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Abstract: Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for space-

borne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of

stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately

104∼107 M⊙. EMRIs are estimated to produce long-lived gravitational wave signals with more than

105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties

of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs

itself. However, the complexity of the waveform model, which involves the superposition of multiple

harmonics, as well as the high-dimensional and large-volume parameter space, make the fully coher-

ent search challenging. In our previous work, we proposed a 10-dimensional search using Particle

Swarm Optimization (PSO) with local maximization over the three initial angles. In this study, we

extend the search to an 8-dimensional PSO with local maximization over both the three initial angles

and the angles of spin direction of the MBH, where the latter contribute a time-independent amplitude

to the waveforms. Additionally, we propose a 7-dimensional PSO search by using a fiducial value for

the initial orbital frequency and shifting the corresponding 8-dimensional Time Delay Interferometry

responses until a certain lag returns the corresponding 8-dimensional log-likelihood ratio’s maximum.

The reduced dimensionality likelihoods enable us to successfully search for EMRI signals with a

duration of 0.5 years and signal-to-noise ratio of 50 within a wider search range than our previous

study. However, the ranges used by both the LISA Data Challenge (LDC) and Mock LISA Data

Challenge (MLDC) to generate their simulated signals are still wider than the those we currently

employ in our direct searches. Consequently, we discuss further developments, such as using a

hierarchical search to narrow down the search ranges of certain parameters and applying Graphics

Processing Units to speed up the code. These advances aim to improve the efficiency, accuracy, and

generality of the EMRI search algorithm.

Keywords: LISA; Gravitational waves; EMRI; PSO; Likelihood ratio

1. Introduction

The extreme-mass-ratio inspirals (EMRIs) are sources of gravitational waves (GWs),
where stellar-mass compact objects (COs) are captured and spiral into massive black holes
(MBHs) at the centers of galaxies [1–3]. The emission of GWs gradually causes the eccentric
orbit to shrink and become more circular. During the last year of inspirals before plunge, it
is estimated that over 105 cycles can be observed by space-based GW observatories [4], such
as Taiji [5,6], Tianqin [7], and LISA [8]. The rich information from the phase evolution can
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be utilized to constrain gravity theories beyond general relativity [9–11]; test the no-hair
theorem [12–14], deviations from the Kerr metric [15–17], and dark matter [18–20]; and
study the astrophysics of galaxies [21–23] with a high precision. The event rates detectable
by LISA or Tianqin can vary from dozens to thousands, depending on the population
models [2–4]. Consequently, a catalog of EMRI sources could potentially serve as dark
sirens to constrain cosmological parameters, particularly the Hubble constant [24,25].
Therefore, EMRI data analysis becomes a crucial task.

Time-frequency methods provide a straightforward solution for detecting high SNR
signals without the need for waveform models. Once the signal tracks in the time-frequency
plane are well fitted, the waveform models can be used to estimate a subset of source param-
eters [26,27]. The advantage of this approach is that it is computationally cheap. However,
the disadvantage is that it requires a lot of tuning for the threshold fitting in the time–
frequency plane, and it is difficult to detect signals with a low SNR. Recently, Convolutional
Neural Network (CNN)-based methods have been developed, where different inputs such
as time domain data [28], frequency domain data [29], and time–frequency planes by
Q-transform [30,31] are fed to the neural network. These methods provide an alternative
computationally efficient solution for EMRI data analysis, but they are still limited to high
SNR signals.

Template-based matched filtering is the best option for a deeper search in SNRs,
although it is computationally expensive. In EMRI data analysis, accurate EMRI waveforms
are quite complicated and computationally expensive when considering the self-force of
the COs [32]. As a result, phenomenological waveforms from the kluge family are widely
used at present in the development of EMRI data analysis methods. The analytical kluge
(AK) waveform [33] is used in the Mock LISA Data Challenges (MLDCs) [34–37] and
the latest LISA Data Challenge (LDC) [38], while the augmented analytical kluge (AAK)
waveform [39] is used in the Taiji data challenge [40]. The AK waveform includes 14
parameters, with the spin of the COs usually being ignored. Six of these parameters
contribute to the phase evolution of the waveform and need to be estimated with high
precision, thus contributing a prominent 6-dimensional sharp peak to the signal location in
the parameter space of the fitness function. The AK waveform consists of a superposition
of multiple harmonics, resulting in multiple secondary peaks surrounding the primary one
in the parameter space [41]. The primary peak indicates a good match of all the harmonics,
while the secondary peaks indicate that a subset of harmonics is matched well, especially
the dominant ones. Therefore, it is difficult for a global optimizer to locate a complete
signal in such a high-dimensional and multimodal parameter space.

It is well known that longer-duration signals contribute more sensitivity and less
flexibility to coherent matched filtering [42], and the sharp peak can only be located within
a reasonable range width [43]. As a result, hierarchical search methods are effective in
overcoming the methodological difficulties in EMRI data analysis. It can be implemented
by either using shorter-duration signals and gradually turning to longer signals with the
constrained information utilized in the next search [42,44] or by initially searching for
fixed-duration signal within a wide range and later focusing on narrower ranges extracted
from the previous searches [43] in matched filtering. It is also beneficial to develop mixed
versions by combining these two approaches together.

Given the fitness function usually defined by the log-likelihood ratio (LLR), Bayesian [45]
or Fisherian methods [46] are the most commonly used ones for estimating the posterior
probability density function or the global best-fit fitness value and location, which are
then used for signal detection and parameter estimation. In EMRI data analysis, modified
Markov Chain Monte Carlo (MCMC) methods, such as constrained Metropolis–Hastings
Monte Carlo (MHMC) [44], Evolutionary Monte Carlo (EMC) [47], and parallel tempered
Markov Chain Monte Carlo (PTMCMC) [48,49], have been used in previous works. The
global optimizer, Particle Swarm Optimization (PSO), first proposed in [50,51] and validated
by [52,53], was used in our previous work for a 10-dimensional EMRI search problem [54]
and was proven effective in the LIGO data analysis of inspiral signals [55–58] and transient
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signals [59–62], the pulsar timing array data analysis of supermassive black holes [63–68],
and the LISA data analysis of galactic binaries [69–73]. Besides gravitational wave data
analysis, it is also widely used in other fields, such as electromagnetics [74,75]. More
comprehensive discussions can be seen in [76–79]. The advantages of PSO are its fewer
tunable parameters and smaller number of LLR evaluations needed to reach the global LLR
maximum compared with the MCMC method. In this paper, we extend the application of
PSO to an EMRI search problem with two different dimensions: an 8-dimensional search
and a 7-dimensional search, respectively. Our results demonstrate that the PSO-based
search algorithm is able to accurately estimate the simulated signals with an SNR value
of 50 and a duration of 0.5 years by using these reduced dimensionality LLRs. Notably, it
should be emphasized that the current search ranges employed are substantially broader
than those utilized in our previous work, resulting in a significant increase in the parameter
space volume, approximately ∼50-fold for the 8-dimensional search and ∼100-fold for the
7-dimensional search.

The rest of the paper is organized as follows. In Section 2, we describe the con-
sistent TDI combinations, noise model, and the signal model as LDCs used in the pa-
per. In Section 3, we present how the reduced dimensionality likelihoods are defined.
The Particle Swarm Optimization algorithm used for matched filtering is illustrated in
Section 4. Finally, in Section 5, we report the results and give the corresponding discussions
in Section 6.

2. Data Description

First, we describe the application of time-delay interferometry (TDI) [80] in this paper,
which is employed by space-based GW detectors to mitigate the dominant laser frequency
noise. Subsequently, we present the theoretical model of power spectral densities (PSDs)
utilized by LDCs. Lastly, we provide a description of the current standard waveform model
employed for EMRI data analysis.

2.1. TDI Combinations

Throughout the paper, we adhere to the coordinate and TDI conventions defined
in [81]. Given the definitions of the polarization tensors ϵ+,× and LISA orbit, we can derive
the corresponding geometrical quantities n̂l and R̂k from the orbit. Here, n̂l represents the
unit vector along the arm link l between the two involved satellites, and R̂k denotes the
position vector of the k-th satellite. The sky’s location, θs and ϕs, can be used to define the
unit vector k̂ which indicates the direction of the GW propagation. The antenna patterns
F+,×

l of the single arm l are given by

[
F+

l
F×

l

]
=

[
cos(2ψ) − sin(2ψ)
sin(2ψ) cos(2ψ)

][
U+

l
U×

l

]
, (1)

where ψ is the polarization angle and the quantities U+,×
l are defined by

U+
l = (n̂l ⊗ n̂l) : ϵ+ , (2)

U×
l = (n̂l ⊗ n̂l) : ϵ× . (3)

The symbol : denotes the contraction operation on arbitrary tensors U and V, namely,
U : V = ∑i,j UijVij, and ⊗ represents (a ⊗ b)ij = aibj for arbitrary vectors a and b.

