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Abstract

Various methods of calculating one-loop level contributions to scattering amplitudes are re-

viewed. These include the unitarity method, color decomposition, spinor helicity, on-shell

recursion relations, dimensional regularization and the Mellin-Barnes transformation. A

special emphasis is placed on the case of massive external particles and massive particles

propagating in the loop. The methods are applied in calculating the leading order one-loop

contribution to the Higgs pair production process by the fusion of two gluons. An extensive

introduction to traditional loop calculations is included.
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CHAPTER 1

Introduction

The main aim of particle physics is to persistently search for increasingly accurate theories to

describe the fundamental laws of nature which we believe underly all physical phenomena,

ranging from an understanding of the structure of the nucleus and spanning to the dynamics

of the universe as a whole. The status of our physical understanding is that two separate

theories exist, Einstein’s General Relativity to describe the upper extreme, and a quantum

field theory dubbed the Standard Model to describe the microscopic and below. The former

describes the gravitational force, while the latter describes the strong, electromagnetic and

weak forces. The latter, in fact, is a merge of two separate theories: QCD (Quantum Chro-

moDynamics), a theory describing the strong force, the force responsible for the attraction

between the protons and the neutrons in the nuclei of atoms; and the Electroweak theory,

(unavoidably) intertwining the electromagnetic force, responsible for most day-to-day phe-

nomena, with the weak force, responsible for some types of radioactive decays such as Beta

radiation.

In order to test their theories, physicists often look for the simplest possible experiments

that could isolate specific interesting features of the theory. Physicists would, ideally, like

theory to be a step ahead of experiment, with the hope that the experiment could posteriorly

confirm or invalidate their assertions. The most successful method up-to-date of testing the

Standard Model theory is by colliding (or scattering) incoming particles against one another

at extreme energies in machines called Particle Accelerators. Such events turn out to produce

a myriad of outgoing particles, whose scattering patterns provide clues on the inner workings
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CHAPTER 1. INTRODUCTION

(a)

(b)

Figure 1.1: A tree level (left) and a one-loop level (right) contribution to the 2 gluon to 2 gluon scatter-

ing process.

of the fundamental forces. In quantum field theories such as the Standard Model, we are

interested in calculating a complex valued quantity called the S-matrix. This quantity is a

measure of the probability that a certain scattering process will occur, and can be directly

compared to experiment.

Usually an exact calculation of the S-matrix is not possible and we resort to perturbation

theory, where we expand (approximate) the S-matrix in small parameters of our theories. To

this end, we employ a method due to R.P. Feynman, in which diagrammatic entities known

as Feynman diagrams are drawn and then evaluated. These diagrams correspond to the

terms of our expansion. To obtain the lowest order (LO) contribution, it suffices to consider

tree level diagrams which are relatively simple to calculate (figure 1.1(a) is an example of

a tree diagram). Higher precision calculations are in need as higher precision experiments

are devised. Such experiments are the Tevatron in Illinois, which collides protons against

anti-protons at energies of 1 TeV, or the upcoming Large Hadron Collider (LHC) in Switzer-

land/France, planned to collide protons at energies of 14 TeV. To increase predictive accu-

racy, one must calculate next-to-leading order (NLO) contributions, i.e. one-loop Feynman

diagrams such as in figure 1.1(b), which are notoriously difficult.

Consider, as an example, the scattering of 2 gluon particles into 2 gluon particles. Eval-

uating the loop diagram contribution in figure 1.1(b) would require multiplying four triple-

gluon vertices (figure 1.2), each containing 6 terms. This single diagram would result in

an expression containing 64 terms. The full NLO contribution would require summing over

∼220 such diagrams (the diagrams were generated by FeynArts[1]). We thus witness a gen-

eral feature of amplitudes. As we either increase the number of loops or the number of ex-

ternal particles, the expressions grow rapidly and quickly become unmanageable. To make

matters even worse, loop diagrams and the integrals accompanying them, often suffer from

divergences in both the ultraviolet region and the infrared and collinear regions. Newer,

more efficient methods are crucial if theory is to confront experiment.
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The past couple of decades have seen a rising interest and great progress in this domain,

as theorists are stimulated by the challenge of discovering the missing piece of the standard

model, the Higgs boson, and possibly observing the springs of new ”beyond the Standard

Model” physics. For example, the main channel for the discovery of the Higgs particle is

the fusion of two gluons[2], resulting in the production of a Higgs particle through a top

quark loop. The LO contribution to this process is in itself a one-loop Feynman diagram,

requiring already at this stage the use of one-loop methods to obtain a prediction. The NLO

contribution[3, 4, 5], a QCD correction containing either an extra loop or a real emission of an

extra particle, is relatively large, increasing the cross section by about 50%. This illustrates

the importance of one-loop, and in this case higher loop calculation.

Many new devices have been invented to cope with ever growing complexity. We give a

taste of some of the topics that will be discussed in this work. The spinor helicity and color

decomposition methods [6, 7] have become a common feature in QCD calculations, provid-

ing an efficient way for working with external gluons and for taking advantage of the color

content (SU(3) group generators) of amplitudes to decompose them into smaller pieces. The

unitarity property of the S-matrix [8], which is a consequence of its probabilistic interpreta-

tion, and the more general Cutkosky rules [9] based on Landau’s [10] analysis of Feynman

diagrams, have proved to be extremely powerful tools in calculating full amplitudes without

the need to explicitly evaluate large numbers of Feynman diagrams. Bern, Dixon, Kosower

[11, 12, 13] and others have made great process in producing large numbers of previously

unattainable analytical results, e.g. all one-loop corrections to 5-point massless parton am-

plitudes [14, 15, 16] have been calculated by these methods. Recently, Ossola, Papadopoulos

and Pittau have devised a new unitarity-like approach [17], dubbed the OPP method, which

could prove yet more efficient, especially in the context of computerized implementations.

Progress has also been made in evaluating tree-level diagrams, which form building

blocks in the above mentioned unitarity method. Following a discovery of Witten [18] on the

relation between perturbative scattering amplitudes and twistor space, an on-shell method

was proposed [19, 20] in which larger tree amplitudes are constructed recursively from

smaller ones.

µ, a

ν, b ρ, c

k

p q

= gfabc (gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν)

Figure 1.2: Feynman rule of a triple-gluon vertex.
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CHAPTER 1. INTRODUCTION

Yet another tool, different in character from those mentioned above, first put to use by

Usyukina [21], makes use of a mathematical tool called the Mellin-Barnes transformation

[22] to simplify loop integrals at different stages, either prior to the momentum integration

[23] or prior to the Feynman parameter integration. Tausk [24] applied the latter approach

in calculating a four point Feynman diagram with two loops and seven internal legs.

In this thesis we assume a knowledge of quantum field theory and the Standard Model

[8, 25]. The goal of the thesis is to provide a coherent and detailed review of various one-loop

calculational methods, and finally apply these methods on a non-trivial scattering process.

All the topics discussed throughout the thesis are also illustrated in fully worked out exam-

ples. In chapter 2, we begin with an in-depth review of some of the traditional methods of

calculating one-loop corrections to amplitudes, emphasizing the dimensional regularization

scheme [26] and the Passarino-Veltman reduction scheme [27], which will form the basis

of the subsequent chapters. Chapters 3-5 will introduce various modern methods to tackle

loop-calculations, some of which discussed earlier in this introduction. Where relevant, our

emphasis will be on amplitudes containing massive fermions, which often introduce new dif-

ficulties. In chapter 6, we will focus on a specific scattering process of special interest for the

LHC experiment, namely the scattering of two gluons into two Higgs particles. This process

provides a channel for testing the potential of the Higgs sector of the Standard Model. A

detailed calculation of the process will be carried out, demonstrating a large number of the

techniques reviewed throughout the thesis. A collection of appendices of useful formulae

appears in the back.
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CHAPTER 2

Basics of One-Loop Calculations

The difficulties that arise in the calculation of a scattering amplitudes by introducing loop

corrections into the perturbation expansion lie in both the messy integral expressions and

coping with their divergent nature. In this chapter we introduce the by now ubiquitous di-

mensional regularization scheme and discuss its application in treating the different types

of divergences through two examples: the vacuum polarization and the Drell-Yan processes.

We also introduce the Passarino-Veltman reduction scheme which is widely used in simpli-

fying loop expression. These preliminary concepts form the basis of our later discussions.

2.1 Dimensional Regularization

Ultraviolet and infrared divergences

A well known feature of Quantum Field theories is the appearance of ultraviolet, infrared

and collinear divergences in perturbation expansions of scattering amplitudes. It has been

demonstrated for both Abelian and non-Abelian gauge theories that the ultraviolet diver-

gences are in fact renormalizable, i.e. non-observable parameters in the theory such as

coupling constants, masses and fields, can be redefined to absorb the infinities yielding finite

values for observable quantities. This process of absorbing the behavior of the fields at high

momenta reflects the theory’s inability to explain this region of momentum space, but at the

11



CHAPTER 2. BASICS OF ONE-LOOP CALCULATIONS

same time shows that this information is not crucial for understanding behavior at lower

momenta values.

In practice [25] renormalization is accomplished by expressing these ”bare” infinite pa-

rameters as products of a renormalized finite quantity and an infinite factor Zi (e.g. the

QED coupling constant e0 = eRZe). The Zi factor is expanded around the same expansion

parameter used to expand the amplitude. The zeroth order term of the expansion is finite

reflecting the fact that tree level diagrams are finite and do not require renormalization. The

higher order terms of the expansion are defined such that they will cancel the infinities of

higher order corrections to the amplitude. Put differently, infinities arising from divergent

integrals cancel against infinite parameters and fields of the Lagrangian. Diagrammatically,

this procedure can be understood as introducing new Feynman rules, since by expanding Zi

we are effectively adding new terms to the Lagrangian. The additional diagrams generated

by the new rules are chosen such that they cancel the infinities of the original diagrams. In a

renormalizable theory, Zi factors can be defined universally, i.e. they will successfully render

every observable finite.

Infrared and collinear divergences are different in character. These divergences are not

a consequence of the limitation of the theory but rather of modifying an observable to be

”more physical”. For example, we will see that the first order correction in the scattering

process of two quarks into two muons is infrared divergent. This is partially healed by a

procedure known as factorization which modifies the observable to be the scattering of two

protons instead of two quarks. Since quarks cannot be isolated this is naturally the more

physical question, while protons which are bound states of three quarks are stable particles.

To fully rid the amplitude of divergences one has to further take into account the real

emission of a gluon from one of the incoming quarks (i.e. a scattering amplitude of three

outgoing particles). Low energy gluons could go undetected and should thus be taken into

account when considering the scattering amplitude of two quarks into two electrons. In-

cluding real emissions is a procedure used originally in QED to treat infrared and collinear

divergences. The emission of on-shell massless particles by massless particles (e.g. gluons

emitted by high energy quarks assumed to be massless) is divergent in the region of phase

space where the particles have zero energy or become collinear with the emitting particle.

These divergences cancel against the loop correction of the 2 → 2 process. Both factorization

and real emission will be discussed in greater in section 2.3.

Dimensional Regularization

A crucial ingredient of both the renormalization program and the treatment of infrared and

collinear divergences is a regularization scheme. Different regularization schemes targeted

at different applications have been devised. The various methods introduce some continuous

12



2.1. DIMENSIONAL REGULARIZATION

parameter into the divergent Feynman integral such that in some region of the parameter

space the integral will be finite, with a pole at the physical value of the parameter. Examples

of such schemes are:

• Pauli-Villars regularization - fictitious fields are introduced, the physical limit corre-

sponds to sending the masses of these fields to infinity, causing the contribution of the

fields to vanish.

• Analytic regularization - normal propagators (p2 + m2)−1 are replaced by (p2 + m2)λ,

the physical limit is reached when taking the limit λ → −1.

• Dimensional regularization - the dimension of space-time d is a variable, d = 4 is the

physical limit.

The latter, dimensional regularization, is a scheme found to be extremely powerful in

the calculation of loop diagrams. It was introduced by ’t Hooft and Veltman [26] in 1972.

One observes that integrals divergent at four dimensions become ultraviolet finite when

the number of dimensions is reduced, and infrared finite when the number of dimensions

is increased. In fact, if Feynman integrals are analytically continued in the dimensions d

of space-time the integrals turn out to be analytical in d space with simple poles at some

integer values. The physical result is defined as the limit d → 4 after the removal of the

divergences.

In addition to being convenient for calculations, as we shall see, dimensional regular-

ization also preserves Ward identities which are crucial to the proof of the unitarity of the

S-matrix. In this thesis we demonstrate the usefulness of the unitarity property as a calcu-

lational tool (see chapter 3), further justifying the use of this regularization method.

An obvious downside of this method is its failure in dealing with quantities that are

dimension dependent. Such quantities are the γ5 Dirac matrix, the projection matrices

w± = 1
2 (1 ± γ5) and the antisymmetric tensor ǫαβγδ. If dimension dependent properties of

these quantities are necessary for proving Ward identities then the method fails since these

quantities cannot be generalized to d dimensions (see [26] for an example).

To deal with helicities of gauge bosons and massless fermions, quantities which typi-

cally introduce projection matrices into an amplitude expression, we will resort to the four-

dimensional helicity scheme (FDH) [28]. This scheme dictates that all external quantities

(external momenta, polarization vectors and spinors) are taken to be four dimensional, and

only loop momenta are extended to d dimensions. Section 4.4 will discuss an elegant tech-

nique to deal with the extra dimensions of the loop momentum vector in the case of one

loop diagrams. In actual calculations, we will see that projection matrices do in fact appear

and they could in theory come into conflict with the dimensional regularization scheme. As

13



CHAPTER 2. BASICS OF ONE-LOOP CALCULATIONS

long as we are dealing with QCD and QED, theories that do not violate parity, using di-

mensional regularization is safe. This can be understood if we consider an alternative route

for calculating an amplitude. The helicities of the particles could be left unspecified in the

beginning of the calculation and only after reaching a finite renormalized result one could

contract the amplitude with the helicity information. In other words, if the Feynman rules

for vertices and propagators do not contain four-dimension-only quantities then dimensional

regularization is a safe choice.

The remainder of this section will be dedicated to the derivation of essential dimensional

regularization identities. These include general Feynman integral expressions in d dimen-

sions and a generalization of the Dirac γ matrices to d dimensions. The section will be

concluded with a detailed example.

2.1.1 Loop integrals

When a scattering amplitude is calculated in perturbation theory, all contributing Feynman

diagrams up to a given order must be considered. A general expression of a one-loop Feyn-

man diagram takes the following form,

∫
ddl

(2π)d
N (li, mi, kj)

(l21 − m2
1 + iǫ)(l22 − m2

2 + iǫ)...(l2n − m2
n + iǫ)

(2.1)

n is the number of internal lines in the loop and li is the momentum of the particle of mass

mi propagating through the i’th line. Because of momentum conservation at each vertex and

in the overall graph, only one of the li momenta is independent and we denote it by l. {kj}
is the set of external momenta and N is a function of the internal and external momenta

determined by the details of the diagram and the corresponding Feynman rules. Higher loop

diagrams would involve integrating over larger number of independent loop momenta. We

will restrict our discussion to the one-loop case.

The common procedure for evaluating (2.1) involves first combining the propagator fac-

tors in the denominator using Feynman parameters,

1

A1A2...An
=

∫ 1

0

da1da2...dan
(n − 1)!δ(

∑
ai − 1)

(a1A1 + a2A2 + ... + anAn)n
(2.2)

where Ai = l2i − m2
i . All li can be expressed in terms of the integration variable l and {kj}.

The sum appearing in the denominator is a second order polynomial of l. This allows a

variable shift l → q = l + const with the constant chosen to rid the denominator of any linear

terms in the integration variable. Ignoring for the moment the integrals over the Feynman

parameters ai, equation (2.1) reduces to,

14
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∫
ddq

(2π)d
N (q, kj , ai)

[q2 − M2 + iǫ]s
(2.3)

We note that N is the same function as in (2.1) expressed in terms of the shifted variable.

We now seek to evaluate this integral, leaving the number of dimensions d unspecified. In

the denominator, the integration variable appears only as q2. The integral does not depend

on any vectorial quantities and if even powers of qµ appear in the numerator then they can

be replaced by combinations of q2gµν (see appendix B). If odd powers of qµ appear, these can

be similarly replaced by factors of q2gµν multipled by a single factor of qµ, leaving an odd

integrand and consequently a vanishing integral. We are thus left with the simpler task of

evaluating only integrals of the form,

∫
ddq

(2π)d
(q2)m

[q2 − M2 + iǫ]s
(2.4)

In the following section we will discuss how the Passarino-Veltman reduction procedure

can be used to remove any powers of the loop momentum lµ from the numerator of (2.1).

The reduced integrals are known as scalar integrals and form the basic building blocks of

one-loop scattering amplitudes.

Having (2.4) depend only on q2, it is natural to solve it using spherical coordinates in d

dimensions. Since q lives in Minkowski space, a Wick rotation would allow us to work in the

more familiar Eucledian space. We will carry out an explicit calculation of (2.4) for the case

m = 0. The steps described can be retraced for the cases m > 0 (see appendix B for the case

m = 1).

Wick Rotation

In the case m = 0, the scalar integral is,

∫
ddq

(2π)d
1

[q2 − M2 + iǫ]s
(2.5)

Considering first the integration over the time component of q in the complex plane, there

are poles in the bottom right and top left quadrants. The location of the poles is determined

by the ǫ prescription of the propagators. According to the Feynman prescription (which we

use throughout the thesis),

q2 = M2 − iǫ ⇒ (q0)2 = ~q2 + M2 − iǫ

⇒ q0 = ±
√

~q2 + M2 − iǫ ≃ ±
√

~q2 + M2

(

1 − iǫ
1

~q2 + M2

)

(2.6)
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CHAPTER 2. BASICS OF ONE-LOOP CALCULATIONS

Since the top right and bottom left quadrants do not contain poles, and the integral van-

ishes in the limit |q0| → ∞ (when s ≥ 1, which form the relevant cases of at least one

propagator in the loop), then by Cauchy’s theorem a line integral along the real axis (−∞ <

Re q0 < ∞) can be replaced by a line integral along the imaginary axis (−∞ < Im q0 < ∞).

This is known as a Wick rotation (see figure 2.1). For convenience, we define a new vector

qE such that q0 = iq0
E and ~qE = ~q. The time integration is then simply over the real axis

−∞ < l0E < ∞.

qE has a Euclidean metric q2
E = (q0

E)2 + ~q2
E , where ~qE is a d − 1 dimensional vector. The

Wick rotated integral contains no poles as long as M2 > 0, and ǫ can be taken to zero.

lim
ǫ→0

∫
ddq

(2π)d
1

[q2 − M2 + iǫ]s
=

∫
ddqE
(2π)d

i

(−1)s
1

[q2
E + M2]s

(2.7)

The i factor originates from the Jacobian, ddq0 = iddq0
E , and the factor (−1)s from the fact

that q2 = −q2
E. It is now safe to express q in polar coordinates,

∫
ddqE
(2π)d

i

(−1)s
1

[q2
E + M2]s

=
i

(−1)s

∫ ∞

0

dqE
(2π)d

qd−1
E

[q2
E + M2]s

∫

dΩd−1 (2.8)

Angular integration

To calculate
∫

dΩd−1, we first show that the integration measure transforms to spherical

coordinates as follows,

Re q0

Im q0

Figure 2.1: Wick rotation of the time component of q.
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∫

ddq =

∫ ∞

0

dqqd−1

∫

dΩd−1 =

∫ ∞

0

dqqd−1

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2...

∫ π

0

dθd−1 sind−2 θd−1 (2.9)

This is obviously true for d = 2, 3. Assuming by induction that it is true for d then in the

case d + 1 we have,

∫

dd+1q =

∫

dqd+1

∫

dqd

=

∫

dqd+1

∫ ∞

0

dq′q′d−1

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2...

∫ π

0

dθd−1 sind−2 θd−1 (2.10)

where q′ is the magnitude of the d dimensional vector. Introduce a new angle 0 ≤ θd ≤ π,

qd+1 = q cos θd ⇒ dqd+1 = dq cos θd + q(− sin θd)dθd

q′ = q sin θd ⇒ dq′ = dq sin θd + q cos θddθd (2.11)

The new measure is then,

dqd+1dq′ = qdqdθd (2.12)

Inserting this and the definition of q′ into (2.10) reproduces (2.9) for the case d + 1.

Since the integrand of (2.8) only depends on the magnitude of q, the angular part can be

integrated out. To solve the angular part of (2.9) we first calculate the integral
∫ π

0
dθ sink θ.

Perform the substitution y = sin2 θ,

∫ π

0

dθ sink θ = 2

∫ π/2

0

dθ(sin2 θ)k/2 =

∫ 1

0

dyy
k−1

2 (1 − y)−
1
2 =

Γ(k+1
2 )Γ(1

2 )

Γ(k+2
2 )

(2.13)

where in the last step the Beta function (B.9) was used.

Finally,

∫

dΩd−1 =

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2...

∫ π

0

dθd−1 sind−2 θd−1

= 2π
Γ(1

2 )Γ(1
2 + 1

2 · 1)

������
Γ(1 + 1

2 · 1)

Γ(1
2 )������

Γ(1
2 + 1

2 · 2)

������
Γ(1 + 1

2 · 2)
...

Γ(1
2 )((((((((

Γ(1
2 + 1

2 · (d − 2))

Γ(1 + 1
2 · (d − 2))

= 2π
(Γ(1

2 ))d−2Γ(1)

Γ(d2
= 2π(

√
π)d−2 1

Γ(d2 )
=

2π
d
2

Γ(d2 )
(2.14)
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Radial integration

To complete the evaluation of (2.8), the radial integration must be performed. We perform

the following series of substitutions,

• qE = My ⇒ dqE = Mdy

∫ ∞

0

dqE
qd−1
E

[q2
E + M2]s

=
Md

M2s

∫ ∞

0

dy
yd−1

[1 + y2]s

• y = sinh z (0 ≤ y < ∞ → 0 ≤ z < ∞) ⇒ dy = cosh zdz

1 + y2 = 1 + sinh2 z = cosh2 z = (1 − tanh2 z)−1

y2 = (1 − tanh2 z)−1 − 1 = tanh2 z(1 − tanh2 z)−1

• u = tanh2 z (0 ≤ z < ∞ → 0 ≤ u ≤ 1) ⇒ du = 2 tanh z cosh−2 zdz

1 + y2 = (1 − u)−1 , y2 = u(1 − u)−1

Applying these substitutions to the integral and using the Beta function again, the radial

integral yields,

(M2)
d
2
−s
∫ ∞

0

dy
yd−1

[1 + y2]s
= (M2)

d
2
−s
∫ 1

0

du
cosh3 z

2 tanh z
u

d−1

2 (1 − u)
1−d
2 (1 − u)s (2.15)

=
(M2)

d
2
−s

2

∫ 1

0

du
(1 − u)

3
2

u
1
2

u
d−1

2 (1 − u)
1
2
− d

2
+s (2.16)

=
(M2)

d
2
−s

2

∫ 1

0

duu
d−2
2 (1 − u)s−

d
2
−1 (2.17)

=
(M2)

d
2
−s

2

Γ(d2 )Γ(s − d
2 )

Γ(s)
(2.18)

Combining both radial and angular integrations, the scalar integral (2.8) reduces to,

lim
ǫ→0

∫
ddq

(2π)d
1

[q2 − M2 + iǫ]s
=

i

(−1)s
1

Γ(d2 )2d−1π
d
2

(M2)
d
2
−s

2

Γ(d2 )Γ(s − d
2 )

Γ(s)

=
(−1)si

(4π)
d
2

Γ(s − d
2 )

Γ(s)
(M2)

d
2
−s (2.19)

This result demonstrates the power of dimensional regularization. The only potentially

divergent factor in this expression is the Gamma function, Γ(s − d
2 ). The Gamma function,

Γ(z), has simple poles at z ∈ Z, z ≤ 0. Thus, if the number of propagators s is such that
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2.1. DIMENSIONAL REGULARIZATION

s − d
2 is a negative integer or zero in the physical value d = 4, the integral is divergent. It is

common to express the dimensions as a deviation from the physical dimensions, d = 4 − 2ǫ.

In terms of ǫ we have Γ(s− 2 + ǫ), and we can use identity (B.5) to extract the poles from the

Gamma function and have it appear explicitly as a pole in the deviation ǫ,

Γ(s − 2 + ǫ) =
1

s − 2 + ǫ
Γ(s − 1 + ǫ) =

1

s − 2 + ǫ

1

s − 1 + ǫ
Γ(s + ǫ) = ... (2.20)

This can be repeated recursively until the argument of the Gamma function is positive defi-

nite. This representation makes more apparent the subtraction of infinities described above

in the discussion of renormalization. The example at the end of this section will demonstrate

this.

Finally, recall that the term M appearing in (2.19) is in fact a function of the Feynman

parameters {ai} (see (2.2)), and these must be integrated over. As the number of legs grows

and with it the number of parameters, the integrals tend to become more complicated as

a consequence of the delta function constraining their sum to be 1. Moreover, after the

variable shift discussed above, Feynman parameters appear also in the numerator. Chapter

3 will introduce a reduction formula expressing integrals with parameters in the numerator

in terms of integrals stripped of such parameters.

2.1.2 Dirac matrices in d dimensions

When working in d dimensions, one must take special care of contractions and traces of

Dirac gamma matrices which are abundant in loop calculations. First note that a trace of

a space-time Kronecker delta is the number of space-time dimensions, δµµ = d. This implies

that contracting two metric tensors is also equal to the number of space-time dimensions,

gµνgµν = d (2.21)

Keeping the normal definition of the gamma matrices, {γµ, γν} = 2gµν let us see what

happens when two matrices are contracted,

γµγµ = gµνγ
µγν =

1

2
gµν(γ

µγν + γνγµ) = gµνg
µν = d (2.22)

or in the case of three matrices,

γµγνγµ = gµργ
µγνγρ =

1

2
gµρ(γ

µγνγρ + γργνγµ)

=
1

2
gµρ(γ

µγνγρ − γργµγν + 2gµνγρ)

= ... = gµρ(γ
µgνρ − γνgρµ + γρgµν) = (2 − d)γν (2.23)
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A list of contraction formulas in d dimensions appears in appendix B. When performing a

trace of a product of gamma matrices, the result is typically a combination of metric tensors.

These metric tensors are in turn contracted with either vectors or other metric tensors, in

which case one must again make use of (2.21). Such manipulations introduce factors of ǫ

(through d = 4 − 2ǫ) which cancel against factors of 1
ǫ appearing through (2.20). In this

case only the divergent parts of the integrals contribute to the physical expression, while the

finite parts vanish in the limit ǫ → 0.

2.1.3 Vacuum polarization - an example

As a pedagogical example we calculate the one-loop correction to the photon self-energy am-

plitude using the dimensional regularization scheme described in this section. This process

is also known as the one-loop vacuum polarization diagram since virtual electron-positron

pairs are created, polarizing the overall distribution of charge. We will return to this pro-

cess in later chaptersas an example of unitarity and the Mellin-Barnes transformation as

calculational techniques.

Figure 2.2 displays the only contributing diagram. This diagram is mostly incorporated as

a correction to the photon propagator, and we therefore allow the photon to be off-shell with

an invariant momentum k2 = s. The mass of the fermion is m. We will calculate the tensor

amplitude, stripping off the external polarization vectors which can later be contracted with

the tensorial quantity. Application of the Feynman rules (appendix A) yields,

iMµν = −
∫

ddp

(2π)d
tr

[

(−ieγµ)
i(�p − �k + m)

(p − k)2 − m2
(−ieγν)

i(�p + m)

p2 − m2

]

(2.24)

An extra minus sign appears because of the fermionic loop. Denote,

p

k

p − k

k

Figure 2.2: One-loop Feynman diagram contribution to the vacuum polarization amplitude
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d1 = p2 − m2 d2 = (p − k)2 − m2 (2.25)

The trace appearing in the expression is over the spinor indices. This trace contains a

maximum of four Dirac matrices and can be evaluated using the identities in appendix C or

more conveniently using an algebraic program such as Form [29],

iMµν = −4e2

∫
ddp

(2π)d
2pµpν − kµpν − kνpµ − gµν(p2 − m2) + gµνk · p

d1d2

= −4e2(2Bµν − Bµpν − Bνpµ − gµνA(1) + gµνp · B) (2.26)

where we defined the following tensorial integrals,

Bµν =

∫
ddp

(2π)d
pµpν

d1d2
; Bµ =

∫
ddp

(2π)d
pµ

d1d2
; A(1) =

∫
ddp

(2π)d
1

d2
(2.27)

The convention used here is that the letter refers to the number of propagators in the integral

(e.g. A has one propagator and B has two) and a superscript refers to the missing propagators

(e.g. A(1) means that d1 is missing).

The next step will be to explicitly evaluate these three integrals.

Bµν tensor integral

Apply the Feynman parameters formula to combine the factors in the denominator to one

single factor,

Bµν =

∫
ddp

(2π)d
pµpν

((p − k)2 − m2)(p2 − m2)

=

∫ 1

0

dx

∫
ddp

(2π)d
pµpν

[x((p − k)2 − m2) + (1 − x)(p2 − m2)]2
(2.28)

Denoting s = k2, the denominator can be simplified to,

x((p − k)2 − m2) + (1 − x)(p2 − m2) = xp2 + xk2 − 2xp · k − xm2 + p2 − xp2 − m2 + xm2

= p2 − 2xk · p + xk2 − m2

= (p − xk)2 − x2k2 + xk2 − m2

= (p − xk)2 + x(1 − x)s − m2 (2.29)

Performing the shift q = p − xk and denoting M = m2 − x(1 − x)s,
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Bµν =

∫ 1

0

dx

∫
ddq

(2π)d
(qµ + xkµ)(qν + xkν)

[q2 − M ]2
(2.30)

=

∫ 1

0

dx

∫
ddq

(2π)d
qµqν

[q2 − M ]2
+

∫ 1

0

dxx2kµkν
∫

ddq

(2π)d
1

[q2 − M ]2

+

∫ 1

0

dx

∫
ddq

(2π)d
{q, p}µν

[q2 − M ]2
︸ ︷︷ ︸

=0, odd function of qµ

The q part of the second term can be evaluated using (2.19) or (B.11),

∫
ddq

(2π)d
1

[q2 − M ]2
=

i

(4π)
d
2

Γ(2 − d
2 )

Γ(2)

(
1

M

)2− d
2

=
i

(4π)2−ǫ
Γ(ǫ)M−ǫ (2.31)

where, as mentioned earlier, ǫ is defined by d = 4 − 2ǫ.

