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Robust and optimal control of open quantum systems

Zi-Jie Chen't, Hongwei Huangz'l', Lida Sun21', Qing-Xuan Jie1’3, Jie Zhouz, Ziyue Huaz, Yifang Xuz,
Weiting Wang?, Guang-Can Guo'>*, Chang-Ling Zou'***, Luyan sun®>**, Xu-Bo Zou'3**

Recent advancements in quantum technologies have highlighted the importance of mitigating system imperfec-
tions, including parameter uncertainties and decoherence effects, to improve the performance of experimental
platforms. However, most of the previous efforts in quantum control are devoted to the realization of arbitrary
unitary operations in a closed quantum system. Here, we improve the algorithm that suppresses system imperfec-
tions and noises, providing notably enhanced scalability for robust and optimal control of open quantum systems.
Through experimental validation in a superconducting quantum circuit, we demonstrate that our approach out-
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performs its conventional counterpart for closed quantum systems with an ultralow infidelity of about 0.60 %,
while the complexity of this algorithm exhibits the same scaling, with only a modest increase in the prefactor. This
work represents a notable advancement in quantum optimal control techniques, paving the way for realizing

quantum-enhanced technologies in practical applications.

INTRODUCTION

Quantum technologies are increasingly pivotal across diverse do-
mains, including quantum computation, quantum communication,
and quantum precision measurement (1). The critical technique driv-
ing these applications is the coherent manipulation of quantum states
within a quantum system. For example, the implementation of quan-
tum gates forms the foundation of quantum computation tasks (2),
and unitary operations are essential for preparing exotic quantum
states that enable quantum-enhanced sensors (3). In a given quantum
system, unitary operations are realized through specific control Ham-
iltonians by adjusting control parameters like amplitude, detuning,
and pulse shape of external control fields, such as microwave and op-
tical driving fields (4). Therefore, optimizing control fields to achieve
a desired target unitary operation is crucial for advancing quantum
technologies. Over the past decades, various quantum optimal con-
trol methods, including the shortcut to adiabaticity (5), composite
pulse sequences (6), chopped random basis (7), derivative removal by
adiabatic gate (8), and gradient ascent pulse engineering (GRAPE)
(9), have been proposed and applied in various platforms ranging
from superconducting circuits (10, 11), ion traps (12), and neutral
atoms (13), to defects in diamonds (14). More recently, machine
learning approaches, such as reinforcement learning (15) and genera-
tive adversarial algorithms (16), have been integrated into quantum
control to find solutions for target unitary operations.

Unfortunately, the realization of high-fidelity quantum operation
is limited in practical experimental systems, even when suitable op-
timal control pulse shapes have been solved through numerical al-
gorithms (17). One notable limitation stems from the discrepancies
of Hamiltonian between the practical system and its model, includ-
ing the uncertainty of parameters and the additional stray interac-
tion between the system and the environmental degrees of freedom.
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Coherent errors arise when the parameter varies, due to system mis-
calibration (18), sample aging (19), and slow drift of experimental
setup (20). Addressing these errors requires improved calibration
precision, enhanced system stability, and the utilization of robust
quantum control techniques. Apart from coherent errors, practical
experimental platforms inevitably couple with the external reser-
voirs (21), which leads to the decoherence of quantum systems and
has been recognized as another major challenge in realizing reliable
quantum information processors. Therefore, suppressing these de-
coherence errors requires extending system lifetimes and refining
optimal control algorithms tailored for open quantum systems.
Despite the critical importance of error suppression in quantum
applications, existing efforts have primarily focused on the robust
control of quantum systems (22-25) or have relied on the time-
consuming trajectory sampling (26, 27), precise evolution solving
(9, 28-30), and machine learning (22) techniques for open system
control. A numerically efficient algorithm that directly considers
both the parameter uncertainties and the decoherence errors in opti-
mizing open quantum system control remains elusive due to compu-
tational challenges. Take the GRAPE algorithm as an example, the
algorithm that solely considers the intrinsic evolution of closed sys-
tems can be described by the Schrodinger equation. For simplicity,
we refer to this as the Closed-GRAPE algorithm. This algorithm al-
lows the computation of the objective function and gradients by cal-
culating the evolution of a d-dimensional pure state represented by a
d X 1-dimensional column vector, where the computational com-
plexity is (9(d2 )- In contrast, previous GRAPE algorithms for an open
system (9, 28-30) describe the evolution using the Lindblad master
equation. We refer to these as the Open-GRAPE algorithms, drawing
on the concept and terminology from (29). These algorithms require
the computation of the evolution of the density matrix (31). This in-
volves the matrix calculation of d X d-dimensional matrices, where
the computational complexity is at least (9(d3) or even (9(d6 ). For
multiqubit systems, the optimization can also be implemented by
solving the Bloch equation, and the computational complexity re-
mains comparable to the situation of the Lindblad equation (32).
Here, a numerically efficient optimal control algorithm for
open quantum systems is introduced and experimentally verified
in a superconducting quantum circuit. This approach, developed
based on the conventional GRAPE algorithms, can efficiently
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calculate the control pulses while accounting for both system pa-
rameter uncertainties and decoherence. Referred to as the ap-
proximate Open-GRAPE algorithm, our approach demonstrates
superior performance over the Closed-GRAPE algorithm. In the
examples we present, the approximate Open-GRAPE algorithm
exhibits an enhancement in yield, which is the probability of gen-
erating high-quality pulses from random initial pulses. In partic-
ular, when controlling a bosonic mode with an ancillary transmon
qubit, our approach provides pulses with ultralow infidelities be-
low 0.60% after just 30 trials of the approximate Open-GRAPE
algorithm, surpassing the best infidelity of 1.44 % obtained by the
Closed-GRAPE algorithm. Both numerical and experimental re-
sults highlight the advantages of our approach in achieving the
best available fidelities for controlling quantum systems in prac-
tice and reducing the number of trials in optimization. Regarding
computational complexity, the approximate Open-GRAPE algo-
rithm exhibits a linear increase in computation time with the
number of uncertain parameters and noise sources considered,
showcasing the potential for robust control of open quantum sys-
tems with dimensions up to 10° using personal computers.

