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We intend to study the role of the three-body weak �NN → NNN interaction in two-
nucleon induced hypernuclear non-mesonic weak decay. The three-body weak interactions
are constructed on the basis of the meson-pair exchange (MPE) model and then we derive
the effective two-body �N → NN weak potentials from the three-body interactions based
on the Loiseau–Nogami–Ross approximation. The strong coupling constants of MPE are
taken from the Nijmegen ESC and GESC models and the weak ones of MPE are evalu-
ated in the weak �–n mixing model by Dalitz and Von Hippel [Phys. Lett. 10, 153 (1964)].
The effective two-body �N → NN weak potentials are applied to evaluate hypernuclear
non-mesonic decay rates, which should give a certain additional contribution to the two-
nucleon induced decay rate �2N. Calculations of �

(eff.2B)
nm are done for 5

�He, 11
� B, and 12

� C
and the results are compared with experimental data �

exp
2N . We have demonstrated the pos-

sibility of accounting for the two-nucleon induced non-mesonic decays of light and p-shell
hypernuclei by introducing the effective two-body potentials deduced from the three-body
weak interactions, though the calculated �

(eff.2B)
nm still includes uncertainties. Discussions

and limitations of our “effective two-body �N → NN model” are given.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
In these days the understanding of the weak decay mechanism and the decay interaction of
� embedded in the nuclear medium has much progressed, owing to the experimental advent
of innovative detection techniques and the theoretical efforts in clarifying the variety of �-
producing decay observables adhering to hypernuclei [1–3].

A free � decays exclusively through the pi-mesonic modes, i.e., � → pπ− and � → nπ0.
However, it is also well known that once � has been trapped in the nucleus � can exhibit the
new weak decay mode, i.e., non-mesonic decays such as the �p → np and �n → nn processes,
in addition to the pi-mesonic decay mode. Such one-nucleon induced non-mesonic decay pro-
cesses become the dominant weak decay mode for all the �-hypernuclei except for light s-shell
systems.

C© The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
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Studies on one-nucleon induced decays have been done using a variety of weak interactions
of V(�N–NN) such as the meson-exchange (one-meson exchange, two-meson exchange, corre-
lated or uncorrelated meson-pair exchange) models, quark exchange model, and effective field
theory, etc., in combination with many-body treatments such as the shell model and/or the nu-
clear matter framework. The non-mesonic partial decay rates, �p(�p → np), �n(�n → nn), the
ratio �n/�p, and the asymmetry parameter α� for the decay protons from the polarized hyper-
nuclei are important weak decay observables. Recent theories [4–6] seem to account for those
data successfully to a certain extent, though we think that they are not yet fully understood.

However, close attention must be paid to the proton/neutron distribution and the nucleon-
pair (np and nn) distributions as a function of the kinetic energy or opening angle of the pair
nucleons in the final state. It has long been recognized that the nucleon and nucleon pair do
not show a simple pattern originating from the one-nucleon induced decays even when one
considers the final-state interactions (FSI). Alberico et al. [7] were the first to point out the
possibility of such a process in which the virtual pion from the � decay can be absorbed by a
pair of nucleons as np, producing three-body decays, i.e., the �NN → NNN process in nuclear
matter.

Recently two groups observed the two-nucleon induced three-body decay rate �2N(�NN →
NNN). One is the KEK E462-E508 group, who noticed the following. Yield quenching exists
both in one-nucleon energy spectra (proton and neutron) in the lower-energy part and in the
nucleon-pair (np and nn) distribution for their opening angle and also for the momentum-sum
in the non-mesonic decay of 12

� C with respect to those expected in the model calculations of
only one-nucleon induced decay with FSI. They considered and analyzed that the quenching
phenomenon could be caused by the two-nucleon induced three-body process as �NN → NNN
and FSI. They obtained the two-nucleon induced decay rate �2N = 0.27 ± 0.13�� ( �2N/�NM =
0.29 ± 0.13 ) for 12

� C [8,9]. �� is a free � decay rate. The other group is the FINUDA Collabora-
tion, who untangled the contribution of two-nucleon induced non-mesonic decays in two ways
under some assumptions: (a) analyzing inclusive decay single-proton spectra affected by FSI
for A = 5–16 hypernuclei to extract 2N induced decay rates by fitting each of the proton kinetic
energy spectra for their high-energy part with a Gaussian function [10] and (b) considering both
proton and neutron spectra and also neutron–proton coincidence events in suitable kinematical
configurations to determine �2N [11]. The updated results [12,13] are �2N/�NM = 0.25 ± 0.12 ±
0.02 for method (a) and �2N/�NM = 0.20 ± 0.08+0.04

−0.03 for method (b). The reported values are
for the average of hypernuclei of A = 5–16.

After the work of Ref. [7], Ramos et al. [14] applied the formalism to finite hypernuclei using
the local density approximation (LDA). Bauer et al. [15–17] extended further the nuclear matter
formalism microscopically by taking into account the meson-exchange weak interactions that
couple to the two-particle–two-hole excitations arising from the ground-state correlation due to
the strong residual interactions. They evaluated the two-nucleon induced decay rate of 12

� C by
adopting the LDA in their formalism and obtained �2N = 0.26�� [17]. However, the calculated
�2N looks so large that the following questions may naturally arise: (i) Is the nuclear ground-
state correlation so big to produce large �2N? (ii) Are there any ambiguities for the nuclear
residual interactions?

On the other hand, Shinmura was a pioneer, thinking about the role of the three-body force
on the two-nucleon induced non-mesonic decay [18]. He examined the Fujita–Miyazawa-type
[19] weak three-body force in a relativistic way by incorporating the Dirac wave functions for
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bound � and nucleons, and evaluated the decay rates of the three-body mechanism with results
�2N ( ≡ �3) about 30% of the total �NM for s-shell hypernuclei.

The motivation for this work is to understand the hypernuclear weak two-nucleon induced
decay mechanism and the decay rates more deeply from a new viewpoint. This is because of
the following. First, although it is stated that the one-nucleon induced decay is rather well un-
derstood, the summed decay rate �NM = �1N + �2N should be recognized more accurately,
because �2N is not settled experimentally and theoretically. Even �1N is in principle affected by
two-nucleon induced decays through FSI between the outgoing nucleons. Further, the hyper-
nuclear lifetime is connected with �NM and consequently with �2N through the relation τHY

= �/(�π + �NM). Secondly, as mentioned, experimental data for �2N have been reported by
two groups; the data for 12

� C from the KEK E462-E508 group still have large error bars, while
the FINUDA data are determined under the assumptions of (i) a linear dependence of the FSI
contribution on A and (ii) the constancy of both �n/�p and �2N/�NM for A = 5–16 hypernuclei.
We would expect a more improved and direct determination of �2N along with the experimental
progress. On the theoretical side, there is a fundamental problem with the two-nucleon induced
non-mesonic weak decay. What is the dominant and relevant mechanism for two-nucleon in-
duced decays? This is not fully discussed and clarified theoretically. We would like to explore
the two-nucleon induced weak decay with a different approach; i.e., we propose that the �NN
→ NNN three-body weak interaction is dominantly responsible for the two-nucleon induced
weak decay. This view is different from the polarization propagator method (PPM) approach
developed by Ramos et al. [14] and Bauer et al. [15–17]. The mechanism of the two-nucleon
induced decay of PPM is that a meson emitted in the two-body weak �N → NN transition
interacts with a particle or a hole in the two-particle–two-hole excitations in the ground-state
correlation due to the residual strong NN–NN interactions in the nuclear matter and finally the
three nucleons are emitted. Our method has the advantage of evaluating the non-mesonic weak
decay rates for finite hypernuclear systems in terms of the parent hypernuclear and daughter
nuclear wave functions.

In this paper we try to evaluate the two-nucleon induced non-mesonic decay rate by a new ap-
proach. We consider two mechanisms. One process is that a virtual meson emitted from � in the
weak process is absorbed by the first nucleon; it then emits simultaneously (at the same space-
time position) another meson that is finally captured by the second nucleon. The second process
is that � emits a meson pair in the weak process and the emitted two mesons are captured by
two different nucleons. These two processes can be regarded as the three-body interaction mech-
anism of �–nucleon–nucleon going to three nucleons mediated by the meson-pair exchange
(MPE) as shown in Fig. 1. In the MPE, we consider the (πσ ), (πω), and (σσ ) exchanges, and
in addition the Fujita–Miyazawa-type (ππ ) exchange. It should be noted, however, that the
full treatment of the weak three-body interaction in the weak decay of �-hypernuclei in the
wave function formalism is too complicated at present. Instead, here we transform the weak
three-body interaction to the “effective” two-body �N → NN weak potential by integrating
the “third” particle in the three-body interaction. Thus the effective two-body �N → NN weak
potentials deduced from the three-body interactions have a different nature from the usual two-
body weak �N → NN potentials. Therefore we treat the “effective” two-body potentials sepa-
rately from the usual two-body ones in evaluating hypernuclear decay rates.

In Sect. 2, we show three-body weak interaction processes on the basis of the meson-pair
exchange model of the Nijmegen ESC model. In Sect. 3, we explain how to construct effective
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Λ1 N3 N2 Λ1 N3N2
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( c1 ) ( c2 )

V23;1 V23;1

m1 m2 m1m2

w w

Fig. 1. Meson-pair exchange Feynman diagrams (a1)–(a2) of V12; 3, (b1)–(b2) of V13; 2, and (c1)–(c2)
of V23; 1. m1 and m2 denote mesons. The open circle (◦) represents a weak vertex. The pair of mesons
(m1m2) represents (ππ ), (πη), (πρ), (πσ ), (πω), or (σσ ). In the case of (ππ ) or (σσ ) exchange, m1 = m2

= π or m1 = m2 = σ , respectively.

two-body weak potentials starting with three-body associated diagrams. Next, in Sect. 4, the
weak coupling constants are evaluated in the weak �–n mixing model by Dalitz–Von Hippel.
In Sects. 5 and 6, we apply effective two-body weak potentials to evaluate the non-mesonic
decay rates of the typical three hypernuclei and discuss the numerical results in comparison
with the experimental data. Problems and limitations in the present treatment of the effective
two-body potentials are also discussed in Sects. 5 and 6. A brief summary and some remarks
on the present study are given in Sect. 7. In Appendix A, weak effective two-body interactions
in momentum space for the meson-pair exchanges concerned are given.

2. Three-body weak �NN → NNN interactions in the meson-pair exchange model
We first construct the strangeness-changing (�S = 1) three-body weak �NN → NNN interac-
tions that cause the two-nucleon induced non-mesonic weak decays of hypernuclei.