Similarly for the first term, using (B.13),

∫
ddq

(2π)d
qµqν

[q2 − M ]2
=

−i

(4π)
d
2

gµν

2

Γ(1 − d
2 )

Γ(2)

(
1

M

)1− d
2

= −1

2

i

(4π)2−ǫ
gµνΓ(−1 + ǫ)M1−ǫ (2.32)

The result of the momentum tensor integral is,

Bµν =
i

(4π)2−ǫ

[

−gµνΓ(−1 + ǫ)

2

∫ 1

0

dxM1−ǫ + kµkνΓ(ǫ)

∫ 1

0

dxx2M−ǫ
]

(2.33)

To perform the remaining x integral, M can be expanded up to order ǫ,

M−ǫ = elnM−ǫ

= e−ǫ lnM ≃ 1 − ǫ lnM = 1 − ǫ ln(m2 − x(1 − x)s) (2.34)

The solution of this integral is discussed below.

Bµ tensor integral

Using the same Feynman parameter shift as for Bµν and again using (B.11),
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Bµ =

∫
ddp

(2π)d
pµ

((p − k)2 − m2)(p2 − m2)

=

∫ 1

0

dx

∫
ddp

(2π)d
pµ

[x((p − k)2 − m2) + (1 − x)(p2 − m2)]2

=

∫ 1

0

dx

∫
ddq

(2π)d
qµ

[q2 − M ]2
︸ ︷︷ ︸

=0, odd function of qµ

+

∫ 1

0

dxxkµ
∫

ddq

(2π)d
1

[q2 − M ]2

=
i

(4π)2−ǫ
kµΓ(ǫ)

∫ 1

0

dxxM−ǫ (2.35)

A(1) scalar integral

Using (B.11) after performing the shift q = p − k,

A(1) =

∫
ddp

(2π)d
1

(p − k)2 − m2
=

∫
ddq

(2π)d
1

q2 − m2
=

−i

(4π)
d
2

Γ(1 − d
2 )

Γ(1)
(m2)1−ǫ

= − i

(4π)2−ǫ
Γ(−1 + ǫ)(m2)1−ǫ (2.36)

And expanding (m2)−ǫ,

(m2)−ǫ ≃ 1 − ǫ lnm2 (2.37)

Feynman parameter integration

The three integrals, Bµν , Bµ and A1, all contain x integrals of the form
∫ 1

0 xn lnM , with

n = 0, 1, 2. Denoting ξ = s
m2 and using the definition of M , the integral is,

∫ 1

0

dxxn lnm2 +

∫ 1

0

xn ln[1 − x(1 − x)ξ] (2.38)

where the first term is equal to 1
n lnm2 and is the result for the case ξ = 0. We will treat in

detail the case n = 0 and quote the results for the other two cases which can be solved in a

similar fashion. Consider,

∫ 1

0

dx ln[1 − x(1 − x)ξ] (2.39)

At ξ < 4 the integrand is definite real, whereas at ξ ≥ 4 there are two poles (only one at

ξ = 4) and a region where the integrand is complex between the two poles. To solve this for
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all cases, we first solve the indefinite integral in the complex plane. The argument of the log

can be factorized into,

1 − x(1 − x)ξ = ξ(x − 1

2
(1 + β))(x − 1

2
(1 − β)) (2.40)

where we define β =
√

1 − 1
r , r = ξ

4 . Splitting the log into a sum of three logs, the integral is

straightforward,

∫ 1

0

dx ln[1−x(1−x)ξ] = x ln[1−x(1−x)ξ]−2x− 1

2
ln(x2−x+ξ−1)+

1

2
β ln

(
2x − 1 + β

2x − 1 − β

)

(2.41)

In the cases 0 < r < 1 (where β = ib, b > 1, b ∈ ℜ) and r < 0 (where β > 1, β ∈
ℜ), there are no poles and we can simply solve the integral by plugging in the boundaries

and taking the difference. Using the representations of the trigonometric and hyperbolic

functions in terms of log functions: cot−1 x = i
2 ln ix+1

ix−1 , coth−1 x = 1
2 ln y+1

y−1 , and using the

relations: cot−1
√

1
x2 − 1 = sin−1 x, coth−1

√

1 + 1
x2 = sinh−1 x, we get,

∫ 1

0

dx ln[1 − x(1 − x)ξ]
∣
∣
∣
0<r<1

= −2 + 2

√

1

r
− 1 sin−1 √r

∫ 1

0

dx ln[1 − x(1 − x)ξ]
∣
∣
∣
r<0

= −2 + 2

√

1 − 1

r
sinh−1

√
−r (2.42)

The third case is r ≥ 1 (where 0 ≤ β ≤ 1, β ∈ ℜ). Here, there are poles and we use the

Sokhatsky-Weierstrass theorem (see [30] p.112, note that in this source, as in many others,

the theorem is not referred to by its name) which states,

lim
ǫ→0+

∫ b

a

f(x)

x ± iǫ
dx = ∓iπ

∫ b

a

f(x)δ(x) + P
∫ b

a

f(x)

x
dx (2.43)

where P stands for Cauchy’s principal value of the integral, i.e. the integral evaluated with

an excluded symmetric interval of radius ǫ around the poles. The principal value can be

calculated the same way as for the other two cases. The difference is that in this case the

integration range is split into three intervals by the excluded areas around the poles, so we

must also evaluate (2.41) at x′ ± ǫ where x′ is a pole of the integral. These contributions

vanish in the limit ǫ → 0 and we are left with the contributions at 0 and 1,

P
∫ 1

0

dx ln[1 − x(1 − x)ξ] = −2 + 2

√

1 − 1

r
cosh−1 √r (2.44)

To calculate the imaginary part we follow a trick used in [25]. First partial integrate

(2.39), in which case the boundary term drops out. Then factorize the denominator,
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∫ 1

0

ln[1 − x(1 − x)ξ] =

∫ 1

0

x − 2x2

x2 − x + ξ−1
(2.45)

=

∫ 1

0

dxβ−1(x − 2x2)

[
1

x − 1
2 (1 + β)

− 1

x − 1
2 (1 − β)

]

To perform the integration we must follow an iǫ prescription (note the double use of ǫ, in

this case as a prescription to remove the pole from the real axis and earlier in defining the

principal value) to determine the sign. In fact, when evaluating the momentum integral of

the Feynman integral we shifted m2 → m2 − iǫ which implies β → β + iǫ. By the Sokhatsky-

Weierstrass theorem each term will have an opposite sign and the imaginary term in (2.43)

becomes iπ
√

1 − 1
r . The final result for this case is,

∫ 1

0

dx ln[1 − x(1 − x)ξ]
∣
∣
∣
r>1

= −2 + 2

√

1 − 1

r
(cosh−1 √r + i

π

2
) (2.46)

In fact, the last expression is simply an analytical continuation of the first two cases.

This can be seen by writing sin−1 √r in the complex representation using the log functions,

sin−1 x = −i ln(iy+
√

1 − y2). Comparing it with the representation cosh−1 x = ln(y+
√

y2 − 1)

one obtains the relation i sin−1 √r = cosh−1 √r + iπ2 . Indeed, (2.42) and (2.46) are represen-

tations of one unique analytical function.

Similarly, (2.38) can be evaluated for the cases n = 1, 2. Here is a summary of all results,

∫ 1

0

dx ln[m2 − x(1 − x)s] = −2 + 2

√

1

r
− 1 sin−1 √r + lnm2 (2.47)

∫ 1

0

dxx ln[m2 − x(1 − x)s] = −1 +

√

1

r
− 1 sin−1 √r +

1

2
lnm2 (2.48)

∫ 1

0

dxx2 ln[m2 − x(1 − x)s] = −13

18
+

1

6r
+

2

3

(

1 − 1

4r

)√

1

r
− 1 sin−1 √r +

1

3
lnm2 (2.49)

Finally, combining all the results, the tensor amplitude is,

iM(s) = −i(sgµν − kµkν)Π(s) (2.50)

where up to order O(1),

Π(s) =
α

3π

(

1

ǫ
+

5

3
+

1

r
−
(

2 +
1

r

)√

1

r
− 1 sin−1 √r − lnm2

)

(2.51)

Dimensional regularization makes the divergences evident. Only the term proportional

to 1
ǫ is UV divergent. As explained in the beginning of this section, some non-physical pa-

rameter in the Lagrangian can be renormalized to absorb this divergence. In this case, since
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we are evaluating a correction to the photon propagator, the bare photon field A0,µ should be

renormalized by a proper definition of the ZA factor (where A0,µ = ZAAR,µ, AR,µ is the renor-

malized field). This will add a Feynman rule that will generate a divergent tree diagram (a

photon propagator) proportional to 1
ǫ . Of course since we can always add finite terms, there

is an ambiguity in the choice of ZA. In this case we choose ZA such that the amplitude will

receive a contribution −Π(0) = − α
3π

(
1
ǫ − lnm2

)
, successfully canceling the divergence. The

renormalized, denoted Π(s) by a hat is,

Π̂(s) =
α

3π

(

5

3
+

1

r
−
(

2 +
1

r

)√

1

r
− 1 arcsin

√
r

)

(2.52)

2.2 Passarino-Veltman Reduction

The Passarino-Veltman [27] reduction scheme has become a basic tool in the evaluation of

one-loop integrals, making possible the calculation of countless amplitudes since its incep-

tion. [31] provides a systematic presentation of the scheme and [32] includes various worked

out examples. In this section we will give a description of the method through an example

with a brief discussion of the more general case. In the next section, the Drell-Yan process

will be calculated using a slight variation of this approach.

In the previous section, we discussed the general expression corresponding to a one-loop

Feynman diagram and saw explicitly how to evaluate the case where the loop momentum

does not appear in the numerator. (2.1) with N = 1 is called a scalar integral since it does

not have any tensorial indices. We saw that, in principal, tensor integrals could be evaluated

using the same techniques. The Passarino-Veltman scheme is a much more efficient scheme

allowing one to express any Feynman diagram as a sum of scalar integrals only, with each

integral multiplied by some coefficient depending only on external kinematical quantities.

Stripping any external kinematics from the numerator, a one-loop integral has the fol-

lowing general form,

Inµ1...µr
(l1, ..., ln−1, m0, m1, ...mn−1) =

∫
ddp

(2π)d
pµ1

· · · pµr

d0d1 · · · dn−1
(2.53)

where the inverse scalar propagators are,

d0 = p2 − m2
0, di = (p + li)

2 − m2
i , i = 1, ..., r (2.54)

n is the number of propagators and r the rank of the tensor integral. It is common to use

the n-th letter in the alphabet to denote an n-point integral (e.g. Cµ = I3
µ). A zero subscript

denotes a scalar integral (e.g. C0).
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Let us consider the case Cµ. Since the integrals is a Lorentz vector depending only on the

quantities l1 and l2, its most general form is,

Cµ = C̄1l1µ + C̄2l2µ (2.55)

where C̄i are scalar coefficients that are functions of scalar integrals, kinematical variables

and the dimensions d of space-time. To find these coefficients, we contract this expression

with both external vectors,

lµ1 Cµ = C̄1l
2
1 + C̄2l1 · l2

lµ2 Cµ = C̄1l1 · l2 + C̄2l
2
2 (2.56)

On the left hand side we obtain the combinations li · p in the numerator of the 3-point

integral. These combinations can be expressed in terms of propagators,

li · p = di − d0 − l2i + m2
i − m2

0 (2.57)

By plugging this into (2.56), the left hand side can be reduced to integrals of one rank

lower,

lµi Cµ = B
(i)
0 − B

(0)
0 − (l2i − m2

i + m2
0)C0 (2.58)

where B
(i)
0 refers to the scalar integral obtained from C0 by removing di. We obtain a set of

two linear equations for two unknowns,

(

l21 l1 · l2
l2 · l1 l22

)

︸ ︷︷ ︸

∆ij

(

C̄1

C̄2

)

=

(

B
(1)
0 − B

(0)
0 − (l21 − m2

1 + m2
0)C0

B
(2)
0 − B

(0)
0 − (l22 − m2

2 + m2
0)C0

)

(2.59)

The matrix ∆ij on the left hand side is known as the Gram matrix. If it can be inverted, the

system of equations has a solution. The solution in this case is,

(

C̄1

C̄2

)

=
1

l21l
2
2 − (l1 · l2)2

(

l22 −l1 · l2
−l2 · l1 l21

) (

B
(1)
0 − B

(0)
0 − (l21 − m2

1 + m2
0)C0

B
(2)
0 − B

(0)
0 − (l22 − m2

2 + m2
0)C0

)

(2.60)

We have successfully reduced the problem to the problem of solving scalar integrals. A

complete set of up to 4-point scalar integrals (originally derived in [33]) is listed in [31],

while [34] lists all UV divergent scalar integrals. [35] (see an alternative derivation in [31])

provides a recursive relation relating 5-point scalar integrals to 4-point scalar integrals.

27



CHAPTER 2. BASICS OF ONE-LOOP CALCULATIONS

To evaluate tensor integrals of higher ranks, one follows the same set of steps. First

expand the integral in a basis of external momenta. For r ≥ 2, one must also include the

metric tensor in the basis. Since the tensor integral is symmetric, it is enough to take only

completely symmetric tensors constructed out of external momenta and the metric tensor.

For example,

Cµν = C̄00gµν + C̄11l1µl1ν + C̄12{l1, l2}µν + C̄22l2µl2ν (2.61)

where {l1, l2}µν = l1µl2ν + l2µl1ν . If n ≥ 5, one chooses four linearly independent li vectors

for the expansion, since in four space-time dimensions any other vector can be written as

a linear combination of this base. In this case, one also drops the gµν term since it is also

linearly dependent on the four chosen vectors.

Next, contract this expansion with each of the basis vectors (or all vectors if n < 5) and

perform the reduction of type (2.57). This will reduce the rank of all tensor integrals by

one. Finally, solve the set of equations, expressing the expansion coefficients in terms of

lower rank tensor integrals. The loop momentum of the reduced tensors with the inverse

propagator d0 removed (e.g. B
(0)
0 ) must be shifted by −li (for some i) so that these integrals

will take on the form (2.53), i.e. will contain one d0 factor in the denominator. One can repeat

this process r times to obtain an expansion in terms of scalar integrals only.

Note that the Gram determinant could vanish for some expansions, in which case the set

of linear equations cannot be solved by inverting the matrix. If n ≥ 5, it is possible that

the four li vectors chosen as a base are linearly dependent, and an attempt at another set

of vectors should be made. If this is not the case or if n < 5, the Passarino-Veltman scheme

breaks down. In [31], a method is described which takes advantage of the vanishing of the

Gram matrix to perform the reduction in an alternative way.

To control divergences, we have performed this reduction in d dimensions. This has the

effect that terms such as gµνgµν = d could introduce ǫ terms into the coefficients of the scalar

integral expansion. In terms such as ǫB0, only the divergent parts of B0 will contribute to

the final result after ǫ is taken to zero. We will see in the calculation performed in chapter

6 that this could hinder our attempt at calculating the full amplitude using the method of

unitarity (see chapter 3). In chapter 4 we will introduce extended reduction methods in

which coefficients of the scalar integral expansion are ǫ-free.

2.3 The Drell-Yan Process

The scattering process of a quark-antiquark pair into a muon-antimuon pair (or any other

charged leptonic pair), also known as the Drell-Yan process [36], is a suitable example at this

stage of our review of one-loop methods. To demonstrate the tools of dimensional regulariza-
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tion and Passarino-Veltman reduction, we will perform an explicit calculation of the virtual

one-loop correction to the tree level process in the limit of massless quarks and muons. We

will then discuss how factorization and the inclusion of the real gluon emission process are

applied to treat infrared and collinear divergences in QCD processes. In the discussion of

the Born cross section and of the divergences, we follow the presentation in [37].

Born cross section

The process under investigation is the following,

q(p1) + q̄(p2) → µ+(k1) + µ−(k2) (2.62)

We begin with the leading order (LO) contribution, the tree level process involving one

intermediary virtual of-shell photon of momentum q = k1 + k2 = p1 + p2 and mass Q2 = q2.

The LO differential cross section for the 2 → 2 scattering process, the Born cross section, can

be obtained from the amplitude as follows [38],

dσb =
1

36

1

2s
|Mb|2dPS(2) (2.63)

The 1
36 factor originates from the averaging out all unobserved degrees of freedom of the

incoming particles. In this case these are the three colors and two spins of each quark. The
1
2s flux normalization factor follows from the defintion that the cross section is the probability

that some initial state will evolve to some final state per unit flux of incoming particles.

The two particle phase space factor should be calculated in d dimensions for consistency

with the loop calculations to be carried out next (the Born cross section itself is finite). The

integration over the phase space can be fully performed since the matrix element (we will

see) depends only on the center of mass energy s and not on the angle between the outgoing

particles (see [37] for derivation),

∫

dPS(2) =

∫
1

(2π)n−2

dn−1k1

2k10

dn−1k2

2k20
δn(p1 + p2 − k1 − k2)

=
1

8π

(
4π

Q2

)ǫ
Γ(1 − ǫ)

Γ(2 − 2ǫ)
(2.64)

In order to express the differential cross section as a function of the photon invariant

mass Q2 we insert the identity,

1 =

∫

dQ2δ(s − Q2) =

∫

dQ2δ(1 − Q2/s) (2.65)
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and obtain,

dPS(2)

dQ2
=

1

8πs

(
4π

s

)ǫ
Γ(1 − ǫ)

Γ(2 − 2ǫ)
δ(1 − Q2

s
)

=
1

8πs
D(ǫ)

1

1 − 2ǫ
δ(1 − Q2

s
) (2.66)

where D(ǫ) is defined in (2.104).

To calculate the squared amplitude we adopt the cut diagram method which in a single

diagram takes into account the squaring of the amplitude and the summation over spins

which leads to a traces over gamma matrices. Consider figure 2.3 where a single tree level

diagram was connected through a cut to the reversed version of the same diagram, which

corresponds to the complex conjugate of the diagram. Lines crossing through the cut are

external and on-shell. A particle crossing the cut gives a factor �p ± m (+ for fermion and −
for anti-fermion). We imagine that the external particles on the left and right edges are also

connected through a separate cut. Following this prescription, the following expression is

directly obtained,

|Mb|2 = Q2
fe

4tr[�k1γµ�k2γν ]
1

(q2)2
tr[�p1γ

µ
�p2γ

ν ] (2.67)

The squared matrix element divides into two tensorial parts contracted against one an-

other through the two photon propagators, a leptonic part to which we attach the phase space

factor and the photon propagators,

Lµν =
e2

q4
tr[�k1γµ�k2γν ]dPS(2) (2.68)

and a hadronic part,

Hµν = e2Q2
f tr[�p1γ

µ
�p2γ

ν ] (2.69)

p1

p2

k1

k2

p1

p2

Figure 2.3: Cut diagram of the Born cross section.
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When evaluating the Feynman diagram we have used the ’t Hooft-Feynman gauge photon

propagator. Gauge invariance (Ward identities) implies the following current conservation

expression,

qµLµν = 0, qµHµν = 0 (2.70)

If one considers the photon propagator before gauge fixing, these identities would make sure

that the end result will not depend on the gauge parameter.

The first relation places a constraint on the form of the leptonic part, which must take

the form Lµν = (q2gµν − qµqν)L(q2). Performing the trace over Lµν explicitly yields,

L(q2) = −2

3

α

q4
D(ǫ)

1 − ǫ

1 − 2ǫ
δ(1 − Q2

s
) (2.71)

where 4πα = e2. As a result of the second Ward identity relation, contraction of the leptonic

and hadronic tensors give LµνH
µν = q2gµνH

µνL(q2) where the hadronic tensor trace is,

Hµ
µ = −16παQ2

f(1 − ǫ) (2.72)

Finally we can plug our results into the cross section,

dσb

dQ2
=

4πα2

27Q4s
Q2
fD(ǫ)

(1 − ǫ)2

1 − 2ǫ
δ(1 − Q2/s) = σb(s)δ(1 − Q2/s) (2.73)

the total Born cross section is obtained by integrating over Q2/s,

σb(s) =
4πα2

27Q2s
Q2
fD(ǫ)

(1 − ǫ)2

1 − 2ǫ
(2.74)

2.3.1 Virtual gluon exchange

We now move on to the next-to-leading order (NLO) contribution of order O(α2αs). This will

correspond to an amplitude of order O(ααs), containing an exchange of one virtual gluon,

multiplied against a tree level amplitude. Figure 2.4 shows the three relevant cut diagrams.

In terms of the separate amplitudes, the cross section of the virtual gluon exchange pro-

cess is given by,

dσv =
1

72s
(Mv ·M∗

b + Mb · M∗
v) dPS(2) =

1

72s
2Re (Mv · M∗

b) dPS(2) (2.75)
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where the virtual amplitude Mv is a sum of the three diagrams in figure 2.4 with a combi-

natorial factor of 2 for diagram 2.4(c),

Mv = M(a)
v + M(b)

v + 2M(c)
v (2.76)

There are only two outgoing leptons since the gluon is virtual, hence the phase space

measure is the same as is the Born cross section,

dPS(2)

dQ2
=

1

8πs
D(ǫ)

1

1 − 2ǫ
δ(1 − Q2

s
) (2.77)

The two propagator correction diagrams (2.4(a) and 2.4(b)) give a zero contribution. This

can be understood by considering a virtual O(αs) correction to a quark propagator (see figure

2.5). Such a diagram gives rise to an integral of the form,

∫
ddk

(2π)d
1

k2(p − k)2
(2.78)

The integral is a Lorentz scalar, and can only depend on the quantity p2, but since the quarks

are massless, the integral must give a vanishing contribution. Let us show this explicitly us-

ing the dimensional regularization scheme. Introducing Feynman parameters, the integral

(a) quark propagator correction (b) anti-quark propagator correction

(c) vertex correction

Figure 2.4: Virtual contributions to the Drell-Yan cross section up to O(ααs). External kinematics are

the same as in figure 2.3.
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can be brought to the following form,

∫
ddk

(2π)d

∫ 1

0

dx
1

[xk2 + (1 − x)(p − k)2]2
=

∫ 1

0

dx

∫
ddk

(2π)d
1

[(k − (1 − x)p)2]2

=

∫ 1

0

dx

∫
ddk′

(2π)d
1

(k′2)2
(2.79)

This last integral is both UV and IR divergent when d = 4. Dimensional regularization

softens these divergences. The UV divergence disappears when d < 4 and the IR divergence

disappears when d > 4. By analytically continuing d to cover both these regions, both di-

vergences disappear and the integral can be explicitly calculated. One way to do this is by

adding a temporary mass to the quark, thus regularizing separately the IR divergence. In

the region where d is less than 4 our integral is finite. We perform the integration using

(B.11). This results in an expression which is finite both above and below d = 4. We can then

analytically continue the expression to the region d > 4 and take the temporary mass term

to zero,

∫ 1

0

dx

∫
ddk′

(2π)d
1

(k′2 − M2)2
=

i(M2)d/2−2

(4π)d/2
Γ(2 − d/2)

Γ(2)
→ 0 (2.80)

Taking the limit d → 4 is of course trivial, and our integral vanishes at the physical value of

d.

We now turn to the non-zero contribution of the vertex correction diagram, 2.4(a). Read-

ing off the cut diagram, the expression to be evaluated is,

M(c)
v ·M∗

b =

∫
ddk

(2π)d
tr

[

(−ieQFγµ)�p2(−igsγ
ρT a)

−igρσδab
k2

× i(�p2 + �k)

(p2 + k)2
(−ieQFγν)

i(�p1 − �k)

(p1 − k)2
(−igsγ

σT b)�p1

]

× −igµα
q2

−igνβ
q2

tr[(−ieγα)�k1(−ieγβ)�k2] (2.81)

After application of the Lorentz contractions, the expression can be broken up into a

hadronic and a leptonic trace mediated by the photon which can be absorbed in the leptonic

trace,

Figure 2.5: virtual O(αs) correction to a quark propagator
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Lµν =
e2

q4
tr[γµ�k1γ

ν
�k2] (2.82)

Hµν = ie2Q2
Fg2

s

∫
ddk

(2π)d
1

k2(p1 − k)2(p2 + k)2

× tr
[
γµ�p2γ

ρ(�p2 + �k)γν(�p1 − �k)γρ�p1

]
tr[T aT a] (2.83)

Leptonic Part

As in the Born case, gauge invariance implies that qµL
µν = 0 which in turn implies that Lµν

must have the following form,

Lµν = (q2gµν − qµqν)L(q2) ⇒ Lµµ = 3q2L(q2) (2.84)

Performing the trace is straightforward, yielding,

Lµµ =
e2

q4
Tr{γµ�k1γµ�k2} =

e2

q4
k1 · k2(8 − 4d) = −4e2

Q2
(1 − ǫ) (2.85)

where Q2 = q2 = (k1 + k2)
2 = 2k1 · k2.

Hadronic Part

The hadronic part must also obey qµH
µν = 0,

LµνHµν = (q2gµν − qµqν)L(q2)Hµν = q2L(q2)Hµ
µ =

1

3
LµµH

ν
ν (2.86)

A trace over SU(NC) generators gives,

Tr[T aT a] = Tr[CF I] = NCCF (2.87)

and setting NC = 3 and CF = 4/3 [8],

Tr[T aT a] = 3CF = 4 (2.88)

The trace over eight γ matrices can be performed using Form,

Tr{γµ�p2γ
ρ(�p2 + �k)γµ(�p1 − �k)γρ�p1}

= −8((ǫ − ǫ2)sk2 + 2(1 − ǫ)s(p1 · k − p2 · k) + (1 − ǫ)s2 − 4(1 − ǫ)p1 · kp2 · k) (2.89)

Denoting d1 = k2, d2 = (p1 − k)2, d3 = (p2 + k)2 and A = −8ie2Q2
F g2

s ,
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Hµ
µ = A

∫
ddk

(2π)d

{

(ǫ − ǫ2)s
1

d2d3
+ 2(1 − ǫ)s

p1 · k − p2 · k
d1d2d3

+ (1 − ǫ)s2 1

d1d2d3
− 4(1 − ǫ)

p1 · kp2 · k
d1d2d3

}

(2.90)

Passarino-Veltman type reduction can be used to remove as many p factors as possible

from the numerator,

p1 · k
d1d2

=
1

2

d1 − d2

d1d2
=

1

2

(
1

d2
− 1

d1

)

p2 · k
d1d3

=
1

2

d3 − d1

d1d3
=

1

2

(
1

d1
− 1

d3

)

p1 · kp2 · k
d1d2d3

=
1

2

(
p2 · k
d2d3

− p2 · k
d1d3

)

=
1

2

(
p2 · k
d2d3

− 1

2

1

d1
+

1

2

1

d3

)

(2.91)

All integrals containing only one external momentum vanish for the same reason that

the self energy diagrams vanished,

∫
ddk

(2π)d
1

d1d2
=

∫
ddk

(2π)d
1

d1d3
=

∫
ddk

(2π)d
1

Di
= 0 (i = 1, 2, 3) (2.92)

The trace of the hadronic part is now reduced to,

Hµ
µ = A

∫
ddk

(2π)d

{

(ǫ − ǫ2)s
1

d2d3
+ 2(1 − ǫ)s

1

d2d3
+ (1 − ǫ)s2 1

d1d2d3
− 2(1 − ǫ)

p2 · k
d2d3

}

= A

∫
ddk

(2π)d

{

(2 − ǫ − ǫ2)s
1

d2d3
+ (1 − ǫ)s2 1

d1d2d3
− 2(1 − ǫ)

p2 · k
d2d3

}

(2.93)

The last term can be further simplified if we note that on one hand (shifting the k variable

under the integral),

1

d2d3
=

1

(p1 − k)2(p2 + k)2
=

1

k′2(k′ + p1 + p2)2
(2.94)

The last term in (2.93) can now be expressed in terms of the first term as follows,

p2 · k
d2d3

=
p2 · k

(p1 − k)2(p2 + k)2
=

p2 · k′ + p1 · p2

k′2(k′ + p1 + p2)2
=

p2 · k′

k′2(k′ − p1 − p2)2

=
−p2 · k′

k′2(k′ + p1 + p2)2
=

1
2p1 · p2

k′2(k′ + p1 + p2)2
=

s

4

1

d2d3
(2.95)

where the result of the second and fourth equality were used to re-express p2 · k′ in terms of
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p1 · p2. In the second equality the substitution p1 − k = k′ was made, whereas in the third

equality the substitution p2 + k = k′ was made.

The trace of the hadronic part takes now the following more simplified form,

Hµ
µ = A

{
(
3

2
− 1

2
ǫ − ǫ2)sB

(1)
0 + (1 − ǫ)s2C0

}
(2.96)

In the following, we explicitly evaluate these integrals.

