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Abstract: Ordinary 3D Baryon Acoustic Oscillations (BAO) data are model-dependent, requiring the

assumption of a cosmological model to calculate comoving distances during data reduction. Through-

out the present-day literature, the assumed model is ΛCDM. However, it has been pointed out in

several recent works that this assumption can be inadequate when analyzing alternative cosmologies,

potentially biasing the Hubble constant (H0) low, thus contributing to the Hubble tension. To address

this issue, 3D BAO data can be replaced with 2D BAO data, which are only weakly model-dependent.

The impact of using 2D BAO data, in combination with alternative cosmological models beyond

ΛCDM, has been explored for several phenomenological models, showing a promising reduction in

the Hubble tension. In this work, we accommodate these models in the theoretically robust framework

of bimetric gravity. This is a modified theory of gravity that exhibits a transition from a (possibly)

negative cosmological constant in the early universe to a positive one in the late universe. By com-

bining 2D BAO data with cosmic microwave background and type Ia supernovae data, we find that

the inverse distance ladder in this theory yields a Hubble constant of H0 = (71.0 ± 0.9) km/s/Mpc,

consistent with the SH0ES local distance ladder measurement of H0 = (73.0 ± 1.0) km/s/Mpc. Re-

placing 2D BAO with 3D BAO results in H0 = (68.6 ± 0.5) km/s/Mpc from the inverse distance

ladder. We conclude that the choice of BAO data significantly impacts the Hubble tension, with

ordinary 3D BAO data exacerbating the tension, while 2D BAO data provide results consistent with

the local distance ladder.

Keywords: the Hubble tension; late-time solutions; Baryon Acoustic Oscillations; cosmology;

alternative expansion histories; modified gravity; bimetric gravity; massive gravity

1. Introduction

In the early 20th century, the advent of Einstein’s general theory of relativity (GR)
revolutionized our understanding of gravity, providing a robust framework that success-
fully describes a myriad of cosmic phenomena—ranging from the perihelion precession of
Mercury to gravitational lensing and the existence of black holes [1]. This, together with
the Standard Model of particle physics, has paved the path for the Λ Cold Dark Matter
(ΛCDM) model, providing a cosmological framework that accounts for the vast majority of
current observations with astonishing precision.

However, as we have entered the era of high-precision cosmology, a handful of tensions
have emerged. The most prominent is the Hubble tension which refers to the fact that the
local measurement of the Hubble constant significantly exceeds the inferred value from the
inverse distance ladder. The most discrepant estimates are between the local H0 measure-
ment from the SH0ES team, H0 = (73.0 ± 1.0) km/s/Mpc [2], and the inferred value from
the inverse distance ladder using Planck satellite data, H0 = (67.8 ± 0.5) km/s/Mpc [3].
This amounts to a 5 σ discrepancy, making it difficult to explain as a mere statistical fluke.
Despite diligent searches for possible systematic errors to explain the tension, it has just
been increasing during the last decade.
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Accordingly, there is an intense discussion in the contemporary literature about
whether new physics can alleviate the tension. That is, lowering the local distance ladder
(SH0ES) value or increasing the inverse distance ladder value1 [4]. The former can be
achieved by postulating a new gravitational degree of freedom that modifies gravity on
galactic and astronomical scales—a fifth force. This results in a recalibration of the cosmic
distance ladder, changing the local distance ladder value of H0 [5–7]. On the other hand,
the inferred value of H0 from the inverse distance ladder assumes a ΛCDM cosmological
model. That is, alternative expansion histories can change the inferred value of H0 which
may result in increased consistency with the local distance ladder. This can be achieved by
introducing new particles, changing the properties of dark matter or dark energy, or by
modifying the theory of gravity itself, see Refs. [8–12] for some examples. The focus of this
paper is on the latter option, and more precisely on the bimetric theory of gravity and its
effect on the Hubble tension.

However, the combination of standard 3D BAO, cosmic microwave background (CMB),
and type Ia supernovae (SNIa) data, tightly restricts any deviation from a ΛCDM expansion
history at late times (redshift z ≲ 2), leaving little room for a late-time alternative expansion
history to resolve the Hubble tension. On the other hand, several recent studies emphasize
that the 3D BAO data reduction inherently assumes a cosmological model, universally
assumed to be ΛCDM or some slight variation thereof [13–15]. This introduces a model
dependence that is incompatible with alternative expansion histories, raising concerns
about the appropriateness of using 3D BAO data to restrict non-standard cosmological
models, see for example Refs. [16–27]. In particular, the ΛCDM assumption may bias the
Hubble constant low, thereby giving rise to the Hubble tension.

To address this issue, the 2D transverse BAO scale (2D BAO) can be used, as it is
only weakly model-dependent [16,21,28–32]. As opposed to 3D BAO, 2D BAO allows
for significant deviations from ΛCDM at late times. Recent studies suggest that 2D BAO,
combined with a modified late-time expansion history, favors a Hubble constant consistent
with the SH0ES measurement, thus alleviating the tension [33–39]. These results are based
on phenomenological models such as the ΛsCDM model [35–37] and phenomenological
emergent dark energy [40]. In the current paper, we analyze the cosmology of bimetric
gravity which is a theoretically robust framework that accommodates a range of these
phenomenological models. Thus, we are not surprised to find that this theory has beneficial
effects on the Hubble tension when 2D BAO data are used in combination with CMB
and SNIa.

Bimetric gravity is a natural extension of GR, exhibiting a massive spin-2 field in addition
to the massless spin-2 field [41,42]. The theory is observationally viable, as demonstrated in a
number of papers [43–61]. Among its virtues is the existence of self-accelerating cosmological
solutions where the accelerated expansion of the Universe is a result of the interaction between the
two spin-2 fields—no cosmological constant is needed [43,45,48,58,62–66]. Another interesting
feature is that, under certain conditions, the massive spin-2 field provides a dark matter
particle [67–69]. The theory is also scientifically tractable in the sense that even the most
general version of the theory only introduces four additional theory parameters, which can
be constrained observationally.

Nevertheless, bimetric gravity provides a rich spectrum of cosmological expansion
histories that can modify the expansion rate both pre- and post-recombination, thus chang-
ing the H0 value inferred from the inverse distance ladder. The effect of bimetric gravity on
the Hubble tension was investigated in Ref. [70] for a restricted subclass of models—more
precisely—for some special two-parameter models. It was shown that, for this subclass of
models, the tension is eased only very slightly.

In the present work, however, we do not restrict ourselves to a limited type of sub-
model but analyze the most general bimetric model. We compare the results using or-
dinary 3D BAO data with the results using transverse 2D BAO data (BAOtr). We infer
H0 = (71.0 ± 0.9) km/s/Mpc from the inverse distance ladder when the general bimetric
model is fitted with data from the cosmic microwave background (CMB), type Ia super-
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novae (SNIa), and 2D BAO. This is on the 2 σ border of the SH0ES value for H0. Using 3D
BAO instead of 2D BAO, the inferred value is H0 = (68.6 ± 0.5) km/s/Mpc, representing
only a slight ease of the tension, being in the 4.4 σ tail of the SH0ES value. The disparate re-
sult of 2D BAO compared with 3D BAO suggests that the cosmological model dependence
in ordinary 3D BAO data may bias H0 to a low value.