One of the authors (Th.A.R.) introduced the idea of meson-pair exchange between baryons
in the strong process early in the Nijmegen soft-core model [20] and also in the ESC model in
various versions [21–27].

Following the ESC model [21–27] and the GESC model [28], the exchanged meson pairs
adopted here consist of the following six categories:

(i) JPC = 0++: (ππ )0, (πη), (σσ )
(ii) JPC = 1−−: (ππ )1
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(iii) JPC = 1++: (πρ)1, (πσ )
(iv) JPC = 1+−: (πω)
(v) JP = 0+: (Kπ )
(vi) Fujita–Miyazawa (ππ )

The strong NN(meson-pair) and �N(Kπ ) coupling interaction Hamiltonians are expressed
in the standard way as follows:

JPC = 0++ : HNN(ππ )0 = g(ππ )0 [ψ̄NψN ](ϕπ · ϕπ )/mπ (1)

HNN(πη) = g(πη)[ψ̄NτψN ] · ϕπφη/mπ (2)

HNN(σσ ) = g(σσ )[ψ̄NψN ](φσ )2/mπ (3)

JPC = 1−− : HNN(ππ )1 = g(ππ )1 [ψ̄NγμτψN ] · (ϕπ × ∂μϕπ )/m2
π

− f(ππ )1

2M
[ψ̄NσμντψN ] · ∂ν (ϕπ × ∂μϕπ )/m2

π (4)

JPC = 1++ : HNN(πρ )1 = g(πρ )1 [ψ̄Nγμγ5τψN ] · (ϕπ × φμ
ρ )/mπ (5)

HNN(πσ ) = g(πσ )[ψ̄Nγμγ5τψN ] · (ϕπ∂μφσ − φσ∂μϕπ )/m2
π (6)

JPC = 1+− : HNN(πω) = i g(πω)[ψ̄Nσμνγ5τψN ] · ∂ν (ϕπφμ
ω )/m2

π (7)

JP = 0+ : H�N(Kπ ) = g(Kπ )[ψ̄NτφK ] · ϕπψ�/mπ (8)

Fujita-Miyazawa : HF M(ππ ) = − ψ̄N

[{(
(A + B)

1
m3

π

∇1 · ∇2 + D
1

mπ

)
δi j

− (A − B)
1

m3
π

σ · (∇1 × ∇2)εi jkτk

}
ϕπ1,i(x) ϕπ2, j (x)

]
ψN. (9)

The Fujita–MiyazawaHF M(ππ ) is unique in the sense that it contains the effect of the �33 isobar
in the vertex through the coupling constants [19].

Corresponding to the strong Hamiltonians shown above, the weak �N(meson-pair) and
NN(Kπ ) coupling interaction Hamiltonians are expressed as follows, where the �I = 1/2 rule
is assumed.

JPC = 0++ : Hw
�N(ππ )0

= GF m2
π

[
ψ̄N

(
Apc

(ππ )0
+ Bpv

(ππ )0
γ5

) (0
1

)
ψ�

]
(ϕπ · ϕπ )/mπ (10)

Hw
�N(πη) = GF m2

π

[
ψ̄N

(
Apc

(πη) + Bpv
(πη)γ5

)
τ

(0
1

)
ψ�

]
· ϕπφη/mπ (11)

Hw
�N(σσ ) = GF m2

π

[
ψ̄N

(
Apc

(σσ ) + Bpv
(σσ )γ5

) (0
1

)
ψ�

]
(φσ )2/mπ (12)
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JPC = 1−− : Hw
�N(ππ )1

= GF m2
π

[
ψ̄N

{
α(ππ )1γμ − i β(ππ )1

σμν (p� − pN )ν

2M

+ ε(ππ )1γμγ5

}
τ

(0
1

)
ψ�

]
· (ϕπ × ∂μϕπ )/m2

π (13)

JPC = 1++ : Hw
�N(πρ )1

= GF m2
π

[
ψ̄N

{
Apc

(πρ )1
γμγ5 + Bpv

(πρ )1
γμ

}
τ

(0
1

)
ψ�

]
· (ϕπ × φμ

ρ )/mπ (14)

Hw
�N(πσ ) = GF m2

π

[
ψ̄N

{
Apc

(πσ )γμγ5 + Bpv
(πσ )γμ

}
τ

(0
1

)
ψ�

]
· (ϕπ∂μφσ − φσ∂μϕπ )/m2

π (15)

JPC = 1+− : Hw
�N(πω) = i GF m2

π

[
ψ̄N

{
Apc

(πω)σμνγ5 + Bpv
(πω)σμν

}
τ

(0
1

)
ψ�

]
· ∂ν (ϕπφμ

ω )/m2
π (16)

JP = 0+ : Hw
NN(Kπ ) = GF m2

π

[
[ψ̄N

(0
1

) (
Cpc

(Kπ ) + Cpv
(Kπ )γ5

)
(φK )†τψN · ϕπ

+ ψ̄N

(
Dpc

(Kπ ) + Dpv
(Kπ )γ5

)
τψN · ϕπ (φK )†

(0
1

) ]
/mπ . (17)

The nucleon field ψN and the kaon field φK represent the isospin doublets as

ψN =
(

ψp

ψn

)
and φK =

(
φK+

φK0

)
, (18)

respectively. In Eqs. (10)−(17), the isospin spurion (0
1) is used to enforce that the weak Hamil-

tonians should follow the �I = 1/2 rule.
It is noted that we omit the weak Fujita–Miyazawa-type (ππ )-pair coupling Hamiltonian

because we do not know it now.
The strong and weak interaction Hamiltonians for the baryon–baryon–meson coupling are

given in Ref. [6].
Figure 1 shows the Feynman diagrams for the (m1m2)-meson-pair exchange weak �NN →

NNN transition interaction. The (m1m2) pair represents one of the pairs (ππ ), (πη), (πρ), (πσ ),
(πω), or (σσ ). For the Fujita–Miyazawa (ππ ) exchange, the diagrams are the same as those for
the (ππ ) exchange except for the interpretation of meson-pair vertices. Note that the (Kπ )-pair
exchange Feynman diagrams for the weak �NN → NNN interaction are not included in Fig. 1,
since the NNK- and/or NN(Kπ )-vertex in the diagrams represent the weak ones in the (Kπ )-pair
exchange case. The Feynman diagrams depicted in Fig. 1 can be evaluated in momentum space,
once the momenta are assigned as (p1�, p2, p3) for (�1, N2, N3) and (p′

1, p′
2, p′

3) for (N ′
1, N ′

2, N ′
3),

respectively. We note that the � hyperon is assigned as particle 1, and keep this hereafter in this
paper.

In the case of (πσ ) exchange, for Fig. 1(a1) we obtain (V (a1)
12;3 )(πσ ) (p′

1, p′
2, p′

3, p1�, p2, p3), and

similarly for Fig. 1(a2) (V (a2)
12;3 )(πσ ) (p′

1, p′
2, p′

3, p1�, p2, p3). By adding these two terms, we get

(
V (a)

12;3
)

(πσ )
=

(
V (a1)

12;3
)

(πσ )
+

(
V (a2)

12;3
)

(πσ )
. (19)
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The complete three-body MPE interaction of (πσ ) exchange is obtained by the sum over the
three types of permutations as

V W3B
(πσ ) =

(
V (a)

12;3
)

(πσ )
+

(
V (b)

13;2
)

(πσ )
+

(
V (c)

23;1
)

(πσ )
. (20)

Now we rearrange the r.h.s. of Eq. (20) for convenience of expression in the following as

V W3B
(πσ ) = V (1)

(πσ ) + V (2)
(πσ ) + V (3)

(πσ ), (21)

where

V (1)
(πσ ) = V (a1)

(πσ ) + V (b1)
(πσ ), V (2)

(πσ ) = V (a2)
(πσ ) + V (b2)

(πσ ), V (3)
(πσ ) = V (c1)

(πσ ) + V (c2)
(πσ ). (22)

Introducing a new set of variables

qi = 1
2

(
pi + p′

i

)
, ki = p′

i − pi, (23)

the terms on the r.h.s. of Eq. (21) are expressed in the leading terms and the next higher-order
terms in (p2/M2) when the Feynman diagram is evaluated in the momentum space as follows:

V (1)
(πσ ) = g(πσ )

m2
π

gw
πgσ 2MN ×

[ {
λ

(σ1 · k1)

2M̄

[
σ3 · (k1 − k2)

2MN
− σ3 · q3

MN

(
q1 · k1

2M̄MN
− q2 · k2

2MN
2

)

+σ3 · (k1 − k2)
2MN

( k2
2

8MN
2 − iσ2 · (k2 × q2)

4MN
2

) ]

−
[
σ3 · (k1 − k2)

2MN
− σ3 · q3

MN

(
q1 · k1

2M̄MN
− q2 · k2

2MN
2

)

+ σ3 · (k1 − k2)
2MN

( k2
1

8M̄2
+ k2

2

8MN
2

− iσ1 · (k1 × q1)

4M̄2
− iσ2 · (k2 × q2)

4MN
2

) ]}
1

k2
1 + m2

π

1

k2
2 + m2

σ

(τ3 · τ1)

+
{

λ
(σ1 · k1)

2M̄

[
σ2 · (k1 − k3)

2MN
− σ2 · q2

MN

(
q1 · k1

2M̄MN
− q3 · k3

2MN
2

)

+σ2 · (k1 − k3)
2MN

( k2
3

8MN
2 − iσ3 · (k3 × q3)

4MN
2

) ]

−
[
σ2 · (k1 − k3)

2MN
− σ2 · q2

MN

(
q1 · k1

2M̄MN
− q3 · k3

2MN
2

)

+ σ2 · (k1 − k3)
2MN

( k2
1

8M̄2
+ k2

3

8MN
2

− iσ1 · (k1 × q1)

4M̄2
− iσ3 · (k3 × q3)

4MN
2

) ]}
· 1

k2
1 + m2

π

1

k2
3 + m2

σ

(τ2 · τ1)

]
, (24)
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V (2)
(πσ ) = −g(πσ )

m2
π

GF mπ
2 fπ

mπ

(2MN )2 ×
[{

Apc
σ

(σ2 · k2)
2MN

[
σ3 · (k1 − k2)

2MN

− σ3 · q3

MN

(
q1 · k1

2M̄MN
− q2 · k2

2MN
2

)
+ σ3 · (k1 − k2)

2MN

( k2
1

8M̄2
− iσ1 · (k1 × q1)

4M̄2

)]

−Bpv
σ

(σ1 · k1)