RESULTS

Model

Figure 1 sketches the principle of quantum control of a general open
quantum system. The target system is controllable by applying ex-
ternal control pulses, with the total Hamiltonian of an ideal closed
quantum system described by

Hamiltonian
uncertainty

Approximate
Open-
GRAPE

H(t) = Hy+ Y u®(HH®
k

1

where H; is the drift Hamiltonian of the bare system and H® s the
control Hamiltonian with time-varying amplitude parameter uP ().
For conventional quantum control algorithms, such as the GRAPE
approach, the control pulse is discretized equally into N steps and
remains constant in each step, i.e., uik)(t) = u(clfj) in the jth step for
te [(j— 1)T,j‘C], where T is the duration of control pulse and
T =T /N is the step size. Therefore, the evolution in this step is uni-
tary with the operator U; = exp[—l'r(HO + XU (k)H(k)>], and the

algorithm is unplemented to optimize the whole evolution of this
ideal system to approach the target unitary evolution as

U(T) U2 Ul ~ Utarg (2)

However, there are usually imperfections in the practical quan-
tum system. These perturbations can be divided into two categories:
one is the uncertainty of the system Hamiltonian due to the param-
eter instability of the hardware and also the miscalibration of the pa-
rameters; the other one is the noise due to inevitable coupling
between the system and the environment. The ﬁrst kmd of perturba-
tion can be described as ), 6u(m)H (" where {H '} are the fluctuat-
ing Hamiltonian terms with uncertam amplitudes 6u

( 6”?")) =0, <<6”§m)) = (GE )> . Here, 6u§m) is a random variable

that is fixed in each single-shot implementation of the system

) satisfying

Decoherence

Open quantum system

Fig. 1. The schematic of the optimal control algorithms. The shadow area represents the general model of the open quantum system considering both the uncer-
tainty of the system Hamiltonian and the decoherence. Exhibiting low computational complexity, the Closed-GRAPE algorithm (the blue part) solely focuses on the dy-
namics of the ideal closed system when optimizing control pulses. In contrast, Open-GRAPE algorithms (the red part) consider these two types of perturbations during
the optimization process, leading to an enhancement of the operation fidelity. The purple part corresponds to the approximate Open-GRAPE algorithm that shows both

of the advantages mentioned above.
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dynamics but might vary from shot to shot. () is the average over the
distribution of the random variable. Specifically, it is the ensemble
average for the miscalibration variables, while it is the temporal aver-
age for the slowly varying unstable parameters. The second kind of
perturbation is usually treated as decoherence, which can be de-
scribed as Lindblad jump operators L,, with a noise strength «,,.
Considering these perturbations, as shown in the shadow area in Fig.
1, the complete evolution of an open quantum system should be de-
scribed by the Lindblad master equation (33)

d . m m
2P0 =—i|[HO+ YsuH",p0)| +LIpO]  (3)
where p(t) is the density matrix of the system and
— f L
Lp)= Y K (L,pL} - ELm mp——pL ot 4)

m
is the Lindblad superoperator.

The actual performance is expected to be markedly inferior to
the anticipated performance when the pulses are optimized on the
basis of the ideal closed system by Eq. 1 and subsequently applied to
the open system by Eq. 3 in the presence of both types of perturba-
tions. In other words, the obtained pulses are not robust against
these noises, substantially deteriorating the fidelity of quantum op-
erations. To provide a more practical evaluation of the operation
quality and suppress the potential deviations from expectation, it
demands an optimization algorithm that optimizes the gate while
considering these perturbations, as shown in Fig. 1.

Approximate Open-GRAPE algorithm
In the Closed-GRAPE algorithm, the target U,

a set of state transfers {| l|l]i Y |y )}, where| \y{ Yand |y, ) are the ini-
tial state and output target state, respectively, and each element in the
set corresponds to a constraint in the optimization of U(T). Here, we
use the situation with a single constraint as an example for simplicity,
and more general cases with multiple constraints are provided in the
Supplementary Materials. In Closed-GRAPE, the goal of the optimiza-
tion is to maximize the objective function as J 5. =| (w, | U(T) | w;) 1%
which is the fidelity of the final state to the target state in the ideal
closed system.