Notation

Unless stated otherwise, we use geometrized units where the speed of light and
Newton’s gravitational constant are unity, c = G = 1. In this case, length, time, and mass
all have the same units L = T = M. Geometrical quantities pertaining to the second metric
fµν are denoted by tildes—if not—then pertaining to the physical metric gµν. Derivatives
with respect to time are denoted by an overdot, so, for example, ȧ = da

dt . We let ωx = Ωx,0h2

where h = H0/(100 km/s/Mpc) is the normalized Hubble constant and Ωx,0 denotes
the present-day density of the species x. The Hubble constant H0 is given in units of
km/s/Mpc.

2. Bimetric Gravity

2.1. Historical Background

Bimetric gravity posits the existence of two dynamical spin-2 fields, or metrics, gov-
erning gravitational interactions. The first steps towards the present-day, ghost-free for-
mulation of this theory were taken by Fierz and Pauli in 1939 [71]. They formulated a
consistent linearized theory for a freely propagating massive spin-2 field in Minkowski
space-time. However, in 1972 Boulware and Deser examined the coherence of a broad
range of nonlinear extensions of this theory. Their conclusion was that the introduction
of an additional propagating ghost-like scalar mode is unavoidable in any nonlinear ex-
tension of the theory [72]. Nevertheless, building upon works by de Rham, Gabadadze,
and Tolley [73–78], in 2011 Hassan and Rosen formulated the ghost-free version of bimetric
gravity with two dynamical metrics (spin-2 fields) [41,79,80]. This marked the rebirth of
massive gravity which has been intensely studied since.

2.2. Theory

The ghost-free action for bimetric gravity reads

SHR =
∫

d4x

[
1

2κg

√
−det g R +

1
2κ f

√
−det f R̃ −

√
−det g

4

∑
n=0

βnen(S)+

+
√
−det gLm +

√
−det f L̃m

]
.

(1)

In the action, gµν and fµν are the two metrics (spin-2 fields) and R and R̃ are the
corresponding Ricci scalars. The two metrics are dynamical with each metric exhibiting an
Einstein–Hilbert term, κg = 8πG/c4 represents the gravitational constant for gµν, while κ f

denotes the gravitational constant for fµν. The Lagrangians Lm and L̃m characterize two
independent matter sectors coupled to gµν and fµν, respectively [81,82]. For simplicity, we
only consider matter fields coupled to gµν (i.e., assuming L̃m = 0), which we accordingly
identify as the physical metric, determining the geodesics of freely falling observers. Further,
the elementary symmetric polynomials of the square root (S) of the two metrics, denoted
by en(S) in (1), are

e0(S) = 1 , e1(S) = [S] , e2(S) =
1
2
([S]2 − [S2]) ,

e3(S) =
1
6
([S]3 − 3[S2][S] + 2[S3]) , e4(S) = det(S).

(2)

In (2), [S] = Tr S. The square root of the two metrics, S, is defined by the equation2

Sµ
ρSρ

ν = gµρ fρν [83,84]. The five coefficients βn of the polynomials en(S) are constants with
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the dimension of curvature 1/L2 with β1, β2, and β3 determining the interaction between
the two metrics and β0 and β4 contributing with a cosmological constant to the g-metric
and f -metric, respectively.

As opposed to some other modified gravity theories such as Horndeski theory [85],
bimetric gravity features a finite number of theory parameters which makes the theory
scientifically tractable, with the possibility to falsify the theory and constrain the theory
parameters. As they stand, the β-parameters cannot be constrained by observations due to
their invariance under the rescaling

( fµν, κ f , βn) → (ω fµν, ωκ f , ω−n/2βn), (3)

with ω being an arbitrary constant. Therefore, rescaling-invariant parameters are intro-
duced [55,58] as

Bn ≡
κgβncn

H2
0

. (4)

Here, c is the proportionality constant between the metrics in the final de Sitter phase
in the cosmological infinite future where fµν = c2gµν. For more details, see Refs. [58,61].
The Hubble constant H0 is included in the definition of Bn to render the Bn-parameters
dimensionless. Due to the Bn-parameters being invariant under the rescaling, they can be
observationally constrained.

To enable an intuitive interpretation, we reparameterize from (B0, B1, B2, B3, B4) to
what we refer to as the physical parameters (θ, mFP, ΩΛ, α, β), defined by,

tan2 θ =
B1 + 3B2 + 3B3 + B4

B0 + 3B1 + 3B2 + B3
, (5)

m2
FP =

B1 + 2B2 + B3

sin2 θ
, (6)

ΩΛ =
B0

3
+ B1 + B2 +

B3

3
, (7)

α = −
B2 + B3

B1 + 2B2 + B3
, (8)

β =
B3

B1 + 2B2 + B3
. (9)

As implied by their name, the physical parameters carry specific interpretations.
Firstly, the mixing angle θ ∈ [0, π/2] governs the mixing of the massive and massless spin-2
fields, also known as mass eigenstates. In the limit θ → 0, GR is retained whereas in the
limit θ → π/2, dRGT massive gravity is retained. The parameter mFP represents the mass
of the massive spin-2 field. The effective cosmological constant in the final de Sitter phase
in the Universe’s expansion history is denoted by ΩΛ. Lastly, the parameters α and β play
a crucial role in determining the Vainshtein screening mechanism that is responsible for
recovering GR results on solar-system scales.

2.3. Cosmology

From the Hassan–Rosen action (1), one can derive the Friedmann equation governing
the evolution of a homogeneous and isotropic universe, as a function of the redshift z,

(
H(z)

H0

)2

= Ωm(z) + Ωr(z) + ΩDE(z). (10)

Thus, Ωi = ρi/ρc denotes the dimensionless energy density of species i, that is, the phys-
ical energy density ρi measured in units if the present-day critical density ρc = 3H2

0/κg.Here,
we have set the spatial curvature to zero, Ωk = 0. H = ȧ/a is the Hubble parameter with
a being the scale factor of the physical metric and H0 is the present-day value of H, that
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is, the Hubble constant. Further, Ωm and Ωr denote the energy density of matter and
radiation, respectively, both measured in units of the present-day critical energy density.
What distinguishes Equation (10) from the ordinary Friedmann equation of the ΛCDM
model is the last term, ΩDE, which results from the interaction between the two metrics.
It reads,

ΩDE(z) = ΩΛ − sin2 θ m2
FP[1 − y(z)]

[
1 + α(1 − y(z)) +

β

3
(1 − y(z))2

]
, (11)

where y ≡ ã/a is the ratio of the scale factors of the two metrics. The first term, ΩΛ,
gives a cosmological constant contribution whereas the remaining terms give a dynamical
contribution that evolves with the redshift z.

From the conservation equations of matter and radiation, it follows that,

Ωm(z) = Ωm,0(1 + z)3, Ωr(z) = Ωr,0(1 + z)4, (12)

with Ωm,0 and Ωr,0 being the present-day matter density and radiation density, respectively.
Finally, an equation can be derived for y in the form of a quartic polynomial in y. The full
expression is shown in Equation (A1).

With y being a solution to a quartic polynomial, there are up to four real solutions.
Here, we choose the solution which is commonly referred to as the “finite branch”. This
branch guarantees the absence of the Higuchi ghost and allows for a screening mechanism
that restores GR on solar-system scales [58,86–89]. This branch has a finite range in y,
starting with y = 0 at the Big Bang, then monotonically increasing until y = 1 is reached in
the infinite future, that is, in the final de Sitter phase.

