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Abstract
Accurately assessing the difference between two beam

distributions in high-dimensional phase space is crucial for
interpreting experimental or simulation results. In this paper,
we compare the common method of RMS moments and
mismatch factors, and the method of statistical divergences
that give the total contribution of differences at all points.
We first show that, in the case of commonly used initial
distributions, there is a one-to-one correspondence between
mismatch factors and statistical divergences. This enables us
to show how the values of several popular divergences vary
with the mismatch factors, independent of the orientation of
the phase space ellipsoid. We utilize these results to propose
evaluation standards for these popular divergences, which
will help interpret their values in the context of beam phase
space distributions.

INTRODUCTION
In the research fields of beam transport line design, beam

diagnostics, phase space tomography and so on, accurately
assessing the difference between two beam distributions in
high-dimensional phase space is crucial for interpreting ex-
perimental or simulation results [1–3]. A common approach
to quantify these differences is through the use of RMS mo-
ments and mismatch factor, which gauges the overlap of
RMS boundaries [4]. Another more detailed approach is to
use statistical divergences, which give the total contribution
of differences at all points, commonly including: Kullback-
Leibler divergence, Jensen-Shannon divergence, Total Vari-
ation distance, Hellinger distance, collectively referred to as
f-divergence [5–9]. This paper compares these two different
methods, aiming to find the connection between them.

BASIC TERMS
RMS Moments and Mismatch Factor

Considering a beam distribution centered at the origin of
the (𝑥, 𝑥′) phase space, if we conduct RMS statistics on it,
we can obtain the following covariance matrix:

Σ = ( ⟨𝑥𝑥⟩ ⟨𝑥𝑥′⟩
⟨𝑥′𝑥⟩ ⟨𝑥′𝑥′⟩) . (1)
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This is a symmetric matrix constituted by four second-order
moments. Each Σ corresponds to a quadratic form RMS
phase ellipse equation

x𝑇Σ−1x = 1, (2)

where x = (𝑥, 𝑥′)𝑇 is the 2D phase space coordinates of the
beam.

The mismatch factor measures the difference between
two ellipses in phase space that have the same center and
area but do not completely overlap. They both have the
form of Eq. (2) and share the same RMS emittance. If one
ellipse can exactly enclose the other after being scaled by a
certain proportion, then the mismatch factor is defined as
the value of this scaling factor minus 1. The commonly used
calculation formula is as follows [10]:

𝑀 = ⎡⎢
⎣
1 + Δ + √Δ(Δ + 4)

2
⎤⎥
⎦

1/2

− 1, (3)

where
Δ = Δ𝛼2 − Δ𝛽Δ𝛾, (4)

with Δ𝛼, Δ𝛽 and Δ𝛾 being the differences in Twiss param-
eters between the two phase ellipses.

f-Divergence
The f-divergence is a class of methods used to measure

the difference between two probability distributions, defined
as follows (1D):

𝐷𝑓[𝑝(𝑥)||𝑞(𝑥)] = ∫ 𝑞(𝑥)𝑓 [𝑝(𝑥)
𝑞(𝑥)] d𝑥; (5)

where 𝑝(𝑥) and 𝑞(𝑥) are the probability density functions
of two distributions. 𝑓 (⋅) is a convex function and satisfies
𝑓 (1) = 0. Different 𝑓 (⋅) correspond to different statistical
divergences. This paper selects four popular divergences to
study the beam distribution, with corresponding forms and
calculation formulas are shown in Table 1.

THE RELATIONSHIP BETWEEN
MISMATCH FACTOR AND

F-DIVERGENCE
Theorem 1 In 2D phase space, there is a one-to-one corre-
spondence between the f-divergence and the mismatch factor
for two beam distributions with elliptical symmetry.
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Table 1: Four Forms of f-divergence; 𝑡 = 𝑝(𝑥)
𝑞(𝑥)

Name 𝑓 (𝑡) 𝐷𝑓[𝑝(𝑥)||𝑞(𝑥)]

Kullback-Leibler 𝑡 ln 𝑡 ∫ 𝑝(𝑥) ln [ 𝑝(𝑥)
𝑞(𝑥) ] d𝑥

Jensen-Shannon
1
2 [ln ( 2

𝑡+1 )𝑡+1

+𝑡 ln 𝑡]

1
2 ∫ {𝑞(𝑥) ln [ 2𝑞(𝑥)

