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Abstract

The main focus of this thesis is the derivation of non-relativistic particle,
string and membrane actions and equations of motion. In particular, the
theories we consider are based on (generalizations of) the Galilean algebra
and Newton-Cartan gravity. Our starting point will be computing the beta
functions of a non-relativistic string theory with Torsional Newton Cartan
symmetries in the target space. In analogy with usual relativistic string the-
ory, the equations obtained by setting these beta functions to zero are then
interpreted as the target space equations of motion for (Type I) Torsional
Newton Cartan gravity. Subsequently, we derive a target space action for this
theory, as well as for other non-Riemannian theories that are closely related to
it: Carrollian and Stringy Newton Cartan gravity. These actions correspond
to different non-Riemannian limits of the bosonic sector of the usual ten-
dimensional supergravity actions. Finally, we study a non-relativistic limit
of M-Theory, whose low energy limit gives a theory that we dub Membrane
Newton Cartan gravity, which should be thought of as the non-relativistic
limit of the bosonic sector of eleven-dimensional supergravity. Two conceptu-
ally different dimensional reductions can then be performed on MNC gravity:
one of them turns out to be precisely the same SNC gravity mentioned above,
while the other one is a novel type of non-relativistic theory associated to
D2 branes.
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Publications

My first publication concerned the computation of the beta functions for a
string theory describing a non-relativistic (Newton-Cartan) target space:

e A.D. Gallegos, U. Giirsoy and N. Zinnato
Torsional Newton Cartan gravity from non-relativistic strings,
JHEP 09 (2020) 172, [1906.01607].

This approach allowed us to obtain the equations of motion for the bosonic
sector of non-relativistic supergravity in ten dimensions. As a natural next
step, we were interested in finding the actions corresponding to these equa-
tions of motion. To this end, we embedded various non-Riemannian geome-
tries into the framework of Double Field Theory:

e A.D. Gallegos, U. Giirsoy, S. Verma and N. Zinnato
Non-Riemannian gravity actions from double field theory,
JHEP 06 (2021) 173, [2012.07765].

Once we obtained the actions for (the bosonic sector) of non-relativistic
SUGRA, we asked the question whether we could do something similar for
eleven-dimensional supergravity /M-theory. This led to the third and final
paper that will be discussed in this thesis, where we found the action and
equations of motion of non-relativistic supergravity in eleven dimensions, as
well as a novel type of non-relativistic ten-dimensional supergravity:

e C. D. A. Blair, A.D. Gallegos and N. Zinnato
A non-relativistic limit of M-theory and 11-dimensional membrane Newton-

Cartan geometry,
JHEP 10 (2021) 015, [2104.07579].

For the past four years I have been closely collaborating with Domingo Gal-
legos, who is (at the time of writing) a PhD candidate at Utrecht University.
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While both of us made essential contributions to these papers, Domingo
has not included these publications in his thesis, so that there is no overlap
between my thesis and his.

My original reason for studying non-relativistic physics was very simple:
I was hoping to gain some insights into the workings of relativistic quantum
gravity. My interest in quantum gravity led me to briefly work on a different
area of high energy physics as well, that of holographic quark-gluon plasma:

e U. Giirsoy, M. Jarvinen, G. Policastro and N. Zinnato
Analytic long-lived modes in charged critical plasma,
preprint: [2112.04296].

This paper will not be discussed in this thesis.


https://arxiv.org/abs/2112.04296

Chapter 1

Introduction

It is a very well known fact that the universe we live in is relativistic.
Nonetheless, there are many settings in nature that are well described by non-
relativistic physics, ranging from condensed matter systems to gravitational
systems in the post-Newtonian approximation, to non-relativistic holography.
Besides practical applications, what makes non-relativistic physics worth
studying is the hope that it will give us some insights about how our uni-
verse works at a fundamental level. One of the biggest challenges in modern
physics is how to go beyond Quantum Field Theory and General Relativity
to obtain a theory of relativistic quantum gravity. This has famously proven
extremely difficult. A different approach, however, would be to take a step
back and ask a simpler question: can we at least build a consistent theory
of non-relativistic quantum gravity? This is still not an easy question to an-
swer, but hopefully this thesis will help lay the foundation for finding such an
answer. This builds on a recent revival of interest in non-relativistic versions
of string theory, see e.g. [1-16].

A great deal has been learned about string theory from the exploration
of special limits of the theory. There are many examples. In the o/ — 0
limit, string theory predicts Einstein gravity, extended to supergravity in ten
dimensions, via the one-loop beta functionals of the worldsheet [17]. When
compactified on a circle of radius R, T-duality relates the R — 0 limit of
one string theory to the R — oo limit of another. The strong coupling
limit of the type ITA theory leads to the eleven-dimensional description in
terms of M-theory, from the perspective of which we can view all the dif-
ferent dual versions of ten-dimensional string theories again as different lim-
its [18,19]. A different limit of M-theory is its low energy effective theory:
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1.1. NON-RELATIVISTIC PARTICLES

eleven-dimensional supergravity [20]. Another interesting class of limits are
those which decouple degrees of freedom, and which may again lead to new
geometric perspectives or to different dual descriptions (the most famous
example being the original derivation of the AdS/CFT correspondence [21]).

The mathematics of non-relativistic physics is based on the original work
by Cartan [22,23], who introduced what today is known as the Newton-
Cartan (NC) geometry. This has been later generalized to a (Type I) Tor-
sional Newton-Cartan (TNC) geometry, which was found to be the bound-
ary geometry in Lifshitz holography [2,3,24]. Finally, a new kind of tor-
sional Newton-Cartan geometry was recently built, dubbed Type II Torsional
Newton-Cartan, which was obtained by considering a careful expansion of the
metric field for large speed of light. While this theory has many interesting
properties, in that it is possible to obtain all the equations of motion from
an action principle! and that it passes the three classical tests of General
Relativity (see [25-27] for detailed discussions of Type II TNC), we will
only discuss Type I TNC in this thesis. The reason for this is that Type
I TNC is much easier to embed in string theory, as we will later see, and
in this thesis we will focus precisely on ‘critical’ limits of string theory and
M-theory, in which the ten- or eleven-dimensional geometry becomes non-
relativistic [28-31]. However, we will briefly discuss the main mathematical
differences between Type I and Type II TNC in the next section.

The first step in understanding non-relativistic physics is of course study-
ing how particles propagate in such a spacetime. We will therefore give a
brief introduction to non-relativistic particles in this chapter. Many of the
properties and relations studied here will also be relevant when we will move
our attention to non-relativistic strings and membranes.

1.1 Non-relativistic particles

Probably the most intuitive way of constructing a theory of non-relativistic
particles is to simply expand the metric in a large ¢ limit, with ¢ being the

"'We will see that this is not possible for Type I TNC and related theories.



CHAPTER 1. INTRODUCTION

speed of light. For a Minkowski spacetime in four dimensions this yields

—c2 0 0 0
0 100 a a / a
w={ 0 01 0 & Bl = c7,65 —i—eﬁ 0%, (1.1)
0 001

where EZ denotes the vielbein associated with the relativistic metric 7,,, i.e.
EgEVa = 1, Note that this implies

-1 0 0 O 0 00O

o 000 » _lo1o0o0
TMTV = 0 O O 0 s G’LL Epa = O 0 1 0 (12)

0 000 00 01

The index a runs over the four flat directions, while the index A’ runs over
the three transverse/space-like flat directions. Similarly, we can introduce
the inverse vielbeins,

Bl = —Lyts0 4 ek o (1.3)

a

from which we can find the following relations by requiring EgEZ =5

Tueh = U“eﬁ/ =0, ot =—1, h*Ph,, = 0 + vt | (1.4)
where we defined A" = ej,e”A/ and an analogous formula holds for hy,.
We will refer to these kinds of relations as Newton-Cartan structure. This
expansion can be easily generalized to more complicated curved backgrounds
with arbitrary metric g,,,. In general, the resulting non-relativistic theory will
have a non-vanishing intrinsic torsion, in which case it is given the name of
Torsional Newton-Cartan (TNC) geometry.

Let’s analyze what we have obtained by performing this expansion. We
have essentially doubled the number of fields we originally had, since we
started with a single metric g,, and we ended up with a metric complex
(T, hyw). Note that the number of degrees of freedom is unchanged because
of the conditions (1.4). There is no concept of ‘metric’ anymore, since the
new objects we built are degenerate matrices. The spacetime directions are
now split in longitudinal (7,) and transverse (h,,) components.

10



1.1. NON-RELATIVISTIC PARTICLES

The same expansion can also be performed on the Poincaré algebra di-
rectly. First recall the commutation relations

[Paa Pb] =0 5
[me Pa] = _2na[ch} ) (15)
[Jaba ch] = 4n[a[CJd]b] )
where P, is the generator of translations and J; is the generator of spacetime
rotations. Next we introduce a U(1) extension of this algebra, whose genera-

tor, which we denote by M, commutes with all other generators. Finally we
perform a contraction of the resulting algebra [32]:

Py— M+ H, P, — cPy , Jag — Gy, c— 00. (1.6)

The contraction of Fj is inspired by the non-relativistic approximation of the
energy of a relativistic particle:

PP

Py = \/2P,Pi + M2c* ~ Mc? + R

(1.7)

Substituting in (1.5) we find the Bargmann algebra, whose non-zero commu-
tation relations are

[Jarprs Jerpr] = 401 aricr sy
[Jarp, Gor] = =204 G
(G, Pr] = —S M | (1.8)
=
H) =

[Jap, Ger —20¢ria Py,
[GA/ —PA/ .

This is a centrally extended Galilean algebra, with the central generator given
by M. We will often refer to the gauge field associated to the generator M
as my,. Note that in the simple example (1.1)-(1.4) there was no m,,, but this
gauge field will always appear in more general settings.

For an arbitrary curved spacetime, we can think of generalizing the ex-
pansion of the metric as follows:

v = —CQTMTV + B;w + c_2<f>,w + ...,

_ 1.9
g =W — 2 (OMOY + hMPR D,y ) + ¢ (20M0VD + YY) 4L (19)
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CHAPTER 1. INTRODUCTION

with
BW = hy — 270
1
d = —vi'm, + ih’“’mumy ,

which are nothing but combinations of the fields introduced previously, with
the addition of m,. The full expansion (1.9) leads to what is known as a
Type II Torsional Newton-Cartan geometry. The corresponding algebra is
an expansion of the Poincaré algebra, rather than a contraction as the one
we saw earlier in (1.8). In this thesis we will consider the theory obtained
by the truncation of this expansion at a given power of ¢, in particular the
case where i);w =Y, = 0, which leads to a Type I Torsional Newton-Cartan
geometry (we will often refer to this simply as ‘TNC’)%:

) _

v =—CTuTy + Iy,

I S (1.11)

g’ = ht — ok .

One can check that ¢g*’g,, = 6" (up to terms going to zero when ¢ — 0) if
we impose the following constraints on the TNC fields:

Tuh'uy = 07 Tu@‘u =—1 , h'u‘pljlpl, = (55 -+ @“Ty. (112)

Note that these are equivalent to (1.4), except they are rewritten in terms of
boost invariant quantities thanks to the presence of m,. Boost transforma-
tions correspond to the generator G; in (1.8) and they are explicitly:
(5)\7'“ = 0, (5)\63/ = /\A/Tu, (5,\mu = )\A/Gﬁ/ s (113)
where A\ is the boost parameter.
It turns out that there is a different way of deriving a theory involving

precisely the same relations as (1.12) and thus the same TNC algebra. We
start by considering the following metric:

ds* = 27, dx"du + hy,dzdx” (1.14)

2To be precise, this is only possible when we have vanishing torsion, i.e. Type II TNC
can reduce to Type I TNC only when time is absolute.
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1.1. NON-RELATIVISTIC PARTICLES

and we assume that there is a null isometry along the u direction, i.e. J, is a
Killing vector (note that g,, = 0). Upon reduction along this null direction,
we are left with the two matrices

Juv = B/JV, gW - h'ul/a (].]_5)
as well as the two vectors
Guu = Ty » gt = =o', (1.16)

and the scalar
gt =29. (1.17)

These are precisely the same fields that appear in (1.12)! This way of obtain-
ing a TNC geometry from a null reduction of General Relativity will turn out
to be extremely useful in Chapters 2 and 3 when we embed TNC in string
theory.

Up to this point we have essentially only expanded a metric, which could
be considered at most a fun exercise, so it is natural to ask the question
whether this type of expansion actually leads to an interesting physical the-
ory, i.e. can we obtain an action for this theory? As can be inferred by
the fact that this thesis exists, the answer to this question is yes. Perhaps
the easiest case to consider is obtained by starting with the usual action for
a relativistic massless point-particle and substituting the ansatz (1.14) (see

e.g. [33]):

.M.N -M-V
S, o /Mds = S oc/x :_Cp (hyw — 2my,7,) ds,

e Tyl

(1.18)
where gpsn is the metric of the geometry (1.14), e is the determinant of the
vielbein and a dot denotes differentiation with respect to the parameter s.
We also remark again that we introduced the U(1) central extension of the
Galilei algebra, whose generator is denoted by m,,. This action now describes
a massive non-relativistic particle. A similar expansion can be performed on
the Einstein-Hilbert action, which would yield a non-relativistic version of
General Relativity; or on the equations of motion obtained from the Einstein-
Hilbert action, which would then produce the equations of motion for a
particle propagating in a non-relativistic curved background. In fact, this
will largely be the focus of this thesis, that is we will employ non-relativistic
parametrizations to find novel types of non-relativistic actions and equations
of motion.

13



CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

In the previous section we briefly discussed some basic properties of non-
relativistic particles. This means we divided the spacetime in one longitudinal
component and the remaining transverse components. The analysis can be
generalized to multiple longitudinal directions, in which case we would have
non-relativistic strings, non-relativistic membranes, etc.

In this thesis we will only consider cases where the longitudinal space
is one-, two- or three-dimensional and we will often assume that the full
spacetime is either ten- or eleven-dimensional (for strings and membranes,
respectively). For example, the target space geometry that appears in the
two-dimensional case extends the generally covariant but non-relativistic NC
geometry to what is usually called a ‘stringy Newton-Cartan’ (SNC) geom-
etry. The full ten-dimensional Lorentz symmetry is absent, and there is
instead a split into two longitudinal directions (including time) and eight
purely spatial transverse directions which transform into each other only
under Galilean boosts. Correspondingly, one can describe the target space
geometry in terms of a pair of mutually orthogonal vielbeins, 7,4, e# 4, such
that TMA/e“ o = 0, where A = 0,1 indexes the longitudinal tangent space
directions and A’ = 2, ... indexes the transverse tangent space directions.

In Chapter 2 we will study the Torsional Newton Cartan parametrization
of string theory, with the goal of computing the beta functions of the theory,
which we will then set to zero to obtain the target-space equations of motion.
This computation closely follows that of relativistic bosonic string theory,
although with some extra technical difficulties. In particular, we can only
perform this analysis when a certain constraint on torsion is imposed, so the
resulting equations will be a subset of the most general TNC equations of
motion.

Luckily, as is usually the case in physics, there are different routes leading
to the same goal. In Chapter 3 we will use a different framework (Double
Field Theory) to obtain the actions and equations of motion of three different,
albeit related, non-relativistic and ultra-relativistic theories of propagating
strings/particles: the theories we study exhibit Torsional Newton Cartan,
Carrollian and stringy Newton Cartan symmetries. More concretely, we will
be able to find the most general TNC equations of motion that we could not
find in the previous chapter by only computing the worldsheet beta functions.

In Chapter 4 we will take this discussion one step further and apply the
non-relativistic expansion to membranes, from which we will find the non-

14



1.2. OUTLINE OF THE THESIS

relativistic version of eleven-dimensional supergravity (or rather, its bosonic
sector). Once we arrive at the eleven-dimensional action, we can dimension-
ally reduce it along a longitudinal direction to once again obtain the theories
studied in the previous chapters, or we can reduce it along a transverse direc-
tion to obtain a novel type of ten-dimensional non-relativistic theory, related
to a D2 brane rather then to the fundamental string.

Finally, a word of caution about notations. In this thesis we will deal
with several different types of indices. For example, in Chapter 2 we will
deal with curved/flat worldsheet indices and curved/flat spacetime indices
that are further split in longitudinal /transverse components. In the following
chapters we will have to introduce even more kinds of indices, so it is almost
impossible to use a uniform notation for all chapters. As a rule of thumb,
greek indices will refer to curved directions, while latin indices will refer to
flat directions. We will give a summary of the notations used at the beginning
of each chapter.
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Chapter 2

Non-relativistic strings: the
worldsheet approach

In this chapter we ask the question whether a TNC geometry can be UV
completed in a consistent theory of quantum gravity and take a few first steps
in answering this question in the context of bosonic string theory. One of the
triumphs of the ordinary (relativistic) string theory has been the derivation of
Einstein’s equations in the weak gravity limit by demanding Weyl invariance
of the worldsheet sigma model [34]. In our case of string propagating on a
manifold with local Galilean invariance, we similarly expect that the demand
of quantum Weyl invariance on the worldsheet yields Newton’s law /Poisson’s
equation. This is what we mean precisely by the consistency of the TNC
geometry with quantum gravity.

Various proposals to realize the Galilean symmetries in string theory ex-
ist in the literature. The Newton-Cartan geometry has only recently been
embedded in string theory at the classical level, that is at the tree level of the
worldsheet non-linear sigma model [6,8,35]. Non-relativistic string theory on
a TNC background with R x S? topology has been studied in [36-39]. As
mentioned in the introduction, a parallel and separate line of work [1,7,40,41]
which started by the original paper of Gomis and Ooguri [28] realized the
Galilean symmetry in the context of closed string theory in a particular con-
traction limit and continued by [9,13], that ask the same question we ask
here but in the context of the Gomis-Ooguri theory.

