely, one in which all particles
have the same amplitude A of synchrotron oscillations but are uniformly
distributed in the phase ¢ of these oscillations. For such a distribution
we have found that the betatron oscillations within the bunch can be de-
scribed as a sum of discrete normal modes. In each mode--mode number uyu—-—
all of the particles have the same (real) amplitude |au| of betatron

oscillation, but have (time average) relative phase shifts of the betatron

oscillation equal to u¢ . The amplitude of each mode varies with time as
iAw t
au(O)e o,

where Awu is given by Eq. (44). We recall that the symbols used there are

N ; number of electrons in a bunch.

S ; wake coupling strength. (It is the wake force divided by
ym the effective mass of the oscillator.)

w3 the unperturbed betatron (angular) frequency.

A ; amplitude (in time units) of the synchrotron phase

oscillations.
o ; momentum compaction.

£ ; chromaticity, (E/v) - (dv/dE) .

-19-
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Our solution has the following properties. If £S/a is positive,
mode "0" will be stable, and all other modes may be unstable. If &S/a
is negative, the opposite is true. Since the chromaticity & 1s proportional
to the effective sextupole terms in the guide field, a change in the sign
of & can be made by a sextupole correction, and the relative stability of
the modes can be reversed. Or, indeed, & can be made zero so that all

modes should be stable.

Our analysis would predict that all modes with Bp > 0 would be
unstable and would grow exponentially with a growth constant Bu ——which is
for all modes proportional to N , the number of particles. But we have,
of course, neglected the effects of Landau damping due to the spread of
unperturbed betatron frequencies in a bunch. We have not carried out a
detailed analysis, but we may make the following qualitative observationms.
The "unstable' modes will be stabilized by the Landau damping until the
magnitude of the frequency shift ,Awul is roughly comparable with the
frequency spread of betatron oscillations due to octupole nonlinearities in
the guide field. For a given nonlinearity, an unstable motion will appear
at a particular value of Awu ; and each mode will, therefore, be stable
until the number of particles N reaches the level which produces this
Au)u . Since the coefficients in Awu decrease with increasing n , we
would expect the instability to appear first in either mode '"0" or mode
"1" depending on the algebraic signs of the various parameters. In par-
ticular, if the wake field follows our model (decays only slowiy with time),
we would expect all modes with 1 > O to have a threshold beam current
(the current is proportional to N ) which varies inversely with the bunch
length. For mode "0" the behavior is less clear since it depends on the
relative magnitudes of the real and imaginary parts of Aw . If Bo
dominates, the threshold would vary inversely with the bunch length; but
if o dominates the threshold would be relatively independent of bunch

length.

Some of these results may explain the apparently different be-
havior observed in the various electron storage rings. The Princeton-

Stanford Ring and the Novosibirsk Rings (Vep 1 and Vepp 2) are weak

-20-
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focussing and so have an o * 1 . Also, the Princeton-Stanford Ring was
designed to have £ = 0 . On the other hand, ACO and Adone have o * 0.1
and 0.06 , and & * 1 . The head-tail effect would explain the observed
fact that these latter machines have much lower thresholds for lateral

instabilities.

It is also reported that the ACO instability has little visible

coherent motion, while at Adone a large unstable coherent motion is observed
which can be stabilized by an external feedback system. A large coherent
amplitude is expected for the mode u = 0 but not for other modes. The

observed digparity in the behavior of ACO and Adone would be expected if

1
i
o
h
i
)
{
)
}
HY
)
"
h

The bunch length dependence we have found agrees only in part with

the observations at Adone; there, the threshold current was proportional to

bunch length in some circumstances and independent of bunch length in others.
Such a behavior might be explained by changes in the form of the wake function

0 . (For example, a wake function which corresponds to the resistive-wall

effect gives a similar result for BU , but with A replaced by VA )

If the wake field were independent of the particle energy, the
parameter S would (as we have defined it) be inversely proportional to E .
If the instability threshold is controlled by Landau damping, which we ex-
pect to go as EZ2 , the threshold current would, for our model, vary as
E3 or as E3/A depending on whether qu or B  dominates. For an ideal
ring with constant r-f voltage A should vary as E3/2 , so the threshold
would_var&'as E3 or E3/2, The lateral instability observed at Adone has

an energy_dépendence close to E3 , as might be expected for mode "O".

Finally, we have said nothing about the mechanism of the produc-
tion of fast wakes. It has been suggested that they may be due to discon-
tinuities or other effects from the vacuum chamber. We have, as yet, no
theory of such effects which can give a quantitative explanation of the

observed thresholds.
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APPENDIX

We wish to show that Eq. (23) is also obtained for an impulsive
wake—--one which is generated in a localized region of the orbit and gives

an impulsive force when traversed by a particle.

Write the displacement of the particle 2 as

_ iwg(t +nT,)
X, Re Zze 2

where Zz is a (complex) constant during any one revolution but which changes
discontinuously by the amount 622 when the particle goes through a local-
ized field. Say that the impulsive force of such a field produces a change

in the slope of x, at the time ts in the amount 6ii . Then

62,(t) == sk, e 100 (Fy + 1Ty)

w i > (A—l)

where = is to be evaluated at ti , and w = w, + nt which can be

L
approximated by Wy

Q; 3

Now let Ski be proportional to the displacement x of the
particle k on its i-th traversal of the same spot and to a wake factor

G(Tk - Tl) . We write

iwg(t! + n1, ) _
Re Zke i k G(Tk 12)

n

8%,
i

. (A-2)
. 1 -3 4 -
{ Zkelwo(ti + m‘k)+ Zﬁe 1wo(ti + nTk) } O(Tk Tz)
L

1]

where 'ti is the time of passage of the particle k , and Ty is to be

evaluated at ti .
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Substituting in (A-1),

~

—- 1 -
+zge o (1T T n(ty + 1) olry Tz)]}

Now (ti - ti) is just equal to —(Tz - Tk) « so that the first term in
the curly brackets of (A-3) is just

1 + (1 - - . |
‘zke iwp t ( n) (Tk Tl) (A—4)

Next, we take into account that we are only interested in the
average of 622 over many revolutions. Since the t's wvary only slowly,
and since wo(ti +1 " ti) is not generally close to an integral multiple
of 27 , there is from ti to ti +1 @ large, non-resonant phase advance

of the second term in (A-3); this term will then average to zero.

We can write that ig = SEA/T , where T dis the mean revolution
time. We get

. i - + - - -

R S 1wo[F, a-n (Tk Tz) G(Tk Tzi),

[ 20 T "k
o

which is the same as Eq. (23) if we make the identification

=23~