By mapping the antenna patterns F+,×
l to the polarized waveforms h+,×, we can

express the corresponding strain response of the arm l as Φl :

Φl = F+
l h+ + F×

l h× . (4)
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The expression for the single-arm response of the laser along the arm l can then be given as
follows:

yGW
slr (t) =

Φl(t − k̂ · R̂s − Ll)− Φl(t − k̂ · R̂r)

2(1 − k̂ · n̂l)
, (5)

where the labels s and r represent the laser sender and receiver of the satellite, respectively,
and Ll is the corresponding arm length of link l. The sign of l is positive when the
label slr follows a cyclic permutation of indices 1 → 2 → 3 → 1 labeling the three
satellites; otherwise, it is negative. By following the well-designed optical path of the TDI
combinations X, Y, and Z of the first generation, the laser frequency noise can be canceled
under the approximation of a constant arm length. This cancellation is achieved by linearly
combining the artificially delayed single-arm responses yslr,Ll

, as shown below:

X = y1−32,32−2 + y231,2−2 + y123,−2 + y3−21 − y123,−2−33 − y3−21,−33 − y1−32,3 − y231 ,

Y = y2−13,13−3 + y312,3−3 + y231,−3 + y1−32 − y231,−3−11 − y1−32,−22 − y2−13,1 − y312 ,

Z = y3−21,21−1 + y123,1−1 + y312,−1 + y2−13 − y312,−1−22 − y2−13,−11 − y3−21,2 − y123 ,

(6)

where the yslr,Ll
are linked to the single-arm responses yslr through yslr,Ll

(t) = yslr(t − Ll).
The first-generation TDI combination X (same for Y or Z) is calculated as the difference
between two Michelson-type responses. Each Michelson-type response consists of an
optical path with 4 single-arm responses. Each single-arm response introduces a delay
corresponding to its arm length along the optical path. Consequently, there are 0, 1, 2, and
3 accumulated indices for the delays Ll in the yslr,Ll

of Equation (6), respectively, and the
corresponding signs follow the same rule as the links l. Additionally, we can obtain the
mutually independent noise TDI combinations A, E, and T by linearly combining the TDI
combinations X, Y, and Z as follows:

A =
Z − X√

2
,

E =
X − 2Y + Z√

6
,

T =
X + Y + Z√

3
.

(7)

In this paper, we focus on the data analysis method for an individual EMRI source. As
a result, the corresponding data model of each combination I is described by

d
I
= h

I
+ nI , (8)

where d
I

represents the TDI combination I, with I ∈ {A, E, T}; h
I

denotes the single EMRI
signal; and nI represents the purely instrumental noise for simplicity. We concentrate solely
on the TDI combinations A and E because the TDI combination T is less sensitive to GWs,
which aligns with the treatment employed by numerous other studies.

2.2. Noise Model and Signal-to-Noise Ratio

We utilize the identical PSD model of TDI combinations A and E of the first generation,
as provided in [81]:

SA
n ( f ) = SE

n ( f ) = Sn( f ) = 8 sin2 ωL
[
4(1 + cos ωL + cos2 ωL)SAcc + (2 + cos ωL)SIMS

]
, (9)

where ω is the angular frequency of gravitational waves, f = ω
2π is the corresponding

frequency in Hz, and L is the constant arm length whose value is 2.5 × 109 m in the current



Universe 2024, 10, 171 5 of 20

design of LISA. The acceleration noise SAcc and the Instrumental Optical Metrology System
noise SIMS under the noise model “SciRDv1” are defined in [82] as follows:

SAcc( f ) =
9.0 × 10−30

(2π f c)2

[
1 +

(0.4mHz

f

)2][
1 +

( f

8mHz

)4] 1

Hz
,

SIMS( f ) = 2.25 × 10−22
(2π f

c

)2[
1 + (

2mHz

f
)4
] 1

Hz
.

(10)

Having acquired the analytical expressions of the PSD, the inner product between two
signals a and b is defined by

(a|b) = 1

N fs

N−1

∑
k=0

ãk b̃∗k + ã∗k b̃k

Sn( fk)
, (11)

where x̃ denotes the Discrete Fourier Transform (DFT) of a time series x = (x0, x1, . . . , xN−1),

x̃ = FxT , (12)

Flm = e−2πilm/N , (13)

and fk = k fs/N, k = 0, 1, . . . , N − 1, with fs being the sampling frequency. In terms of the
inner product, the SNR of a signal can be defined as follows:

SNR2 = (h
A|hA

) + (h
E|hE

) . (14)

It is also convenient to define the combined overlap between two signals h
I
1 and h

I
2 (I ∈

{A, E}) as follows:

ffAE =
(h

A
1 |h

A
2 ) + (h

E
1 |h

E
2 )√

(h
A
1 |h

A
1 ) + (h

E
1 |h

E
1 )

√
(h

A
2 |h

A
2 ) + (h

E
2 |h

E
2 )

, (15)

which is commonly used to assess the quality of the match between injected and estimated
signals in mock data analysis [34]. The overlap of the individual combination, either A or
E, can be obtained by setting the other combination to zero.

2.3. Signal Model: EMRI Waveform

The AK waveform [33] includes 14 parameters, namely, µ, M, λ, S/M2, e0, ν0, θs, ϕs, θk,
ϕk, ϕ0, γ̃0, α0, and D. The first six parameters represent the mass of the COs, the mass of the
MBH, the inclination angle between the orbital angular momentum of the COs and the spin
direction of the MBH, the spin magnitude of the MBH, the initial orbital eccentricity, and
the initial orbital frequency. These parameters contribute to the orbital dynamics of EMRI
sources. The angles θs and ϕs denote the ecliptic colatitude and longitude of the source’s
sky location in the Solar System Barycenter (SSB) frame, while θk and ϕk represent the polar
and azimuthal angles of the spin direction of the MBH in the SSB frame. Additionally, ϕ0,
γ̃0, and α0 correspond to the initial angles of orbital motion, pericenter precession, and
Lense–Thirring precession, respectively. Finally, D represents the distance between the
source and the SSB center. The polarization angle ψ is a constant in the static frame, as
discussed in [44], and depends on θs, ϕs, θk, and ϕk.

The orbital dynamics in the AK waveform are described by the following set of
ordinary differential equations (ODEs). These ODEs contain five quantities: ϕ, ν, γ̃, e, and
α, where ν and e are the orbital frequency and the orbital eccentricity, respectively, and ϕ, γ̃,
and α are the phases describing orbital motion, pericenter precession, and Lense–Thirring
precession, respectively.



Universe 2024, 10, 171 6 of 20

dϕ

dt
= 2πν , (16)

dν

dt
=

96

10π
(µ/M3)(2πMν)11/3(1 − e2)−9/2

{[
1 + (73/24)e2 + (37/96)e4

]
(1 − e2)

+(2πMν)2/3
[
(1273/336)− (2561/224)e2 − (3885/128)e4 − (13,147/5376)e6

]

−(2πMν)(S/M2) cos λ(1 − e2)−1/2
[
(73/12) + (1211/24)e2

+(3143/96)e4 + (65/64)e6
]}

, (17)

dγ̃

dt
= 6πν(2πνM)2/3(1 − e2)−1

[
1 +

1

4
(2πνM)2/3(1 − e2)−1(26 − 15e2)

]

−12πν cos λ(S/M2)(2πMν)(1 − e2)−3/2 , (18)

de

dt
= − e

15
(µ/M2)(1 − e2)−7/2(2πMν)8/3

[
(304 + 121e2)(1 − e2)

(
1 + 12(2πMν)2/3

)

− 1

56
(2πMν)2/3

(
(8)(16,705) + (12)(9082)e2 − 25,211e4

)]

+e(µ/M2)(S/M2) cos λ (2πMν)11/3(1 − e2)−4
[
(1364/5) + (5032/15)e2

+(263/10)e4
]

, (19)

dα

dt
= 4πν(S/M2)(2πMν)(1 − e2)−3/2 . (20)

It is computationally expensive to solve the ODEs using a time interval of 15 s, which
corresponds to the observational cadence of LISA. However, the slow evolution of the
orbital parameters predicted for most EMRI sources allows us to use a larger cadence of
15,360 s when solving the ODEs. As suggested in [81], the fifth-order Cash-Karp Runge–
Kutta ODEs solver [83] is used at the larger cadence, and the solutions are then interpolated
to the desired cadence of 15 seconds.