To optimize the control parameters, the estimation of the gra-
dient 0/ o /au is essential. In the situation where the Closed-

GRAPE apphes, i.e., there is no decoherence noise or uncertain
Hamiltonian parameter, the gradient can be solved efficiently and
exactly. After the evolution in a closed quantum system, the final

arg €an be represented as

state becomes U1—>NPU1_>N Here, U, = Uy - Uy U Uy =1
andU,_,; = I fori > j) is the unitary evolution from jth to the j + ith

step. Under this evolution, the gradient reads

o, .
. k :
% o< —it(y, | Ujyy oy HY )ijjH_)Nl\yo)+c. c

6

(5)
where p; = p(j'c) =U_jpo UL]. and c. c. is the complex conjugate of
the former part. The key idea is to calculate the gradient through the
forward propagation of the initial state (i.e., {Ul_,] [y;)}) and the
backward propagation of the target states (i.e., ! HoN [wo )b,
which circumvents the calculation of the differential numerlcally.

Chenetal, Sci. Adv. 11, eadr0875 (2025) 26 February 2025

While the Closed-GRAPE algorithm shows an impressively fast
iteration speed, its corresponding objective function and gradient
exhibit inaccuracy for an open quantum system. This limits the qual-
ity of quantum operations in real experimental setups. In contrast,
the Open-GRAPE algorithms (9, 28-30), depicted in the red region
of Fig. 1, provide error-resisting quantum operations by considering
the complete dynamics, thereby improving the operation fidelity.
However, this also comes with higher computational complexity.

For a practical evaluation of the operation in an open quantum
system, the fidelity of the final state should be generalized as

fopen = <TI'[ | WO>(W0 | 8T,5uf( | ‘1”1>(‘1U1 | )]>

and this corresponds to the fidelity of the final state in an open
quantum system with uncertain Hamiltonians and decoherence.
Here, &7, (+) describes the completely positive and trace-
preserving map between an initial input state p and the output state,
which is governed by Eq. 3. As shown in the purple region of Fig. 1,
the approximate Open-GRAPE algorithm in this work adopts the
key ideas of both the Closed-GRAPE and Open-GRAPE algorithms,
i.e., it can avoid the calculation of the differentiation and the master
equation while considering the influence of imperfections. We first

(6)

introduce an approximation that can be applied to f,,., to obtain a
penWIth]open Nfopen'

For an open quantum system, we focus on the demands of opti-
mizing the control pulses for achieving high-fidelity quantum op-

erations under the conditions where noise is weak, i.e., x,, T <1

2
G}m) T) < 1. Conse-

quently, we treat noise as perturbations that can be approximated
to the first order (see the Supplementary Materials for more de-
tails). The final operator corresponding to a single occurrence of
the Lindblad jump leads to

pL,N =1 Z 1—>N5’p(pj> j+1-N
i

and we introduce the objective function term due to decoherence

Ja=Tr(1we)(Wol ) ®)

For the parameter uncertainty, the final state corresponding to

the first order uncertain parameters term after the ensemble average
over the random variable {Su?”)} is

computationally convenient objective function J

(thus, k,,T < 1), and uncertainty is small, i.e., (

)

i—1

N
— Z (m) z (m) (m)
pf,N - ( ) ( Ui+1—>NH []]+1—>1H p] ]+1_,}E]9)

m i=2 j=1

H"™U]

i+1-N

IJII+1—>NH(m)p] UT

f JH1—i

>+h.c.

where h. c. is the Hermitian conjugate of the former part. The cor-
responding objective function term induced by this uncertainty is

Jo="Tr( 1wo)wa P ) (10)

The detailed deduction and the analytical gradient are shown in
the Supplementary Materials. Last, the objective function of the ap-
proximate Open-GRAPE algorithm under the combination of these
terms is

=]close+]d+]f (11)

I open
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The goal of the optimization is to maximize this objective func-
tion. However, as the fidelity of many current systems approaches 1,

=1 — 4 /fopen for bet-

open
ter evaluation. Therefore, in the subsequent optimization, we equiv-
alently minimize the following objective function

it is more intuitive to use the infidelity as f

=1- ]close/open (12)

(I)close /open

This corresponds to the infidelity commonly adopted by many
experimental groups at present.

The approximate Open-GRAPE algorithm in this work inherits
the advantage of calculating the gradients using multiple trajectories
associated with the extrinsic errors, thus also circumventing the dif-
ferentiation. Here, we only use fidelity as an example to introduce
the algorithm, but we think it is important to extend the algorithm
to other figures of merit such as the trace distance (2) and the
squared Euclidean distance (34, 35).

Numerical simulation

In this section, we evaluate the performance of the approximate Open-
GRAPE algorithm using a superconducting quantum circuit as an il-
lustrative example, using comprehensive numerical simulations. As

A
Closed-GRAPE

P

WY

{H.}

Frequency
shift, e
decay... (\N\I\N\—
Target
.
. -9

shown in Fig. 2A, the physical system consists of a three-dimensional
microwave cavity serving as a high-quality storage for quantum states
and a transmon serving as the ancillary qubit to provide the necessary
nonlinearity for the implementation of quantum operations. It is
worth noting that such a superconducting system is one of the leading
quantum information processing platforms (36), which has shown
high operation fidelity for beating the break-even point of quantum
error correction (37, 38). The robust and optimal control of such a
practical open quantum system is urgent for further improving the op-
eration fidelity and realizing the ultimate goal of fault tolerance.