We will follow the route taken by the papers [6,8] where a Polyakov
type action for a string propagating in the TNC geometry was constructed.
Taking this Polyakov action as our starting point, we extend it to include

17



CHAPTER 2. NON-RELATIVISTIC STRINGS: THE WORLDSHEET
APPROACH

bosonic target space matter!, i.e. the Kalb-Ramond field B;w and dilaton ¢,
as well as an extra Kalb-Ramond one-form XN,, and we determine both the
target space and worldsheet symmetries of this action at the classical level.
We then go beyond the tree level and construct the worldsheet perturbation
theory in powers of the string length [, assuming that the target TNC space
is weakly curved. We then obtain the target space equations of motion from
quantum Weyl invariance of the non-linear sigma model proposed in [8] and
its generalizations including the Kalb-Ramond and the dilaton fields.

This chapter is organized as follows. We begin, in section 2.1, by reviewing
the Polyakov-type action we used for the closed bosonic string moving in
a TNC background and then generalize it to include the Neveu-Schwarz
background matter, i.e. the dilaton and the Kalb-Ramond fields. We then
discuss how the target space and worldsheet symmetries are realized at the
classical level. Section 2.2 constitutes the core of the chapter, where we
introduce the covariant background field expansion. This expansion coincides
with the derivative expansion in the target space. We truncate this series
at the second order both in the target-space derivatives and in the quantum
fluctuations. Using this quantum effective action at the quadratic level, we
then compute the one loop contribution to the Weyl anomaly and obtain the
equations of motion for the TNC geometry arising from the vanishing of the
beta functions.

We will use greek letters coming from the second half of the alphabet,
{\, i, v, ...}, to denote target-space dimensions, while the first letters of the
alphabet, {«, 5, ...}, will be used to denote their pull-backs onto the world-
sheet. Primed capital letters, {A’, B', ...}, will refer to spatial flat directions
in target space. Finally, we use {a,b,...} to describe flat worldsheet direc-
tions.

2.1 The Type I TNC string action and its
symmetries

2.1.1 The Polyakov action without matter

The geometric data of the TNC geometry in the absence of matter fields is
encoded in a pair of vielbeins (7, e:1') and a U(1) connection m,, collectively

1See also [27] for a discussion on the coupling of matter to non-relativistic gravity.
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2.1. THE TYPE I TNC STRING ACTION AND ITS SYMMETRIES

referred as the TNC metric complex. The vielbeins el‘f/ define a degenerate
A/
w
), denoted as (—v*,€%,) with v#7, = —1 and
5A’B"

spatial metric through h,, =e ef/é g and it is possible to use the inverse

of the square matrix (Tu,ef/
T,e5 = 0, to define an independent spatial inverse metric h*” = e/}, e?,
These spatial metrics together with the temporal coframes, 7, and v*, are

subject to the completeness relation
0y = —vft, + W'h,,. (2.1)

Quite conveniently, the TNC geometry with this geometric data can be
derived from a higher dimensional relativistic spacetime with an isometry in
the extra null direction—which we will denote as the u-direction—via the
procedure of null reduction [42]. In particular we consider the TNC manifold
to be d + 1-dimensional and the relativistic one will be d + 2-dimensional.
The metric of such relativistic spacetimes can always be written as

Guodatda? = 27 (du — m) + hy,dxtdx", (2.2)

with 0, the corresponding null Killing vector. We label indices of the d 4 2
dimensional space as it = {u, p1}. We also define 7 = 7,dz*, m = m,dz" with
z# the coordinates of the (d + 1)-TNC manifold. It is now possible to derive
the worldsheet action for a string moving in the TNC geometry [6,8] starting
from the ordinary Polyakov action in the relativistic target space (2.2):

V=

LR

’Vaﬂ (haﬁ — TaMp — maTﬁ) - 9 _l;/’yaﬂTaaﬁXua (23)
™ S
where 7 is the determinant of the worldsheet metric 7,5, and where h,g =
Ry Oa X* 03 X" and 7, = 7,0, X" are the pullbacks of h,, and 7, respectively.
We consider a closed string without winding, i.e. X#(0% 0! + 27) =
X#(oY ol) , and with non zero momentum P along X*

27
P = / do'P? (2.4)
0
with momentum current
oL V=175
P* = = — ) 2.5
v 00, X 27l2 (2:5)
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Following [8], it is possible to rewrite (2.3) in a dual formulation where the
conservation of the momentum current (2.5) is implemented off-shell through
the classically equivalent Lagrangian

V=11 has 1
L=— — V=775 — €P0,n) A 2.6
4l? g (VT e 0am) Ay, (26)
where A, is a Lagrange multiplier that enforces conservation of P% = ezii’g"
off-shell and we defined the combination )
Bap = hag — TaMpg — MaTs . (2.7)

The significance of this combination will become clear when we discuss the
symmetries of the theory below.

This procedure introduces a novel degree of freedom, a scalar field n on
the world sheet. To see that (2.6) and (2.3) are equivalent, one uses the
equation of motion for 1 which gives A, = 0,x for some world sheet scalar y
and identifies the latter with the u-direction y = X* recovering the original
Lagrangian (2.3). Following [8] we introduce the worldsheet zweibein e? and
its inverse e = eaﬁe%eba, satisfying egebﬁnab = Yap and egefnab = 70‘3, to
rewrite the constraints as

e (ea +ea) (75 +9pm) = 0, 2.4
€9 ()~ eb) (7 — D) = 0. |
A final field redefinition,
1 1
A, :ma+5()\+—)\_)eg+§()\++)\_)e}x, (2.9)

yields the Lagrangian
—1
L= e [26a5m08517 + en®etel hos — e (9gn + 15) — A_ (95m — 75) |,
(2.10)

where e = ej+e{. This is the Polyakov-type Lagrangian for a string moving
in a TNC geometry proposed in [8]. We further use the constraints to rewrite
(2.10) in a more convenient way for quantization?

e _
=7 %€’ hag + Ape” (9an +75) + A_el (s — Tg)] : (2.11)

20ne should think of implementing these constraints inside the Polyakov path integral
to ensure equivalence of the quantum path integrals based on the Lagrangians (2.10) and
(2.11).
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We will examine the quantum path integral defined by this Lagrangian in
the rest of the chapter, but we will first extend it to include Neveu-Schwarz
matter, i.e. the Kalb-Ramond field and dilaton and then discuss the sym-
metries of this generalized action both on the worldsheet and in the target
space.

2.1.2 The Polyakov action with matter

It is straightforward to generalize the action (2.11) to include standard Neveu-
Schwarz matter, i.e. a Kalb-Ramond field B;; and a dilaton ¢. Let us first
consider the B-field. Once again, to derive the corresponding Lagrangian we
can start from its null uplifted version. We then obtain the following action
by rearranging the terms that follow from the null reduction of the relativistic
d+2-dimensional bosonic Polyakov action with the presence of the B-field:

1 _ _ 1
L=—— (V=17"hap + € Bag) — — (V=71""7a — €*Ra) 0pX",
47Tl5 47Tls
(2.12)
where we defined
N, = Bua = —Bau s (2.13)
Bus = Bag. (2.14)

Following the same procedure as in [8] described in section 2.1 we compute
the momentum along X"

1
Po—
“ 27l?

(\/—_7760‘7'/3 — eBO‘N[g) (2.15)

and implement its conservation off-shell via

1 _ _
£ = _W (\/ —’}/’}/aﬁhag -+ GQﬁBaB)
1 y iy iy (2.16)
2712 (V=77"7a = €*"Ra — €*70an) Ag.
Making, once again, the field redefinition
A—m+1(>\—/\)01)\ A)el 2.17
o — o 9 + —€a+2(++ —)ea7 ( )
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integration over the worldsheet fields AL now imposes the constraints

e*? (€2 + eb) (5 + Nz + 9gn) =0,

2.18
€8 (0 — 1) (75 — Rs — D) = 0. 219
We can cast (2.16) in Polyakov form:
1 _ _
L=——e¢ |:€(_T_€€ (h/a/j + Bag) + )\+6€ (8/377 + N/g + Tg)
4mi3 (2.19)

+A_ef] (9pn + Ng — Tﬁ)] :

where just as in (2.11) the constraints (2.18) have been used. Lagrangian
(2.19) is still invariant under (2.35) and the contribution of the B-field to the
anomaly can in principle be computed in a similar manner as performed for
(2.11).

When the worldsheet is non-flat, in addition to the B-field, it is also
possible to include a dilaton contribution of the form

1
Lo=1-V-1RY, (2.20)

where R is the worldsheet Ricci scalar. The Polyakov path integral then
involves a sum over worldsheet topologies that is organized in powers of
exp(¢) as usual.

2.1.3 Symmetries of the Polyakov action

We will now discuss both the target space and worldsheet symmetries of the
worldsheet action (2.19) and (2.20).

Spacetime symmetries

The fields in the TNC metric complex, without matter, transform under
diffeomorphisms &, local Galilean boosts A, local rotations A%’ and local
U(1) gauge transformation o, with the Lagrangian (2.6) being invariant under
these transformations [8]. These transformations are easily generalized in the
presence of matter. All in all, the spacetime transformations of the objects
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that enter the calculations read
07, = LTy,
5ef}/ = Egeﬁ/ + /\A/T# + )\A]_;,efl ,
dvt = Levt + AV ek, |

Bl
56%/ — [,56%, + )\A/ 6%/ 5

omy,, = Lemy, + )\A/e;‘, + 0,0, (2.21)
6B, = LeB,y + 2R,0,00
N, = LR,
00 =Leo,
X! =L XM,

In particular, the combination h,, defined in (2.7) and (2.14) is invariant
under local Galilean boosts and transforms under local U(1) mass transfor-
mations as

dohyw = —27(,0,)0 . (2.22)

Now, it is straightforward to check that the actions based on (2.19) and
(2.20) are invariant under diffeomorphisms, local Gallilean boosts, local ro-
tations and local U(1),, transformations. When starting with the explicitly
Galilean boost invariant form (2.19) it is crucial to use the constraints (2.18)
to show invariance under local U(1) mass transformations. However, the
classical equations of motion will not be invariant under this U(1) symmetry,
see (A.20). To fix this we will ask that the Lagrange multipliers transform
under the symmetry as

Sy = —€% 0,0, SA_ = “ 0. (2.23)

Taking this into account, both the action and the equations of motion can
be shown to be U(1) mass invariant off-shell. In what follows, in addition to
h,,, and B, defined in (2.7) and (2.14), it will prove useful to introduce the
following combinations

o vt — hPmy, (2.24)

1
¢ = —Upmp+§hp”mpma, (2.25)
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which are invariant under local Galilean boost and rotations as one can easily
check using (2.21). They do transform under local U(1) mass transformations
though:

do 0! = —h*" 0,0, (2.26)
3,® = —0"0,0. (2.27)

Even though they do not appear in the action at the classical level, we have
introduced 0" as the local Galilean boost and rotations invariant version of v*
(the inverse of 7,), and the target space scalar ® which will play the role of the
Newton’s gravitational potential below. They will become important when
we discuss quantum corrections in the theory. We remind the reader that o*,
Tius }_ll“, and h*” are subject to the completeness relation ¥ = —o#7, —i—h“pﬁpy.
Finally, we note that because of the non-trivial U(1) mass transformation of
B,, in (2.21), i.e. §,B = X A do, the field strength, H = dB will transform
under mass U(1) as

0o Hyvp = b 0p0 + b1p0,0 + byp0,0 (2.28)

with
by = 0N, — R, (2.29)

w =

being the field strength of N. Notice in particular that setting H,,, = 0
would not be a mass U(1) invariant condition unless b, = 0.

U(1)p one-form symmetry

In the presence of the Kalb-Ramond field there is also a U(1) one-form sym-
metry. It is well-known that the transformation

aBas = 0uhy — Dy, (2.30)

where 0 is the partial derivative in the target space, is a symmetry of the
d + 2-dimensional worldsheet action with relativistic target space.
After null reduction, the resulting TNC geometry with Kalb-Ramond
matter has a U(1) one-form symmetry:
SaBu, = 0.\, — O, (2.31)

SAR, = A, . (2.32)
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We see that in the TNC geometry Y acquires a new local U(1) symmetry,
whereas B transforms under a local one-form symmetry. It is now straight-
forward to check that the action (2.19) is invariant under (2.31) upon use
of the constraint equations (2.18). Invariance of (2.19) under (2.32) however
requires a non-trivial transformation of the worldsheet field n:

oan = — Ay, (2.33)

which is a trivial shift in the quantum path integral where n is path inte-
grated. Therefore, we conclude that the action, at least at the tree-level, is
invariant under both the local one-form symmetry A, and the new local U(1)
symmetry A,. The fact that n is charged under the U(1) that comes from
the B-field, i.e. eq. (2.33), is expected as one can think of 1 as the direction
dual to u [8]. In this sense the gauge fields m and N can be considered as
dual to each other.

Local worldsheet symmetries

The actions (2.11) and (2.19) are clearly invariant under the worldsheet dif-
feomorphisms. These symmetries allow us to cast the worldsheet metric in
a diagonal form v*® = e~?1% where the conformal factor p determines the
Ricci curvature of the worldsheet R (locally) as

V=R = —20%p. (2.34)

We will refer to this choice of gauge as the conformal gauge. The reparametriza-
tion gauge-fixed Polyakov Lagrangians (2.11) and (2.19) further exhibit a
residual Lorentz/Weyl gauge invariance of the form (as can be checked straight-
forwardly)

ef = frel, A= fids, (2.35)

for any worldsheet function fi. For f, = f_ this is a local Weyl transforma-
tion and for f, = —f_ it constitutes a local Lorentz transformation. Once
we have used diffeomorphism invariance to go to conformal gauge it is pos-
sible to use local Weyl invariance to fix the mode p and completely fix the
worldsheet metric v*.

The main purpose of this chapter is to discuss the fate of these residual
gauge invariances at the quantum level. Here it suffices to note that, in
the case where matter is absent, the condition for invariance of the Polyakov
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action S(e, A, X') under the gauge transformations (2.35) at the classical level
takes the form

S . )
E = €ZT,Y + C+)\+ +C A= O, (236)

where the energy momentum one form? 7y and constraint functions C* are

defined as

o _2mi2os
T e del
- 27T§£€§ + % 26,0 s — Ai (65 — 65) (031 + ) (2.37)
—A_ (05 +07) (B — 7)),
= _27%35% = _%ei (Ogm + 75) - (2.38)

Equation (2.36) is nothing but a constrained traceless condition for the energy
momentum tensor, and from (2.37) and (2.38) it is clear that this conditions
holds for the Polyakov action (2.11). The rest of our work will concern the
computation of (2.36) at the quantum level, in particular, at the one-loop
level in the perturbative expansion in [2.

2.2 Quantum weyl invariance of the TNC string

2.2.1 Background field quantization

The quantum partition function that follows from the action (2.11) is defined
by the Polyakov path integral?. As for the bosonic strings [34], it will be very
helpful to introduce the background field formalism to organize the pertur-
bative [2 expansion to study the quantum properties of the worldsheet sigma
model. To this end, we expand the worldsheet fields {X* Ay, n} around a

3Even though it is possible to define an energy momentum tensor from 7y via Thp =
T)Cde‘éTg, it feels more natural to define the traceless condition in terms of the energy
momentum one form.

4Tt is crucial to include the contribution from the Faddeev-Popov ghosts that come from
the gauge fixing but we will not explicitly show them here. The gauge fixing procedure is

discussed in [43].
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classical configuration Uy = { X!, \%, o} as

XH =Xt 41, YH,
Ar = A+ AL, (2.39)
n ="+ lsH7

where W = {Y* Ay, H} below will collectively denote the quantum fields.
Using this expansion, the one loop effective effective action I'[Wy] for the

background fields can be expressed [44] as a path integral over the quantum
fields as

(Tl (0) _ / DU ¢51%0.910) (2.40)

where S[W, ¥](0) is the O (1%) term that arises from substituting (2.39) in
(2.11). In (2.40) the zweibeins are completely fixed by the Faddeev-Popov
procedure, see [43], using the reparametrization invariance and Weyl symme-
try. This in particular fixes the function p. If the symmetry (2.35) is to be
consistent at the one loop level then any change of p should leave the effective
action invariant, this means that the Weyl invariance condition (2.36) at one
loop level becomes®

5, [¥o] (0) =0, Sypp = 1. (2.41)

The goal of this section is to express S[¥g, ¥](0) as an action over TNC
covariant fields, for this we first note that Y* does not transform as a vector
under general coordinate transformations. To get covariant expressions we
first need to rewrite Y# covariantly. This is achieved [44] by considering a
geodesic connecting X} and X} + Y* to rewrite Y* as

YH=YH— % (Th, +Gh,) YPY +0O(I2) (2.42)

where Y* is the tangent vector along the geodesic, ()o indicates the corre-
sponding expression is evaluated at Xo, '), is the TNC connection charac-
terising the non-covariant part of Y, and G/, is a tensor symmetric in its

5We are assuming that a path integral measure invariant under the target spacetime
symmetries exists.
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lower indices and the solution to the tensor equation®

o 1 o
TG = oGl = ShuwFpoh™ (2.43)
with
F=dr, (2.44)

characterising the spacetime torsion. The derivation of (2.42) and (2.43)
from the geodesic equation of a particle evolving in a TNC background is

shown in appendix A.1. We reproduce below the connection for a generic
TNC geometry [45,46]

1 _ _ _
It = —0t0,7, + §h“ (Dphior + Oshipy — Orhyo) - (2.45)

It is compatible with the metrics 7, and ~A*” and exhibits a torsion component
T“pa = ZFﬁM] = —20"0|,7y = —0"F,,. While it is of course possible to
proceed in the computation by using the connection Fl’)l,, the solution to the
geodesic equation (2.42) suggests that a more natural connection to consider

will be the one given by
. 1.
I, =T, + §U>\FMV + G, (2.46)

This new connection is symmetric and U(1) mass invariant. Although it is
not compatible with 7, and h*”, the action of the new covariant derivative
on these two tensors is quite simple:

1

ZO)HTI, =-F

5 L Doh#" = axhg?). (2.47)

Where D denotes a covariant derivative with respect to the symmetric U (1)
mass invariant connection f‘, the symbol D will be reserved for the covariant
derivative with respect to the standard TNC connection I'.