2M̄

(σ2 · k2)
2MN

(σ3 · (k1 − k2))
2MN

}
1

k2
1 + m2

σ

1

k2
2 + m2

π

(τ3 · τ2)

+
{

Apc
σ

(σ3 · k3)
2MN

[
σ2 · (k1 − k3)

2MN
− σ2 · q2

MN

(
q1 · k1

2M̄MN
− q3 · k3

2MN
2

)

+σ2 · (k1 − k3)
2MN

( k2
1

8M̄2
− iσ1 · (k1 × q1)

4M̄2

) ]

−Bpv
σ

(σ1 · k1)

2M̄

(σ3 · k3)
2MN

(σ2 · (k1 − k3))
2MN

}
1

k2
1 + m2

σ

1

k2
3 + m2

π

(τ2 · τ3)

]
, (25)

V (3)
(πσ ) = GF mπ

2

m2
π

fπ

mπ

gσ (2MN )2 ×
[ {

Apc
(πσ )

(σ2 · k2)
2MN

[
σ1 · (k2 − k3)

2MN
− σ1 · q1

M̄

(
q2 · k2

2MN
2 − q3 · k3

2MN
2

)

+σ1 · (k2 − k3)
2MN

( k2
3

8MN
2 − iσ3 · (k3 × q3)

4MN
2

) ]

+ Bpv
(πσ )

(σ2 · k2)
2MN

[
q1 · (k2 − k3)

2M̄MN
− q2 · k2 − q3 · k3

2M2
N

+ i(σ1 × k1) · (k2 − k3)

4M̄MN

] }
1

k2
2 + m2

π

1

k2
3 + m2

σ

(τ1 · τ2)

+
{

Apc
(πσ )

(σ3 · k3)
2MN

[
σ1 · (k3 − k2)

2MN
− σ1 · q1

M̄

(
q3 · k3

2MN
2 − q2 · k2

2MN
2

)

+σ1 · (k3 − k2)
2MN

( k2
2

8MN
2 − iσ2 · (k2 × q2)

4MN
2

) ]

+ Bpv
(πσ )

(σ3 · k3)
2MN

[
q1 · (k3 − k2)

2M̄MN
− q3 · k3 − q2 · k2

2M2
N

+ i(σ1 × k1) · (k3 − k2)

4M̄MN

] }
1

k2
3 + m2

π

1

k2
2 + m2

σ

(τ1 · τ3)

]
. (26)

Likewise the expressions of the three-body interaction for meson-pair exchanges other than
(πσ ) exchange can be written down easily.

The three-body interaction in the configuration space is given by the Fourier transform of
that in the momentum space of V W3B(p′

1, p′
2, p′

3; p1, p2, p3) ≡ V W3B(k1, k2, k3; q1, q2, q3). If
the interaction depends only on the ki variables, one obtains
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V W3B(x′
1, x′

2, x′
3; x1, x2, x3) = δ(x′

1 − x1)δ(x′
2 − x2)δ(x′

3 − x3)

×
∏

i=1,3

[∫
d3ki

(2π )3
eiki·xi

]
(2π )3δ(k1 + k2 + k3)

×V W3B(k1, k2, k3) (27)

= δ(x′
1 − x1)δ(x′

2 − x2)δ(x′
3 − x3)

×
∫

d3k1

(2π )3

∫
d3k2

(2π )3
eik1·(x1−x3 )eik2·(x2−x3 )

×V W3B(k1, k2). (28)

If the interaction has qi-dependence in V W3B(k1, k2, k3; q1, q2, q3), we need to handle the
interaction in an approximation in which the non-local operator with qi-dependence is re-
placed by the operator with no qi-dependence. In this paper the prescription will be explained in
Sect. 3.2.

3. Effective two-body �N → NN potentials
3.1 Kinematical restrictions and the effective two-body potential
The effective two-body potential can be derived by integrating out the degrees of freedom
(space, spin, and isospin) of, say, a nucleon “3”, following the Loiseau–Nogami–Ross (LNR)
approximation method [29]. The kinematical restrictions and momentum conservations should
be noted. The momentum conservation holds in the three-particle system:

p1� + p2 + p3 = p′
1 + p′

2 + p′
3. (29)

In the effective two-body potential, we must require momentum conservation, i.e.,

P = p1� + p2 = p′
1 + p′

2 = P′. (30)

Further we are going to work in the two-particle CM-system as

P = 0 and p′
3 = p3. (31)

This implies

q2 = − q1, k2 = − k1, and k3 = 0. (32)

Thus one sees straightforwardly

V W 3B(k1, k2, k3; q1, q2, q3) −→ V W 3B(k1, −k1, 0 ; q1, −q1, q3). (33)

In nuclear matter, one averages over p3 = q3 [30]. This means that only the quadratic term
survives, i.e., < q2

3 >= (3/5)k2
F and < q3 >= 0.

Now in the case that the three-body interaction has no qi-dependence or it is treated as having
no qi-dependence in the prescription of the local operator approximation for the non-local
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operator, we have the effective two-body �N → NN potential as

V (eff.2B)(1, 2) = 1
4
ρNMTr

∫
d3x3V W3B(x1, x2, x3)

= 1
4
ρNMTr

∫
d3x3

∫
d3k1

(2π )3

∫
d3k2

(2π )3
eik1·(x1−x3 )eik2·(x2−x3 )

× V W3B(k1, k2)
∣∣
k3=−k1−k2

= 1
4
ρNMTr

∫
d3k

(2π )3
eik·(x1−x2 )V W3B(k, −k),

= ρNM

∫
d3k

(2π )3
eik·(x1−x2 )Ṽ W (k, −k), (34)

where ρNM = 2kF
3/3π2 ( with kF = 1.4 fm−1 ) for symmetric nuclear matter. In Eq. (34) the

Tr-symbol stands for trace over the spin and isospin operator of nucleon “3”. The concrete
expression of Ṽ W (k, −k) in Eq. (34) is actually obtained after the q-operator in Ṽ W (k, −k, q)
given in Appendix A is treated in the way described in the next subsection.

3.2 LNR approximation and the local momentum approximation
The LNR approximation applied in Eq. (34) acts to diminish some of the contributions derived
from the weak three-body interactions considered for MPE (i)–(vi) in Sect. 2. For example, the
(ππ )1-, (πη)-, and (πρ)1-exchange interactions vanish completely. This is because those weak
three-body interactions contain (τ3 · (τ1 × τ2)) and/or (τ3 · τ1), (τ3 · τ2), (σ3 · k3), etc. and
such operators vanish when the trace operators are applied to τ3 and σ3. One also knows that
some limited number of terms remain for the (ππ )0-, (πσ )-, (πω)-, (Kπ )-, (σσ )-, and Fujita–
Miyazawa (ππ )-pair exchange effective two-body interactions after applying the Tr-operation;
Tr(τ3) = Tr(σ3) = 0 on V W3B(k, −k).

The reduced effective two-body interactions Ṽ W (k, −k, q) for (ππ )0, (πσ ), (πω), (Kπ ), (σσ ),
and Fujita–Miyazawa (ππ ) exchanges in momentum space are given in Appendix A.

Here we notice that non-local operators of the form (σ2 · q)(q · k) and (q · k)(σ2 · k) exist in
Ṽ W

(πσ )(k, −k, ; q, ) of the (πσ ) exchange. For the (σ2 · q)(q · k)-operator, we like to separate the
non-local operator part and the local part of that operator as

(q · k)(σ2 · q) =
[

(q · k)(σ2 · q) + 1
4

k2(σ2 · k)
]

− 1
4

k2(σ2 · k), (35)

in which the first term on the r.h.s. in Eq. (35) is a non-local operator and the second one is
a local operator. That this separation is plausible is proved in Ref. [28]. We adopt the local
operator part only, so that

(σ1 · k)(σ2 · q)(q · k) ≈ − 1
4

k2(σ1 · k)(σ2 · k). (36)

This is the local operator approximation and we apply Eq. (36) to Ṽ W (k, −k, q). For the second
operator (q · k)(σ2 · k), we simply drop it.

The form factor is introduced for each meson propagator such that

1

k2 + m2
→ F (k2)

k2 + m2
, (37)

and we take

F
(
k2) = exp

(− k2/�2
m

)
, (38)
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which is a Gaussian form and �m is a cut-off mass for the meson m. Note, however, that, in the
case of the Fujita–Miyazawa (ππ )-exchange interaction, we take the form factor as

F
(
k2) = exp

(− k2/�2
F

)
. (39)

3.3 Configuration space effective two-body �N → NN potentials
The effective two-body �N → NN potentials in the configuration space are listed below fol-
lowing the prescriptions mentioned in the preceding subsections. The spin–orbit-like part of
potentials is neglected in the configuration space for simplicity. We write r = x1 − x2 in the
following expressions.

1. JPC = 0++; (ππ )0-pair exchange

V (eff.2B)
(ππ )0

(r) = 4πρNM

m3
π

g(ππ )0g
w
π

4π

fπ

4π

2MN

mπ

mπ

×
{

λ (σ1 · σ2) (τ1 · τ2)
1
3

m2
π

4M̄MN

[(
1 + 2m2

π

�2
π

)
φ0

C

(
mπ ,

�π√
2
, r

)

−1
4

exp
(
2m2

π/�2
π

) {
e−mπ rErfc

(
− �πr

2
√

2
+

√
2mπ

�π

)

+emπ rErfc
( �πr

2
√

2
+

√
2mπ

�π

)} ]

+ λS12 (τ1 · τ2)
m2

π

4M̄MN

[
2m2

π

�2
π

φ0
T

(
mπ ,

�π√
2
, r

)

− 1
6

(mπr) φ0
V

(
mπ ,

�π√
2
, r

)]

+ i (σ2 · r̂) (τ1 · τ2)
mπ

2MN

[ (
1 − m2

π

8M̄2

){
2m2

π

�2
π

φ0
V

(
mπ ,

�π√
2
, r

)

− 1
2

(mπr) φ0
C

(
mπ ,

�π√
2
, r

)}
− m2

π

8M̄2
φ0

V

(
mπ ,

�π√
2
, r

) ] }
(40)

2. JPC = 1++; (πσ )-pair exchange

V (eff.2B)
(πσ ) (r) = − 4πρNM

m3
π

g(πσ )gw
π

4π

gσ

4π
2MN

m2
π

m2
σ

×
{

λ (σ1 · σ2)(τ1 · τ2)
1
3

m2
π

4M̄MN

[
φ1

C (mπ , �π, r)

+ m2
π

4M̄MN
φ2

C (mπ , �π, r)
]