The drift Hamiltonian of the bare system in the interaction pic-
ture, i.e., a qubit dispersively coupling to a cavity with a cross-Kerr
interaction, reads

Hy/h= )Z—CaTaGZ— %aﬂz’ aa (13)
where a and a' are the annihilation and creation operators of the
cavity photon, respectively, &, is the Pauli-Z operator of the trans-
mon qubit, y is the cross-Kerr coupling strength, and K, is the self-
Kerr coefficient of the cavity. Other higher-order interactions can be
neglected. Universal quantum operations are realized through
coherent microwave drives on both the transmon and the cavity
(10, 11), where the corresponding control Hamiltonian includes
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Fig. 2. The numerical simulation results. (A) The schematic of the numerical simulation. The top part displays the control pulses obtained by the Closed-GRAPE algo-
rithm (blue) and the approximate Open-GRAPE algorithm (red). The middle part is a superconducting circuit with a three-dimensional cavity and a transmon qubit, where
the green line represents the dominant extrinsic noise. The black box at the bottom represents a typical Wigner function of the target quantum state, while the blue and
red arrows point to the Wigner functions of the quantum states prepared by the respective pulses from the Closed-GRAPE and approximate Open-GRAPE algorithms.
(B) The infidelity fopen of 500 Closed-GRAPE pulses (blue) and their corresponding approximate Open-GRAPE pulses (red). The objective functions for the Closed-GRAPE and
approximate Open-GRAPE algorithms are @ ., and @, (see the main text), respectively. The black line represents the reference line where the objective function in the
algorithm is equal to the infidelity considering perturbations. It can be seen that all the red points (from approximate Open-GRAPE) closely align with the reference line,
while the blue points (from Closed-GRAPE) exhibit substantial deviations. (C) The distribution of infidelity corresponding to the data shown in (B). The black line is a Gauss-
ian distribution fitted to the data from the Closed-GRAPE algorithm. The dark gray vertical dashed line indicates the average value, while the distance between the gray
dashed lines is the standard deviation (SD) o of the Gaussian distribution. In contrast, the data from the approximate Open-GRAPE show notably lower average infidelity.
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(14)

Here, G, and G, are the Pauli-X and Pauli-Y operators of the
transmon qubit, respectively.

For a practical experimental system, we consider four types of
dominant perturbations in our numerical simulation, as shown by
the green arrow in Fig. 2A. For both the cavity and the transmon
qubit, the decoherence terms, ie., L, =6_ and L, = g, induced by
the decay, and the parameter fluctuations due to frequency shifts,
ie,Hp; = a‘aand Hy, =3, are all included. The detailed parame-
ters of the drift and control Hamiltonians as well as the perturba-
tions are shown in Methods.

As an important example, we show the result of the encoding

process of a binomial code (11, 39) in the cavity with [0p) =
(10)]1+14)/ \/E and |1;) =|2). This process transfers the infor-
mation from the transmon qubit to the cavity encoded with the
binomial code, ie., a|g) +Ple) = a|0z) + p|1g). This can be
realized with two constraints in the optimization algorithm, and de-
tails are shown in Methods. For the Closed-GRAPE algorithm,
different random pulses of the control Hamiltonian are applied as
the initial pulses that need to be optimized in the algorithm itera-
tively until convergence. To better illustrate the differences be-
tween the two algorithms and accelerate the numerical simulation,
we use the result pulses from the Closed-GRAPE algorithm as the
initial inputs for the corresponding approximate Open-GRAPE
algorithm optimization.

The results of 500 independently optimized pulses are presented
in Fig. 2B, with the optimized pulses being numerically evaluated
via the Lindbald master equation in Eq. 3. The master equation pro-
vides a virtual open quantum system to validate the performance of
the target operations with the infidelity f open As expected, the puls-
es provided by Closed-GRAPE exhibit the objective function @,
that is very close to 0, while their practical infidelity f open 18 distrib-
uted along the y axis with an average value of 1.47% and an SD of
0.18%. In contrast, the pulses by approximate Open-GRAPE exhibit
objective functions @, that deviate from the ideal value of 0, but
they show consistency with the infidelities @, ~f open 1his agree-
ment indicates the effective evaluation of the gate performance of
the open quantum system by our objective function in Eq. 11. Ben-
efiting from the good objective function in approximate Open-
GRAPE, we find that the average infidelity is improved by 34 to
0.97%, and their deviation is reduced to 0.12%.

In Fig. 2C, the infidelity distribution from the Closed-GRAPE
closely resembles a Gaussian distribution. According to this distri-
bution, pulses located beyond three SDs from the mean, i.e., pulses
with infidelity below 0.93%, can be approximately estimated with a
probability of 0.135% (0 of 500 pulses in our simulation). However,
the approximate Open-GRAPE yields these pulses with a probabil-
ity of 46.2% (231 of 500 pulses) in this simulation, showing an en-
hancement of more than 340 times in yield or more than two orders
of magnitude. During the optimization process with multiple pa-
rameters, it is easy to converge to local optima. Therefore, in most
experiments where necessary prior knowledge is lacking, multiple
different random initial pulses are needed for optimization. Then,
we can select the one with the best performance. Intuitively, yield
represents the probability of generating high-quality pulses. The

Chenetal, Sci. Adv. 11, eadr0875 (2025) 26 February 2025

higher the yield, the fewer trials are required to generate a high-
quality pulse on average.

A pronounced asymmetry is shown in the distribution corre-
sponding to the approximate Open-GRAPE, which indicates that
the optimized results are close to the lower bound of achievable in-
fidelity in this situation, as opposed to the symmetric Gaussian-like
distribution observed in Closed-GRAPE. It is noteworthy that ap-
proximate Open-GRAPE achieves a pulse with the best infidelity of
0.63%, a value well predicted by our objective function, positioning
it around 56 in the Gaussian distribution of the Closed-GRAPE, as
shown in Fig. 2C. Notably, the Open-GRAPE algorithms can also
achieve a similar distribution (29) but with higher computational
complexity due to its precise solution of the system dynamics.

