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We intend to study the role of the three-body weak ANN — NNN interaction in two-
nucleon induced hypernuclear non-mesonic weak decay. The three-body weak interactions
are constructed on the basis of the meson-pair exchange (MPE) model and then we derive
the effective two-body AN — NN weak potentials from the three-body interactions based
on the Loiseau—Nogami—Ross approximation. The strong coupling constants of MPE are
taken from the Nijmegen ESC and GESC models and the weak ones of MPE are evalu-
ated in the weak A-n mixing model by Dalitz and Von Hippel [Phys. Lett. 10, 153 (1964)].
The effective two-body AN — NN weak potentials are applied to evaluate hypernuclear
non-mesonic decay rates, which should give a certain additional contribution to the two-
nucleon induced decay rate I'»y. Calculations of T*®) are done for 3 He, B, and 12C
and the results are compared with experimental data I';)’. We have demonstrated the pos-
sibility of accounting for the two-nucleon induced non-mesonic decays of light and p-shell
hypernuclei by introducing the effective two-body potentials deduced from the three-body
weak interactions, though the calculated F,Sf,ﬁf'ZB) still includes uncertainties. Discussions

and limitations of our “effective two-body AN — NN model” are given.

Subject Index D02, D14, D29

1. Introduction

In these days the understanding of the weak decay mechanism and the decay interaction of
A embedded in the nuclear medium has much progressed, owing to the experimental advent
of innovative detection techniques and the theoretical efforts in clarifying the variety of A-
producing decay observables adhering to hypernuclei [1-3].

A free A decays exclusively through the pi-mesonic modes, i.e., A — p7r~ and A — nn’.
However, it is also well known that once A has been trapped in the nucleus A can exhibit the
new weak decay mode, i.e., non-mesonic decays such as the Ap — np and An — nn processes,
in addition to the pi-mesonic decay mode. Such one-nucleon induced non-mesonic decay pro-
cesses become the dominant weak decay mode for all the A-hypernuclei except for light s-shell
systems.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the
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Studies on one-nucleon induced decays have been done using a variety of weak interactions
of V(AN-NN) such as the meson-exchange (one-meson exchange, two-meson exchange, corre-
lated or uncorrelated meson-pair exchange) models, quark exchange model, and effective field
theory, etc., in combination with many-body treatments such as the shell model and/or the nu-
clear matter framework. The non-mesonic partial decay rates, I',(Ap — np), I',(An — nn), the
ratio I',,/T", and the asymmetry parameter o, for the decay protons from the polarized hyper-
nuclei are important weak decay observables. Recent theories [4-6] seem to account for those
data successfully to a certain extent, though we think that they are not yet fully understood.

However, close attention must be paid to the proton/neutron distribution and the nucleon-
pair (np and nn) distributions as a function of the kinetic energy or opening angle of the pair
nucleons in the final state. It has long been recognized that the nucleon and nucleon pair do
not show a simple pattern originating from the one-nucleon induced decays even when one
considers the final-state interactions (FSI). Alberico et al. [7] were the first to point out the
possibility of such a process in which the virtual pion from the A decay can be absorbed by a
pair of nucleons as np, producing three-body decays, i.e., the ANN — NNN process in nuclear
matter.

Recently two groups observed the two-nucleon induced three-body decay rate T'ry(ANN —
NNN). One is the KEK E462-E508 group, who noticed the following. Yield quenching exists
both in one-nucleon energy spectra (proton and neutron) in the lower-energy part and in the
nucleon-pair (np and nn) distribution for their opening angle and also for the momentum-sum
in the non-mesonic decay of 12C with respect to those expected in the model calculations of
only one-nucleon induced decay with FSI. They considered and analyzed that the quenching
phenomenon could be caused by the two-nucleon induced three-body process as ANN — NNN
and FSI. They obtained the two-nucleon induced decay rate I'yy = 0.27 & 0.13T 5 (Ton/T vy =
0.29 +0.13) for 2C[8,9]. T's is a free A decay rate. The other group is the FINUDA Collabora-
tion, who untangled the contribution of two-nucleon induced non-mesonic decays in two ways
under some assumptions: (a) analyzing inclusive decay single-proton spectra affected by FSI
for A = 5-16 hypernuclei to extract 2N induced decay rates by fitting each of the proton kinetic
energy spectra for their high-energy part with a Gaussian function [10] and (b) considering both
proton and neutron spectra and also neutron—proton coincidence events in suitable kinematical
configurations to determine 'y [11]. The updated results [12,13] are Ton/T yar = 0.25 £ 0.12 £+
0.02 for method (a) and Ty /Ty = 0.20 £ 0.08“:8:8‘3‘ for method (b). The reported values are
for the average of hypernuclei of 4 = 5-16.

After the work of Ref. [7], Ramos et al. [14] applied the formalism to finite hypernuclei using
the local density approximation (LDA). Bauer et al. [15-17] extended further the nuclear matter
formalism microscopically by taking into account the meson-exchange weak interactions that
couple to the two-particle-two-hole excitations arising from the ground-state correlation due to
the strong residual interactions. They evaluated the two-nucleon induced decay rate of 1>C by
adopting the LDA in their formalism and obtained I';y = 0.26I" 4 [17]. However, the calculated
',y looks so large that the following questions may naturally arise: (i) Is the nuclear ground-
state correlation so big to produce large I',5? (ii) Are there any ambiguities for the nuclear
residual interactions?

On the other hand, Shinmura was a pioneer, thinking about the role of the three-body force
on the two-nucleon induced non-mesonic decay [18]. He examined the Fujita—Miyazawa-type
[19] weak three-body force in a relativistic way by incorporating the Dirac wave functions for
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bound A and nucleons, and evaluated the decay rates of the three-body mechanism with results
oy (= T'3) about 30% of the total T vy, for s-shell hypernuclei.

The motivation for this work is to understand the hypernuclear weak two-nucleon induced
decay mechanism and the decay rates more deeply from a new viewpoint. This is because of
the following. First, although it is stated that the one-nucleon induced decay is rather well un-
derstood, the summed decay rate I'yy = I'1y + oy should be recognized more accurately,
because ',y is not settled experimentally and theoretically. Even I'; y is in principle affected by
two-nucleon induced decays through FSI between the outgoing nucleons. Further, the hyper-
nuclear lifetime is connected with T"y;, and consequently with I'y through the relation 7y
= /(T 4+ T'yu). Secondly, as mentioned, experimental data for I',y have been reported by
two groups; the data for }2C from the KEK E462-E508 group still have large error bars, while
the FINUDA data are determined under the assumptions of (i) a linear dependence of the FSI
contribution on 4 and (ii) the constancy of both I',/T",, and I'py/T" yys for A = 5-16 hypernuclei.
We would expect a more improved and direct determination of ',y along with the experimental
progress. On the theoretical side, there is a fundamental problem with the two-nucleon induced
non-mesonic weak decay. What is the dominant and relevant mechanism for two-nucleon in-
duced decays? This is not fully discussed and clarified theoretically. We would like to explore
the two-nucleon induced weak decay with a different approach; i.e., we propose that the ANN
— NNN three-body weak interaction is dominantly responsible for the two-nucleon induced
weak decay. This view is different from the polarization propagator method (PPM) approach
developed by Ramos et al. [14] and Bauer et al. [15-17]. The mechanism of the two-nucleon
induced decay of PPM is that a meson emitted in the two-body weak AN — NN transition
interacts with a particle or a hole in the two-particle-two-hole excitations in the ground-state
correlation due to the residual strong NN-NN interactions in the nuclear matter and finally the
three nucleons are emitted. Our method has the advantage of evaluating the non-mesonic weak
decay rates for finite hypernuclear systems in terms of the parent hypernuclear and daughter
nuclear wave functions.

In this paper we try to evaluate the two-nucleon induced non-mesonic decay rate by a new ap-
proach. We consider two mechanisms. One process is that a virtual meson emitted from A in the
weak process is absorbed by the first nucleon; it then emits simultaneously (at the same space-
time position) another meson that is finally captured by the second nucleon. The second process
is that A emits a meson pair in the weak process and the emitted two mesons are captured by
two different nucleons. These two processes can be regarded as the three-body interaction mech-
anism of A-nucleon—nucleon going to three nucleons mediated by the meson-pair exchange
(MPE) as shown in Fig. 1. In the MPE, we consider the (7o), (Tw), and (00) exchanges, and
in addition the Fujita—Miyazawa-type () exchange. It should be noted, however, that the
full treatment of the weak three-body interaction in the weak decay of A-hypernuclei in the
wave function formalism is too complicated at present. Instead, here we transform the weak
three-body interaction to the “effective” two-body AN — NN weak potential by integrating
the “third” particle in the three-body interaction. Thus the effective two-body AN — NN weak
potentials deduced from the three-body interactions have a different nature from the usual two-
body weak AN — NN potentials. Therefore we treat the “effective” two-body potentials sepa-
rately from the usual two-body ones in evaluating hypernuclear decay rates.

In Sect. 2, we show three-body weak interaction processes on the basis of the meson-pair
exchange model of the Nijmegen ESC model. In Sect. 3, we explain how to construct effective
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Fig. 1. Meson-pair exchange Feynman diagrams (al)—(a2) of Vi3, (b1)—~(b2) of Vis.2, and (cl)—(c2)
of V23.1. ml and m2 denote mesons. The open circle (o) represents a weak vertex. The pair of mesons
(mymy) represents (), (7n), (7 p), (To), (Tw), or (co). In the case of (1) or (00) exchange, m; = m;,
= or m; = mp = o, respectively.

two-body weak potentials starting with three-body associated diagrams. Next, in Sect. 4, the
weak coupling constants are evaluated in the weak A—n mixing model by Dalitz—Von Hippel.
In Sects. 5 and 6, we apply effective two-body weak potentials to evaluate the non-mesonic
decay rates of the typical three hypernuclei and discuss the numerical results in comparison
with the experimental data. Problems and limitations in the present treatment of the effective
two-body potentials are also discussed in Sects. 5 and 6. A brief summary and some remarks
on the present study are given in Sect. 7. In Appendix A, weak effective two-body interactions
in momentum space for the meson-pair exchanges concerned are given.