+ λS12(τ1 · τ2)
m2

π

4M̄MN

[
φ0

T (mπ , �π, r) + m2
π

4M̄MN
φ1

T (mπ , �π, r)
]

+ i (σ2 · r̂)(τ1 · τ2)
mπ

2MN

[
φ0

V (mπ , �π, r)
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+ m2
π

8M̄MN

{
φ0

V (mπ , �π, r) − 1
2
√

π

(
�π

mπ

)4 (
�π r

2

)
e−( �π r

2 )2
}]}

−4πρNM

m3
π

GF mπ
2

4π

fπgσ

4π
(2MN )2 mπ

m2
σ

×
{

Apc
(πσ ) (σ1 · σ2)(τ1 · τ2)

1
3

m2
π

4M2
N

[
φ1

C (mπ , �π, r)

+ m2
π

4M̄MN
φ2

C (mπ , �π, r)
]

+ Apc
(πσ ) S12(τ1 · τ2)

m2
π

4MN
2

×
[

φ0
T (mπ , �π, r) + m2

π

4M̄MN
φ1

T (mπ , �π, r)
] }

(41)

3. JPC = 1+−; (πω)-pair exchange

V (eff.2B)
(πω) (r) = 4πρNM

m3
π

g(πω)gw
π

4π

gω

4π
2MN

m2
π

m2
ω

×
{

λ (σ1 · σ2)(τ1 · τ2)
(

1 + 1
2M2

N

3
5

k2
F

)
1
3

m2
π

4M̄MN
φ1

C (mπ , �π, r)

+ λ S12(τ1 · τ2)
(

1 + 1
2M2

N

3
5

k2
F

)
m2

π

4M̄MN
φ0

T (mπ , �π, r)

+ i (σ2 · r̂)(τ1 · τ2)
mπ

2MN

[(
1 + 1

2M2
N

3
5

k2
F

)
φ0

V (mπ , �π, r)

− m2
π

8M̄MN

{
φ0

V (mπ , �π, r) − 1
2
√

π

(�π

mπ

)4 (�π r
2

)
e−( �π r

2 )2
}]}

+4πρNM

m3
π

GF mπ
2

4π

gω

4π

fπ

mπ

2MN2M̄
mπ

2

m2
ω

×
{

Apc
(πω) (σ1 · σ2)(τ1 · τ2)

(
1 − fω

gω

1
2M2

N

3
5

k2
F

)

× 1
3

m2
π

4M̄MN
φ1

C (mπ , �π, r)

+ Apc
(πω) S12(τ1 · τ2)

(
1 − fω

gω

1
2M2

N

3
5

k2
F

)
m2

π

4M̄MN
φ0

T (mπ , �π, r)

− i Bpv
(πω) (σ2 · r̂)(τ1 · τ2)

mπ

2MN

m2
π

4M̄2

[
φ0

V (mπ , �π, r).

− 1
2
√

π

(
�π

mπ

)4 (
�π r

2

)
e−( �π r

2 )2
]}

(42)
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4. JP = 0+; (Kπ )-pair exchange

V (eff.2B)
(Kπ ) (r) = − 4πρNM

m3
π

GF mπ
2

4π

g(Kπ )

4π

fπ

mπ

2MNmπ

m2
π

m2
K

[
1
2

Cpv
K + Dpv

K

]

×
{

i (σ2 · r̂)(τ1 · τ2)
mπ

2MN

[
φ0

V (mπ , �π, r)

− m2
π

8M̄2

{
φ0

V (mπ , �π, r) − 1
2
√

π

(
�π

mπ

)4 (
�π r

2

)
e−( �π r

2 )2
}] }

−4πρNM

m3
π

GF mπ
2

4π

g�NK

4π

fπ

mπ

2MNmπ

[
1
2

Cpc
Kπ

]

×
{

(σ1 · σ2)(τ1 · τ2)
1
3

[
mπmπ

m2
K − m2

π

m2
π

4M̄MN
φ1

C (mπ , �π, r)

− mπmK

m2
K − m2

π

m2
K

4M̄MN
φ1

C (mK , �K , r)
]

+ S12(τ1 · τ2)
[

mπmπ

m2
K − m2

π

m2
π

4M̄MN
φ0

T (mπ , �π, r)

− mπmK

m2
K − m2

π

m2
K

4M̄MN
φ0

T (mK , �K , r)
]}

(43)

5. JPC = 0++; (σσ )-pair exchange

V (eff.2B)
(σσ ) (r) = 4πρNM

m3
π

GF mπ
2

4π

g(σσ )gσ

4π
mσ

mπ
2

mσ
2

×
{

Apc
σ

[
φ0

C

(
mσ ,

�σ√
2
, r

)
−

(
1 − mσ

2

4M̄MN

)

×
{(

1 + 2m2
σ

�2
σ

)
φ0

C

(
mσ ,

�σ√
2
, r

)

− 1
4

exp
(
2m2

σ /�2
σ

)[
e−mσ rErfc

(
− �σ r

2
√

2
+

√
2mσ

�σ

)

+ emσ rErfc
( �σ r

2
√

2
+

√
2mσ

�σ

) ] }

+ φ0
C (mσ , �σ , r) − m2

σ

4M̄MN
φ1

C (mσ , �σ , r)
]

+ i Bpv
σ (σ1 · r̂)

mσ

2MN

[
2m2

σ

�2
σ

φ0
V

(
mσ ,

�σ√
2
, r

)

− 1
2

(mσ r) φ0
C

(
mσ ,

�σ√
2
, r

)
− φ0

V (mσ , �σ , r)
] }

+4πρNM

m3
π

GF mπ
2

4π

gσ
2

4π
mσ

mπ
2

mσ
2
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×
{

Apc
(σσ )

[
φ0

C (mσ , �σ , r) − mσ
2

4M̄MN
φ1

C (mσ , �σ , r)
]

−i Bpv
σσ (σ1 · r̂)

mσ

2MN
φ0

V (mσ , �σ , r)

}
(44)

6. Fujita–Miyazawa; (ππ )-pair exchange

V (eff.2B)
F M(ππ ) (r) = 4πρNM

m3
π

gw
π

4π

fπ

4π

2MN

mπ

mπ

×
{

λ (A + B) (τ1 · τ2)
m2

π

4M̄MN

[
1
3

(σ1 · σ2) φ1
C

(
mπ ,

�F√
2
, r

)

+ S12 φ0
T

(
mπ ,

�F√
2
, r

)]
+ λ (A + B − D) (τ1 · τ2)

× m2
π

4M̄MN

[
1
3

(σ1 · σ2)
{(

1 + 2m2
π

�2
F

)
φ0

C

(
mπ ,

�F√
2
, r

)

− 1
4

exp
(
2m2

π/�2
F

) [
e−mπ rErfc

(
−�F r

2
√

2
+

√
2mπ

�F

)

+ emπ rErfc
(�F r

2
√

2
+

√
2mπ

�F

) ]}

+ S12

{
2m2

π

�2
F

φ0
T

(
mπ ,

�F√
2
, r

)
− 1

6
(mπr) φ0

V

(
mπ ,

�F√
2
, r

)}]

+ i (A + B) (σ2 · r̂) (τ1 · τ2)
mπ

2MN
φ0

V

(
mπ ,

�F√
2
, r

)

+ i (A + B − D) (σ2 · r̂) (τ1 · τ2)
mπ

2MN

[
2m2

π

�2
F

φ0
V

(
mπ ,

�F√
2
, r

)

− 1
2

(mπr) φ0
C

(
mπ ,

�F√
2
, r

)] }
(45)

In the above expressions, φ0
C (m, �, r), φ1

C (m, �, r), φ2
C (m, �, r), φ0

T (m, �, r), and
φ1

T (m, �, r), are defined in Ref. [23], and

φ0
V (m, �, r) =

{
exp

(
m2/�2) [

(1 + mr) e−mr Erfc
(
−�r

2
+ m

�

)

− (1 − mr) emr Erfc
(�r

2
+ m

�

) ]

− 4√
π

(�r
2

)
exp

[
−

(�r
2

)2
] }

/2 (mr)2 . (46)

Erfc(x) is a complimentary error function defined as

Erfc(x) = 2√
π

∫ ∞

x
e−t2

dt. (47)
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4. Weak coupling constants for the �N-(meson-pair) and weak �–n mixing model
Although the ESC model gives strong coupling constants for the NN-(meson-pair) vertices, it
does not give weak coupling constants for the �N-(meson-pair) ones. This matter is discussed
in this section.

4.1 Weak �–n mixing model
Following the Dalitz–Von Hippel method [31], we consider the weak �–n mixing. The physical
n and � are the mixtures (

n
�

)
=

(
cos ε −sin ε

sin ε cos ε

) (
n0

�0

)
, (48)

where n0 and �0 are respectively the unphysical bare states, eigenstates of I (isospin) and S
(strangeness).

The mass matrix on the “bare” basis is

H =
(

M0
n �

� M0
�

)
, (49)

and � is given by the transition matrix element of the weak mixing interaction

� = 〈
n0 |Hw

I |�0 〉
. (50)

From the mass matrix of Eq. (49), one obtains the states |n > and |� > and the masses Mn

and M�. Since �, ε 
 1, one gets

|n〉 = |n0〉 − ε |�0〉, |�〉 = |�0〉 + ε |n0〉, (51)

where

tan ε ≈ ε = − �

ΔM
, ΔM = Mn − M�. (52)

The physical masses in terms of the bare masses are

M� = M0
� − �2

ΔM
, Mn = M0

n + �2

ΔM
. (53)

4.2 Estimate of the mixing angle ε and internal π -exchange � → n transition
Since the mixing angle ε is given by Eq. (52), one must evaluate the transition matrix element
�� ≡ � of Eq. (50):

�� =
〈

n0 |
∑
i, j

V π
QiQj

|�0

〉
. (54)

|n0 > and |�0 > are the neutron and � wave function, respectively, in the non-relativistic quark
model. V π

QiQj
signifies the weak pion-exchange quark–quark interaction.