With the ODEs solutions at our disposal, we can now proceed to the calculation of the
polarized waveforms. For each harmonic labeled as (n, 2, m), the following quantities in
their polarized waveforms are time independent: (1) the amplitude factor A such as 1/D,
(2) the initial phase Φn2m

0 = nϕ0 + 2γ̃0 + mα0, and (3) the time-independent amplitude
Ac,m

+,×(θs, ϕs, λ, θk, ϕk). The exact forms of Ac,m
+,×(θs, ϕs, λ, θk, ϕk) are provided in [81], and the

superscript c indicates that the quantity is an unknown constant. Therefore, the polarized
waveforms can be expressed as follows:

h
n2m
+,×(Θ) = A sn2m

+,×(θ
′) = A Re(eiΦn2m

0 Ac,m
+,×(θs, ϕs, λ, θk, ϕk)xn(θ′′)) , (21)

where the parameter set Θ contains 14 parameters; θ′ denotes the 13 parameters excluding
D; θ represents the 8 parameters excluding D, ϕ0, γ̃0, α0, θk, and ϕk; and the parameter set
θ′′ includes the 6 ODE-related parameters, µ, M, λ, S/M2, e0, and ν0. Thus, we have

Θ = θ′ ∪ {D}, θ′ = θ ∪ {ϕ0, γ̃0, α0, θk, ϕk}, θ = θ′′ ∪ {θs, ϕs}. (22)

Based on the number of parameters that they depend on, h
n2m
+,×(Θ) and sn2m

+,×(θ′) denote the
14 and 13-dimensional polarized waveforms, respectively, while the time-varying com-
ponents correspond to the term xn(θ′′), where the power distributions among harmonics
depend on the index n. In the case of the AK model, the range of values for m is from −2
to 2, resulting in a total of 5 harmonics for each n. Here, we adopt the same choice as our
previous work [54] to select the loudest 10 harmonics by analyzing xn(θ′′). Therefore, the
choice is to pick up two values for n from the values 1, 2, 3, 4, 5 used in LDC. It is worth
mentioning that additional harmonics could be considered once computational limitations,
such as accessing sufficient cores or utilizing a Graphics Processing Units (GPUs) code, are
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overcome. However, for the current study, we focus on the loudest 10 harmonics based on
the cluster resources available to us. As shown in Table 1, the power distributions among
harmonics indicate that the harmonics with n = 1 are considerably weaker compared
to other harmonics with different values of n. Furthermore, as n increases (with n ≥ 2),
the strength of the harmonics diminishes. This trend holds true for moderately eccentric
sources, such as those with e0 ≤ 0.5. Table 1 follows the same conventions as Table 1 in
our previous paper [54], with two exceptions: (1) the harmonics indices become n, varying
from 1 to 5, and (2) the power fraction is used instead of the SNR fraction, as their sum-
mation equals unity. Therefore, for moderately eccentric sources, the optimal choice for
the loudest 10 harmonics would be those with n ∈ {2, 3}. It requires more attention to
select the dominant harmonics for high eccentric sources, e.g., e0 > 0.5, where the power
distributions across harmonics exhibit greater fluctuations.

Table 1. Illustration of variation in the order of contributions of harmonics to the total power of an

EMRI signal as a function of its parameters. Five typical signals are represented in the format of C/F,

where C indicates the harmonics index, and F represents the corresponding power fraction of the

signal. The row labeled as “power fraction” indicates the cumulative power of the top 10 harmonics.

Signals in columns 3, 4, 5, and 6 utilize the LDC-1.2 [81] parameters but modify only one parameter

specified in the header row.

SNR Order
(Descending)

LDC-1.2
Parameters

µ = 10M⊙ µ = 100M⊙ e0 = 0.5 e0 = 0.6

1 2/0.654 2/0.583 2/0.855 2/0.362 4/0.338
2 3/0.281 3/0.326 3/0.123 3/0.338 5/0.334

power
fraction

0.935 0.909 0.978 0.700 0.671

3 4/0.053 4/0.075 4/0.015 4/0.184 3/0.241
4 5/0.007 5/0.012 1/0.005 5/0.085 2/0.059
5 1/0.005 1/0.005 5/0.002 1/0.031 1/0.029

3. Generalized Likelihood Ratio Test

3.1. 13-Dimensional LLR

In the context of stationary Gaussian noise, the log-likelihood ratio (LLR) of given

data d
I

containing an assumed EMRI signal h
I
(Θ) is defined as follows:

Λ(Θ) = ∑
I∈{A,E}

[
−(h

I
(Θ)|hI

(Θ)) + 2(d
I |hI

(Θ))
]

. (23)

The h
I
(Θ) is usually called template in matched filtering to distinguish it from the unknown

and true signal encoded in the noisy data. In the Generalized Likelihood Ratio Test [46],
the global maximum of the LLR LG and the corresponding location Θ̂, where

LG = Λ(Θ̂) , (24)

Θ̂ = argmax
Θ

Λ(Θ) , (25)

are used for signal detection and parameter estimation, respectively. Analytically maximiz-
ing over A by ∂Λ(θ′, A)/∂A = 0 leads to

LG = max
θ′

ρ(θ′) , (26)

ρ(θ′) = max
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ′))
]2

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] , (27)
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with the maximizer being

Â = argmax
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ′))
]

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] . (28)

We call ρ(θ′) the 13-dimensional LLR [44]. Creating further nested levels in the maximiza-
tion of ρ(θ′) that separate out the time-independent parts provide reduced dimensionality
LLRs, namely, 8-dimensional and 7-dimensional ones, as discussed below.

3.2. 8-Dimensional LLR

By incorporating the polarized waveforms of the i-th harmonic in Equation (21) with
the antenna patterns of arm l in Equation (1), we can obtain the corresponding strain
response as follows:

si
l(θ

′) =F+
l (θs, ϕs, ψ)si

+(θ
′) + F×

l (θs, ϕs, ψ)si
×(θ

′) ,

=Re(eiΦi
0Ac

+(θk, ϕk, θs, ϕs, λ))F+
l (θs, ϕs, ψ)Re(xi(θ′′))

−Im(eiΦi
0Ac

+(θk, ϕk, θs, ϕs, λ))F+
l (θs, ϕs, ψ)Im(xi(θ′′))

+Re(eiΦi
0Ac

×(θk, ϕk, θs, ϕs, λ))F×
l (θs, ϕs, ψ)Re(xi(θ′′))

−Im(eiΦi
0Ac

×(θk, ϕk, θs, ϕs, λ))F×
l (θs, ϕs, ψ)Im(xi(θ′′)),

=
4

∑
p=1

ai
pxi

l,p(θ) .

(29)

Here, the map for harmonics indices from (n, m) to i are n = ⌊(i − 1)/5⌋ + 1 and m =
((i − 1) mod 5)− 2, where i ranges from 1 to 25 in LDC. The linearity from strain responses
to TDI responses for combination I leads to the same linear combination,

sI,i(θ′) =
4

∑
p=1

ai
pxI,i

p (θ) , (30)

because only the time-varying terms xI,i
p (θ) are projected to the TDI delays, and the

time-independent coefficients ai
p, which absorb the parameters ϕ0, γ̃0, α0, θk, and ϕk,

remain unchanged.
To apply this linear decomposition in Equation (30) to the inner products in the

13-dimensional LLR in Equation (27), we can express the inner products as follows:

(d
I
(θ′)|sI(θ′)) =

N

∑
i=1

4

∑
p=1

ai
p(d

I ∣∣xI,i
p (θ)) ,

(sI(θ′)|sI(θ′)) =
N

∑
i=1

N

∑
j=1

4

∑
p=1

4

∑
q=1

ai
pa

j
q(xI,i

p (θ)
∣∣xI,j

q (θ)) .

(31)

In our previous work [54], we introduced an approach in which the three initial angles ϕ0,
γ̃0, and α0 are separated from the remaining 10 parameters in Equation (27). This allows
us to apply local maximization [84] over the three initial angles for a given point in the
10-dimensional parameter space and perform the search over the 10 parameters using
PSO. In this paper, we extend the approach by employing local maximization [84] over the
five parameters: θk, ϕk, ϕ0, γ̃0, and α0, using PSO for the remaining 8-dimensional search.

The following quantities, (d
I ∣∣xI,i

p (θ)) and (xI,i
p (θ)

∣∣xI,j
q (θ)) can be pre-calculated for each

specific θ. This enables computationally efficient local maximization over the coefficients
ai

p, namely, over θk, ϕk, ϕ0, γ̃0, and α0.
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The nature of the fitness function over the 5-dimensional subspace, consisting of θk,
ϕk, ϕ0, γ̃0, and α0, is illustrated in Figure 1. The figure showcases the LLR (square root)
landscape of a 2-dimensional slice of θk and ϕk (Figure 1a), as well as three randomly
selected planes (Figure 1b–d) in the 3-dimensional subspace composed of ϕ0, γ̃0, and α0.
This representation is valid for the specific location, although similar patterns are observed
from the other locations as well. Given the presence of a fairly small number of local
maxima with comparable or equal values, the local maximization approach is well-suited
for handling this 5-dimensional subspace. To ensure that the global maximum is caught, we
employed a total of 243 independent runs of a local maximizer starting from initial points
distributed over a grid, with each angle in the 5-dimensional subspace enumerated from
the 1-dimensional grid {0, 2π/3, 4π/3}, which are uniform spacings from 0 to 2π. The
best-fit 5-dimensional location is determined from the run that returns the highest value.

Figure 1. Illustrations of structures of the 5-dimensional subspace evaluated at a location. (b–d) The

X and Y axes lie in these planes in the 3-dimensional subspace composed of ϕ0, γ̃0, and α0, and the

range along both is [−π, π]. (a) The dot in panel a denotes the true values of the corresponding

locations of the injected signal, which also labels the global maximum of the given landscape.