To further demonstrate the robustness of the approximate Open-
GRAPE algorithm, we conduct separate optimization for uncertain
Hamiltonians and decoherence noise under a particular perturba-
tion strength ({cf}, {x,,})- The robustness is tested by the master
equation with scaled noise strengths {sfcf} and {s,,x,,}, where s, and
s, are scaling factors, and the results are presented in Fig. 3. As shown
in Fig. 3A, the approximate Open-GRAPE outperforms the Closed-
GRAPE in most parameter regions. Noting that although the ap-
proximate Open-GRAPE is optimized for s = 1, its performance is
better even when the parameter uncertainty tends to vanish. Since
the Closed-GRAPE is optimized for s = 0, its performance is only
slightly better than the approximate Open-GRAPE when s = 0.

A T T T T i ]
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FEs 43T R 000
z it . ¢ af!
g . y A ? ? t 1
E 107 F H/? L 4
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E_1 1 L I i
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e
 ®
2 e
T 102t —® 4
g 10 e ]
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. ®
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Fig. 3. The performance of the algorithms with varying noise strength. (A) The
average infidelity as a function of the scaling s; of uncertainty in the Hamiltonian
without decoherence noise. (B) The average infidelity as a function of the scaling s,,
of decoherence noise strength without Hamiltonian uncertainty. The average infi-
delities are calculated with 60 Closed-GRAPE pulses (blue) and their corresponding
approximate Open-GRAPE pulses (red). The error bars for the blue points are small-
er than the marker size, making them difficult to distinguish visually.
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Similarly, the robustness of the approximate Open-GRAPE against
decoherence is tested, and the result is illustrated in Fig. 3B, which
shows a similar behavior compared with the Closed-GRAPE. These
results indicate the robustness of the approximate Open-GRAPE al-
gorithm to the noise parameters. Even when the parameter uncer-
tainties and the decoherence rates are not precisely calibrated and
may shift during experiments, the approximate Open-GRAPE algo-
rithm can consistently provide a reliably improved performance.

Notably, the numerical pulse sequences generated by the approx-
imate Open-GRAPE algorithm exhibit similar behaviors to those
produced by traditional dynamical decoupling techniques (40-42)
in resisting the negative effects of uncertain parameters. Although
the approximate Open-GRAPE algorithm cannot provide a physical
picture from an analytical perspective, it can easily handle a wider
variety of noise types and more complicated quantum operations.
These details can be found in the Supplementary Materials.

Experiment

The performance of the approximate Open-GRAPE and Closed-
GRAPE algorithms is further verified experimentally with a super-
conducting quantum circuit, as also studied in the aforementioned
numerical simulations. The system consists of a three-dimensional
cavity with a high-quality factor of Q = 4.9 X 107 and an ancillary
transmon qubit. Our practical experimental Hamiltonians are the
same as Eqgs. 13 and 14, with the calibrated y /2x = 1.00 MHz and

A Repetitive gate sequence
Cavity
|0) — — — —
oy
Qubit @2
l9) = — — — )K\
C sof Closed-GRAPE I
a0l Approximate Open-GRAPE_
S
> 30
=
& 201
<]
& 1ot
ol— 1

1.5
Infidelity (%)

0.5 1.0

K, /2m = 1.415 kHz. The dominant errors are the decoherence noise
including the decay (L, =6_, T} = 110 ps) and dephasing (L, =5,
T, =130 ps) of the transmon qubit and the relaxation (L; = a,
T, = 1300 ps) of the storage cavity. The experimental control is im-
plemented with microwave pulses to coherently drive the cavity and
the transmon via arbitrary waveform generators (AWGs). The pulse
shapes are numerically optimized by the GRAPE algorithms with a
step size of T = 2 ns. The detailed experimental setup, wiring, initial-
ization, pulse generation, and readout are the same as previous ex-
periments (43) and are also provided in Methods.

With the GRAPE algorithm, the encoding, gates, and decoding
of logical qubits based on the binomial codes in the cavity can be
realized. All the operations on the logical qubits can be optimized by
either the Closed-GRAPE or the approximate Open-GRAPE on-
demand. In our experiments, the duration of the initialization and
the decoding operations are set to 2 ps, while the duration of the
logical R (m) gate is 3 ps. Here, R, () denotes a @ rotation gate around
the y axis in the Bloch sphere of the logical qubit. To characterize the
performances of the operations based on the optimized controls, we
first directly characterize the simplest quantum circuit of a logical
qubit consisting of only encoding and decoding, and then the logical
R,(m) gate is characterized by repetitively implementing the gate.
The control sequence is shown in Fig. 4A.