The quark–quark weak interaction Hamiltonian of one-pion exchange, for the dominant
parity-conserving part, is

H(w)
QQπ

= −
f (w)

QQπ

mπ+
(�̄Nγμγ5τ�S ) · ∂μϕπ , (55)

and the strong interaction Hamiltonian is

H(s)
QQπ

= −
f (s)

QQπ

mπ+
(�̄Nγμγ5τ�N ) · ∂μϕπ . (56)
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Here

�N =
(

ψu

ψd

)
and �S =

(
0
ψs

)
, (57)

where �S is a spurion.
When the Gaussian form factor of the type exp(−k2/2�2

QQ) with a cut-off mass �QQ is con-
sidered at the quark–quark–pion vertex, the one-pion exchange potential in the configuration
space is obtained, except the tensor part1, as

V (π )
QiQj

(r) =
f (w)

QQπ
f (s)

QQπ

4π

(
m3

π

m2
π+

)
1
3

(σ i · σ j )(τ i · τ j ) φ1
C (mπ , �QQ, r), (58)

with

φ1
C (mπ , �QQ, r) = φ0

C (mπ , �QQ, r) − 1
2
√

π

(
�QQ

mπ

)3

e− 1
4 �2

QQr2
. (59)

In Eq. (59) the first term on the r.h.s. defines the “Yukawa” part potential, and the second term
the “cut-off” part one. Here we concentrate on the “Yukawa”-type potential and ignore the
“cut-off” part, because the “cut-off” part is independent of the exchanged-meson mass and is
expected to be small due to cancellation when various meson exchanges such as π , K, η, η′,…
are considered.

For the internal pseudo-scalar meson exchange, we are interested only in the region of r ≤
0.5 fm, and we expand φ0

C (m, �QQ, r) in the Taylor series and approximate the potential in this
region by a Gaussian such that

φ0
C (mπ , �QQ, r) ≈ φ0

C (mπ , �QQ, r = 0) e− 1
4U 2r2

, (60)

U =
√

−2φ0
C

′′(r = 0)/φ0
C (r = 0). (61)

With this approximation, one gets

V (π )
QiQj

(r) = V0 (σ i · σ j )(τ i · τ j ) e− 1
4U 2r2

(62)

and

V0 = 1
3

f (w)
QQπ

f (s)
QQπ

4π

(
m3

π

m2
π+

)
φ0

C (mπ , �QQ, r = 0). (63)

Now, to estimate the size of the potential we replace the potential (62) by a constant potential
V̄ (π )

QiQj
(r) for r < R and 0 for r ≥ R, where R is a effective baryon radius ( ≈ 0.5 fm) under the

condition of volume-integral-equivalence for the two potentials V (π )
QiQj

(r) and V̄ (π )
QiQj

(r).
Then

V̄ (π )
QiQj

(r) = V0 (σ i · σ j )(τ i · τ j ) g0θ (R − r)

= V̄0 (σ i · σ j )(τ i · τ j ) θ (R − r), (64)

and

V̄0 =
f (w)

QQπ
f (s)

QQπ

4π

mπ+

(mπ+R)3

(mπ

U

)3
2
√

π φ0
C (mπ , �QQ, r = 0). (65)

The quark–quark–pion coupling constants are related to the baryon–baryon–pion ones, which
read [32] as

1The tensor interaction is not included here, since it does not induce the � → n transition.
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Fig. 2. Feynman diagrams for the internal pion exchange weak �0 → n0 transitions among quark lines.

f (w)
QQπ

= 3
5

f (w)
�Nπ = 3

5
mπ

2M̄
g(w)

�Nπ , (66)

f (s)
QQπ

= 3
5

f (s)
NNπ = 3

5
mπ

2MN
g(s)

NNπ . (67)

|n0 > and |�0 > are expressed in SU(6) quark wave functions:

�(n0) = �n0 (Color singlet) φn0 ( (0s)3 L = M = 0)

× ψn0 ( ud2, 8, I = 1/2, Iz = −1/2, S = Sz = 1/2), (68)

�(�0) = ��0 (Color singlet) φ�0 ( (0s)3 L = M = 0)

× ψ�0 ( ud ′s′, 8, I =′ 1/2′, Iz =′ −1/2′, S = Sz = 1/2). (69)

In Eqs. (68) and (69), the color part of the wave functions is completely antisymmetric for
the exchanges of quarks, while the space–flavor–spin part is completely symmetric. Further, in
Eq. (69), the s-quark is treated as ′s′, which has weak-isospin quantum numbers i = ′1/2′iz = ′

− 1/2′, since it is a spurion. We assign the index 3 to the s-quark.
Then the matrix element of �� in Eq. (54) is

�� =
〈

n0 |
∑
i, j

V̄ π
QQ(i, j) |�0

〉

= 2 〈 n0 |V̄ π
QQ(1, 3) |�0 〉

= 2 〈 �n0 (Color singlet) |��0 (Color singlet) 〉
× 〈φn0 ( (0s)3 L′ = M ′ = 0) | V̄0θ (R − r13) |φ�0 ( (0s)3 L = M = 0) 〉
× 〈 ψn0 ( ud2, 8, I ′ = 1/2, I ′

z = −1/2, S′ = S′
z = 1/2) |(σ1 · σ3)(τ1 · τ3) δ(q3, s) |

× ψ�0 ( ud ′s′, 8, I =′ 1/2′, Iz =′ −1/2′, S = Sz = 1/2) 〉. (70)

Figures 2(a)–(c) show the Feynman diagrams for the internal pion exchange weak �0 → n0

transitions that give an intuitive insight into Eq. (70).
As for the color part in Eq. (70), the overlap matrix element is 1, and for the spacial part

matrix element we take

〈φn0 ( (0s)3 L′ = M ′ = 0) | V̄0θ (R − r13) |φ�0 ( (0s)3 L = M = 0) 〉 ≈ V̄0 (71)

in an approximation that the spacial wave function of the (0s) state is of short enough range
compared with R (= 0.5 fm).
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The (σ1 · σ3)(τ1 · τ3)-operator matrix element is evaluated as

M.E. = 〈 ψn0 ( ud2, 8, I ′ = 1/2, I ′
z = −1/2, S′ = S′

z = 1/2) |(σ1 · σ3)(τ1 · τ3) δ(q3, s) |
× ψ�0 ( ud ′s′, 8, I =′ 1/2′, Iz =′ −1/2′, S = Sz = 1/2) 〉

= 1
2

√
2 · 3. (72)

Finally we get

��
∼= 2 V̄0

1
2

√
2 · 3. (73)

From Eq. (52), with Eqs. (65)–(67) and (73), we obtain the mixing angle ε as

ε = − 9
25

g(w)
�Nπg(s)

NNπ

4π

(
mπ

2M̄

) (
mπ

2MN

)
mπ+

MN − M�

× 1
(mπ+R)3

(mπ

U

)3
2
√

π
√

2 · 3 φ0
C (mπ , �QQ, r = 0). (74)

4.3 Weak �N-(meson-pair) coupling constants
One can evaluate the weak �N-(meson-pair) coupling constant of a Hamiltonian, for the
parity-conserving (pc) part, in the �–n weak mixing model. In this model the weak transi-
tion proceeds in a way that in the course of internal transmutation from � to n taking place the
strong baryon–baryon–(meson-pair) interaction emerges, or inversely that the strong baryon–
baryon–(meson-pair) interaction works accompanying the slow weak transmutation from � to
n. We may write〈

n |H (w)
(meson-pair) |�

〉
= Weak mixing part of

〈
n0 − ε �0 | H (s)

(meson-pair) |�0 + ε n0
〉

(75)

= ε
〈
n0 |H (s)

(meson-pair) | n0
〉
, (76)

if the meson pair is an isovector. This leads to

g(w)
�n(meson-pair) (pc part) = ε g(s)

nn(meson-pair). (77)

In the case that the isospin independence holds in the strong interaction and the �I = 1/2 rule
holds in the weak one, Eq. (77) is generalized to

g(w)
�N(meson-pair) (pc part) = ε g(s)

NN(meson-pair). (78)

Then we obtain

g(w)
�N(πσ ) (pc part) ≡ GF m2

π Apc
(πσ ) = ε g(πσ ), (79)

g(w)
�N(πω) (pc part) ≡ GF m2

π Apc
(πω) = ε g(πω). (80)

When the exchanged meson pair is iso-scalar such as (ππ )0 and (σσ ), the following relations
hold:

g(w)
�N(ππ )0

(pc part) ≡ GF m2
π Apc

(ππ )0
= ε ( g(ππ )0 − g��(ππ )0 ), (81)

g(w)
�N(σσ ) (pc part) ≡ GF m2

π Apc
(σσ ) = ε ( g(σσ ) − g��(σσ ) ). (82)

Since we have, however, no information about g��(ππ )0 and g��(σσ ), we neglect those.
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5. Estimate of two-nucleon induced decay rates with use of effective two-body �N →
NN potentials
In Sect. 3 the effective two-body potentials V(eff.2B)(�N–NN) are deduced from weak three-body
interactions for �NN → NNN transitions. We apply these effective potentials V(eff.2B) to evalu-
ate the non-mesonic decay rates of hypernuclei. However, since the potentials V(eff.2B)(�N–NN)
have a different origin from the usual two-body V(�N–NN) such as meson-exchange poten-
tials, it is not appropriate to sum up the potentials V(�N–NN) and V(eff.2B)(�N–NN) before-
hand to evaluate the decay rate. On the other hand, the sum of the decay rates �nm(�N →
NN ) + �

(eff.2B)
nm (�N → NN) is meaningful because the two decay channels are independent of

each other, as explained. We designate �
(eff.2B)
nm for the decay rate calculated with the use of the

V(eff.2B) potentials. The decay rate �
(eff.2B)
nm can be calculated in the standard shell model frame-

work by adopting V(eff.2B)(�N–NN) for the transition potential. The expression of �nm in the
shell model basis is given in Eq. (3) of Ref. [6] and Eq. (2.9) of Ref. [5].

�
(eff.2B)
nm is the sum of the proton-stimulated decay rate �

(eff.2B)
p (�p → np) and the neutron-

stimulated one �
(eff.2B)
n (�n → nn) as

�(eff.2B)
nm = �(eff.2B)

p (�p → np) + �(eff.2B)
n (�n → nn). (83)

Hereafter, we use the shortened notations �
(eff.2B)
p and �

(eff.2B)
n for �

(eff.2B)
p (�p → np) and

�
(eff.2B)
n (�n → nn), respectively. Although �

(eff.2B)
p and �

(eff.2B)
n are decay rates calculated for the

two-body decay, the sum �
(eff.2B)
nm in Eq. (83) would partly simulate the decay rate of �2N, which

is the sum of �np(�np → nnp), �pp(�pp → npp), and �nn(�nn → nnn). It is one of the objects
of this paper to evaluate the decay rate �

(eff.2B)
nm as an “order of magnitude” of the two-nucleon

induced decay rate.
It should be mentioned here that our calculation of the decay rate is based on the two-

body dynamics, not on the full three-body one, and therefore our “effective two-body potential
method” has certain limitations. First we would like to note the limitation in the deduction
procedure of the effective two-body potentials. As is seen in Eq. (34), we derive V(eff.2B)(1, 2) by
integrating over the particle-“3” variables (space, isospin, and spin degrees) of the three-body
interaction V W3B(x1, x2, x3) with use of the LNR approximation. In the procedure of the LNR
approximation, especially owing to operations on Tr(τ3) and Tr(σ3), the contributions from
the possibly important three-body interactions due to, for instance, (ππ )1, (πη), and (πρ)1 ex-
changes, are vanishing, as already shown in Sect. 3.2. At the present stage, however, we have
no reliable way of evaluating such lost diagrams. Therefore, we know that the effects of the
three-body interactions on the non-mesonic decay rates should surely be different between the
two cases, the case of treating the full three-body dynamics, if possible, and the case of the
approximation method through the form of effective two-body potentials.