3.3. 7-Dimensional LLR

The initial orbital frequency, namely, ν0, corresponds to the moment t0 at which the
EMRI signal is captured by the detector, thus its varying results in a uniform shift of time
labels to all the harmonics of the signal. As discussed in [47], the corresponding shift of the
time label can be numerically maximized in two ways for an arbitrary harmonic, denoted
as x here. The first is a phase rotation in the frequency domain:

x(t − n∆t) =
1

N

N−1

∑
k=0

x̃( fk)e
−i2π fk(t−n∆t) =

1

N

N−1

∑
k=0

[x̃( fk)e
i2π fkn∆t]e−i2π fkt , (32)

where n denotes the number of the shift and ∆t represents the observational cadence. The
inverse Fast Fourier Transform of the term x̃( fk)e

i2π fkn∆t, which rotates the x̃( fk) by the
same amount of n∆t at each fk, returns the delayed term x(t − n∆t). For the same shift, the
second is a straightforward lag sliding in the time domain as follows:

(x0, x1, . . . , xN−1)
n−→ (xn, xn+1, . . . , xN−1, 0, . . . , 0) , (33)
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where the zero paddings at the end of the shifted signal cover n zeros.
The detector noise in the low-frequency region is usually large; as a result, a fiducial

ν0, e.g., 1 mHz, can be determined through a pre-analysis of the detector’s features, which
indicates that the detector has reached a level of sensitivity to detect the GWs of EMRI
signals starting from the chosen fiducial ν0. Therefore, the 8-dimensional TDI responses

xI,i
p (θ) in Equation (30) could be calculated by running forward ODEs using θ with its initial

ν0 specified as the selected fiducial value, and the initial e0 being one of the parameters for

matched filtering. We can then systematically shift the xI,i
p (θ) lag-by-lag starting from the

lag of the fiducial ν0 until the 8-dimensional LLR maximum is achieved. The corresponding
lag provides the best-fit estimation of e0 and ν0. Here, we set the number of shifts to 11 for
computational limitations.

Figure 2 illustrates the 8-dimensional and the 7-dimensional LLRs which share the
same values for parameter set θ \ {ν0} but vary ν0 for the former and the fiducial ν0 for
the latter. The lag varies from −10 to 10 where the zero lag corresponds to the true lag of
LDC ν0, 7.3804631408 × 10−4 Hz. It can be observed that the 8-dimensional LLRs using the
negative lags can be successfully mapped to the 7-dimensional LLRs with a well-fitted ν0

by properly shifting the corresponding xI,i
p (θ). This is possible because the total 11 shifts

can cover the zero lag anyway, whereas the positive lags fail to locate the zero lag due to

the rightward shift of xI,i
p (θ).

In this paper, the lag of the fiducial ν0 is determined by considering 4 lags ahead of
the LDC’s true lag; thus, the corresponding value is 7.3804587134 × 10−4 Hz. In order to
accurately capture unknown EMRI signals, it would generally be necessary to fit more lags.

However, due to the computational expense of the shifting operations for xI,i
p (θ) and the

evaluations of the 8-dimensional LLRs by using the current code, only 11 lag-by-lag shifts
are utilized, enumerating lags from −4 to 6 as illustrated in Figure 2. This setting ensures the
scanning of the true lag, and it is used to demonstrate the functionality of the 7-dimensional
LLR. In future works, we plan to address these computational challenges by implementing
a GPU-accelerated code, which will allow for the exploration of additional lags.

Figure 2. Illustrations of the square root of the LLRs over lags. The square roots of the 8-dimensional

LLRs are in red and the corresponding 7-dimensional values are in blue, connected with a solid

magenta line for each lag.

4. Particle Swarm Optimization

As discussed earlier, the search using reduced dimensional likelihoods involves the
following steps. First, the distance D in the 14-dimensional LLR in Equation (23) is an-
alytically maximized. Next, the local maximization over the five angles θk, ϕk, ϕ0, γ̃0,
and α0 is carried out using the Simplex algorithm of Nelder and Mead [84]. Finally, the
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remaining parameters in the set θ (8-dimensional search), or θ excluding ν0 (7-dimensional
search), are numerically maximized by PSO. In this chapter, we briefly describe the PSO
algorithm [50,51,79].

Given the fitness function f (x), where x is defined in R
M, the optimization problem

can be stated as follows:

x∗ = argmax
x∈D⊂RM

f (x) , (34)

f (x∗) ≥ f (x) , ∀x ∈ D . (35)

The best location, x∗, refers to the point in the search space D that yields the highest fitness
value, represented as f (x∗); M is the dimension of the parameter space for f (x). Locating
the primary peak of a multimodal fitness function can be challenging. The PSO algorithm,
which is utilized in this paper as a global maximizer, is a suitable approach to addressing
such challenges. Successful applications of PSO in handling similar issues are discussed in
Section 1. It should be noted that in our case, the fitness functions are the 8-dimensional
LLR discussed in Section 3.2 and the 7-dimensional LLR discussed in Section 3.3.

PSO consists of multiple agents known as particles. Each particle updates its position
by considering the information from both itself and its neighboring particles at each
iteration. The algorithm aims to converge towards the global maximum, which corresponds
to the primary peak of the fitness function within the search space, by utilizing a balance
between global exploration and local exploitation. Such balance typically results in the good
performance of a PSO search. However, finding the right balance requires tuning the related
parameters, which is problem-specific. One of the key advantages of the PSO algorithm
is that it requires only a few tunable parameters, namely, the number of iterations Niter

and the number of independent runs Nruns of PSO. If the probability that an individual
PSO fails to locate the primary peak of the fitness function is denoted as p, then the
probability that at least one search from Nruns independent PSO searches, using different
random seeds, succeeds in locating the primary peak is given by 1− pNruns . This probability
approaches unity exponentially fast with Nruns. Therefore, multiple independent runs are a
quick and easy way to significantly enhance the performance of a PSO-based search. It is
recommended to start with Nruns in the range of 6∼12 and to set Niter to 2000, as discussed
in [79]. These values can be adjusted based on the specific fitness function being used. The
actual values used in this paper are described in Section 5. For more detailed information
on an objective strategy for tuning PSO parameters, refer to [55].

The PSO dynamics of the i-th particle in the swarm is described by two equations
as follows:

xi(t + 1) = xi(t) + vi(t + 1) , (36)

v
j
i(t + 1) = wv

j
i(t) + c1r1(p

j
i(t)− x

j
i(t)) + c2r2(gj(t)− x

j
i(t)) , (37)

where t represents an iteration, and xi(t) and xi(t+ 1) denote the respective positions before
and after the update. vi(t + 1) represents the amount of positional increment, referred to as

velocity, while v
j
i(t + 1) is the corresponding projection component for the j-th parameter.

The quantities x
j
i(t) and p

j
i(t) represent the current location and personal best (pbest) location

of the j-th parameter, while gj(t) represents the global best (gbest) location among all particles
of the j-th parameter. Equation (37) provides the key feature of a PSO update. The first
term represents the influence of the momentum of the i-th particle with ω being the inertia
weight. The second and third terms represent the acceleration effects, where the former
considers the influence of the particle itself and the latter represents the influence from
neighboring particles, with c1 and c2 being the acceleration coefficients. The randomness
of the PSO algorithm arises from the utilization of random variables r1 and r2 , which are
drawn from a uniform distribution between 0 and 1. The locations of pbest and gbest are
updated following the rules below:
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if f (xi(t)) > f (pi(t)), then pi(t + 1) = xi(t + 1) , (38)

if f (xi(t)) > f (g(t)), then g(t + 1) = xi(t + 1) . (39)

The typical settings for PSO are as follows: (1) c1 = c2 = 2; (2) linearly decreasing
inertia weight ω over iterations; (3) constraining the velocity by a given parameter, referred
to as the maximum velocity, Vmax, whose value is usually 0.2, but 0.5 is used here to

strengthen the search ability of PSO, such that −Vmax ≤ v
j
i(t) ≤ Vmax for all iterations

and particles; (4) randomly generating initial positions and velocities for all particles; and
(5) setting the number of particles Np in the swarm to Np = 40. The "let-them-fly" boundary
condition is used, where the position and velocity of a particle remain unchanged, and a
fitness value of −∞ is assigned once the particle leaves the search space. As a result, the
actual number of fitness function (likelihood) evaluations for an individual PSO search
would be smaller than the value of Niter · Np.

To enhance the exploitation capability of PSO, particularly for multimodal fitness
functions, a variation called local best (lbest) PSO [51] is proposed as an improvement over
the gbest PSO. In the lbest PSO, for each particle i, a smaller swarm is utilized to determine
the lbest position denoted as plocal,i(t) and the corresponding fitness value f (plocal,i(t)).
These values are then used to replace the gbest position gj(t), g(t + 1) in Equation (37) and
the corresponding fitness value f (g(t)) in Equation (39). The typical configuration for the
smaller swarm surrounding the i-th particle is a ring structure consisting of three particles,
whose indices are given by Ni = i − 1, i, i + 1, with the first and last particle connected in a
circular manner. It is worth noting that the lbest PSO reduces to the gbest PSO when the ring
includes all the particles. The selection of the fitness value for the lbest of the i-th particle
follows the criteria shown below:

f (plocal,i(t)) = max
j∈Ni

f (pj(t)) . (40)

Here, a more comprehensive exploitation is achieved by slower convergence in the lbest
PSO, thus making it more computationally expensive than gbest PSO.