B
(1)
0 integral

B
(1)
0 =

∫
ddk

(2π)d
1

d2d3
=

∫
ddk

(2π)d
1

(p1 − k)2(p2 + k)2
(2.97)

Introducing Feynman parameters,

∫
ddk

(2π)d
1

(p1 − k)2(p2 + k)2
=

∫
ddk

(2π)d

∫ 1

0

dx
1

[x(p1 − k)2 + (1 − x)(p2 + k)2]2
(2.98)

Working out the denominator, taking the particles to be massless (p2
1 = p2

2 = 0) and replacing

s = 2p1 · p2,

x(p1 − k)2 + (1 − x)(p2 + k)2 = xk2 − 2xp1 · k + k2 − xk2 + 2(1 − x)p2 · k
= k2 − 2xp1 · k + 2(1 − x)p2 · k
= (k − (xp1 − (1 − x)p2))

2 − (xp1 − (1 − x)p2)
2

= (k − (xp1 − (1 − x)p2))
2 + 2x(1 − x)p1 · p2

= (k − (xp1 − (1 − x)p2))
2 + x(1 − x)s (2.99)

Shift the integration variable k′ = k − (xp1 − (1 − x)p2) and evaluate the integral using

(B.11),

∫ 1

0

dx

∫
ddk

(2π)d
1

[x(p1 − k)2 + (1 − x)(p2 + k)2]2
=

∫ 1

0

dx

∫
ddk′

(2π)d
1

(k′2 + x(1 − x)s)2
(2.100)

=

∫ 1

0

dx
i

(4π)
d
2

Γ(2 − d
2 )

Γ(2)

1

(−sx(1 − x))2−
d
2

Extract the poles in ǫ using the identity Γ(1 + ǫ) = ǫΓ(ǫ),
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∫ 1

0

dx
i

(4π)
d
2

Γ(2 − d
2 )

Γ(2)

1

(−sx(1 − x))2−
d
2

=
i

(4π)2−ǫ
Γ(ǫ)

∫ 1

0

dx

(−sx(1 − x))ǫ

=
i

(4π)2

(
4π

−s

)ǫ
Γ(1 + ǫ)

ǫ

∫ 1

0

dxx−ǫ(1 − x)−ǫ

=
i

(4π)2

(
4π

−s

)ǫ
1

ǫ

Γ(1 + ǫ)Γ(1 − ǫ)2

Γ(2 − 2ǫ)
(2.101)

The Γ function can be expanded,

Γ(1 ± ǫ) = 1 ∓ ǫγE +
1

2
ǫ2(γ2

E +
π

6
) + O(ǫ3) (2.102)

In addition, we can the minus sign raised to the power of ǫ. Since in the end we are only

interested in the real part of B0, the imaginary parts do not contribute,

(−1)ǫ = (eiπ)ǫ = eiπǫ = 1 + iπǫ +
1

2
(iπǫ)2 + O(ǫ3) (2.103)

And denoting,

D(ǫ) =

(
4π

s

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
(2.104)

We finally get,

Re B
(1)
0 =

i

(4π)2

(
4π

s

)ǫ

Re (−1)ǫ
1

ǫ

Γ(1 + ǫ)Γ(1 − ǫ)2

Γ(2 − 2ǫ)

=
i

(4π)2
D(ǫ)

1

ǫ
Γ(1 + ǫ)Γ(1 − ǫ)

1

1 − 2ǫ

=
i

(4π)2
D(ǫ)

(
1

ǫ
+ 2

)

+ O(ǫ) (2.105)

Evaluating C0

C0 =

∫
ddk

(2π)d
1

d1d2d3
=

∫
ddk

(2π)d
1

k2(p1 − k)2(p2 + k)2
(2.106)

First use Feynman parameters twice (this way we avoid taking special care of the bound-

aries of the feynman parameter integrals),

∫
ddk

(2π)d
1

k2(p1 − k)2(p2 + k)2
=

∫
ddk

(2π)d

∫ 1

0

dx
1

[xk2 + (1 − x)(p1 − k)2]2(p2 + k)2

=

∫
ddk

(2π)d

∫ 1

0

dx

∫ 1

0

dy
2y

[(1 − y)(p2 + k)2 + y[xk2 + (1 − x)(p1 − k)2]]3
(2.107)
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Again completing the square for k in the denominator,

(1 − y)(p2 + k)2 + y[xk2 + (1 − x)(p1 − k)2]

= (1 − y)(2p2 · k + k2) + xyk2 + y(1 − x)(−2p1 · k + k2)

= k2 − yk2 + (1 − y)2p2 · k + xyk2 + yk2 − xyk2 − y(1 − x)2p1 · k
= k2 − 2[y(1 − x)p1 − (1 − y)p2] · k
= (k − (y(1 − x)p1 − (1 − y)p2))

2 − (y(1 − x)p1 − (1 − y)p2)
2

= (k − (y(1 − x)p1 − (1 − y)p2))
2 + y(1 − y)(1 − x)s

(2.108)

We shift the integration variable, k′ = k−(y(1−x)p1−(1−y)p2), and evaluate the integral

using (B.11). We then use the expansions (2.102) and (2.103) (omitting again the imaginary

part) and the definition (2.104),

Re C0 =

∫
ddk

(2π)d

∫ 1

0

dx

∫ 1

0

dy
2y

[k′2 + y(1 − y)(1 − x)s]3

=

∫ 1

0

dx

∫ 1

0

dy
i

−1
y
(−sy(1 − y)(1 − x))2−ǫ−3

(4π)2−ǫ
Γ(1 + ǫ)

Γ(3)

= − i

(4π)2

(
4π

−s

)ǫ
1

−s
Γ(1 + ǫ)

∫ 1

0

dx(1 − x)−1−ǫ
∫ 1

0

dyy−ǫ(1 − y)−1−ǫ

=
i

(4π)2

(
4π

−s

)ǫ
1

s
Γ(1 + ǫ)

Γ(1)Γ(−ǫ)

Γ(1 − ǫ)

Γ(1 − ǫ)Γ(−ǫ)

Γ(1 − 2ǫ)

=
i

(4π)2

(
4π

−s

)ǫ
1

s

1

ǫ2
Γ(1 + ǫ)Γ(1 − ǫ)2

Γ(1 − 2ǫ)

=
i

(4π)2
D(ǫ)

1

s

(−1)ǫ

ǫ2
Γ(1 + ǫ)Γ(1 − ǫ)

=
i

(4π)2
D(ǫ)

1

s

1

ǫ2
(1 +��iπǫ − π2

2
ǫ2)(1 − ǫγE +

ǫ2

2
γ2
E + ǫ2

π2

12
)(1 + ǫγE +

ǫ2

2
γ2
E + ǫ2

π2

12
) + O(ǫ)

=
i

(4π)2
D(ǫ)

1

s

(
1

ǫ2
− π2

3

)

+ O(ǫ) (2.109)

The hadronic trace is,

Hµ
µ = AD(ǫ)s

i

(4π)2
{
(
3

2
− 1

2
ǫ − ǫ2)(

1

ǫ
+ 2) + (1 − ǫ)(

1

ǫ2
− π2

3
)
}

+ O(ǫ)

= AD(ǫ)s
i

(4π)2
{ 1

ǫ2
+

1

2

1

ǫ
+

5

2
− π2

3

}
+ O(ǫ)

(2.110)
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Final result

Combining the leptonic and hadronic parts and inserting those into the total cross section,

dσv

dQ2
=

[
1

72s

]

× 2 · 2
[
1

3

(

−4e2

Q2

)

(1 − ǫ)

]

×
[

(−8ie2Q2
F g2

s)D(ǫ)s
i

(4π)2

(
1

ǫ2
+

1

2

1

ǫ
+

5

2
− π2

3

)

3CF

]

×
[

1

8πs
D(ǫ)

1

1 − 2ǫ
δ(1 − Q2

s
)

]

+ O(ǫ) (2.111)

We use the definitions e2 = 4πα and g2
s = 4παs, and the expression for the total Born cross

section (2.74). The virtual exchange contribution to the differential cross section is,

dσv

dQ2
=

αsσBCF
π

D(ǫ)2
(

− 2

ǫ2
− 3

ǫ
− 10 +

2π2

3

)

δ(1 − z) + O(ǫ) (2.112)

where z ≡ Q2

s .

2.3.2 Infrared and collinear divergences

The Born cross section (2.73) calculated in the beginning of the section gave a finite result,

one that could be compared to experiment. Once we attempted to add a loop correction,

divergences of the form 1
ǫ and 1

ǫ2 appeared. What is the origin of these divergences? These

divergences originate from the triangular loop in figure 2.4(c). One could suspect that they

are UV in nature and should thus be absorbed by counter terms. This is implausible in this

case, because that would imply that the QED counter term (of a fermion-antifermion-photon

vertex) must contain the QCD coupling constant αs, contradicting the fact that QED is a self

consistent renormalizable theory.

The divergences must then all be infrared and collinear in nature. When a massless

virtual particle is present, the following propagators typically occur,

1

(p1 − k)2
(2.113)

the denominator can be rewritten as,

(p1 − k)2 = −2p1 · k = −2|~p1||~k|(1 − cos θ) (2.114)

where θ is the angle between the two spatial vectors. The denominator can vanish if either

|k| = 0 (infrared or soft divergence, energy of the particle vanishes) or cos θ = 1 (collinear
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divergence, particles are parallel). Of course if p1 = 0 an infrared divergence can also occur.

Powers of the loop momentum in the numerator (also arising from the integration measure)

could prevent such divergences and every case must be carefully examined.

Real gluon emission

The first step towards the resolution of such divergences, also used in pure QED processes,

would be to add to the cross section the contribution of a process where a real gluon is emitted

from one of the incoming massless quarks. With low energy gluons being emitted, such a

process with three outgoing particles cannot be experimentally distinguished from the two

outgoing particle processes discussed so far. In fact, as we will see shortly, in QCD a gluon

emission of any energy cannot be distinguished. The amplitude of this process is of order

O(αgs) and when squared against the same amplitude gives the desired order of O(α2αs)

which could potentially cancel against the virtual exchange divergences. One of the three

possible cut diagrams is shown in figure 2.6. Such a diagram contains a quark propagator of

the type discussed above, and could thus suffer from infrared or collinear divergence when

the emitted gluon is either soft or collinear to the quark emitting it.

The contribution of these diagrams to the differential cross section is (see [37] for a full

derivation),

dσr

dQ2
= σB

αs
π

CFD(ǫ)

[

2

ǫ2
δ(1 − z) − 2

ǫ

(1 + z)2

(1 − z)+
+ 4(1 + z2)

(
ln(1 − z)

1 − z

)

+

− 2

(
1 + z2

1 − z

)

ln z

]

(2.115)

The plus function F+(x) is defined in [37]. Similar to the Dirac delta function, it is a distribu-

tion giving a finite result when integrated over. Only the term proportional to 1
ǫ2 is divergent

and is multiplied by a desired δ(1− z). This term indeed cancels exactly the 1
ǫ2 divergence of

the virtual exchange contribution.

Figure 2.6: Cut diagram for real gluon emission. Two more diagrams exist, a gluon emitted from the

anti-quark on both sides, or a gluon emitted from the quark on one side and from the anti-quark on the

other.
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Factorization

The remaining divergence is specific to QCD and requires a novel tool, namely factorization.

In QED we are able to treat all scattering processes perturbatively because the coupling

constant, which under the renormalization scheme is dependent on the energy scale of the

problem, is small enough to expand around. In QCD this is not the case. At high energies

or short distances, the coupling constant is indeed small, whereas at low energies, or equiv-

alently at larger distances, the coupling constant becomes very large and the perturbative

approach we took by calculating Feynman diagrams breaks down. This gives rise to the

phenomenon of asymptotic freedom, i.e. quarks barely interact by the strong force at short

distances, and confinement, i.e. quarks cannot be isolated and are always found in bound

states containing pairs or triples. Therefore, our question of what happens when quarks

scatter off each other is in fact not a physical one. A more appropriate formulation of the

Drell-Yan process would be to ask what happens when two protons, bound states of quarks,

scatter of each other. The process is as follows,

A(P1) + B(P2) → µ+(k1) + µ−(k2) + X (2.116)

A and B are protons with momentum P1 and P2 and X contains any other asymptotic state

created by the scattering interaction in addition to the muons.

The structure of the proton is still an open question in physics, and cannot be calculated

from basic principles of QCD. To perform calculations in QCD such as the one above, one

uses a model first proposed by Feynman known as the parton model. Consider two protons

approaching each other as viewed from their center of mass frame. In high energies, these

protons are Lorentz contracted along the axis of their collision and we can view them as two

pancake-like structures passing through each other. The moment of interaction is extremely

short with respect to the typical time scale of the strong interaction, which is strong only at

low energies or long time scales by the uncertainty principle. Therefore, during this moment

of collision the proton consists of some number of partons (quarks and gluons), some of which

could be virtual but are stable in this time scale. Each parton carries a fraction pi = xiP of

the total momentum P of the proton. As the two protons pass each other, a parton of one

proton will scatter off a parton of the other proton with some probability. After the collision,

at a strong interaction time scale, the partons not participating in the scattering process

(or those being produced in the scattering process) will undergo a process of hadronization.

This is a process in which new stable bound states of partons are produced via the strong

interaction. These states are what we denoted by X. The real emitted gluon discussed above

cannot be distinguished from X, which is the reason that we integrate over all of its phase

space.

In essence what we have done is separate the high energy process (i.e. the scattering)

from the low energy process (i.e. the confinement of the partons before the scattering and the
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hadronization that follows). This trick is captured in the following formula of factorization,

dσHAB(S) =
∑

i,j

∫ 1

0

dx1dx2fiA(x1)dσij(s)fjB(x2) (2.117)

where S is the hadronic center of mass energy and is related to the partonic center of mass

energy by S = x1x2s.

Put in words, the formula states that the differential cross section of the scattering of the

protons is given by summing over all partons in A and all partons in B. For each combination

of partons we multiply the partonic differential cross section (e.g. scattering of two quarks)

by the probability of finding parton i in proton A having momentum fraction xi. Similarly

for parton j. We have seen in the above calculation of the Drell-Yan process that the partonic

cross section dσij is divergent. This means that to obtain a finite quantity for the hadronic

cross section we must demand that the probability functions fiA will be divergent in such a

way that they exactly cancel the divergence of the cross section. In this sense, this resembles

the renormalization procedure where divergences in cross sections are cancelled by adding

divergent counter terms to the Lagrangian. The functions fiA are called the parton density

functions (PDF) and at this point in time can be only measured experimentally. They are

extremely powerful in that they are process independent, depending only on the parton type

and the hadron type. Once found experimentally through measuring one scattering event,

they can be used to predict other scattering events.

Let us now see how this factorization equation is used in practice to remove divergences.

First define a renormalized partonic cross section as follows,

dσij =

∫

dz1dz2Γik(z1)dσ̄kl(z1z2s)Γjl(z2) (2.118)

dσ̄ is a finite renormalized differential cross section and Γik(zi) is called the transition func-

tion. Similar to the PDF, it tells us what the probability is of a quark with momentum qi

emanates with a fraction zi of its original momentum pi. For example, in the real gluon

emission process in figure 2.6, pi is the momentum of the quark before emitting the gluon

and qi its momentum after. Similarly for the virtual gluon exchange process. The transition

function absorbs the infinities of the non-renormalized partonic cross section, and we can

now define the renormalized PDF as follows,

f̄η =

∫ 1

0

∫ 1

0

dxdzf(x)Γ(z)δ(η − xz) =

∫ 1

η

dz

z
f
(η

z

)

Γ(z) = f(η) ⊗ Γ(η) (2.119)

The factorization formula (2.117) can now be rewritten in terms of finite quantities only,

dσHAB(s) =

∫

dη1dη2f̄kA(η1)dσ̄kl(η1η2s)f̄lB(η2) (2.120)
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It is straightforward to check that both formulas are identical.

Having defined all the necessary ingredients, the process of factorization is as follows.

The bare partonic cross section dσij is calculated up to some order and is found to be diver-

gent. The transition function Γik is defined using (2.118) in such a way that the renormalized

partonic cross section dσ̄kl is finite. Now one performs an experiment, measures the hadronic

cross section dσHAB , and according to (2.120) measures the renormalized PDFs f̄kA for each

parton and hadron type. By (2.119) one could calculate the non-renormalized PDFs fiA, but

this is not a necessary step. One must take care that when the experimental renormalized

PDF is used, the corresponding transition function must be used to renormalize the partonic

cross section.

Let us calculate what the transition function must be in our case according to the above

prescription. First expand all the quantities in (2.118) in the strong coupling constant,

dσ̄(s) =

∞∑

n=0

(αs
2π

)n

dσ̄(n)(s)

dσ(s) =

∞∑

n=0

(αs
2π

)n

dσ(n)(s)

Γij(z) = δijδ(1 − z) +

∞∑

n=1

(αs
2π

)n

Γ
(n)
ij (z) (2.121)

Then plug the expansion into (2.118) and keep only terms up to first order, since we calcu-

lated the cross section up to first order in αs,

dσ
(0)
ij (s) +

αs
2π

dσ
(1)
ij (s) = dσ̄

(0)
ij (s)

αs
2π

[

dσ̄
(1)
ij (s) +

∫

dz1Γ
(1)
ik (z1)dσ̄

(0)
kj (z1s)

+

∫

dz2dσ̄
(0)
kj (z2s)Γ

(1)
ik (z2)

] (2.122)

Matching the terms on both sides per order, we see that the renormalized Born cross section

is just equal to the non-renormalized one (since it was finite in the first place). The first order

renormalized cross section is given by,

dσ̄
(1)
ij (s) = dσ

(1)
ij (s) −

∫

dz1Γ
(1)
ik (z1)dσ̄

(0)
kj (z1s) −

∫

dz2dσ̄
(0)
kj (z2s)Γ

(1)
ik (z2) (2.123)

We must choose the transition function such that it cancels the 1
ǫ terms in the cross section.

The overall cross section, given by the sum of the virtual gluon exchange and the real gluon

exchange, is,

dσ(1)

dQ2
=

dσr

dQ2
+

dσv

dQ2
= σBD(ǫ)

(

−2

ǫ
Pqq(z) + R(z)

)

(2.124)
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where the two following functions were defined,

Pqq(z) = CF

[
(1 + z)2

(1 − z)+
+

3

2
δ(1 − z)

]

(2.125)

R(z) = CF

[

δ(1 − z)

(
2π2

3
− 8

)

+ 4(1 + z2)

(
ln(1 − z)

1 − z

)

+

− 2

(
1 + z2

1 − z

)

ln z

]

(2.126)

Inserting the Born cross section wherever dσ̄
(0)
kj appears, the choice of the transition func-

tion is obvious, yielding also the following renormalized cross section,

Γ(1)(z) = −1

ǫ
D(ǫ)Pqq(z) (2.127)

dσ̄(1)

dQ2
= σBR(z) (2.128)

Note that the choice of transition function has an ambiguity of finite terms. This ambiguity

will not appear in the physical observable result, the hadronic cross section, as long as we

are consistent. As explained above, we choose a transition function and then measure the

PDF. When using this PDF to make predictions, we must use the same transition function

to renormalize our partonic cross section.
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Unitarity and Cutkosky Rules

In perturbation theory, one can calculate an amplitude to increasing accuracy by evaluat-

ing Feynman diagrams with growing number of loops. Higher order calculations in general

imply many complications, e.g. large number of diagrams and large number of integration

variables per diagram. In this chapter we will show that one can take advantage of the an-

alytical properties of an amplitude to simplify the expression into smaller more manageable

pieces. The unitarity property of the S-matrix can be used to derive the imaginary part of an

amplitude. This result turns out to be a special case of the Cutkosky rules [9], which allow

one to exploit the analytical properties of an amplitude to calculate the discontinuity along

branch cuts. The locations of these branch cuts can be detected using the Landau equations

[10]. Dispersion relations, in turn, can be used to extract the full amplitude. These tech-

niques have already been known in the earlier years of Quantum Field Theory, and were a

common approach in the problem of the strong interactions [39] before the advent of QCD.

A serious disadvantage of this method is its incapacity to reproduce rational terms free of

branch cuts. In a modern application of the Cutkosky rules, the amplitude is first expanded

in a base of scalar integrals and the coefficients are obtained by projecting the amplitude

using the Cutkosky rules. This method spares us of the need for the rather cumbersome dis-

persion relations and solves the problem of ambiguities in rational terms for certain cases.
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3.1 Unitarity

We recall that it is common to split the S-matrix into an interacting part, the T-matrix, and

a forward scattering part (see for example [8] for a discussion of unitarity),

S = 1+ iT (3.1)

The scattering amplitude is then defined as a matrix element of the T-matrix after strip-

ping off an overall momentum conserving delta function,

〈Ψf |T |Ψi〉 = (2π)4δ(4)(
∑

m∈I
km −

∑

m∈F
pm) · M({km} → {pm}) (3.2)

where I (F ) is the set of all particles in the initial (final) state i (f ) with momenta {km}
({pm}).

The S-matrix is a unitary operator, i.e. S†S = 1. Since this relation imposes a strong

constraint on amplitudes, let us briefly review its origin. Consider a system which at time t

is at some state |Ψ〉. For example, in a system of n particles each in a momentum eigenstate,

|Ψ〉 would be |k1, ..., kn〉. To this we could add spin, flavor, color, charge, etc. In the Heisenberg

picture, where states are time-independent, this state would be given by |ΨH〉t = eiHt|Ψ〉.
The S-matrix element is defined as an inner product of two Heisenberg states,

lim
τ→∞ τ 〈ΨH

f |ΨH
i 〉−τ = lim

τ→∞
〈Ψf |e−iH(2τ)|Ψi〉 ≡ 〈Ψf |S|Ψi〉 (3.3)

The S-matrix is in practice a time evolution operator, advancing a state from time neg-

ative infinity to time positive infinity. The initial state |Ψi〉 describes a state of n-particles

infinitely separated from each other, each with some well defined quantum numbers (or some

superposition of such states). The S-matrix acts on this state, advancing it by the time in-

terval ”2∞” defined by the limiting procedure. All the interactions between the particles are

encoded in the S-matrix. The resulting state is then projected onto the final state |Ψf 〉. The

squared absolute value of this inner product is precisely the probability that the system will

be at this final state at time ∞. For this probability to be normalized, the S-matrix must be

a unitary operator. This is evidently so if the Hamiltonian H is a Hermitian operator.

Using (3.1), the unitarity of the S-matrix implies the following constraint on the T-matrix,

−i(T − T †) = T †T (3.4)

If we contract this equation with some initial and final state and insert a complete set of

states between the two operators on the right hand side, we obtain,
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−i(〈Ψf |T |Ψi〉 − 〈Ψi|T |Ψf〉∗) =
∑

k

〈Ψk|T |Ψf〉∗〈Ψk|T |Ψi〉 (3.5)

The sum over k should be understood in the broad sense as a sum over all possible final

states, i.e. a sum over all possible numbers of final particles and all possible spins/flavors/

colors/charges (taking care of conservation laws), and an integration over all of phase space.

Using (3.2) this can be rewritten in terms of the amplitude,

−i
(

M({km} → {pm}) −M∗({pm} → {km})
)

=
∑

k

M({pn} → {qn})M∗({km} → {qm})(2π)4δ(4)(
∑

m∈I
km −

∑

m∈Q
qm) (3.6)

where Q is the set of all particles in the final state k with momenta {qm}. This expres-

sion is further multiplied on both sides by an overall momentum conserving delta function,

(2π)4δ(4)(
∑

m∈I km −∑m∈F pm).

If we now assume that the amplitude is invariant with respect to time reversal and adopt

a short hand notation, we obtain the following simple unitarity identity,

2ImMi→f =
∑

k

M∗
f→kMi→k(2π)4δ(4)(i − k) (3.7)

This identity becomes especially useful in perturbation theory where we can apply this equa-

tion order by order. We obtain a relation between lower order terms of amplitudes and the

imaginary parts of higher order terms. Furthermore, the fact that we are dealing with am-

plitudes and not individual Feynman diagrams means that we do not have to consider the

actual Feynman diagrams that make up the higher order term of the amplitude we are cal-

culating. We simply need to identify the channel we are dealing with, i.e. the initial and final

states, and then construct all the lower order amplitudes that could potentially contribute to

the higher order term we seek to evaluate. To clarify this procedure, we will apply it to the

one-loop (first order) contribution to the vacuum polarization amplitude.

3.1.1 Vacuum polarization - alternative approach

Let us calculate the Imaginary part of the first order correction to the vacuum polarization

amplitude in QED using the prescription above [40]. The process is depicted in figure 3.1.

According to (3.7), we should first identify the incoming and outgoing states i and f . In this

simple case, those states are identical,

|i〉 = |f〉 = |pµ〉 (3.8)

47



CHAPTER 3. UNITARITY AND CUTKOSKY RULES

We denote the single invariant in this process by s ≡ p2. For a physical photon, s = 0. The

next step would be to identify all possible states |k〉 such that the product of the amplitudes

M(i → k) and M(f → k) would give a first order contribution in the fine structure constant

α = e2

4π . The only possibility is a state of an outgoing fermion and anti-fermion, |k〉 = |kµ, k̄µ〉.
Only the zeroth order Feynman diagram of these amplitudes will contribute, see figure 3.2.

Using the Feynman rules for QED, the contribution of this diagram to the amplitudes is:

iMi→k = ū(k)(−ieγµ)v(k̄)

iMf→k = ū(k)(−ieγµ)v(k̄) ⇒ iM∗
f→k = v̄(k̄)(−ieγµ)u(k) (3.9)

Finally, we sum over all possible states |k〉. This includes a sum over the spins of the

fermions an a phase space integration under the constraint δ(4)(i − k). First summing over

spins using the completeness relations we obtain a trace of γµ matrices,

∑

spins

M∗
f→kMi→k =

∑

spins

(−ū(k)eγνv(k̄))(−v̄(k̄)eγµu(k))

= e2tr[(�k + m)γν(��̄k − m)γµ]

= 4e2[kν k̄µ + kµk̄ν − k · k̄gµν − m2gµν ] (3.10)

Applying the momentum conserving delta (k+k̄ = p) and the on-shellness of the momenta

k and k̄ yields the relation p2 = s = (k + k̄)2 = 2(m2 + k · k̄). The sum over the spins reduces

to,

p p

Figure 3.1: First order correction to the vacuum polarization amplitude.

p

k̄

k

Figure 3.2: Feynman diagram contributing to the first order correction of the vacuum polarization

amplitude in the unitarity method.
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∑

spins

M∗
f→kMi→k = 4e2[kν k̄µ + kµk̄ν − s

2
gµν ] (3.11)

The phase space integral will produce the desired imaginary part of the vacuum polar-

ization amplitude,

2ImMi→f =

∫
d3k

(2π)32k0

∫
d3k̄

(2π)32k̄0
(2π)4δ(4)(p − k − k̄)4e2[kν k̄µ + kµk̄ν − s

2
gµν ] (3.12)

To perform the integral over k̄, it is more convenient to switch to a four dimensional

integral,

∫
d3k̄

(2π)32k̄0
→
∫

d4k̄

(2π)4
2πδ(k̄2 − m2)θ(k̄0) (3.13)

Applying δ(4)(p− k − k̄) simply means removing the integral over k̄ and replacing k̄ → p − k.

We do this implicitly.

Next, we perform the spatial k integral which is better done in spherical coordinates. As

a first step we rewrite δ(k̄2 − m2) in terms of the magnitude of the spatial momentum,

δ(k̄2 − m2) = δ((k̄0)2 − ~̄k − m2) = δ((p0 − k0)2 − (~p − ~k) − m2)

= δ((p0 − k0)2 − ~p2 − ~k2 + 2|~p||~k| cos θ − m2)

=
1

|(−2|~k| + 2|~p| cos θ)|
δ(|~k| − |~k|′) (3.14)

where |~k|′ solves the equation k̄2 − m2 = 0 for k̄0 > 0. In spherical coordinates, the measure

changes according to d3k → |~k|2d|~k|dΩ. So far we have,

2ImMi→f =
e2

8π3

∫

d|~k|dΩ
|~k|2

k0|(−|~k| + |~p| cos θ)|
δ(|~k| − |~k|′)[kν k̄µ + kµk̄ν − s

2
gµν ] (3.15)

The first factor of the integrand is a constant since all quantities have been constrained by

the delta functions used so far. To see this, it is best to choose the center of mass frame and

re-express this quantity in terms of Lorentz invariant quantities, namely s and m. Since the

photon is off shell, i.e. ”massive” with mass
√

s, we can boost the system to its rest frame,

i.e. p = (
√

s, 0, 0, 0). It then follows that k = (
√
s

2 ,
√

s
4 − m2, 0, 0) and k̄ = (

√
s

2 ,−
√

s
4 − m2, 0, 0)

in a properly rotated frame of reference. We obtain the Lorentz invariant quantity which is

independent of the remaining integration variables,

|~k|2
k0(| − |~k| + |~p| cos θ|)

=
s
4 − m2

√
s

2

√
s
4 − m2

=

√

1 − 4m2

s
(3.16)
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We are left with only an angular integration,

2ImMt→t = 2α

√

1 − 4m2

s

∫
dΩ

4π2
[kν k̄µ + kµk̄ν − s

2
gµν ]

= 2α

√

1 − 4m2

s
T µν (3.17)

where α = e2

4π and T µν =
∫
dΩ
4π [kν k̄µ + kµk̄ν − s

2gµν ] is a Lorentz tensor which can only depend

on pµ and on the metric. Its most general form is,

T µν = Apµpν + Bgµν (3.18)

We can contract T µν in both representations,

pµpνT
µν = As2 + Bs =

∫
dΩ

4π
(2p · kp · k̄ − s2

2
) = 0

gµνT
µν = As + 4B =

∫
dΩ

4π
(2k · k̄ − 2s) = (−s − 2m2)

∫
dΩ

4π
= −s − 2m2 (3.19)

where we used the following kinematic relations,

k2 = m2 = (p − k̄)2 = s + m2 − 2p · k̄ → p · k̄ =
1

2
s

k̄2 = m2 = (p − k)2 = s + m2 − 2p · k → p · k =
1

2
s

s = p2 = (k + k̄)2 = 2m2 + 2k · k̄ → k · k̄ =
s

2
− m2 (3.20)

The coefficients A and B can be easily solved,

A = −B

s
= −1 − 2m2

s
− 4

B

s
→ B = −s

3
(1 +

2m2

s
), A =

1

3
(1 +

2m2

s
) (3.21)

Yielding,

T µν =
1

3
(1 +

2m2

s
)(pµpν − sgµν) (3.22)

The imaginary part of the first order correction to the vacuum polarization amplitude is,

ImMi→f = α

√

1 − 4m2

s

1

3
(1 +

2m2

s
)

︸ ︷︷ ︸

≡ Im Π(s)

(pµpν − sgµν) = ImΠ(s)(pµpν − sgµν) (3.23)
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This agrees with the straightforward calculation (2.52). To show this, we write the arccos

function as a real and imaginary part [41],

sin−1 z = kπ + (−1)k sin−1 β− + (−1)ki ln[α+ +
√

α2
+ − 1] (3.24)

with k ∈ Z, α± =
1

2

√

(x + 1)2 + y2 ± 1

2

√

(x − 1)2 + y2, z = x + iy

Taking z to be real and along the branch cut of (2.52) (at z > 1), (3.23) is recovered.