In the early-time limit z → ∞, one can show that the bimetric contribution to
the Friedmann equation, ΩDE, generically assumes the form of a cosmological constant
with magnitude

ΩDE|z→∞ = ΩΛ − sin2 θ m2
FP

(
1 + α +

β

3

)
. (13)

That is, at early times the background evolution of the Universe is according to a
ΛCDM model with a value of the, possibly negative, cosmological constant that is given by
Equation (13) [58]. In the infinite future, the Universe approaches a de Sitter phase where
the cosmological constant is set by ΩΛ [58]. So, bimetric cosmology exhibits two ΛCDM
phases with generically different cosmological constants, one in the early universe and one
in the late universe. The redshift ranges of these phases are primarily set by the mass of the
massive spin-2 field, mFP. In the transition between the two ΛCDM phases, there is a rich
spectrum of expansion histories depending on the physical parameters (5)–(9). One can
show that if ΩDE is negative, the equation of state wDE ≥ −1 whereas if ΩDE is positive the
equation of state is wDE ≤ −13 [90]. In other words, ΩDE grows with time, thus presenting
a phantom dark energy contribution to the Friedmann Equation (10). However, wDE → −1
is fast enough in the late universe, thus avoiding a Big Rip [58,91].

To enable statistical data analysis, we must solve the Hubble parameter as a function
of redshift H(z). This is conducted by solving the cosmological equations of motion
numerically, that is, Equations (10)–(12) and (A1). The value of y at z = 0 is determined
by solving Equation (A2) numerically, choosing the finite branch solution with y0 in the
range 0 ≤ y0 ≤ 1. Subsequently, this value of y0 allows the calculation of ΩDE,0 using
Equation (11). Further, the application of Friedman’s Equation (10) at z = 0 yields

Ωm,0 = 1 − ΩDE,0 − Ωr,0, (14)

since H2(z)

H2
0

∣∣∣∣
z=0

= 1, by definition. With Ωm,0 and Ωr,0 being determined4, the remaining

step to obtain H(z) is to solve Equation (A1) for y at each redshift, plugging the solution
into Equation (11) to determine ΩDE(z) and then finally H(z) via Equation (10).
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3. Methodology and Data

3.1. The SH0ES H0 Estimate

The SH0ES team estimate of H0 is based on a three-rung cosmic distance ladder [2].
In the first rung, the period-luminosity relation (PLR) for Cepheid variable stars [92] is cali-
brated in three anchor galaxies, the Milky Way (MW), NGC 4258, and the Large Magellanic
Cloud (LMC). To calibrate the PLR, the distance to these Cepheids must be known. In the
MW, the distances can be estimated geometrically from parallax measurements [93,94]. The
distance to NGC 4258 is estimated from water masers close to the center of this galaxy [95].
The distance to the LMC is estimated from observations of detached eclipsing binaries [96].

In the second rung, the absolute peak magnitude of type Ia supernovae is calibrated
in galaxies hosting both SNIa and Cepheids. In the third rung, SNIa is observed in the
Hubble flow which yields the magnitude-redshift relation [97]. With the calibrated value
for the absolute SNIa peak magnitude, H0 is finally obtained from the intercept of the
magnitude-redshift relation. The 2022 baseline result from the SH0ES team, fitting all three
rungs simultaneously, is H0 = (73.0 ± 1.0) km/s/Mpc [2]. This can be used as a prior on
H0 in which case the contribution to the likelihood is given by

−2 lnLSH0ES =

(
Hmodel

0 − 73.0 km/s/Mpc
1.0 km/s/Mpc

)2

. (15)

3.2. Cosmic Microwave Background

As the temperature of the Universe had dropped sufficiently, neutral hydrogen was
formed and the photons decoupled from the baryon–photon fluid and began to free
stream. This is known as recombination, or photon decoupling, and happens at a redshift
of z∗ ≃ 1090. Today, we can observe these photons as cosmic microwave background
radiation, carrying the imprint of the fluctuations in the baryon–photon fluid at the last-
scattering surface at redshift z∗.

The Planck satellite observations of the temperature fluctuations in the CMB can be
used to estimate H0 assuming a model, for example, ΛCDM [3]. Here, we investigate the
inferred value of H0 in the case of bimetric cosmology. For this purpose, we use the CMB
compressed likelihood featuring the three parameters (R, lA, ωb). The “shift parameter” R
encodes the angular scale of the Hubble horizon at the photon decoupling epoch and is
defined by [98]

R =
√

Ωm,0H2
0 DA(z∗). (16)

The comoving angular diameter distance DA is calculated by

DA(z) =
∫ z

0

dz

H(z)
, (17)

assuming a spatially flat cosmology. The redshift z∗ of photon decoupling is given by the
analytical approximation in Ref. [99].

The sound horizon at photon decoupling defines a standard ruler which is imprinted
in the CMB temperature fluctuations. This manifests itself as a maximal correlation between
hotspots in the CMB temperature map occurring at the angular scale θCMB, given by

θCMB = rs(z∗)/DA(z∗). (18)

The parameter lA is the multipole number corresponding to this angular scale,

lA = πDA(z∗)/rs(z∗), (19)
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where rs is the comoving sound horizon,

rs(z) =
∫ ∞

z

cs(z)

H(z)
dz, (20)

and cs is the sound speed,

cs(z) =
1√

3
(

1 + 3ωb
4ωγ

1
1+z

) . (21)

The photon energy density ωγ can be determined from the CMB temperature via the
relation [100]

3
4ωγ

= 31500
(

2.7 K
TCMB

)4

, TCMB = 2.7255 K. (22)

The present-day radiation density is set by,

Ωr,0 = Ωγ,0(1 + 0.2271Neff), (23)

with Neff being the effective number of neutrino species, which we set to Neff = 3.046 [3].
Finally,

ωb = Ωb,0h2, (24)

encodes the present-day baryon density.
The latest Planck values for (R, lA, ωb) are given in Table 1 and the CMB likelihood is

calculated as,
−2 lnLCMB = ∑

ij

∆iC
−1
ij ∆j. (25)

Here, ∆ is the difference between the model prediction and the observed values,

∆T =
(
Rmodel −Robs, lmodel

A − lobs
A , ωmodel

b − ωobs
b

)
, (26)

C−1 is the inverse covariance matrix and the covariance matrix C can be read off from the
correlation matrix ρ via the relation Cij = σiσjρij (no summation implied) with σi and ρij

given in Table 1.

Table 1. The 68 % CL limits on the CMB compressed likelihood [100]. The last three columns show
the correlation matrix ρij.

Planck R lA ωb

R 1.7493+0.0046
−0.0047 1.0 0.47 −0.66

lA 301.462+0.089
−0.090 0.47 1.0 −0.34

ωb 0.02239 ± 0.00015 −0.66 −0.34 1.0

3.3. Type Ia Supernovae

Type Ia supernovae are standardizable candles and can thus be used to probe the
expansion history of the Universe. Here, we use the Pantheon+ data sample [97], prob-
ing the peak apparent magnitude mB of 1701 SNIa light curves in the redshift range
0.001 ≤ z ≤ 2.26. To retain the supernovae in the Hubble flow, we use only those with
a redshift greater than 0.0235. The model prediction of the peak B-band magnitude is
given by,

mB(z) = M+ 5 log10 DL(z), (27)
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where we marginalize over the intercept M when calculating the likelihood. For details see,
for example, Refs. [61,101]. Further, the dimensionless luminosity distance DL is defined as

DL(z) = (1 + z)
∫ z

0

dz

E(z)
(28)

and E(z) is the normalized expansion rate, E(z) = H(z)/H0.