From (2.39) and (2.42) it follows that

Oa X" = o XU + 1,V Y — 1, (f“’;g> Y70,X7 — 12 <ng> Vo Y*Y?
0 0
5

2

O - (2.48)
[am;a - 2r5(,r;p} YT+ 0 (1)

SA solution to (2.43) exists as long as the torsion is taken to be twistless, namely as
long as F,, h#?h*? = 0.
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where V,, = 8anlo?,,Y“ = 0, YH + <Fga> 0., XY is the pullback of the
0

TNC spacetime covariant derivative D, onto the worldsheet. To compute

S[Wo, ¥](0) we will also need the quantum expansion of the non-linear cou-
plings h,,(X), B, (X),N,(X) and 7,(X). This can be achieved by noting
that any vector V,,(X) and tensor W, (X) can be expanded as

1 o
Wi = (W) + (Wi ) LY + 5 (aanWW _ F;UaAWW)O 2yrye

1 : ]
Vo= (Vo + (0o LY + 5 (apaavﬂ . F?U&VM)O 2yrye,
(2.49)

where we have made use of (2.42). It is also straightforward to show that
the pullback of any vector V,(X) and tensor W,,(X) can be written in the
TNC covariant form

W, . . . . . .
125 =W,V Y'V3Y" + DaW,, Vo YPY 05 XY 4+ D,W,, VY Y0, XY
(DD W+ B, W, + B2
+ 9 pPo Wi + Bop Wiw + 115,

W,M> YPY OO, XL XY + O (1,)
(2.50)

Vo  V,VuYH+D,V,Y?0,X!

2 L

s

o o y 1 0o o o o
+ | DY VLY 5 (DpDUVMjLRﬁp#VA) Yoy aaxg} Lo,
(2.51)

where 22 = (9pf‘fw — 8uf;‘o +f2nfza — lo“ﬁnlo“gg is the Riemann tensor defined
in the usual way from the connection (2.46) and where to avoid cluttering
we have dropped the zero index on the background tensor fields. Making use

of (2.50) and (2.51) we can rewrite the Polyakov action (2.11) in the TNC
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covariant way, see appendix A.3 for its derivation,

_ d? -
So = —/ 47JT€ [hWV YEVeYY — Ae (VBH + Vﬂ (Tuyﬂ)>

— Al (Vﬂ]:! v (TuY“)ﬂ

4
d’oe
47

d*ce _
_/ |:A+Y (Fup + bup) € BGBXH A_Y? (Fup = bpp) 6+66X“}

{ (Y% Ay + € A,0,,) YOV Y D5 XY

(ANE,,, — SM%,,) VIV Y”]

l\DI»—t

d2
/ e { Chompr + €)YV 70, X LD XY
+ (AXN*Byou + XX Bgy) YpYaaaXé‘} :
(2.52)
where H = H + R, Y* H = dB,F = dr, b = d¥, AN = \°¢] — N’

YA =\ 4 )\geé and where the coefficients {A, A, B, B, C, C'} are given
by

%ow/ = 2Dol_1u1/>

Aauu = Hauu;
1o o - o _

Coop = §DpDohW + RA(pU)(uhV)H )

~ L 2.53

Opauu = §DpHaw/7 ( )
1o

By = 2D Fyy,

_ 1o
Bprw _§pr0u

We note that (2.52) is manifestly invariant under the U(1)s zero- and
one-form transformations as it is written exclusively in terms of b,, and
H,,, instead of 8, and BW (the coefficient BWp should not be confused with
the Kalb-Ramond field B,,). Ideally one would like to do the same for the
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U(1) mass symmetry, i.e. express the action in terms of the field strength
of m,,, however this would give us an action which is manifestly U(1) mass
invariant, but not manifestly Galileian invariant. In other words, while the
action is both U(1),, and Galilean invariant, we can only choose one of these
symmetries to be manifest. Although the action will be kept in its explicit
Galilean invariant form, as written in (2.52), it can be shown that it is still
invariant off-shell under the U(1) mass symmetry after making use of the
classical equations of motion (A.20) for the background fields, as well as

the transformation rules for the quantum Lagrange multipliers, derived from
(2.23):

SAL = Fel (bpa%w n bpﬁoawaaxg> . (2.54)

The preservation of this symmetry at the quantum level is then expected to
be non-trivial.

2.2.2 Weyl invariance at one loop

From (2.52) we observe that I'[¥(](0) is a free theory with a background
dependent normalization for the kinetic and mass terms. Nevertheless, since
we are looking at contributions up to O (D?) in target spacetime derivatives
we can treat (2.40) perturbatively as long as we can renormalize the O (D°)
terms appropriately. One can move these background dependent norms to
terms higher order in spacetime derivatives through the following coordinate
transformation

0

YH = ot (1,Y%) + ey, <5A/B,ep,ﬁ UY") = 0 —— + e, YA =Y,
( ) A B''"p \/ﬁ A I
N H _

V20
(2.55)

with ® defined in (2.25), Y = {Y° Y4} and the normalizations are judi-
ciously chosen such that the normalization of the first term in (2.52) becomes
canonical, i.e. it yields the first two terms in the zeroth order action below.
To see this, one needs to use the identity h,,0” = 2®7, and in particular
we can identify the spacetime inverse vielbeins ef = {%,ei,} satisfying

hyehe’; = nry. The effective action Sy is now expressed in terms of flat
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indices and can be expanded as
So =Sy + S+ S5, (2.56)

with S([)a] denoting the O (D%) in target spacetime derivatives. In particular
the O (DY) action is given by the free action with constraints

o _ d*oe TaayJ B 0
SO = 1 U[JaaY oY A+6_ (85H+65Y )
s

(2.57)
—A_e’ (95H — aﬁyo)] .

Assuming a diffeomorphism invariant measure, the path integration over the
fields {Y*, A, H} can be changed to an integration over {Y°, Y4 A, H}. Af-
ter this change of coordinates, the following propagators for S([)O] can be con-
structed

(@)Y (0o = Ba (0" + 8438 ) 1n (|A0) |

(Y1 (0)Ae(0)o = 8 o2
(0 —0').
(H(o)Ax(0"))o = (0__2—%‘/2) : (2.58)
(As(0)As(0)o = —22
(0 —0')x

(A (0)A_(0"))o = —4mD20(0 — '),

where () denotes the correlation function computed with respect to the

action S([)O] and where A, is an unimportant overall factor. At first and second
order in covariant derivatives we can perform the further decomposition

Sol =8 +8,

~ 92.59
SE=8,+8,, (2:59)

where we make a distinction between the contributions coming directly from
coefficients {A, A, C,C, B, B} and the contributions coming from the non-
compatibility of the vielbeins {\_/%, 'y} by considering the former in S and
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the latter in S. In detail we find for the S components

d? - -
S = / i [A+Yle§ (Fyup + bup) eéaﬁX(I; — A Y'e (Fup = byp) eiagX(‘f

47
(2.60)
d*ce o o 1 o pirl 5 ,
- A [(’V Acf/ux +€ Aa,uz/) €[€JY 0.Y GBXO}
2
N / d4ae B (AN Fu = BNb,,) efesYT0.Y7 |
™
d?oe o 0B A b o] . ,
2= = ouv T € o v - )
& o [ Clm + € Cp) €4e3Y Y70, X 95 X¢ (2.61)
d2ce o o o grlud p
_ e [(A/\ By + XA B/wu) eredY'Y 8aXO} ,

and for the S components

H_ °
0, XD, In ®

~ / Poe [ Ay’ Hy + A_é’
N 47 2

+ (2Bpge§f)ue§) Yfaawaaxg;} . (2.62)

N Boe (/- o .
5 — / (o DuchDes) 0,30 0° X

& § o
_ / oc [(A(,MQMAWM) e‘I’D“ef}Y]YJaaX(’)‘@ng} (2.63)

47
Eoe [ (ANF,, S\, \ -
- / 4:3 K - =5 )e}'Duef}YlYJaaX{)‘} ,

where we have explicitly broken the manifest covariance of the theory by
using V,Y7' = 9,V +w!,, Y7 with w!/ the spin connection’, and where the
covariant derivative lo)ue% is taken only with respect to the curved spacetime
indices. The effective action (2.40) can be now be treated perturbatively and
its corresponding Weyl variation, (2.41), can be computed as

5uT[Wo)(0) = 8, (SM 4 S + %@, (sMsiy

(2.64)
— i6y (SM) (SN — i6,log(ZoZrp) + O (D?),

"The spin connection is not gauge invariant and consequently it will not contribute to
the beta functions.
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where Zpp is the partition function for the Fadeev-Popov ghosts arising from
the gauge fixing procedure, see [43], and where Z, denotes the partition func-
tion with respect to the action S([)O]. By dimensional considerations we expect
0y log(ZoZpp) = crR with ¢r a proportionality constant®. The coefficient ¢
is independent of the background fields and depends only on the dimension-
ality of the TNC spacetime. Therefore, as in the case of the ordinary string,
the requirement ¢ = 0 fixes the dimensionality of the background geometry.
This is the requirement of invariance under conformal reparametrizations,
hence the quantum consistency of the theory in the absence of extra dynam-
ical fields. The requirement ¢y = 0 fixes the critical dimension of the d + 1
dimensional TNC geometry to be [43]

de+1=25. (2.65)

This result is somewhat expected, as quantum consistency of the ordinary
bosonic string sets d+2 = 26 and we obtain the TNC geometry by reduction
of this 26 dimensional background on a null direction. Nevertheless, it is
still a non-trivial result, as we cannot find a simple argument as to why
quantization and null reduction should commute. Taking the dimension to
be critical, we expect the right hand side of (2.64) to take the form

5T [W](0) = — / d%% [Boon*? 0o X 05X + Brre*’ 0, X 5 X7
+B, AN 05 XY + B EN 0 XY + BAINY ]
(2.66)

where {8, Bos Boos Bus Bm} Will correspond to the beta functions. We will
exemplify the computation of the beta functions by taking the background
solution to be 9,X} = 0 so that we can easily compute the scalar beta
function 5. Under this assumption and making use of (2.64), (2.57), and
(2.59) we find

2
ae [1 (ANF,, — SX%,,) | A

~ 8wl 0) = [ 2|3

dPod?c'ie? o o aff \POAK
+ 0y / iz [(FoPos = bpobre) 77 + Fpobane™ ] A A" ALY,
(2.67)

8 At one loop level this is the only contribution to the anomaly proportional to R.
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where for simplicity we have defined

A (o) = eres (Y (0)0aY ()0

2.68
AP (0,0') = efefenes (Y(0)0.Y (0)Y X (0)) DY E(”))o - 209

The propagators in (2.68) can be computed by making use of the zeroth
order action (2.57), and in particular the following identities follow from it

Sy / o], N (o) = —% / doetp 0y (h7J5,) |

(2.69)
5¢/d20-d20-/J§f)\NAZOﬁ-AR(U7 o) = (—QWi)/dQer Jo R W7 0

POAR

where J% . .J% are arbitrary tensors. By using (2.69) and (2.67) we finally

po? Y po Ak

find 5 to be

(bpobrs — FpoFar) WP 2R" (2.70)

A~ =

b=

Our analysis depends on the existence of a solution G;\U to the geodesic
equation (2.43). It is easy to show that such solution exists as long as the
torsion is twistless, i.e. it satisfies the constraint

Foh"h" =0, (2.71)

with corresponding solution to the geodesic equation given by

1-
G, = §hWFpU@’Jh”. (2.72)

For the rest of this chapter we will use (2.72) and assume (2.71) holds for
the TNC background. This requirement together with the Weyl invariance
condition 8 = 0 implies that, just as F', the field strength b is forced to be
twistless. This condition can be made explicit by expressing F' and b in terms
of the decomposition [47]

Foo = a,7s — Tpa, , (2.73)

bpo = €p)To — Tpes
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with a, = 0*F), the acceleration and ¢, = by, an electric-type field, and
where both vectors satisfy a\0* = ey0* = 0. For simplicity, from now on we
will assume (2.73) holds for the computation of the remaining beta functions.
It is important to note that we should think of (2.71) not as an equation of
motion arising from Weyl invariance but rather as a constraint to ensure
both general covariance and U(1) mass invariance at the quantum level.

Taking 0, X{ satisfying (A.20) and following a similar procedure as the
one just outlined for the computation [, the remaining beta functions are
found to be

1. d, 1 .
=[50 (§r3) ¢ bl 21
_ 1o d. o
By = — §D~e+za'e—e~D¢ Tu s (2.75)

o 1 o o

6}“/ = _R,uy + ZHPU(#HV))\H}LP/\}LJH - 2D(HDV)¢ - ephpg (AT)?M Hu))\a (276)
¢ (207,71, + h) — ¢eue, -
+ ( H 5 [ ) H . B)\/U)\huuy
= ]. © dC o o o
B = §hpaDpHJW N Zaphp Hyp — (AS)[);L Dyjex + (AT)fM Dyje, + apey
(2.77)
b)ﬂ))\

Tb/“’ - (@pbuv + hpAH)\W) Dp¢’
with a® = a,a,h??, ¢ = e,e,h"7, ]O%W the Ricci tensor, - denoting an ‘inner
product’ with respect to h*?, and where the time projector (AT)/’) and the

space projector (AS):\L are defined as

(Ar)) = =07, (As)) = hy,., (2.78)
satisfying the projector identities
(Ar)) + (As)) =47,
(Ays), (Arys)e = (Bays ), (2.79)
(Ar), (As)s =
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The details of the derivation of (2.74)-(2.77) can be found in appendix A.4.
The Weyl invariance of the theory at one loop will follow from the vanishing of
the beta functions. These constraints will be interpreted as the gravitational
equations of motion for the TNC background, such equations are discussed
in the following section. Before finalizing this section we comment on the
U(1) mass covariance of the beta functions (2.74)-(2.77) by noting that

5oﬁ = 07
5oﬁu =0,
505}1 = 07 (280)

8o B = 2 (B30*) 1Dy,
506#1/ =2 (B/\ﬁ)\) T[,U,DV]O-J
where the transformation rules (2.22), (2.26), (2.27), and (2.28) have been

used. From (2.80) we note that the vanishing of the beta functions is a U(1),,
invariant condition.

2.2.3 TNC equations of motion

The gravitational equations for the TNC background will arise from the
condition (2.71), and by setting (2.70),(2.74)-(2.77) to zero. The resulting
equations can be categorized into two twistless constraints:

Fpa = QpTg — TpQg (281)
bpo = €)Ts — Tpes, (2.82)
two scalar equations:
D-a+a*=2"+2(a-Do¢), (2.83)
D-e=2(e-Do) , (2.84)

and two tensor equations:

1 oK A a,,a,
ZHpa(MHy))\nhp)‘h + 2D(MDV)¢ = (AS)(# DV)CL/\ + “T o CL2 ®Tu7—y
2 (QCI)T#TV — f_zw,) — e,

2

R(W) -

+ — eph”" (AT)?“ H,,)Ag,

(2.85)
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1. - o A
Eh” D,H,,, — h*° Hyp Dy = (As)[u Dyey — (AT)fH Dye, — ajey

1 . Dy
—§aphp” o + (UADAQZﬁ— 2 )bw.
(2.86)

In (2.81)-(2.86) we have used the original TNC connection (2.45) and
used D to denote its corresponding covariant derivative. The Ricci tensor
associated to the standard TNC connection can be read off from the following
relation

o 1 1 2\ 7. p

Ryy = Ry = =5y, — Dyay + 5 (D - a+a®) hy + (Ar)], Dpay)
{ (2.87)
+ (A7){, Duya, — 5 Do Fuw + a*®7,7, .

Notice that it is not symmetric in the presence of torsion and, as discussed
earlier, the TNC connection is not U(1) mass invariant unless Fﬁw] = 0.
Consequently the U(1) mass invariance of equations (2.81)-(2.86) is harder
to verify in this form, however from (2.80) we know they are indeed invariant.
We can also note that unlike the expressions (2.74)-(2.77), where the U(1)
mass invariant connection has been used, equations (2.81)-(2.86) have no
explicit dependence on the critical dimension d.. At this point it is convenient
to introduce the extrinsic curvature tensor K, as [48]

K = —%L@hw = —% [0* Dk, + hyupnDyo* + by D, 0 — 4®ay,7y)] |
(2.88)
and use the TNC identity
D, by = 27(,hoy2 D, 0" — 27,7,D,9 (2.89)
to derive the following contractions of the extrinsic curvature
W7 Kps = —Dx0", (2.90)

K po K h" = D, 0" D, 0" .