5. Results

In this study, we utilized 0.5 years of data containing a single EMRI signal with the
same source parameters as LDC-1.2 [81], except for a shorter distance D of 1.535300 Gpc,
resulting in an SNR value of 50 for the injected signal. This SNR value has been widely
used as a benchmark for 0.5 years signals in recent studies [30,31,43]. While our search
method is not inherently restricted to a shorter data length, constraints on computational
resources and a pending GPU-acceleration of our code sets the above limit on the data
length. The noise realization used in our analysis is obtained by subtracting the signal
from the data, with both provided in LDC-1.2 [81], ensuring that our simulated data share
the same characteristics as the LDC data but with a scaling of a shorter duration and a
higher SNR. In Figure 3, the spectra of the injected signal and the simulated data for TDI
combinations A and E are displayed, revealing the relatively weak nature of the injected
signal compared to the simulated data. The values of the source parameters and the
width of the search ranges used for the 8-dimensional and the 7-dimensional searches are
presented in Table 2. The Fisher Information Matrix (FIM) σ represents the estimation error
of the Cramer–Rao Lower Bound (CRLB) for each parameter at an SNR of 50, evaluated
at the injected source parameters. The injected signal parameters are also called the true
ones in the following analysis. We set the tunable hyperparameters for PSO as follows:
Nruns is set to 6, and Niter is set to 15,000 for the 8-dimensional searches, 20,000 for the first
two 7-dimensional searches, and 25,000 for the remaining four 7-dimensional searches.
Due to limited computational resources, the 6 independent searches have to be carried out
serially. Due to the presence of noise in the data, both PSO and local maximization are
expected to find best-fit fitness values that are higher than that at the true location, which
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are called a successful search. In order to further reduce computational costs, the searches
are terminated once a successful search occurs. Consequently, the actual Nruns is 4 for the
8-dimensional searches and 6 for the 7-dimensional searches.

Figure 3. Magnitudes of the FFTs of the injected signal with SNR = 50 in blue and the corresponding

data in red, where the TDI combination A is illustrated in the left panel and the TDI combination E is

displayed in the right panel. See their definitions in Equation (7).

Table 2. The injected source parameters and range width used in our search. Currently, the location

of the injected signal is set at the center of the given range. We leave a more general search, with

injected signals placed non-centrally in the search space, to future work. The value of 0.3456 (7D) is

the corresponding orbital frequency difference between lag 6 and lag −4 relative to its σ value; see

more details in Section 3.3.

Parameters LDC Values FIM σ
Search Range

Absolute Value
Search Range

in σ

µ(M⊙) 29.490000 4.872139 × 10−2 1 20.5249
M(M⊙) 1.1349449 × 106 3.582834 × 103 105 27.9109
λ(rad) 2.1422000 9.471417 × 10−3 π/16 20.7307

S/M2 0.9697 3.15374 × 10−3 0.1 31.7084

e0 0.22865665 1.842612× 10−4 0.005 27.1354

ν0(Hz) 7.3804631× 10−4 3.202842 × 10−9 3.202842 × 10−7 (8D)
11 lags (7D)

100 (8D)
0.3456 (7D)

θs(rad) 0.4989445 2.415649 × 10−3 π 1300.5
ϕs(rad) 2.232797 1.708559 × 10−3 2π 3677.5

The results obtained from the 8-dimensional and the 7-dimensional searches are
summarized in Table 3 and Table 4, respectively. We report the square roots of the best-fit
fitness values from each PSO search, which provide the estimated SNRs. Additional details
regarding Tables 3 and 4 are provided below.

1. The 4-th PSO in the 8-dimensional searches is successful as indicated by the estimated
SNR shown in bold. However, no similar successful search is observed in the 7-
dimensional searches.
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2. Parameter estimation errors are determined by subtracting the corresponding signal
parameter’s best-fit values from their true values. The six ODE-related parameters,
namely, µ, M, λ, S/M2, e0, and ν0, are expressed relative to their respective FIM σ
(evaluated at the true location). The estimation error for D is expressed relative to
its true value itself. For the parameters θs and ϕs that represent the sky’s location,
we show the errors themselves. The sky’s locations (θs, ϕs) and (π − θs, ϕs + π) [26]
contribute a degeneracy to the LLR in Equation (27). As a result, we use the asterisk
(∗) to show the corresponding errors after the degeneracy is taken care of.

3. To consider the impact of weak harmonics beyond the loudest 10 on the estimation of
the initial angles ϕ0, γ̃0 and α0, as well as the angles θk and ϕk denoting the spin direc-
tion of the MBH, we conduct a rerun of the 5-dimensional local maximization using
a waveform with all the 25 harmonics at the best-fit location from each PSO search,
where the templates used in the search are restricted to the loudest 10 harmonics with
n ∈ {2, 3}. The estimated angles are then utilized in the estimation of the distance D
using Equation (28).

4. The recovered 14-dimensional parameters obtained previously are utilized in Equa-
tion (6) and Equation (7) to estimate the signal of A and E. The separate and combined
overlaps between the injected and the estimated signal are quantified as ffA, ffE, and
ffAE, respectively.

For the 8-dimensional PSO outputs shown in Table 3, it can be observed that the
errors in the parameters µ, M, λ, and S/M2 are ≈2σ, while the error in the parameter
D is ≈1%. The errors in the sky’s location are within ≈0.1 radians. However, the errors
in the parameters e0 and ν0 vary significantly among different PSO outputs where the
successful PSO output returns a minimum error of approximately ∼2σ with an overlap of
98%, and the other PSO outputs yield larger errors up to ∼8σ with smaller overlap values.
These discrepancies are reasonable because e0 and ν0 are the initial values of the ODEs
in Equation (20) which describe the orbital dynamics of the EMRI source (the other three
initial angles do not determine the morphology of the ODEs’ solution, only contributing a
constant shift). Therefore, the phase match are more sensitive to these parameters, thus
requiring longer iterations to converge.

For the 7-dimensional PSO outputs presented in Table 4, no successful search is found
where the best-fit fitness value exceeds that at the true location. However, the 4th PSO
output returns errors of approximately ∼1σ for the parameters µ, M, λ, S/M2, e0, and ν0;
∼5% for the distance D; and ∼5% radians for the sky’s location, with an overlap of 97%.
This indicates that the signal is indeed captured, making it a successful search. The 3rd and
5th PSO outputs exhibit similar features to the first three PSO outputs in the 8-dimensional
searches, where the larger errors in e0 result in the smaller fitness values. The errors in ν0

are the same for the 1st, 2nd, 3rd, and 5th PSO outputs, which may be attributed to the
small range of 11 lags used to shift the 8-dimensional A and E template starting from the
lag of the fiducial ν0. It should be noted that the fitting of ν0 should cover more lags to
obtain a more accurate estimation over ν0.

The successful PSO searches (the 4th PSO for both dimensions) demonstrate smaller
errors in the parameters µ, M, λ, S/M2, e0, and ν0 for the 7-dimensional search (∼1σ)
compared to those for the 8-dimensional search (∼2σ). This suggests that the utilization
of reduced dimensional LLR and increased iterations effectively reduce estimation errors,
particularly for parameters that are related to the GW phase. The fact that all PSO runs
obtained fitness values close to each other but at various offsets for estimated errors,
ranging from 1σ to 8σ, illustrates the presence of large number of secondary peaks in the
fitness function.
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Table 3. PSO outputs of 8-dimensional searches. The square root of the fitness value at the true

8-dimensional location is 47.879594. Further details about the table are discussed in Section 5.

1st PSO 2nd PSO 3rd PSO 4th PSO

Square root of fitness values

Best location
from PSO

47.546001 46.381273 47.069351 47.988164

Parameter estimation errors

µ(M⊙) −3.1 −2.3 0.21 2.4

M(M⊙) 1.9 2.1 −1.1 −2.6

λ(rad) −2.1 −2.1 0.96 2.5

S/M2 −2.2 −2.2 0.91 2.5

e0 7.8 2.9 3.6 −1.2

ν0(mHz) −6.8 −4.5 −8.2 −1.9

D(Gpc) −0.03 0.00011 −0.12521 0.015
θs(rad) 0.068 −0.078970 * 0.13 −0.012
ϕs(rad) 0.015 −0.167177 * −0.0062 0.046

Overlap between the estimated and true signals

ffA −0.970817 0.972518 0.964058 −0.990312
ffE −0.965563 0.940148 0.939171 −0.982537

ffAE −0.968851 0.959972 0.954244 −0.987405

Table 4. PSO outputs of 7-dimensional searches. The square root of the fitness value at the true

7-dimensional location is 47.882605. Further details about the table are discussed in Section 5.