2. Three-body weak A/NN — NNN interactions in the meson-pair exchange model
We first construct the strangeness-changing (AS = 1) three-body weak ANN — NNN interac-
tions that cause the two-nucleon induced non-mesonic weak decays of hypernuclei.

One of the authors (Th.A.R.) introduced the idea of meson-pair exchange between baryons
in the strong process early in the Nijmegen soft-core model [20] and also in the ESC model in
various versions [21-27].

Following the ESC model [21-27] and the GESC model [28], the exchanged meson pairs
adopted here consist of the following six categories:

(i) JPC=0"": (zn), (7n), (00)
(i) JFC=1":(nm)
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(iii) J7C = 172 (wp)1, (o)
(iv) JPC =17 (nw)

(v) JP=0%: (Km)

(vi) Fujita—Miyazawa ()

The strong NN(meson-pair) and AN(Km) coupling interaction Hamiltonians are expressed
in the standard way as follows:

JPC =0 - Hynem = Gonn VYN0, - 0,) /My (1)
HNNGn = EanVNTYN] - @,y / M (2
HyNoo) = Lo [UNUNI(@s ) /M 3)

JPC =177 Hyneny = Zamn [Wnvut¥n] - (9, x 3", )/m2
- %[&Noﬂurww] A R L Vi S
TP =1 0 Unnipy = 8aon[UNvuysTUN] - (07 X ¢14)/my (%)
HuNiro) = o) [UNVuYsTYUN] - (0,0 b0 — 50" @, )/, (6)
JPC=1"" 0 Hynro) = i 8aa)[UNowysTYN] - 9" (@, BL)/m ™)
J' = 0% - Hann) = k) [UnTd"] - @ 0a/ms ®)

_ 1 1
Fujita-Miyazawa : Hruren) = — Uy [{((A +B)—V, - Va4 D— )3,1
1
- U= B (91 Ve gm0 0 e )

The Fujita—Miyazawa H r yr(r ) 1s unique in the sense that it contains the effect of the Asz; isobar
in the vertex through the coupling constants [19].

Corresponding to the strong Hamiltonians shown above, the weak A N(meson-pair) and
NN(Kr) coupling interaction Hamiltonians are expressed as follows, where the A7 = 1/2 rule
is assumed.

T =07 Hgamy, = Gr [ (AL, + Bl v5) O) ¥ | (0 - 02)/ma (10)

ANGen) = Gr [wN <Af;r/) + B(nn)y5> ( )‘/’A] " PP/ M (11)
Mvioe) = G2 [ (A0S, + By vs) (3) wa | (600 /s (12)

5/30

£20z A1eniga Gz uo Jasn uoJj0IYdUAS usuoIpa|g sayosineq Aq €128129/1L0AEL0/L/SZ0z/a1omue/daid/woo dno-olwapeoe//:sdiy wouy papeojumoq



PTEP 2023, 013D01 K. Ttonaga et al.

__ W . ouw(pa — pn)’
JC=17" 0 Hnieny, = Grms [‘ﬁN{ Ay Vi = LBy, MT
+ e Vs |7 () Ua | (0 x 00, /i (13)

JPC =17 XN(n,o)l Gr m [WN { (ﬂP)IyMVS + B{;ﬂ)ly“ } T ((1)) WA]
(@ X @) /my (14)

v v 0
L\N(na) = GF m I:WN { (m,)VMVS + Bf,w)yu} T (1) 1ﬂA]

(@705 — Pr " @) /M2 (15)

JPC — 1+ . Hy Ny = | GF m’ [wN { (m)d,w)/s + Bf;w)o*w } T (?) tﬁA]

- 0" (@ B) /0, (16)

-]P - 0+ : %}GN(KJT) - GFm I:[WN( ) <Cpcﬂ) + K,,)VS> (¢ )Tth Dy
+ 0 (Dlfeny + Dlerys) T - 0,65) (1) | /1. a7

The nucleon field ¥ y and the kaon field ¢* represent the isospin doublets as

K+
Yy = (3}‘:) and ¢k = (ZKO> , (18)
respectively. In Egs. (10)—(17), the isospin spurion ((1)) is used to enforce that the weak Hamil-
tonians should follow the A7 = 1/2 rule.

It is noted that we omit the weak Fujita—Miyazawa-type (7 )-pair coupling Hamiltonian
because we do not know it now.

The strong and weak interaction Hamiltonians for the baryon—baryon-meson coupling are
given in Ref. [6].

Figure 1 shows the Feynman diagrams for the (72;m,)-meson-pair exchange weak ANN —
NNN transition interaction. The (172;m,) pair represents one of the pairs (7 ), (t ), (7 p), (7o),
(rw), or (00). For the Fujita-Miyazawa (7 ) exchange, the diagrams are the same as those for
the (7 r) exchange except for the interpretation of meson-pair vertices. Note that the (K )-pair
exchange Feynman diagrams for the weak ANN — NNN interaction are not included in Fig. 1,
since the NNK- and/or NN(Kr)-vertex in the diagrams represent the weak ones in the (K )-pair
exchange case. The Feynman diagrams depicted in Fig. 1 can be evaluated in momentum space,
once the momenta are assigned as (p14, p2, p3) for (A1, N2, N3)and (p), p,, p5) for (N{, N3, Nj),
respectively. We note that the A hyperon is assigned as particle 1, and keep this hereafter in this
paper.

In the case of (7o) exchange, for Fig. 1(al) we obtain (Vl(za;g))(m) (P> Py, Pss Pias> P2s P3), and
similarly for Fig. 1(a2) (Vl(;‘é))(,w) (P}> P5: P5. P1a- P2> P3)- By adding these two terms, we get

(a) _ (al) (a2)
(Vl§;3>(n5) o <V1;3>(na) + (Vl;ﬁ)(no) ) (19)
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The complete three-body MPE interaction of (7o) exchange is obtained by the sum over the
three types of permutations as

VW3B — (V(a) ) 4 (V(b)> + (V(C) > 3 20
(o) 123) 10y 132) (1) 23:1) (1) (20)
Now we rearrange the r.h.s. of Eq. (20) for convenience of expression in the following as

W3B __ (1) ) 3)
Vize) = Vo) T Viroy T Viroy: 1)

where
1 _ @l (b1) 2 _ 1@ (b2) 3) _ gD (c2)
Vo) = Viwo)  Viroy Vo) = Veao) T Viwoy Viro) = Veao) T Vero: (22)
Introducing a new set of variables
1 / /
9, =5 (I’i +Pi) . ki=p;—p;, (23)

2

the terms on the r.h.s. of Eq. (21) are expressed in the leading terms and the next higher-order
terms in (p?/M?) when the Feynman diagram is evaluated in the momentum space as follows:

1) 8(wo)
V(nc) = Wgﬂg"zMN X |: {

g

A(01~k1)[03'(k1—k2) BCENE ( q: - ki _‘Iz'kz)
oM 2My My \2MMy 2My?

Lok —k2>< ky iy (ka x ‘Iz)) }

2My SMy? 4M\?
_ |:‘73'(k1—k2)_<73'q3(‘11'k1 _‘Iz'kz)
DMy My \2MMy 2My?
+63'(k1—k2)( ki k3
2AdN 8M2 8MN2
ioy - (k; x ios - (ky % 1 1
. 1(} ql)_ 2(22‘12)>]}2 . (13- 11)
4 M2 4My ki + m2 k5 + m?

+ )L(01-k1)|:02-(k1—k3)_az-q2<q1-k1 _‘I3'k3>
2M 2My My \2MMy 2My?

+az-(k1—k3)< 15 _ia3-(k3xq3)>i|

2MN 8]\1]\/2 4'Z‘INZ
_[az-(kl—ks)_azm(ql-kl _qs-ka)
2My My \2MMy  2My?
oy (ky —k3) / K} k3
+ ( =+ 2
DMy \8M2 ' 8My
ioy - (ki x ios - (k3 x 1 1
oy (ki xqy) 3(32,,3))] - —— () |, (24)
402 4AMy ki +m2 ks +m?
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V(Z) _ _g(”;) Ganzﬁ(zMN)z % |:{A£C
mz, m

(o) ™
T

(02 ko) [ o3 (ki — k)
2My My

_"3'113(%‘1‘1 _lIz’k2> 63-(k1—k2)( ki _ial'(klqu)>]

My \2MMy 2M> My \8M> 4M?
g (01 k) (02 k) (03 (k1 — ) } 1 1 (T3 - 1)
° oM 2My 2My k3 +m? k3 4+ m?
+{Apc(03-k3)[62 (ki —k3) oy-q, < g ki q3'k3)
7 2My 2My My \2MMy 2My?
+02-(k1—k3)( ki oy - (ki X‘h))
2My 8 M2 42
_ g @1 k) (03 k3) (02 (k1 — Ks3)) } ! ! (12 13) (25)
° oM  2My 2My I+ m? ks +m2 ’

)= T2 myo° @) DMy DMy M \2My®  2My?

/e

o _ Grimy® fr QMy) x |: {Apc (Gz-kz)[al'(kz—ka) oL (llz'kz B q3-k3)

+01-(k2—k3)( k% _io3-(k3xq3))]
2My 8My? 4AMy?
LB (Gz'kz)[‘ll (ka—k3) 4y ko—q5- ks
o) 2My 2M My M2

i((f] Xk])-(kz—k3) 1 1
+ = B 2 > (Tl : TZ)

AM My ks + m2 k3 + m2
{Apc (03-k3)[01 (k3 —ky) o1-q (‘I3'k3 B ‘Iz‘k2>
o) 2 My 2My M 2MN? 2My?