We can then see that K,,h”” shows up in the antisymmetric beta function
(2.86). To further show the role of K,, in equations (2.81)-(2.86) it is in-
structive to look at the time-time projection of equation (2.85) to write down
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Newton’s law in a general TNC spacetime. For this it will be necessary to
use the 0*0Y projection of the TNC identity (A.40)

0D, 0" = b (Dy® + 2a,P) | (2.91)

the scalar equation (2.83), and the extrinsic curvature contractions (2.90) to
find that Newton’s law takes the form

D?*® +3(a-D®)+m2 ® = p + pu, (2.92)

with D? = h*?D,D,, and where the Newton’s potential mass m3, matter
density pn, and curvature density px are defined as

mi=a>+2¢* +4a- Do, (2.93)

pic = Koo lKorxh” B — 0V D, (K,oh??) (2.94)
1

P = Z@%VWWHWHW — 20"0" D, D, . (2.95)

From (2.92) we can observe that the extrinsic curvature enters Newton’s
law in the form of a matter density distribution. In contrast, we can note
that the presence of torsion modifies considerably the classical gravitational
equation of motion by adding both a mass term? via its coupling with matter
through (2.83), and an advection term via the coupling a - D®. Equation
(2.92) is nothing but the temporal trace of the Ricci tensor, however it is
also instructive to compute its spatial trace Rg = R, h*" to find that

m_é_(dc_mg 2

1
Rs = -Hz —2D*¢ + 5 5 —a?, (2.96)

4
with H2 = H oot e PP ROERA - In addition, the electric Maxwell equation
(2.84) reduces to Gauss’ law only for a vanishing dilaton while the two-form
Maxwell equation (2.86) is not only sourced by ¢ and e but also by torsion
via the coupling a,h*” H,,,.

We should also mention a few properties of torsion and what role it plays
in the equations of motion. First of all we recall that the conditions F[);W] =0
and a, = 0 are completely equivalent as long as torsion is forced to be
twistless. In the torsionless case (i.e. when the acceleration vanishes) we

9From (2.83) we note that whenever torsion vanishes the electric field ¢ also vanishes
and cosequently m3 = 0.
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notice that the electric field e is also forced to vanish. On the other hand, a
non vanishing electric field forces torsion and the Kalb-Ramond field strength
to be non-zero. The first property can be read off explicitly from (2.83), while
the second one is a consequence of the U(1) mass transformation (2.28).
Hence in the absence of torsion the mass and advection terms in Newton’s
law vanish, yielding the more familiar Poisson equation

D*® = p, + p - (2.97)

Lastly, we notice that for vanishing torsion the TNC equations of motion
assume the same form as the usual equations derived from relativistic string
theory.
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Chapter 3

Non-relativistic strings: the
Double Field Theory approach

In this chapter we will once again derive the target-space equations of motion
for some selected non-relativistic theories. The framework we will use is Dou-
ble Field Theory and will allow us to find the target space equations of motion
without the need to impose constraints on the geomerty (e.g. the torsion-
less constraints, as in the previous chapter). Another important difference
with the approach of the previous chapter is that this framework will allow
us to derive target-space actions for the theories we study (which should be
regarded as the bosonic sector of non-relativistic supergravity actions). The
geometries we consider are Type I Torsional Newton Cartan, stringy Newton
Cartan and Carrollian. While the latter is technically an wultra-relativistic
geometry, rater than a non-relativistic one, it will be interesting to study it
nonetheless because of its relation to Type I TNC.

Constructing actions for non-relativistic gravitational theories based on
local Galilean and Carrollian symmetries has proven to be difficult. It was not
until recently that successful attempts have been made [27,40,48] for certain
classes and limits of non-relativistic geometries. Importance of understand-
ing dynamics of non-Riemannian gravity is underpinned by the far-reaching
possibilities this entails: as mentioned in the introduction, theories based
on Galilean symmetry play a role on truncations of string theory [8,11, 28],
post-Newtonian physics [47,49-51], and provide a natural setting to study
response in condensed matter systems with Galilean symmetry [52-55]. Car-
rollian symmetry, on the other hand, is relevant to description of excitations
in the near horizon geometry of black holes [56-58], and is instrumental in
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flat space holography [59,60].

In the particular cases of the Bargmann and Carroll symmetries, it has
been known that the corresponding algebra of generators of the non-Riemannian
space-time symmetries can be constructed by considering a parent relativistic
theory with a null isometry [61-64]. In the context of string theory they can
be further related by means of T-duality transformations [7,65-67]. When T-
duality is applied in the null direction of the parent relativistic theory a map-
ping between non-Riemannian geometries, in particular Torsional Newton-
Cartan (TNC) or Carroll type, can be established [7,28,66]. We note that
this can be done for algebras obtained via group contractions of the Poincaré
group, while algebras obtained from large speed of light expansions, i.e. ex-
pansions in 1/¢, will fall out of the scope of this construction [26,27].

This seems to indicate that we should be able to describe both types of
geometries, Riemannian and non-Riemannian, in a T-invariant formulation
of gravity. Indeed, such a formulation exists. It is based on doubling the de-
grees of freedom by treating D space-time coordinates and the corresponding
D space-time momenta of the compact directions on equal footing [68-72].
This results in a local O(D, D) invariant theory and the aforementioned
T-duality transformation becomes an O(D, D) rotation. This Double Field
Theory (DFT) is based on a generalized metric H and a generalized dilaton d
encompassing the degrees of freedom in the NS sector of string theory, namely
the matter content of the theory consists of metric, the Kalb-Ramond field
and dilaton. This generalized metric H is required to be an O(D, D) tensor.
Parametrization of the generalized metric in terms of the original relativistic
content {g, B, ¢} is known since the postulation of Double Field Theory as
a T-duality invariant generalization of string gravity [70]. Importantly how-
ever, the generalized metric is not restricted to this form and in particular
admits non-Riemannian parametrizations, where the TNC and Carroll limits
appear as particular cases [66]. This means that the gravitional dynamics of
such non-Riemannian geometries can be obtained by simply considering the
double field equations of motion!

Rary =0, R=0, (3.1)

with R # nM¥ Ry being the generalization of the Ricci tensor and Ricci
scalar to a local O(D, D) geometry. The tensor and curvature scalar appear-
ing in (3.1) can be written in terms of the generalized metric and dilaton

!These equations can also be unified into a single master equation, as shown in [73,74].
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allowing us to fix a non-Riemannian parametrization of H and obtaining the
corresponding gravitational equations of motion.

The goal of this chapter is to derive the actions and corresponding equa-
tions of motion of certain type of non-Riemannian geometries by means of
their embedding in Double Field Theory. The relation between DFT and
non-Riemannian geometries has already been explored in some detail in the
literature, see e.g. [75,76]. We will employ the general parametrization for H
given by Park and Morand [66] and derive the corresponding general equa-
tions of motion. We will then specify to particular cases of interest: Torsional
Newton-Cartan (TNC) theory, Carrollian theory and stringy Newton-Cartan
(SNC) theory. Some or part of these equations of motion have been ob-
tained from worldsheet beta-functions of string theory, see previous chapter
and [9,77], or from reductions of ordinary Einstein’s equations. However,
in all of these approaches some extra geometric constraints arise. DF'T for-
mulation is free of these constraints which will allow us to generalize and
complete the existing studies.

The structure of this chapter is as follows. In section 3.1 we give a brief
introduction to Double Field Theory, presenting the basic tensors which will
be used to construct the non-relativistic actions. In sections 3.2, 3.3 and 3.4
we determine, respectively, embeddings of TNC, Carroll and SNC theories in
Double Field Theory. Using these embeddings we write down the respective
actions and compute the equations of motion. In section 3.5 we compare and
discuss the equations of motion found in the current chapter with the ones
already found in the literature and in the previous chapter.

Throughout the chapter, greek indices {u, v, p, ... } denote curved space-
time directions of TNC, Carroll and SNC. The first capital letters of the
latin alphabet (both primed and unprimed) refer to flat directions, e.g. the
TNC inverse transverse metric is given by h*" = e’g,e%,(SA/B' and the SNC
longitudinal vielbein is 7';;‘. Capital latin letters from the middle of the al-
phabet {M, N, ...} are reserved for the DFT directions, e.g. for TNC we
will have M = 0,1,...,2d+ 1, where d = D — 1 is the dimension of the TNC
spacetime. Their lowercase counterparts refer to half of the DFT directions,
ie. m=0,1,...,d for the TNC case.
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3.1 Doubled Gravity

In this section we review the necessary ingredients of double field gravity. We
will not be thorough in our discussion and will only discuss the key ingredi-
ents. For a broader discussion see for example [66,68-70,78,79]. A Double
Field Theory of gravity should be invariant under O(D, D) rotations and un-
der double diffeomorphisms. As mentioned earlier, the basic ingredients are
the generalized metric H, generalized dilaton d, and the O(D, D) invariant
metric 7, given below. Coordinates on double geometry are denoted by XM
and can be decomposed as XM = (X* X,) with the invariant metric

MY = ((1) é) : (3.2)

Double diffeomorphisms are generated via the generalized Lie derivative ﬁg
acting on an arbitrary tensor density with weight w as [66]

EgTMl--Mn = gNaNTMan + waNgNTMl---Mn

+ Z <8MZ€N - aNgML) TMl...Mi_l NMi+1...Mn

=1

(3.3)

with ¢M = (¢, £ ,.) a generalized vector. The form (3.3) was originally devised
such that it reduces to the one form symmetry for the B-field in addition
to the standard Lie derivative £¢ on the X* coordinates after the so called
“section” or strong constraint 9" = 0 has been imposed [80]. This condition
arises from the covariant constraint n,,y0"9" = 0 introduced to reduce
the degrees of freedom to their original value and in fact follows from the
requirement that the Lie derivatives form a closed symmetry algebra. Under
(3.3) it can be shown that after exponentiation the generalized dilaton, e=2¢,
will act as a scalar density of unit weight and consequently as the integral
measure, while, by construction, H will be an O(D, D) symmetric tensor

satisfying

Hacn“PHpp = nap. (3.4)

3.1.1 Generalized dilaton and Metric

When considering a Riemannian manifold the generalized dilaton has a sim-
ple expression in terms of the usual dilaton ¢ and ordinary “undoubled”
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metric g, which will be useful for example when considering TNC and Car-

rollian geometries:
e =e?\/—detg,, =e. (3.5)

The most general form of H that is symmetric and compatible with (3.4)
is classified by two non-negative integers, (n,n) with n +n < D, and is of
the form [66]

Hyn = < 6)

Ky — BupH” By + 2352@81/)pyz‘p - 237@811)9@5 —H"" By, + yyf L - Z
_Hupou + sz L - gzyjz H
(3.7)

with 1 <7 <nand 1 <7 <n. Here, B is a skew-symmetric matrix that is
identified with the Kalb-Ramond field of string theory, while K and H are
symmetric matrices?. They have n + 72 null eigenvalues each,

H'uylll',i/ = H'uyli'?/ = O, K,Wy;/ = Kyyg}/ = 07 (38)

The corresponding null eigenvectors of H and K are denoted as x, * and v,
y respectively. They are subject to the following completeness relation

H"K,, +yl'z, + yi'z, = 6¢ (3.9)
from which the following identities can be inferred

ylad =67, e =6, yl'wl =yl =0,
HYF,, H" = H, KypH" Ky = K,y (3.10)

Once the “section” condition is imposed, the generalized Lie derivative (3.3)
reduces to (up to GL(n) x GL(n) transformations and Milne shifts)

5$Z = £§$Z, (5:%2 = Egziz , oy; = Ly, oy; = Leyy
SH™ = LoHM 5K, = Lok, (3.11)
(SBW, = EgBu,, + 28[#6,,] .

2These matrices are identified with the target space metric and inverse metric respec-
tively, when the target space is Riemannian.
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Note that the trace HM = 2(n — )3 is an O(D, D) invariant scalar and also
that the B-field acts as an O(D, D) transformation, i.e. its contribution to
the generalized metric can be factorized as follows:

=55 D (L. e

74 =yl — gtz (3.13)

v

where we defined

The generalized metric (3.6) as well as the relations (3.8)-(3.10) are invariant
under the GL(n) x GL(n) rotations

(ot 3he?) = (e () sl By (R)) ) (31a)
and under the generalized shift symmetry

() =y + V",
(o) =o' + Vi,
K'yy = Ky = 20, K0,V = 23, K, VI + (2, Vi + 3, Vi) (2, VF +3,V)
B,uv = By — 2xquV]i + 25%#‘7”}? + Qxfufj;} (yff/pj— + y_JEVpi + Vpivj’p) d
(3.15)

with V,; and Vui being the transformation parameters and we defined V' =
HHPV,; VI = HFPV

Finally, we note that in this thesis we do not include a cosmological con-
stant term in the DF'T action. However this generalization is straightforward
as one only needs to add a term proportional to e 2?Appr to the action 82].
This term could potentially be important when considering non-relativistic
holography.

3.1.2 Connection and Curvature

In analogy with general relativity, we will introduce a connection I'c4p that
will allow us to covariantize derivative interactions. The following unique

3In [81] it was shown that, upon BRST quantization, a critical bosonic string theory
can only be anomaly-free if the trace of the generalized metric is zero, i.e. we have to
impose n = 7 at the quantum level for a critical theory to be consistent.
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Christoffel connection is found [79]

Prary = 2 (POcPP) 0 +2 ( PSPy = Py PN]Q) s Por

1 1 i}
4 —— Py Py + ——— P P (a d+ (POOPP )
(tr( RN By — 1 M ) sd + )ias)

P)—1
(3.16)
with Py;y and Py y the projector operators defined as
1
Pyn = B (N + Huw) (3.17)
_ 1
Pyn = 5 (77MN - HMN) ) (3-18)

and satisfying the standard properties P> = P, P> = P, PP =0,P + P = n,
and with the corresponding traces

tr(P)=PyM=D+n—-n, tw(P)=P,"=D-n+n. (3.19)

The connection (3.16) is determined uniquely after imposing compatibil-
ity with #H, d, and the Lie derivative (3.3) as well as the additional set of
projection constraints?

73MNPQRSFQRS =0, 75MNPQ}wFQJ'%S =0, (3.20)
with
QRS _ p Qp [Rp S| 2 R pSIQ
Prunp =Py P[N PP} + tr (P) —_ 1PM[NPP] P>, (3-21)
_ o _ 2 I
RS _ Rp S R
PMNPQ = PMQP[N[ PP] ] + WPM[NPP}[ pole , (3.22)

A field strength Rasnpg for the connection I' can be constructed as usual:

Rpoun = Oulnrg — OnCapg + Tarp Tnrg — Dnp Tarrg - (3.23)

However, (3.23) is not a covariant object, in fact no fully covariant four-index

Riemann curvature can be constructed in DFT [78,80]. Nevertheless we can

build the semi-covariant curvature [78-80] Rynpo

1

2
4If these projections are not enforced the connection can not be fully determined [80].

However the relevant covariant curvatures constructed from it will be unique.

Runpg = (RMNPQ + Rpoun — FRMNFRPQ) , (3.24)
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satisfying symmetry properties
Runeg = Reoun = Runpql Ruveg =0, (3.25)
and the semi-covariant transformation rule
0eRunrg = LeRunpg+ 2V ((73 +7P) | PQ}RST 3R355T)

12V (P+P) gy Ondstr) - (3.26)

Even though the curvature defined in (3.25) is not covariant we can build
the following covariant contraction

R = (PMPPNQ — PMPPNQ) RMNPQ; (327)

which we will call the doubled Ricci scalar. It can be shown that it can be
written in terms of the double fields H and d as

R = AHMN 9 0nd — OpsONHMY — AHMN 9, ,dONd + 40y HMN Oy d
1 1
+ §7—[MN(9M’HKL0NHKL — §HMN8MHKL8K7'[NL. (3.28)

Equipped with (3.27), we can write down the DFT equivalent of the Einstein-
Hilbert action

Sprr = / dPzdPz e 'R . (3.29)
The equations of motion are then found by varying (3.29), and given by®
55 = / dPxd"ie™ [SHM N Kyy — 2R6d] (3.30)
with Cysn defined as
Kary = %8MHKL8NHKL - i (0, — 2(00d)) (YO Hasw) + 2010w d

1 1
— 58(MHKL8L’HN)K + 5 (8L —2 (aLd)) (HKLa(MHN)K + H@@Kﬂﬁ)) .

(3.31)

5Tt is important to note that the variation cannot be performed using the parametriza-
tion (3.6) for fixed (n, 7). This would miss n X 72 equations [83].
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We need to ensure 0 HMY satisfies (3.4), this can be achieved as long as we
assume the variation takes the form [70]

SHYN = PMS MM PR+ PO MME PR (3.32)

After assuming the form (3.32) we find that the equations of motion associ-
ated to the action (3.29) are nothing but®

Run =0,
M (3.33)
R=0,
where the double Ricci tensor is now expressed in terms of :
Run = PyKrx Py + PuKrg Py . (3.34)

Calling Ry as generalized Ricci tensor is appropriate as it can be related to
the semi-covariant curvature via Ry = PERY rosPx- Note however that
R # MV Ry = 0.

In the following sections we will consider the action (3.29) and equations
of motion (3.1) for some choices of (3.6), in particular TNC, Carroll and
SNC parametrizations. This will allow us to write non-Riemannian gravita-
tional equations of motion by means of the parametrization (3.6). Our usage
of the relation between DFT and the previously mentioned non-relativistic
geometries will not go further than (3.6). A detailed analysis pertaining
the symmetries and related aspects of non-Riemann geometry following from
(3.6) has been done by Blair et al. in [85].