This example illustrates the procedure of obtaining higher order corrections by ”gluing”

lower order terms, the gluing being a summation over intermediate states and a phase space

integration. In this example, the unitary method does not reduce the amount of work since

there is only one Feynman diagram contributing to the first order correction of the ampli-

tude, namely the bubble diagram with a fermion propagating in the loop. As the number of

external legs of amplitudes grows, the number of Feynman diagrams increases drastically,

and the unitarity method proves to be very powerful. Such an example will be treated in

detail in chapter 6.

3.2 Dispersion Relations

Before the advent of QCD, dispersion relations constituted a main tool in tackling strong

interaction processes which could not be treated perturbatively [39]. By studying the ana-

lytical properties of arbitrary order Feynman diagrams, one could extract information about

the imaginary parts of decay and scattering amplitudes. Dispersion relations were then used

to deduce the full amplitude from its imaginary part. We will first review this method and

then apply it to the result of the previous section to obtain the full amplitude of the vacuum

polarization amplitude.

Consider a function F (z) which is analytic in the entire complex plane, except for a branch

cut along the real axis starting at a point M . We can draw a contour circumventing the

branch cut as depicted in figure 3.3. By Cauchy’s theorem, the following holds,

F (z) =
1

2πi

∫

C

dz′
F (z′)

z′ − z
(3.25)

where z is some point located away from the branch cut.

By Schwarz’s reflection principle [42], since F (z) is analytic in the upper half complex

plane and real on the real line in the interval Rez < M , then F (z) can be analytically contin-

ued to the lower half plane with F (z) = F (z) for Im z < 0. Let y be a point along the branch

cut of F (z). Above and below the branch cut,
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F (y + iǫ) = ReF (y + iǫ) + iImF (y + iǫ)

F (y − iǫ) = ReF (y + iǫ) − iImF (y + iǫ) (3.26)

The imaginary part along the branch cut is given by the limit,

2iImF (y) = lim
ǫ→0

(F (y + iǫ) − F (y − iǫ)) (3.27)

Performing the Cauchy integral, one obtains,

F (z) =
1

2πi

∫ ∞

M

dz′
F (z′ + iǫ) − F (z′ − iǫ)

z′ − z
+ C∞

=
1

π

∫ ∞

M

dz′
ImF (z′)

z′ − z − iǫ
+

1

2πi

∫

|z′|=∞
dz′

F (z′)

z′ − z
(3.28)

This formula holds as long as the integral along the infinite circle, C∞, vanishes. If the

integrand does not decay fast enough, one can subtract the value of the integral at some

point z0 in the analytical region [40],

F (z) − F (z0) =
z − z + 0

π

∫ ∞

M

dz′

z′ − z0

ImF (z′)

z′ − z − iǫ
+

z − z0

2πi

∫

|z′|=∞
dz′

F (z′)

(z′ − z)(z′ − z0)
(3.29)

We will see that this subtraction scheme is analogous to the renormalization subtraction

Re z′

Im z′

z

M

Figure 3.3: The complex function F (z) has a branch cut along the real axis starting at M . Cauchy’s

therem can be used to calculate the value of the function at every point from the knowledge of the

imaginary part along the branch cut
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scheme in the following example. If C∞ converges, the integral is finite and does not require

working in dimensional regularization.

3.2.1 Vacuum polarization - extracting the full amplitude

We use the once subtracted dispersion relation (3.29) to complete the calculation of the vac-

uum polarization amplitude, i.e. extract the full expression for Π from it’s imaginary part.

Our starting point is,

Π̂(s) = Π(s) − Π(0) =
s

π

∫ ∞

4m2

ds′

s′
ImΠ(s)

s′ − s − iǫ
(3.30)

This integral can be solved by a series of substitutions. The initial integral is,

∫ ∞

4m2

ds′(1 +
2m2

s′
)

√

1 − 4m2

s′
1

s′
1

s′ − s
(3.31)

Substitute x = s′

4m2 and denote r = s
4m2 ,

1

4m2

∫ ∞

1

dx

x

1

x − r

(

1 +
1

2x

)√

1 − 1

x
(3.32)

Next substitute z = 1 − 1
x , so x = 1

1−z and dx = dz
(1−z)2 ,

1

4m2

∫ 1

0

dz

1 − z

1
1

1−z − r
(1 +

1

2
(1 − z))

√
z =

1

4m2

∫ 1

0

dz
����(1 − z)(3

2 − 1
2z)

√
z

����(1 − z)((1 − r) + rz)

=
1

8m2

1

1 − r

∫ 1

0

dz
3
√

z − z3/2

1 + r
1−rz

(3.33)

Then substitute y = r
1−rz,

1

8m2r

∫ r
1−r

0

dy

[

3

(
1 − r

r

)1/2 √
y

1 + y
−
(

1 − r

r

)3/2
y3/2

1 + y

]

(3.34)

Substitute 1 + y = t, so the upper boundary becomes 1
1−r ,

1

8m2r

∫ 1
1−r

1

dt

[

3

(
1 − r

r

)1/2 √
t − 1

t
−
(

1 − r

r

)3/2
(t − 1)3/2

t

]

(3.35)

The second term can be written in terms of the first term as follows,
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∫

dt
(t − 1)3/2

t
=

∫

dt

√
t − 1(t − 1)

t
=

∫

dt
√

t − 1 −
∫

dt

√
t − 1

t
=

2

3
(t − 1)3/2 −

∫

dt

√
t − 1

t
(3.36)

The integral reduces to,

1

8m2r







∫ 1
1−r

1

dt

[

3

(
1 − r

r

)1/2

+

(
1 − r

r

)3/2
] √

t − 1

t
− 2

3

(
1 − r

r

)3/2

(t − 1)3/2/
1

1−r

1

︸ ︷︷ ︸

= 2
3







(3.37)

The remaining integral can then be evaluated by making the substitution u =
√

t − 1 and

du = 1
2

dt√
t−1

, so t = 1 + u2,

∫

dt

√
t − 1

t
=

∫

dt
t − 1

t
√

t − 1
=

∫
dt√
t − 1

−
∫

dt
1

t
√

t − 1
= 2

√
t − 1 −

∫

dt
1

t
√

t − 1

= 2
√

t − 1 − 2

∫
2du

1 + u2
= 2

√
t − 1 − 2 arctan

√
t − 1 (3.38)

And the integral is,

1

8m2r

{[

3

(
1 − r

r

)1/2

+

(
1 − r

r

)3/2
]

(2
√

t − 1 − 2 arctan
√

t − 1)/
1

1−r

1 − 2

3

}

=
1

8m2r

{√

1

r
− 1

(

2 +
1

r

)(

2

√
r

1 − r
− 2 arctan

√
r

1 − r

)

− 2

3

}

=
1

8m2r

{

4 +
2

r
− 2

3
− 2

(

2 +
1

r

)√

1

r
− 1 arctan

√
r

1 − r

}

=
1

s

{

5

3
+

1

r
−
(

2 +
1

r

)√

1

r
− 1 arcsin

√
r

}

(3.39)

where in the last step we used that arctan
√

r
1−r = arcsin

√
r. Inserting the integral into 3.30,

the final renormalized Π is,

Π̂(s) =
α

3π

(

5

3
+

1

r
−
(

2 +
1

r

)√

1

r
− 1 arcsin

√
r

)

(3.40)

Both methods yield an identical renormalized answer, where in the unitarity method it

was not necessary to use any regularization recipe since our prescription leads us directly to

the renormalized answer. There is one subtlety we must remark on, namely the ambiguity

embedded in the unitarity method. Terms in the amplitude that do not contain branch cuts

will not appear in the unitarity cut, and consequently will not be recovered by the dispersion

relation. In our original calculation of the vacuum polarization amplitude (2.52), we had an
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additional term lnm2. At that point, we decided to take advantage of the freedom in choosing

our renormalization subtraction term and absorb it, but we could have chosen otherwise.

The unitarity method, on the other hand, is blind to this term, a fact which obstructed this

method from becoming a main calculational tool. In section 3.4 an alternative approach to

unitarity is presented, one which manages to avoid this ambiguity in many cases.

3.3 Landau Equations and Cutkosky Rules

We have seen in the previous example that branch cuts could appear in an amplitude in

physical values of the kinematic variables. These branch cuts could show up in the form of

a log function, a square root or any other multi-valued complex function. This feature is in

fact a general property of Feynman integrals. Landau [10] has put forth a set of equations

allowing us to determine the location of such branch points, from which branch cuts extend.

Subsequently, Cutkosky [9] has proposed a more general formulation of the unitarity method

to determine the discontinuity along these branch cuts.

Consider an arbitrary n-loop Feynman integral with v-internal legs, after the introduction

of Feynman parameters as in (2.2). Leaving out the loop momenta integrations, the integral

takes the form,

(v − 1)!

∫ 1

0

da1...davδ(1 −
∑

i

ai)
N (li, mi)

Jv
, J = a1d1 + ... + avdv, di = l2i − m2

i (3.41)

To determine the singularities (see the original paper [10] or a slightly modified proof

in [39]), one considers the diagram corresponding to this integral and then separately all

reduced diagrams. By reduced diagrams, we refer to diagrams in which one or more of the

internal legs are absent (which is equivalent to setting the corresponding ais to zero). In

each case, all internal legs are set to be on shell, i.e. all particles circulating in the loop are

taken to be physical,

di = l2i − m2
i = 0, ∀ i in the (reduced) diagram (3.42)

Under these conditions, one has to solve the equation,

∑

i

aili = 0 (summing over lines in the diagram in consideration) (3.43)

taking into account that the ai’s are real and positive (the condition that
∑

i ai = 1 is not

necessary). Landau has made the following analogy. If the direction of each vector li is the

direction of a force i and ai|li| is the magnitude of this force, then one must find the point
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of equilibrium. (3.42) and (3.43) are known as the Landau equations. Their solutions will

produce points or surfaces in the space of external kinematic variables where singularities

will occur. This takes place at the edge of the subspace of external variables in which J is

positive. When J is positive definite for all positive values of the ai’s, the integral is analytic

and no branch cuts occur. When the kinematic variables reach values that allow J to vanish

at some values of the Feynman parameters, the integral will be singular yielding the branch

point. This singularity cannot be avoided by shifting the integration contour because the

singularity either occurs at the end points of the integration contour or it pinches the contour

from both sides (see [39]). In the subspace where J can become negative, singularities can be

avoided by such a shift of the contour. In this last case, the integral develops an imaginary

part and branch cuts appear.

Cutkosky Rules

Based on the above analysis of Landau, Cutkosky has proved that the discontinuity along

the branch cut can be calculated by replacing a subset of propagators with on-shell delta

functions,

Disc I
∣
∣
m cut

= (2πi)m
∫ L∏

i=1

(
d4ki
(2π)4

)

δ+(l21 − m2
1) · · · δ+(l2m − m2

m)
N

dm+1 · · ·dv
(3.44)

where the Integral I has L loops and v internal lines. The m cut refers to choosing m internal

lines which will be cut, i.e. their propagators will be replaced by delta functions placing those

particles on shell. This formula will reproduce the discontinuity along branch cuts of certain

external invariants, namely invariants constructed out of the total momenta between two cut

propagators. By δ+ we mean that only the proper root must be considered, i.e. one chooses a

certain flow of momentum through the diagram representing the integral, and only the root

corresponding to this choice is applied.

For example consider the integral in figure 3.4. Three propagators have been cut, i.e.

placed on shell. Assume all external momenta are outgoing. Between cut 1 and 2 flows

momentum k1+k2 from which we construct the invariant s12 = (k1+k2)
2. Any discontinuities

of branch cuts in the space of these invariants (e.g. the imaginary part of ln s12) will be found

by applying (3.44) to this set of cuts. Similarly, the same formula will isolate branch cuts of

k2
3 and s45 = (k4 + k5)

2.

The same rules can be applied at the amplitude level. In this case a cut is performed

on the sum of all contributing diagrams, each diagram consisting of one or more integrals.

In this case, to determine which branch cuts are being isolated and which not, one must

perform the same analysis illustrated in the example above on each integral. An example of

a double cut on a 4-point amplitude is worked out in detail in chapter 6.
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Cutkosky demonstrated that this formula is in fact a generalization of the unitarity for-

mula described in the beginning of this chapter. Removing two propagators in the sum of all

diagrams contributing to an amplitude reproduces the unitarity formula. A larger number

of cuts, such as in figure 3.4, can be viewed as a ”generalized unitarity” condition. In the case

of three cuts for example, we glue three lower order amplitudes to reproduce a higher order

one. The application of generalized unitarity is discussed in [13].

3.4 Modern Approach to Unitarity

Using a different approach in the application of unitarity, it is possible to reconstruct both

real (dispersive) and imaginary (absorptive) parts at once, thus circumventing the need for

dispersion relations. This approach involves expanding the amplitude in a basis of integrals,

and then making use of unitarity [13] to determine the expansion coefficients.

Given a 1-loop amplitude, the Passarino-Veltman procedure can be used to reduce any

tensor integral to a sum of scalar integrals with tensorial coefficients. These coefficients will

depend only on external momenta, masses, coupling constants and the metric. The scalar

integrals will correspond to either the integral containing one propagator for each line in

the loop or to reduced integrals with any number of these legs missing (put differently, the

missing legs are contracted to a point). For example, in a four point process we could en-

counter one box integral, four triangle integrals corresponding to four possible contractions,

six bubble integral and four tadpoles.

Let Ii be such a set of scalar integrals. A 1-loop amplitude can be expanded as follows,

k1

k2

k3

k4

k5
1

32

Figure 3.4: Example of three cuts in a 5-point one-loop integral.
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A1−loop
n =

∑

i

ciIi (3.45)

Our goal is to calculate the coefficients ci. Once completed, the desired amplitude is fully

known. We have seen that using unitarity, the imaginary part of this amplitude can be

calculated as follows,

2ImA1−loop
n =

∑

helicity

∫
ddl1
(2π)d

2πδ(+)(l21 − m2)Atree
n−j+2(left)2πδ(+)(l22 − m2)Atree

j+2 (right) (3.46)

where j is the number of lines to the right of the cut, l1 and l2 are the momenta flowing

through the cut lines (only one of them is independent), and right / left refer to the tree

amplitudes to the right / left of the cut. The + sign in the delta function means that only

momenta corresponding to a physical scattering process must be considered.

This expression, or alternatively the discussion of the Cutkosky rules earlier in the chap-

ter, demonstrates that cutting means replacing propagators with delta functions thus impos-

ing on-shellness,

i

p2 − m2 + iǫ
→ 2πδ(+)(p2 − m2) (3.47)

In order to extract the sought after coefficients ci, we perform such a cut of two propaga-

tors on both sides of (3.45). When performed on the right hand side of the equation, the cut

amounts to removing all integrals that do not contain the two cut legs, and in the remaining

integrals, replacing the two propagators with appropriate delta functions.

When performing the cut on the left hand side, equation (3.46) is obtained. In this case,

the relevant tree amplitudes must be explicitly calculated. This will result in a sum of tensor

integrals that can be subsequently reduced using the Passarino-Veltman reduction. This

reduction involves re-expressing powers of the loop momentum (contracted with external

momenta) with sums over inverse propagators and masses. These inverse propagators, in

turn, cancel out with the actual propagators, with one exception. If the inverse propagator

corresponds to one of the cut lines, it does not cancel with any propagator but is set to zero

by the delta function appearing in (3.46).

A more elegant way (mathematically less sound, but justified by the above procedure) of

performing the cut of the left hand side is to upgrade the delta functions to propagators,

2πδ(+)(p2 − m2) → i

p2 − m2 + iǫ
(3.48)

perform the Passarino-Veltman reduction in the normal way, and then identify the basis

integrals in the resulting expression. If an integral appears that does not contain the cut
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propagators, this integral must be disregarded (corresponding to setting inverse propagators

to zero, as described above). In this case, (3.46) takes the form,

A1−loop
n

∣
∣
cut

=
∑

helicity

∫
ddl1
(2π)d

i

l21 − m2
Atree
n−j+2(left)

i

l22 − m2
Atree
j+2 (right)

∣
∣
cut

(3.49)

Once the cut has been performed, the coefficients of all the integrals on the right hand side

of 3.45 that survive the cut are uniquely determined. This procedure is then repeated with

as many cuts necessary to determine all the coefficients. Note that coefficients of integrals

that do not contain any cuts cannot be determined by this method. These are referred to as

rational functions, or the rational part of the amplitude. For example, in the above example

of a four point amplitude, the bubble integral corresponding to a contraction of two adjacent

legs can only depend on the square of a single momentum (the mass of the external leg

caught between the two non contracted lines). If this momentum is massless, the integral

does not contain any cuts. To determine these coefficients, other methods such as known IR

or UV behavior of the amplitude [43] must be applied.

59





CHAPTER 4

QCD and One-Loop Methods

Brute force calculations of amplitudes in quantum field theory tend to become less and less

manageable as we either increase the number of external legs or increase the order in per-

turbation theory. In both cases the number of Feynman diagrams grows drastically for each

external leg or loop added. Working with a non-Abelian gauge theory, such as QCD, enhances

the problem considerably. Two new types of vertices appear that do not exist in Abelian the-

ories such as QED, namely the three- and four-boson vertices. These vertices contain six

terms (see appendix A), and thus expressions will typically contain 6v terms, where v is the

number of boson vertices in the diagram.

This chapter introduces two methods commonly used to simplify QCD amplitudes. Color

decomposition is used to factorize the amplitude into color content and ”the rest”. The color

content appears in the form of group generators and group structure constants, while ”the

rest” includes all kinematic and spin/helicity information. The amplitude becomes, in prac-

tice, a sum of products of color matrices (i.e. group generators) with coefficients which are

referred to as partial amplitudes. These color-stripped amplitudes are gauge invariant (or a

sum of gauge invariant pieces) and generally more compact than the full amplitude.

When calculating a QCD amplitude involving external gluons, we must in general specify

the color (in the adjoint representation), helicity and momentum of the gluon, and this is

accomplished by contracting the amplitude with polarization vectors. Specifying color and

helicity is in general just an intermediate step toward a calculation of some final observable.
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These are then summed over since they are experimentally inaccessible. Color is ”stripped

off” the amplitude by applying the color decomposition described above. To deal with helicity,

one uses the Spinor helicity method of representing (colorless) polarization vectors in terms

of spinor products. This unifies the formalism of helicity with that of other spinor quantities

(e.g. Dirac gamma matrices, external fermions), and various spinor product identities can be

used to manipulate and simplify the amplitude in a relatively straightforward way.

4.1 Color Decomposition

4.1.1 Partial and primitive amplitudes

In QCD we define a multiplet of massive spin-half quark fields (Dirac spinors) that transform

under the fundamental representation of the group SU(3). To upgrade global invariance to

local invariance, we define gauge fields that transform under the adjoint representation of

the same group. From these we construct a covariant derivative from which we can then

freely build gauge invariant terms in the theory’s action. This construction gives rise to the

QCD Feynman rules (see appendix A): three- and four- gluon vertex, quark-antiquark-gluon

vertex and propagators for both types of particles.

In the following discussion we will consider the more general case of SU(Nc). This will

make the dependence on the number of colors (i.e. Nc) more apparent. We will follow the

conventions of reviews [7, 44, 6]. The generators of the fundamental representation will be

normalized as follows,

(ab) := Tr(T aT b) = δab (4.1)

where this shorthand notation for a trace over color matrices (i.e. fundamental representa-

tion generators) will be used throughout the chapter. Note that this normalization differs

from the conventional normalization by a factor of 1√
2
. The dimension of the group SU(Nc)

is N2
c − 1, while the dimension of the fundamental representation is Nc.

The generators of SU(Nc) satisfy the commutation relations,

[T a, T b] = i
√

2fabcT c (4.2)

fabc are the structure constants of SU(Nc) and define the group. In addition, they themselves

satisfy the above group relation when viewed as a set of N2
c −1 matrices of dimension N2

c −1.

These matrices form the adjoint representation.

Quark-antiquark-gluon vertices contain a factor (T a)j̄i , where a is an adjoint index and

contracts with the gluon, while i and j̄ are fundamental indices and contract with the quark
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and antiquark, respectively. Three-gluon vertices contain a factor fabc, where all three in-

dices are adjoint and contract with the three gluons. Similarly, a four gluon vertex contains

a factor fabef cde. For each External gluon or quark, one of these indices remains free, all

other indices are contracted.

The color decomposition, in essence, involves applying the following two identities,

fabc = − i√
2

(
Tr(T aT bT c) − Tr(T aT cT b)

)
(4.3)

(T a)j̄i (T
a)l̄k = δl̄iδ

j̄
k −

1

Nc
δj̄i δ

l̄
k (4.4)

The first identity is just 4.2 rewritten. The second identity, known as Fierz rearrange-

ment, follows from the fact that the generators of the fundamental representation form a

complete set of traceless hermitian Nc × Nc matrices. The term proportional to 1
Nc

enforces

the tracelesness.

A useful trick when dealing with diagrams that contain only particles that transform un-

der the adjoint representation is to substitute the group SU(Nc) with U(Nc). In this case, the

term proportional to 1
Nc

drops, since the set of generators of this group includes a generator

proportional to the unit matrix in addition to the generators of SU(Nc). This is in fact the

generator of the subgroup U(1) representing a ”photon” particle (with a different coupling

constant than the QED photon). Since this matrix commutes with all others, all structure

constants containing it will be zero, and it effectively decouples from SU(Nc). This reflects

the fact that photons do not self interact nor do they interact with other gauge bosons. To

summarize, given a gluon only diagram, we can effectively work with the group U(Nc) and

ignore the term proportional to 1
Nc

in the Fierz rearrangement identity.

It is often easier to visualize the Fierz rearrangement in the following form, where X ,Y ,Z

and W are strings of color matrices and a is some single color matrix,

..XaY.. ..ZaW.. = ..XW.. ..ZY.. − 1

Nc
..XY.. ..ZW.. (4.5)

Identities (4.3) and (4.4) can be used to remove all structure constants and contractions

of color matrices from the initial expression obtained from a Feynman diagram. The color

content of a diagram will be reduced to traces over color matrices, strings of color matrices

terminating with fundamental indices (e.g. (T aT bT c)j̄i or products of such. To clarify the

procedure, let us take a look at an example of a tree amplitude.

63



CHAPTER 4. QCD AND ONE-LOOP METHODS

Four gluon tree amplitude - example

Consider a scattering process involving four gluons, and consider the Feynman diagram of

the 1-4-channel depicted in figure 4.1. Let us color decompose it using (4.3) and (4.4).

The contribution of this channel to the amplitude is,

Atree
4 |14 = g2Ãpart

4 |14f145f532

= g2Ãpart
4 |14

(

− i√
2

)2

[(145) − (154)][(532)− (523)]

= g2Ãpart
4 |14

(

− i√
2

)2

[(1234) + (4321)− (1324)− (4231)] (4.6)

where the numbers appearing in the trace and in the structure constants are the color indices

of gluons as numbered in figure 4.1, and,

Ãpart
4 |14 =

(

− i

k2
5 + iǫ

)
(
g14(k1 − k4)

5 + g45(k4 + k5)
1 + g51(−k5 − k1)

4
)

×
(
g53(k5 − k3)

2 + g32(k3 − k2)
5 + g25(k2 − k5)

3
)
ǫ1ǫ2ǫ3ǫ4 (4.7)

Note that the terms proportional to 1
Nc

drop out explicitly. This was expected since this

diagram contains only adjoint particles and we could have simply used the Fierz rearrange-

ment for U(Nc) as explained above. (4.6) is the color decomposition of the diagram in figure

4.1. It is a sum of four terms, each term being a product of a color factor containing only color

matrices and a partial amplitude containing all the kinematic and helicity information.

Only specific color traces appear in this expression, namely those that match the clock-

wise order of the external legs of the diagram when the diagram is restricted to be planar.

For example, the trace (1324) corresponds to rotating the two legs on the right which results

in an identical diagram. The trace (3124), on the other hand, does not appear since this di-

agram cannot be brought to the proper ordering and be kept planar at the same time. Note

1

4

2

35

Figure 4.1: One of the three Feynman diagrams contributing to the full tree amplitude of the four

gluon scattering process. All external momenta are taken to be incoming. For brevity, the gluon number

is used as both the color and Lorentz index of the gluon. We will denote by ki the momentum of gluon

line i.
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that two of the traces have a relative minus sign. These originate from the sensitivity of the

Feynman rule of three gluons to the ordering of the legs once we strip off the color factor

fabc. We will absorb these minus signs and the factor of i√
2

in the partial amplitude. We

must then have a separate partial amplitude corresponding to each trace. The amplitude

takes the form,

Atree
4 |14 = g2

[

(1234)Apart
4 |14(1, 2, 3, 4) + (4321)Apart

4 |14(4, 3, 2, 1)

+(1324)Apart
4 |14(1, 3, 2, 4) + (4231)Apart

4 |14(4, 2, 3, 1)
]

(4.8)

The modified partial amplitudes are calculated using the color ordered Feynman rule in fig-

ure 4.2, where the color factor has been stripped off. In each case, the legs are ordered

clockwise according to the arguments of the partial amplitude. This generates the proper

sign. The partial amplitudes (with the contribution of the 1-4-channel only) are,

Apart
4 |14(1, 2, 3, 4) =

(
i√
2

)2 (

− i

k2
5 + iǫ

)

(g15(k1 + k5)
4 + g54(−k5 − k1)

1 + g41(k4 − k1)
5)

×(g52(k5 − k2)
3 + g23(k2 − k3)

5 + g35(k3 − k5)
2)ǫ1ǫ2ǫ3ǫ4

Apart
4 |14(4, 3, 2, 1) = −Apart

4 |14(1, 3, 2, 4) = −Apart
4 |14(4, 2, 3, 1) = Apart

4 |14(1, 2, 3, 4) (4.9)

In this example, a single Feynman diagram was color decomposed into traces of color

matrices and partial amplitude coefficients. This result can be obtained for all three channels

of the four gluon process by a simple relabeling of the legs. The trace (1234), for example, will

appear in the 1-2-channel but not in the 1-3 channel. This means that the full Apart
4 (1, 2, 3, 4)

partial amplitude will only take contributions from the 1-4-channel and the 1-2-channel.

The above result was a specific decomposition of a four gluon scattering amplitude. It

is rather straightforward to show that this result can be generalized to the n-gluon tree

amplitude [6],

µ

ρ ν

k1

k3 k2

= i
√

2
(gµν(k1 − k2)

ρ + gρµ(k3 − k1)
ν + gνρ(k2 − k3)

µ)

Figure 4.2: Color ordered feynman rule for a 3-gluon vertex.
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Atree
4 = gn−2

∑

σ∈Sn/Zn

(σ(1) · · ·σ(n)) Apart
n (σ(1) · · ·σ(n)) (4.10)

where Sn/Zn is the group of all permutations of n elements such that cyclically related ele-

ments are identified, or put differently, the sum over all distinct traces of n distinct matrices.

4.1.2 Loop amplitudes

We have seen that the partial amplitudes have a very useful property, they receive contri-

butions only from Feynman diagrams that match a given order of the external legs. We will

refer to diagrams with this property as primitive amplitudes. Primitive amplitudes will be

the basic building blocks from which full amplitudes will be constructed. In the case of tree

amplitudes, partial amplitudes are primitive amplitudes. In loop amplitudes, on the other

hand, this will not generally be the case and we will seek to find a set of primitive amplitudes

from which partial amplitudes can be constructed. To see this, let us consider the four gluon

one-loop amplitude .

Four gluon one-loop amplitude - example

Let us proceed in a similar fashion to what was done above in the case of the four gluon tree

amplitude. For brevity, we write the Feynman rule for a three gluon vertex as fabcvabc, where

vabc = gab(ka − kb)
c + gbc(kb − kc)

a + gca(kc − ka)
b contains all kinematic information and will

be finally absorbed in the partial amplitude. As an example, we consider the box diagram

appearing in figure 4.3. The contribution of this diagram (denoted by ”14box” for 1-4-channel

box diagram) to the amplitude is,

1

4

2

3

a

bd

c

Figure 4.3: A box diagram contributing to the one-loop amplitude of the four gluon scattering process.

The numbers refer to external gluons and the lower-case letters to internal gluon lines.
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A1−loop
4 |14box

= g4
4∏

i=1

(

− i

q2
i + iǫ

)

f1adf4dcf3cbf2bav1adv4dcv3cbv2ba

= g4Ãpart
4 |14box

(

− i√
2

)4
(
(1ad) − (1da)

)(
(4dc) − (4cd)

)(
(3cb) − (3bc)

)(
(2ba) − (2ab)

)

= g4Apart
4 |14box

(
Nc(1234) + Nc(1432) + 2(12)(34) + 2(13)(24) + 2(14)(23)

)
(4.11)

This calculation involved taking products of four traces over three color matrices and sim-

plifying them using the Fierz rearrangement identity. The Nc factors arise from traces over

identity matrices, for example,

(1ad)(4dc)(3cb)(2ba) = (1ac4)(3ca2) = (c41)(23c) = (1234)(1) = Nc(1234) (4.12)

Similarly the other combinations of traces can be simplified to yield the result in equation

(4.12). A similar calculation for the 1-4-channel triangle diagram yields,

A1−loop
4 |14triangle = g4Apart

4 |14triangle
(
Nc(1234) + Nc(1432)− Nc(1423)− Nc(1324)

)
(4.13)

where four terms of the form (14)(23) appear in the calculation but cancel against each other

leaving only single trace terms.