+61‘(k3—k2)( Ko iﬂz'(k2X‘I2))]
2]\4N 8MN2 4-MN2

o (03-k3)[q (ks —ka) q3-ks—q, ks
+ B - —

o) 2 My 2M My 2M%

] ki) (ks — k 1 1
Jrz(cn X 1_) (k3 2)] } : i (r-73) | (26)
AM My k3 +m2 k5 +m?

Likewise the expressions of the three-body interaction for meson-pair exchanges other than
(mo) exchange can be written down easily.

The three-body interaction in the configuration space is given by the Fourier transform of
that in the momentum space of VW*B(p\, p, pi; pi, po, p3) = VV3B(ky, ko, k33 q1, @5, q3). IF
the interaction depends only on the k; variables, one obtains
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VWIB (x|, x5, X5 X1, X2, x3) = 8(x) — x1)8(xh — x2)8(x; — x3)

k; .
x 1_[ [ —elk’“x’} (27 )*8(ky + ko + k3)

i L) @)
xVVB(ky, ka, ks) 27)
= §(x] — x1)8(xh — x2)8(x — x3)
ﬂ &eikl‘(xl—x3)el'k2‘(x2—x3)
ary | Gxy
x V3B (ky, k). (28)

If the interaction has ¢,-dependence in VW3B(ky, ks, k3; qy, ¢5, q5), we need to handle the
interaction in an approximation in which the non-local operator with g,-dependence is re-
placed by the operator with no ¢;-dependence. In this paper the prescription will be explained in
Sect. 3.2.

3. Effective two-body AN — NN potentials

3.1 Kinematical restrictions and the effective two-body potential

The effective two-body potential can be derived by integrating out the degrees of freedom
(space, spin, and isospin) of, say, a nucleon “3”, following the Loiscau—Nogami—Ross (LNR)
approximation method [29]. The kinematical restrictions and momentum conservations should
be noted. The momentum conservation holds in the three-particle system:

Pia+ P2+ Py =P+ Py + P (29)
In the effective two-body potential, we must require momentum conservation, i.c.,
P=pp+m=pn+pr,=F. (30)

Further we are going to work in the two-particle CM-system as

P=0 and p;=ps. (31)
This implies
¢H=—q,, kn=—k;, and k;=0. (32)
Thus one sees straightforwardly
V3B, Ky, kes; q1. 4. 43) — VW3P(ky, k1, 0 ; 41, =41 43)- (33)

In nuclear matter, one averages over p; = ¢5 [30]. This means that only the quadratic term
survives, i.e., < q% >=(3/5)k% and < q; >= 0.

Now in the case that the three-body interaction has no ¢;-dependence or it is treated as having
no ¢;-dependence in the prescription of the local operator approximation for the non-local
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operator, we have the effective two-body AN — NN potential as

1
V(eff-2B)(1,2) = ZpNMTrfd3x3VW3B(x1,x2,x3)

1 d*k, dky .
_ = T d3 iky-(x1—x3) jiks-(x2—x3)
4Pnm r/ "3/<2n)3/(2n)3e ¢

W3B
x VW2 (ky, kz)‘,g:fk]sz

1 &k
= gpmTr / 27 MRy WIB (ke ),

d3k ik-(x1—x2) T, W
— ot / Sy 7Y (k, k), (34)

where pyy = 2kp2/3n? (with kp = 1.4 fm ™! ) for symmetric nuclear matter. In Eq. (34) the
Tr-symbol stands for trace over the spin and isospin operator of nucleon “3”. The concrete
expression of V" (k, —k) in Eq. (34) is actually obtained after the g-operator in V" (k, —k, q)
given in Appendix A is treated in the way described in the next subsection.

3.2 LNR approximation and the local momentum approximation
The LNR approximation applied in Eq. (34) acts to diminish some of the contributions derived
from the weak three-body interactions considered for MPE (i)—(vi) in Sect. 2. For example, the
()1~ (;rn)-, and (7 p);-exchange interactions vanish completely. This is because those weak
three-body interactions contain (73 - (t; x 2)) and/or (73 - T1), (T3 - T2), (03 - k3), etc. and
such operators vanish when the trace operators are applied to 73 and 3. One also knows that
some limited number of terms remain for the (wm)y-, (mo)-, (mw)-, (K)-, (00)-, and Fujita—
Miyazawa (7t 7 )-pair exchange effective two-body interactions after applying the Tr-operation;
Tr(t3) = Tr(o3) = 0 on VW3B(k, —k).

The reduced effective two-body interactions V" (k, —k, q) for (m7)y, (wo), (nw), (K7), (c0),
and Fujita—Miyazawa (7 7r) exchanges in momentum space are given in Appendix A.

Here we notice that non-local operators of the form (o3 - ¢)(¢ - k) and (g - k)(o; - k) exist in
174 )(k, —k, ; q,) of the (o) exchange. For the (0 - ¢)(¢q - k)-operator, we like to separate the

(mo
non-local operator part and the local part of that operator as

@00 = (0B 0+ Kb - R b, (9)

in which the first term on the r.h.s. in Eq. (35) is a non-local operator and the second one is
a local operator. That this separation is plausible is proved in Ref. [28]. We adopt the local
operator part only, so that

1

(01-Kk)o2-q)g- k)~ — 7 K (o1 - k)0 - k). (36)

This is the local operator approximation and we apply Eq. (36) to V" (k, —k, q). For the second
operator (q - k)(o, - k), we simply drop it.

The form factor is introduced for each meson propagator such that

1 F(K?)
2 - ’
k™ +m? k™ +m?

(37)

and we take

F (K*) = exp (— K*/AL) . (38)
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which is a Gaussian form and A,, is a cut-off mass for the meson m. Note, however, that, in the
case of the Fujita—Miyazawa (7 )-exchange interaction, we take the form factor as

F (K*) = exp (— K*/A%). (39)

3.3 Configuration space effective two-body AN — NN potentials

The effective two-body AN — NN potentials in the configuration space are listed below fol-
lowing the prescriptions mentioned in the preceding subsections. The spin—orbit-like part of
potentials is neglected in the configuration space for simplicity. We write r = x; — x; in the
following expressions.

1. JPC =0%F; (wm)-pair exchange

47TIONM g(nn)ogn f?T 2]\IN m

V(CEZB)() 4t 4w m
T My

(7)o

/]
JT

{)» (01-02) (11 - Tz) >

34MMN
—%exp (2m3,/A3,){ ”"”’Erf( > - “/i’f”)
el
~ g o) 99 (e, 27 ]
~ 5 o) 82 mn,— )} 30 mn,%, r)] } (40)

2. JPC = 1% (wo)-pair exchange

AT PNM 8ro)8x 8a 5y,

2By Ly my
") m’ 4r 4r TN 2

(o)

( )( ) 1( T T 1)
)\ o o T T = ¢ m El VAN ’
e b 3 4M]\4N |: “

2

4MMN

+ ¢C(mn, nvr):|
2

m
4+ ASp(t - T _Z
12(7y 2)4MMN

|:¢(7)"(m7r, J'[vr)+ ¢T(Wln, n,}’):|

4M

. n My
+i(os-F)(Ty - Tz)zMN [%O/(mn, Ay, 1)
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m2 0 L (A (Aar —(4ry’
TSy {"’V Otes B 1) = 2 I (m—) (7) ¢ H

_4mpNm Grmy,? fnga
m3 4

QMy) o

(7

2

1
X{ Al (01 - 02)(T1 - T2) %

3 4M2 [‘Pé(m”’ Ar 1)

2

4MN

2

m
Gz, A, V):| + Al ST Tz)m

+

x [(ﬁ(}(mn, s 1)+ ¢T(mn, e V)] } (41)

4M

3.  JPC=1%""; (mw)-pair exchange
2

47 PN M &(re0)&n 8w m
V(eff2B) _ T oW o Tt
(Te) ") m3 4 dx TN m2
1 3,\1 m
X{)\.(O’l-o’z)(‘tl-‘tz) (1+M§kl:) 34MMN ¢C(m,r, T V)

M35 4MMN

m 1 3
= 1 _k2 9 T Arrs
My [( s F) ov(m ")

") oty }”

+ASi(t - 12) (1 + 5-(my, Ay, 1)

+i(oy - F) (71 - 72)

m2

‘sMLN{‘pOV(m”’A”’ 1= zlf(:;) (%

2

4 pym Gan 8o Jfx

m3 4 4w my m2
fo 13
pe 2
[ Ay (01 02)(T1 - T2) (1 "o Mng
1 m2
X = mﬂ’ T r
34MMy iz )
: fo 1 3 m2
e 2
T A Solm-w2) (1 T g, 2M3 5kF 4MMN¢T(m”’ w1
PV m2
— 1B, (02-F)(T1- rz)zM YRVE [¢V(mn, s ).

1 (AN (AL (apy
‘ﬁ(@)(z)””” “2)
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4.  JP =0%; (Km)-pair exchange

(eff2B)
V(KJT)

(= —

X{ (o1-02)(T1 -Tz)% |:m2

my

+ Sia(7y - 72) [
.

my

4 povme Grmz® gkry fu

2

m3 dr 4w my,

{1(02 P) (T - Tz)

m2

82

m 1
Lo Mym, —Z | =CV + D’”’}
N m [2 K K

2M

1 T ! T _(Azry?
(st =22 () (5) ]

[¢>°V(mn, Ar, T)

47 o s GEmn® gank fo

1
S5 M, [Ec,';;]

m3 dr 4w my

Mymg mﬁ(

2
i

K—m% 4MMN

My My m

Gy, Ay, 1)

2

Mymg m%(

1
= mg, Ak, r
o ity U A )]
My My m?