Second, the decay kinematics is decisively different between the full treatment of the three-
body decay and the approximate one in the two-body dynamics with effective two-body po-
tentials. In the former, the final three nucleons share the energy of the decay Q-value among
them and a particular nucleon pair does not carry definite energy, while in the latter treatment
the final pair of nucleons have definite energy determined by the two-body kinematics. As a
result, the relative momenta of the final pair of nucleons (np, pp, and nn among NNN) become
different from the case of the two-body decay, which has a vital effect on the decay rate.

Considering the above-mentioned limitations at the present stage, it is conceivable that (i)
the calculated �

(eff.2B)
nm in our “effective two-body potential method” should give a limited
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estimate of the two-nucleon induced non-mesonic decay rate, but (ii) the ratio of the two-
nucleon induced partial decay rates as �np : �pp : �nn cannot be accounted for from �

(eff.2B)
p

and �
(eff.2B)
n .

6. Results and discussions
6.1 Hypernuclear and nuclear wave functions, and coupling constants of meson-pair

exchange Hamiltonians
In evaluation of the non-mesonic decay rate, we employ the �-hypernuclear state in which a
�-hyperon in the 0s state is coupled to the core-nucleus. The �-hyperon state is solved in the
cluster model of � plus core-nucleus for 5

�He, while it is solved in the DDHF equation for the
p-shell hypernuclei. For the core-nucleus part of the initial �-hypernucleus and the final daugh-
ter nuclei, the harmonic oscillator (HO) shell model wave functions are used. For the p-shell
case, two types of HO shell model wave functions, the simple HO ones or the Cohen–Kurath-
type configuration-mixed HO ones, are used. We solve the scattering state for the outgoing two
nucleons for which the strong NN interactions act as the final-state correlation. The details are
described in our previous works [5,6].

The NN-(meson-pair) coupling constants in the strong interaction Hamiltonians of Eqs. (1)–
(7) have been determined and modified to be consistent with baryon–baryon–meson ones in
explaining the NN- and YN-scattering data in several versions of the Nijmegen ESC [23–27] and
GESC models [28]. Uncertainties exist in the relative magnitudes between various meson-pair
exchange coupling constants. In the ESC and GESC models, g(ππ )0 is set to be 0 (which results
mostly from cancellation due to the σ - and pomeron-contribution effect), and no attempt has
been made to fix g(Kπ) yet.

We designate the set of strong meson-pair coupling constants adopted in Refs. [28], [23],
[24,25], and [26,27] as E15, E10, E16, and E19, respectively. As for the coupling constant g(σσ ),
several values are used as a free parameter [28]. The coupling constants A, B, and D in Eq. (9) are
taken from the original paper [19], i.e., A = 5π

18 · (3.70), B = 3
5 A, and D = 2π

3 · (−0.06). Note
that A and B are in units of m−3

π , and D is in units of m−1
π .

The meson-pair coupling constants in the strong interactions adopted in this paper are listed
in Table 1, where the rationalized representation (the scaling mass in the Hamiltonian is taken
to be mπ ) is used.

The weak meson-pair coupling constants, for their parity-conserving part, in the weak in-
teraction Hamiltonians in Eqs. (10), (12), (15), and (16) can be determined by the relations
in Eqs. (81), (82), (79), and (80), respectively. We do not try to determine the weak NN–(Kπ )
coupling constants here.

The weak mixing angle ε must be evaluated first from Eq. (74). gw
�Nπ = gwλ = 0.233 × 10−6 ×

(−6.87) and gs
NNπ = 12.807 are adopted [6]. We take mπ = mπ+ and R = 0.5 fm. U is determined

by Eq. (61) and depends on mπ and �QQ through a function φ0
C (mπ , �QQ, r = 0). Two choices,

�QQ = 250 MeV/c2 and �QQ = 400 MeV/c2, are considered. Then we have

(1) �QQ = 250 MeV/c2 case: U = 192 MeV/c2 and ε = − 0.758 × 10−7 are obtained,
(2) �QQ = 400 MeV/c2 case: U = 285 MeV/c2 and ε = − 0.496 × 10−7 are obtained.

Since �QQ = 250 MeV/c2 is close to �QCD and seems plausible for short-range behavior,
we accept this choice and take ε = − 0.758 × 10−7 for the �–n mixing angle in the following
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Table 1. Strong and weak meson-pair coupling constants. The strong meson-pair coupling constants are
taken from the ESC and GESC models. The coupling constants marked (∗) have signs opposite to those
given in ESC and GESC models due to the definition of the Hamiltonian (6). Fujita–Miyazawa (ππ )-
pair coupling constants A and B are given in units of mπ

−3, and D is given in units of mπ
−1. The weak

coupling constants are shown for the weak mixing angle ε = −0.758 × 10−7, and are given in units of
GF m2

π = 0.222 × 10−6. See the text for symbols.

Ref. [28] Ref. [23] Refs. [24,25] Refs. [26,27] Ref. [28] Ref. [19]
E15 E10 E16 E19

Strong
g(ππ )0 – – – –
g(πσ ) 0.5509 (∗) 0.1734 (∗) 0.5519 (∗) 0.7208 (∗)
g(πω) −0.6005 −0.6824 −0.1030 −0.6077
g(Kπ) – – – –
g(σσ ) (a) −1.885
g(σσ ) (b) −3.770
g(σσ ) (c) −4.084
A 0.327
B 0.196
D −0.126

Weak
Apc

(ππ )0
– – – –

Apc
(πσ ) −0.1880 −0.0592 −0.1880 −0.2460

Apc
(πω) 0.2050 0.2330 0.0352 0.2070

Cpc
(Kπ ) – – – –

Dpc
(Kπ ) – – – –

Apc
(σσ ) (a) 0.643

Apc
(σσ ) (b) 1.287

Apc
(σσ ) (c) 1.394

discussion. Then the weak meson-pair coupling constants are fixed and are shown in accor-
dance with the strong meson-pair coupling constants in Table 1.

The strong coupling constants of NN–meson and �NK, and the weak ones of �N–meson
and NNK are the same as those adopted in Ref. [6]. Only the weak �Nσ coupling constants
are determined phenomenologically so that the weak �N → NN potential due to the one-σ
exchange can simulate the weak one due to the 2π /σ exchange as well as possible, i.e.,

V weak
σ (�N − NN ) ≈ V weak

2π/σ (A+B)(�N − NN ), (84)

where V weak
2π/σ (A+B)(�N − NN ) has been calculated in Ref. [6]. Then Apc

σ = −6.420 and Bpv
σ =

0.260 are determined in units of GF m2
π .

As mentioned before, the Gaussian form factors F (k2) = exp(− k2/�2
m) are used in deriving

V(eff.2B)(�N–NN). The cut-off mass �m for the meson m (m = π, K, σ ) is taken to be �m =
1029.42 MeV, and for �F in Fujita–Miyazawa (ππ ) exchange �F = 2000.0 MeV is adopted.

6.2 Non-mesonic decay rates �
(eff.2B)
nm

�
(eff.2B)
nm has a different origin concerning the decay transition potentials from the usual one-

nucleon induced decay rate �nm as stated in Sect. 5, and we like to regard �
(eff.2B)
nm as the “or-

der of magnitude” of the two-nucleon induced non-mesonic decay rate �2N and compare the
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N1’

N1

N1’

N1

σ
σ

σ

σ

σ

(a) (b)

Fig. 3. Feynman diagrams of the scalar (σσ )-pair coupling to N. (a) N couples directly to the (σσ ) pair.
(b) N couples to σ followed by σ → σ + σ .

calculated �
(eff.2B)
nm with experiments. We call these collectively the effective non-mesonic decay

rates for �
(eff.2B)
p , �

(eff.2B)
n , and �

(eff.2B)
nm .

The effective non-mesonic decay rates are evaluated for hypernuclei 5
�He, 11

� B, and 12
� C, for

which experimental data on �2N exist.
As stated in Sect. 6.1, the coupling constants of the (ππ )0-pair and the (Kπ )-pair vertices are

not determined in the ESC model and therefore we take such a prescription that two effective
two-body potentials V (eff.2B)

(ππ )0
(r) and V (eff.2B)

(Kπ ) (r) do not contribute to the two-nucleon induced
non-mesonic decay rate calculations. Accordingly, the calculations are done with the effective
two-body potential as

V (eff.2B)(r) = V (eff.2B)
(πσ ) (r) + V (eff.2B)

(πω) (r) + V (eff.2B)
(σσ ) (r) + V (eff.2B)

F M(ππ )(r), (85)

for which four different sets of meson-pair coupling constants are used for the (πσ ) and (πω)
pairs, and the (σσ ) pair and the Fujita–Miyazawa (ππ ) pair as listed in Table 1 are used.

For clarification, we use the following symbols for the sum of potentials:

V E15 :
{

V (eff.2B)
(πσ ) + V (eff.2B)

(πω)

}
, adopting E15 coupling constants

V E10 :
{

V (eff.2B)
(πσ ) + V (eff.2B)

(πω)

}
, adopting E10 coupling constants

V E16 :
{

V (eff.2B)
(πσ ) + V (eff.2B)

(πω)

}
, adopting E16 coupling constants

V E19 :
{

V (eff.2B)
(πσ ) + V (eff.2B)

(πω)

}
, adopting E19 coupling constants.