3.4. Baryon Acoustic Oscillations

The sound horizon of the baryon–photon fluid is not only imprinted in the CMB
temperature fluctuations but also in the large-scale structure of matter (baryons). These
fluctuations in the matter distribution are known as baryon acoustic oscillations and the
angular scale θBAO corresponding to the typical angular (transverse) separation of galaxies
in the sky, at some redshift z, is given by,

θBAO(z) = rs(zd)/DA(z). (29)

Here, rs(zd) is the comoving sound horizon at the baryon drag epoch which occurred
when the baryons were released from the Compton drag of the photons. Due to the
excess of photons over baryons, this occurred at a slightly later point in time than the
photon decoupling. The redshift of the drag epoch zd is calculated using the analytical
approximation in Ref. [99] and is zd ≃ 1060.

In the standard 3D BAO data reduction, one infers, for example, DV(z)/rs(zd). That is,
the ratio of the volume-average distance and the sound horizon at the baryon drag epoch.
The volume-average distance is defined as

DV(z) = 3

√
D2

A(z)
z

H(z)
. (30)

One can identify the two factors of DA(z) as angular distances and z/H(z) as a
radial distance. To infer DV(z)/rs(zd) from BAO data, one must calculate the 3D fiducial
comoving distances, including the radial distance [16,27]. For the latter, a cosmological
model must be assumed, and the universal assumption in the literature is a ΛCDM model.
Due to the assumption of a ΛCDM cosmological model in the BAO data reduction, in recent
years it has been questioned whether it is appropriate to use ordinary 3D BAO data when
analyzing alternative cosmological models, see for example Refs. [17–26]. In particular,
the ΛCDM assumption may bias the Hubble constant low when considering alternative
cosmological models.

To circumvent this issue, one can use the 2D transversal BAO scale (BAOtr) which can
be obtained without assuming any fiducial cosmology. Here, in the BAO data reduction
one calculates the 2-point angular correlation function in thin, non-overlapping, redshift
shells to infer θBAO(z) at a set of redshifts. The weak model dependence that remains is due
to corrections for projection effects, which is, however, minimized by choosing thin redshift
bins (see, for example, Ref. [28]). The price to pay for minimizing the model-dependence is
that the errors grow by roughly one order of magnitude, from ∼1% to ∼10%.

Here, we use 15 measurements of the angular BAO scale θBAO in the redshift range
0.11 ≤ z ≤ 2.225, obtained from the Sloan Digital Sky Survey (SDSS) data releases DR7,
DR10, DR11, DR12, and DR12Q and compiled in Table 2. The likelihood is calculated as,

−2 lnLBAOtr =
15

∑
i=1

(
θmodel

BAO (zi)− θobs
BAO(zi)

σi

)2

. (31)

When using ordinary 3D BAO data to compare with the BAOtr results, we use the data
from the SDSS in combination with the Dark Energy Spectroscopic Instrument (DESI) [102].
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Table 2. Transversal BAO data (BAOtr). Adopted from Ref. [21], compiling data points from
Refs. [16,29–32].

z 0.11 0.236 0.365 0.45 0.47 0.49 0.51 0.53

θBAO [deg] 19.8 9.06 6.33 4.77 5.02 4.99 4.81 4.29
σBAO [deg] 3.26 0.23 0.22 0.17 0.25 0.21 0.17 0.30

z 0.55 0.57 0.59 0.61 0.63 0.65 2.225
θBAO [deg] 4.25 4.59 4.39 3.85 3.90 3.55 1.77
σBAO [deg] 0.25 0.36 0.33 0.31 0.43 0.16 0.31

3.5. Consistency Constraints

There are some regions in the bimetric parameter space (θ, mFP, ΩΛ, α, β) that must
be avoided [58]. First, to have a continuous, real-valued cosmology devoid of the Higuchi
ghost, we must restrict the range of possible values of the physical parameters. Second,
observations require GR results to be restored on solar-system scales. Thus, a screening
mechanism must exist to hide the extra degrees of freedom on these scales. To ensure the
existence of such a mechanism, we must impose additional constraints on the parameter
space. Those are presented in Ref. [58] and we refer to these, together with the restrictions
imposed by the Higuchi bound, as consistency constraints.

Bimetric submodels are usually defined by setting one or several of the B-parameters
(or, equivalently, β-parameters) to zero. We note that the consistency constraints presented
here, together, require that B1, B2, and B3 are all non-zero6 [58]. Thus, the minimal submodel
consistent with these constraints is the B1B2B3-model which is the reason why we do not
consider submodels with fewer parameters. In the MCMC sampling, we set the likelihood
to zero at the points where the consistency constraints are violated.

3.6. MCMC Sampling

Markov Chain Monte Carlo (MCMC) methods can be employed in sampling complex
probability distributions. Its application is particularly prevalent in Bayesian statistics and
computational physics. MCMC operates on the principle of constructing a Markov Chain,
where each state in the chain represents a possible configuration of model parameters.
The transition from one state to the next is governed by a Markov process, ensuring that the
next state depends only on the current state. Over time, the chain converges to a stationary
distribution, and samples drawn from this distribution provide an approximation of the
posterior distribution. We have incorporated the emcee Python library [103], providing a
robust and parallelized implementation of Goodman and Weare’s affine invariant MCMC
ensemble sampling algorithm [104].

4. Results

We present the results for the most general bimetric model. The free parameters and
their flat prior ranges are presented in Table 3. In Figure 1, we show the 2D marginalized
confidence level contours in the (H0, θ)-plane for different combinations of datasets. The 2D
marginalized confidence contours in the full parameter space are displayed in Figure A1.
In Appendix B, we also present the results for certain submodels.

Table 3. Priors on the free model parameters for the general bimetric model. All priors are uniform,
spanning the range indicated in the table. The upper limits of α and β are set to 100 while their lower
limits are effectively set by imposing the consistency constraints, explained in Section 3.5.

Model Parameter: H0 ωb θ mFP ΩΛ

Prior: U[50, 85] U(0, 1] U[0, π
2 ] U(0, 108] U(0, 1]
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Figure 1. The 2D marginalized confidence level contours (68 %, 95 %, 99 %) in the (H0, θ)-plane for
the general bimetric model. Gray: the SH0ES estimate of H0. Green: SN + CMB. With these datasets,
the bimetric model yields a wide confidence contour, spanning from “low” values of H0 to “high”
values compatible with SH0ES. Blue: adding BAOtr. Notably, in this case, the inferred value of H0

is consistent with SH0ES. In other words, there is no Hubble tension in bimetric cosmology when
BAOtr is used. Red: using ordinary 3D BAO data instead of BAOtr. In this case, H0 centers around
“low” values and a tension in H0 is manifest.

In Figure 1, we see that SN + CMB yields a weakly constrained H0, allowing both for
“high” values compatible with SH0ES and for “low” values compatible with the standard
ΛCDM inverse distance ladder estimate. With SN + BAOtr + CMB, the inferred value
H0 = 71.0 ± 0.9 is consistent with SH0ES. This should be compared with H0 = 68.9 ± 0.5,
which is the value obtained when a ΛCDM model is fitted to the same dataset. In summary,
utilizing transverse BAO data, the Hubble tension is alleviated in bimetric cosmology.

On the other hand, imposing ordinary 3D BAO data instead of BAOtr, there is only a
slight increase in H0 compared with ΛCDM, so the tension remains, see Figure 1. More
specifically with SN+BAO+CMB, we obtain H0 = 68.6 ± 0.5 which is in the 4.4 σ tail of
the SH0ES team estimate.

We conclude that there is a drastic difference in the inferred value of H0 depending
on whether BAOtr or 3D BAO is used. This indicates that the model dependence on the
ordinary 3D BAO data can introduce a significant bias in H0.