—m2AMMy

¢T(mﬂv JT’r)

2

e o Ak | ] @3)

5. JPC =0%*; (00)-pair exchange

(efl2B)
(fw)

(r) =

47Tl0NM Gan 8(00)80o mnz
My
4m 4 M2

7T

2

felet -0

05 a(m 50
—%exp 2m? /A2 |:e ’"”Erfc \/E \/i’?a)

+e’”“’Erfc(;\\;; Ji?“)] }

2

AN My
. T2 A
S | 22 o) (e, 2. 1)

1 A,
_z (mar) ¢2‘(m0’ E’ V) - ¢!0/ (ma’AU5 r):| }

2

+ ¢ (Mg, Ay, 1) — b (Mg, Ay, 1) }

+iB” (o) - 7)

2.2
4 pyy Grmy© g5 P
89 1,

m3 47 4m my2
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2

4MMN ¢C(ma, (o) V):|

{ A7 [¢g (Mg, Ao, T) —

_iBgv (61 V) ¢V (Wlo, o r)} (44)

6. Fujita—Miyazawa; (777 )-pair exchange

47T,ONMg_;¥ﬁ ZMN
m3 4w dm my

e

(eff.2B) .
VFM(nzr) (}") -

2

X[)‘-(A+B)(Tl'1'2) 4]\qu |: (o7 - 02)¢C<m7nf )
N

AF

E,

m?> 1 2m2\ Ar
a5 o | (10 5F) et 500
Apr «/_mn>
2\/5 AFr

+S12¢9‘(m7n r>]+?»(A+B—D) (t1- 12)

1
— 7o (2mZ/AF) [ m”’Erfc(

+ " "Erfc (AFr fm") ] }

22 AF
+Slz{ 2 ¢T< i\/% >—é (myr) ¢10/<mn, %, r)}:|

+i(A+ B) (02-7) (71 - T2)

2MN o (m”’ Nk r)

+i(A+B—D) (o2-7)(1)- Tz) [ (m”i\/g )
1 Ar
~ 5 ) ¢g(mﬂ,ﬁ, r)] } (45)

In the above expressions, ¢2(m, A, r), ¢i(m, A, r), ¢pZ(m, A, r), ¢%(m, A, r), and
@1(m, A, r), are defined in Ref. [23], and

0 _ 242 —mr _Arom
oy (m, A, 1) = {exp (m*/A?) |:(1 +mr)e Erfc( >+ A>

— (1 —mr)e™ Erfc(% + T) ]

A
4 /Ar Ar\2 )
_ﬁ(T) exp[— (7) ] }/2 (mr)? . (46)
Erfc(x) is a complimentary error function defined as
2 [o¢]
Erfe(x) = ﬁ /\ e"dt. (47)
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4. Weak coupling constants for the A /N-(meson-pair) and weak A—n mixing model

Although the ESC model gives strong coupling constants for the NN-(meson-pair) vertices, it
does not give weak coupling constants for the A N-(meson-pair) ones. This matter is discussed
in this section.

4.1 Weak A—n mixing model
Following the Dalitz—Von Hippel method [31], we consider the weak A—#n mixing. The physical

n and A are the mixtures
n\ ([cose —sine) (n° 48)
A)  \sine cose A°]°

where n° and A° are respectively the unphysical bare states, eigenstates of I (isospin) and S
(strangeness).
The mass matrix on the “bare” basis is

0
H= (Mn AO) , (49)
A M

and A is given by the transition matrix element of the weak mixing interaction
A= (n"|H|A"). (50)

From the mass matrix of Eq. (49), one obtains the states [ > and |A > and the masses M,
and M,. Since A, ¢ < 1, one gets

n) = [n") —e|A%), |A) =A%) +eln), (51)
where
t A AM =M, — M (52)
ane g =———, = — .
AM n A
The physical masses in terms of the bare masses are
A? A?
My=M, ——, M,=M +—. 53
A A AM n n + AM ( )

4.2 Estimate of the mixing angle ¢ and internal w-exchange A — n transition

Since the mixing angle ¢ is given by Eq. (52), one must evaluate the transition matrix element
A = A of Eq. (50):

AA=<n0|ZV§’_Q/_|AO>. (54)
i.j
|n° > and |A? > are the neutron and A wave function, respectively, in the non-relativistic quark
model. Vo, 0, signifies the weak pion-exchange quark—quark interaction.
The quark—quark weak interaction Hamiltonian of one-pion exchange, for the dominant
parity-conserving part, is
(v)

Hogr = = e (Bvurst¥s) - 00, (55)
and the strong interaction Hamiltonian is
f(S) )
H(QS)Q,, = - nf,,Qj (UnyuysT¥N) - 0" @, (56)
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Vu 0
Yy = and Vg = , 57
R 7
where W is a spurion.

When the Gaussian form factor of the type exp(—k>/ 2A2QQ) with a cut-off mass Ao is con-
sidered at the quark—quark—pion vertex, the one-pion exchange potential in the configuration
space is obtained, except the tensor part!, as

Here

Tooitooe (m2\ 1
Vé”é (r)= QQZHQQ” (mzﬂ ) (i) 7)) ¢¢(mx. Ago. 1), (58)
with
A
Ge(mz, Aog, 1) = (M, oo, T) — 2\/—( QQ) e 00", (59)

In Eq. (59) the first term on the r.h.s. defines the “Yukawa” part potential, and the second term
the “cut-oftf” part one. Here we concentrate on the “Yukawa”-type potential and ignore the
“cut-off” part, because the “cut-off” part is independent of the exchanged-meson mass and is
expected to be small due to cancellation when various meson exchanges such as 7, K, n, n',...
are considered.

For the internal pseudo-scalar meson exchange, we are interested only in the region of r <
0.5 fm, and we expand ¢2(m, Ao, r) in the Taylor series and approximate the potential in this
region by a Gaussian such that

$e(mz, Moo, 1) ~ $o(mz, Agg. 7 =0)e iV, (60)
U = /=262 (r = 0)/¢2(r = 0). (61)
With this approximation, one gets
Vi, () =Vo(oi-0)(Ti 7)) V" (62)
and
(W) £(s)
1/, ,,f - m
Vo= 3= ( )qﬁc(mn,AQQ,r-O) (63)
7-[+

Now, to estimate the size of the potential we replace the potential (62) by a constant potential
V(”) (r) for r < R and 0 for r > R, where R is a effective baryon radius ( ~ 0.5 fm) under the

condltlon of volume-integral-equivalence for the two potentials V( (r) and V( (r)
Then

(n) (V) =W(o;- aj)(Tl T])g()@(R —7)
=Vo(oi-0))(Ti-T,)0(R =), (64)

and

— f(QwQ)nfgén M+ my 3 0
ho= S s (7) 27 L(mr. Agg. 1 = 0). (65)

The quark—quark—pion coupling constants are related to the baryon—baryon—pion ones, which
read [32] as

IThe tensor interaction is not included here, since it does not induce the A — n transition.
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u

d d d dd%d
- 0 0

S /n u s /n d s T d

(a) (b) (c)

Fig. 2. Feynman diagrams for the internal pion exchange weak A — n° transitions among quark lines.

3 3m
(w) (w) (w)
fQHQJT = AVIVVyr = g 2]\7‘;g1;N7r’ (66)
3 m
(s) (s) T (5
fQSQJI - NSNJT - g ZMNg]f/Nn‘ (67)

In° > and |A? > are expressed in SU(6) quark wave functions:

W(n) = @,0(Color singlet) ¢,0( (0s)* L = M = 0)
X Yo(ud®, 8, I=1/2,I. =—1/2, S=S. =1/2), (68)

W(A%) = @ yo(Color singlet) ¢ 0((0s)’ L = M = 0)
X Ypolud's',8, I ="1/2',.="-1/2", S§=8.=1/2). (69)
In Egs. (68) and (69), the color part of the wave functions is completely antisymmetric for
the exchanges of quarks, while the space—flavor—spin part is completely symmetric. Further, in
Eq. (69), the s-quark is treated as 's’, which has weak-isospin quantum numbers i = "1/2'i, =’

— 1/2/, since it is a spurion. We assign the index 3 to the s-quark.
Then the matrix element of A, in Eq. (54) is

AA=<n°|ZV5Q(i,j)|A°>

ij
=2(n’ |V5y(1.3)| A)
=2 {®,0(Color singlet) | @ 4o(Color singlet) )
X (pu((0s)’ L' = M" = 0) | o0(R — r13) [¢p0((05)’ L = M = 0))
X (Yo(ud® 8, I' =1/2, Il = =1/2, §' = S. = 1/2) (01 - 03)(z1 - 73) 8(g5, 5) |
x Ypo(ud's 8, 1 ="1/2 L= —1/2, S=5.=1/2)). (70)

Figures 2(a)—(c) show the Feynman diagrams for the internal pion exchange weak A° — n°

transitions that give an intuitive insight into Eq. (70).
As for the color part in Eq. (70), the overlap matrix element is 1, and for the spacial part
matrix element we take

(G ((0s)’ L' = M" = 0) | Fob (R = r13) [¢p0 (05’ L= M = 0)) =~ ¥, (71)

in an approximation that the spacial wave function of the (0Os) state is of short enough range
compared with R (= 0.5 fm).
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The (0 - 03)(T] - T3)-Operator matrix element is evaluated as
ME. = (Yo(ud®, 8, I' =1/2, I = —=1/2, §' = S. = 1/2) (61 - 63)(t1 - 13) 8(¢3, 5) |
x Ypo(ud's',8, I ="1/2'.="—1/2", S =S.=1/2))
= %«/ﬁ (72)
Finally we get
Ay = 2170% 2-3. (73)

From Eq. (52), with Egs. (65)—(67) and (73), we obtain the mixing angle ¢ as

9 (w) _(s)
e — _ 2 SANENNT [ Mx Mz M+
25  4rn 2M ) \2My ) My — My

1 \3
" (npe R)? (%) 2V N2 3¢¢(ma. Ago. 1 = 0). (74)