3.2 Type I TNC geometry

3.2.1 Basics

We already introduced Type I TNC geometries in the previous chapters,
however let us briefly recall some important basic properties that will be

6The same result could also be obtained by using the following property of the Riemann
tensor [84]:

dRMNPQ = VoI Npg + VPOl g
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useful in this chapter as well. The geometry and symmetries can be obtained
from null reduction of a relativistic theory described by the line element

ds® = 27,da" (du — m,dz”) + hy,da"dz", (3.35)

where u is the direction associated to the null isometry, i.e. 0, is a null
Killing vector. Note that the null reduction of the relativistic connection
will not give exactly the connection we use in this text, (3.39), however the
difference between the two is simply given by the torsion component.
Instead of the set of variables {7,,v", h*, h,,,, m,} it will be more conve-

nient for us to work with the boost-invariant set {7, 0", h,,,, h*", ®} where
{0*, h,,, @} are defined as

hyw = by — 1My, — T,My,,

s, (3.36)
® = —v’m, + éh’”mpma ,

which are the boost-invariant combinations with the physical interpretation
of a spatial metric, an “inverse clock”, and Newton gravitational potential
(i.e. the scalar which will appear in Poisson’s equation). While these vari-
ables are explicitly invariant under Galilean boosts, they still transform under
the U(1) extension as

o Py = —27,0,)0 , 00" = —h* 0,0, 0o = —0°0,0. (3.37)

The Galilean invariant fields are subject to the identities

huph® — 07, =6, 01, =—1,  0'hy, =207, (3.38)

The connection we will use is”

1 _ _
LY, = =007, + 5H7 (Db + 0,hs — Ol (3.39)

which is manifestly boost invariant, but not manifestly U(1) invariant. Note
that this connection is compatible with h*” and 7,. The antisymmetric part
of this connection is poportional to the torsion tensor of TNC

F,, =20,1,, 3.40
2 (1]

"See also [86,87] for a classification of TNC connections.
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in terms of which we define the acceleration
a, = 0°F,,. (3.41)

In the following section we will reformulate this theory by embedding it in
DFT.

3.2.2 Embedding in DFT

By examining (3.35) we can identify the following metric and inverse rela-
tivistic metrics:

(b T, (R =
guu - (Tu O) ) g - (_@u 2@) ’ (342)

which can be embedded in DFT as

B 7. 0 0
7. 0 0 0
0 0 hwv —oH
0 0 —o" 20

7'[MN =

(3.43)

We now apply a T-duality transformation to swap the null direction u with
the dual null direction u,

o, 0 0 0
T = 8 8 53” (1) , (3.44)
0O 1 0 O
which results in the following TNC' generalized metric:
FLW 0 0 7,
Hun = 8 200" 0 (3.45)

—0k R0
T, 0 0 0

The generalized metrics (3.43) and (3.45) will produce the same actions and
equations of motion, however note that the lower right block in (3.45) is now
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degenerate, meaning that the latter has a clearer non-relativistic interpreta-
tion. As shown in [12], after adding matter to this parametrization we find

that the embedding is given by®

_ (w0
T e

H™ = <hvmp hp"NpNo> ! (3:46)
_ Buv —my

B’mn - <my O ) )

and
W LY e ()
V2 1 V2 -1 ’

s V2 <1 - UHNM) 7 s V2 <_1 - U#NM) 7 (3.47)
where N, = —B,, appears from the dimensional reduction of the B-field.
We also define

b = 0N, e, = 07y, (3.48)

The tensors K, and H*” both have 2 =1+ 1 null eigenvectors and the
trace of the generalized metric is H} = 0, implying that a TNC geometry
corresponds to a (1, 1) theory in the DFT framework.

3.2.3 Action and equations of motion

Having obtained the embedding of TNC geometry in Double Field Theory, we
can now immediately write down its action using the DF'T action in equation
(3.29). We first introduce the following notation. Given an arbitrary tensor
A, we will define for brevity

AP = A BPPRYO (3.49)

8Note that now we are briefly using m,n as indices of the DFT tensors, as a way to
avoid introducing new symbols. We have m = 0,1,...,d+ 1 and 4 = 0,1,...,d where d
is the dimension of the TNC spacetime and d+ 1 = D is the dimension of its uplift, which
includes the null direction w.
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Note that the only TNC fields which naturally have upper indices are 0* and
h*¥ hence any other tensor with upper indices is to be understood as defined
via (3.49).

Now, the TNC action is given by’

1 1 1
S = / dize [R + 5@“% + §e“eu —4a"D,¢ 4+ 4D 9D, — EHWPHW,D

1 1
— SO Hpu 0" = 5 (F" Fuy + 0"by) <I>] :
(3.50)
with H = dB, b= dX and

d

eth€_2 o
2P

We choose the independent fields of our theory to be ®,0#, h*”, B, and R,
see Appendix B.1 for useful identites.

The variation of the action (3.50) with respect to ® imposes a generalized
twistlessness constraint on torsion:

e

(3.51)

F,F" =b,0". (3.52)
The equations for the matter fields are
1 1 1. ,
D,D"¢ +a"D,¢ — 2D, ¢D"¢ = §e2 — 7o o H" = 5 AH b
1 v
— EFWF“ O (3.53)
1
D*b,, —2D’¢b,, = §F’)"Hm#, (3.54)
D" Hppy + " Hypy = 2D°¢ Hypy = 2Dpe0) = 207 Daby, + 2aj,e,) + 467, F,),®
+ (20°D,¢p — D,0) by, (3.55)

9Tt is worth noting that this same action can also be obtained as the dimensional
reduction of the standard NS-NS sector of supergravity

1
SNS_Ng = /d%e*% —detg <R — EH2 + 4 (a¢)2> ,
where ¢ is the Riemannian metric appearing in (3.42), H,,, is the field-strength of the
B-field and D = d+1 with d the dimension of the TNC spacetime. Note however that this

null reduction is not fully consistent, as one needs to impose Poisson’s equation on-shell,
rather than deriving it from the (null-reduced) action.
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while the equation for 7, is
1
DPFpy + aPEyy = 2DPQ 1, = §b'w pou + ¢y (3.56)

The equation obtained from the variation with respect to h* requires more
care. First of all, notice that we have 7,7,0h*” = 0. This means that the
most general variation of h*” is given by

oht = (AS)‘; OIMPY + oMM (AS)Z , (3.57)
where §M* is an arbitrary symmetric tensor and (Ag)" = h#**h,,. It also
follows that the time-time projection of the equation obtained from this vari-
ation will be trivially zero, i.e. we will not be able to obtain Newton’s law
from this variation. This will also be true for variation of the Carrollian
and SNC actions and is, in fact, a general property inherited from Double
Field Theory [83]. By imposing an ansatz on the generalized metric and then
computing the variation of the resulting action we will end up with n x n
equations less than we would initially expect. However, this problem can be
easily avoided by taking the variation of the DFT action first and imposing
the TNC ansatz on the resulting equations of motion (3.1). With this in
mind, we find that the variation of (3.50) with respect to A*” produces the
equation

1 a,a, — ¢,¢,
R + 2D Duyd = T h7 " Hyyps Hyge = ===t

— (F,pFuoh?” — b,,byeh?7) @ + R, (AT)Z (A7)

v )

- /{)pD('U'FV)p (358)

where we defined
1
R, =R, +2D,D,¢ — Zh”“h)‘“Hup,\HMH + CLQTMT,,@ — eQTMT,,q) . (3.59)

Note that, because of the presence of 2R, in (3.58), the time-time projection
of Einstein’s equations is identically zero. As we already explained, Newton’s
law can be found by imposing the TNC ansatz on the DFT equations (3.1).
The resulting equation is

D*D,® + 3a"D,® + mi® — 2F,, F"®* = px + ppn (3.60)
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with
mg = a® + ¢ + 4a" D, — 0" H ,,,b"
px = "D, D,0" + D, 0" D, 0" = =" D, K} + K, KM, (3.61)
Pm = i@“@”HHPaHym’ —20"0"D,D,¢.

Notice that by using the identities

"0V R, = —0"D,D,0" + "D, D, 0" + a"D,® + 2a*®,
D, 0D, 0" + 0D, D,0" = k"’ (D,D,® + 2D,a, ® + 2a,D,®) ,

(3.62)
we can rewrite (3.60) as
OO Ry = %@“@”HMUHV”” — 20M0Y DDy — a*® + P, (3.63)
so that the full Einstein’s equations can compactly be written as
Ry + 2D(MDV)¢—ih””hA”HMAHVM = S D Ey, 8.64)
+ 00 by Hoyno — (FupFuah? — bupbuoh?) @
In summary, the TNC equations of motion are given by
F,F" =b,0", (3.65)
DPF,, + a’F,, —2D"¢F,, = %b’)"HPW +¢’byy (3.66)
Db, —2D¢b,, = %F’”Hmﬂ, (3.67)
D,D"¢ +a"D,¢ — 2D, ¢D"¢ = %8 — 1—12HW,,HWP — %AAHAWbW
_ %FWF“WI) 7 (3.68)
DPHppy + 0 Hppy = 2D°¢ Hppy = 2Dj,) — 207 Doy, + 2ay,e,) + 407, ), @
+ (20°D,¢p — D,0”) by, (3.69)
Rw) + 2D, Doy = iHungVpU + %GVT_%QV - @pD(qu)p

+ 0 (Hoynp — (FupFooh® — bupbuoh?) @
(3.70)
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where we remind the reader of the short-hand notation (3.49), as well as the
following definitions
Ap = ?pFPH = 2:0"(9[,,@], (3.71)
¢y = Upbplu = 2’1)’)(9[/)1‘2#] ,
and ® is Newton’s potential, not to be confused with the dilaton ¢.

Note that these equations are manifestly invariant under almost all trans-
formations described by the Bargmann algebra. The only nontrivial trans-
formation corresponds to the U(1) generator m,,. However, a straightforward
(but tedious) computation shows that these equations are indeed invariant
under mass U(1), although not manifestly so. We will discuss some properties
of these equations and their relation to known results in section 3.5.

3.3 Carrollian geometry

3.3.1 Basics

The Carroll algebra can be obtained by considering a particular contraction
(¢ = 0) of the Poincaré algebra [88-90]. In [91] it was suggested that this
algebra could play an important role in flat space holography, hence it would
be interesting to study how field theories couple to Carrollian spacetime, see
e.g. [92-94]. To this end, one needs a gravitational action coupled to matter,
and this is precisely what we will compute below.

We will describe a Carrollian geometry using the same set of symbols we
already introduced for the TNC case above. However, these fields will now
transform under Carrollian boosts rather than Galilean boosts:

SeTu =M Seh™ = 20BN, . (3.72)

Moreover, we replace the gauge field m,, by a contravariant vector M*, which
transforms as

OIMY = LMY + el N = LMY + W'Y, . (3.73)
This allows us to build the following manifestly boost-invariant tensors
Ty =Ty — hyp MY,
P = hH — MY 4+ 2BuH” = WY + 2B0MY, (3.74)

1 1
@ - _MMTM —I— §hMVMMMV - _MM%’U/ - EhMVMMMV,
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which we interpret as the boost-invariant clock one-form, inverse spatial met-
ric and Newton’s potential respectively. They satisfy the following orthogo-
nality and completeness relations

hHPh,, — M7, = 61, 7P =0 = vthy,, . (3.75)

It is possible to embed a Carrollian geometry in a Lorentzian one just as we
did for TNC in (3.35):

ds® = du(2® du — 27,dz") + h,dz"dz” . (3.76)

A connection compatible with 7, v*, h,, and h" can be constructed [89,95]:
~ 1. .

I, = —vP0,7, + éh“A (Ouhun + Ouhys — Orhy) — WP Ko7, (3.77)

where we introduced the extrinsic curvature

1 1
K = _§£vhul/ 79 (V7 Ophy + (0,07) B + (O,07) ) - (3.78)
However, we will find it more convenient to use a slightly different connection,
I, =10, + Wt (3.79)

Using ﬁjL‘“’ = 0, it is easy to show that this connection is still compatible
with 7, and A", but now we have

D" = —h" Ky, Dby = —2K 4t s (3.80)
where we used
V'K, = vPD,ot =0. (3.81)
We also define the following tensors in analogy with TNC:
Fu, =20,7,, a, =vV°F,,. (3.82)

3.3.2 Embedding in DFT

Given the relativistic geometry (3.76), we can construct the generalized met-
ric

Huv=| " 0 (3.83)
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There are clearly some similarities between this metric and the TNC one
(3.43). In fact when the scalars ®©) and &™) are both zero (which implies
M* = m, = 0) it is easy to see that the two generalized metrics become
identical up to some obvious identifications. When the two scalars are not
zero we still have a relation between the two geometries, but it is a bit more
involved. To see this we can start from (3.83) and then apply a T-duality
transformation that swaps the Carrollian directions g with their dual ones j
and arrive at

P00 ok
0 20 -7,

0
HMN — 0 _72“ h,w 0 (384)
v 0 0 O
This is equivalent to (3.45) if we make the identifications
T, 7 (TNC ~(C) .y A c TNC
higy < h{N, Do ey, P 5 QUNO) (3.85)
c v TNC TNC
hS) < Wi ney, Uley & TSN, M < mi N, (3.86)

These are the same transformations that were proposed and discussed in
[89,95,96], however when working in the DFT framework it is more clear
what the interpretation of this relationship is, i.e. at least part of it is
a T-duality following from the fact that this theory is embedded in string
theory! More precisely, this relation between TNC and Carrollian generalized
metrics involves the exchange of covariant tensors with contravariant ones
(and vice versa), including the generalized metric, so that it cannot only
be a T-duality. In fact, it is not even clear that the transformations in
(3.85)-(3.86) are allowed within the framework of DFT, although at the very
least they seem to suggest that there may be a deep relationship between
TNC and Carrollian geometries. Although it is likely not correct to call this
relationship a ‘duality’, we will do so anyway for brevity.

Note that this ‘duality’ is mapping two theories that are in principle really
different, since one is a non-relativistic theory while the other is an ultra-
relativistic theory. It is also interesting to note that when acting with this
transformation on the Carrollian side we are effectively generating massive
particles, which will correspond to the eigenstates of the U(1) generator on
the TNC side.

Moreover we remark that this duality only maps the TNC generalized
metric to the Carrollian. To map the full actions to one another we would
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need to transform the partial derivatives as well, i.e. we would need a trans-

formation of the form
(89,,) € & () TNO), (3.87)

but it is not clear what a partial derivative with upper index means in a
non-relativistic (or ultra-relativistic) theory. It will be interesting to explore
this duality in more detail in future works, to understand if the two actions
can indeed be mapped to each other.

3.3.3 Action and equations of motion

Once again, given an arbitrary tensor A,, . we define
A= A, hRPRYO (3.88)

The only Carroll fields which naturally have upper indices are v*, h*, v
and M*, hence any other tensor with upper indices is to be understood as

defined via (3.88).
The action for a Carrollian gravitational theory is given by

1
S = / dize {R + 5(@“% +¢te,) —4a" D, + 4D ¢ D, ¢ + 40" Do 0" D, P

1
+29 (IC‘“’ICW — K? — 40D, ¢ v D,¢ — 4Kv" D, ¢ + ZU”U"H“VPHWU)

1 1
+2K0v" D, @ — EHWpH“”p + §b””HWpUP] ,

(3.89)

with IC = fLW’ICW =-D,vt R = fz“”RW and the measure is defined as

20 -
— 29 — o 2¢
e=e "%/ Tt € \/2® det by, | (3.90)

where Buv = Ny — %5:1?/' We choose the independent fields of our theory to

be ¢, v*, fl‘“’, B, and N, see Appendix B.2 for useful identites.

As for TNC, this action can be obtained as the dimensional reduction
of the standard NS-NS sector of the supergravity action, with (relativis-
tic) metric given by g, appearing in (3.76). Furthermore note that when
@(Carroll) — () this action correctly reduces to (3.50) with ®TN¢) = 0. An
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important point to note here is that a null reduction should not yield a Carrol-
lian geometry (as that always gives TNC instead!?), so, although the action
(3.89) is invariant under the correct boost transformations (3.72) and (3.73),
it is unclear whether it can truly be interpreted as the action of an ultra-
relativistic theory. However, in this thesis we are only interested in (3.89)
because of its relationship to TNC, so we leave the precise interpretation of
this theory as an open question for future work.
The variation of the action with respect to ® gives

1
R0 = ZUPUUHMV/JHMVU — 20" D, D,¢. (3.91)

Note that contrary to what happened for TNC, this equation does not impose
any constraint on the antisymmetric part of the connection, however it does
impose a constraint on intrinsic torsion, which in the Carrollian case is given
by the extrinsic curvature [97].

The equations for the matter fields are

D, D¢+ a"D,¢ — 2D, 6 D¢ = 2vv” (9D, D,y — 20D, 6D, ¢ + D,,¢ D, )

1 1 ehe 1
= 2ROV Dy — TS H" P H gy + 070" OH M Hoyy + 7" + SO Hyp
(3.92)
DPb,, — 2DP¢b,, = —200°D ¢, — 20’ KC,, + 20e, K + 400D, D¢,
(3.93)

1 g (on o
+§F” pou + 2D PV Hpppy — 200°a° H

D*H,,, +a"H,,,—2D"¢ H,,, = v’ D,b,, —20°D,pb,, — QIC[Mpb,,}p — Kb
+2®0v°v° (D,Hyp — 2D ¢ Hypy) + 20°0° D, ® H,yp,,)
+ 4@@"IC[H”H,,]M —2K®vPH,,, .
(3.94)
The equation for v* is
D*F,, + a’F,,—2D"¢ F,, = —4®v’D,a, + 2®a, K + 4®v°D, ¢ a,,
+20v"D,D,® + 2K, ,D’® - 2KD,® — 4v°D,¢ D, P

1
+ §bp°'pr —¢’b,, — 2007’ H,pyy — 20° D, D a, .