For the first experiment, we initialize the logical state to

[+5) = ( [0g)+] IB)) / \/E and then decode the logical state to the
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Fig. 4. The experimental results. (A) Quantum circuit for the experiment. (B) Scatter diagram of infidelities in the initialization experiment with 30 randomly chosen
initial pulses. The horizontal and vertical axes represent the outcomes after optimization with the Closed-GRAPE algorithm and the subsequent refinement through the
approximate Open-GRAPE algorithm, respectively. The red dashed line indicates the boundary where the infidelity remains the same with the two algorithms, and the
lower half-space is the region where approximate Open-GRAPE is advantageous. (C) The distribution of infidelity corresponding to the data shown in (B). The black line is
a Gaussian distribution fitted to the data from the Closed-GRAPE algorithm. The dark gray vertical dashed line indicates the average value, and the distance between the
gray dashed lines is the SD o of the Gaussian distribution. (D) Infidelity versus the number of repetitive rotation gates. Thirteen random initial pulses are chosen in this
experiment. The red (blue) line is the average infidelity corresponding to the approximate Open-GRAPE (Closed-GRAPE) algorithm. The infidelity deviations for different
initial pulses are reflected by the error bars.
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transmon for characterization. The constraints in the optimization of
the encoding and decoding operations and the detailed parameters
are shown in Methods. The performance of the two operations is
characterized by a state tomography of the transmon qubit. From the
tomography result, the density matrix of the transmon qubit can be
reconstructed numerically, and the infidelity can be calculated. The
details of the tomography process can be referred to the Supplemen-
tary Materials. The infidelity of this experiment is shown in Fig. 3B,
with each approximate Open-GRAPE pulse optimized based on the
resulting pulse of Closed-GRAPE. It is evident that the approximate
Open-GRAPE improves the average infidelity from 1.84 + 0.21% to
1.01 £ 0.20 %, showing a relative improvement of about 45% in the
infidelity. Furthermore, the variance of infidelity along the horizon-
tal axis is generally larger than that along the vertical axis, and this
implies that the pulses obtained by the approximate Open-GRAPE
algorithm exhibit greater robustness to noise parameters.

In Fig. 4C, the infidelities of the Closed-GRAPE algorithm show
symmetric Gaussian-like distributions, excellently agreeing with the
numerical results in Fig. 2C. According to the Gaussian distribution,
a probability of 0.135% is predicted to obtain a control pulse realiz-
ing an infidelity below 1.20% (three SDs below the mean value),
while no pulse actually (0 of 30 pulses in our experiments) achieves
this goal. In contrast, a probability of 83.3%, i.e., 25 of 30 pulses, is
achieved by the approximate Open-GRAPE in our experiments
with an ultralow infidelity of 0.60%. These results imply that the
main perturbations are accounted for, and their impact on quantum
control is suppressed. We also note that all parameters in our ex-
periments are not perfectly calibrated and might also fluctuate dur-
ing experiments, which is notably different from the numerical
simulations. Nevertheless, the results demonstrate the robustness of
our algorithm.

To demonstrate the advantage of the approximate Open-GRAPE
algorithm in deeper and more complicated circuits, we also design
the repetitivelogical R, () gate sequence as shown in Fig. 4A. Similarly,
the storage cavity is first initialized in the | +5 ) state. Then, the logical
R, (m) gates are implemented on the state with M repetitions. Eventu-
ally, the decoding and tomography process are performed to obtain
the infidelity of the final state. It is worth noting that the ideal final
state is| +5 ) or| —5 ) depending on whether M is even or odd, respec-
tively. Figure 4D shows the average infidelity of 13 random initial
pulses as M increases. From the linear fitting of the infidelity curve of
each initial pulse, the infidelity for the logical R, () gate can be deter-
mined. The average infidelity is 0.89 + 0.21% for the Closed-GRAPE
algorithm and 0.72 + 0.28% for the approximate Open-GRAPE algo-
rithm. This shows that the pulses further optimized in the approxi-
mate Open-GRAPE algorithm exhibit a relative improvement of
about 19% in infidelity. Furthermore, the optimal pulses generated
from the approximate Open-GRAPE algorithm demonstrate the low-
est infidelity of 0.44 + 0.01%. The performance of the 13 pulses is de-
tailed in the Supplementary Materials.

Computational complexity

The complexity of the Closed-GRAPE and approximate Open-
GRAPE optimization algorithms is important for practical appli-
cations. Although the convergence of the algorithms is determined
by the specific problem, constraints, and initial guesses, we can
quantitatively compare their complexity through the time con-
sumption of calculating the gradient during each iteration in
the optimization.

Chenetal, Sci. Adv. 11, eadr0875 (2025) 26 February 2025

When the Hilbert space dimension d of the system is large, the
most time-consuming process in the GRAPE algorithm is the calcu-
lation of the unitary matrix {Uj} related to the forward and backward
propagations. This is due to the fact that the computational complex-
ity of the matrix exponential of a unitary operator U = exp(—iHT)
from the Hamiltonian H is ©(d*), while the rest part remains ©(d?).
To avoid this, we apply the matrix-vector exponential approach as
outlined in (26), and the similar idea can also be found in the earlier
works (44, 45). The key idea is to calculate the propagation of the
state, e.g.,| y ), using the Taylor expansion of the unitary operator as