To understand why the bimetric model alleviates the tension when using BAOtr, we
start by analyzing the ΛCDM model. First, SNIa data constrain the shape of the expansion
history at redshifts z ≤ 2.26 while being agnostic to the absolute scale of the expansion
rate (H0). Since the low-redshift expansion history is set by ΩΛ in a ΛCDM model, SNIa
data constrain the value of ΩΛ. Further, the CMB angular scale θCMB (18) is sensitive to
the value of H0. The observed value of θCMB sets H0 to be relatively low, that is, in tension
with SH0ES. In other words, increasing H0 to values compatible with SH0ES results in an
increased angular scale θCMB, violating its observational constraints.

However, this argument does not apply to bimetric cosmology due to its increased
flexibility. In this case, while the sound horizon stays the same, the expansion rate can be in-
creased at small redshifts (z ≲ 1) while decreased at intermediate redshifts (1 ≲ z ≲ 1000),
compared with a ΛCDM model. In this way the angular scale θCMB remains compati-
ble with the observed value. An example is shown in Figure 2 for the best-fit bimetric
model. However, it remains to explain why bimetric cosmology, in combination with
BAOtr, actually prefers a cosmology with an increased expansion rate in the late universe.
To understand this, in Figure 3 we plot the angular BAO scale θBAO for this model. Upon in-
spection of the residuals, it is evident that the ΛCDM model prediction lies systematically
below the observed values. This can be remedied by increasing the expansion rate at
these redshifts. However, in ΛCDM this is not possible due to the tight constraints on H0
from the CMB. In bimetric cosmology, on the other hand, this is possible, as explained
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above. In short, BAOtr prefers an increased expansion rate in the late universe which can
be accommodated in bimetric cosmology as opposed to ΛCDM. This is possible without
spoiling CMB data due to a decrease in the expansion rate at intermediate redshifts.
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Figure 2. (Left) Relative difference in the expansion rate H(z), comparing the CMB
+ SN + BAOtr best-fit bimetric and ΛCDM models. The bimetric model exhibits
(H0, θ, mFP, ΩΛ, α, β) = (71.0, 9.4◦, 5030, 0.724, 41, 46) and the ΛCDM model has (H0, ΩΛ) =

(68.9, 0.699). (Right) The dimensionless dark energy density ΩDE for the same bimetric model,
defined as the physical energy density ρDE measured in units of the present-day critical energy
density ρc = 3H2

0 /κg. As apparent, there is a transition from a negative cosmological constant at high
redshifts to a positive cosmological constant at lower redshifts.

Bimetric ΛCDM

0

5

10

15

20

25

θ BAO
[d

eg
re

es
]

0.5 1.0 1.5 2.0
-0.5

0.0
0.5
1.0
1.5

z

R
es

id
u
a
l

μ(dis
ta

n
ce

m
o
d
u
lu

s)

0.05 0.10 0.50 1

-0.5

0.0

0.5

z

R
es

id
u
a
l

Figure 3. (Left) Angular BAO scale for a bimetric model and a ΛCDM model. Data points are
black. The bimetric model has the parameters (H0, θ, mFP, ΩΛ, α, β) = (71.0, 9.4◦, 5030, 0.724, 41, 46).
The ΛCDM model has (H0, ΩΛ) = (68.9, 0.699). By inspection, it can be seen that the ΛCDM
residuals have a systematic offset. This offset is reduced in the bimetric model. (Right) Distance
modulus as a function of redshift for the same bimetric model. Since the SNIa data constrain only the
shape of the distance modulus µ rather than its intercept on the y-axis, we do not specify the absolute
scale of the y-axis.

With 3D BAO data, on the other hand, there is no such offset between the ΛCDM
model prediction and data. So, 3D BAO does not prefer an increased expansion rate at
low redshifts, explaining the difference in H0 between BAOtr and 3D BAO. In summary,
the choice of the BAO dataset (BAOtr or 3D BAO) effectively splits the SN+CMB confidence
contour in Figure 1 into two pieces with the model-independent BAOtr piece being com-
patible with the SH0ES measurement and the 3D BAO piece assuming “low” H0 values in
tension with SH0ES. The split between the 2D BAO and 3D BAO contours can be explained
by the slight tension between these two datasets, which has been discussed and quantified,
for example, in Refs. [20,25,26].

Finally, we check that the shape of the SH0ES-compatible bimetric expansion history
is compatible with the SNIa data. To demonstrate this, in Figure 3 we plot the distance
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modulus, defined as the difference between the apparent magnitude and the absolute
magnitude, µ = m − M. The theory prediction for this quantity is given by

µ(z) = 5 log10 DL(z)− 5 log10 H0 + 25. (32)

As shown in Figure 3, the bimetric model exhibits an expansion rate that is compatible also
with SNIa data.

To quantify the degree of success of the bimetric model compared with ΛCDM, we
assess the goodness-of-fit versus the number of model parameters. Two common measures
of this are the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) [105,106]. The AIC is defined as

AIC = 2Nparam + χ2
min. (33)

The BIC approximates the Bayesian evidence and is defined as

BIC = Nparam ln Ndata + χ2
min, (34)

where Nparam is the number of model parameters and Ndata is the number of data points.
Thus, the AIC and the BIC quantify how well a model is performing by balancing the
goodness-of-fit of the model against its complexity, penalizing complex models that exhibit
overfitting. In fact, the BIC exhibits a stronger penalty on models with more parameters
compared with the AIC.

The degree to which one model is preferred over another is quantified by

∆AIC = AICΛCDM − AICbimetric, (35a)

∆BIC = BICΛCDM − BICbimetric, (35b)

so a positive value of ∆AIC or ∆BIC favors bimetric cosmology over ΛCDM, and vice versa.
Following Jeffrey–Raftery’s terminology, ∆BIC in the range 0–2 is referred to as “weak
evidence”, 2–6 as “positive evidence”, 6–10 as “strong evidence”, and > 10 as “very
strong evidence” [107].

As seen in Table 4, we are facing an ambiguous situation where the bimetric model
is preferred by the AIC but the ΛCDM model is preferred by the BIC. If we focus on the
inverse distance ladder (CMB + SN + BAOtr, i.e., without the SH0ES prior), there is a slight
preference for the bimetric model according to the AIC whereas there is a strong preference
for the ΛCDM model according to the BIC. Taken together, the two information criteria
are indecisive as to which model exhibits the best performance. In Tables A1 and A2 in
Appendix B, we also present the Deviance Information Criterion (DIC) which utilizes the
full Monte Carlo Markov chains. However, caution is advised when interpreting the DIC,
as its applicability depends on the posterior distributions being approximately multivariate.
This condition is not met, as evidenced by Figures A1–A4. Nevertheless, we note that the
DIC is generally more favorable towards bimetric cosmology compared with the AIC or
the BIC.

Table 4. Best-fit values and 68 % confidence errors for H0, θ, and ΩΛ. Recall that H0 is given in units
of km/s/Mpc. With CMB + SN + BAOtr, the bimetric model exhibits a significant increase in H0, thus
being consistent with the local distance ladder measurement. ∆BIC is the difference in the Bayesian
information criterion between the ΛCDM model and the bimetric model. A positive value of ∆BIC
indicates a favored bimetric model. The corresponding applies to ∆AIC.