(3.95)

19T would like to thank Jelle Hartong for pointing this out.
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Einstein’s equations are given by

a,a, — €,e,

R () + 2D(#Dy)¢—iHHP"Hym = 5
+ 207K, D,® — 20K KC,,,, + 200° D, K,,,
— 400 K, Dpp — P H ,\ P Hoypy + 07D Hyypor -
(3.96)

Once again one equation is missing, but it can be found directly from
DFT:

+ Da,) — F(M”IC,,)p

1
D'D,® — a"D,®—2D"$D,® + (a* — ¢*)® = 7 (F"™FE,, —b"b,,)
— 2K®v* D, ® + 2dv°0v’ (D,D,® — 2D,$D,P) .
(3.97)

It is also possible to rewrite these equations in terms of h* = hiv 4
2®vtv”, rather than h*. The new connection I', is defined as

2, =T, + 200°K,, , (3.98)

where quantities with a bar on them are understood to be defined with h*
instead of h*¥, i.e.

_ 1-
D = =00t 4 S (@b + Dulun = Bhw) . (3.99)
The new Ricci tensor is related to the old one via
Ry = Ry — 20°D,® K, + 20K K, — 200°D,K,,, . (3.100)

The action and equations will look nicer when using this connection, however
h#¥,h*” and 7, are not compatible now:

Duf_zp" = 20°0°D,® — 8ICMFL)‘(”UU)<I> ,
Duh?” = — 4K, M7 @ (3.101)
D7, = —2K,,® .

The action can then be rewritten as

_ 1 1 _ _ _
S = / dixe [R + 5@“% + ée“eﬂ —4a"D,¢ 4+ 4D 9D, + 40" D, D, d

_ 1 1
—8PKv’ D, — EHWHWP + §b’“’vf’Hw,p ,

(3.102)

62



3.3. CARROLLIAN GEOMETRY

where now the tensors with upper indices are defined using h** and we will
always write any expression such that no derivatives act on h*", e.g. DH¢p =
h* D,¢ # D, (71’“’(}5). The resulting equations of motion for the geometric
fields are

1 _
R0t v” = ZUPUUH“VPHWU — 20D, D,¢, (3.103)

_ _ 1 _ _
DPF,, +a’F,, —2D"¢ F,, = 51)”" pop + ¢by, +2DPKC,, — 2KD,®
+ QUPDMDPQD — 41)pr¢ D,®,

(3.104)
_ o 1 - a,a, — €,¢,
Ry + 2D Dy b= H," Hypo = ===+ Diua) = Fu"Ky,
o [ = D,®
+ v b(“ Hy)po -+ 4dv DP}CHV — K’ij -+ TIC/U/ .
(3.105)
The equations for the matter fields are
- _ - 1
D,D¥¢ +a"D,¢ —2D,,¢D"¢ = 20"v"D,®D,¢p — §H”“”pr,
1 1 (3.106)
+ Ee“eﬂ + §UpleHp;w ,
_ _ 1 _
Drb,, —2DP¢b,, = §FWHPW +20°D°® H,,,, , (3.107)

DPHPHV + a”Hppy — 2D%¢ Hppw = 2b[uplcl/]p — Kby

+ 0 (Dybyuy — 2D,y by + 20° D, ® Hyp))
(3.108)

The ‘missing’ equation is

D*D,® — a"D,® — 2D"¢ D, ® = — (F*" F,,, — b"b,,). (3.109)

A~ =
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As in the case of TNC, we note that the equations (3.103)-(3.108) are
manifestly invariant under transformations corresponding to the Carroll al-
gebra. We also recall the following definitions:

a, = v'E,, = 20°0,,7,,

¢y = Upbpu = QUPa[pN/L]’ (3110)
1 1
K = _§£vhuu Y (U Oph + (00°) hpw + (907) Byp)

which have the physical interpretation of the acceleration field, the electric
field and the extrinsic curvature of the geometry.

3.4 Stringy Newton-Cartan geometry

3.4.1 Basics

In [28,29,98-100] a non-relativistic string theory was formulated, which was
then found to correspond to a target space geometry called Stringy Newton-
Cartan (SNC) [1,7,11,31,101,102]. A D-dimensional SNC spacetime natu-
rally splits into two longitudinal directions and D — 2 transverse directions,
that are mapped to each other by means of string Galilean boosts. Recent
works have delved deeper into the quantum aspects of such non-relativistic
string theory, in particular studying the Weyl symmetry and computing the
beta functions, that are required to vanish for the theory to be anomaly-
free [9,77].
The basic geometric fields are the longitudinal and transverse vielbeins,
u , U, EA . B', where the index A runs over the two longitudinal directions
and A’ runs over the remaining transverse directions. Using the transverse
vielbeins we can build, as usual, two tensors hty and h*”. These fields satisfy
the following completeness relations

h“phL T = o UAT 6%, T,f‘h’“’—ﬂuAhL =0,
(3. 111)
and transform under string boosts with parameter ¥4  as
osvly = —E4 54 0sEY = —7isq, SE!, = by7;! =0.
(3.112)

The metric of the longitudinal space is nap = diag (—1, 1) and our convention
for the longitudinal Levi-Civita symbol is €y; = +1.
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Furthermore, we can introduce a Z 4 symmetry in the theory via the gauge
field m;‘, which transforms under boosts as

dsmi = EX¥, (3.113)
This allows us to build the following manifestly boost invariant quantities:

hyw = hﬁy + 277A3mz4 7'E§ ,

w'v
uly = vl + h*mpa, (3.114)
PAB = ZUP(AmpB) - h‘“’m/‘jmf = —u“Au”BBW,
which satisfy
R h,, — uly T = o, uhTl = =64, Whhy, = PapTy . (3.115)

The Z4 transformations of the fields are
4] me = D,o",
5Z]_Z,u1/ = 27]ABT(I?LBDV)UB ’
dzuly = h“praA,

57048 = 2urAD 0P

(3.116)

Note that at this point this transformation is a symmetry of SNC only if
the foliation constraint is imposed. However, one can avoid imposing this
constraint by requiring the B-field to transform as well [10], the full Z,4
transformations are then given by the upcoming (3.149).

Using these fields it is also possible to construct the following boost-
invariant connection:

1 _ _ _
e, = —u’y (8MT;4 + wueABTf) + Eh’”’ (6Mhm, + 0 h,e — 6Uh,w)
. ’ ) ) (3.117)
=~ V,ur! + S0 (Quhuo + Ohys — 0ol

where we introduced the spin connection quB = w#eAB, associated with the

longitudinal covariant derivative V. The connection (3.117) is compatible
with A*” and 7'/;4 and has an antisymmetric component

_ A
QFﬁW] = —ujFy,

(3.118)
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where we defined the ‘torsion’ tensors as'!

Flf‘y = 28[#@]‘4 + 2€ABW[#7’V]B = QV[HT;} . (3.119)
We can also decompose these tensors as

Fﬁ, = fAeBCTfTVC + 2a[HBATl,]B + ﬁlﬁ,, (3.120)

where we defined the acceleration a, g, the temporal part of torsion f4 and
the transverse torsion tensor F ﬁ as

Wy Foup = auag, u“AaMBC = AB O u"AﬁWB =0. (3.121)

Finally, we define the extrinsic curvature in the usual way:

1
IC;?V = _§£1LhMV7 (3122)

which satisfies in particular

AR = —D,ut,
(3.123)

up'Mvo

1
BRI Ky = Dyt A Dy o S HE F o Fpg p®ACREP.

We should also mention that our notation for SNC in this chapter is
somewhat different from the one usually found in the literature. We have
adapted our notation so that it will be easier to match and compare results
with TNC and Carroll. In the next chapter we will conform our notation
and conventions to the more standard ones.

3.4.2 Embedding in DFT

To find the embedding of SNC in DFT we will use the same approach used
for TNC [12], namely we will compare the SNC worldsheet action [9],

1 _ p—
Sswe = -+ / 20 [ OXPOX Ty + €7 (NeaTy + AeaTy) D5 X*]
(3.124)

Qv oy

1
-3 / 0 e*?0,X"05X" B

"Note that F7}, = 0 is the so called foliation constraint.
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with the worldsheet action written in terms of DFT fields!?,

. _
Sprr == 5 / 0 [edX"OX" Ky + 267 (Baa®l + Boally) 05X"]

- % / B0 [e7 0, X 05 X" By — 27°° (Baa®, — Baad®) 95 X"] .
(3.125)

To make the identifications needed to define the SNC embedding we need to
rewrite (3.124) in a more suitable way. In particular there are two issues we
need to address:

1. We need to have a term proportional to 7*?A\93X* and 70‘55\8/3)(“ to
be able to properly identity the null eigenvectors of DF'T;

2. We need to make sure that K, is a degenerate matrix, which is not
the case if we naively identify K, = h,.

The first issue is simply solved by the following field redefinition:

1 A | 1
Ay = 2()\ Ne, + 2()\+ Ne, = 2)\ea 2)\ea. (3.126)

In terms of these new Lagrange multipliers, the SNC action becomes

1 —

1 (3.127)
— 5 /d2a [eaﬂaaX‘@gX”BW + ZefyO‘BTBAa(?[;X“} ,
This form of the action makes it easy for us to identify the null eigenvectors of
DFT, however we still have to solve problem (2), i.e. the fact that K, = h,,
is not a degenerate matrix. To solve this issue we can make use of the

12We define e, = €% +el, &, = € — e, and similarly for 7 and 7. Notice that
7B = pabes 5 = —68606 —|—6?6? = —46(a6ﬁ) Where e = l(60 +ef), e = %(eo eg),
such that e®e, = 1 = é%é, and e®é, = 0. Moreover we have ¢*f = ee“be“ebﬂ with
e = —g9; = +1 and ey = e le “56%517&7 which implies e® = —ﬁ&'aﬁéﬁ) and e* = 2—5“665.

Note that our convention for the worldsheet Levi-Civita symbol €®? is the opposite of the
one for the longitudinal SNC Levi-Civita symbol e42
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Stueckelberg symmetry of the SNC action. The action (3.124) is invariant
under the following transformations with parameters C* [10,11]:

Shyy = 2C0,T5mAB | 0By, = —2C, 7 ean (3.128)

N =\+etee,Cp, N =X+e'e*e,Cy, (3.129)

where C,, = C} + C} and C, = C) — C}. This means we can rewrite the

action in terms of hiy and B, by choosing Cf = —m/’:‘. After redefining the
Lagrange multipliers one more time we arrive at the action

1
Ssne = — 5 / d*c [e oXH*o0X" hty + QEQ’BTiAaaﬁX“}
(3.130)

1 _
—3 / o [eaﬁ(?aX“agX”BW + 2e'yaﬁTSAaagX“] ,

where now all the tensors appearing in (3.130) are manifestly Z4 invariant.
This allows us to make the following identifications:

K,, = h, B,, = B, (3.131)

v
and
(ﬁaa:u + Bai"u) = (1, + 7)) Ao = QTBAQ ,
(5aaru — ﬂafcu) =— (T, — Tu) Ao = —27';14CY .

This is solved by (note the mismatch of bars between DFT and SNC fields)

(3.132)

1 1
Ty = _7_—;17 Ba = Aaa
V2 V2 (3.133)
B 1 = 1
.CIZ'#_ETH, Ba:—QAa.
By requiring z,y* = 1 = z,y", we find
Y= —V20", gt = —\/20" . (3.134)
Moreover we have
H" = pHv (3.135)
and
Z) =70" = 1,07 (3.136)
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In summary, stringy Newton-Cartan can be embedded in DFT via

K = hy,, HM = h (3.137)
B,, = B, 7z = —m0" + 1,07, (3.138)
and the eigenvectors are
1
xuzﬁﬁu yﬂz_\/ﬁgﬂ’
1 (3.139)
T, = —F=T, ﬂ“:—\/iv“.

An issue with this parametrization is that it does not include the gauge field
m;‘. To reinstate it we can once again make a Stueckelberg transformation
(or a shift transformation (3.15) from the point of view of DFT):

(") =" + H"V,,

(g") =g + 0"V,
(Kuw) = K — 22,K,),V* — 28,K,),V* + (z,V, + 7,V,) (z,V* +z,V") ,
(BW), =B — 2J:[MV} + 2:L‘WVV} + 2z (,Ty ( pr + 9"V, + V;,Vp) ,

(3.140)

where V,, V are two arbltrary local parameters and we set V* = HP*V, for

brevity. The choice V,, = m#, V,= ;mu gives

1
(?Juy = —0" + _m,u,

2
) = —vF + i,
2 (3.141)
1 1 _ _
(K/W>l = hyw — 5907'#77/ - 5907'#77/ =TT,

(Buw)' = Buy + TTu70) 5
with

1
¢ = 2u'm, + §m2 ,

L,

© = 2u'm, + 3 (3.142)

1
TEu“mM+ﬂ“mu+§m-fn,
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and
ut = ot — %h”f’mp, = ot — %hﬂﬂmp, (3.143)
Py = My = Ty = Ty, B = By + T — Tumy) . (3.144)
Changing back from lightcone coordinates we finally find
K, = EW + CDABT;:‘TVB,
H" = ht"
b = —epit P (3.145)
B, = B, — %@eABTfo ,
where we defined ® = ¢4.
3.4.3 Action and equations of motion
Given an arbitrary tensor A,, = we will define
AP = A PRV (3.146)

The only SNC fields which naturally have upper curved indices are u/; and
h*¥ hence any other tensor with upper indices is to be understood as defined
via (3.146). Similarly, we will use the longitudinal vielbeins 7 and u do
interchange curved and flat longitudinal indices, i.e. given an arbitrary tensor
A we have for example 445 = Aﬂ”u“AT,,B.

Using the parametrization (3.145) we find that the SNC action is given
by

1
§= [ @Pac |R = ¥ aam - gana) + (@~ 2D%6) (@, ~ 2D,0)
1 uwvA B 1 1 pA uvB 1 PV
_§F FMV((I)AB_§T/AB(D)+§€ABU F HPMV_EH Hp;w s

(3.147)

where we defined a, = a, 4, ® = &4 and the invariant measure is given by

det h
e= e dst T (3.148)
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This action is invariant under the Z4 transformations

3.149
Sutt = h‘“’Dl,aA, SPAB = 2u“(ADuJB) . ( )

The equations of motion can be found by varying the action with respect
to the independent fields A, u'; and ® 453, also see Appendix B.3 for useful
identities. Sometimes it will be useful to further decompose the acceleration
in its antisymmetric and traceless symmetric components:

1
0,7 = 8§17 + on'Pay + P A, (3.150)

with SMABnAB = 0 and we recall a, = aMABnAB.
Taking the variation of (3.147) with respect to ® 4 we find the equation'

FMAR,A =0, (3.151)

which we will use when writing the remaining equations.
The space projection of the equation of motion for v/ is

1
DPFy + a, PP = 28, D0 = Seapl" P HY, (3.152)

po

while the time projection is

1
DPS,A7 +at 8,1 = 255D, = — g PAELD + 2P, (3.153)

where we defined
1 v
FIC= A8 4w CFLH (3.154)
The equation for the B-field is

DPH ™ 4+ aPH M —2D%¢ H ™ = 20" 4 ey HM A5 (3.155)

BNote that, despite appearances, the action does not depend on the spin connection,
ie. 05/6w, =0.

4The action actually only depends on the trace of the tensor ® 45, as can be seen by
expanding the Ricci scalar and noticing that the F “”AF,“,B ® 4p terms cancel out. This
is why the corresponding equation is a singlet and not a tensor.

71



CHAPTER 3. NON-RELATIVISTIC STRINGS: THE DOUBLE FIELD
THEORY APPROACH

where we defined

H,ul/AB = 2upADpFuuB . 2upAFuuBDp¢ o 2D[,uau]AB . QSH%SVBC

) ) (3.156)
— KAFWE ol prAGEC
as well as €, = 20,w,) and K4 = h’“’ICZ‘V.
The dilaton equation is
1 1
D'D,¢+2a,D"$ — 2D"6 Dyp = S D*a, + a,a"
(3.157)

1 1
+ 7€ AW’ PP B, — EH”””HW, .

The space-space projection of Einstein’s equations is
1
RV +2DWD" ¢ — —HY\, H'” = ufy DVF, 4 + SM4ESY,

1
— APy PP Y~ §F“”AF”p LD

(3.158)
The time-space projection is
WPUTAR oy +2uP DP D,y + a*uP D yp — iH“ngAp"uM = %upAu”BDPFU“B
— upBD“ap(AB) + upAD“ap — %upBDpa‘éA + %u”ADpa“
—2a""Blyf D¢ — atuPA D¢ — %a“ICA + %G“BAICB
— Fhoa’PAS ) a4+ %apr“A@ - %FWBDPCI)AB
- %FW‘D@ + PPy,
(3.159)

where

1 1
P = —Su P DPHY, + uPHY, D7+ aPw P H 4 S 0 ug H oy

1 1 1
— 5a*PuHY,, — D" fF — §a“fB + P fo + ~a" P fo + P fe

2 2
(3.160)
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Finally the time-time component (found directly from DFT) is given by

1 3
u M’y Ry +2ur D, D, — ZW‘u”AHWH,,W = §8PABDPQ>AB
3 3
— ZGMD“(I) — Za“a,ﬂ) + S“ABSHAC(I)BC — 2fAfA + EABQAB s

(3.161)

where
1
Oup = —§u”Au"BDAHPU>\ + u! gt g H p DP ¢ + ¥ g’ DA, + 2 fauly Dy

3
+ éu’j‘Dﬂ fB— S g oy — P Hap, + faKp + 3A"S,ac® g

1 1 1
— Z—lFﬂguPC Hppu®pe = 5 F 5l 4 Hyp @ + ZF“”CuP AH®pc .

(3.162)

We remind the reader of the definitions of some of the fields appearing in
these equations:

FWA = QV[NTV]A = fAGBcT#BTVC + QCL[MBATV]B + ﬁWA ,
1 (3.163)
(ZMAB — upAFpuB = SMAB + 577ABau + EABAM.