1st PSO 2nd PSO 3rd PSO 4th PSO 5th PSO 6th PSO

Square root of fitness values

Best location
from PSO

47.699082 47.329812 47.685694 47.738310 47.582240 47.023112

Parameter estimation errors

µ(M⊙) 4.7 4.4 0.48 −1.3 −0.89 4.9
M(M⊙) −5.1 −5.0 −0.92 1.5 0.28 −4.3
λ(rad) 5.0 4.8 0.84 −1.5 −0.38 4.3
S/M2 5.0 4.8 0.82 −1.5 −0.4 4.3

e0 −2.8 −1.8 1.5 0.2 3.2 −7.0
ν0(mHz) −0.21 −0.21 −0.21 −0.035 −0.21 0.14

D(Gpc) −0.09576 −0.08430 −0.04126 0.05260 −0.05899 −0.00204
θs(rad) 0.097603 * 0.078 0.042 −0.043020 * 0.094 −0.019956 *
ϕs(rad) 0.006113 * 0.06 −0.048 0.050827 * 0.039 0.091476 *

Overlap between the estimated and true signals

ffA 0.977230 0.959595 −0.976542 −0.989005 −0.969600 −0.973063
ffE 0.966966 0.951818 −0.969133 −0.976612 −0.958945 −0.955183

ffAE 0.973175 0.956625 −0.973700 −0.984385 −0.965498 -0.966438

6. Discussion

We extended the previous work on a 10-dimensional LLR [54] search to an
8-dimensional and a 7-dimensional LLR search, in which progressively more parame-
ters are locally maximized while the remaining are globally maximized using PSO. In the
8-dimensional search, we performed a 5-dimensional local maximization over the three
initial angles ϕ0, γ̃0, and α0, and the angles θk and ϕk describing the spin direction of the
MBH. In the 7-dimensional search, we used a fiducial value of ν0 and applied a lag-by-lag
shift to the 8-dimensional TDI responses to fit the true ν0.
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The low estimated errors and the corresponding high overlap between the estimated
and injected signals indicate that both the 8-dimensional and the 7-dimensional search
work well within a wider search range. Our approach used the same search range widths
for µ and M as the low mass-ratio sources prescribed in MLDC 1.3.4 and 1.3.5, and half the
width of the MLDC value for the parameter S/M2 [35]. This serves as a guide for future
hierarchical searches, as demonstrated in [43] using certain clustering techniques, for how
much they need to narrow down the search ranges for parameters such as e0, ν0, and λ.

The larger errors observed for e0 and ν0, compared to the smaller errors for other
parameters in Tables 3 and 4, indicate that matched filtering is more sensitive to these two
parameters. Thus, it becomes more difficult to accurately determine them. This insight
inspires us to explore more advanced optimization algorithms, such as the Cooperative
Coevolution Particle Swarm Optimization (CCPSO) [85], where only a subset of parameters
are updated at each iteration to improve the optimization process. We expect that this
approach will help PSO particles in escaping from secondary peaks and converging faster
towards the primary peak in the parameter space of the fitness function. The additional
computational cost can be mitigated by implementing a faster code using GPU acceleration.

In systems with higher eccentricity (e0 > 0.5), the power distributions over harmonics
become more erratic, which depend on the harmonics index n only for the 8-dimensional
waveform. Consequently, the loudest 10 harmonics, with fixed values n belonging to the
set {2, 3}, might not be the optimal choice any longer. Hence, we need to develop methods
to select the dominant harmonics on the fly in such systems.

The existence of multiple secondary peaks can hinder the PSO update process, making
it difficult for particles to converge towards the primary peak. As a result, larger estimation
errors of the signal parameters may occur. To effectively tackle this issue, one possible
approach is to employ the reduced dimensional LLR and increase the number of iterations
for PSO searches. Nevertheless, the increased computational requirements necessitate the
utilization of additional cores or GPUs in the code.

In our previous 10-dimensional searches, where computational costs were lower, we
examined injected signals with SNR values of 50, 40, and 30 and a duration of 0.5 years.
However, in this paper, our focus is on the computationally expensive 8-dimensional and
7-dimensional searches. Consequently, we only cover injected signals with an SNR of 50
and the same duration due to our limited computational resources. This SNR value of 50 is
higher compared to the SNR of the LDC-1.2 signal with the same duration. In future work,
it is important to explore lower SNR values to assess the robustness of our method. We also
plan to conduct additional tests, such as a random placement of the true location, wider
search ranges, and longer data duration, to further validate our approach.
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Abbreviations

The following abbreviations are used in this manuscript:

AK Analytical Kludge

CO Compact Object

CRLB Cramer–Rao Lower Bound

DFT Discrete Fourier Transform

EMRI Extreme Mass Ratio Inspiral

FIM Fisher Information Matrix

GWs Gravitational Waves

GLRT Generalized Likelihood Ratio Test

GPUs Graphics Processing Units

LDC LISA Data Challenge

LLR Log-Likelihood Ratio

LISA Laser Interferometer Space Antenna

MCMC Markov Chain Monte Carlo

MLDC Mock LISA Data Challenge

MBH Massive Black Hole

ODEs Ordinary Differential Equations

PSD Power Spectral Density

PSO Particle Swarm Optimization

SNR Signal-to-Noise Ratio

SSB Solar System Barycenter

TDI Time Delay Interferometry

References

1. Amaro-Seoane, P. The gravitational capture of compact objects by massive black holes. In Handbook of Gravitational Wave Astronomy;

Springer: Singapore, 2022. [CrossRef]

2. Babak, S.; Gair, J.; Sesana, A.; Barausse, E.; Sopuerta, C.F.; Berry, C.P.L.; Berti, E.; Amaro-Seoane, P.; Petiteau, A.; Klein, A. Science

with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. Phys. Rev. D 2017, 95, 103012. [CrossRef]

3. Fan, H.M.; Hu, Y.M.; Barausse, E.; Sesana, A.; Zhang, J.D.; Zhang, X.; Zi, T.G.; Mei, J. Science with the TianQin observatory:

Preliminary result on extreme-mass-ratio inspirals. Phys. Rev. D 2020, 102, 063016. [CrossRef]

4. Gair, J.R.; Barack, L.; Creighton, T.; Cutler, C.; Larson, S.L.; Phinney, E.S.; Vallisneri, M. Event rate estimates for LISA extreme

mass ratio capture sources. Class. Quant. Grav. 2004, 21, S1595–S1606. [CrossRef]

5. Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4,

685–686. [CrossRef]

6. Luo, Z.; Guo, Z.; Jin, G.; Wu, Y.; Hu, W. A brief analysis to Taiji: Science and technology. Results Phys. 2020, 16, 102918. [CrossRef]

7. Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne

gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [CrossRef]

8. Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Zweifel, P. Laser Interferometer Space Antenna. arXiv

2017, arXiv:1702.00786.

9. Chua, A.J.K.; Hee, S.; Handley, W.J.; Higson, E.; Moore, C.J.; Gair, J.R.; Hobson, M.P.; Lasenby, A.N. Towards a framework for

testing general relativity with extreme-mass-ratio-inspiral observations. Mon. Not. R. Astron. Soc. 2018, 478, 28–40. [CrossRef]

10. Yang, S.; Xin, S.; Zhang, C.; Han, W. Testing Gravity Theory With Extreme Mass-Ratio Inspirals: Recent Progress. MDPI Proc.

2019, 17, 11. [CrossRef]

11. Cárdenas-Avendaño, A.; Sopuerta, C.F. Testing gravity with Extreme-Mass-Ratio Inspirals. arXiv 2024, arXiv:2401.08085.

http://doi.org/10.1007/978-981-15-4702-7_17-1
http://dx.doi.org/10.1103/PhysRevD.95.103012
http://dx.doi.org/10.1103/PhysRevD.102.063016
http://dx.doi.org/10.1088/0264-9381/21/20/003
http://dx.doi.org/10.1093/nsr/nwx116
http://dx.doi.org/10.1016/j.rinp.2019.102918
http://dx.doi.org/10.1088/0264-9381/33/3/035010
http://dx.doi.org/10.1093/mnras/sty1079
http://dx.doi.org/10.3390/proceedings2019017011


Universe 2024, 10, 171 18 of 20

12. Zi, T.G.; Zhang, J.D.; Fan, H.M.; Zhang, X.T.; Hu, Y.M.; Shi, C.; Mei, J. Science with the TianQin Observatory: Preliminary results

on testing the no-hair theorem with extreme mass ratio inspirals. Phys. Rev. D 2021, 104, 064008. [CrossRef]

13. Carter, B. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev. Lett. 1971, 26, 331–333. [CrossRef]

14. Gürlebeck, N. No-hair theorem for Black Holes in Astrophysical Environments. Phys. Rev. Lett. 2015, 114, 151102. [CrossRef]

15. Glampedakis, K.; Babak, S. Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field. Class. Quant. Grav. 2006,

23, 4167–4188. [CrossRef]

16. Barack, L.; Cutler, C. Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D

2007, 75, 042003. [CrossRef]

17. Xin, S.; Han, W.B.; Yang, S.C. Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys.

Rev. D 2019, 100, 084055. [CrossRef]

18. Hannuksela, O.A.; Ng, K.C.Y.; Li, T.G.F. Extreme dark matter tests with extreme mass ratio inspirals. Phys. Rev. D 2020, 102,

103022. [CrossRef]

19. Li, G.L.; Tang, Y.; Wu, Y.L. Probing dark matter spikes via gravitational waves of extreme-mass-ratio inspirals. Sci. China Phys.