As for the (σσ )-pair coupling constant, three values g(σσ )(a), g(σσ )(b), and g(σσ )(c) listed in
Table 1 are tried. The reasons for adopting g(σσ ) < 0 are as follows. (i) The strong interaction
V (eff.2B)

(σσ ) (NN–NN ) makes an attractive contribution to the nuclear matter binding energy and a
nice energy value is obtained for g(σσ )/4π = −(0.3–0.4). (ii) It is assumed that the NN- and YN-
scattering data can be accounted for with no problem with inclusion of the coupling constant
g(σσ )/4π = −0.3 together with the meson-pair ones and the baryon–baryon–meson ones of
the ESC16 model [26,27,33]. (iii) A potential due to the (σσ )-pair exchange is found to have a
favorable effect on the U� potential. (iv) Another discussion exists. First the σ 3-Hamiltonian is
defined as

H3σ = 1
3!

gσσσ mσ φ3
σ . (86)

Evaluating the diagrams depicted in Fig. 3, we obtain
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Table 2. Calculated non-mesonic decay rates �
(eff.2B)
nm of 5

�He, 11
� B, and 12

� C and their dependence on
the four cases of effective two-body potentials used: (1) VE15 + V(σσ ) + VFM(ππ), (2) VE10 + V(σσ ) +
VFM(ππ), (3) VE16 + V(σσ ) + VFM(ππ), and (4) VE19 + V(σσ ) + VFM(ππ). For the V(σσ ) potential, the
coupling constant is fixed to g(σσ )/4π = −0.300. For p-shell hypernuclei, calculations are shown for the
wave functions with the configuration-mixed shell model + � particle. The experimental �

exp
2N data are

also listed. Decay rates are given in units of free � decay rate ��.

(1) (2) (3) (4) Exp.

5
�He(1/2+) 0.083 0.068 0.073 0.093 0.078 ± 0.034 [13]
11
� B(5/2+) 0.176 0.150 0.160 0.194 0.169 ± 0.077 [13]
12
� C (1−) 0.197 0.167 0.178 0.219 0.178 ± 0.076 [13]

0.27 ± 0.13 [8,9]

< N ′ σ ′ | M | N σ > = gNNσ gσσσ mσ [ ū(p′) u(p)]
1

k2 − m2
σ + iε

= 2
g(σσ )

mπ

[ū(p′) u(p)], (87)

which gives, using the low-energy approximation,

g(σσ ) � − gNNσ gσσσ

mπ

2mσ

. (88)

Kleinert gives a formula [34], fπ being 93 MeV and mσ = 600.0 MeV,

gσσσ = 3
mσ

fπ

(
1 − m2

π

m2
σ

)
≈ 18.3. (89)

Then we get g(σσ )/4π ≈ −1.06, which shows g(σσ ) < 0.
On the other hand, comparing Eq. (86) with the MFT described in Glendenning [35] with

the interaction Lagrangian L3σ = − (b/3) mNg3
NNσφ3

σ gives

gσσσ = 2
mN

mσ

b g3
NNσ . (90)

Here, b = (0.5–1.5) × 10−2 is used. Then we find gσσσ ≈ (3.91–11.73) and get g(σσ )/4π = −(0.23–
0.68), which also shows g(σσ ) < 0.

The decay rates �
(eff.2B)
p , �(eff.2B)

n , and �
(eff.2B)
nm have strong dependence on the adopted coupling

constants that have uncertainties among various versions of the ESC and GESC models. In
Table 2, calculated non-mesonic decay rates �

(eff.2B)
nm of 5

�He, 11
� B, and 12

� C are shown focusing on
their dependence on the four types of MPE potentials of the sum of (πσ ) and (πω) exchanges
abbreviated as VE15, VE10, VE16, and VE19, when V(σσ ) and VFM(ππ) are fixed. The total
effective two-body potentials used are

(1) VE15 + V(σσ ) + VFM(ππ),
(2) VE10 + V(σσ ) + VFM(ππ),
(3) VE16 + V(σσ ) + VFM(ππ), and
(4) VE19 + V(σσ ) + VFM(ππ).

For V(σσ ), the meson-pair coupling constant g(σσ )/4π = −0.300 is adopted here.
It is known for each of the three hypernuclear decays that the calculated �

(eff.2B)
nm have some

variances among the four cases of potentials (1)–(4). VE19 and VE15 make large contributions
to the decay rates, while VE10 and VE16 make moderate ones. In calculations, we adopt two
types of shell model wave functions, the Cohen–Kurath-type configuration-mixed shell model
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Table 3. Contributions from various combinations of potentials to �
(eff.2B)
nm are shown for 5

�He. VE19
signifies the potentials of V(πσ ) + V(πω) with E19 coupling constants and V(σσ ) is the case of using the
coupling constant g(σσ )/4π = −0.300. VFM(ππ) is fixed uniquely. �

exp
2N is shown for comparison. Decay

rates are given in units of free � decay rate ��.

�
(eff.2B)
nm �

exp
2N

VE19 0.035
V(σσ ) 0.054
VFM 0.005
V(σσ ) + VFM 0.063
VE19 + VFM 0.017
VE19 + V(σσ ) 0.107
VE19 + V(σσ ) + VFM 0.093

0.078 ± 0.034 [13]

and the simple HO shell model, for the core-nucleus part of p-shell hypernuclei and the daughter
nuclei, but the differences in �

(eff.2B)
nm are small between the two cases.

In Table 3, we display the contributions of various combinations of effective two-body po-
tentials, V(πσ ), V(πω), V(σσ ), and VFM(ππ), to the decay rate �

(eff.2B)
nm for 5

�He as an example. Here
we show the case where the meson-pair coupling constants of V(πσ ) and V(πω) are chosen to be
the set of E19, that of V(σσ ) is g(σσ )/4π = −0.300, and VFM(ππ) is unique. The V(σσ ) potential
yields a large contribution to the decay rate. One can see that the contribution of VFM(ππ) alone
is small compared with VE19 and/or V(σσ ). However, VFM(ππ) works destructively against VE19
as seen in the decay rate in the case of VE19 + VFM, while in contrast VFM(ππ) works additively
to V(σσ ) as seen in the case of V(σσ ) + VFM. The total VE19 + V(σσ ) + VFM gives �

(eff.2B)
nm as a

comparable magnitude to �
exp
2N in the present case. Thus one knows that each of VE19, V(σσ ),

and VFM has a proper and important role in producing the non-mesonic decay rate.
Table 4 shows the calculated non-mesonic decay rates �

(eff.2B)
p , �

(eff.2B)
n , and �

(eff.2B)
nm of hy-

pernuclei 5
�He, 11

� B, and 12
� C and their dependence on the V(σσ ) potential used in the effective

two-body potentials of V(πσ ) + V(πω) + V(σσ ) + VFM(ππ). Here the case is shown that the E19
potential of V(πσ ) + V(πω) is chosen and V(σσ ) is varied by adopting the three different coupling
constants g(σσ )/4π = −0.150, −0.300, and −0.325. VFM(ππ) is unique.

One sees in Table 4 that the calculated decay rates �
(eff.2B)
p , �

(eff.2B)
n , and �

(eff.2B)
nm have a strong

dependence on the V(σσ ) potential with the adopted coupling constant g(σσ ). This feature is
common to 5

�He, 11
� B, and 12

� C decays. These tendencies are also observed in other combinations
of potentials even when we replace VE19 with VE15, VE10, or VE16, respectively. Such features
clearly show the importance of the V(σσ ) potential in producing the enhanced �

(eff.2B)
nm . Note,

however, that V(σσ ) is exclusively a spin–isospin-independent central force while V(πσ ), V(πω),
and VFM(ππ) have spin–isospin-dependent central and tensor forces. Therefore, each of the MPE
V(πσ ), V(πω), V(σσ ), and VFM(ππ) has its proper role of yielding �

(eff.2B)
nm .

In view of the theory–experiment comparison in Tables 2 and 4, we conclude that we can
understand the two-nucleon induced decay rates �

exp
2N of 5

�He, 11
� B, and 12

� C with the effec-
tive two-body potential model, when we make an allowance for choosing V(σσ ) with g(σσ )/4π

� −(0.300–0.325) and selecting, for instance, VE19 or VE16 for V(πσ ) + V(πω) potential and
VFM(ππ).
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Table 4. Calculated non-mesonic decay rates, �
(eff.2B)
p , �

(eff.2B)
n , and �

(eff.2B)
nm , of 5

�He, 11
� B, and 12

� C and
their dependence on the V(σσ ) potential used in V(πσ ) + V(πω) + V(σσ ) + VFM(ππ). In the choice of a
combination “VE19 + V(σσ ) + VFM”, V(σσ ) is varied by adopting three different coupling constants g(σσ )

and VFM(ππ) is uniquely fixed. For p-shell hypernuclei, calculations are shown for the wave functions with
the configuration-mixed shell model + � particle. Experimental data �

exp
2N and �

exp
NM(total) are shown for

comparison. Decay rates are given in units of free � decay rate ��.

VE19 + V(σσ ) + VFM

g(σσ )/4π g(σσ )/4π g(σσ )/4π Exp.
=−0.150 =−0.300 =−0.325

5
�He (1/2+)

�
(eff.2B)
p 0.035 0.073 0.081

�
(eff.2B)
n 0.007 0.020 0.023

�
(eff.2B)
nm 0.042 0.093 0.104 �

exp
2N = 0.078 ± 0.034 [13]

�
exp
NM = 0.424 ± 0.024 [36,37]

11
� B (5/2+)

�
(eff.2B)
p 0.066 0.144 0.161

�
(eff.2B)
n 0.016 0.051 0.058

�
(eff.2B)
nm 0.082 0.194 0.219 �

exp
2N = 0.169 ± 0.077 [13]

�
exp
NM = 0.861 ± 0.063+0.073

−0.073 [38]
12
� C (1−)

�
(eff.2B)
p 0.078 0.168 0.188

�
(eff.2B)
n 0.016 0.050 0.058

�
(eff.2B)
nm 0.094 0.219 0.246 �

exp
2N = 0.178 ± 0.076 [13]

0.27 ± 0.13 [8,9]
�

exp
NM = 0.940 ± 0.035 [36]

0.828 ± 0.056+0.066
−0.066 [38]

Here we remember the following facts. In the course of the derivation of the effective two-
body potentials, the weak three-body interactions with particular MPE such as (πσ )-, (πω)-,
and (σσ )-pair exchanges and the Fujita–Miyazawa (ππ ) exchange are found to contribute ap-
preciably to the effective potentials. On the other hand, we know that some other possibly im-
portant three-body interactions are lost as a consequence of the present approximation proce-
dure. Further, the adopted meson-pair coupling constants still have some uncertainties. Thus
our calculated �

(eff.2B)
nm should be regarded as the “order of magnitude” of the two-nucleon in-

duced �2N at the present stage.

7. Summary and remarks
With the hope of determining the role of the three-body �NN → NNN interaction in the two-
nucleon induced non-mesonic decay rates �2N of light and p-shell hypernuclei, we evaluate the
effective two-body decay rates with use of the effective two-body potential V(eff.2B)(�N–NN)
deduced from the three-body �NN → NNN interaction.