These equations are clearly more complicated than the ones found for
TNC or Carroll, as there is no obvious way to combine the time and space
projections of an equation into a single simpler equation. Despite this tech-
nical difficulty, it is possible to show that these equations are invariant under
the SNC algebra as expected. In the next section we will discuss these equa-
tions and their relations to previous results.

3.5 Comparison with known results

3.5.1 TNC beta functions

In the previous chapter we computed the beta functions for string theory de-
scribing a Type I TNC target space. Let us recall the results. The equations
obtained by setting those beta functions to zero were the two twistlessness
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contraints
F/j,l/ = 0uTy — TypQy , (3164)
b = e,T) — Tuey, (3.165)
two scalar equations
D-a+a*=2E+2(a- Do), (3.166)
D-e=2(e- Do) , (3.167)

and two tensor equations

2 (207,7, — hy) — epe,
2

+ (AS)'E)# Dya, — ¢ (AT>€# Hy)po +

1 loa
Ry = 717 Hiypo + 2D Dy =

aua, — 2a* 1,7,
2 )
(3.168)

DfHypy + a” Hyy — 2H?,, Do = 2(As), Dyje, — 2 (Ar),

" D,,]ep — QCL[MQ,,}
+ (20°D,¢ — DP) b

v oy

(3.169)

where we remind the reader of the definitions of the projectors (Ar)! =

—ot7, and (Ag)" = h#**h,,, which satisfy

(Ag)! + (Ap)t = 6. (3.170)

We now want to compare these equations with the ones obtained from DFT.
First of all, notice that in the previous chapter twistless torsion was assumed
from the start, which explains the difference between the equations (3.164)-
(3.165) and (3.52). To compare the rest of the equations, we impose the
twistlessness constraints in equations (3.53)-(3.56) and (3.64). We then find
two scalar equations

D-a+a*=¢*+2(a- Do), (3.171)
D-e=2(e- Do) , (3.172)
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and two tensor equations

1. 2e2®d7, 7, —eye,  2a2O7,T, —ayua,
R(;W) - ZHP (MHV)/)U + 2D(MDV)¢ = = B £ — £ B ®
+ (As)zu D,,)ap —¢’ (AT)ZL Hy)pa s
(3.173)
DPHpy + " Hpyy — 2HY, Dy = 2 (AS)@ Dyje, —2 (AT)fM Dyje, —2ay,ey)
+(20°Dyp — Dyv”) by | (3.174)

where in the last equation we also used the Bianchi identity for b,,. The main
difference between these two sets of equations is the factor in front of ¢? in
(3.166) and (3.171). The further difference in equations (3.168) and (3.173)
arise precisely because of this factor of 2, since one needs to use the scalar
equations to prove that the remaining equations are U(1),, invariant. In
other words, the form of Einstein’s equations depends on the factor in front
of ¢? in the scalar equation, because of the requirement of U(1),, invariance,
also see upcoming equations (3.175) and (3.176). Hence it looks like the DF'T
and beta functions computations produce almost the same result with the
difference being a factor of two in (3.166) and (3.171). It is worth noting
that this difference goes away when we consider torsionless geometries, since
in that case we have ¢, = 0 and worldsheet beta functions and Double Field
Theory give rise to the same set of equations in the target space.

Despite this difference, both sets of equations describe spacetimes with
the same symmetries. In fact, we could generalize them further by modifying
equations (3.171) and (3.173) by introducing an arbitrary constant \'>:

D-a+a®>=(1+Ne?+2(a-Dg), (3.175)

¢? (2@7'#7',/ - A l_zw,) —eue,
2 (3.176)
+ <AS)/()M D,,)Clp —¢f (AT)E)N H,,)pg ,

Lo
Ry =7 1"

2a> o7,7, — aua,

2

HHV)pU + 2D Do =

while keeping the other equations unchanged. These equations are U(1),,

I5Note that this arbitraryness is a consequence of the fact that we are considering
twistless torsion. For generic torsion the value of A is fixed to be A = 0 by symmetry.
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invariant for any choice of the constant M\ (although recall that this is only
true if we impose twistless torsion) and they are written in terms of manifestly
boost-invariant quantities. Therefore, they describe theories with extended
Galilean symmetry. The only difference between the theories with A = 0
and A\ = 1 is that the former can be found by a variational principle starting
from the action (3.50), while the latter can be found by requiring vanishing
of Weyl anomaly in the string embedding.

Finally, note that to arrive at the parametrization (3.46)-(3.47) one needs
to perform field redefinitions involving both the B-field and Y. While such
field redefinitions are allowed at the classical level, it is not clear whether
this will produce the same actions at the quantum level as the path integral
measure may, in principle, transform as well. This question is beyond the
scope of this work and should be addressed separately in future.

3.5.2 SNC beta functions

In [9, 77] the beta functions for a worldsheet with SNC target space have
been computed. They imposed the so called foliation constraint through
their computation:

Vit =0=F," (3.177)

If we impose this geometrical constraint, the equations (3.152)-(3.162) be-
come much simpler:

DPH M —2D"¢ H " =0,
1
D*Dy¢ = 2D"¢ Dy = — - H™ Hpp,
14 v 1 vpo
RW) 42D D") ¢ — TH o H7 =0, (3.178)
1 1
RUA 4+ 2uPA D Dy — L HYyp H "0 = - epu”® (DPHY,, — 2H",,D"6) |

1 1
R4+ 2u” DD, ¢ — ZHAWHAP" = —56*‘3 (D Hapy — 2Hap\D*¢)

6To see this one needs to use (B.10) and (B.11) to show that the variation of R,
contains the term 7, Do D -a = /\QQT(NDV)O‘ + ..., where we are ignoring terms not
proportional to A. Notice that this cancels the variation —%)\QQJBW coming from the
r.hs. of (3.176). It is also easy to see that the remaining terms proportional to A are
independently zero since the U(1),, variation of ¢? is zero in the twistless case.
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where in the first equation we used the fact that the foliation constraint
implies!”

Q= 47,0, — Qv =0. (3.179)

Note that the connection used in the present work is in general different
from the one used in the literature, however they are actually equal when
the foliation constraint is imposed. The connection used in [9,77] is

_ 1 - - - 1
re, = §h'”" (0o + Ouhye — Onhyw) + §uPAu; (0uTvo + OuTuo — OoTu)
(3.180)
where 7, = 7',147',/ 4. One can check that when F /fu = 0 we have
FZV = FZV. (3.181)

This means that the equations (3.178) are exactly the same as the ones
that are obtained by requiring the cancellation of the Weyl anomaly in the
worldsheet theory.

3.5.3 Comparison between TNC and SNC equations
of motion

It was found in [10] that, under certain assumptions which we review below,
the SNC worldsheet action reduces to that of TNC. It is then natural to ask
whether the equations of motion of SNC also reduce to the ones of TNC.
The basic condition under which SNC reduces to TNC is the presence of an
isometry along a compact longitudinal direction. We can then split the SNC
spacetime directions as m = (u, u), where u is the compact direction and p

will describe the TNC directions. Then we impose the following gauge choice
on the SNC fields:

miy; =0, =0, =1, EY =0. (3.182)

Substituting this ansatz in the equations of motion would be quite tedious.
Luckily, since the equations of motion are obtained from an action, which
in turn is obtained from the generalized metric of DFT, it will suffice to
compare the generalized metrics rather than the equations or the actions.

1"Note that this is a sort of ”twistlelss condition” on the field strength of w,,.
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Comparing (3.46)-(3.47) with (3.145) we see that the two parametrizations
are indeed the same once we impose the following identifications:

U? = Oa Uil =1 ,
— o,
hsney = rney hisney = PRy, (3.183)
ey = 7NN, B = BN,
SNC
B ;(w ) = My

In addition, it is not hard to check that the invariant measure of SNC (3.148)
correctly reduces to the one of TNC (3.51).

This identification implies that the SNC equations of motion will match
the ones obtained for TNC, at least in the DFT formulation. Unfortunately,
the SNC beta functions have only been computed under the assumption that
the foliation constraint is satisfied'®, and similarly the TNC beta functions
have been computed assuming twistless torsion, so we cannot compare the
full SNC and TNC equations obtained from DFT with the ones obtained by
setting the beta functions to zero. However we already showed that when
F,,"4 = 0 the SNC equations (3.178) do indeed match the ones computed
in [9,77]. Using the identification between the SNC and TNC generalized
metrics, this also implies that the SNC beta functions with F,,* = 0 match
the TNC beta functions with F),, = 0.

8The SNC beta functions without the requirement of the foliation constraint were also
computed, but only at the linearized level.
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Chapter 4

Non-relativistic membranes

Having studied non-relativistic particles and strings, we now turn to the last
natural step of this thesis: non-relativistic membranes. To do this, we will use
an approach similar to the one used for Stringy Newton Cartan, namely we
will expand the basic fields appearing in the eleven-dimensional supergravity
action for large ¢ and then send ¢ — oo. This will yield an action for eleven-
dimensional non-relativistic supergravity, together with the corresponding
equations of motion. We will also analyze this low-energy limit of M-theory
through the framework of Exceptional Field Theory (ExFT), a generalization
of Double Field Theory which we introduced in the previous chapter.

The eleven-dimensional theory we construct has a number of interesting
features:

e Membrane Newton-Cartan geometry (see section 4.1.1). The geome-
try has three ‘longitudinal’ and eight ‘transverse’ directions, which we
can describe in terms of an eleven-dimensional Newton-Cartan metric
structure. This appears by taking the eleven-dimensional metric and
its inverse to have the form

G = EnapT B+ ¢'H,,, (1)

g;u/ = cHM + C_QT]ABTMATVB, .

where A = 0,1, 2 labels the longitudinal Newton-Cartan vielbeins, or

clock forms, 7,4, and H" and 7/, are projective inverses obeying the

Newton-Cartan completeness relations

A A B _ B
H"H,, + 1, =00, H"71,”°=0=H,m"a, T7'a1,” =04.

(4.2)
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We also expand the three-form as

éwp = —CSEABcTHATZ,BTpC +Clp + c‘géw,p ) (4.3)
Here ¢ is a dimensionless parameter whose ¢ — oo limit can be inter-
preted as a non-relativistic limit. It is the geometry that results from
this limit that we refer to as membrane Newton-Cartan. The powers
of ¢ in (4.1), along with the leading order power in (4.3), follow the
pattern of the powers of the harmonic function in the M2 brane su-
pergravity solution (see (4.180)). Note that ¢ is not the speed of light,
although it is related to it, see discussion after (4.114). (The minus
sign in the ¢® term in (4.3) is a choice of convention, and matches with
e.g. expressions in the SNC literature on dimensional reduction [16].)

Transverse self-duality (see section 4.1.2). Requiring singular terms to
cancel in the ¢ — oo limit requires that the finite part F),, ., = 40,C) 0
of the four-form field strength obey a self-duality constraint in the eight-
dimensional transverse space. This is a consequence of the presence of
the Chern-Simons term in the eleven-dimensional action.

Dual degrees of freedom (see section 4.1.4). The subleading part 6’#VP
of the three-form in the expansion appears in the dynamics with its
equation of motion imposing the self-duality constraint. The anti-self-
dual transverse projection of the field strength F,, ,, = 40),C, ] of this
subleading part can be identified with the totally longitudinal part of
the seven-form field strength dual to F),,,,. Hence the non-relativistic
limit involves what would normally be physical and dual degrees of free-
dom, however, rather than being related to each other as would usually
be the case, these degrees of freedom get reorganised into separately

self- and anti-self-dual parts.

Dilatation invariance and a ‘missing’ equation of motion (see section
4.2.2). The eleven-dimensional theory is invariant under a ‘dilatation’
symmetry which scales each field with a weight inherited from the power
of ¢ that accompanies them in the initial expansion. This is an ‘emer-
gent’ local symmetry [16] and it has the effect of removing a variational
degree of freedom when we vary the finite part of the action. Hence, at
this order, there is a ‘missing’ equation of motion. As we have seen in
the previous chapter, this is a familiar feature of non-relativistic the-
ories, with the naively missing equation corresponding to the Poisson
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equation for the Newtonian gravitational potential. However, we can
identify this missing equation by looking at the next order in the 1/c¢
expansion [16,25,27,103]. Indeed, here we identify this missing equa-
tion by extracting it from the dilatation variation of the action at the
next subleading order. In parallel with the situation in the DFT de-
scription of the NSNS sector that we saw in the previous chapter, we
also find it directly from the equations of motion of the exceptional
field theory description.

e Boost invariance (see section 4.2.3). The eleven-dimensional theory is
also invariant under Galilean boost transformations of the form

5ij = QA(MATZ,)A,
(ST“A = —H/WAZ,A, (44)

0Cp = —3€ABcA[MATZ,BTp]C,

where the (infinitesimal) boost parameter A,4 satisfies 7#4A,” = 0.
The slightly unusual feature here is the transformation of the three-form
itself. This transformation (4.4) is to be expected based on similar
observations in the case of stringy Newton-Cartan. There one can
either introduce additional one-form gauge fields transforming under
boosts, and treat the two-form gauge field as invariant, or else absorb
the former into the latter via a sort of Stueckelberg gauge fixing [10,16].
We do not introduce additional one-forms and so generalise this second
picture.

e Reduction to type IIA SNC (see section 4.5.1). Reduction of the theory
on a longitudinal isometry direction produces the full type ITA SNC
theory, coupling the known NSNS sector to RR fields. This is the same
theory that we studied in the previous chapter (after setting the Z4
generator to zero).

e Reduction to type IIA D2NC (see section 4.3.2) Reduction of the theory
on a transverse isometry directions produces a novel type ITA non-
relativistic theory, that can be associated to D2 branes rather than
strings.

o Exceptional field theory embedding and U-duality (see section 4.4). Fi-
nally, the eleven-dimensional MNC theory can be very naturally em-
bedded within exceptional field theory (which also manifestly breaks
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Lorentz invariance and treats original and dual degrees of freedom to-
gether), demonstrating that the same exceptional Lie algebraic struc-
tures that appear in the relativistic theory are preserved by the limit.
Furthermore, we can easily use ExF'T to study transformations be-
tween relativistic and non-relativistic geometries, and to obtain equa-
tions of motion which are otherwise missing from the action of the
non-relativistic theory. The achievement of ExFT is to present a unified
treatment of both eleven- and ten-dimensional supergravities in which
FEq(q) symmetry is manifest. The metric and gauge field degrees of free-
dom are reorganised into Eyg) multiplets. For instance, the wholly
d-dimensional components of the metric and three-form (and possibly
also of the dual six-form) appear in a generalised metric. For the cases
d = 3,4, this has an expression

1/(9—d) Gij + 3G, CM
My = g (J B " ) (4.5)

If we adopt the same expansion as in equation (4.1), then in the limit
c — 00, we obtain an alternative non-relativistic or non-Riemannian
parametrisation!

(4.6)

MMN—di(M” Mkl) )

Mk” MZ]le
with
M;; = H;; — EABCT(iAC')lekBTlC + CiklcjmnHkaln )
MM = —e g ATFBTIC 20, HP (4.7)
Mz’jkl _ 2Hi[k7_l]j + QTz[kHl
and where ) is a measure factor, and 79 = 77,77 gn48. This alterna-
tive parametrisation then changes the nature of the duality relation-
ships encoded by the dynamics of the generalised gauge fields of excep-

tional field theory. This allows the exceptional field theory formulation
to automatically capture the interesting reorganisation of degrees of

IThe flat space limit of (4.1) was already studied in exceptional field theory in [76], and
the general non-Riemannian parametrisation of the SL(5) generalised metric worked out -
this can be shown to be equivalent to (4.6). However a full analysis of the Newton-Cartan
interpretation and dynamics was not carried out.
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freedom implied by the non-relativistic limit. In addition, the missing
equation of motion is associated to variations which do not preserve the
non-relativistic nature of the parametrisation (4.6) of the generalised
metric.

The outline of this chapter is very simple. In section 4.1 we carry out the
expansion at the level of the bosonic action. In section 4.2 we discuss the
equations of motion and symmetries. In section 4.3, we carry out dimensional
reductions to type ITA. In section 4.4, we discuss the embedding in ExFT.