4.3  Weak AN-(meson-pair) coupling constants

One can evaluate the weak AN-(meson-pair) coupling constant of a Hamiltonian, for the
parity-conserving (pc) part, in the A-n weak mixing model. In this model the weak transi-
tion proceeds in a way that in the course of internal transmutation from A to # taking place the
strong baryon—baryon—(meson-pair) interaction emerges, or inversely that the strong baryon—
baryon—(meson-pair) interaction works accompanying the slow weak transmutation from A to
n. We may write

(< &

<n |H((r;”)son_pair) | A> = Weak mixing part of <n0 — e A | H((I‘;) son-pair) A"+ ¢ n0> (75)
_ 0 7@ 0
=€ <I’Z |H(meson-pair) |l’l >’ (76)
if the meson pair is an isovector. This leads to

(w) _ (s)
gAn(meson-pair) (pC part) = ¢ gnn(meson-pair)‘ (77)

In the case that the isospin independence holds in the strong interaction and the A7 = 1/2 rule
holds in the weak one, Eq. (77) is generalized to

() (s)

& AN(meson-pair) (pepart) = & &N N(meson-pair)* (78)
Then we obtain

g(/tV/:/(no) (pC part) = GFmi A{;()’) = &&(no)> (79)

EAN (e (PC PATY) = G AL = & (e (80)

When the exchanged meson pair is iso-scalar such as (7)o and (o 0), the following relations
hold:

&N ey, (PEPATt) = Grm AV = & (g(xn), — EAAGzm)- (81)
&\ N oo (P PAT) = Gpm? AL = & (2(0) — Snio))- (82)

Since we have, however, no information about g a(rr), and gaa ), We neglect those.
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5. [Estimate of two-nucleon induced decay rates with use of effective two-body AN —
NN potentials

In Sect. 3 the effective two-body potentials VT2B)(A N-NN) are deduced from weak three-body
interactions for ANN — NNN transitions. We apply these effective potentials %2B) to evalu-
ate the non-mesonic decay rates of hypernuclei. However, since the potentials V©T2B(A N-NN)
have a different origin from the usual two-body V(A N-NN) such as meson-exchange poten-
tials, it is not appropriate to sum up the potentials V(AN-NN) and VCT2B)(A N-NN) before-
hand to evaluate the decay rate. On the other hand, the sum of the decay rates I',,(AN —
NN) + F,(qf,gf‘zB)(AN — NN) is meaningful because the two decay channels are independent of

each other, as explained. We designate Fﬁ,f,ﬁf‘zB) for the decay rate calculated with the use of the

VCIE2B) potentials. The decay rate I'T*®) can be calculated in the standard shell model frame-
work by adopting VT2B)(A N-NN) for the transition potential. The expression of I',,, in the
shell model basis is given in Eq. (3) of Ref. [6] and Eq. (2.9) of Ref. [5].

F,(,‘f,gf‘ZB) is the sum of the proton-stimulated decay rate Fl(,eff'ZB) (Ap — np) and the neutron-

stimulated one I'*™®(An — nn) as
F,anff‘ZB) = Fl(fff'zB)(Ap — np)+ F,(ffoB)(An — nn). (83)

Hereafter, we use the shortened notations anemB) and T for Féeff'ZB)(A p — np) and
™8 (An — nn), respectively. Although T'™*® and I¢™*®) are decay rates calculated for the
two-body decay, the sum 2B in Eq. (83) would partly simulate the decay rate of I',y, which
is the sum of I',,(Anp — nnp), T',,(App — npp), and T',,,(Ann — nnn). It is one of the objects
of this paper to evaluate the decay rate Ffﬁ,ﬁmB) as an “order of magnitude” of the two-nucleon
induced decay rate.

It should be mentioned here that our calculation of the decay rate is based on the two-
body dynamics, not on the full three-body one, and therefore our “effective two-body potential
method” has certain limitations. First we would like to note the limitation in the deduction
procedure of the effective two-body potentials. As is seen in Eq. (34), we derive VT2B)(1, 2) by
integrating over the particle-“3” variables (space, isospin, and spin degrees) of the three-body
interaction V"' W3B(x, x», x3) with use of the LNR approximation. In the procedure of the LNR
approximation, especially owing to operations on Tr(z3) and 7r(o3), the contributions from
the possibly important three-body interactions due to, for instance, ()i, (1), and (7 p); ex-
changes, are vanishing, as already shown in Sect. 3.2. At the present stage, however, we have
no reliable way of evaluating such lost diagrams. Therefore, we know that the effects of the
three-body interactions on the non-mesonic decay rates should surely be different between the
two cases, the case of treating the full three-body dynamics, if possible, and the case of the
approximation method through the form of effective two-body potentials.

Second, the decay kinematics is decisively different between the full treatment of the three-
body decay and the approximate one in the two-body dynamics with effective two-body po-
tentials. In the former, the final three nucleons share the energy of the decay Q-value among
them and a particular nucleon pair does not carry definite energy, while in the latter treatment
the final pair of nucleons have definite energy determined by the two-body kinematics. As a
result, the relative momenta of the final pair of nucleons (np, pp, and nn among NNN) become
different from the case of the two-body decay, which has a vital effect on the decay rate.

Considering the above-mentioned limitations at the present stage, it is conceivable that (i)

the calculated rf,?,ﬁf'ZB) in our “effective two-body potential method” should give a limited
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estimate of the two-nucleon induced non-mesonic decay rate, but (ii) the ratio of the two-
nucleon induced partial decay rates as I', : Iy, : '), cannot be accounted for from Fl(fff'zB )

and T ™%,

6. Results and discussions
6.1 Hypernuclear and nuclear wave functions, and coupling constants of meson-pair
exchange Hamiltonians
In evaluation of the non-mesonic decay rate, we employ the A-hypernuclear state in which a
A-hyperon in the Os state is coupled to the core-nucleus. The A-hyperon state is solved in the
cluster model of A plus core-nucleus for iHe, while it is solved in the DDHF equation for the
p-shell hypernuclei. For the core-nucleus part of the initial A-hypernucleus and the final daugh-
ter nuclei, the harmonic oscillator (HO) shell model wave functions are used. For the p-shell
case, two types of HO shell model wave functions, the simple HO ones or the Cohen—Kurath-
type configuration-mixed HO ones, are used. We solve the scattering state for the outgoing two
nucleons for which the strong NN interactions act as the final-state correlation. The details are
described in our previous works [5,6].

The NN-(meson-pair) coupling constants in the strong interaction Hamiltonians of Eqgs. (1)-
(7) have been determined and modified to be consistent with baryon—-baryon—-meson ones in
explaining the NN-and YN-scattering data in several versions of the Nijmegen ESC [23-27] and
GESC models [28]. Uncertainties exist in the relative magnitudes between various meson-pair
exchange coupling constants. In the ESC and GESC models, g(r), is set to be 0 (which results
mostly from cancellation due to the o- and pomeron-contribution effect), and no attempt has
been made to fix gk yet.

We designate the set of strong meson-pair coupling constants adopted in Refs. [28], [23],
[24,25], and [26,27] as E15, E10, E16, and E19, respectively. As for the coupling constant g(,),
several values are used as a free parameter [28]. The coupling constants 4, B, and D in Eq. (9) are
taken from the original paper [19], i.e., A = 51—75 -(3.70), B = %A, and D = 27” -(—0.06). Note
that 4 and B are in units of m,*, and D is in units of m;".

The meson-pair coupling constants in the strong interactions adopted in this paper are listed
in Table 1, where the rationalized representation (the scaling mass in the Hamiltonian is taken
to be m,;) is used.

The weak meson-pair coupling constants, for their parity-conserving part, in the weak in-
teraction Hamiltonians in Eqgs. (10), (12), (15), and (16) can be determined by the relations
in Egs. (81), (82), (79), and (80), respectively. We do not try to determine the weak NN—(Kr)
coupling constants here.

The weak mixing angle ¢ must be evaluated first from Eq. (74). g\ v, = g4 = 0.233 x 1076 x
(—6.87)and g} y,, = 12.807 are adopted [6]. We take m, = m,+ and R=0.5fm. Uis determined
by Eq. (61) and depends on m, and A ¢ through a function ¢g(m,,, Ago, r = 0). Two choices,
Agp = 250MeV/c? and Ao = 400 MeV/c?, are considered. Then we have

(1) Ago =250MeV/c? case: U = 192MeV/c? and ¢ = —0.758 x 1077 are obtained,
(2) Ago =400MeV/c? case: U = 285MeV/c? and ¢ = —0.496 x 1077 are obtained.

Since Agp = 250 MeV/c? is close to Agcp and seems plausible for short-range behavior,
we accept this choice and take & = —0.758 x 107 for the A—n mixing angle in the following
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Table 1. Strong and weak meson-pair coupling constants. The strong meson-pair coupling constants are
taken from the ESC and GESC models. The coupling constants marked (*) have signs opposite to those
given in ESC and GESC models due to the definition of the Hamiltonian (6). Fujita—Miyazawa (7 )-
pair coupling constants 4 and B are given in units of m, 3, and D is given in units of m,~'. The weak
coupling constants are shown for the weak mixing angle ¢ = —0.758 x 1077, and are given in units of
Grm? = 0.222 x 1076, See the text for symbols.

Ref. [28] Ref [23]  Refs.[24.25]  Refs.[26,27]  Ref.[28]  Ref. [19]
El5 E10 El6 E19

Strong

g(ﬂ?‘[)o - - - -
8o 0.5509(*)  0.1734(*)  0.5519(%) 0.7208 (*)
&rw) —0.6005 —0.6824 —0.1030 —0.6077

8(Km)

8(00) (a)
g((r(r) (b)
g(aa) (C)

—1.885
=3.770
—4.084

A 0.327
B 0.196
D —0.126

—0.1880 —0.0592 —0.1880 —0.2460

A 0.2050 0.2330 0.0352 0.2070

c — — — —

D’ - — — —

APe ) (a) 0.643
APC ) (b) 1.287
A?;a) () 1.394

discussion. Then the weak meson-pair coupling constants are fixed and are shown in accor-
dance with the strong meson-pair coupling constants in Table 1.