𝑝(𝑥)+𝑞(𝑥) ]
+𝑝(𝑥) ln [ 2𝑝(𝑥)

𝑝(𝑥)+𝑞(𝑥) ]} d𝑥
Total Variation 1

2 |𝑡 − 1| 1
2 ∫ |𝑝(𝑥) − 𝑞(𝑥)|d𝑥

Squared Hellinger (√𝑡 − 1)2 ∫ [√𝑝(𝑥) − √𝑞(𝑥)]
2

d𝑥

We now prove Theorem 1. In the (𝑥, 𝑥′) phase space, the
f-divergence between the two beam distributions is:

𝐷𝑓[𝜌1(x)||𝜌2(x)] = ∬ 𝜌2(x)𝑓 [𝜌1(x)
𝜌2(x)] d𝑥d𝑥′, (6)

where 𝜌1(x) and 𝜌2(x) are the probability density functions
of the selected matched and mismatched beam distributions.
Their RMS phase ellipses are shown in Fig. 1a.

Assuming there is a distribution with the same mismatch
factor as the matched beam but with different second-order
moments, with its probability density function denoted as

̃𝜌2(x), then the f-divergence between them is given by:

𝐷̃𝑓[𝜌1(x)|| ̃𝜌2(x)] = ∬ ̃𝜌2(x)𝑓 [𝜌1(x)
̃𝜌2(x)] d𝑥d𝑥′. (7)

Their RMS phase ellipses are shown in Fig. 1c.
To facilitate the observation of the relationship between

the mismatch factor and the f-divergence, we first perform
the following transformation on the phase space:

m = P−1x, (8)

where m = (𝑚, 𝑚′)𝑇 is the transformed new phase space
coordinate, and

P = ⎛⎜⎜
⎝

√𝛽 0
− 𝛼

√𝛽
1

√𝛽

⎞⎟⎟
⎠

, (9)
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Figure 1: RMS phase ellipses before and after coordinate
transformation (Blue: Matched; Red: Mismatched).

with 𝛼, 𝛽 and 𝛾 being the Twiss parameters of the matched
beam’s RMS phase ellipse.

After this transformation, one of the RMS phase ellipses
becomes a circle, while the other remains an ellipse, as
shown in Figs. 1b and 1d. The relationship between the vol-
ume elements before and after the coordinate transformation
is:

d𝑥d𝑥′ = |𝐽1|d𝑚d𝑚′, (10)

where |𝐽1| is the Jacobian determinant of the coordinate
transformation. From Eq. (8) and Eq. (9), we obtain:

|𝐽1| = ∣ 𝜕(𝑥, 𝑥′)
𝜕(𝑚, 𝑚′) ∣ =

∣
∣∣
∣

√𝛽 0
− 𝛼

√𝛽
1

√𝛽

∣
∣∣
∣
= 1. (11)

Thus, in the (𝑚, 𝑚′)phase space, Eq. (6) and (7) become:

𝐷𝑓[𝜌1(Pm)||𝜌2(Pm)]

= ∬ 𝜌2(Pm)𝑓 [𝜌1(Pm)
𝜌2(Pm)] d𝑚d𝑚′ (12)

𝐷̃𝑓[𝜌1(Pm)|| ̃𝜌2(Pm)]

= ∬ ̃𝜌2(Pm)𝑓 [𝜌1(Pm)
̃𝜌2(Pm)] d𝑚d𝑚′. (13)

Obviously, in the (𝑚, 𝑚′) phase space, Fig. 1b and Fig. 1d
have the same mismatch factor. If the beam distributions
are all elliptically symmetric, then the distributions in these
two cases differ by only a rotation angle. Next, apply a
rotation transformation to the (𝑚, 𝑚′) phase space depicted
in Fig. 1b, assuming that after rotating by 𝜃, the two beam
distributions coincide with those in Fig. 1d:

u = R−1m, (14)

where
R = ( cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃) , (15)

with u = (𝑢, 𝑢′)𝑇 being the new phase space coordinates
after the rotation transformation. This results in:

⎧{
⎨{⎩

𝜌1(PRu) = 𝜌1(Pm)
𝜌2(PRu) = ̃𝜌2(Pm)

. (16)