In the case of one-loop, the Feynman diagrams decompose into single traces over four

color matrices and double traces over two color matrices each. Traces over one color matrices

also appear but do not contribute since all external matrices are taken to be in the group

SU(Nc) and are thus traceless. By relabeling the external legs, the above two diagrams can

be used to calculate all Feynman diagrams with a gluon circulating in the loop. The full

contribution of these diagrams to the total amplitude is,

A1−loop
4 |gluon = g4

∑

σ∈S4/Z4

Nc(σ(1)σ(2)σ(3)σ(4))A4;1(σ(1)σ(2)σ(3)σ(4))

+
∑

σ∈S4/S4;3

(σ(1)σ(2))(σ(3)σ(4))A4;3(σ(1)σ(2)σ(3)σ(4)) (4.14)

where σ belongs to the group of permutations of four elements up to a cyclic permutation

leaving the single trace (Z4) or the double trace (S4;3) invariant. The partial amplitudes A4;1

is a primitive amplitude, i.e. the sum over all color ordered diagrams with a leg ordering

corresponding to its arguments. The partial amplitude A4;3, on the other hand, is no longer

a primitive amplitude since it receives contributions from diagrams with different leg order-

ings. For example, (4.12) shows us that A4;3(1324) receives a contribution from a diagram

with a leg ordering of 1234. We see, though, that in this case these partial amplitudes can be

expressed as a sum of primitive amplitudes,
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A4;3 =
∑

σ∈S4/Z4

A4;1(σ(1)σ(2)σ(3)σ(4)) (4.15)

The above example demonstrated that one loop amplitudes, similar to tree amplitudes,

can be color decomposed, but also double trace color coefficients must be taken into account.

The loop case becomes much more complicated, since partial amplitudes are no longer prim-

itive amplitudes in the general case. Luckily, we were able to identify a subset of the partial

amplitudes as being primitive amplitudes, while the remaining partial amplitudes could be

expressed in terms of those same primitive amplitudes. This result turns out to be generally

true. In [45], string theory methods are used to color decompose an n-point amplitude with

external gluons, and the decoupling of U(1) from SU(N) is used to express partial amplitudes

in terms of primitive amplitudes. [15] performs a similar task for an n-point amplitude with

two external quarks and n−2 external gluons using a pure field theoretical approach. In this

case, the An;1 partial amplitudes are not fine enough to be used as primitive amplitude build-

ing blocks, and further constraints are placed on the diagrams contributing to the primitive

amplitudes. In addition to being color ordered, the primitive amplitudes receive contribu-

tions from diagrams with a specific orientation of the fermion line. These finer building

blocks can be then used to construct all partial amplitudes.

4.1.3 Color sums

To calculate a cross section, the amplitude must be squared for a fixed configuration of colors.

Since color is an unobservable quantity, one must then sum over outgoing particle colors and

average over the incoming ones. Since we have separated the color factors from the rest of

the amplitude, we can perform the color sum independently. If there are only two external

gluons, the color sum will simply be,

(T aT b)(T aT b) = (T aT a) − 1

Nc
(T a)(T a) = N2

c − 1 (4.16)

where the sum over double indices is implied. In the first equality, the Fierz rearrangement

was applied. In the second equality, the tracelessness of the generators implies that (T a) = 0

and the second term vanishes. The first term is evaluated by first applying the normalization

(4.1) of the SU(Nc) generators and then summing over the number of generators, i.e. N2
c − 1.

Finally, we divide by a factor of N2
c − 1 per incoming gluon.

For a larger number of gluons, we repeat this process for all possible contractions of

partial amplitudes. For example, in the case of three external gluons there are two possible

color factors, (T aT bT c) and (T aT cT b). The two possible contractions of partial amplitudes

will yield two color sums,
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(T aT bT c)(T aT bT c) = −2
N2
c − 1

Nc

(T aT bT c)(T aT cT b) = (N2
c − 1)(Nc −

2

Nc
) (4.17)

[6] demonstrates a graphical technique to perform these color sums. In gluon only diagrams,

one can ignore the 1
Nc

in the Fierz rearrangement identity and the color sums become sig-

nificantly simpler. For example, the above three-gluon color sums simplify to Nc and N3
c

respectively.

4.2 Spinor Helicity

When calculating amplitudes involving massless gauge bosons, it is useful to represent the

polarization vectors by spinor products, particularly if massless fermions are present. This

method goes under the name of the spinor helicity method, and is widely used in QCD cal-

culations. We begin by a review of massless spinor solutions to the Dirac equation and then

introduce the representation of polarization vectors. Appendix D contains a list of useful

identities. The section will conclude with an example of a tree amplitude calculation. [6, 7]

provide good reviews of the spinor helicity method.

When considering plane-wave solutions with momentum kµ to the Dirac equation, two

independent solutions exist (see [8]). These are further divided into two classes of solutions,

those with positive energy, k0 > 0, and those with negative energy, k0 < 0. The former is

identified with fermions, us(k), while the latter with anti-fermions, vs(k). The two indepen-

dent solutions in each class, s ∈ {1, 2}, correspond to two possible spin states.

In the massless limit, since a boost cannot flip the spatial direction of the momentum, the

solutions can be chosen to have a well defined helicity, i.e. they will be eigenvectors of the

helicity operator,

h ≡ p̂ · ~S =
1

2
p̂i

(

σi 0

0 σi

)

(4.18)

which measures the spin of the particle along the momentum axis. We can therefore denote

the particles by u±(k) and v±(k), corresponding to ± 1
2 eigenvalues of the helicity operator.

In this limit, the two classes of particles degenerate into one class, because the phase can be

chosen such that u±(k) = v∓(k).

Using the light-cone coordinates, defined as k± = k0 ± k3, and choosing the Dirac repre-

sentation of the gamma matrices,
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γ0 =

(

1 0

0 −1

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

0 1

1 0

)

(4.19)

the spinor solutions are,

u+(k) = v−(k) =
1√
2









√
k+

√
k−eiψk

√
k+

√
k−eiψk









, u−(k) = v+(k) =
1√
2









√
k−e−iψk

−
√

k+

−
√

k−e−iψk

√
k+









(4.20)

and the row spinors corresponding to this representation of the gamma matrices, defined by

u± ≡ u†γ0, are,

u+(k) = v−(k) =
1√
2

(√
k+,

√
k−e−iψk , −

√
k+, −

√
k−e−iψk

)

u−(k) = v+(k) =
1√
2

(√
k−eiψk , −

√
k+,

√
k−eiψk , −

√
k+
)

(4.21)

where

e±iψk ≡ k1 ± ik2

√
k+k−

(4.22)

We can verify that these solutions satisfy the Dirac equation in momentum space. For

example, the positive helicity fermion satisfies,

�ku+(k) = (
1

2
k+γ− +

1

2
k−γ+ − k1γ1 − k2γ2)u+(k) (4.23)

=
1√
2









1
2 (k+ + k−) − 1

2 (k+ − k−) −(k1 − ik2)

0 1
2 (k+ + k−) −(k1 + ik2) 1

2 (k+ − k−)
1
2 (k+ − k−) (k1 − ik2) − 1

2 (k+ + k−) 0

(k1 + ik2) − 1
2 (k+ − k−) 0 − 1

2 (k+ + k−)

















√
k+

√
k−eiψk

√
k+

√
k−eiψk









= 0

where the fact that k is massless implies that k+k− − (k1)2 − (k2)2 = 0. The positive helicity

spinor is an eigenstate of the helicity operator with helicity + 1
2 (here preferably working

with the Minkowski coordinates),
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hu+(k) =
1

2
√

2p0









k3 k1 − ik2 0 0

k1 + ik2 −k3 0 0

0 0 k3 k1 − ik2

0 0 k1 + ik2 −k3

















√
k0 + k3

k1+ik2

√
k0+k3√

k0 + k3

k1+ik2

√
k0+k3









=
1

2
√

2









√
k0 + k3

k1+ik2

√
k0+k3√

k0 + k3

k1+ik2

√
k0+k3









=
1

2
u+(k) (4.24)

Similarly, the negative helicity spinor can be shown to have the desired properties. Having

constructed a basis for the massless spinors, spinor products can be explicitly calculated. We

use the following shorthand notation for spinors,

|i±〉 ≡ |k±
i 〉 ≡ u±(ki) = v∓(ki), 〈i±| ≡ 〈k±

i | ≡ u±(ki) = v∓(ki) (4.25)

and spinor products,

〈ij〉 ≡ 〈i−|j+〉 = u−(ki)u+(kj), [ij] ≡ 〈i+|j−〉 = u+(ki)u−(kj) (4.26)

These quantities prove to have a rather compact form, where for positive energy momenta

k0
i > 0 and k0

j > 0,

〈ij〉 =
√

|sij |eiφij , [ij] =
√

|sij |e−i(φij+π) (4.27)

with,

cosφij =
k1
i k

+
j − k1

jk
+
i

√

|sij |k+
i k+

j

, sin φij =
k2
i k

+
j − k2

jk
+
i

√

|sij |k+
i k+

j

, sij = 2kikj (4.28)

The product of these two spinor products is simply the invariant formed by the sum of the

momenta,

〈ij〉[ji] = (ki + kj)
2 = sij (4.29)

From (4.27), we see that the two types of spinor products are related by complex conjugation,

〈ij〉∗ = [ji] (4.30)

To allow the definition of the spinor products to encompass negative energy momenta

as well, which is important for taking full advantage of the cross symmetry property of
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amplitudes, we first analytically continue the spinor product 〈ij〉 in (4.27) by replacing ki

by −ki if k0
i < 0 and similarly for kj . We then define the second spinor product [ij] through

(4.29).

A summary of the above properties together with an extensive collection of identities

appears in appendix D.

A spinor product representation for polarization vectors

Thanks to the compact notation and wide range of identities, spinor products are powerful in

evaluating amplitudes containing massless fermions. Their main virtue, though, lies in the

ability to express polarization vectors of massless gauge bosons through them, thus achieving

a uniform algebraic tool for all external particles. We conform to the representation of Xu,

Zhang and Chang [46],

ǫ+µ (k; q) =
〈q−|γµ|k−〉√

2〈qk〉
, ǫ−µ (k; q) = −〈q+|γµ|k+〉√

2[qk]
(4.31)

q is a reference momentum which captures the gauge invariance inherent to the polarization

vectors. For every polarization vector in an amplitude, an arbitrary massless reference mo-

mentum can be chosen. The choice must be consistent within every gauge invariant piece,

such as a partial amplitude. The two polarization vectors are related by complex conjugation,

(ǫ+µ (k; q))∗ = ǫ−µ (k; q) (4.32)

To check that this representation is plausible, one can confirm that it satisfies all iden-

tities obeyed by the standard polarization vectors. This suggests that its role in scattering

amplitudes will be equivalent. Applying the spinor helicity identities in D, it is straight-

forward to show that the standard normalization and orthogonality conditions (D.13) hold.

We will demonstrate here explicitly two other properties of the polarization vectors: gauge

invariance and the completeness relation.

In coordinate space, a gauge transformation is achieved by adding a derivative of a func-

tion to the solution of the equations of motion. In momentum space, this implies that the

solution is defined up to a vector proportional to the momentum vector. We will now show

that a change in the reference momentum q has exactly this effect,
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ǫ+µ (k; q′) − ǫ+µ (k; q) =
〈q′−|γµ|k−〉√

2〈q′k〉
− 〈q−|γµ|k−〉√

2〈qk〉

=
〈q−|k+〉〈k+|γµ|q′+〉 + 〈q−|γµ|k−〉〈k−|q′+〉√

2〈q′k〉〈qk〉

=
〈q−|w+�kγµ + γµw−�k|q′+〉√

2〈q′k〉〈qk〉

=

√
2〈q−|q′+〉
〈q′k〉〈qk〉 kµ (4.33)

where w± = 1
2 (1 + γ5) is the projection matrix which obeys w±γµ = γµw∓. We also used

that positive (negaitve) helicity spinors are eigenvectors of the positive (negative) projection

matrix with eigenvalue 1.

The spinor polarization vectors obey the standard completeness relation,

∑

λ=±
ǫλµ(k; q)(ǫλν (k; q))∗ =

〈q−|γµ|k−〉〈q−|γν |k−〉∗
2〈qk〉〈qk〉∗ +

〈q+|γµ|k+〉〈q+|γν |k+〉∗
2[qk][qk]∗

=
1

4k · q
(
〈q−|γµ|k−〉〈k−|γν |q−〉 + 〈q+|γµ|k+〉〈k+|γν |q+〉

)

=
1

4k · q tr[�qγµ�kγν ] = −gµν +
kµqν + kνqµ

k · q (4.34)

(D.7), (D.4) and (D.6) were used.

Appendix D contains a collection of useful identities involving the spinor representation

of the polarization vectors. One should try to take advantage of gauge invariance to simplify

calculations. A proper choice of the reference momenta can cause many terms in an initial

amplitude expression to vanish, vastly simplifying intermediate expressions.

4.2.1 Example - gg → ss tree amplitude

We calculate here the color ordered tree amplitude for the scattering of two massive scalars

and two positive helicity gluons, Atree
4 (−l1, 1

+, 2+, l2). Three different diagrams contribute to

this amplitude, these appear in figure 4.4.

The momenta were chosen such that the gluons are outgoing, and the scalars flow against

the direction of the charge flow. From momentum conservation we have that l1 = l2 +k1 +k2.

In addition, since the external particles are on shell, we have that k2
1 = k2

2 = 0 and l21 = l22 =

m2. From these relations we can derive the following useful relations:

m2 = l1 · l2 + l1 · k1 + l1 · k2

m2 = l2 · l1 − l2 · k1 − l2 · k2

}

⇒ l1 · (k1 + k2) = −l2 · (k1 + k2)
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0 = k1 · l1 − k1 · l2 − k1 · k2

0 = k2 · l1 − k2 · l2 − k2 · k1

}

⇒ k1 · (l1 − l2) = k2 · (l1 − l2)

⇒ l1 · k2 = −l2 · k1, l1 · k1 = −l2 · k2 (4.35)

We can now calculate the three diagrams. The amplitude of diagram 4.4(a) is:

A(a) =
〈2 − |γµ|1−〉√

2〈21〉
〈1 − |γν |2−〉√

2〈12〉
i√
2

(gµν(k2 − k1)
ρ + gρµ(k1 − p)ν + gνρ(p − k2)

µ)

×−i

p2

i√
2
(l1 + l2)

ρ

= i
2〈21〉[21]

4〈21〉〈12〉
1

2k1 · k2
2(−k1 · l1 + k2 · l2 − k1 · l2 + k2 · l1)

= i
−4k1 · k2

−4〈21〉2
1

2k1 · k2
(−4)(k1 · l1 + k1 · l2)

= −i
k1 · l1 + k1 · l2

〈21〉2 (4.36)

As reference momenta we chose q1 = k2 and q2 = k1. As a result of this choice, the last

two metric terms in the 3-gluon vertex drop out when contracted with one of the polarization

k2

k1 l1

l2

1+

2+

p

(a)

l1

l2k2

k11+

2+

(b)

2+

1+

k2

k1 l1

l2

p

(c)

Figure 4.4: Contributions to the 2 scalar → 2 gluon tree amplitude
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vectors. We also used that p = −k1−k2 in the first equality, and (4.35) in the second equality.

Moving on to diagram 4.4(b):

A(b) =
〈2 − |γµ|1−〉√

2〈21〉
〈1 − |γµ|2−〉√

2〈12〉

(
i

2

)

= − i

2

2〈21〉[21]

2〈21〉2 = i
k1 · k2

〈21〉2 (4.37)

And the scalar exchange diagram, 4.4(c):

A(c) =
〈2 − |γµ|1−〉√

2〈21〉
〈1 − |γν |2−〉√

2〈12〉
i

(l1 − k1)2 − m2

i√
2
(l1 + p)µ

i√
2
(p + l2)

ν

= −4i
〈2 − |�l1|1−〉√

2〈21〉
〈1 − |�l2|2−〉√

2〈12〉
1

2

1

−2l1 · k1

= − i

2

4tr[w−�k2 �l2w−�k1 �l2]

2〈21〉22l1 · k1

= i
2k1 · k2m

2 − 4k1 · l1k2 · l1
〈21〉22l1 · k1

= i
〈21〉[12]m2

〈21〉22l1 · k1
− i

2k2 · l1
〈21〉2 (4.38)

where w− = 1
2 (1− γ5). In the second equality we replaced pµ = lµ1 − kµ1 , with kµ1 dropping out

when contracted with the polarization vector. Similarly for pν . In the third equality we used

that �l1 inside the polarization vector can be replaced by �l2 as a consequence of momentum

conservation, since �ki drops out when applied on the massless spinors.

Finally we can sum up the three amplitudes to obtain the complete tree amplitude for the

process,

Atree
4 (−l1, 1

+, 2+, l2) = A(a) + A(b) + A(c)

= −i
[21]

〈21〉
m2

2l1 · k1
+ i

1

〈21〉2 (2k1 · l2 + k1 · k2 − k1 · l1 − k1 · l2)

= −i
[21]

〈21〉
m2

2l1 · k1

= i
[12]

〈12〉
m2

(l1 − k1)2 − m2
(4.39)

where momentum conservation was used to cancel the second term in the second line.

4.3 On Shell Recursion Relations

The recently discovered BCF [19, 20] on-shell recursion relations provide a method of eval-

uating tree amplitudes in a somewhat analogous way to how unitarity is used to derive
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loop amplitudes. The pole structure of tree amplitudes, namely singularities reached when

internal particles go on-shell, allow one to construct larger tree amplitudes out of smaller

more manageable pieces. In this section, we describe the general method and outline its

mathematical derivation. A recalculation of the example from the previous chapter follows,

demonstrating the capacity of this method to calculate tree amplitudes containing gluons as

well as massive scalar particles [47]. [48, 49] extends the method to include both massive

fermions and massive gauge bosons, and [50] discusses how dimensional regularization can

be incorporated.

Consider a tree amplitude with all momenta incoming containing at least two massless

external particles i and j with momenta ki and kj (see figure 4.5). [47] discusses the slightly

more intricate cases of one or zero external massless particles. Instead of specifying a par-

ticle’s momentum by its four vector, it is possible to look at its slashed momentum. The two

representations are related by,

�k = kµγ
µ =









k0 0 k3 k1 − ik2

0 k0 k1 + ik2 −k3

−k3 −k1 + ik2 −k0 0

−k1 − ik2 k3 0 −k0









(4.40)

where the Dirac representation of the gamma matrices (4.19) was used. We choose to shift

the two massless momenta in the complex plane according to,

�ki → ˆ
�ki = �ki + z�η

�kj → ˆ
�kj = �kj − z�η (4.41)

where z is a complex variable and the momentum η is defined by,

�η = u+(kj)u+(ki) + u−(ki)u−(kj) (4.42)

p

k1

k2

Figure 4.5: An amplitude is split into along every possible internal line separating two chosen particles

i and j.
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Such a shift in the slashed momenta implies an equivalent shift in the four-vector momenta.

By inserting the spinor solutions (4.20) and (4.21) into the definition of η on can verify that

η is a well defined complex momentum. Its components in the light-cone coordinates intro-

duced in section 4.2 are,

η+ = 2
√

k−
i k−

j ei(ψi−ψk), η− = 2
√

k+
i k+

j

eiψη = −
(

k+
i k−

j

k−
i k+

j

)1/4

e
i
2
(ψi+ψj), e−iψη = −

(

k−
i k+

j

k+
i k−

j

)1/4

e−
i
2
(ψi+ψj) (4.43)

η has been chosen such that it is both massless and orthogonal to ki and kj , i.e. η2 = η ·
ki = η · kj = 0. This implies that the shifted momenta, k̂i and k̂j , are massless. Since

(massless) momenta can be expressed in terms of spinors by the completeness relation, �k =
∑

λ uλ(k)uλ(k), then the momenta shift implies a shift of the corresponding spinors,

u+(ki) → u+(k̂i) = u+(ki) + zu+(kj)

u−(ki) → u−(k̂i) = u−(ki) + zu−(kj)

u−(kj) → u−(k̂j) = u−(kj) − zu−(ki)

u+(kj) → u+(k̂j) = u+(kj) − zu+(ki) (4.44)

Let us now consider the consequences of such a shift on a tree amplitude. Since k̂i + k̂j =

ki+kj , the overall momentum conservation remains intact. In a tree diagram, every internal

line divides the diagram into two. We refer to these two parts as the left and right side. The

momentum p flowing through an internal line is the sum of all external momenta on one side.

If both particles i and j are located on one side of the internal line, its momentum remains

untouched under the shift. If, on the other hand, the line separates the two particles, then p

gets shifted by zη,

p = ki + ... → p̂(z) = p + zη = ki + zη + ... (4.45)

The shifted internal momentum is a linear function of z and because η is massless, the shift

in the inverse propagator is also linear in z,

1

p2 − m2
p

→ 1

p̂2 − m2
p

=
1

p2 − m2
p + 2zp · η (4.46)

This propagator contains a simple pole in z space at,

z = −p2 − m2
p

2p · η (4.47)

Consider all partitions of external particles of a given tree amplitude into a left group and
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a right group, such that particle i is in the left group and j in the right group. If {i, j} are

gluons, then only the helicity configurations {±,±} and {+,−} are permitted, the fourth one

can be obtained by replacing the positions of the particles. The tree amplitude is given by

the following on-shell recursion formula,

A =
∑

partitions

∑

s

AL(k̂i,−p̂)
i

p2 − m2
p

AR(k̂j , p̂)
∣
∣
p̂2=m2

p

(4.48)

Conforming to our choice of p flowing from left to right, AL(k̂i,−p̂) is the tree amplitude of

all left side particles incoming and p outgoing (hence the minus sign), where both ki and p

are replaced by the corresponding shifted momenta with z fixed by the on-shell condition

p̂2 = m2
p. The value of z solving this condition is exactly the location of the pole (4.47).

AR(k̂j , p̂) is the amplitude of all right side particles outgoing and p incoming. The sum over

s is over all types of intermediary particles and all of their possible spin configurations.

The proof of this relation was first given in [20] (see also [47]). The main ingredient is a

theorem of complex analysis stating that the sum over all residues of a rational function with

only simple poles on the entire Riemann sphere is zero (see for example [51]). Having shifted

two momenta in the amplitude A to obtain Â(z), the theorem can be applied on Â(z)/z,

A = Â(0) = Res

(

Â(z)

z

)

z=0

= −
∑

α

(

Â(z)

z

)

z=zα

−
(

Â(z)

z

)

z=∞
(4.49)

where {zα} is the set of all finite simple poles of Â(z). In the case of gluons, the above

restrictions on the choice of helicities guarantees that the infinite term vanishes. For other

types of particles it must be explicitly checked that this term is finite or preferably zero.

As discussed above, only the momentum of internal lines which separate the two hatted

particles are shifted. The inverse propagator of such a line is linear in z and contributes a

pole. In every partition, the flow of momentum through the dividing internal line is unique,

making sure that only simple poles occur. The location of the pole zα(p) is determined by

equation (4.47). Inserting this value for z in (4.49) for every partition reproduces the on-

shell recursion formula (4.48). This equation is consistent also in the case of internal fermion

lines. In this case, the factor �p+mp that appears in the numerator of the fermion propagator

can be replaced by spinors using the completeness relation. These spinors correspond to the

external fermions in the left and right tree amplitudes.

4.3.1 Example - gg → ss tree amplitude

Let us demonstrate this procedure by calculating again the color ordered amplitude of two

scalars and two gluons of positive helicity [47]. Consider the same configuration as in
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subsection 4.2.1. We have at our disposal exactly two massless particles which we will

use as the hatted particles, i = 1 and j = 2. We shift their momentum accordingly by

z�η = z (|2+〉〈1+| + |1−〉〈2−|),

ˆ
�k1 = �k1 + z�η

ˆ
�k2 = �k1 − z�η (4.50)

The shifted momenta remain massless and overall momentum conservation still applies.

Shifting the momenta implies the following shifting of the spinors,

|1̂+〉 = |1+〉 + z|2+〉 〈1̂+| = 〈1+|
〈1̂−| = 〈1−| + z〈2−| |1̂−〉 = |1−〉
|2̂−〉 = |2−〉 − z|1−〉 〈2̂−| = 〈2−|
〈2̂+| = 〈2+| − z〈1+| |2̂+〉 = |2+〉 (4.51)

We must now consider all possible partitions leaving particle 1 on the left side and parti-

cle 2 on the right side. Note that since both hatted particles are positive helicity gluons, we

can safely neglect the residue of the amplitude at infinity as discussed above. Applying the

Feynman rules for scalar particles (see appendix A), only one possible (color ordered) parti-

tion exists. This configuration is shown in figure 4.6. As opposed to the direct calculation,

here only one diagram must be evaluated with the simplifying condition that the internal

scalar is on shell, demonstrating the advantage of this method.

Following the prescription, we must calculate the diagrams on the left side and right side

using the shifted values of the gluon momenta, and correspondingly of the internal momenta.

These must be evaluated at the value of z given by (4.47). To calculate dot products involving

η we use the fact that η · p = 1
4 tr[�η�p] = 1

2 〈1+|�p|2+〉.

l1

1+ 2+

l2

AL AR

Figure 4.6: The possible partition of Atree
4 (−l1, 1

+, 2+, l2)
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z = − p2 − m2
p

〈1+|p|2+〉 (4.52)

where p = l1 − k1 = l2 + k2. The two reduced amplitudes are straightforward to calculate,

AL =
〈2̂−|γµ|1̂−〉√

2〈2̂1̂〉
i√
2
(l1 + p)µ = i

〈2̂−|�l1|1̂−〉
〈2̂1̂〉

AR =
〈1̂−|γµ|2̂−〉√

2〈1̂2̂〉
i√
2
(p + l2)µ = i

〈1̂−|�l2|2̂−〉
〈1̂2̂〉

(4.53)

where the polarization vectors were represented by spinor products as in (4.31), with the

reference momentum of each gluon chosen to be the opposite gluon.

The denominators can be simply replaced by non shifted momenta, since,

〈2̂1̂〉 = 〈2−|
(
|1+〉 + z|2+〉

)
= 〈21〉 = −〈1̂2̂〉 (4.54)

Combining the two amplitudes and the propagator yields,

Atree
4 = −〈2̂−|�l1|1̂−〉

〈2̂1̂〉
i

(l1 − k1)2 − m2

〈1̂−|�l2|2̂−〉
〈1̂2̂〉

= i
tr[w−

ˆ
�k2 �l1

ˆ
�k1 �l1]

〈21〉2
1

(l1 − k1)2 − m2

= i
2(2k̂2 · l1k̂1 · l1 − k̂2 · k̂1l

2
1)

〈21〉2
1

(l1 − k1)2 − m2
(4.55)

Since the particle propagating through the partition is a scalar, there is no summation over

helicities. We can use the following kinematic relations to simplify the expression,

p̂2 = m2 = (l1 − k̂1)
2 = m2 − 2k̂1 · l1 ⇒ k̂1 · l1 = 0

2k1 · k2 = (k1 + k2)
2 = (k̂1 + k̂2)

2 = 2k̂1 · k̂2 (4.56)

And the final result is,

Atree
4 (−l1, 1

+, 2+, l2) = i
[12]

〈12〉
m2

(l1 − k1)2 − m2
(4.57)

which agrees with (4.39).
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4.4 Dimensional Regularization Revisited

In section 2.1, dimensional regularization was discussed as a method for regulating diver-

gences in Feynman integrals. In this method, the dimension of space-time is extended to

4 − 2ǫ. In order to deal with four dimensional quantities such as polarization vectors for

gauge bosons, the four-dimensional helicity scheme (FDH) was introduced. This scheme dic-

tates that all quantities, except loop momenta, remain four dimensional. In this section, an

elegant method for dealing with the extra dimensions will be discussed.

Consider a (4− 2ǫ)-dimensional vector Pλ (we follow the convention that large letters are

4 − 2ǫ dimensional while small letters are four dimensional). This vector can be written as a

sum of two vectors,

Pλ = pλ + µλ (4.58)

where pλ is effectively a four dimensional vector containing the first four components of

Pλ, i.e. the projection of Pλ onto the four dimensional space. Similarly, µλ is a −2ǫ-vector,

i.e. the projection of Pλ onto the remaining −2ǫ dimensions. Since these two vectors live

in orthogonal sub-spaces, it follows that p · µ = 0, or in fact µλ is orthogonal to any four

dimensional vector. This representation of a 4 − 2ǫ vector was already discussed by ’t Hooft

and Veltman in their original paper [26]. Here we will follow the discussion in the appendix

of [43].

In this extended space, the metric is extended to 4 − 2ǫ dimensions such that it re-

mains diagonal, with all extra dimensions having the signature of the spatial dimensions,

gµν = diag(+,−,−,−,−, ...). Since µλ lives in a Eucledian subspace, we use the unorthodox

notation that µλµλ = −µ2 where µ2 is effectively a positive number (i.e. if 2ǫ is an integer, µ2

is the sum of the squares of the components of µλ). The square of P is then,

P 2 = (pλ + µλ)(pλ + µλ) = p2 − µ2 (4.59)

Note that if P is a momentum with mass m, then p2 = m2 + µ2 and the extra dimensional

part appears as an effective mass of the four dimensional momentum. In loop calculations,

µ2 will always appear in this combination. Remember, though, that this extra mass is later

integrated out.