The strong coupling constants of NN-meson and ANK, and the weak ones of A /N-meson
and NNK are the same as those adopted in Ref. [6]. Only the weak A No coupling constants
are determined phenomenologically so that the weak AN — NN potential due to the one-o
exchange can simulate the weak one due to the 27 /0 exchange as well as possible, i.e.,

VY(AN — NN) ~ V3o 5 (AN — NN), (84)

where Vz”jf/ﬂ‘( 4+ (AN — NN) has been calculated in Ref. [6]. Then ALY = —6.420 and B =

0.260 are determined in units of Grm?.

As mentioned before, the Gaussian form factors F (k%) = exp(— k*/ A2) are used in deriving
V2B A N-NN). The cut-off mass A, for the meson m (m = 7, K, o) is taken to be A,, =
1029.42 MeV, and for A in Fujita-Miyazawa (7 ) exchange A= 2000.0 MeV is adopted.

6.2 Non-mesonic decay rates F,(,f,flm)

F,Sff ?B) has a different origin concerning the decay transition potentials from the usual one-

nucleon induced decay rate I',,,, as stated in Sect. 5, and we like to regard F,(,Z?ZB) as the “or-

der of magnitude” of the two-nucleon induced non-mesonic decay rate I', and compare the
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(a) (b)

Fig. 3. Feynman diagrams of the scalar (o o)-pair coupling to N. (a) N couples directly to the (oo) pair.
(b) N couples to o followed by o — o + 0.

calculated F,(,f,ffZB) with experiments. We call these collectively the effective non-mesonic decay
rates for F;me), r(eft2B) and reh2B),

The effective non-mesonic decay rates are evaluated for hypernuclei 3 He, B, and 12C, for
which experimental data on I' exist.

As stated in Sect. 6.1, the coupling constants of the (7w 7 )y-pair and the (K )-pair vertices are
not determined in the ESC model and therefore we take such a prescription that two effective
two-body potentials V((jfjfrf‘)iB)(r) and V((Ie{g)z B)
non-mesonic decay rate calculations. Accordingly, the calculations are done with the effective
two-body potential as

ff.2B ff.2B ff.2B ff.2B
VERRG) = V0 + Vi V0 + Ve e + Vi 0. (85)

(r) do not contribute to the two-nucleon induced

for which four different sets of meson-pair coupling constants are used for the (7o) and (rw)
pairs, and the (o 0) pair and the Fujita—Miyazawa (r77) pair as listed in Table 1 are used.
For clarification, we use the following symbols for the sum of potentials:

VEI1S : V((;gf‘)m) + V((;g)z Bt adopting E15 coupling constants
VEIO : V((;if'fB) + V((;g)z B adopting E10 coupling constants
VEI1G6 : V((;(fff‘)m) + V((;S)Z Bl adopting E16 coupling constants
VEI9 : V((;gf)z By V((;’g)z B adopting E19 coupling constants.

As for the (00 )-pair coupling constant, three values g, 0)(@), g0)(h), and g4)(c) listed in
Table 1 are tried. The reasons for adopting g, < 0 are as follows. (i) The strong interaction
V(S’g')zB )(NN-NN) makes an attractive contribution to the nuclear matter binding energy and a
nice energy value is obtained for g,,)/4m = —(0.3-0.4). (i1) It is assumed that the NN- and YN-
scattering data can be accounted for with no problem with inclusion of the coupling constant
8o)l4m = —0.3 together with the meson-pair ones and the baryon—baryon—meson ones of
the ESC16 model [26,27,33]. (iii)) A potential due to the (o o)-pair exchange is found to have a
favorable effect on the Ug potential. (iv) Another discussion exists. First the o>-Hamiltonian is

defined as
1 3
=3 oo Mo @ (86)

Evaluating the diagrams depicted in Fig. 3, we obtain

H3a
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Table 2. Calculated non-mesonic decay rates I'S1?®) of 3 He, !B, and !>C and their dependence on
the four cases of effective two-body potentials used: (1) VELS5 + Vioo) + Virsar), (2) VEIO + Vigo) +
Visezry, 3) VE16 + Vigoy + VEirzn), and (4) VE19 4+ Viso) + Virmn)- For the Vi, 4y potential, the
coupling constant is fixed to g )/4m = —0.300. For p-shell hypernuclei, calculations are shown for the
wave functions with the configuration-mixed shell model + A particle. The experimental r;"Np data are
also listed. Decay rates are given in units of free A decay rate I'y.

M ) 3) ) Exp.
3 He(1/2%) 0.083 0.068 0.073 0.093 0.078 =& 0.034[13]
WB(5/2%) 0.176 0.150 0.160 0.194 0.169 £ 0.077 [13]
RC(17) 0.197 0.167 0.178 0.219 0.178 £ 0.076 [13]

0.27 + 0.13[8,9]

< N/ OJ | M | No > = ENNo8ooo Mo [Q(P/) u(p)]kz

—m2 + e
8o) =, 4
=272 [i(p) u(p)]. (87)
which gives, using the low-energy approximation,
~ i (88)
8(00) = —&NNo 8ooo 2m(, .
Kleinert gives a formula [34], f; being 93 MeV and m, = 600.0 MeV,
My m2
voo =3— (1 ——-] ~ 18.3. 89
g 7 < mg> (89)

Then we get g(yo)/4m ~ —1.06, which shows g, ) < 0.
On the other hand, comparing Eq. (86) with the MFT described in Glendenning [35] with

the interaction Lagrangian L3, = — (b/3) mngyy, 2 gives
myN
8ooo = 2]’7’1_ ngNNo" (90)

Here, b = (0.5-1.5) x 10~%is used. Then we find g, 5, ~ (3.91-11.73) and get 8oo)l4m = —(0.23—
0.68), which also shows g, ) < 0.

The decay rates F;,eff‘zB), l",gemB), and l",(lf,gf'ZB) have strong dependence on the adopted coupling
constants that have uncertainties among various versions of the ESC and GESC models. In
Table 2, calculated non-mesonic decay rates I'-*®) of 3 He, I'B, and 12C are shown focusing on
their dependence on the four types of MPE potentials of the sum of (7o) and (7 w) exchanges
abbreviated as VE15, VEI0, VE16, and VEI9, when V(,,) and Vipy) are fixed. The total
effective two-body potentials used are

(1) VEI5 + Vigo) + VEMan)s
(2) VEIO + Vigo) + VEMzn)
(3) VEI16 + Vi) + VEiMzn), and
4) VEI19 + V(gg) + VFM(j-m).

For V(54), the meson-pair coupling constant g, /47w = —0.300 is adopted here.

It is known for each of the three hypernuclear decays that the calculated 28 have some
variances among the four cases of potentials (1)—(4). VE19 and VE15 make large contributions
to the decay rates, while VE10 and VE16 make moderate ones. In calculations, we adopt two
types of shell model wave functions, the Cohen—Kurath-type configuration-mixed shell model

23/30

£20z A1eniga Gz uo Jasn uoJj0IYdUAS usuoIpa|g sayosineq Aq €128129/1L0AEL0/L/SZ0z/a1omue/daid/woo dno-olwapeoe//:sdiy wouy papeojumoq



PTEP 2023, 013D01 K. Ttonaga et al.

Table 3. Contributions from various combinations of potentials to F,(,f,gf ?B) are shown for 3 He. VE19

signifies the potentials of Vi) + V(e With E19 coupling constants and V() is the case of using the
coupling constant g)/4m = —0.300. Veuzr) 1s fixed uniquely. I‘;’;\f is shown for comparison. Decay
rates are given in units of free A decay rate I'y.

Lo v
VE19 0.035
Vioo) 0.054
Viu 0.005
Vieoy + Vim 0.063
VEL9 + Vg 0.017
VE19 + V(zra) 0.107
VE19 + Vigo) + Vin 0.093

0.078 £ 0.034 [13]

and the simple HO shell model, for the core-nucleus part of p-shell hypernuclei and the daughter
nuclei, but the differences in F,Sf,gf‘ZB) are small between the two cases.

In Table 3, we display the contributions of various combinations of effective two-body po-
tentials, Vizo), Virw)» Vioo)» and Vi), to the decay rate F,(,‘;gf'ZB) for f\He as an example. Here
we show the case where the meson-pair coupling constants of V() and V() are chosen to be
the set of E19, that of V(,4) 18 g0)/4m = —0.300, and Vi r) 1s unique. The Vi, ) potential
yields a large contribution to the decay rate. One can see that the contribution of Vi) alone
is small compared with VE19 and/or V(). However, Vi) Works destructively against VE19
as seen in the decay rate in the case of VE19 + Vg, while in contrast Vi ») works additively
to V(s as seen in the case of Vi,4) + Viy. The total VE19 + Vo) + Vi gives F,(ﬁnff‘zB)
comparable magnitude to F;’;\I,’ in the present case. Thus one knows that each of VE19, V),
and Vg has a proper and important role in producing the non-mesonic decay rate.

Table 4 shows the calculated non-mesonic decay rates F}f’mB), F,(ffT'ZB), and F,gigm) of hy-
pernuclei 3 He, 'B, and 12C and their dependence on the V. potential used in the effective
two-body potentials of Vizo) + Vizw) + Vieo) + Vimr). Here the case is shown that the E19
potential of Vizo) + Vize) is chosen and V{4, is varied by adopting the three different coupling
constants gyq)/4m = —0.150, —0.300, and —0.325. Vpuserr) 1S unique.

One sees in Table 4 that the calculated decay rates FéemB), F,(,efm) , and F,gf,,ff‘ZB) have a strong
dependence on the V., potential with the adopted coupling constant g(. This feature is
common to ) He, !B, and 12C decays. These tendencies are also observed in other combinations
of potentials even when we replace VE19 with VE1S5, VE10, or VE16, respectively. Such features
clearly show the importance of the V{,,) potential in producing the enhanced F,(,f,fqu) . Note,
however, that V) is exclusively a spin-isospin-independent central force while Vizo), Vize),
and Vi) have spin—isospin-dependent central and tensor forces. Therefore, each of the MPE
Vizoys Vizw)s Vieo)» and Vi) has its proper role of yielding F,(f,’,gf‘ZB) .