Maylor

Uly)~ D 1)

m=0

(15)

where |[¢,) =|y) and |d,,) = %Hl(bm_l) are terms related to
different orders, and nr,y,, is the truncation order of the Taylor ex-
pansion. With this method, the computational complexity of
the gradient is demonstrated in the Supplementary Materials, and
the results show that the complexity is O[(ZnTaylor+nc0mrol)Nd2]
for the Closed-GRAPE algorithm and O{[(2v+2f +13)n g0+
2(f+ 3)nTay10r +2(f+2v+ 1)] Ndz} for approximate Open-GRAPE
algorithm. Here, 1 ,,; is the number of control Hamiltonians to be
optimized, v is the number of decoherence noise sources, and fis the
number of uncertain Hamiltonians. Comparing the two approach-
es, our approximate Open-GRAPE algorithm consumes more time
but only by a constant factor. For example, when v = 2, f = 2,
Meontrol = 4 and nip,,, = 20, the complexity of the approximate
Open-GRAPE algorithm is only 6.77 times that of the Closed-
GRAPE. This scaling is acceptable for practical experimental sys-
tems in which the main uncertain parameters and decoherence
channels are limited to a small number. In this perspective, our
approximate Open-GRAPE algorithm outperforms previous at-
tempts to optimal control of open quantum systems based on the
GRAPE algorithm (28, 46), whose computational complexity is
at least O(d®) when performing the optimization with the d X d-
dimensional density matrix representation.

The computational complexity is also numerically tested by re-
cording the duration for each iteration of the GRAPE algorithms.
Figure 5A directly compares the time consumption of the Closed-
GRAPE and approximate Open-GRAPE algorithms as the system
dimensions increase. The data illustrate a trend that is lower than
quadratic scaling and approaches linearity when d is large, which
may be attributed to the sparsity of the Hamiltonian matrices. How-
ever, because of the foundational overhead of computer operations
such as array initialization, the iteration time becomes relatively
higher than expected when d is small, resulting in an inflection
point around d = 10* in the figure. The increasing time consump-
tion with the considered uncertain parameters and noise terms are
also numerically investigated, as shown in Fig. 5 (B and C). As ex-
pected, the calculation time shows a nearly linear increase with both
fand v for d = 10? below the inflection point and d = 10° above the
point. These numerical results validate the computational efficiency
of our algorithm for practical applications. For example, in the
qubit-cavity model investigated earlier with f= 2 and v = 2 pertur-
bations, our results imply that the typical iteration duration for the
2 X 5000-dimension problem is about 22 seconds. Furthermore, the
results also show that optimizing open quantum system controls
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Fig. 5. The computational complexity of the algorithms. (A) The variation of the
iteration time with an increasing state dimension d. The blue and red points repre-
sent the data of the Closed-GRAPE algorithm and the approximate Open-GRAPE al-
gorithm with f = 2 and v = 2. The blue and red dashed lines show the scaling of
338 x 107 x d"92 and 2.18 x 1073 x d"%, respectively, fitted from the rightmost
five blue or red data points. (B) The variation of the iteration time with an increasing
number of uncertain Hamiltonians f. (C) The variation of the iteration time with an
increasing number of decoherence noise sources v.The green points and the orange
points represent situations with a matrix dimension of 10 and 10°, respectively.

with dimensions d ~ 10° becomes achievable on personal comput-
ers, equivalent to handling roughly 20 qubits.

DISCUSSION
In summary, a numerically efficient GRAPE algorithm for optimal
and robust control of open quantum systems is proposed and ex-
perimentally verified. This approximate Open-GRAPE algorithm,
instead of offering entirely new control solutions that the Closed-
GRAPE could not uncover, shows a higher probability of finding the
potential control pulses that suppress the impact of perturbations
and are robust against parameter uncertainties. Both simulation and
experimental results affirm the computational efficacy of our algo-
rithm, showcasing a 340-fold increase in the probability of generat-
ing high-performance pulses while maintaining a modest linear
increase in complexity for calculating the gradient in each iteration.
This algorithm allows us to approach the practical lower bound
of infidelities when controlling open quantum systems in practice,
promising much better performance based on current system pa-
rameters. For example, while the average infidelity using the Closed-
GRAPE algorithm can be as large as 1.84%, the best optimization
results achieved with the approximate Open-GRAPE can reach
0.60% as demonstrated in the experiment. Furthermore, our algo-
rithm provides an effective means to estimate the minimal physical

Chenetal, Sci. Adv. 11, eadr0875 (2025) 26 February 2025

resource requirement to achieve a target operation precision, which
is crucial for evaluating the hardware needs to realize fault tolerance
thresholds and quantum supremacy. Our results imply that the
stringent demands on the parameters of the system, such as T, and
T, of the qubits, can be relaxed by approaching the lower bound of
infidelities with the approximate Open-GRAPE algorithm.

High gate fidelity is immediately important for applications in
the noisy intermediate-scale quantum era, as well as for the explora-
tion of quantum error correction and fault-tolerant techniques.
Even a marginal improvement in fidelity can substantially increase
achievable quantum circuit depth or enable quantum error correc-
tion codes to surpass the break-even point. Hence, it is anticipated
that the approximate Open-GRAPE algorithm can contribute sub-
stantially to these applications. In addition, our algorithm is gener-
ally applicable to open quantum systems and thus can be easily
extendable to other quantum platforms, including Rydberg atoms
(47) and trapped ions (48, 49). Furthermore, our treatment of per-
turbations in the GRAPE algorithm can be further generalized to
applications beyond gate operations (50), such as quantum metrol-
ogy (51), quantum state resetting (52), and quantum simulation
(53). In addition, to enhance the practical applicability of the algo-
rithm, we need to further improve its yield by addressing challenges
such as avoiding local optima. Last, to further enhance the perfor-
mance of quantum systems, we need to improve the algorithm to
effectively handle low-frequency and non-Markovian noise (54).