Let us now look at some special properties of µλ in the context of Dirac matrices. The

usual algebra of the gamma matrices is extended to 4 − 2ǫ-dimensions following the normal

definition, {γλ, γρ} = 2gλρ. From here it directly follows that for any four dimensional vector

qµ,

{�q,�µ} = 2q · µ = 0 (4.60)
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In QCD amplitudes, it is common to consider some fixed configuration of the external

gluon helicities, in which case γ5 matrices appear in the amplitude in the form of projection

matrices w± = 1
2 (1 ± γ5). Using the arbitrary dimension definition for γ5 (γ5 is determined

by the first four components of γλ, but it doesn’t constrain the dimension of space-time or the

number of components of γλ),

γ5 = iγ0γ1γ2γ3 (4.61)

it follows that any four dimensional vector contracted with γλ, anti-commutes with γ5,

{�q, γ5} = {q0γ
0 + q1γ

1 + q2γ
2 + q3γ

3, iγ0γ1γ2γ3} = 0 (4.62)

since every component of �q must be anti-commuted only three times. On the other hand,

since �µ does not contain any 0, 1, 2, 3 components, then it must be anti-commuted through γ5

four times, producing an overall commutation relation,

[�µ, γ5] = 0 (4.63)

This implies that in contrast to four dimensional vectors, which change the sign of the pro-

jection operators when commuting through them (w±�q = �qw∓), �µ simply commutes through

them,

w±�µ = �µw± (4.64)

In unitarity calculations, where loop diagrams are cut and loop particles become exter-

nal particles with on-shell momenta, we will often encounter fermionic spinors with 4 − 2ǫ

momenta. Consider such a fermion with momentum Pλ, and denote the spinor by |P 〉 (we

assume it is a fermion and not an anti-fermion, for anti-fermions m → −m). By the Dirac

equation,

�P |P 〉 = m|P 〉 ⇒ �p|P 〉 = (m −�µ)|P 〉 and 〈P |�P = 〈P |m ⇒ 〈P |�p = 〈P |(m −�µ) (4.65)

The completeness relation for such fermions, when summing over the two spin states, is,

∑

spins

|P 〉〈P | = �P + m = �p +�µ + m (4.66)

Integral reduction

When evaluating a one-loop Feynman diagram using the FDH scheme, all propagators take

on the form ((P +k1 + ...+kn)
2−m2)−1. Taking advantage of the fact that µλ is orthogonal to
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four dimensional vectors, these factors simplify to ((p + k1 + ... + kn)
2 − m2 − µ2)−1, noticing

again that µ2 appears as an additive term to the squared mass. Factors of µλ can also appear

in the numerator. An odd number of such factors will cause the integral to vanish since all

pairs will be eventually contracted against each other or against four dimensional quantities,

leaving a single factor to be contracted against a four dimensional quantity. Alternatively,

one can argue that the integrand will be odd and for that reason vanish. An even number

of µ factors will be contracted against each other, or against four dimensional quantities, in

which case they vanish. Finally, we will be left to deal only with factors of µ2. A general

integral expression is thus,

∫
d4−2ǫP

(2π)4−2ǫ
(µ2)mf(pλ, µ2) (4.67)

where m is some positive integer. We will now show that for any m, this integral can be

reduced to a higher dimensional integral with m = 0. To this end, we split the integral

into a four dimensional measure and a (−2ǫ) measure, and transform the integral over µλ to

spherical coordinates using (2.9),

∫
d4−2ǫP

(2π)4−2ǫ
(µ2)mf(pλ, µ2) =

∫
d4p

(2π)4

∫
d−2ǫµ

(2π)−2ǫ
(µ2)mf(pλ, µ2)

=

∫
d4p

(2π)4

∫

dΩ−2ǫ−1

∫ ∞

0

d|µ|
(2π)−2ǫ

|µ|−2ǫ−1(µ2)mf(pλ, µ2)

=

∫
d4p

(2π)4

∫

dΩ−2ǫ−1

∫ ∞

0

dµ2

2(2π)−2ǫ
(µ2)−ǫ−1+mf(pλ, µ2)

(4.68)

where in the last step we used that dµ2 = 2|µ|d|µ|. Since the integrand does not depend on

the angle of the vector µλ, the angular part can be performed using (2.14),

∫

dΩ−2ǫ−1 =
2π−ǫ

Γ(−ǫ)
(4.69)

The integral still contains a factor of (µ2)−ǫ−1+m which must be somehow absorbed in

the integration measure. We perform the opposite step of transforming back from spherical

coordinates to Euclidean coordinates, but this time around to 2m dimensions higher. In

−2ǫ + 2m dimensions, the µλ integral is,

∫
d−2ǫ+2mµ

(2π)−2ǫ+2m
=

∫

dΩ−2ǫ−1+2m

∫ ∞

0

d|µ|
(2π)−2ǫ+2m

|µ|−2ǫ−1+2m

=

∫

dΩ−2ǫ−1+2m

∫ ∞

0

dµ2

2(2π)−2ǫ+2m
(µ2)−ǫ−1+m

=
2π−ǫ+m

Γ(−ǫ + m)

∫ ∞

0

dµ2

2(2π)−2ǫ+2m
(µ2)−ǫ−1+m (4.70)
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Comparing this result with the above expression (4.68), the integral can be re-expressed in

higher dimensions, and finally rewritten in terms of a higher dimensional vector P ,

∫
d4−2ǫP

(2π)4−2ǫ
(µ2)mf(pλ, µ2) = (4π)m

Γ(−ǫ + m)

Γ(−ǫ)

∫
d4p

(2π)4

∫
d−2ǫ+2mµ

(2π)−2ǫ+2m
f(pλ, µ2)

= (4π)m
Γ(−ǫ + m)

Γ(−ǫ)

∫
d4+2m−2ǫP

(2π)4+2m−2ǫ
f(pλ, µ2) (4.71)

= (4π)m(−ǫ + m − 1)(−ǫ + m − 2)...(−ǫ)

∫
d4+2m−2ǫP

(2π)4+2m−2ǫ
f(pλ, µ2)

where the relation (B.5) for Gamma functions was used in the last step.

We conclude that to reduce each power of µ2 appearing in the numerator, two dimensions

must be added to the integral. In general, higher dimension integrals are more prone to UV

divergences, hence the appearance of factors of ǫ which reduce the degree of divergence to

that of the original four dimensional integral.

In the case m = 1, a single power of µ2 in the denominator, we have the following formula,

Id=4−2ǫ
n [µ2] = −4πǫId=6−2ǫ

n (4.72)

where Idn is a scalar Feynman integral with n propagators and a d dimensional loop momen-

tum.

The 6 − 2ǫ dimension scalar integral can be calculated using the same techniques as dis-

cussed in section 2.1 (since the calculation was performed in arbitrary d-dimensions). Alter-

natively, recursive formulas exist to express higher dimensional scalar integrals in terms of

lower dimensional scalar integrals with the same number of legs and with one leg contracted.

Such a formula is presented in section 4.5.

4.4.1 Example - gg → qq̄ tree amplitude

To demonstrate the usefulness of the extra dimensional vector µ in calculating amplitudes

in d-dimensions, we now calculate the color ordered tree amplitude for a process of two

positive helicity gluons and two massive quarks. The amplitude of all outgoing particles,

Atree
4 (−L1, 1

+, 2+, L2), together with the two contributing diagrams, is depicted in figure 4.7.

The quark momenta are evaluated in d = 4 − 2ǫ. This tree amplitude can then be used

to construct one loop amplitudes with a quark propagating in the loop using the unitarity

method. The result of this tree calculation appears in [43, 52] where it is used to construct

the gggg and gggH loop amplitudes. We will later make use of this result in evaluating the

ggHH one-loop amplitude.
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Capital letter momenta will stand for d dimensional momenta and will be decomposed to

Pα = pα+ µα. From overall momentum conservation, we know that L1 = L2 + k1 + k2, where

L1 = l1 +µ and L2 = l2+µ (both −2ǫ components of the two D-dim vectors are equal following

from choosing µ to be orthogonal to all four dimensional vectors). For convenience, external

fermions will appear using the bra-ket notation. An outgoing fermion will be denoted by 〈L|,
while an incoming fermion by |L〉.

Using the color ordered Feynman rules appearing in appendix A, the amplitude of dia-

gram 4.7(a) is:

A(a) = 〈−L1|
−i√

2
γρ|−L2〉

−i

P 2

i√
2
(gνµ(k2−k1)

ρ+gρν(p−k2)
µ+gµρ(k1−p)ν)ǫ+1,µ(2)ǫ+2,ν(1) (4.73)

where ǫ+1,µ(2) refers to a polarization vector of an outgoing gluon with positive helicity, mo-

mentum k1 and reference momentum k2, and is represented in the spinor helicity formalism,

ǫ+1,µ(2) =
〈2 − |γµ|1−〉√

2〈21〉
(4.74)

The last four terms in the 3-gluon vertex expression vanish following the relations,

ǫ+1,µ(2) · k1 = ǫ+1,µ(2) · k2 = 0

ǫ+2,µ(1) · k1 = ǫ+2,µ(1) · k2 = 0 (4.75)

The first two terms are proportional to a metric that contracts the two polarization vec-

tors:

1+

2+

L1

L2

k1

k2

=

P

(a)

+ P

(b)

Figure 4.7: The gg → qq̄ color ordered tree amplitude
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ǫ+1,µ(2) · ǫ+µ2 (1) =
〈2 − |γµ|1−〉√

2〈21〉
〈1 − |γµ|2−〉√

2〈12〉

=
2〈21〉[21]

〈21〉〈12〉 =
2k1 · k2

〈21〉2 =
P 2

〈21〉2 (4.76)

where the Fierz identity was used in the second equality.

The amplitude for this diagram is,

A(a) =
−i

2

1

〈21〉2 〈−L1|�k2 − �k1| − L2〉 (4.77)

The amplitude of diagram 4.7(b) is given by,

A(b) = 〈−L1|
−i√

2
γµ

i(−�P + m)

P 2 − m2

−i√
2
γν | − L2〉ǫ+,µ1 (2)ǫ+,µ2 (1)

= − i

2
〈−L1|�ǫ+1 (2)(−�P + m)�ǫ

+
2 (1)| − L2〉

1

P 2 − m2
(4.78)

Since P = k2 + L2, then P 2 − m2 = k2
2 + L2

2 + 2k2 · L2 − m2 = 2k2 · (l2 + µ) = 2k2 · l2,

following our choice of µ being perpendicular to all four dimensional vectors. We also used

the on-shellness of L2. The expression so far is,

A(b) = − i

2
〈−L1|�ǫ+1 (2)(−�k2 − �l2 −�µ + m)�ǫ

+
2 (1)| − L2〉

1

2k2 · l2
(4.79)

To evaluate this expression, we use the property that {�l,�µ} = 0 for any four dimensional

vector lµ, to anticommute �ǫ with �µ. We also use that,

{�k2,�ǫ
+
2 (1)} = 2k2 · ǫ+2 (1) = 0

{�l2,�ǫ
+
2 (1)} = 2l2 · ǫ+2 (1) (4.80)

Using the Dirac equation in d dimensions, we can derive one more useful relation,

−�L2| − L2〉 = m| − L2〉 = (−�l2 −�µ)| − L2〉 ⇒ (�µ + m)| − L2〉 = −�l2| − L2〉 (4.81)

Applying these relations to the amplitude, we obtain the expression,

A(b) =
−i

2
〈−L1|�ǫ+1 (2)�ǫ

+
2 (1)(�k2 + �l2 +�µ + m) − �ǫ

+
1 (2)2l2 · ǫ+2 (1)| − L2〉

1

2k2 · l2
=

−i

2
〈−L1|�ǫ+1 (2)�ǫ

+
2 (1)�k2 − �ǫ

+
1 (2)2l2 · ǫ+2 (1)| − L2〉

1

2k2 · l2
(4.82)
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where the term �l2 +�µ + m cancels out by the Dirac equation when applied on | − L2〉.

Consider now the expression between the d dimensional spinors. We can express the

polarization vectors in terms of spinor products. This yields a trace which can be easily

performed,

�ǫ
+
1 (2)�ǫ

+
2 (1)�k2 − �ǫ

+
1 (2)2l2 · ǫ+2 (1)

= γµγν
〈2 − |γµ|1−〉√

2〈21〉
〈1 − |γν |2−〉√

2〈12〉 �k2 − γµ
〈2 − |γµ|1−〉√

2〈21〉
2
〈1 − |�l2|2−〉√

2〈12〉

=
1

2

〈2 − |γµ|1−〉〈1 − |γν |2−〉(γµγν�k2 − 2γµlν2 )

−〈21〉2

= −1

2

1

〈21〉2 tr[w−�k2γµ�k1γν ](γ
µγν�k2 − 2γµlν2 )

= −1

2

1

〈21〉2 (γµγν�k2 − 2γµlν2 )2(−k1 · k2gµν + {k1, k2}µν + iǫρσµνk
ρ
1kσ2 ) (4.83)

= − 1

〈21〉2
[
− 4k1 · k2�k2 + 2k1 · k2 �l2 + 2k1 · k2�k2 − 2k2 · l2�k1 − 2k1 · l2�k2

+iǫρσµνk
ρ
1kσ2 (γµγν�k2 − 2γµlν2)

]

where w− = 1
2 (1 − γ5). We can simplify the first five terms as follows,

−2k1 · k2�k2 + 2k1 · k2 �l2 − 2k2 · l2�k1 − 2k1 · l2�k2 = 2k1 · k2 �l2 + 2k2 · (l1 − k1)�k2 − 2k2 · l2�k1

= 2k1 · k2 �l2 + 2k2 · l2(�k2 − �k1) (4.84)

The two terms proportional to the Levi-Civita tensor can can be re-expressed in terms of

γ5 using (C.13) and (C.14),

i

2
ǫρσµν(2γµlν2 − γµγν�k2)k

ρ
1kσ2 =

i

2
ǫρσµν(γ

µ{�l2, γ
ν} − γµγν�k2)k

ρ
1kσ2

=
i

2
ǫρσµν(γ

µ
�l2γ

ν + γµγν(�l2 − �k2))k
ρ
1kσ2

=
1

2

(
1

2
γ5(�l2[γρ, γσ] − [γρ, γσ]�l2) + γ5[γρ, γσ](�l2 − �k2)

)

kρ1kσ2

Using momentum conservation, we can replace l2 = l1 − k1 − k2 in the first term,

=
1

2
(
1

2
γ5(�l1[�k1, �k2] − �k1[�k1, �k2] − �k2[�k1, �k2] − [�k1, �k2]�l2 + 2[�k1, �k2]�l2 − 2[�k1, �k2]�k2)) (4.85)

= −1

4
{(−�l1)γ

5(−[�k1, �k2]) + γ5[�k1, �k2](−�l2)} −
1

4
γ5{�k1[�k1, �k2] + �k2[�k1, �k2] + 2[�k1, �k2]�k2}

The first two terms cancel against each other when acted on by the two spinors on both

sides in the full expression. 〈−L1|(−�l1) = 〈−L1|(�µ + m) and (−�l2)| − L2〉 = (�µ + m)| − L2〉.
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The term �µ+ m can be freely commuted from one side to the other since it commutes with γ5

and it commutes with the two four dimensional gamma matrices in [�k1, �k2]. Following these

manipulations, the two first terms are identical with opposite signs and cancel each other.

When writing out the commutators explicitly, and using �k2
i = k2

i = 0, the first three terms

reduce to,

= −1

4
γ5{−�k1�k2�k1 + �k2�k1�k2 − 2�k2�k1�k2}

= −1

4
γ5{−�k1�k2�k1 − �k2�k1�k2}

= −1

4
γ5{−2�k1k2 · k1 − 2�k2k1 · k2}

= −1

4
γ5(2k1 · k2)(�l2 − �l1)

= −1

4
(2k1 · k2)(�l1γ

5 + γ5
�l2)

=
1

2
(2k1 · k2)γ

5(�µ + m)

where in the last step we again applied �li on the spinors in the left and right hand side.

The final expression for this diagram is,

A(b) =
i

2

1

〈21〉2
[−2k1 · k2

2k2 · l2
〈−L1|(1 + γ5)(�µ + m)| − L2〉 + 〈−L1|�k2 − �k1| − L2〉

]

(4.86)

The second term is equal to −A(a), and the final amplitude reduces to the simple expres-

sion,

Atree
4 (−L1, 1

+, 2+, L2) = A(a) + A(b) = i
[12]

〈12〉
1

2k2 · l2
〈−L1|w+(�µ + m)| − L2〉 (4.87)

= i
[12]

〈12〉
1

(L1 − k1)2 − m2
〈−L1|w+(�µ + m)| − L2〉

4.5 Feynman Parameter Shift

A useful technique is introduced in [53], allowing one to reduce a tensor Feynman integral

in a way other than the Passarino-Veltman reduction described in section 2.2. In loop calcu-

lations, one often encounters tensor integrals of the form,

In[p · ki] =

∫
ddp

(2π)d
p · ki

(p2 − m2)((p + k1)2 − m2)...((p + k1 + ... + kn−1)2 − m2)
(4.88)
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where {ki} is a set of outgoing external momenta. p ·ki can often be expressed as a difference

of two inverse scalar propagators, in which case Passarino-Veltman can be straightforwardly

applied to express In+1[p · ki] in terms of n-point and (n − 1)-point integrals. At other times,

where this is not possible, the Feynman parameter shift method comes into use.

Let us define a general Feynman integral,

In[N ] =

∫
ddp

(2π)d
N

(p2 − m2)((p + k1)2 − m2)...((p + k1 + ... + kn−1)2 − m2)
(4.89)

and introduce the Feynman parameters according to the normal prescription,

In =

∫
ddp

(2π)d

∫ 1

0

da1...dan (4.90)

× (n − 1)!δ(1 −∑i ai)

[a1(p2 − m2) + a2((p + k1)2 − m2) + ... + an((p + k1 + ... + kn−1)2 − m2)]
n

Figure 4.8 depicts the case of a 4-point integral. After opening up the brackets in the denom-

inator, the following variable redefinition must be performed to rid of all linear terms in the

integration variable p,

p = l − (a1(0) + a2(k1) + ... + an(k1 + ... + kn−1)) (4.91)

Let us now consider the case where N contains one power of p. After the parameter shift,

the term linear in the new variable l will vanish (odd integral), and the remaining terms will

p + k1

p + k1 + k2 + k3

p + k1 + k2p

k2

k3k4

k1

a2

a3

a4

a1

p13 = p31 = k1 + k2

Figure 4.8: Example of a 4-point integral. All external momenta are outgoing. The Feynman parame-

ter multiplying each leg is indicated. An example of a pij matrix element is given.
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have one power of ai in the numerator, i.e. will take the form In[ai].

We will now describe the formula, proven in [53], to express In[ai] in terms of scalar

integrals Im[1], with m = n or m = n − 1. First define a kinematical n × n matrix pij , s.t.,

pij = pji = ki + ki+1 + ...kj−1, pii = 0 (4.92)

Then define the Sij matrix,

Sij = m2 − 1

2
(pij)

2 (4.93)

([53] treats the more general case where every leg has a different mass.)

Now one has to invert the matrix Sij , and calculate the following quantities,

ci =

n∑

j=1

(S−1)ij

c0 =

n∑

i=1

ci

cij = (S−1)ij −
cicj
c0

(4.94)

Inverting this matrix can become quite messy and can be better calculated using a computer

program such as Mathematica. In terms of these c quantities, the reduction formula is,

In[ai] = −1

2

n∑

j=1

cijI
(j)
n−1 +

ci
c0

In (4.95)

where I
(j)
n−1 is a scalar integral with the leg multiplied by the parameter ai eliminated. In

[53, 35], a formula for In[aiaj...ak] can be found in terms of derivatives of scalar integrals

with respect to combinations of kinematical variables.

In chapter 6 we make use of this formula.

Higher dimensional integrals

In section 4.4, we saw that feynman integrals containing µ2 in the numerator can be ex-

pressed as higher-dimensional integrals free of such factors. After introducing the Sij matrix

formalism, we can write out a recursive formula relating higher dimensional integrals to the

familiar 4 − 2ǫ dimensional integrals.

In [53, 35] such formulas are derived by solving n-point Feynman integrals with an in-

verse scalar propagator in the numerator in two ways. Once by simply cancelling the inverse
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propagator in the numerator against the corresponding propagator, yielding an (n− 1)-point

scalar integrals. The second time, by introducing feynman parameters, yielding an n-point

Feynman integral with a Feynman parameter in the numerator. Finally, summing over all

possibilities of inverse propagators in the numerator, and using the fact that the sum over

all Feynman parameters is one, one obtains the following recursive formula,

4πId=6−2ǫ
n =

1

(n − 5 + 2ǫ)c0

(

2Id=4−2ǫ
n +

n∑

i=1

ciI
(i),d=4−2ǫ
n−1

)

(4.96)

Similarly, for yet higher dimensions (useful for cases where (µ2)2 appears in the denomi-

nator), the following holds,

4πId=8−2ǫ
n =

1

(n − 7 + 2ǫ)c0

(

2Id=6−2ǫ
n +

n∑

i=1

ciI
(i),d=6−2ǫ
n−1

)

(4.97)
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CHAPTER 5

Mellin-Barnes Transformation

5.1 Mathematical Introduction

Feynman loop integrals gain in complexity as either the number of loops or the number of in-

ternal lines grows. Introducing masses to the internal lines removes infrared and collinear

divergences, but at the same time complicates the integration over the Feynman parame-

ters. The Mellin-Barnes transformation has been found useful in simplifying this part of

the process, while introducing new integration variables that can be dealt with by contour

integration methods. In essence, the Mellin-Barnes formula transforms sums of the type

(A + B)−a into products of powers of A and B. This can be used in either transforming mas-

sive propagators to massless ones or in turning Feynman parameter integrals trivial. The

mathematical technology dates back to work done by E.W. Barnes and H. Mellin in the turn

of the 20th century and was first used in the context of loop integrals by Usyukina [21]. It is

widely used today by various groups in tackling higher loop diagrams.

We begin with a mathematical introduction and a demonstration of the main tools [22].

As a pedagogical example, we will calculate a massive bubble diagram, demonstrating the

main components of the method.
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5.1.1 Hypergeometric series and function

The hypergeometric series is defined as a power series such that the ratio of successive

coefficients is a rational function of n,

∞∑

n=0

anz
n ;

an+1

an
=

A(n)

B(n)
(5.1)

where z is complex and A(n) and B(n) are polynomials in n. A finite polynomial can be

in general factorized into linear pieces, A(n) = (a1 + n)(a2 + n)...(aN + n), where N is the

polynomial degree. Any hypergeometric series can be accordingly brought to the form,

pFq(a1, ..., ap; b1, ..., bq; z) =

∞∑

n=0

(a1)n...(ap)n
(b1)n...(bq)n

zn

n!

=
Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap)

∞∑

n=0

Γ(a1 + n)...Γ(ap + n)

Γ(b1 + n)...Γ(bq + n)

zn

n!
(5.2)

where (a)n = a(a + 1)...(a + n− 1) is the Pochhammer symbol and (1)n = n!. In the context of

the Mellin-Barnes transformation we will be interested in the following special case,

Γ(a)Γ(b)

Γ(c)
F (a, b; c; z) =

∞∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
(5.3)

which we simply denote by F . Note that F is convergent (and thus analytic) in the region

|z| < 1.

Many known functions can be expressed as a hypergeometric series,

ln(1 − z)

−z
= F (1, 1; 2; z)

arcsin z

z
= F (

1

2
,
1

2
;
3

2
; z2) (5.4)

1

(1 − z)a
= F (a, b; b; z) =

∞∑

n=0

Γ(a + n)

Γ(a)n!
zn = 1 + az +

a(a + 1)

2!
z2 +

a(a + 1)(a + 2)

3!
z3 + ...

We will specifically make use of the latter function. Note that while its series representation

converges only in the region |z| < 1, the function itself converges in the entire region (con-

nected) z 6= 1. The function, therefore, is an analytic continuation of the series in the region

z 6= 1.

5.1.2 Barnes’ contour integral for the hypergeometric function

We now seek an integral representation for (5.1). Begin with the following expression,
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1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)

Γ(c + s)
(−z)sds (5.5)

The integrand has three sets of poles in s: {0, 1, 2, ...}, {−a,−a−1,−a−2, ...} and {−b,−b−
1,−b− 2, ...}, corresponding to the poles of Γ(−s), Γ(a + s) and Γ(b + s), respectively. Assume

that the integration path is such that the first set of poles is on the right side of the path

while the other two sets are on the left side of the path.

To perform this integration using Cauchy’s theorem, it is necessary to show that the

integral over an arc of radius N → ∞, on either the left side or the right side of the path,

vanishes. To this end, it is necessary to assume for both cases that |arg(−z)| < π (a branch

cut along the positive real axis of z). Consider first the case of closing the contour by an arc

on the right side of the path. It is shown in [22] that if |z| < 1, the integral along the arc

vanishes (by considering the asymptotic behaviour of the Γ functions). Then, by Cauchy’s

theorem, (5.5) is equal to the sum of all the residues of the poles of the integrand, which by

assumption are just the poles of Γ(−s),

Γ(−s) =
Γ(1 − s)

−s
=

Γ(2 − s)

(−s)(−s + 1)
= ... =

Γ(n + 1 − s)

(−s)(−s + 1)...(−s + n)

= (−1)n+1 Γ(n + 1 − 2)

s!

1

s − n
(5.6)

In the last expression it is manifest that all poles are simple poles.

Picking up an extra minus sign because the contour is clockwise, the integral becomes,

(5.5) = −
∞∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)
(−1)nzn(−1)n+1 Γ(n + 1 − n)

n!

=

∞∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
=

Γ(a)Γ(b)

Γ(c)
F (a, b; c; z) (5.7)

The integral (5.5) is analytic in a larger region than its series representation (5.7) which

is analytic only in the region |z| < 1. Let us find a representation in the remaining region.

This is accomplished by closing the contour on the left side of the path. In this case we would

have to assume that |z| > 1 and that a − b is non-integer (no overlapping poles). Similar to

the previous case, it is shown in [22] that under these conditions the integral along the arc

vanishes and (5.5) is the sum over all residues of poles of Γ(a+n) and Γ(b+n). In this region,

(5.5) =
Γ(a)Γ(a − b)

Γ(a − c)
(−z)aF (a, 1 − c + a; 1 − b + a; z−1)

+
Γ(b)Γ(b − a)

Γ(b − c)
(−z)bF (b, 1 − c + b; 1 − a + b; z−1) (5.8)
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To summarize, we found that under the restriction that z is not real and positive, the

hypergeometric series (5.1), analytic in the region |z| < 1, can be represented as the integral

(5.5). In fact, this integral is analytic in a larger region and is thus an analytic continuation

of the series. We additionaly found a representation for this series in the region |z| > 1 in

terms of hypergeometric series that are functions of z−1.

Special case for Feynman diagrams

For the evaluation of Feynman diagrams, we will be interested specifically in the last func-

tion in (5.4). We thus set b = c, and in the entire region |arg(−z)| < π the following relation

holds,

1

(1 − z)a
=

1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(−s)

Γ(a)
(−z)sds (5.9)

Remember that the vertical integration path must cross the real access at −a < Re s < 0,

thus separating the poles of the two Gamma functions in the numerator.

5.1.3 Barnes’ lemma

Barnes’ lemma provides another useful formula in Mellin-Barnes calculations,

1

2πi

∫ i∞

−i∞
Γ(α+s)Γ(β+s)Γ(γ−s)Γ(δ−s)ds =

Γ(α + γ) + Γ(α + δ) + Γ(β + γ) + Γ(β + δ)

Γ(α + β + γ + δ)
(5.10)

where in fact, as a corollary of this lemma, the integration path can be shifted left or right

by any value. The proof appears in [22] and involves a straightforward contour integration

and a summation over an infinite series of residues.

5.2 Massive Scalar Integrals

There are two different strategies to employ the Mellin-Barnes transformation in solving

Feynman integrals. In the first, using (5.9), every massive propagator is rewritten as a

massless propagator and an extra Mellin-Barnes integration,

1

(q2 − m2 + iǫ)a
=

1

Γ(a)

1

2πi

∫ i∞

−i∞

(−m2)s

(q2 + iǫ)a+s
Γ(a + s)Γ(−s)ds (5.11)

After a straightforward evaluation of the simpler massless integral, the remaining Mellin-

Barnes integrals are performed using either Barnes’ lemma or a properly chosen contour
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5.2. MASSIVE SCALAR INTEGRALS

integration. The result can be expressed as a hypergeometric function which in simple cases

can be translated into more familiar functions or in more complicated cases can be evaluated

numerically. [23] applies this strategy in calculating massive bubble and triangle diagrams.

In their calculation, the two propagators of the bubble or the three propagators of the triangle

are raised to an arbitrary power. This can be useful, for example, for calculations in the

analytic regularization scheme (see section 2.1) .

Equation (5.9) offers yet another alternative for tackling Feynman loop integrals. In

chapter 2, we discussed the standard approach where first Feynman parameters are applied,

followed by the momentum integration, leaving us with integrating out the Feynman param-

eters in the very end. The Feynman parameters were used as a tool intended to simplify the

momentum integration by making the momentum dependence essentially spherical symmet-

ric. Unfortunately, the number of parameters grows with the number of internal lines and

these integrals become quite tedious.

In this strategy, the transformation is employed at a later stage, just before the Feynman

parameter integrations. This scheme is neatly explained in [54]. Typically, in a dimension-

ally regularized one-loop integral, after introducing Feynman parameters and performing

the momentum integration (see equation (B.11)) , one is left with the task of integrating a

factor of (M2)v with respect to all the Feynman parameters, where M2 is a quadratic form in

the Feynman parameters. Assume the quadratic form consists of N terms. We rewrite (5.9)

in a more convenient form,

1

(A + B)v
=

1

2πiΓ(v)

∫ i∞

−i∞
dsAsB−s−vΓ(v + s)Γ(−s) (5.12)

Insert this identity N −1 times to reduce the sum of N terms in the denominator to a product

of N factors. Then the Feynman parameter integration simplifies to the following beta-like

function which can be expressed as a product of Gamma functions (the proof of which follows

the same line as that of the beta function),

∫ 1

0

k∏

j=1

(dxjx
αj−1
j )δ(1 −

∑

xi) =
Γ(α1)...Γ(αk)

Γ(α1 + ... + αk)
(5.13)

Finally, we are left with the N − 1 Mellin-Barnes integrations. At this point there is a

subtlety concerning our dimensional regularization scheme. Having worked in d = 4 − 2ǫ

dimensions, factors of ǫ will enter into the arguments of the various Gamma functions. If

the original integral was UV or IR and collinear divergent, we expect this last integral to be

so as well in the limit ǫ → 0. Tausk [24] developed a method in which we begin with ǫ in a

region where the integral is manifestly finite. We then analytically continue the integral to

cover the region around ǫ = 0, on the way picking up residues of poles which will contain the

expected divergences. The integral is then evaluated by contour integration or by Barnes’
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lemma where possible.

To make this procedure clear, we perform an explicit calculation of the massive bubble

integral.