Model CMB + SN + H0 θ (rad) ΩΛ ∆AIC ∆BIC

ΛCDM BAOtr 68.9 ± 0.5 0 0.700 ± 0.006 0 0
Bimetric BAOtr 71.0 ± 0.9 0.16 ± 0.03 0.724 ± 0.010 1.1 −19.9

ΛCDM BAOtr + SH0ES 69.7 ± 0.5 0 0.709 ± 0.006 0 0
Bimetric BAOtr + SH0ES 71.9 ± 0.7 0.18 ± 0.02 0.732 ± 0.007 13.2 −7.8



Universe 2024, 10, 406 13 of 24

This demonstrates the limitations of the AIC and BIC in distinguishing between
models. However, it should be stressed that the bimetric model has the advantage of the
inverse distance ladder predicting a Hubble constant which is consistent with the local
distance ladder measurement.

As seen in Figure 2, the bimetric model alleviates the Hubble tension by increasing the
expansion rate at low redshifts (z ≲ 1), compensating for this by a decreased expansion rate
at intermediate redshifts (1 ≲ z ≲ 1000) so that the CMB angular scale remains invariant.
This expansion history is realized by the bimetric dark energy density ΩDE exhibiting a
negative cosmological constant at high redshifts with a transition to a positive cosmological
constant at low redshifts. In the example in Figure 2, ΩDE constitutes a few percent of the
total energy budget at redshifts z ≳ 2, to then drop below the subpercent level at redshifts
z ≳ 1500. At low redshifts (z ≲ 1), ΩDE contributes significantly to the expansion history.

As such, with ΩDE increasing with time, it constitutes a phantom dark energy. Since
ΩDE mimics a cosmological constant also in the early universe, the bimetric modification
to the expansion history can be ignored in the early universe. This can be seen in Figure 2
as the expansion rate differs < 1 % at prerecombination redshifts z > z∗. This also means
that the sound horizon at recombination and at the baryon drag epoch are the same as in
the ΛCDM model7. Accordingly, with θCMB fixed from observations, the distance to the
last scattering surface DA(z∗) also remains invariant.

5. Discussion

Apparently, the choice between 2D BAO and 3D BAO makes a decisive difference with
respect to the inferred value of H0 with the more conservative option (BAOtr) alleviating
the tension. This calls for further analysis of a possible bias in the 3D BAO data. Ideally,
the 3D BAO data reduction should be redone assuming a bimetric cosmology. The goal
of such an analysis would be to decrease the relatively large ∼10% errors in BAOtr to
∼1% errors as in the ordinary 3D BAO data, to see whether any Hubble tension-solving
cosmologies remain viable. In Ref. [14], such a re-analysis was carried out in the case of
non-flat cosmology with the result that the 3D BAO data are robust with respect to the
choice of spatial curvature. In Ref. [13], the authors analyzed the effects of assuming an
inadequate fiducial cosmology for a set of wCDM cosmologies. It was concluded that it
has little impact on the BAO shift parameters but leads to a notable misjudgment of the
measured errors. With bimetric cosmology providing a solution to the Hubble tension with
2D BAO, we call for such a re-analysis of the 3D BAO data for this set of cosmologies. This
will likely be demanding. Nevertheless, it is necessary to fully establish bimetric cosmology
as an explanation of the Hubble tension.

With BAOtr, the Hubble constant inferred from the inverse distance ladder is brought
into 2 σ agreement with the Cepheid-based local distance ladder estimate from the SH0ES
team. The residual 2 σ difference might be explained due to the local effects of bimetric
gravity, effectively providing a fifth force that can recalibrate the local distance ladder
along the lines of Refs. [5,6]. In other words, bimetric gravity may not only re-calibrate
the inverse distance ladder but also the local distance ladder. This should be assessed in a
separate work.

The effectiveness of bimetric cosmology in alleviating the Hubble tension should also
not be viewed in isolation. To be consistent, the theory parameters singled out by the
inverse distance ladder should describe a gravitational phenomenology in accordance
with complementary tests of gravity. In Figure 8.1 of Ref. [61], observational constraints
from the following sources are compiled: solar-system tests, strong gravitational lensing
(SGL) by galaxies, gravitational waves, and the abundance of the light elements (Big
Bang nucleosynthesis).

With these additional probes, there remain viable regions in the parameter space in the
range8 1 ≲ mFP ≲ 104. Interestingly, the allowed region overlaps with the region where the
Hubble tension is alleviated. The lower limit mFP ≳ 1 is due to the Higuchi bound which
is a theoretical requirement ensuring the absence of the Higuchi ghost [86]. The upper
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limit mFP ≲ 104 is due to SGL. Recall that in the MCMC method, we set the likelihood to
zero whenever there is no Vainshtein screening mechanism. In other words, the existence
of a Vainshtein screening mechanism is guaranteed, making the region 1 ≲ mFP ≲ 104

observationally viable.
As an example, with mFP ∼ 1000, the Vainshtein radius is rV ∼ 10 kpc for a M = 1012M⊙

galaxy, meaning that the typical lensing radius is of similar magnitude as the Vainshtein
screening radius. This implies that mFP ∼ 1000 is on the boundary of what is observationally
allowed by SGL. For a detailed analysis, see Ref. [108]. With future cosmological surveys
such as Euclid, the sample size of strong gravitational lenses will increase by several orders
of magnitude. This will probe larger portions of the parameter space (lower values of mFP)
where the Hubble tension-solving models are located.

Another, less significant, tension that has gained interest within the last decade is
the tension between the observed distribution of galaxies predicted by CMB observations,
assuming a ΛCDM cosmology and, for example, large-scale structure surveys and weak
lensing. This is quantified by the parameter S8 = σ8

√
Ωm,0/0.3 where σ8 is the present-

day average amplitude of matter fluctuations at 8h−1 Mpc. In bimetric cosmology, such
as the model (H0, θ, mFP, ΩΛ, α, β) = (71.0, 9.4◦, 5030, 0.724, 41, 46) studied in Section 4,
the present-day matter density Ωm,0 is greater than in a ΛCDM model. For this model,
Ωm,0 = 0.284. The decrease in Ωm,0 is due to the fact that ΩΛ is the effective cosmological
constant that ΩDE approaches at future infinity, and thus assumes a greater value than the
present-day value ΩDE,0. With a decreased present-day matter density, S8 decreases, also
easing the S8 tension, assuming that σ8 is constant. However, one should be very careful to
draw such a conclusion at this stage since there is currently no framework that allows to
predict structure formation in this theory [54,89,109–112]. So, at present, we cannot justify
the assumption of σ8 being unchanged in this theory.

We have focused on the most general bimetric model. In Tables A1 and A2 in Appendix B,
we present the corresponding results for all viable submodel, that is, B0B1B2B3, B1B2B3B4,
and B1B2B3. The four-parameter model B0B1B2B3 is performing better than B1B2B3B4 with
respect to the Hubble tension. Due to the decreased number of theory parameters, these
models are slightly favored over the general model when assessed by the BIC. The most
restricted submodel (B1B2B3) on the other hand yields a Hubble constant which is in tension
with SH0ES, just as the ΛCDM model.

In the literature, there are alternative cosmological models exhibiting qualitatively
similar expansion histories as bimetric cosmology. Accordingly, the conclusions in the
current paper apply, with appropriate adaptations, also to these models. Some of them are
discussed below.

5.1. Minimal Theories of Bigravity (MTBG)

This set of theories [113] shares the cosmological background solutions with bimetric
gravity. Therefore, the results in the current paper apply straightforwardly also to MTBG.