Mech. Astron. 2022, 65, 100412. [CrossRef]

20. Yue, X.J.; Han, W.B.; Chen, X. Dark matter: An efficient catalyst for intermediate-mass-ratio-inspiral events. Astrophys. J. 2019,

874, 34. [CrossRef]

21. Berry, C.P.L.; Hughes, S.A.; Sopuerta, C.F.; Chua, A.J.K.; Heffernan, A.; Holley-Bockelmann, K.; Mihaylov, D.P.; Miller, M.C.;

Sesana, A. The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy. arXiv 2019, arXiv:1903.03686.

22. Berry, C.P.; Hughes, S.A.; Sopuerta, C.F.; Chua, A.J.; Heffernan, A.; Holley-Bockelmann, K.; Sesana, A. Astrophysics with the

Laser Interferometer Space Antenna. Living Rev. Rel. 2023, 26, 2. [CrossRef]

23. Amaro-Seoane, P.; Gair, J.R.; Freitag, M.; Miller, M.C.; Mandel, I.; Cutler, C.J.; Babak, S. Astrophysics, detection and science

applications of intermediate- and extreme mass-ratio inspirals. Class. Quant. Grav. 2007, 24, R113–R169. [CrossRef]

24. Laghi, D.; Tamanini, N.; Pozzo, W.D.; Sesana, A.; Gair, J.; Babak, S.; Izquierdo-Villalba, D. Gravitational-wave cosmology with

extreme mass-ratio inspirals. Mon. Not. R. Astron. Soc. 2021, 508, 4512–4531. [CrossRef]

25. Zhu, L.G.; Fan, H.M.; Chen, X.; Hu, Y.M.; Zhang, J.d. Improving the Cosmological Constraints by Inferring the Formation

Channel of Extreme-mass-ratio Inspirals. arXiv 2024, arXiv:2403.04950.

26. Gair, J.R.; Mandel, I.; Wen, L. Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. J. Phys. Conf. Ser.

2008, 122, 012037. [CrossRef]

27. Gair, J.R.; Mandel, I.; Wen, L. Improved time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. Class.

Quant. Grav. 2008, 25, 184031. [CrossRef]

28. Zhang, X.T.; Messenger, C.; Korsakova, N.; Chan, M.L.; Hu, Y.M.; Zhang, J.D. Detecting gravitational waves from extreme mass

ratio inspirals using convolutional neural networks. Phys. Rev. D 2022, 105, 123027. [CrossRef]

29. Zhao, T.; Zhou, Y.; Shi, R.; Cao, Z.; Ren, Z. DECODE: DilatEd COnvolutional neural network for Detecting Extreme-mass-ratio

inspirals. arXiv 2023, arXiv:2308.16422.

30. Yun, Q.; Han, W.B.; Guo, Y.Y.; Wang, H.; Du, M. Detecting extreme-mass-ratio inspirals for space-borne detectors with deep

learning. arXiv 2023, arXiv:2309.06694.

31. Yun, Q.; Han, W.B.; Guo, Y.Y.; Wang, H.; Du, M. The detection, extraction and parameter estimation of extreme-mass-ratio

inspirals with deep learning. arXiv 2023, arXiv:2311.18640.

32. Barack, L.; Pound, A. Self-force and radiation reaction in general relativity. Rept. Prog. Phys. 2019, 82, 016904. [CrossRef]

[PubMed]

33. Barack, L.; Cutler, C. LISA capture sources: Approximate waveform, signal-to-noise ratios, and parameter estimation accuracy.

Phys. Rev. D 2004, 69, 082005. [CrossRef]

34. Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Crowder, J.; Larson, S.L.; Plagnol, E.; Porter, E.K.; Vallisneri, M.; Vecchio, A.;

et al. The Mock LISA Data Challenges: From Challenge 1B to Challenge 3. Class. Quant. Grav. 2008, 25, 184026. [CrossRef]

35. Arnaud, K.A.; Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Cutler, C.; Finn, L.S.; Larson, S.L.; Littenberg, T.; Porter, E.K.;

et al. An Overview of the second round of the Mock LISA Data Challenges. Class. Quant. Grav. 2007, 24, S551–S564. [CrossRef]

36. Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Larson, S.L.; Mandel, I.; McWilliams, S.T.; Whelan, J.T.; Petiteau, A.; Porte,

E.K.; et al. The Mock LISA Data Challenges: From Challenge 3 to Challenge 4. Class. Quant. Grav. 2010, 27, 084009. [CrossRef]

37. Porter, E.K. An Overview of LISA Data Analysis Algorithms. arXiv 2009, arXiv:0910.0373.

38. Baghi, Q. The LISA Data Challenges. arXiv 2022, arXiv:2204.12142.

39. Katz, M.L.; Chua, A.J.K.; Speri, L.; Warburton, N.; Hughes, S.A. Fast extreme-mass-ratio-inspiral waveforms: New tools for

millihertz gravitational-wave data analysis. Phys. Rev. D 2021, 104, 064047. [CrossRef]

40. Ren, Z.; Zhao, T.; Cao, Z.; Guo, Z.K.; Han, W.B.; Jin, H.B.; Wu, Y.L. Taiji data challenge for exploring gravitational wave universe.

Front. Phys. 2023, 18, 64302. [CrossRef]

41. Chua, A.J.K.; Cutler, C.J. Nonlocal parameter degeneracy in the intrinsic space of gravitational-wave signals from extreme-mass-

ratio inspirals. Phys. Rev. D 2022, 106, 124046. [CrossRef]

42. Bandopadhyay, D.; Moore, C.J. LISA stellar-mass black hole searches with semicoherent and particle-swarm methods. Phys. Rev.

D 2023, 108, 084014. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.104.064008
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.114.151102
http://dx.doi.org/10.1088/0264-9381/23/12/013
http://dx.doi.org/10.1103/PhysRevD.75.042003
http://dx.doi.org/10.1103/PhysRevD.100.084055
http://dx.doi.org/10.1103/PhysRevD.102.103022
http://dx.doi.org/10.1007/s11433-022-1930-9
http://dx.doi.org/10.3847/1538-4357/ab06f6
http://dx.doi.org/10.1007/s41114-022-00041-y
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1093/mnras/stab2741
http://dx.doi.org/10.1088/1742-6596/122/1/012037
http://dx.doi.org/10.1088/0264-9381/25/18/184031
http://dx.doi.org/10.1103/PhysRevD.105.123027
http://dx.doi.org/10.1088/1361-6633/aae552
http://www.ncbi.nlm.nih.gov/pubmed/30270849
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1088/0264-9381/25/18/184026
http://dx.doi.org/10.1088/0264-9381/24/19/S18
http://dx.doi.org/10.1088/0264-9381/27/8/084009
http://dx.doi.org/10.1103/PhysRevD.104.064047
http://dx.doi.org/10.1007/s11467-023-1318-y
http://dx.doi.org/10.1103/PhysRevD.106.124046
http://dx.doi.org/10.1103/PhysRevD.108.084014


Universe 2024, 10, 171 19 of 20

43. Ye, C.Q.; Fan, H.M.; Torres-Orjuela, A.; Zhang, J.d.; Hu, Y.M. Identification of Gravitational-waves from Extreme Mass Ratio

Inspirals. arXiv 2023, arXiv:2310.03520.

44. Babak, S.; Gair, J.R.; Porter, E.K. An Algorithm for detection of extreme mass ratio inspirals in LISA data. Class. Quant. Grav. 2009,

26, 135004. [CrossRef]

45. Liu, J.S. Monte Carlo Strategies in Scientific Computing; Springer: Berlin/Heidelberg, Germany, 2008.

46. Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1993; Volumes 1–2.

47. Cornish, N.J. Detection Strategies for Extreme Mass Ratio Inspirals. Class. Quant. Grav. 2011, 28, 094016. [CrossRef]

48. Ali, A. Bayesian Inference on EMRI Signals in LISA Data. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand,

2011. [CrossRef]

49. Ali, A.; Christensen, N.; Meyer, R.; Rover, C. Bayesian inference on EMRI signals using low frequency approximations. Class.

Quant. Grav. 2012, 29, 145014. [CrossRef]

50. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks,

Perth, WA, Australia, 27 November 27–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.

51. Bratton, D.; Kennedy, J. Defining a Standard for Particle Swarm Optimization. In Proceedings of the 2007 IEEE Swarm Intelligence

Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 120–127. [CrossRef]

52. Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the

2000 Congress on Evolutionary Computation, Istanbul, Turkey, 16–19 July 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1,

pp. 84–88.