Massive bubble integral

The massive bubble integral was calculated both straightforwardly and using the unitarity

method in the context of the Vacuum polarization amplitude in earlier chapters. Since any

tensor bubble integral can be reduced to scalar bubble (and tadpole) integrals, it will be

sufficient to consider the scalar case,

B =

∫
ddk

(2π)d
1

(k2 − m2 + iǫ)((k − p)2 − m2 + iǫ)

=

∫
ddk

(2π)d

∫ 1

0

da1da2
δ(1 − a1 − a2)

[a1(k2 − m2) + a2((k − p)2 − m2) + iǫ]2

=

∫ 1

0

da1da2δ(1 − a1 − a2)

∫
ddq

(2π)d
1

[q2 − M2 + iǫ]2
(5.14)

where the integration variable was shifted according to q = k − a2p, and,

M2 = m2 − a1a2s, s = p2 (5.15)

The momentum integration can be performed using (B.11),

B =
iΓ(ǫ)

(4π)2
1

(4π)−ǫ

∫ 1

0

da1da2δ(1 − a1 − a2)(m
2 − a1a2s)

−ǫ (5.16)

Apply (5.12) on the integrand,

B =
1

2πi

i

(4π)2
1

(4π)−ǫ

∫ 1

0

da1da2δ(1 − a1 − a2)

∫ i∞−k

−i∞−k
dσ(m2)σ(−sa1a2)

−σ−ǫΓ1(σ + ǫ)Γ2(−σ)

=
1

2πi

i

(4π)2

(
m2

4π

)−ǫ ∫ i∞−k

−i∞−k
dσ

(
m2

−σ

)σ+ǫ

Γ1(σ + ǫ)Γ2(−σ) (5.17)

×
∫ 1

0

da1da2δ(1 − a1 − a2)a
−σ−ǫ
1 a−σ−ǫ

2

where we have numbered the Gamma functions for reference only. k must take some real

value between −ǫ and 0 to separate the poles of Γ1 and Γ2. The Feynman parameters are in

the desired form and the integrations can be performed using (5.12),

B =
1

2πi

i

(4π)2

(
m2

4π

)−ǫ ∫ i∞−k

−i∞−k
dσ

(
m2

−σ

)σ+ǫ
Γ1(σ + ǫ)Γ2(−σ) (Γ3(1 − σ − ǫ))

2

Γ(2 − 2σ − 2ǫ)
(5.18)
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The poles of the integrand are indicated in figure 5.1. For clarity reasons, the poles are drawn

slightly off the real axis.

Note the following problem involving the dimensional regulator ǫ. The physical limit is

reached when ǫ → 0. This limit cannot be taken, since the integration path crosses the real

axis between −ǫ and 0. Let us assume that k = 1
8 and ǫ = 3

8 . In this case, the arguments of

all the Gamma functions are positive, the integral does not cross any poles and is thus finite

(the integrand is well behaved at σ → i∞ and σ → −i∞). This agrees with the fact that

the original Feynman integral was well behaved at this value of ǫ, i.e. the divergence was

regularized.

To reach the physical limit, we follow the method devised by Tausk [24]. Shift the inte-

gration path to the left past the first pole of Γ1 at −ǫ, for example to k = 1
2 . See figure 5.1.

The contour around this pole contributes the residue of the integrand at σ = −ǫ. This is

easily calculated and contributes,

R =
1

2πi

i

(4π)2

(
m2

4π

)−ǫ
Γ(ǫ) (5.19)

The integral is at this point equal to,

2 4−2−4

Im σ

Re σ

poles of Γ1 poles of Γ2

poles of Γ3

−ǫ

Figure 5.1: The pole structure of the Mellin-Barnes integral. All poles are on the real axis and are

shifted upwards for clarity. The integration path spans from (−i∞− k) to (i∞− k), where k is real and

takes some value between −ǫ and 0. When the integration path is shifted to the left of the first pole,

σ = −ǫ, the residue is picked by the loop surrounding the pole.
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B =
1

2πi

i

(4π)2

(
m2

4π

)−ǫ ∫ i∞− 1
2

−i∞− 1
2

dσ

(
m2

−σ

)σ+ǫ
Γ1(σ + ǫ)Γ2(−σ) (Γ3(1 − σ − ǫ))

2

Γ(2 − 2σ − 2ǫ)
+ R (5.20)

The complete UV divergence now lies in the term R. We can now safely take the limit ǫ → 0

and evaluate the integral by closing the contour to the left and picking up the poles at all

negative integer values of σ.

B =
i

(4π)2

(
m2

4π

)−ǫ ∞∑

n=1

(
m2

−s

)−n
(−1)n

n!

Γ(n)Γ(1 + n)Γ(1 + n)

Γ(2 + 2n)
+ R (5.21)

where the residue of Γ(σ) at σ = −n is
(−1)n

n! . We use the formula Γ(2z) = 22z−1π−1/2Γ(z)Γ(z+

1/2) to split the denominator. This gives,

B =
i

(4π)2

(
m2

4π

)−ǫ ∞∑

n=1

( s

4m2

)n
√

π

2

Γ(n)Γ(1 + n)

Γ(3
2 + n)n!

+ R

=
i

(4π)2

(
m2

4π

)−ǫ √
π

2

s

4m2

∞∑

m=0

( s

4m2

)m Γ(1 + m)Γ(1 + m)

Γ(5
2 + m)m!

+ R

=
i

(4π)2

(
m2

4π

)−ǫ √
π

2

s

4m2

1

Γ(5
2 )

F (1, 1;
5

2
;

s

4m2
) + R (5.22)

where (1+m)Γ(1+m) = Γ(2+m). The hypergeometric function can be found in mathematical

handbooks (such as [55]) or evaluated using Mathematica. The result is,

B =
i

(4π)2

(
m2

4π

)−ǫ(

Γ(ǫ) + 2 − 2

√

1

r
− 1 sin−1 √r

)

=
i

(4π)2

(

1

ǫ
− γE − ln 4π − lnm2 + 2 − 2

√

1

r
− 1 sin−1 √r

)

+ O(ǫ) (5.23)

where r = s
4m2 . This result agrees with a calculation using the methods of section 2.1.3.

In contrast to a direct calculation, this calculation evades any complicated integrals. In

this case, it was simple to express the hypergeometric functions as known functions. In the

general case, it is not possible and the result can be left as a hypergeometric representation,

which can be evaluated numerically to obtain cross sections.
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CHAPTER 6

Higgs Pair Production, gg → HH

As a final example demonstrating the methods introduced throughout this thesis, we calcu-

late the leading order contribution to the process of double Higgs production through gluon

fusion. This process is of potential interest in the upcoming LHC proton collider experiment

and future experiments, since it provides a possible channel for measuring the Higgs self

coupling vertex of the Standard Model. Various studies have been carried out on this topic

[56, 57, 58].

The Yukawa coupling terms, which following spontaneous symmetry breaking give mass

to the fermions, couples the Higgs scalar particle to fermions through a three-vertex. The

coupling strength is proportional to
mq

v , the quark mass divided by the Higgs vacuum expec-

tation value. The Higgs potential, which is responsible for the symmetry breaking and thus

g

g

H

H

Figure 6.1: Leading order diagram, containing a Higgs self-coupling vertex, of the double Higgs pro-

duction through gluon fusion process. Reversing the flow of charge yields a second diagram.
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CHAPTER 6. HIGGS PAIR PRODUCTION, GG → HH

invaluable to the electroweak model, generates a self interaction of three Higgs particles

proportional to λv, where λ is the coupling constant of the Higgs scalar doublet field before

symmetry breaking. These two vertices, together with the normal QCD vertices, give rise

to the leading order diagram shown in figure 6.1. This diagram carries an overall constant

factor of g2
sλmq, where gs is the strong coupling constant.

An important background to this process is the production of two Higgs particles through

a fermionic box diagram. The contributions of these diagrams to the cross section must be

subtracted from the overall signal if one was to measure the Higgs self coupling constant.

The Six possible diagrams, all of order g2
s
m2

q

v2 , are depicted in figure 6.2. Two extra diagrams,

containing a triangle quark loop connected to a three gluon vertex, vanish as a result of a

trace over a single color matrix.

In this chapter we will calculate the contribution of these box diagrams to the amplitude.

All six diagrams contain a color factor of tr[T aT b] which we leave out for the moment. Since

we are dealing with two external Higgs particles that do not carry color charge, the partial

amplitude is not color ordered and we must consider all orderings of external legs. The am-

plitude will be derived by taking advantage of the unitarity method, i.e. taking various cuts

of the amplitude and fixing the coefficients of an expansion in base integrals, as discussed in

section 3.4. We will carry a complete calculation of the case where both gluons have positive

helicity, A1−loop
4 (1+, 2+, 3H, 4H). For brevity, we omit the particle specification and refer to

the amplitude as A1−loop
4 .

1

2

4

3

k3

k4

k2

k1

b, ν
a, µ

P

P P

P

P

P

Figure 6.2: Leading order box diagrams to the double Higgs production process.
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6.1 Integral Basis

From the diagrams in figure 6.2, and following a convenient choice of the loop momentum

P , we deduce that there are six different scalar propagators appearing in the six diagrams.

By this we mean that following Passarino-Veltman reduction, scalar Feynman integrals con-

taining only these propagators will appear. The possible denominators are,

d1 = P 2 − m2

d2 = (P + k1)
2 − m2

d3 = (P + k2)
2 − m2

d4 = (P + k1 + k2)
2 − m2

d5 = (P + k1 + k3)
2 − m2

d6 = (P + k1 + k2 + k3)
2 − m2 (6.1)

The final amplitude we obtain should not be UV divergent, since this is the leading order

contribution and no counter terms exist that could potentially cancel the divergences. We

also don’t expect any IR or collinear divergences, since all internal legs are massive. Nev-

ertheless, it would be wise to work in dimensional regularization in case any intermediate

divergences appear. We choose the FDH scheme, as introduced in section 4.4. The loop

momentum P is a 4 − 2ǫ vector, while all external vectors are four dimensional.

We denote the integrals constructed from the above six propagators by Ii..k, where the

subscript refers to the propagators present, e.g.,

I1256 =
1

d1d2d5d6
(6.2)

where for convenience we suppress the integral.

From figure 6.2, it is apparent that only three possible box scalar integrals can appear,

these correspond to ”non-reduced” integrals. A single Passarino-Veltman reduction can re-

move one of the propagators, resulting in a triangle diagram. Excluding multiplicities, 12

such triangles can occur. The 15 possible box and triangle diagrams are explicitly listed in

figure 6.3. Similarly, one further PV reduction leaves us with 12 possible bubble diagrams,

and a final reduction step can potentially generate 6 different tad-poles, corresponding to

the 6 different propagators. All the tadpole integrals are equal, since they are related by a

momentum shift. They depend only on the squared mass of the quark, m2.

Let us take for a moment a closer look at the triangle diagrams. Note that in figure

6.3 there are two different triangle integrals with external legs 1 and 4 contracted. These

diagrams seem to be identical up to a reflection, yet one of them contains propagators 2, 4
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and 6, while the other contains propagators 2, 5 and 6. Written out, these integrals are,

I246 =
1

[(P + k1)2 − m2][(P + k1 + k2)2 − m2][(P + k1 + k2 + k3)2 − m2]

I256 =
1

[(P + k1)2 − m2][(P + k1 + k3)2 − m2][(P + k1 + k2 + k3)2 − m2]
(6.3)

Now notice that under the substitution P + k1 → −P − k1 − k2 − k3, the first integral is

transformed into the second integral. Such pairs containing the same set of contracted legs

are thus identical.

Now let us choose the following two triangle integrals: one with external legs 2 and 3

1 4

32

2

4

6

2 1

43

4

6

1

3 2

14

6

1

2

4 3

21

1

2

4

3 1

4

6

1

3

4 3

12

1

3

4

1 4

23

2

5

6

1

2 3

4

4

6

1

2

2

1 3

4

4

6

1

3

1

3 2

4

5

6

1

2

3 1

42

5

6

1

4 2

31

1

2

5

2 4

31

3

4

6

2

Figure 6.3: List of all possible box and triangle scalar integrals that can appear after PV reduction.

The larger numbers refers to the numbering of the external legs, while the smaller numbers refer to

the propagator number.
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contracted and one with external legs 1 and 4 contracted. For example,

I126 =
1

[P 2 − m2][(P + k1)2 − m2][(P − k4)2 − m2]

I246 =
1

[(P + k1)2 − m2][(P + k1 + k2)2 − m2][(P + k1 + k2 + k3)2 − m2]
(6.4)

where k4 = −k1 − k2 − k3. Notice that if we perform the substitution P + k1 + k2 → −P , we

get,

I126 =
1

[P 2 − m2][(P + k1)2 − m2][(P − k4)2 − m2]

I246 =
1

[P 2 − m2][(P + k2)2 − m2][(P − k3)2 − m2]
(6.5)

Both integrals are Lorentz scalars. The first integral, for example, can only depend on k2
1 , k2

4 ,

k1 ·k4 and m2. Since k2
1 = k2

2 , k2
4 = k2

3 and k1 ·k4 = k2 ·k3, then the integrals must be identical.

Using these identifications of integrals, we can reduce the 12 triangle integrals to 4.

Following the notation of [56], we denote these integrals by the letter C and by the momenta

of the two non-contracted legs, i.e.,

C(k1, k2) =
1

[P 2 − m2][(P + k1)2 − m2][(P + k1 + k2)2 − m2]
(6.6)

In this notation, the four independent integrals are,

C(k1, k2) C(k3, k4) C(k1, k3) C(k2, k3) (6.7)

The box integrals will be denoted by the letter D and the three external legs following the

propagator d1, i.e.,

D(k1, k2, k3) =
1

[P 2 − m2][(P + k1)2 − m2][(P + k1 + k2)2 − m2][(P + k1 + k2 + k3)2 − m2]
(6.8)

The three possible boxes are,

D(k1, k2, k3) D(k2, k1, k3) D(k1, k3, k2) (6.9)

We denote the bubble integrals by the letter B, and let them be a function of the squared

momentum of one of the external legs,

B(k2
1) =

1

[P 2 − m2][(P + k1)2 − m2]
(6.10)
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The 12 different bubble integrals are thus reduced to the following 5,

B(s) B(t) B(u) B(0) B(M2
H) (6.11)

The single tadpole will be denoted by the letter A.

Having set up the basis, we are now ready to calculate the coefficients of the 13 basis

integrals.

6.2 Unitarity

In chapter 3 we have seen that by taking advantage of the unitarity condition on the S-

matrix, expression (3.7) can be derived, relating the imaginary part of an amplitude with

respect to some cut to the gluing of two tree amplitudes along that cut. By cut, it is meant

that some subset of the external particles are taken to be incoming (and the others outgoing).

When the invariant formed by the incoming momenta becomes large enough, the amplitude

will typically develop an imaginary part. For example, in a 2 → 2 process, possible cuts are

s, t and u, or a decay of any one of the particles.

For each cut, we slice the amplitude such that the incoming particles are on the left side

and the outgoing on the right, thus obtaining two new amplitudes. The particles in the loop,

which are now flowing through the cut, are placed on shell. These particles become outgoing

external particles of a tree level amplitude to the left of the cut and incoming external parti-

cles of a tree amplitude to the right of the cut. We will see that the on-shellness of the loop

particles is a powerful feature, significantly simplifying expressions at intermediate stages.

The product of the two tree amplitudes is integrated over all of phase space (since the par-

ticles are one shell), and summed over all possible spins or helicities (also color and flavor

where relevant).

The procedure will become clearer as we use it to calculate the amplitude of the present

process. As discussed in section 3.4, since we have already expanded the amplitude in a base

of integrals, we can use this procedure to fix the coefficients of the expansion, thus obtaining

the full amplitude and not merely its imaginary part. Let us begin with the s-cut. We follow

a similar path to that taken in [52], where the gg → gH amplitude was calculated.

s-cut

The s-cut corresponds to taking particles 1 and 2 to be incoming and particles 3 and 4 to

be outgoing. The relevant Mandelstam variable is s = (k1 + k2)
2, the squared sum of the

incoming momenta. If we consider this process in the center of mass frame of reference of
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the two incoming particles, then s = 4E2, where E is the energy of one of the incoming

gluons. For this physical process, therefore, s is always positive. When s is large enough, we

expect the amplitude to develop an imaginary part.

This cut is portrayed in figure 6.4. In fact, we must consider all possible amplitudes

where two gluons scatter into n particles and then the same n particles scatter into 2 Higgs

particles. Since we are only interested in the one loop contribution to this process, i.e. the

g2
s
m2

q

v2 order, then only the tree amplitudes presented in the figure are relevant. For higher

orders, we should also consider larger tree and loop amplitudes on each side of the cut.

Our task is to calculate the two tree amplitudes on both sides of the cut and then plug

them into (3.46). We will simplify the expression obtained by removing all loop momenta

from the numerator. This will allow us to identify the scalar integrals and their coefficients.

Three different diagrams contribute to the left tree amplitude in figure 6.4, these appear

in figure 6.5. Diagram 6.5(c) does not contribute since it contains a color matrix that will later

be contracted with a Kronecker delta in color space coming from the amplitude to the right of

the cut. This will result in a vanishing trace over a single color matrix. Diagram 6.5(a) was

previously calculated, up to a factor 2, and its contribution is given by equation (4.86). The

factor 2 results from the fact that (4.86) was calculated using color ordered Feynman rules,

whereas here we use the usual Feynman rules. The relevant Feynman rules are identical up

to a factor of − 1√
2

appearing in each vertex. Diagram 6.5(b) can be obtained from diagram

6.5(a) by the substitution 1 ↔ 2. The resulting amplitude is,

k3

k4

2+

1+

k2

k1

L1

L2

Figure 6.4: s-cut of the gg → HH amplitude.
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Aleft = 2ig2
s

[12]

〈12〉

[
1

(L1 − k1)2 − m2
+

1

(L1 − k2)2 − m2

]

〈−L1|w+(�µ + m)| − L2〉 (6.12)

We recall that the spinor helicity representation of the polarization vectors was used for

this calculation,

ǫ+1,µ(2) =
〈2 − |γµ|1−〉√

2〈21〉
, ǫ+2,µ(1) =

〈1 − |γµ|2−〉√
2〈12〉

(6.13)

where k2 was chosen as the reference momentum for the polarization vector ǫ+1,µ of particle

1+, and k1 was chosen as the polarization vector for 2+. Each tree amplitude we calculate in

this chapter is independently gauge invariant, and we are free to choose different reference

momenta in each case. In practice, this choice is suitable in all cases. For brevity, we will

write ǫi to denote the polarization vector of particle i, recalling that it has positive helicity

and the aforementioned reference momentum.

Two diagrams contribute to the amplitude to the right side of the cut, these are shown in

figure 6.6. These can be easily calculated, yielding the amplitude,

Aright =
(

−i
m

v

)2

〈−L2|
i(−��L1 −��k3 + m)

(L1 + k3)2 − m2
+

i(−��L1 −��k4 + m)

(L1 + k4)2 − m2
| − L1〉

= i
m2

v2
〈−L2| ��k3 − 2m

(L1 + k3)2 − m2
+ ��k4 − 2m

(L1 + k4)2 − m2
| − L1〉 (6.14)

We may now plug the two tree amplitude into (3.49), allowing us to identify the coeffi-

cients of all base integrals containing an s-cut,

1+

2+

k1

k2 L1

L2

(a)

2+

1+

k2

k1 L1

L2

(b)

k1

k2 L1

L2

2+

1+

(c)

Figure 6.5: Diagram contributing to the tree amplitude to the left of the s-cut.
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A1−loop
4

∣
∣
s−cut

=
2g2
sm

2

v2

[12]

〈12〉
∑

helicity

∫
ddL1

(2π)d
1

(L2
2 − m2)(L2

1 − m2)

(
1

(L1 − k1)2 − m2
+

1

(L1 − k2)2 − m2

)

× 〈−L1|w+(�µ + m)| − L2〉〈−L2| ��k3 − 2m

(L1 + k3)2 − m2
+ ��k4 − 2m

(L1 + k4)2 − m2
| − L1〉

∣
∣
s−cut (6.15)

After summing over helicities, four different traces are obtained, each with a different set

of propagators,

A1−loop
4

∣
∣
s−cut

=
2g2
sm

2

v2

[12]

〈12〉

∫
ddL1

(2π)d
{ tr[w+(�µ + m)(−��L2 + m)(��k3 − 2m)(−��L1 + m)]

(L2
2 − m2)(L2

1 − m2)((L1 − k1)2 − m2)((L1 + k3)2 − m2)

+
tr[w+(�µ + m)(−��L2 + m)(��k4 − 2m)(−��L1 + m)]

(L2
2 − m2)(L2

1 − m2)((L1 − k1)2 − m2)((L1 + k4)2 − m2)

+
tr[w+(�µ + m)(−��L2 + m)(��k3 − 2m)(−��L1 + m)]

(L2
2 − m2)(L2

1 − m2)((L1 − k2)2 − m2)((L1 + k3)2 − m2)
(6.16)

+
tr[w+(�µ + m)(−��L2 + m)(��k4 − 2m)(−��L1 + m)]

(L2
2 − m2)(L2

1 − m2)((L1 − k2)2 − m2)((L1 + k4)2 − m2)

}∣
∣
s−cut

We would now like to identify the denominator of each term with the denominator of

one of our three basis box integrals. To this end, we are allowed to shift or reflect our loop

momenta. In the case of reflection, we must take care to only reflect the four dimensional

part, in which case the Jacobian is trivial. Recall that L1 = l1 + µ and l1 = l2 + k1 + k2. If in

the first term we perform the shift l1 = p + k1 + k2, then the denominator take the form,

(P 2 − m2)((P + k1 + k2)
2 − m2)((P + k2)

2 − m2)((P + k1 + k2 + k3)
2 − m2) (6.17)

L2

L1 k3

k4

(a)

L2

L1 k4

k3

(b)

Figure 6.6: Diagram contributing to the tree amplitude to the right of the s-cut.
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which is simply the denominator of the basis integral I1346. The same shift can be performed

on the third term, while the second and fourth term get reflected according to l1 = −p. In

each case, the numerators have to be shifted accordingly, yielding,

A1−loop
4

∣
∣
s−cut

=
2g2
sm

2

v2

[12]

〈12〉
{
I1346[tr+((�µ + m)(−�p −�µ + m)(��k3 − 2m)(−�p −�µ −��k1 −��k2 + m))]

+I1246[tr+((�µ + m)(�p −�µ +��k1 +��k2 + m)(��k4 − 2m)(�p −�µ + m))] (6.18)

+I1246[tr+((�µ + m)(−�p −�µ + m)(��k3 − 2m)(−�p−�µ −��k1 −��k2 + m))]

+I1346[tr+((�µ + m)(�p −�µ +��k1 +��k2 + m)(��k4 − 2m)(�p −�µ + m))]
}∣
∣
s−cut

where the notation I1246[N ] stands for scalar integral I1246 with the 1 in the numerator re-

placed by the expression N in the square brackets. tr+ stands for tr[w+...].

Let us now take a closer look at one of these traces. Using the fact that �µ anticommutes

with any gamma matrix contracted with a four dimensional vector, we can bring all �µ’s to

be adjacent. Then we can apply �µ�µ = −µ2, and drop any term containing a single non-

contracted µ factor, since the integrand would be odd in µ. Consider the first trace,

tr+[(�µ + m)(−�p −�µ + m)(��k3 − 2m)(−�p −�µ −��k1 −��k2 + m)]

= tr+[�µ(−�µ)(��k3 − 2m)(−�p −��k1 −��k2 + m) +�µ(−�p + m)(��k3 − 2m)(−�µ)

+m(−�µ)(��k3 − 2m)(−�µ) + m(−�p + m)(��k3 − 2m)(−�p −��k1 −��k2 + m)]

= (m2 + µ2)tr+[−��k3�p − �p��k3 −��k3��k1 −��k3��k2 − 2m2] − 2m2tr+[�p�p + �p��k1 + �p��k2] (6.19)

In the last step, all odd occurrences of gamma matrices were dropped. Finally, we can per-

form the trace. All terms containing a γ5 cancel, since there is a maximum of two gamma

matrices,

tr+(...) = −2(m2 + µ2)(2p · k3 + k3 · k1 + k3 · k2 + 2m2) − 4m2(p · p + p · k1 + p · k2) (6.20)

We can use Passarino-Veltman reduction to remove p’s from the denominator. Since we

are dealing with the first term in (6.18), the propagators (d1d3d4d6) are available for the

reduction,

p · p = d1 + m2 + µ2

2p · k1 = d4 − d3 − 2k1 · k2

2p · k2 = d3 − d1

2p · k3 = d6 − d4 − 2k1 · k3 − 2k2 · k3 − M2
H (6.21)

We also apply the kinematic relations,
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2k3 · k1 = u − M2
H

2k3 · k2 = t − M2
H (6.22)

Putting it all together, the first term in (6.18) reduces to,

I1346[tr+(...)] = I1346[(m
2 +µ2)(−s+2M2

H−8m2)+2m2s]−2I134[m
2 +µ2]+2I136[µ

2]−2I346[m
2]

(6.23)

Following the same steps for the three other terms, (6.18) becomes,

A1−loop
4

∣
∣
s−cut =

2g2
sm

2

v2

[12]

〈12〉

{

I1246[(m
2 + µ2)(−2s + 4M2

H − 16m2) + 4m2s]

+I1346[(m
2 + µ2)(−2s + 4M2

H − 16m2) + 4m2s]

−4I124[m
2 + µ2] − 4I134[m

2 + µ2] + 2I246[µ
2 − m2]

+2I346[µ
2 − m2] + 2I126[µ

2 − m2] + 2I136[µ
2 − m2]

}
∣
∣
s−cut (6.24)

The s-cut on the right hand side of the equation amounts to cancelling all scalar integrals

that cannot be cut such that particles 1 and 2 would remain on one side of the cut. This

originates from the fact that in the cut, we placed the two quarks on shell (see (3.46)), causing

occurrences of d1 and d4 in the numerator to vanish. If we would have performed this step in

(6.20), integrals I246, I346, I126 and I136 would have not appeared. Alternatively, we took the

path of ignoring this ”on-shellness” and applying the cut in this last step.

At this point, since all integrals are scalar integrals, we can identify them with our basis

integrals. As explained in the beginning of this chapter, integrals I124 and I134 are equal to

each other and can be both identified with basis integral C(k1, k2). We thus get,

A1−loop
4

∣
∣
s−cut =

g2
sm

2

v2

[12]

〈12〉

{

D(k1, k2, k3)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s] (6.25)

+D(k2, k1, k3)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s] − 16C(k1, k2)[m
2 + µ2]

}

We have managed fixed all the coefficients of integrals which contain an s-cut. This

includes the integrals C(k3, k4) and B(s) which do not appear in our expression and thus

have a vanishing coefficient. We are still left with the integration over the µ2 terms in the

numerator. We will tackle this problem in the end.
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L1L2

k3
2+

1+ k4k1

k2

Figure 6.7: t-cut of the gg → HH amplitude.

t-cut

The t-cut is slightly more complicated and will require applying some more of the tools intro-

duced earlier. The main cause for the extra intricacy is the fact that the external gluon lines

lie on opposite sides of the cut. This prevents us from simplifying the tree level expressions,

leaving the simplification to be done only after the gluing.

The diagrams contributing to the tree level amplitude located above the cut appear in

figure 6.8. These are easily evaluated, yielding,

Atop = 〈−L1|(−i
m

v
)

i(��k4 −��L1 + m)

(L1 − k4)2 − m2
(igs��ǫ1) + (igs��ǫ1)

i(−��k4 −��L2 + m)

(L1 − k1)2 − m2
(−i

m

v
)| − L2〉

=
igsm

v
〈−L1|

(��k4 + 2m)��ǫ1
(L1 − k4)2 − m2

+ ��ǫ1(��−k4 + 2m)

(L1 − k1)2 − m2
| − L2〉 (6.26)

2+

L2 L1

k2 k3

(a)

2+

L2 L1

k2k3

(b)

Figure 6.8: Diagram contributing to the tree amplitude above the t-cut.
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where in the second step −��L1 and −��L2 were applied on the spinors to the left and to the

right, respectively.

The amplitude on the bottom can be obtained from the top amplitude by replacing L1 ↔
L2, ǫ1 → ǫ2 and k4 → k3, and using the momentum conservation of the tree amplitude

L2 = L1 + k2 + k3,

Abottom =
igsm

v
〈−L2|

(��k3 + 2m)��ǫ2
(L1 + k2)2 − m2

+ ��ǫ1(��−k3 + 2m)

(L1 + k3)2 − m2
| − L1〉 (6.27)

In the same way as in the case of the s-cut, we obtain the t-cut of the loop amplitude,

A1−loop
4

∣
∣
t−cut

= −g2
sm

2

v2

∫
ddL1

(2π)d
{ tr[(−��L1 + m)(��k4 + 2m)��ǫ1(−��L2 + m)(��k3 + 2m)��ǫ2]

(L2
1 − m2)((L1 + k2 + k3)2 − m2)((L1 − k4)2 − m2)((L1 + k2)2 − m2)

+
tr[(−��L1 + m)��ǫ1(−��k4 + 2m)(−��L2 + m)(��k3 + 2m)��ǫ2]

(L2
1 − m2)((L1 + k2 + k3)2 − m2)((L1 − k1)2 − m2)((L1 + k2)2 − m2)

+
tr[(−��L1 + m)(��k4 + 2m)��ǫ1(−��L2 + m)��ǫ1(−��k3 + 2m)]

(L2
1 − m2)((L1 + k2 + k3)2 − m2)((L1 − k4)2 − m2)((L1 + k3)2 − m2)

(6.28)

+
tr[(−��L1 + m)��ǫ1(−��k4 + 2m)(−��L2 + m)��ǫ1(−��k3 + 2m)]

(L2
1 − m2)((L1 + k2 + k3)2 − m2)((L1 − k1)2 − m2)((L1 + k3)2 − m2)

}∣
∣
t−cut

In contrast to the s-cut, it is better to perform the kinematical and Passarino-Veltman

reductions before shifting the momentum. The fact that vectors L1 and L2 are on shell will

come into great use, as any appearance of L2
i can be immediately replaced by the mass m2.

We will now outline the set of reductions applied to this expression. These have been

implemented using Form. After replacing L2 = L1 + k2 + k3 and performing the trace, we are

left with various contractions of the different vectors appearing in the numerator. Recall that

as in the case of the s-cut, performing the trace we leave us with four dimensional vectors

only and factors of µ2.