In view of the theory—experiment comparison in Tables 2 and 4, we conclude that we can
understand the two-nucleon induced decay rates I'5y of 3 He, /B, and {*C with the effec-
tive two-body potential model, when we make an allowance for choosing V(44 With g(;)/4m
~ —(0.300-0.325) and selecting, for instance, VE19 or VEI16 for V(s + V() potential and

VFM(]T?T)'
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Table 4. Calculated non-mesonic decay rates, F,(,eff'ZB) , TE2B)and TCE2B) ) of 3 He, B, and 12C and
their dependence on the V,,) potential used in Vizo) + Vige) + Vieo) + VFM(M). In the choice of a
combination “VE19 + Vo) + Vru™, Viso) Is varied by adopting three different coupling constants g,)
and Vpuerr) is uniquely fixed. For p-shell hypernuclei, calculations are shown for the wave functions with
the configuration-mixed shell model + A particle. Experimental data I';\’ and 'y}, (total) are shown for
comparison. Decay rates are given in units of free A decay rate I',.

VE19 + Vigo) + Viu

8oo)ldm 8oo)ldm 8oo)ldm Exp.
=—0.150 =—0.300 =—0.325
AHe(1/2)
r (28 0.035 0.073 0.081
r@“23> 0.007 0.020 0.023
refi2B) 0.042 0.093 0.104 TSP = 0.078 + 0.034 [13]
exp
. ISP =0.424 +0.024 [36,37]
r 2B 0.066 0.144 0.161
I*CEZB) 0.016 0.051 0.058
refi2B) 0.082 0.194 0.219 TS = 0.169 + 0.077 [13]
75};4 = 0.861 £ 0.0637073 [38]
12C (1 )
r (2B 0.078 0.168 0.188
r*e“23> 0.016 0.050 0.058
[ eft2B) 0.094 0.219 0.246 TS = 0.178 + 0.076 [13]

0.27 £ 0.13[8,9]
I'h = 0.940 = 0.035 [36]
0.828 £ 0.05670¢C [38]

Here we remember the following facts. In the course of the derivation of the effective two-
body potentials, the weak three-body interactions with particular MPE such as (70)-, (mrw)-,
and (oo )-pair exchanges and the Fujita—Miyazawa (7t 77 ) exchange are found to contribute ap-
preciably to the effective potentials. On the other hand, we know that some other possibly im-
portant three-body interactions are lost as a consequence of the present approximation proce-
dure. Further, the adopted meson-pair coupling constants still have some uncertainties. Thus
our calculated F,E‘,f’zm should be regarded as the “order of magnitude” of the two-nucleon in-

duced I',y at the present stage.

7. Summary and remarks

With the hope of determining the role of the three-body ANN — NNN interaction in the two-
nucleon induced non-mesonic decay rates ', of light and p-shell hypernuclei, we evaluate the
effective two-body decay rates with use of the effective two-body potential VT2B)(A N-NN)
deduced from the three-body ANN — NNN interaction.

First of all, the three-body weak ANN — NNN interactions are constructed in a model
of meson-pair exchange among A and two nucleons, where the weak vertex is considered
either at the AN-meson vertex or at the A N—(meson-pair) one. The effective two-body po-
tential VT2B)(AN-NN) is deduced from the three-body interactions by integrating out the
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particle-“3” coordinate, spin, and isospin variables following the LNR approximation method.
The limited number of weak three-body interactions of V(‘,an}fz)(AN N — NNN) with particu-
lar MPE contribute to the effective two-body potentials through reduction and approximation.
The obtained effective potential VET2B(AN-NN) consists of Vixrye> Viroy Viwys Viknys Vioo)s
and Vi)

The strong NN-(meson-pair) coupling constants are taken from various versions of the ESC
and GESC models, while the weak A N-(meson-pair) ones for their parity-conserving parts are
evaluated in this work from the weak A-n mixing model by Dalitz—Von Hippel and the mixing
angle ¢, which gives the relation g([‘\'?\,(meson_pair) =¢ g(]\s,)N(meson_pair). Here ¢ is obtained through
evaluation of the A — n weak transition matrix element by employing the quark-model wave
functions for A and the neutron and the quark—quark interaction Vpo(r) due to the internal
meson (pion) exchange.

In the ESC model, however, the strong meson-pair coupling constant g(,r), has not been
determined so far and is set to 0, and also no attempt has been made to fix gk, yet. Therefore,
we adopt the four types of the effective two-body potentials as Viz4), Vizw), Vieo)> and Virrr)
for the weak decay rate calculations in this paper.

The potential character is different between the Vizs), Vizw), Vieo)> and Vi) potentials.
For the parity-conserving part, V() is a spin-isospin-independent central potential, while
Vizoys Virw)> and Vi) have spin-isospin-dependent central and tensor force components.
The tensor forces of V(,,) and V(. work in the same sign, but they work oppositely to that of
VEMer)-

VEL2B)( A N-NN) is applied to evaluate the effective two-body decay rates e = of 3 He, |'B,
and 1>C. The calculated r,(,‘,‘;im) strongly depend on the adopted strong and weak meson-pair
coupling constants, which have some uncertainties in the ESC and GESC models and on the
mixing angle e. The fixed e = —0.758 x 10~ is currently used.

Four sets of meson-pair coupling constants for the (7o) and (ww)-exchange potentials are
examined, g o) In V(44 is treated as a free parameter, and the coupling constants of the Fujita—
Miyazawa-type potential are fixed to the original ones.

When we choose the coupling constants E19 for the (wo) and (7w) pairs and g)/4m =
—(0.300-0.325) for the (oo)-pair coupling, for which we denote the total potential as VE19
+ Viow) + Vi, the calculated Tioy>® are (0.093-0.104)I4 for 3 He, (0.194-0.219)T" for \'B,
and (0.219-0.246)", for '2C. The calculated I'\5 > are compatible with the available two-
nucleon induced I'5) of the FINUDA or KEK E462-E508 data within the error bars for these
hypernuclear decays. Similar but slightly smaller decay rates are obtained for the potential VE16
+ Vieo) + VEn. Itis also found that the adopted potentials Vizo), Vizw)> Vieo)> and Vi) have
their own proper roles in producing I''Sh-*®).

Thus we may say that it is possible for us to understand the two-nucleon induced decay rates
ISy for 3 He, }'B, and }2C in the effective two-body potentials deduced from the MPE three-
body ANN-NNN interactions if we properly choose the meson-pair coupling constants for
(ro), (rw), (00), and Fujita—Miyazawa (7 7r) exchanges.

We, however, bear in mind the following. First, the three-body ANN — NNN interactions in
our MPE model are not fully taken into account in obtaining the effective two-body AN — NN
potentials, because a number of possibly important MPE three-body interactions are lost in the
deduction process. Second, the roles of the potentials of V), and V) are not studied in this
paper; this is left as an open problem because at present we do not have firm knowledge of those
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meson-pair coupling constants. Third, the NN-(meson-pair) coupling constants, especially the
NN(o o) one, are not well constrained and have uncertainties. Fourth, the decay dynamics in the
effective two-body potential model is decisively different from that in the three-body ANN —
NNN decays, especially in the energy share for the final decaying nucleons. We cannot predict
the decay rate ratio such as I",, : Iy, : I', in the present model, but this problem should be the
next subject to study.

Therefore, we consider at present that the calculated for light and p-shell hypernuclei
should give a limited estimate of the two-nucleon induced decay rate I';,. A more advanced
method of handling the three-body ANN — NNN interactions would elucidate the three-body
weak non-mesonic decay mechanism.

r ’(;;l“f.ZB)
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Appendix A. Weak effective two-body interactions V" (k, —k, q)

The interaction V" (k, —k, ¢) is the form given after applying (1/4)Tr-operators for o3 and 73
and averaging ¢3 and ¢; for the full form of VWB(k, —k, 0, ¢, —q, ¢35, 01,02, 03, 11, T2, T3).
The relations < q% >= (3/5)k% and < g; >= 0 are used. The weak effective interactions in
momentum space are given for (), (7o), (mTw), (Kr), (00), and Fujita—Miyazawa (7 7) ex-
changes. It is noted that puy, is not attached here.

1. JPC=0%*: (mm)o-pair exchange

- Eamn w Jr
Viten (k. —k, q) = %gﬁ o 2 M

T /g

1 1
X{X 4MMN(61 k)(oy - k) — m(ﬂz'k)

K’ i(kxq)-61:| 1 1
x| 1+ — — = (1T Al
[ 812 4512 (m1-72) K+ m2 12+ m2 (ah

2. JPC =1%*: (wo)-pair exchange
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2
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(02 - k) ik x q) -0, () 1 1
2My [ 8M? 4 M2 [ +m2 mg
G g
+ FT i 25 2My)?
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4 (01 k) Jr((71"1) (q-k) 7 (05-k)
o) | 2My My 2MMy | 2My
v (q-k) (q-k)] (o2-k) 1 1
B L/ ) : - & A2
+ 54 [ZMMN + 20| 2My (t1-12) 2 g = (A2)

3. JPC =1%"": (mw)-pair exchange
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Vit .~k q) = = 2005 i 2 My,

T

1 3
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X{ 4MMN(01 )02 )[ 25 :|
1 1 3 K i(k :
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4. JP =07": (Km)-pair exchange
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5. JPC =0 (00)-pair exchange

f/((’j/('r)(k7 _ks Q) GFWl2 Blea) 8o
m

" Apc|:l+ _kz _i(kxq)-61_+i(kxq)-02i|
7 4M My 4M My
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7 2My SMy? 4AM >

1 1 n 1 1
K+ m2 k2+m(2, k2+mg m2

+GFI’}’Z gz
2 : .
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4M My 4M My
2 .
g @ k)[1+ k 2_l(k><¢1)202}
2MN 8MN 4MN
1 1
—_ A5
I+ m2 m2 (A2)
6. Fujita—Miyazawa (77 )-pair exchange
W _ frr
VFM(nr[)(k’ _kv ‘I) - - 2MN
A : (o1 - k)( k)[(A+B) K +D : ]
X - o -k)o;- — —
ammy m " my
1 K 1
- A+ B)— +D—
T k)[( +B) s+ D ”
1 1
(11 - 12) (A6)

k2+m% k2+m72r

REFERENCES
] A. Feliciello and T. Nagae, Rep. Prog. Phys. 78, 096301 (2015).