First of all, the three-body weak �NN → NNN interactions are constructed in a model
of meson-pair exchange among � and two nucleons, where the weak vertex is considered
either at the �N–meson vertex or at the �N–(meson-pair) one. The effective two-body po-
tential V(eff.2B)(�N–NN) is deduced from the three-body interactions by integrating out the
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particle-“3” coordinate, spin, and isospin variables following the LNR approximation method.
The limited number of weak three-body interactions of V W3B

(m1m2 )(�NN − NNN ) with particu-
lar MPE contribute to the effective two-body potentials through reduction and approximation.
The obtained effective potential V(eff.2B)(�N–NN) consists of V(ππ )0 , V(πσ ), V(πω), V(Kπ), V(σσ ),
and VFM(ππ).

The strong NN-(meson-pair) coupling constants are taken from various versions of the ESC
and GESC models, while the weak �N-(meson-pair) ones for their parity-conserving parts are
evaluated in this work from the weak �–n mixing model by Dalitz–Von Hippel and the mixing
angle ε, which gives the relation g(w)

�N(meson-pair) = ε g(s)
NN(meson-pair). Here ε is obtained through

evaluation of the � → n weak transition matrix element by employing the quark-model wave
functions for � and the neutron and the quark–quark interaction VQQ(r) due to the internal
meson (pion) exchange.

In the ESC model, however, the strong meson-pair coupling constant g(ππ )0 has not been
determined so far and is set to 0, and also no attempt has been made to fix g(Kπ) yet. Therefore,
we adopt the four types of the effective two-body potentials as V(πσ ), V(πω), V(σσ ), and VFM(ππ)

for the weak decay rate calculations in this paper.
The potential character is different between the V(πσ ), V(πω), V(σσ ), and VFM(ππ) potentials.

For the parity-conserving part, V(σσ ) is a spin–isospin-independent central potential, while
V(πσ ), V(πω), and VFM(ππ) have spin–isospin-dependent central and tensor force components.
The tensor forces of V(πσ ) and V(πω) work in the same sign, but they work oppositely to that of
VFM(ππ).

V(eff.2B)(�N–NN) is applied to evaluate the effective two-body decay rates �
(eff.2B)
nm of 5

�He, 11
� B,

and 12
� C. The calculated �

(eff.2B)
nm strongly depend on the adopted strong and weak meson-pair

coupling constants, which have some uncertainties in the ESC and GESC models and on the
mixing angle ε. The fixed ε = −0.758 × 10−7 is currently used.

Four sets of meson-pair coupling constants for the (πσ ) and (πω)-exchange potentials are
examined, g(σσ ) in V(σσ ) is treated as a free parameter, and the coupling constants of the Fujita–
Miyazawa-type potential are fixed to the original ones.

When we choose the coupling constants E19 for the (πσ ) and (πω) pairs and g(σσ )/4π =
−(0.300–0.325) for the (σσ )-pair coupling, for which we denote the total potential as VE19
+ V(σσ ) + VFM, the calculated �

(eff.2B)
nm are (0.093–0.104)�� for 5

�He, (0.194–0.219)�� for 11
� B,

and (0.219–0.246)�� for 12
� C. The calculated �

(eff.2B)
nm are compatible with the available two-

nucleon induced �
exp
2N of the FINUDA or KEK E462-E508 data within the error bars for these

hypernuclear decays. Similar but slightly smaller decay rates are obtained for the potential VE16
+ V(σσ ) + VFM. It is also found that the adopted potentials V(πσ ), V(πω), V(σσ ), and VFM(ππ) have
their own proper roles in producing �

(eff.2B)
nm .

Thus we may say that it is possible for us to understand the two-nucleon induced decay rates
�

exp
2N for 5

�He, 11
� B, and 12

� C in the effective two-body potentials deduced from the MPE three-
body �NN–NNN interactions if we properly choose the meson-pair coupling constants for
(πσ ), (πω), (σσ ), and Fujita–Miyazawa (ππ ) exchanges.

We, however, bear in mind the following. First, the three-body �NN → NNN interactions in
our MPE model are not fully taken into account in obtaining the effective two-body �N → NN
potentials, because a number of possibly important MPE three-body interactions are lost in the
deduction process. Second, the roles of the potentials of V(ππ )0 and V(Kπ) are not studied in this
paper; this is left as an open problem because at present we do not have firm knowledge of those
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meson-pair coupling constants. Third, the NN-(meson-pair) coupling constants, especially the
NN(σσ ) one, are not well constrained and have uncertainties. Fourth, the decay dynamics in the
effective two-body potential model is decisively different from that in the three-body �NN →
NNN decays, especially in the energy share for the final decaying nucleons. We cannot predict
the decay rate ratio such as �np : �pp : �nn in the present model, but this problem should be the
next subject to study.

Therefore, we consider at present that the calculated �
(eff.2B)
nm for light and p-shell hypernuclei

should give a limited estimate of the two-nucleon induced decay rate �2N. A more advanced
method of handling the three-body �NN → NNN interactions would elucidate the three-body
weak non-mesonic decay mechanism.
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Appendix A. Weak effective two-body interactions ṼW (k,−k, q)
The interaction Ṽ W (k, −k, q) is the form given after applying (1/4)Tr-operators for σ3 and τ3

and averaging q2
3 and q3 for the full form of V W3B(k, −k, 0, q, −q, q3, σ1, σ2, σ3, τ1, τ2, τ3).

The relations < q2
3 >= (3/5) k2

F and < q3 >= 0 are used. The weak effective interactions in
momentum space are given for (ππ )0, (πσ ), (πω), (Kπ ), (σσ ), and Fujita–Miyazawa (ππ ) ex-
changes. It is noted that ρNM is not attached here.

1. JPC = 0++: (ππ )0-pair exchange

Ṽ W
(ππ )0

(k, −k, q) = g(ππ )0

mπ

gw
π

fπ

mπ

2MN

×
{

λ
1

4M̄MN
(σ1 · k)(σ2 · k) − 1

2MN
(σ2 · k)

×
[

1 + k2

8M̄2
− i(k × q) · σ1

4M̄2

]}
· (τ1 · τ2)

1

k2 + m2
π

1

k2 + m2
π

(A1)

2. JPC = 1++: (πσ )-pair exchange

Ṽ W
(πσ )(k, −k, q) = g(πσ )gσ

m2
π

gw
π 2MN

×
{

λ
(σ1 · k)

2M̄

[
(σ2 · k)
2MN

+ (σ2 · q)
MN

(q · k)

2M̄MN

]

−
[

(σ2 · k)
2MN

+ (σ2 · q)
MN

(q · k)

2M̄MN

]
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− (σ2 · k)
2MN

[
k2

8M̄2
− i(k × q) · σ1

4M̄2

] }
· (τ1 · τ2)

1

k2 + m2
π

1
m2

σ

+ GF m2
π

m2
π

fπ

mπ

gσ (2MN )2

×
{

Apc
(πσ )

[
(σ1 · k)
2MN

+ (σ1 · q)
MN

(q · k)

2M̄MN

]
(σ2 · k)
2MN

+ Bpv
(πσ )

[
(q · k)

2M̄MN
+ (q · k)

2MN
2

]
(σ2 · k)
2MN

}
· (τ1 · τ2)

1

k2 + m2
π

1
m2

σ

(A2)

3. JPC = 1+−: (πω)-pair exchange

Ṽ W
(πω)(k, −k, q) = − g(πω)gω

m2
π

gw
π 2MN

×
{

λ
1

4M̄MN
(σ1 · k)(σ2 · k)

[
1 + 1

2M2
N

3
5

k2
F

]

− 1
2MN

(σ2 · k)
[

1 + 1
2M2

N

3
5

k2
F + k2

8M̄MN
− i(k × q) · σ1

4M̄MN

]}

· (τ1 · τ2)
1

k2 + m2
π

1
m2

ω

− GF m2
π

m2
π

fπ

mπ

gω 2MN 2M̄

×
{

Apc
(πω)

1

4M̄MN
(σ1 · k)(σ2 · k)

[
1 − fω

gω

1
2M2

N

3
5

k2
F

]

− Bpv
(πω)

1
2MN

(σ2 · k)
[

k2

4M̄2
− i(k × q) · σ1

2M̄2

] }

· (τ1 · τ2)
1

k2 + m2
π

1
m2

ω

(A3)

4. JP = 0+: (Kπ )-pair exchange

Ṽ W
(Kπ )(k, −k, q) = − GF m2

π

mπ

g(Kπ )
fπ

mπ

2MN

×
[

1
2

Cpv
K + Dpv

K

]
(σ2 · k)
2MN

[
1 + k2

8M̄2
− i(k × q) · σ1

4M̄2

]

· (τ1 · τ2)
1

m2
K

1

k2 + m2
π

+GF m2
π

mπ

g�NK
fπ

mπ

2MN

× 1
2

Cpc
(Kπ )

(σ1 · k)(σ2 · k)

4M̄MN
· (τ1 · τ2)

1

k2 + m2
K

1

k2 + m2
π

(A4)
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5. JPC = 0++: (σσ )-pair exchange

Ṽ W
(σσ )(k, −k, q) = GF m2

π

g(σσ )

mπ

gσ

×
{

Apc
σ

[
1 + k2

4M̄MN
− i(k × q) · σ1 + i(k × q) · σ2

4M̄MN

]

− Bpv
σ

(σ1 · k)
2MN

[
1 + k2

8MN
2 − i(k × q) · σ2

4MN
2

]}

·
[

1

k2 + m2
σ

1

k2 + m2
σ

+ 1

k2 + m2
σ

1
m2

σ

]

+ GF m2
π

g2
σ

mπ

×
{

Apc
σσ

[
1 + k2

4M̄MN
− i(k × q) · σ1 + i(k × q) · σ2

4M̄MN

]

− Bpv
σσ

(σ1 · k)
2MN

[
1 + k2

8MN
2 − i(k × q) · σ2

4MN
2

] }

· 1

k2 + m2
σ

1
m2

σ

(A5)

6. Fujita–Miyazawa (ππ )-pair exchange

Ṽ W
F M(ππ )(k, −k, q) = −gw

π

fπ

mπ

2MN

×
{

λ
1

4M̄MN
(σ1 · k)(σ2 · k)

[
(A + B)

k2

m3
π

+ D
1

mπ

]

− 1
2MN

(σ2 · k)
[

(A + B)
k2

m3
π

+ D
1

mπ

] }

· (τ1 · τ2)
1

k2 + m2
π

1

k2 + m2
π

(A6)
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