We will first deal with the combination l1 · ǫ1l1 · ǫ2. Choosing again the reference momenta

of ǫ1 and ǫ2 to be k2 and k1, respectively, and using the spinor helicity representation, we

obtain,
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l1 · ǫ1l1 · ǫ2 =
〈2 − |��l1|1−〉〈1 − |��l1|2−〉

2〈21〉〈12〉

= − tr−[��k2��l1��k1��l1]

〈12〉2

=
k2 · k1l

2
1 − 2k2 · l1k1 · l1
〈12〉2

=
k2 · k1(m

2 + µ2) − 2k2 · l1k1 · l1
〈12〉2 (6.29)

where again tr−[...] refers to having the projection matrix w− as the leading factor. Note that

in the last step we used the fact that L1 is on shell, which means that l1 has the effective mass

m2+µ2. The terms containing γ5 vanish, since a trace with γ5 must contain four independent

vectors, which is not the case here. On the other hand, in the combination l1 · ǫ1k3 · ǫ2, there

are four independent vectors, and thus the trace will also result in terms with the Levi-Civita

tensor contracted with the four vectors. To avoid such terms, we will instead evaluate the

following sum in the same way as above,

l1 · ǫ1k3 · ǫ2 + k3 · ǫ1l1 · ǫ2 = 2
k1 · k2l1 · k3 − k2 · l1k1 · k3 − k2 · k3k1 · l1

〈12〉2 (6.30)

For the cases where only one of the two terms appear, we will use a different method to be

described below.

The next step will be to perform Passarino-Veltman type reductions. Here, the on-shellness

of L1 also greatly simplifies the process. For example,

2l1 · k3

(L1 + k3)2 − m2
=

((L1 + k3)
2 − m2) − k2

3

(L1 + k3)2 − m2
= 1 − M2

H

(L1 + k3)2 − m2
(6.31)

or if this propagator is not present, two propagators must be used,

2l1 · k3

((L1 + k2 + k3)2 − m2)((L1 + k3)2 − m2)

=
((L1 + k2 + k3)

2 − m2) − ((L1 + k3)
2 − m2) − 2k2 · k3

((L1 + k2 + k3)2 − m2)((L1 + k3)2 − m2)
(6.32)

=
1

(L1 + k3)2 − m2
− 1

(L1 + k2 + k3)2 − m2
− t − M2

H

((L1 + k2 + k3)2 − m2)((L1 + k3)2 − m2)

thus reducing an n-point integral to two (n − 1)-point integrals and one n-point integral, all

with one power of l1 less. In a similar fashion, other combinations of l1 contracted with an

external vector can be reduced. In some cases, two reductions can be done, and an (n − 2)-

point integral is obtained.

At some point, no more reductions can be performed, because no more suited denomina-

tors are at our disposal. In addition, we are still left with terms containing l1 · ǫ1k3 · ǫ2, which
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we were not able to reduce above because we wanted to avoid Levi-Civita tensors. At this

stage, after the above reductions are performed, a maximum of one power of l1 appears in

the numerator.

We will first perform a shift of the variable, as was done for the s-cut, to transform all

of our integrals to integrals having the form of one of the basis integrals. Each of the four

terms in (6.29), or any term derived from it by reduction, can be shifted independently. Terms

coming from the first or third line will be shifted according to l1 = p+k1, while terms coming

from the second or fourth line will be shifted according to l1 = −p − k1 − k2 − k3. The first

and fourth line will be transformed to integrals of the form I1256 (or contractions of this box

integral), while the second and third will be transformed to I1246. This was expected, since

only these two integrals contain a t-cut. In fact, it can be easily seen from figure 6.3 that

only integrals containing the propagators d2 and d6 contain a t-cut. As explained above,

any integrals not containing these propagators that arise from the reduction of the two box

integrals can be immediately cancelled because of the t-cut appearing on the right hand side

of (6.29). This will greatly reduce the algebra at all points of the calculation, and is one of

the advantages of the unitarity method.

We will now deal with any remaining factors of the integration variable p appearing in

the numerator. In this case, only the following term remains,

I1256[p · ǫ2] (6.33)

We will use the Feynman parameter shift method (described in detail in section 4.5) to

express this integral in terms of scalar integrals. This integral is illustrated in figure 6.9.

We first introduce Feynman parameters, naming the parameters according to the leg number

they are multiplied against, e.g. a5 will multiply d5 = ((p + k1 + k3)
2 − µ2 − m2). To remove

all linear terms in p, we perform the following variable shift,

p = q − (a2k1 + a5(k1 + k3) + a6(k1 + k2 + k3)) (6.34)

Since p is contracted with ǫ2 according to our choice of reference momentum, k1 ·ǫ2 as well

as k2 · ǫ2 will vanish. In addition, the term linear in q vanishes since the integrand is odd in

q. We are thus left with evaluating,

k3 · ǫ2(I1256[a5] + I1256[a6]) (6.35)

According to the prescription in section 4.5, we must first calculate the kinematical (pij)
2

matrix (note that every element is squared separately) and then derive the Sij matrix. Using

Mathematica, these are found to be,
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(pij)
2 =









0 0 u M2
H

0 0 M2
H t

u M2
H 0 0

M2
H t 0 0









Sij = m2









1 1 1 − u
2m2 1 − M2

H

2m2

1 1 1 − M2
H

2m2 1 − t
2m2

1 − u
2m2 1 − M2

H

2m2 1 1

1 − M2
H

2m2 1 − t
2m2 1 1









(6.36)

The Sij matrix can be inverted and the quantities ci, c0 and cij calculated. These are

inserted into (4.95), and the following simple relation is found after removing integrals that

do not contain a t-cut,

I1256[a5] + I1256[a6] =
1

2
I1256[1] (6.37)

Following this long series of reductions and simplifications, we finally reach a compact

expression for the t-cut of the amplitude,

A1−loop
4

∣
∣
t−cut =

g2
sm

2

v2

[12]

〈12〉

{

D(k1, k2, k3)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s]

+ D(k1, k3, k2)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s

+
4

s
(M4

H − ut)(4m2 − M2
H)] + C(k2, k3)[

8

s
(M2

H − t)(M2
H − 4m2)]

}

(6.38)

In this cut, we have managed to fix the coefficients of the integrals D(k1, k2, k3), D(k1, k3, k2)

and C(k2, k3), and B(t) which is zero since it does not appear in the cut. Since the integral

D(k1, k2, k3) contains both s- and t-cuts, it appears in both equations (6.38) and (6.26) with

p + k1

p + k1 + k2 + k3

p + k1 + k3p

k3

k2k4

k1

a2

a5

a6

a1

Figure 6.9: Reduction of I1256[p · ǫ2] using the Feynman parameter shift method. This figure depicts

the integral, including the Feynman parameters.

116



6.2. UNITARITY

an identical coefficient, as expected. Similarly, we expect D(k1, k3, k2) to also appear in the

u-cut with an identical coefficient.

u-cut

The u-cut is depicted in figure 6.10. We notice that it only defers from the t-cut by the

exchange k3 ↔ k4. If we take a look at (6.38), we see that such a transformation implies

the following transformations: t ↔ u, C(k2, k3) → C(k2, k4) = C(k1, k3), D(k1, k2, k3) →
D(k1, k2, k4) = D(k2, k1, k3) and D(k1, k3, k2) → D(k1, k4, k2) = D(k1, k3, k2). The transforma-

tions of the scalar integrals can be simply deduced by writing out the integrals, applying the

transformation and reordering the legs.

The result of this cut is then,

A1−loop
4

∣
∣
u−cut =

g2
sm

2

v2

[12]

〈12〉

{

D(k2, k1, k3)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s]

+ D(k1, k3, k2)[(m
2 + µ2)(−4s + 8M2

H − 32m2) + 8m2s

+
4

s
(M4

H − ut)(4m2 − M2
H)] + C(k1, k3)[

8

s
(M2

H − u)(M2
H − 4m2)]

}

(6.39)

Reduction of µ2

After fixing all possible cuts, we are still left with task of simplifying the integrals containing

µ2 in the numerator. The box integrals of the form D(k1, k2, k3) are UV finite by simple power

L1L2

k4

2+

1+ k3k1

k2

Figure 6.10: u-cut of the gg → HH amplitude.
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counting, both for the case of four and six dimensions. Since all legs are massive, they are

also free of IR or collinear divergences. Hence, such box integrals are free of any 1
ǫ terms.

Applying (4.72) to all box integrals containing a factor of µ2, we see that,

Dd=4−2ǫ(k2, k1, k3)[µ
2] = −4πǫDd=6−2ǫ(k2, k1, k3) −−−→

ǫ→0
0 (6.40)

In the s-cut only, (6.26), we observe that there is one triangle diagram containing µ2 which

can be expressed as a higher dimensional integral,

Cd=4−2ǫ(k1, k2)[µ
2] = −4πǫCd=6−2ǫ(k1, k2) (6.41)

This integral can be in turn reduced using the method described in section 4.5. We must

first write down the pij matrix, and then derive the scalar c0 and the vector ci

c0
. Using

Mathematica, these are,

(pij)
2 =






0 0 s

0 0 0

0 0 0




 , c0 =

1

m2
,

ci
c0

=






0

1

0




 (6.42)

Applying (4.96), the triangle diagram reduces to,

Cd=4−2ǫ(k1, k2)[µ
2] =

ǫ

2 − 2ǫ
(2m2Cd=4−2ǫ(k1, k2) + Bd=4−2ǫ(s)) (6.43)

As in the box integral case, since C is UV finite in four dimensions and IR and collinear finite

when the internal legs are massive, the first term vanishes when ǫ is taken to zero. Bubble

integrals, on the other hand, do contain UV divergences, and could yield a finite contribution

when multiplied by ǫ. [34] lists all divergent one loop scalar integrals up to four legs ([31]

is another good source containing a compilation of full expressions for scalar integrals). The

divergent part of the bubble integral is,

B(s) =
1

ǫ
+ O(0) (6.44)

And the triangle diagram with one factor of µ2 becomes,

Cd=4−2ǫ(k1, k2)[µ
2] =

1

2
(6.45)

This is a surprising result. Our s-cut seems to have fixed a constant term which appears

to contain no cuts, and we could be tempted to throw this term away as we did other terms

118



6.2. UNITARITY

that arose in the ”wrong” cuts. But this term in fact originates from a C(k1, k2) integral in

six dimensions, or alternatively from a B(s) integral in four dimensions. Both integrals do

contain s-cuts.

When performing a straightforward calculation of a one-loop amplitude, following the

traditional Passarino-Veltman reduction scheme, we reduce all tensor integrals to scalar

integrals with some kinematical coefficients. When working in dimensional regularization,

these coefficients could contain factors of ǫ as a result of taking traces over 4−2ǫ-dimensional

Kronecker delta functions. As we saw here, a product of such a coefficient with a divergent

integral could result in a rational term (i.e. term without cuts), since the divergent terms in

scalar integrals are often rational functions that do not contain imaginary parts.

To avoid such ambiguities of rational terms, we chose to work with the µ scheme described

in section 4.4. Under this scheme, coefficients of basis integrals do not contain powers of ǫ, at

the expense of having to deal with an enlarged basis of integrals, one containing also higher

dimensional integrals. These integrals all contain kinematical cuts as long as their four

dimensional counterparts do as well. After we extract the coefficients of these integrals from

the various cuts, we can reduce them using 4.96, this way successfully reproducing terms

which would otherwise be rational and ”cut-less”.

Remaining integrals

Out of the 13 basis integrals enumerated in the beginning of the chapter, we managed to fix

10 using three different cuts. The integral B(M2
H) has still not been fixed, but can also be

fixed if we imagine M2
H to be a kinematical variable (corresponding to one of the external

Higgs particles being off shell). In this case, we could choose M2
H to take on values such that

the integral will develop imaginary parts. Such integrals could be isolated by taking cuts

along the pairs {1, 6}, {4, 6} or {5, 6}. An explicit calculation shows that this cut vanishes

and the coefficient of this integral is zero.

The remaining integrals, i.e. B(0) and the tadpole A, do not contain cuts in any kinemat-

ical variable. If the internal legs were massless, these integrals would vanish and we would

have by now fixed the full amplitude. In the massive case they do not vanish. [43] describes

a method of calculating the remaining coefficients by using known UV or IR behaviors of

these amplitudes. We could apply this method in the current case since we know that our

amplitude must be UV finite. This follows from the fact that our theory is renormalizable

and there are no possible counter terms to absorb infinities if those should show up.

Tadpole integrals are characterized by a quadratic UV divergence, which appears as

Γ(−1 + ǫ) when solved to all orders in ǫ. Bubble diagrams, on the other hand, contain only

a logarithmic divergence, characterized by Γ(ǫ). Since these two types of divergences cannot

cancel each other at all orders, yet the amplitude should not contain any such Γ functions
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at any order of ǫ, then we can conclude that the coefficients of these integrals should vanish

independently. Note that to order 1
ǫ only, linear combinations of these two integrals which

are non-divergent but non-zero could appear, but to all orders in ǫ such cases could be ruled

out.

6.3 Final Result

Having fixed the coefficients for all basis integrals, the full amplitude with the color factors

is,

A1−loop
4 (1+, 2+, 3H, 4H)

=
g2
sm

2

v2
tr[T aT b]

[12]

〈12〉

{

4m2(s + 2M2
H − 8m2)(D(k1, k2, k3) + D(k2, k1, k3) + D(k1, k3, k2))

+
4

s
(M4

H − ut)(4m2 − M2
H)D(k1, k3, k2) − 16m2C(k1, k2) − 8 (6.46)

+
8

s
(M2

H − t)(M2
H − 4m2)C(k2, k3) +

8

s
(M2

H − u)(M2
H − 4m2)C(k1, k3)

}

This result agrees with [56]. Following the same procedure, but choosing one of the polar-

ization vectors to be negative helicity, the remaining helicity amplitudes can be calculated.

(see [56] for the full expressions).
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Conclusion

As in many realms of physics, a deeper understanding and an extensive ”box of tricks” can

render a seemingly unsolvable problem doable. In this thesis we demonstrated how a ubiq-

uitous property in quantum field theory, branch cuts of the amplitude, can be manipulated

to extract information in clever ways. The unitarity method (chapter 3), which is gener-

alized by the Cutkosky rules, was long known as a way of obtaining discontinuities along

these branch cuts by gluing smaller pieces. Only recently, though, it was discovered that if

it is used for fixing coefficients of an expansion, instead of a direct calculational tool, prob-

lems concerning rational functions and messy integrals can be circumvented. The unitarity

method alone was not enough for this task, and to completely reduce the ambiguity, dimen-

sional regularization (chapter 4), a seemingly unrelated tool, together with the UV properties

of the amplitude were employed. In chapter 6, we demonstrated how these set of ”tricks” are

sufficient to calculate an amplitude containing gluon, scalar and massive fermion particles.

Various other methods were employed in this final gg → HH calculation and other cal-

culations throughout the thesis. These include: the spinor helicity method for representing

external vector particles; color decomposition for decomposing a QCD amplitude into smaller

color-ordered partial amplitudes; on-shell recursive relations for recursively constructing

higher point tree amplitudes; and the Mellin-Barnes transformation, a powerful mathemat-

ical tool for calculating loop integrals.

But even having this set of tools at hand, large algebraic expressions must still be dealt
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with, and at some level of complexity become unmanageable to perform manually. Even

in the case of the calculation performed in chapter 6, it was found necessary to employ a

combination of FORM, for algebraic manipulations, and Wolfram’s Mathematica, for matrix

operations. Automatizing calculation of amplitudes is by no doubt the future of Standard

Model and Beyond the Standard Model phenomenology. Many powerful tools exist for the

evaluation of tree level and one-loop level contributions (see [59] for a recent review). Most

one-loop level programs perform the necessary reductions using the traditional Passarino-

Veltman reduction scheme, or similar reduction techniques, to turn raw Feynman diagram

expressions into the final analytical functions, which are in turn integrated over using, for

example, Monte Carlo techniques. To obtain a complete result for QCD processes, these tools

must also perform the factorization and hadronization, thus accounting for initial hadronic

states and outgoing jets.

Recently, the unitarity method has been put into code by the Blackhat collaboration

[60, 61], Rocket [62] and by Ellis [63] et al. Ossola, Papadopoulos, Pittau have proposed

an alternative method, resembling unitarity in that coefficients of a scalar integral expan-

sion are fixed by an approach resembling generalized unitarity, i.e. multiple cuts. In their

method, the manipulations are performed at the integrand level, and the coefficients are

determined by equating the integrand to a scalar integral expansion at specific, properly

chosen, values of the loop momentum. This method could prove to be superior for numerical

evaluation, and was already implemented by the same group in the program CutTools [64].

As a final remark personal remark, this thesis work was my first plunge into this fasci-

nating world of particle physics, in a period which could be either the beginning of a new era

in physics or a strong confirmation that we are on the right path, all depending on the results

collected from the LHC experiment. If you have reached this point (without skipping), I hope

this thesis proved helpful to you in one way or another.
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Feynman Rules

An assortment of Standard Model Feynman rules relevant for calculations performed in this

thesis is presented. These are borrowed from [8] and [31]. We first present the relevant

Lagrangian parts. The QED Lagrangian is,

LQED =
∑

i

(f̄i(i�∂ − mi)fi − ef̄iγ
µfAµ) −

1

4
(Fµν)

2 (A.1)

where fi are the various fermion fields, mi their mass, and Aµ the photon gauge field. The

QCD Lagrangian is,

LQCD =
∑

i

(f̄i(i�∂ − mi)fi + gsG
a
µf̄iγ

µT afi) −
1

4
(∂µG

a
ν − ∂νG

a
µ)

2

−gsf
abc(∂µG

a
ν)G

µbGνc − 1

4
g2
s(f

eabGa
µG

b
ν)(f

ecdGc
µG

d
ν) (A.2)

where Ga
µ is the gluon gauge field, carrying a SU(3) (color) index a = 1...8. fabc is the SU(3)

group structure constant. The sum is over quarks, the fermion particles that transform

under the SU(3) fundamental representation. The Yukawa term, coupling the Higgs particle

to the fermions, is,

LY = −
∑

i

mif̄ifi

(

1 +
H

v

)

(A.3)
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H is the offset of the Higgs scalar field from its vacuum expectation value v. The SU(2) gauge

freedom of the original Higgs doublet field has been fixed to the unitary gauge, leaving one

degree of freedom. The Higgs self coupling terms are,

LH = −1

2
M2
HH2 − M2

H

v
H3 − 1

2

M2
H

v2
H4 (A.4)

where MH is the Higgs field mass.

We also present a non-Standard Model Lagrangian term of a scalar field transforming

under a non-Abelian gauge theory,

Lφ = |(�∂ + igs�G
aT a)φ|2 − m2

φ|φ|2 (A.5)

Propagators

The gauge boson propagator is given in the ’t Hooft-Feynman gauge (fixing the residual gauge

remaining after the choice of the Lorentz gauge). Note that all propagators must be multi-

plied by a unit matrix in the space corresponding to the representations under which they

transform. Quark propagators are multiplied by δij , where i and j are indices of the funda-

mental representation of SU(3), whereas gluons transform under the adjoint representation

of SU(3).

gauge boson νµ

k

−i

k2 + iǫ
gµν

fermion
p

i(�p + m)

p2 − m2 + iǫ

Higgs (or other

scalar particle) p

i

p2 − M2
H + iǫ

Vertices

In the vertices, all momenta are taken to be incoming. Q is the charge of the fermion, Q = −1

for an electron.
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QED

µ

iQeγµ

QCD

µ, a

igγµT a

3 gluon

µ, a

ν, b ρ, c

k

p q

gfabc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

4 gluon

ν, b

ρ, c σ, d

µ, a −ig2[ fabef cde(gµρgνσ − gµσgνρ) +

facef bde(gµνgρσ − gµσgνρ) +

fadef bce(gµνgρσ − gµρgνσ)]

Yukawa coupling −i
mi

v

3 Higgs coupling −i
3M2

H

v
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4 Higgs coupling −i
3M2

H

v2

Color Ordered Feynman Rules

We list here the color ordered Feynman rules used in this text [6, 47]. The propagators are

identical to the normal Feynman rules, with the color matrix stripped off the gluon propaga-

tor. As before, all momenta are taken to be incoming in the vertices. Coupling constants are

also stripped off (and absorbed in the color factor of the color decomposition).

3 gluon coupling

µ

ρ ν

k

q p

i√
2
(gµν(k − p)ρ + gρµ(q − k)ν + gνρ(p − q)µ)

QCD

µ

− i√
2
γµ

QCD

µ
i√
2
γµ

scalar theory

µ

p1p2

i√
2
(p1 − p2)

µ
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scalar theory
µν

i
2gµν

External fermions

incoming fermion
p us(p)

outgoing fermion
p ūs(p)

incoming anti-fermion
p v̄s(p)

outgoing anti-fermion
p vs(p)

us(p) and vs(p) are spinors satisfying the Dirac equation,

(�p − m)us(p) = ūs(p)(�p − m) = 0

(�p + m)vs(p) = v̄s(p)(�p + m) = 0 (A.6)

where s is an index numbering the two spin degrees of freedom of the spinor. The spinors

satisfy the completeness relation,

∑

s

us(p)ūs(p) = �p + m
∑

s

vs(p)v̄s(p) = �p − m (A.7)
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Dimensional Regularization

Gamma function The definition and the properties of the Gamma function:

Γ(z) =

∫ ∞

0

tz−1e−tdt (B.1)

Γ(n) = (n − 1)! (n ∈ Z) (B.2)

Γ(1) = 1 (B.3)

Γ(1/2) =
√

π (B.4)

Γ(z + 1) = zΓ(z) (B.5)

Γ′(1) = −γE (γE is the Euler constant) (B.6)

Γ′(1) = γ2
E +

π2

6
(B.7)

Γ(1 + ǫ) = 1 − ǫγE + O(ǫ2) (ǫ ≪ 1) (B.8)

Beta function The definition of the Beta function and its representation in terms of Gamma

functions:

β(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt =
Γ(x)Γ(y)

Γ(x + y)
(B.9)
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Dirac matrices Section 2.1.2 discusses contraction of Dirac matrices in d dimensions. Fol-

lowing is a list of useful formulae:

gµνgµν = d

γµγµ = d

γµγνγµ = (2 − d)γν

γµγνγργµ = 4gνρ − (4 − d)γνγρ

γµγνγργσγµ = −2γσγργν + (4 − d)γνγργσ (B.10)

Loop integrals In section 2.1, a scalar integral was solved for the case of no loop momenta

in the numerator. Following the same steps, integrals containing powers of the loop momen-

tum invariant q2 in the numerator can be calculated. If the integral contains an odd number

of qµ factors, then the integrand is odd and the integral vanishes. If the integral contains a

factor of qµqν in the numerator, then one first notes that the result must be proportional to

the metric gµν , since there are no other tensorial quantities in the integral. Then, contract-

ing the integral with the metric, one can determine the proportionality factor and replace

qµqν → 1
dq

2gµν . Following is a list of integrals (for more, see [8]):

∫
ddq

(2π)d
1

[q2 − M2]s
=

(−1)si

(4π)
d
2

Γ(s − d
2 )

Γ(s)
(M2)

d
2
−s (B.11)

∫
ddq

(2π)d
q2

[q2 − M2]s
=

(−1)s−1i

(4π)
d
2

d

2

Γ(s − d
2 − 1)

Γ(s)
(M2)

d
2
−s+1 (B.12)

∫
ddq

(2π)d
qµqν

[q2 − M2]s
=

(−1)s−1i

(4π)
d
2

gµν

2

Γ(s − d
2 − 1)

Γ(s)
(M2)

d
2
−s+1 (B.13)
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Dirac Matrices

The metric convention used throughout this thesis is:

gµν = (1,−1,−1,−1) (C.1)

The Dirac matrices are defined by the following anti-commutator:

{γµ, γν} = γµγν + γνγµ = 2gµν (C.2)

Some traces over the Dirac matrices are:

tr[1] = 1 (C.3)

tr[γµγν] = 4gµν (C.4)

tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ) (C.5)

tr[odd number of Dirac matrices] = 0 (C.6)

The chirality matrix is defined to be:

γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
ǫµνσργ

µγνγσγρ (C.7)

It obeys the properties:
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γ2
5 = 1 (C.8)

{γ5, γ
µ} = 0 (C.9)

Traces involving the chirality matrix yield:

tr[γ5] = 0 (C.10)

tr[γµγνγ5] = 0 (C.11)

tr[γµγνγργσγ5] = −4iǫµνρσ (C.12)

Two useful identities relating γ5 with the Levi-Civita tensor are:

γ5[γµ, γν ] = iǫµνσργ
σγρ (C.13)

1

2
γ5[γτ , [γµ, γν ]] = iǫµνσργ

σγτγρ (C.14)

where ǫ0123 = −ǫ0123 = 1.

Proof of (C.14): We note that for the case µ = ν both sides are zero from anti-symmetry. In

the case µ 6= ν 6= τ the left side is zero since γτ commutes in this case with [γµ, γν ]. The right

hand side is zero since the index τ must have the same value of either ρ or σ (otherwise the

ǫ tensor is zero), in which case:

ǫµνσργ
σγτγρ =

1

2
ǫµνσρ(γ

σγτγρ − γργτγσ) = 0

So the only non-zero case is when µ 6= ν and τ = µ or τ = ν. Consider the case τ = µ. Then:

iǫµνσργ
σγτγρ = −iǫµνσργ

σγργτ = −γ5[γµ, γν ]γ
τ = −1

2
γ5([γµ, γν ]γ

τ + [γµ, γν ]γ
τ )

=
1

2
γ5(γτ [γµ, γν ] − [γµ, γν ]γ

τ ) =
1

2
γ5[γτ , [γµ, γν ]]

where in the second equality (C.13) was used. In the last equality, the indices µ and τ can be

interchanged, and thus γτ can be brought to the other side of the commutator with an added

minus sign. The case τ = ν follows from the antisymmetry between µ and ν.
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Spinor Helicity

In chapter 4.2, the spinor helicity method was introduced. We list here a list of identities

involving spinor products and the spinor representation for polarization vectors. Useful ref-

erences are [7, 6].

Spinor products

Massless spinors, solutions of the massless Dirac equation, are denoted by the bra-ket nota-

tion,

|i±〉 ≡ |k±
i 〉 ≡ u±(ki) = v∓(ki), 〈i±| ≡ 〈k±

i | ≡ u±(ki) = v∓(ki) (D.1)

Positive (negative) helicity fermions are proportional to negative (positive) helicity anti-

fermions, and can be chosen to be equal. Spinor products can be constructed as follows,

〈ij〉 ≡ 〈i−|j+〉 = u−(ki)u+(kj), [ij] ≡ 〈i+|j−〉 = u+(ki)u−(kj) (D.2)

Like helicity products vanish since opposite helicities are eigenvectors of opposite projection

matrices. Spinor products are antisymmetric,

〈i+|j+〉 = 0, 〈i−|j−〉 = 0, 〈ij〉 = −〈ji〉, [ij] = −[ji], 〈ii〉 = [ii] = 0 (D.3)
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The projection operator,

|i±〉〈i±| =
1

2
(1 ± γ5)�ki (D.4)

allows us to derive a connection to the more common kinematic notation, either through

pairs of opposite products,

〈ij〉[ji] = 2ki · kj ≡ sij (D.5)

or through larger traces over Dirac matrices such as,

〈ij〉[jl]〈lm〉[mi] = Tr[
1

2
(1 − γ5)�ki�kj�kl�km] =

1

2
(sijslm − silsjm + simsjl − 4iǫijlm) (D.6)

where ǫijlm ≡ kµi kνj k
ρ
l k
σ
mǫµνρσ. When calculating cross sections, we will need the complex

conjugate of spinor products,

〈ij〉∗ = [ji], 〈i±|γµ|j±〉∗ = 〈j±|γµ|i±〉 (D.7)

Other useful identities are the Gordon identity and charge conjugation,

〈i±|γµ|i±〉 = 2kµi , 〈i+|γµ|j+〉 = 〈j−|γµ|i−〉 (D.8)

Fierz rearrangements,

〈i+|γµ|j+〉〈k+|γµ|l+〉 = 2[ik]〈lj〉
〈i−|γµ|j−〉〈k−|γµ|l−〉 = 2〈ik〉[lj]
〈i+|γµ|j+〉〈k−|γµ|l−〉 = 2[il]〈kj〉 (D.9)

Schouten identity,

〈ij〉〈kl〉 = 〈ik〉〈jl〉 + 〈il〉〈kj〉 (D.10)

If a set of momenta is conserved,
∑n

i=1 kµi = 0, then the following holds,

n∑

i=1
i6=j,k

[ji]〈ij〉 = 0 (D.11)

Polarization vectors

Positive and negative helicity polarization vectors of massless gauge bosons (photons, gluons,

etc.) can be represented in terms of spinor products as follows,
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ǫ+µ (k; q) =
〈q−|γµ|k−〉√

2〈qk〉
, ǫ−µ (k; q) = −〈q+|γµ|k+〉√

2[qk]
(D.12)

with the following normalization and orthogonality conditions,

ǫ+(k; q) · ǫ−(k; q) = −1, ǫ+(k; q) · ǫ+(k; q) = ǫ−(k; q) · ǫ−(k; q) = −1 (D.13)

Complex conjugation relates opposite helicities,

(ǫ+(k; q))∗ = ǫ−(k; q) (D.14)

q is a massless reference momenta reflecting gauge invariance. It can be chosen arbitrarily

per polarization vector. The choice must be consistent within each gauge invariant quan-

tity such as a fixed helicity amplitude, and can be changed when calculating a new gauge

invariant quantity.

A list of useful identities used to simplify expressions by a judicious choice of reference

momenta is,

ǫ±(k; q) · k = 0

ǫ±(k; q) · q = 0

ǫ±(ki; q) · ǫ±(kj ; q) = 0

ǫ±(ki; kj) · ǫ∓(kj ; q) = 0

�ǫ
±(ki; kj)|k±

j 〉 = 0

〈k±
j |�ǫ∓(ki; kj) = 0 (D.15)

Polarization vectors contracted with the Dirac matrices can be represented in the follow-

ing way,

�ǫ
±(k; q) = ±

√
2

〈q∓|k±〉 (|q
±〉〈k±| + |k∓〉〈q∓|) (D.16)

When working in dimensional regularization, one must take note that this representation is

only valid if this matrix is multiplied on one side by a four dimensional quantity.
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