5.2. ΛsCDM

This is a phenomenological model exhibiting a sudden transition between a negative
and a positive cosmological constant at some redshift [35–37]. Thus, bimetric gravity
accommodates this set of models in a theoretically robust framework, only with a smooth
transition instead of a discrete one. Similar to the results in the present paper, it was
shown that the ΛsCDM model yields a value for H0 which is compatible with SH0ES when
using BAOtr data, thereby alleviating the tension. The main difference between bimetric
cosmology and ΛsCDM is that the latter introduces only one additional model parameter
compared with the four in bimetric cosmology. This results in an unambiguous preference
for ΛsCDM, also by the BIC. A generalized version of the ΛsCDM model, dubbed ΛXCDM,
was recently studied in Ref. [38]. The authors show that the ΛXCDM is even outperforming
the successful ΛsCDM model, primarily by increasing the quality of fit to SNIa data. We
note, however, that bimetric gravity does not accommodate the ΛXCDM model, due to the
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latter exhibiting a quintessence-like dark energy in the late universe. This is a feature that
cannot be achieved within bimetric cosmology alone.

5.3. Quadratic Bimetric Gravity

A ghost-free generalization of bimetric gravity was studied in Refs. [114–116]. Here,
in addition to the two Einstein–Hilbert terms of each metric, one adds, for each metric,
a term which is quadratic in the Ricci scalar, similar to a Starobinsky model [117]. The in-
teraction term remains the same as in the standard Hassan–Rosen bimetric action (1).
Accordingly, the set of bimetric cosmologies studied in the current work is a subset of
the expansion histories provided by the theory of quadratic bimetric gravity, obtained by
setting the coefficients of the quadratic terms to zero. Therefore, the alternative expansion
histories featured in the current paper are also found in quadratic bimetric gravity.

5.4. Phenomenological Emergent Dark Energy

Ref. [40] proposed a phenomenological dark energy model where the dark energy
vanishes in the early universe. In the late universe, the energy density grows, becoming
influential at redshifts z ≲ 1 to then approach a cosmological constant equation of state
towards future infinity. In Refs. [33,34,39], the influence of this model on the Hubble tension
was investigated. Interestingly, this phenomenological model is very similar to the self-
accelerating bimetric cosmologies (i.e., B0 = 0), where ΩDE → 0 as z → ∞ but approaching
a cosmological constant ΩDE → ΩΛ towards future infinity [58,59]. In other words, bimetric
gravity accommodates this phenomenological model in a robust theoretical framework.

6. Conclusions

Recent works in the literature indicate that the Hubble tension may be alleviated
if standard 3D BAO data are replaced by 2D BAO data [33–39]. Moreover, 2D BAO
has the advantage of being only weakly model-dependent in the data reduction, thus
offering a set of data points that can coherently be used to probe expansion histories
beyond ΛCDM [16,21,28–32]. The effects of 2D BAO data on the Hubble tension have been
studied in the case of phenomenological cosmologies such as the ΛsCDM model [35–37]
and phenomenological emergent dark energy (PEDE) [40]. Both of these models exhibit
an increased expansion rate relative to ΛCDM at redshifts z ≲ 1, thereby easing the
Hubble tension.

In the present work, we study bimetric gravity which is a consistent theory of gravity
that accommodates the ΛsCDM model as well as PEDE, in addition to a much wider range
of expansion histories. We show that, in bimetric cosmology, the inverse distance ladder
with SN+2D BAO+CMB yields H0 = (71.0 ± 0.9) km/s/Mpc which is compatible with
SH0ES H0 = (73.0 ± 1.0) km/s/Mpc at the 2 σ border, thus alleviating the Hubble tension.
On the other hand, with ordinary 3D BAO data bimetric cosmology eases the tension only
very slightly, with a 4.4 σ tension remaining.

Upon evaluating the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC), we encounter an ambiguous result: the AIC favors the bimetric model,
while the BIC favors the ΛCDM model. This discrepancy highlights the limitations of both
criteria in definitively determining which model performs better. Nonetheless, it is worth
emphasizing that the bimetric model offers a key advantage: the inverse distance ladder
(with 2D BAO) predicts a Hubble constant consistent with measurements from the local
distance ladder.

A scientific advantage of bimetric cosmology, as opposed to the phenomenological
models, is that the cosmological analysis can be supplemented with complementary obser-
vational tests of gravity to ensure that it offers a coherent picture of gravity at all observable
scales. This includes solar-system tests, gravitational waves, strong gravitational lensing by
galaxies, and the abundance of light elements (Big Bang nucleosynthesis). We show that a
Hubble-tension-solving cosmology can indeed fit coherently within a gravitational theory.
Unfortunately, there is currently no framework for calculating the growth of structure in
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this theory. So, at present the effect of this theory on the S8 tension is unclear although a
very preliminary assessment shows promising results also for this (less major) tension.

We have shown that, in bimetric cosmology, the inverse distance ladder yields signifi-
cantly different values for the Hubble constant depending on whether 3D BAO data or 2D
BAO data are used. This is due to 2D BAO preferring a greater angular BAO scale than
3D BAO. Accordingly, 2D BAO prefers a higher value for H0. In bimetric cosmology, this
can be achieved by increasing the expansion rate (relative to ΛCDM) at redshifts z ≲ 1,
compensating for this by decreasing the expansion rate at redshifts z ≳ 1 so as to maintain
the well-constrained angular CMB scale (the sound horizon remains unchanged). This
expansion history is realized by a smooth transition from a negative cosmological constant
at z ≳ 1 to a positive one at z ≲ 1.

A possible explanation for the difference in H0 between 2D BAO and 3D BAO is
that the latter might bias H0 low due to the assumption of ΛCDM cosmology during the
3D BAO data reduction. This is apparently an assumption that is incompatible with the
alternative expansion histories studied here. If so, this could explain the Hubble tension.
To definitely establish this as an explanation, we call for a reanalysis of the 3D BAO data
reduction under less restrictive model assumptions.
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Appendix A. Ratio of the Scale Factors: Equation of Motion

The quartic polynomial governing the evolution of y, the ratio of the scale factors, is
given by,

−
1
3

cos2 θ m2
FP(1 + 2α + β)

+

[
Ωtot(z) + ΩΛ + m2

FP

(
cos2 θ (α + β)− sin2 θ

(
1 + α +

β

3

))]
y(z)

+ m2
FP

[
− cos2 θ β + sin2 θ (1 + 2α + β)

]
y2(z) (A1)

−

[
ΩΛ +

1
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m2
FP

(
cos2 θ (−1 + α − β) + 3 sin2 θ (α + β)

)]
y3(z)

+
1
3

sin2 θ m2
FPβ y4(z) = 0,

where Ωtot(z) ≡ Ωm(z) + Ωr(z). In the data analysis, we solve this equation numerically
for each redshift, choosing the finite branch solution. That is, the solution satisfying
0 ≤ y ≤ 1.
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Evaluating Equations (A1) and (10) at z = 0 (present day), the equations can be
combined to yield an equation involving only y0 and the physical parameters. Here, y0 is
the value of y at z = 0. The quartic term cancels and the equation reads,

1
3

cos2 θ m2
FP(1 + 2α + β)−

[
1 + cos2 θ m2

FP (α + β)
]
y0 + cos2 θ m2

FP β y2
0

+

[
ΩΛ +

1
3

cos2 θ m2
FP(−1 + α − β)

]
y3

0 = 0. (A2)

Appendix B. Complementary Results

In Tables A1 and A2 we display results complementary to Table 4, including the
possible bimetric submodels B0B1B2B3, B1B2B3B4, and B1B2B3.