METHODS

Constraints of the algorithm

In the numerical simulation, the encoding process of the binomial
code can be realized through the following constraints

ly})=1£)®]0),

I\v?>=w®|0>,

V2
where |+,) = ([0,) £ [15)) /V/2, and [05) = (10))+[4) / V2
and |15) =|2) are the two code basis states. The unitary evo-
lution satisfying these constraints can transfer the state from
(0(|g)+B||e))® [0)to|g) ® (oclOB)+[3| 13)). Here, no more con-
straints are set to the evolution in other subspaces, and the global
phase is also neglected.

In the experiment, the initialization process is realized with only
a single constraint

ly!) =1g)®10),  |wl)=le)®|+p) (17)

The constraints on the decoding process are more stringent with

lwo)=18)®115);

ly2)=12)® | +5) (16)

lyh=le)®+s).  lwh=(lg)+le))/V2®]0);

w=lal1-p).  lw)=(Ig)-1e)/Va@lok o
W)=10®105), v =1g)®]0);
lyH=le)®I15),  |wl)=le)®|0)

This decoding process can realize arbitrary state transfers
from the storage cavity to the ancillary qubit, i.e., from |e) ®

® (] 05)+B115)) to(xlg)+Ble}) ® 0).
The constraints on the logical R (r) gate neglecting the global
phase are
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ly!)=1e)®|+5)
ly?)=1e)®|05),

lwy)=1e)®|—p);

(19)
lwo)=1e)®|15)
Simulation details

In the “Numerical simulation” section, the GRAPE algorithm is
computed using the following Hamiltonian in the interaction pic-
ture, with the higher-order terms being neglected

H/h=-ya'a6,5_ - %auf aa (20)

To effectively demonstrate the optimization efficacy of the ap-
proximate Open-GRAPE algorithm, the parameters used in this
section are different from those in the real experiment. For the four
control Hamiltonians shown in Eq. 14, the maximum allowable am-
plitude during the optimization in the GRAPE algorithm is 50 MHz.
The cross-Kerr coupling strength is x /21 = 1.9 MHz, and the self-
Kerr coefficient of the storage cavity is K, / 2n = 8.46 kHz.

In Fig. 2 (B and C), the dimensions of the cavity and the transmon
qubit are chosen to be 30 and 2, respectively. The overall duration
time T = 600 ns is equally split into N = 600 steps. The frequency
shift fluctuations are intentionally increased beyond those observed
in the real system and are chosen to be G;l) = G(fz) = 0.1 MHz for
both the storage cavity and the transmon qubit. The corresponding
Hamiltonians are H f(l) =a'aand H, 52) =6,6_, respectively. Only the

relaxation noise of the cavity and the transmon qubit are considered
here, i.e., L; = a and L, = &_. Their strengths are k; = 10 kHz and
K, = 50 kHz, respectively.

Calculations of the average infidelity in the “Numerical simulation”
section are obtained by computing the weighted average infidelity
between the target states specified in the constraints and the correspond-
ing noisy final states after evolution. To simulate the influence of the
fluctuating Hamiltonian, the uncertain parameters are assumed to
follow a binomial distribution. Consequently, the infidelity is aver-
aged over the final states resulting from the evolution with two dif-
ferent Hamiltonians, H(t) = H, + Zkugk)(t)Hc(k) + chs;m)Hf(m) and
H(t)=Hy + Y t)HY = ¥, 6/ H™,

In the calculation shown in Fig. 5, the overall duration time
T =100 ns is equally split into N = 100 steps. The calculation is im-
plemented with an Intel Core i7-8700 CPU (@3.20GHz). In Fig. 5A,
the total dimension d is changed by varying the cavity dimension
while keeping the transmon qubit dimension fixed at 2. Only a sin-
gle constraint is considered with random initial and target states in
the analysis.

Experimental setup

The experiment is conducted on a superconducting circuit in-
cluding a three-dimensional cavity with a high-quality factor of
Q =4.9 x 107 and an ancillary transmon qubit. The parameters of
the Hamiltonians are well calibrated, where the cross-Kerr coupling
strength is y /2n = 1.00 MHz and the first-order self-Kerr coeffi-
cient is K, /2n = 1.415 kHz. Both the initialization and decoding
processes have a duration of 2 ps, while the logical rotation gate
R)(m) has a duration of 3 ps. The time interval for each step in the
GRAPE algorithm is T = 2 ns, resulting in N = 1000 and 1500 steps
for the initialization and R (n) gate, respectively. In the experiment,

Chenetal, Sci. Adv. 11, eadr0875 (2025) 26 February 2025

the pulses are generated from an AWG with a minimum time reso-
lution of 0.4 ns.

In the experiment, the dominant error source is the decoherence
noise, including the decay (L; =6_, T; = 110 ps) and dephasing
(L, =36, T, =130 ps) of the transmon qubit, and the relaxation
(Ly =a, T, = 1300 ps) of the storage cavity. These extrinsic errors
are considered in the optimization process of the approximate
Open-GRAPE algorithm. Moreover, to prevent pulse distortion
from the AWG, several penalty terms are included in both the
Closed-GRAPE and approximate Open-GRAPE algorithms in the
experiment (55). More details can be referred to the Supplementary
Materials. Similar to the approach in the “Numerical simulation”
section, the pulses optimized using the Closed-GRAPE algorithm
are used as the initial pulses in the approximate Open-GRAPE algo-
rithm for better comparison.

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs. S1to S4
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