53. Clerc, M.; Kennedy, J. The particle swarm- explosion, stability, and convergence in a multidimen- sional complex space. IEEE

Trans. Evol. Comput. 2002, 6, 58–73.

[CrossRef]

54. Zou, X.B.; Mohanty, S.D.; Luo, H.G.; Liu, Y.X. Swarm Intelligence Methods for Extreme Mass Ratio Inspiral Search: First

Application of Particle Swarm Optimization. Universe 2024, 10, 96.

[CrossRef]

55. Wang, Y.; Mohanty, S.D. Particle Swarm Optimization and gravitational wave data analysis: Performance on a binary inspiral

testbed. Phys. Rev. D 2010, 81, 063002. [CrossRef]

56. Weerathunga, T.S.; Mohanty, S.D. Performance of Particle Swarm Optimization on the fully-coherent all-sky search for gravita-

tional waves from compact binary coalescences. Phys. Rev. D 2017, 95, 24030. [CrossRef]

57. Normandin, M.E.; Mohanty, S.D.; Weerathunga, T.S. Particle Swarm Optimization based search for gravitational waves from

compact binary coalescences: Performance improvements. Phys. Rev. D 2018, 98, 044029. [CrossRef]

58. Normandin, M.E.; Mohanty, S.D. Towards a real-time fully-coherent all-sky search for gravitational waves from compact binary

coalescences using particle swarm optimization. Phys. Rev. D 2020, 101, 082001. [CrossRef]

59. Leung, C. Estimation of Unmodeled Gravitational Wave Transients with Spline Regression and Particle Swarm Optimization.

Siam Undergrad. Res. Online (Siuro) 2015, 8. [CrossRef]

60. Mohanty, S.D. Spline Based Search Method For Unmodeled Transient Gravitational Wave Chirps. Phys. Rev. D 2017, 96, 102008.

[CrossRef]

61. Mohanty, S.D.; Fahnestock, E. Adaptive spline fitting with particle swarm optimization. Comput. Stat. 2021, 36, 155–191.

[CrossRef]

62. Mohanty, S.D.; Chowdhury, M.A.T. Glitch subtraction from gravitational wave data using adaptive spline fitting. Class. Quant.

Grav. 2023, 40, 125001. [CrossRef]

63. Wang, Y.; Mohanty, S.D.; Jenet, F.A. A coherent method for the detection and estimation of continuous gravitational wave signals

using a pulsar timing array. Astrophys. J. 2014, 795, 96. [CrossRef]

64. Wang, Y.; Mohanty, S.D.; Jenet, F.A. Coherent network analysis for continuous gravitational wave signals in a pulsar timing array:

Pulsar phases as extrinsic parameters. Astrophys. J. 2015, 815, 125. [CrossRef]

65. Zhu, X.; Wen, L.; Xiong, J.; Xu, Y.; Wang, Y.; Mohanty, S.D.; Hobbs, G.; Manchester, R.N. Detection and localization of continuous

gravitational waves with pulsar timing arrays: The role of pulsar terms. Mon. Not. R. Astron. Soc. 2016, 461, 1317–1327. [CrossRef]

66. Wang, Y.; Mohanty, S.D. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array

Era. Phys. Rev. Lett. 2017, 118, 151104; Erratum: Phys. Rev. Lett. 2020, 124, 169901. [CrossRef]

67. Wang, Y.; Mohanty, S.D.; Qian, Y.Q. Continuous gravitational wave searches with pulsar timing arrays: Maximization versus

marginalization over pulsar phase parameters. J. Phys. Conf. Ser. 2017, 840, 012058. [CrossRef]

68. Qian, Y.Q.; Mohanty, S.D.; Wang, Y. Iterative time-domain method for resolving multiple gravitational wave sources in pulsar

timing array data. Phys. Rev. D 2022, 106, 023016. [CrossRef]

69. Zhang, X.; Mohanty, S.D.; Zou, X.; Liu, Y. Resolving Galactic binaries in LISA data using particle swarm optimization and

cross-validation. Phys. Rev. D 2021, 104, 02402. [CrossRef]

70. Zhang, X.H.; Zhao, S.D.; Mohanty, S.D.; Liu, Y.X. Resolving Galactic binaries using a network of space-borne gravitational wave

detectors. Phys. Rev. D 2022, 106, 102004. [CrossRef]

71. Gao, P.; Fan, X.L.; Cao, Z.J.; Zhang, X.H. Fast resolution of Galactic binaries in LISA data. Phys. Rev. D 2023, 107, 123029.

[CrossRef]

http://dx.doi.org/10.1088/0264-9381/26/13/135004
http://dx.doi.org/10.1088/0264-9381/28/9/094016
http://dx.doi.org/http://hdl.handle.net/2292/7123
http://dx.doi.org/10.1088/0264-9381/29/14/145014
http://dx.doi.org/110.1109/SIS.2007.368035
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.3390/universe10020096
http://dx.doi.org/10.1103/PhysRevD.81.063002
http://dx.doi.org/10.1103/PhysRevD.95.124030
http://dx.doi.org/10.1103/PhysRevD.98.044029
http://dx.doi.org/10.1103/PhysRevD.101.082001
http://dx.doi.org/10.1137/14S013706
http://dx.doi.org/10.1103/PhysRevD.96.102008
http://dx.doi.org/10.1007/s00180-020-01022-x
http://dx.doi.org/10.1088/1361-6382/acd0fe
http://dx.doi.org/10.1088/0004-637X/795/1/96
http://dx.doi.org/10.1088/0004-637X/815/2/125
http://dx.doi.org/10.1093/mnras/stw1446
http://dx.doi.org/10.1103/PhysRevLett.118.151104
http://dx.doi.org/10.1088/1742-6596/840/1/012058
http://dx.doi.org/10.1103/PhysRevD.106.023016
http://dx.doi.org/10.1103/PhysRevD.104.024023
http://dx.doi.org/10.1103/PhysRevD.106.102004
http://dx.doi.org/10.1103/PhysRevD.107.123029


Universe 2024, 10, 171 20 of 20

72. Gao, P.; Fan, X.; Cao, Z. Simultaneously search for multi-target Galactic binary gravitational waves in reduced parameter space

with LMPSO-CV. arXiv 2024, arXiv:2401.09300.

73. Lu, Y.; Li, E.K.; Hu, Y.M.; Zhang, J.d.; Mei, J. An Implementation of Galactic White Dwarf Binary Data Analysis for MLDC-3.1.

Res. Astron. Astrophys. 2023, 23, 015022. [CrossRef]

74. Ciuprina, G.; Ioan, D.; Munteanu, I. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. Magn. 2002,

38, 1037–1040. [CrossRef]

75. Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407.

[CrossRef]

76. Eberhart, R.C.; YShi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Piscataway, NJ, USA, 2001.

77. Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93.

78. Engelbrecht, A.P. Fundamentals of Computational Swarm Intelligence; Wiley Chichester: Chichester, UK, 2005; Volume 1.

79. Mohanty, S.D. Swarm Intelligence Methods for Statistical Regression; CRC Press: Boca Raton, FL, USA, 2018. [CrossRef]

80. Tinto, M.; Dhurandhar, S.V. Time Delay. Living Rev. Rel. 2005, 8, 4. [CrossRef]

81. LISA Data Challenge, Code and Maunal. Available online: https://lisa-ldc.lal.in2p3.fr/static/data/pdf/LDC-manual-002.pdf

(accessed on 3 April 2024).

82. Babak, S.; Petiteau, A.; Hewitson, M. LISA Sensitivity and SNR Calculations. arXiv 2021, arXiv:2108.01167.

83. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P.; Metcalf, M. Numerical Recipes in Fortran 90: The Art of Parallel Scientific

Computing, 2nd ed.; (Fortran Numerical Recipes 2); Cambridge University Press: Cambridge, UK, 1996.

84. The Gsl Library. Available online: https://www.gnu.org/software/gsl/doc/html/multimin.html (accessed on 3 April 2024).

85. Li, X.; Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization. In IEEE Transactions on Evolutionary

Computation; IEEE: Piscataway, NJ, USA, 2011; Volume 16, pp. 210–224. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1674-4527/aca8ed
http://dx.doi.org/10.1109/20.996266
http://dx.doi.org/10.1109/TAP.2004.823969
http://dx.doi.org/10.1201/b22461
http://dx.doi.org/10.12942/lrr-2005-4
https://lisa-ldc.lal.in2p3.fr/static/data/pdf/LDC-manual-002.pdf
https://www.gnu.org/software/gsl/doc/html/multimin.html
http://dx.doi.org/10.1109/TEVC.2011.2112662

	Introduction
	Data Description
	TDI Combinations
	Noise Model and Signal-to-Noise Ratio
	Signal Model: EMRI Waveform

	Generalized Likelihood Ratio Test
	13-Dimensional LLR
	8-Dimensional LLR
	7-Dimensional LLR

	Particle Swarm Optimization
	Results
	Discussion
	References