Table A1. Best-fit values and 68 % confidence errors for H0, θ, and ΩΛ due to CMB + SN + BAO(tr)
data. The remaining theory parameters, α and β are unconstrained as seen in Figures A1–A4, thus
not tabulated. In the case where θ = 0 is contained within credible interval, mFP is unconstrained.

Model CMB + SN + H0 θ (rad) ΩΛ mFP ∆AIC ∆BIC ∆DIC

ΛCDM
BAO 68.3 ± 0.4 0 0.691 ± 0.005 — 0 0 0
BAOtr 68.9 ± 0.5 0 0.700 ± 0.006 — 0 0 0

B0B1B2B3B4
BAO 68.6 ± 0.5 0.078 ± 0.036 0.695 ± 0.006 ≤1.9 ×104 −7.1 −28.0 −0.6
BAOtr 71.0 ± 0.9 0.163 ± 0.028 0.724 ± 0.010 ≤1.7 ×104 1.1 −19.9 11.0

B0B1B2B3
BAO 68.5 ± 0.6 0.088 ± 0.040 0.695 ± 0.007 ≤8.0 ×104 −3.8 −20.6 −2.3
BAOtr 70.9 ± 1.0 0.171 ± 0.059 0.726 ± 0.015 ≤1.6 ×104 3.0 −12.7 19.4

B1B2B3B4
BAO 68.3 ± 0.4 0.015 ± 0.035 0.692 ± 0.005 — −8.6 −21.3 0.1
BAOtr 69.3 ± 0.8 0.1 ± 0.073 0.707 ± 0.013 — −2.6 −18.3 0.9

B1B2B3
BAO 68.2 ± 0.4 < 10−2.6 0.691 ± 0.005 — −4.0 −14.5 0.1
BAOtr 68.9 ± 0.5 < 10−2.6 0.699 ± 0.006 — −2.9 −13.4 0.0

Table A2. Best-fit values and 68% confidence errors for H0, θ, and ΩΛ due to CMB + SN + BAO(tr) + SH0ES.
That is, including the H0 prior from SH0ES. The remaining theory parameters, α and β are unconstrained as
seen in Figures A1–A4, thus not tabulated. In the case where θ = 0 is contained within credible interval, mFP is
unconstrained.

Model CMB + SN + H0 θ (rad) ΩΛ mFP ∆AIC ∆BIC ∆DIC

ΛCDM
BAO + SH0ES 68.9 ± 0.3 0 0.698 ± 0.004 — 0 0 0
BAOtr + SH0ES 69.7 ± 0.5 0 0.709 ± 0.006 — 0 0 0

B0B1B2B3B4
BAO + SH0ES 69.4 ± 0.5 0.119 ± 0.031 0.704 ± 0.006 ≤9.9 × 104 −1.8 −22.7 2.7
BAOtr + SH0ES 71.9 ± 0.7 0.178 ± 0.023 0.732 ± 0.007 ≤8.3 × 103 13.2 −7.8 18.3

B0B1B2B3
BAO + SH0ES 69.2 ± 0.6 0.109 ± 0.038 0.704 ± 0.006 ≤1.4 × 105 0.2 −15.5 2.8
BAOtr + SH0ES 71.8 ± 0.8 0.183 ± 0.022 0.733 ± 0.008 ≤1.1 × 104 15.0 −0.7 18.7

B1B2B3B4
BAO + SH0ES 69.0 ± 0.4 0.048 ± 0.057 0.701 ± 0.006 — −1.5 −17.2 2.0
BAOtr + SH0ES 70.6 ± 0.7 0.173 ± 0.067 0.723 ± 0.010 — 6.7 −9.0 6.8

B1B2B3
BAO + SH0ES 68.8 ± 0.4 < 10−2.5 0.698 ± 0.005 — −2.6 −13.1 0.1
BAOtr + SH0ES 69.7 ± 0.5 < 10−2.5 0.709 ± 0.006 — −1.0 −11.5 0.1

In Figures A1–A4 we show the full 2D marginalized CL contours for all bimetric
submodels, as well as the ΛCDM model in Figure A5. As apparent in Figure A1, the pa-
rameters α and β are unconstrained when combining SN+BAO(tr)+CMB. Concerning the
B1B2B3-model, displayed in Figure A4, we notice that the best fit reduces to a ΛCDM
model, that is, θ ≃ 0. This explains the peak in the likelihood of mFP towards higher values
of mFP. The reason is that for a B1B2B3-model, the consistency constraints, discussed in
Section 3.5, enforce a small value for θ for large values of mFP. This is discussed in detail in
Section 3.2 in Ref. [59]. Moreover, in the θ → 0 limit, ΛCDM is retained. So, a peak at large
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mFP is consistent with θ ≃ 0 being the best-fit model. Already at mFP ∼ 100, it is required
that θ ≲ 0.1◦ for a B1B2B3-model which, for all practical purposes, represents a ΛCDM
model. Thus, it is not necessary to increase the parameter range in mFP.
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Figure A1. The corner plot shows the 2D marginalized CL contours for the most general bimetric
model (B0B1B2B3B4). It is evident that the inclusion of BAOtr instead of ordinary 3D BAO results in
a noticeable increment of the estimated value of the Hubble constant H0.
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Figure A2. The B0B1B2B3-model. It is apparent that the inclusion of BAOtr instead of ordinary
3D BAO leads to a discernible increase in the estimated value of the Hubble constant H0. In this
four-parameter submodel, α is not a free parameter but becomes dependent on the remaining physical
parameters, which is why it is not shown in the plot.
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Figure A3. The B1B2B3B4-model. Incorporating BAOtr instead of ordinary 3D BAO results in a slight
augmentation of the estimated value of the Hubble constant H0. In this four-parameter submodel, α

is not a free parameter but becomes dependent on the remaining physical parameters, which is why
it is not shown in the plot.
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Figure A4. The B1B2B3-model. The inclusion of BAOtr instead of ordinary 3D BAO leads to a slight
increase in the estimated value of the Hubble constant H0. In this three-parameter submodel, α and β

are not free parameters but become dependent on the remaining physical parameters, which is why
they are not shown in the plot.
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Figure A5. The corner plot shows the distribution of parameter values for a ΛCDM model. It is
apparent that including BAOtr instead of ordinary 3D BAO leads to a slight increase in H0. However,
the increment does not suffice to solve the Hubble tension and, moreover, for ΛCDM, the usage of
ordinary 3D BAO is warranted since the assumptions of the 3D BAO data reduction are compatible
with such a cosmology.

Notes

1 A combination of the two is of course also an option. See, e.g., [4].
2 Note that this equation has no unique solution generically. However, in Ref. [83] it was argued that the principal square root is

the appropriate solution as it guarantees a sensible space-time interpretation of the theory.
3 For a more general discussion of a dark energy fluid with such properties, see Ref. [90].
4 In Section 3.2, we show how Ωr,0 is determined from the CMB temperature.
5 The dataset is available at https://github.com/PantheonPlusSH0ES/DataRelease/tree/main/Pantheon%2B_Data, last checked

2 July 2024.
6 The B-parameters can be expressed in terms of the physical parameters by inverting Equations (5)–(9).
7 For the best-fit bimetric cosmology, shown in Figure 2, the sound horizons are rs(z∗) = 144.4 Mpc and rs(zd) = 147.0 Mpc.
8 There are also windows of viable Fierz–Pauli masses in the ranges 106 ≲ mFP ≲ 108 and mFP ≳ 1032.
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