[1
[2] E. Botta, T. Bressani, S. Bufalino, and A. Feliciello, Riv. Nuovo Cimento 38, 387 (2015).
[3] G. Garbarino, Nucl. Phys. A 914, 170 (2013).
[4] C.Chumillas, G. Garbarino, A. Parrefio, and A. Ramos, Phys. Lett. B 657, 180 (2007).
[5] K. Itonaga and T. Motoba, Prog. Theor. Phys. Suppl. 185, 252 (2010).
[6] K. Itonaga, T. Motoba, and Th. A. Rijken, Prog. Theor. Exp. Phys. 2018, 113D01 (2018).
[71 W. M. Alberico, A. De Pace, M. Ericson, and A. Molinari, Phys. Lett. B 256, 134 (1991).
[8] M. Kim et al., Phys. Rev. Lett. 103, 182502 (2009).
[9] H. Bhanget al., J. Korean Phys. Soc. 59, 1461 (2011).

[10] M. Agnello et al., Phys. Lett. B 685, 247 (2010).

[11] M. Agnello et al., Phys. Lett. B 701, 556 (2011).

[12] M. Agnello et al., Phys. Lett. B 738, 499 (2014).

[13] E. Botta, T. Bressani, S. Bufalino, and A. Feliciello, Phys. Lett. B 748, 86 (2015).

[14] A.Ramos, E. Oset, and L. L. Salcedo, Phys. Rev. C 50, 2314 (1994).

29/30

£20z A1eniga Gz uo Jasn uoJj0IYdUAS usuoIpa|g sayosineq Aq €128129/1L0AEL0/L/SZ0z/a1omue/daid/woo dno-olwapeoe//:sdiy wouy papeojumoq


http://dx.doi.org/10.1088/0034-4885/78/9/096301
http://dx.doi.org/10.1088/0034-4885/78/9/096301
http://dx.doi.org/10.1088/0034-4885/78/9/096301
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.004
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.004
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.004
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1143/PTPS.185.252
http://dx.doi.org/10.1143/PTPS.185.252
http://dx.doi.org/10.1143/PTPS.185.252
http://dx.doi.org/10.1093/ptep/pty110
http://dx.doi.org/10.1093/ptep/pty110
http://dx.doi.org/10.1093/ptep/pty110
http://dx.doi.org/10.1016/0370-2693(91)90663-B
http://dx.doi.org/10.1016/0370-2693(91)90663-B
http://dx.doi.org/10.1016/0370-2693(91)90663-B
http://dx.doi.org/10.1103/PhysRevLett.103.182502
http://dx.doi.org/10.1103/PhysRevLett.103.182502
http://dx.doi.org/10.1103/PhysRevLett.103.182502
http://dx.doi.org/10.3938/jkps.59.1461
http://dx.doi.org/10.3938/jkps.59.1461
http://dx.doi.org/10.3938/jkps.59.1461
http://dx.doi.org/10.1016/j.physletb.2010.02.003
http://dx.doi.org/10.1016/j.physletb.2010.02.003
http://dx.doi.org/10.1016/j.physletb.2010.02.003
http://dx.doi.org/10.1016/j.physletb.2011.06.035
http://dx.doi.org/10.1016/j.physletb.2011.06.035
http://dx.doi.org/10.1016/j.physletb.2011.06.035
http://dx.doi.org/10.1016/j.physletb.2014.10.024
http://dx.doi.org/10.1016/j.physletb.2014.10.024
http://dx.doi.org/10.1016/j.physletb.2014.10.024
http://dx.doi.org/10.1016/j.physletb.2015.06.072
http://dx.doi.org/10.1016/j.physletb.2015.06.072
http://dx.doi.org/10.1016/j.physletb.2015.06.072
http://dx.doi.org/10.1103/PhysRevC.50.2314
http://dx.doi.org/10.1103/PhysRevC.50.2314
http://dx.doi.org/10.1103/PhysRevC.50.2314

PTEP 2023, 013D01 K. Ttonaga et al.

[15]
[16]
[17]
[18]
[19]
(20]
(21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]

E. Bauer and F. Krmpoti¢, Nucl. Phys. A 739, 109 (2004).

E. Bauer and G. Garbarino, Nucl. Phys. A 828, 29 (2009).

E. Bauer and G. Garbarino, Phys. Rev. C 81, 064315 (2010).

S. Shinmura, Prog. Theor. Phys. 97, 283 (1997).

J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).

Th. A. Rijken and V. G. J. Stoks, Phys. Rev. C 54, 2869 (1996).

Th. A. Rijken, Phys. Rev. C 73, 044007 (2006).

Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008 (2006).

Th. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010).

M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Extended soft-core Baryon-Baryon Model
ESCO08. 1. Nucleon-Nucleon Scattering . Available at: http://nn-online.org/eprints/pdf/16.01.pdf,
(last accessed date: August 28, 2022).

M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Extended soft-core Baryon-Baryon Model
ESCO08. II. Hyperon-Nucleon Scattering. Available at: http:/nn-online.org/eprints/pdf/16.02.pdf,
(last accessed date: August 28, 2022).

M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 99, 044002 (2019).

M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 99, 044003 (2019).

Th. A. Rijken, GESC18 Two- and Three-body YNN Potentials, A N, £ N, E N G-matrix Applica-
tion. Available at: http://nn-online.org/eprints/pdf/20.03.pdf, (Iast accessed date: August 28, 2022).
B. A. Loiseau, Y. Nogami, and C. K. Ross, Nucl. Phys. A 165, 601 (1971).

T. Ueda, T. Sawada, and S. Takagi, Nucl. Phys. A 285, 429 (1977).

R. H. Dalitz and F. Von Hippel, Phys. Lett. 10, 153 (1964).

J. 1. J. Kokkedee, The Quark Model (Benjamin, New York, 1969).

M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 102, 054003 (2020).

H. Kleinert, Fortschr. Phys., 21, 1 (1973).

N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity
(Springer, Berlin, 1997), Astronomy and Astrophysics Library.

H. Outa et al., Nucl. Phys. A 754, 157¢ (2005).

B. H. Kang et al., Phys. Rev. Lett. 96, 062301 (2006).

Y. Sato et al., Phys. Rev. C 71, 025203 (2005).

30/30

£20z A1eniga Gz uo Jasn uoJj0IYdUAS usuoIpa|g sayosineq Aq €128129/1L0AEL0/L/SZ0z/a1omue/daid/woo dno-olwapeoe//:sdiy wouy papeojumoq


http://dx.doi.org/10.1016/j.nuclphysa.2004.03.077
http://dx.doi.org/10.1016/j.nuclphysa.2004.03.077
http://dx.doi.org/10.1016/j.nuclphysa.2004.03.077
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1143/PTP.97.283
http://dx.doi.org/10.1143/PTP.97.283
http://dx.doi.org/10.1143/PTP.97.283
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1103/PhysRevC.54.2869
http://dx.doi.org/10.1103/PhysRevC.54.2869
http://dx.doi.org/10.1103/PhysRevC.54.2869
http://dx.doi.org/10.1103/PhysRevC.73.044007
http://dx.doi.org/10.1103/PhysRevC.73.044007
http://dx.doi.org/10.1103/PhysRevC.73.044007
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://nn-online.org/eprints/pdf/16.01.pdf
http://nn-online.org/eprints/pdf/16.02.pdf
http://dx.doi.org/10.1103/PhysRevC.99.044002
http://dx.doi.org/10.1103/PhysRevC.99.044002
http://dx.doi.org/10.1103/PhysRevC.99.044002
http://dx.doi.org/10.1103/PhysRevC.99.044003
http://dx.doi.org/10.1103/PhysRevC.99.044003
http://dx.doi.org/10.1103/PhysRevC.99.044003
http://nn-online.org/eprints/pdf/20.03.pdf
http://dx.doi.org/10.1016/0375-9474(71)90474-X
http://dx.doi.org/10.1016/0375-9474(71)90474-X
http://dx.doi.org/10.1016/0375-9474(71)90474-X
http://dx.doi.org/10.1016/0375-9474(77)90644-3
http://dx.doi.org/10.1016/0375-9474(77)90644-3
http://dx.doi.org/10.1016/0375-9474(77)90644-3
http://dx.doi.org/10.1016/0031-9163(64)90617-1
http://dx.doi.org/10.1016/0031-9163(64)90617-1
http://dx.doi.org/10.1016/0031-9163(64)90617-1
http://dx.doi.org/10.1103/PhysRevC.102.054003
http://dx.doi.org/10.1103/PhysRevC.102.054003
http://dx.doi.org/10.1103/PhysRevC.102.054003
http://dx.doi.org/10.1002/prop.19730210102
http://dx.doi.org/10.1002/prop.19730210102
http://dx.doi.org/10.1002/prop.19730210102
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.007
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.007
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.007
http://dx.doi.org/10.1103/PhysRevLett.96.062301
http://dx.doi.org/10.1103/PhysRevLett.96.062301
http://dx.doi.org/10.1103/PhysRevLett.96.062301
http://dx.doi.org/10.1103/PhysRevC.71.025203
http://dx.doi.org/10.1103/PhysRevC.71.025203
http://dx.doi.org/10.1103/PhysRevC.71.025203