At this point, the Jacobian determinant of the coordinate
transformation is:

|𝐽2| = ∣𝜕(𝑚, 𝑚′)
𝜕(𝑢, 𝑢′) ∣ = ∣ cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃∣ = 1. (17)

Thus, in the (𝑢, 𝑢′) phase space, Eq. (12) becomes:

𝐷𝑓[𝜌1(PRu)||𝜌2(PRu)]

= ∬ 𝜌2(PRu)𝑓 [𝜌1(PRu)
𝜌2(PRu)] d𝑢d𝑢′. (18)

Combining with Eq. (16), it can be seen that this is con-
sistent with the result obtained by directly calculating the
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f-divergence between the two beam distributions shown in
Fig. 1d:

𝐷𝑓[𝜌1(PRu)||𝜌2(PRu)] = 𝐷̃𝑓[𝜌1(Pm)|| ̃𝜌2(Pm)]. (19)

That is:

𝐷𝑓[𝜌1(x)||𝜌2(x)] = 𝐷̃𝑓[𝜌1(x)|| ̃𝜌2(x)]. (20)

This indicates that for two different 2D beam distributions
with elliptical symmetry, the f-divergence between them
depends solely on the mismatch factor, and is independent
of the orientation of the ellipsoids in phase space. Q.E.D.
We can easily extend this theorem to 2𝑛-D phase space (𝑛 =
1, 2, ⋯), yielding the following theorem:

Theorem 2 In the (𝑥1, 𝑥′
1, 𝑥2, 𝑥′

2, ⋯ , 𝑥𝑖, 𝑥′
𝑖 , ⋯ , 𝑥𝑛, 𝑥′

𝑛)
phase space (2𝑛-D), given two uncoupled beam distribu-
tions with elliptical symmetry, the f-divergence between
them has a one-to-one correspondence with the mismatch
factor in the 2D subspaces represented by the elements of
the set {(𝑥𝑖, 𝑥′

𝑖 ) | 𝑖 = 1, 2, ⋯ , 𝑛}.

SIMULATION RESULTS
The Relationship Between 4D f-divergence and
Transverse Mismatch Factors

We simulated the relationship between the f-divergence
and the transverse mismatch dfactors in a 4D phase space for
ideal beam distributions without 𝑥 − 𝑦 coupling and with el-
liptical symmetry. First, we selected a standard distribution,
then performed rotational and scaling transformations on it,
ensuring that the RMS emittance of the projected distribu-
tions in both the (𝑥, 𝑥′) and (𝑦, 𝑦′) phase spaces remained
unchanged. Subsequently, we calculated a series of mis-
match factors 𝑀𝑥 and 𝑀𝑦 generated in a 2D subspace using
these two different methods, as well as the 4D f-divergence
between the transformed distribution and the selected stan-
dard distribution. The simulation results are shown in Fig. 2.

It illustrates how several popular divergences based on the
Gaussian distribution vary with the mismatch factor. Addi-
tionally, it can be observed that the plots of the relationship
between the mismatch factor and the f-divergence under the
two methods coincide (the solid and dashed lines overlap in
the figure). This indicates that for beams without 𝑥 − 𝑦 cou-
pling, in the 4D phase space, as long as the two transverse
mismatch factors are fixed, there is a unique f-divergence
that corresponds to them, which is consistent with the de-
scription of Theorem 2.

Assessment Standard for 4D f-Divergence
We utilized the one-to-one relationship between the 4D

f-divergence and the two transverse mismatch factors to
plot a heatmap of the f-divergence variation with mismatch
factor under ideal distribution conditions, which serves as
the evaluation standard. Figure 3 presents an evaluation
heatmap based on Gaussian distribution. With this reference
in place, when using f-divergence to calculate the differences

between non-ideal beam distributions, we can roughly infer
the degree of difference represented by the f-divergence
values from the existing heatmap.
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Figure 2: The relationship between 4D f-divergence and
transverse mismatch factor (Gaussian).
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CONCLUSION
In this paper, we demonstrated that the f-divergence be-

tween beams with elliptical symmetry in 2D phase space
had a one-to-one correspondence with the mismatch factor,
and we extended this theorem to 2𝑛-D phase space. Sub-
sequently, we further corroborated this theorem through
simulations. Finally, based on this correspondence, we pro-
posed evaluation standards for f-divergence, which allowed
for an intuitive interpretation of the meaning of f-divergence
values when assessing differences between non-ideal beam
distributions.
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