4.1 Membrane Newton-Cartan limit and eleven-
dimensional SUGRA

4.1.1 Setting up the expansion

Metric We start by writing the eleven-dimensional metric and its inverse
as
g/w = 027-#1/ + Cile/ ) g#l/ =cH"™ + ¢ AT (48)

We can view this simply as a field redefinition which introduces the eleven-
dimensional Newton-Cartan variables alongside the (dimensionless) param-
eter c. We will seek to send c to infinity and interpret the result as a non-
relativistic limit. In principle, we can also think of this ansatz as containing
the first terms in an infinite expansion in ¢~3, and we will occasionally allow
such a perspective to influence our presentation. However, we leave the de-
velopment of the full non-relativistic expansion to future work. To see that
the field redefinition (4.8) makes sense in Newton-Cartan terms we look at
the condition 4, = g,,G”, which gives at order c3, & and ¢73 respectively
the following three conditions?:

TupH?” =0, 7,7 + Hy,H” = 8", H,,m" =0. (4.9)

We view these as the defining conditions for 7,,, viewed as a longitudinal
Newton-Cartan metric (of Lorentzian signature), and H", viewed as the
corresponding orthogonal transverse Newton-Cartan metric (of Euclidean

2Note that the last of these identity heavily relies on the fact that we are truncating the
expansion of the metric at order ¢~2. If we included more subleading terms this identity
would not hold anymore.
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signature).®> Letting A = 0,1,2 and a = 1,...8 denote longitudinal and
transverse flat indices, respectively, we can introduce projective vielbeins
such that

_ A_ B v o__ v AB B B
Tw =T, T, Nap, TV =117, 1Ha1,” =64, (4.10)

H" = ' 00", H,y = o000, hFahb, =68, (4.11)

and hence obeying the Newton-Cartan completeness relations following from
(4.9). Here nap is the flat three-dimensional Minkowski metric and g, is the
flat Fuclidean eight-dimensional metric. We can then compute the determi-
nant of the eleven-dimensional metric:

det g,, = —c2Q?,
Q2 — 1 6/,&1...;1,1161/1...1/11

= 3w

(4.12)

T TuzuzTu3V3Hu4V4 cee Hmwu )

where e*1#11 denotes the eleven-dimensional Levi-Civita symbol. Hence
V=g = ¢ 1Q and it is Q which will be used as the measure factor in the
non-relativistic action. In terms of the vielbeins, we can write

o 1 vpo1...08 A_B_Cral asg
Q= |5 ™" €EABCEay..asTy T Tp R g, .. R4y (4.13)

and note that
0,InQ) = T”Aa,;/‘ + h¥,0,h", . (4.14)

We can obtain further useful identities by substituting the expressions (4.8)
into contractions of the Levi-Civita symbol and the metric. One that we will
use later is

6/”‘1~--P‘n)\1-~~>\117nEl’l-nl’na'lmo'llfn
31(8 — n)I(22 (4.15)

X Thioq - - - 7'/\303f[)\404 Ce H)\H_ngn_n .

nlH el —

Three-form For the three-form, let

C’g = Cg - %03614307'14 VAN TB AN TC + 0_353, (416)

3As in the stringy Newton-Cartan case, we could choose to include additional one-
forms in the expansion (4.8), however these can be eliminated by a Stueckelberg gauge
fixing [10,16].
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so that
Fy,=F, — %cgeABchA ATEANTC +¢3Fy, (4.17)

where

Fy=dCy, Fy=dCs. (4.18)

Although 53 is subleading, it will explicitly appear in the action and dy-
namics of the non-relativistic limit. Its equation of motion will impose a
self-duality constraint on Fj, and we will be able to identify a certain projec-
tion of its field strength with the totally longitudinal components of the dual
seven-form field strength. We can therefore interpret the subleading part of
Cy as being ‘dual’ to the finite part. This is clearly a general fact: the Hodge
star itself has an expansion in powers of ¢ and so inevitably mixes up the
terms at different powers of ¢ in any p-form it acts on. What is non-trivial
is that the Chern-Simons term of the eleven-dimensional theory will lead to
both C5 and C5 playing a role in the non-relativistic limit.

4.1.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

~

5= [ e (VIal [R(@) ~ £ Frupa] + 2358 B B Comons )
(4.19)

Here £ = dég. In form notation the Chern-Simons term is %Zl A Fy A ég,
the equation of motion of the three-form is d%fl = %ﬁll A F4 and its Bianchi

identity is dFy = 0. The Hodge dual field strength is = %Fy, which obeys
the Bianchi identity dF; = %F4 A Fy and the equation of motion dxfF7 = 0.

Chern-Simons term We start with the expansion of the Chern-Simons
term. Leaving wedge products implicit, we can simply compute

F4F4é3 - %F4F4C3 - é(303F4F4 + 6F4ﬁ4)%€ABcTATBTC

—3d <C3F403%€A30TATBTC + %EABcTATBTC(F453 + 03ﬁ4)) +0(c™?).
(4.20)

[N

We drop the total derivative.
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Kinetic term for three-form First, let’s write the component expression

A~

_ 3 A_ B C -3 7
FH1u2#3u4 = —06c T[#ULQ Tus Tus) €ABC T Fﬂl#2ﬂ3H4 +c Fu1#2u3#4 ) (4'21)

where we introduce the Newton-Cartan torsion
T, = 20,m,)". (4.22)

Any term involving three H*” contracting the first term in (4.21) vanishes
as one H" must necessarily contract a 7,4. As a result,

A

VIglg s g F i Fu
= Q| (H" L HME,

1 2 3 [

UiVl IJu2v2 A
FZ/1V2V3V4 —12H H T,uluz TV1V2A)

v A B o v 1% A B C
—24H"T,, T, " TP AT g — 12HM H" 2 F o piaps Donwy " T2 TH €40

HAVL T HoV2 [TH3V3 fiaVd
+ AHM H2 HS B TRE o pspa Forvavsia

+ 2HM H“4”4qu2u3u4ﬁyll,2y3,,4] -+ 0(0_3) .
(4.23)

Kinetic term/Chern-Simons cancellations and self-duality We now
examine the O(c?) terms in (4.20) and (4.23) which involve a field strength
Fy, as well as the O(c”) terms involving the subleading Fy. These cannot
possibly be cancelled by a contribution from the expansion of the Ricci scalar.
The relevant terms are:

1 W1V1 [TH2V2 [TH3V3 LT H4aV4 3 ol
W QOH H H H Fuwzugm (C Foivovsvs + 2FV11/21/31/4)

_ 1 1 eenenn Hni1 3 - A B
2414131 € B pansna (€ Fuspspzps + 2F s psprns JEABCTue " Tuao ™ Ty

(4.24)

c

To cancel the terms at order ¢3, we are led to require the following constraint:

QHMVI HM2V2HHSV3HM4V4FV1V2V3V4 = _6“1""':“11 FM5H6M7H8EABCTMQATﬂloBTHuC .
(4.25)

This says that the totally transverse part of F),,,, is self-dual (or anti-self-

dual). This is self-consistent thanks to (4.15). We will refer to this as the

self-duality constraint.
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Three-form equation of motion As a sanity check that requiring the
constraint (4.25) is sensible and necessary, let us at this point also take the
limit at the level of the equation of motion of the three-form gauge field. We
will revisit the equations of motion, including that of the metric, in more
detail in section 4.2. For the three-form, we have originally:

~

0r (V191" 975" 57 Fayx) = g€ Fo o Py - (4:26)

Inserting the expansion, one has firstly at O(c?) that

0 (QH“)‘lH”)‘ZHp)‘3 HUMFMWM)

_ 1 vpooy...07 A
- _ﬁeu r aU(Fdl...O'4€ABCTO'5 Tog Tor

oy (127

Y

which is the duality relation (4.25) under a derivative.

At O(c") we have the finite equation of motion

9, (9 (AHWN b priobagloha py Gl bl Brleloy | Ae

FHPN R e oM A4))

1 A_ B_ C
= ——HPILT8 (Fal-..0'4FO'5--.0'8 - 126ABCT0 Toz Toy F‘75""78) ’

2-414! 102

(4.28)

This will be reproduced from the action that we find below.

Ricci scalar Now we come to the Ricci scalar. A very quick way to take
the limit is to start with the explicit expression for the Ricci scalar in terms
of the metric and its derivatives:

» 1. v N 1. va apoq A
R = Zgﬂ augpaaugp - 59# augp apg;w

) (4.29)
— ZQW@M Ingd,Ing—¢"0,0,Ing —9,Ing0,9"" — 0,0,9"" .
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Calculating the expansion is trivial. One has R = ¢*R® + ¢R© + O(¢2)
with
@ = 1HW0 H*?0 1H“”8 H"?0
R - ZL v qua - 5 v pTuJ )

1 1
RO = ZHW(aquaayTpo + 0, H )0, H"”) + ZT“VQLT/JU@VHPU

1 1 1
— SH" 0,170 — SHMO,H 0, Hyy = 570, H 0,7,

— H"9, 1000, 1nQ — 2H"9,0,n Q — 20, InQ 0, H" — 0,0, H" .
(4.30)

Recall that the measure v/—g introduces a further power of ¢=!. The singular
piece can be easily rewritten as

R(4) = _%HHVHP(T(aMTPAaVTJB - aPTHAaUTaB)WAB = _LllHupraT/,LpATuaA .
(4.31)

This cancels exactly the remaining singular term appearing in the expansion
(4.23) of the kinetic term for the three-form. An entirely similar cancellation
appeared in the NSNS sector expansion of [16], and as noted there is remi-
niscent of what happens when taking the Gomis-Ooguri limit on the string
worldsheet.

4.1.3 Result of expansion and covariant formulation

Action and constraint Combining (4.20), (4.23) and (4.30) we obtain
the expansion of the eleven-dimensional SUGRA action in the form S =
386G 4 080 | The singular part is:

5(3) = — /dlll' ﬁFML--lMLFI/L-JM

X (QI{MIV1 L HMA 4 L6“1"'le'"V7EABCTVE)ATVGB7-l/7c) )

413!
(4.32)
and in order to have a good ¢ — oo limit, we impose the constraint
M1V1 [TH2V2 TTH3V3 TTH4V4 _ _eMekm A B C
QH H H H FV1V2V3V4 - 4131 FM5u6M7u8€ABCTM9 Tpo Tpar
(4.33)
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to ensure that S® vanishes?. The finite part of the action is:
SO = / d"z QRO + JH"™ T, T, "1/ 477
1 Hmlq [ H2v2 [TH3Vs pava [

pnzpspa Forvavs,
11 2V2 3B _paC
4+ 1 H“ H"F, eapc Ty, T8

1 1v1 2V2 3V3 4V4
— FV1V2V3V4(H“ HH2v2 [yRsvs fprava [

1 fh2 3 fha

V1V2V3VANT - T A B C
+4'3'Q€ F popspa €ABCTys” g Tur )}
+iFy NFy NGy,

(4.34)

where R is defined in (4.30). The equation of motion of C,,,, gives exactly
(4.28), and we will discuss the equations of motion of the Newton-Cartan
fields in detail in section 4.2. The equation of motion of aum is (4.27),
giving the constraint under a derivative. Alternatively if we were just to take
the action (4.34) at face value, forgetting about its origin via an expansion
of the three-form, we could make the choice to view F wpo as an independent

field, serving as a Lagrange multiplier imposing the constraint in its form
(4.33).

Symmetries The action is diffeomorphism invariant (as follows from the
covariant rewriting we carry out below), as well as gauge invariant under
5Cy = dXy, 6C5 = dXy. The vielbeins he, and 74, transform under SO(8)
and SO(1,2) rotational symmetries respectively, which are also symmetries
of the action. The non-relativistic theory is also invariant under Galilean
boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of free-
dom. The parameter for such a boost is denoted AMA such that 7#4A 7 = 0.
We can give the (infinitesimal) action of these symmetries as

(SAH/W = 2A(MAT1,)A,
oAtha=—H"A,a, (4.35)

5A0,u1/p = —3€A30A[HATZ,BTP}C .

4Strictly speaking this is a sufficient condition for the vanishing of S®), as we could
alternatively integrate by parts and use (4.27). However the full constraint (4.33) will
follow from the expansion of the metric equations of motion that we discuss in section
4.2.1, as well as in the expansion of the dual field strength discussed in section 4.1.4, and
also follows directly from the exceptional field theory formulation of section 4.4.
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The action S© is invariant under these transformations on using the self-
duality constraint. One way for the action to be exactly invariant would be
to treat F),,,, as an independent field transforming as

5Aﬁuupa = _4A[,uAFVp0']/\7—>\A ) (436)

or to have awp transform in a way leading to this transformation.

The dilatations are meanwhile induced by the expansion in powers of
¢, with the dilatation weight of each field equal to the power of ¢ which
accompanies it in the expansion. The (infinitesimal) action of dilatations is
hence:

S\HM = tNHM |

nHy =—\Hy, ,
Tl a=—ATh4, (4.37)
ot =+t
nChp =0.
Note 02 = —AQ. For X coordinate dependent this is a symmetry of the

action S on using the self-duality constraint (4.33). If we treat F, uwpo A4S an
independent field transforming as (&f oo = —3\F wpos then the action S ©)
is exactly invariant. We will explicitly verify the invariance of the action and
study these symmetries in more detail in section 4.2.

Newton-Cartan connections and covariant rewriting The way we
obtained the action (4.34) was by a straightforward computation at the level
of the metric and three-form. To better understand the result, we rewrite
the action in a covariant way by introducing the following connection

1
FZV = TpAauTl/A - §HPU (auHUV + aVHMCf - affHW) ) (4‘38)

whose covariant derivative we denote by V,. This satisfies the following
metric compatibility conditions:

V,H" =0=V,r,", (4.39)
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though it is not the unique solution®. The antisymmetric component of (4.38)
is the torsion (4.22):

1
Ly = 57 AT ™. (4.40)

It is also useful to define the ‘acceleration’ and its trace
a,t = —T”AT/ﬁ : a, = a,*Pnap, (4.41)

as well as its symmetric traceless component

1
0, 1B = q,(AB) _ EHABQ“ , (4.42)

where dj, is the dimension of the longitudinal space (which is d; = 3 here,
but we will will also use this notation in the reduction to the dr = 2 case
of SNC in section 4.3.1). The final tensor that will appear is the extrinsic
curvature defined by

1
’C[J,I/A = Q‘CT/’AH}LV ) Ka= HHV]C;WA ) (443)

and obeying the following useful identities
A, =0, V.t = H?K,, " (4.44)

Finally, let’s introduce some notation to make the expressions more compact.
Given an arbitrary tensor M,, carrying lower indices, we will employ for
convenience the following short-hand notation:
M" = H""H" M,,, Map=1'am"5M,,, V,Map=V,(m"am"5M,u) ,
(4.45)
and similarly for tensors of arbitrary rank. The meaning of raised indices
should then hopefully clear from context — note that e.g. the field strengths,
Newton-Cartan torsion and covariant derivative are all naturally defined with
lower curved indices so when they appear instead with raised curved or lon-
gitudinal flat indices this uses the above notation.

SHere V acts only on the curved indices. It would also be possible to define a connection
covariant under local SO(1,2) transformations by replacing the partial derivative 8MT,,A
term with a spin covariant derivative, as we did in the previous chapter.
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The action can then be written in terms of these manifestly covariant
quantities as

S = /dnx QL+ L+ Q" Liop) (4.46)
with
3 1 1
L=TR—a"Pa,ap + éa”ay — EF“VPAFW,)A + Z€ABCFABWTWC7
1~ 1
Eﬁ _ _EFV1..~V4 <Fl/1...l/4 4 4:'3—‘961/1.“V4‘u1...“7F/11.../L46ABCT/,L5AT/LgBT'u,'yC) 7
1 L1
Liop = 6F4 NEyNCy = e Fov i F s nsClig.pinn »

(4.47)

where the Ricci scalar R is defined in terms of the usual Riemann curvature
tensor of the connection (4.38) via

Rl = 010, — 0,10, + 0.0, —T0T0,, R =R’ H™ .  (4.48)

po 3

4.1.4 Dual field strength

The appearance of the two field strengths F; and F} in the finite action (4.34)
may seem rather exotic. In fact, we can relate the latter to components of
the dual seven-form field strength, revealing that the non-relativistic action
involves a partially democratic treatment of what are originally dual degrees
of freedom. In eleven-dimensional SUGRA, we have

F7 = déﬁ‘l‘%ég/\ﬁl;, F7 :‘)A(FAL (449)
With our expansion, we can compute %ﬁll in components:
GED s = Qs prinoan (CHN HPME, o HYN L HYME
HAHYN L HPNTAME
— 6HV1)‘1HVQ)\QT)\l)\QATVBBTV4CEABc) + 0(6_3) .

(4.50)

We then search for an expansion of Cs that can reproduce the singular term
and lead to a sensible definition of the dual six-form in the non-relativistic
theory. This is provided by

Co = =303 N reapom AP ATC + Cs — L5 A Leapom ATE ATC | (4.51)
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leading to
Py = —eame STANT B ATCO AR 4 dCo+1CsAFy—“4BC TANTEATONE, | (4.52)

where we are ignoring terms of order ¢~3. The singular piece in (4.52) agrees
with that in (4.50) on using the self-duality constraint (4.33) obeyed by Fj.
From the finite terms, we can define in the non-relativistic limit the quantity
F,=dCs+ %Cg A Fy which obeys again dF; = %F4 A Fy. We could also define
this quantity directly in the non-relativistic theory after taking the limit by
starting with the equation of motion (4.28) of the gauge field. In that case, we
would define the dual seven-form field strength to be the quantity appearing
under the exterior derivative, including all terms on the left-hand side of
(4.28) as well as that involving dr on the right-hand side. In components,
this means

_ 1 2P vada 17 V1Al V33 Va4
F,ul...;n = IQGN1~~#7V1--~V4 (H e H F)\l...)\4 + 4H e H T F)\l...)\

1P 129 A_vsB_uv,C
—6H1 1H2 2T)\1>\2 T3 7'4 €EABC

1 —1 _vi..v4A1...2 A B C 1
+ 4,—3,9 evlrant 7€ABC7—>\1 7')\2 T>\3 F)\4_._)\7) .
(4.53)

4

Now, we can take the totally longitudinal contraction

_ 1 o o o V1A Vada T
F,u,l...,u4ABC - IQE/J,L../L4I/1...V4O'10'20'3T 1AT 2B7— 3CI{ L H™ 4F)\1.A.)\4 (4 54)
+eapcliu . -

Using (4.15), it can be shown that whereas the transverse part of F},,,, obeys
a self-duality constraint, the longitudinal part of F},  ,, obeys an anti-self-
duality constraint:

V1 4V4 o1 (op)) o3
QH” e H“ FHl---M40102037— AT BT “C
_ 1 AV 4N A3 D E F
= g€ N B epppTA, T Ty Tas” Pl ABC -

(4.55)

The conclusion is that (4.54) shows that the totally longitudinal part of
F,, .., can be identified with the anti-self-dual transverse part of ﬁ#,,pa. No-
tice that the longitudinal part of the latter projects trivially out of the action,
and in fact it is exactly the projection as on the right-hand side of (4.54)
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which appears in (4.34). Hence we can re-express the terms in the Lagrangian
involving F),, ., as

11 1 ABC_X1 A2 )3
Li= =50 minnge T1aT BT 0
v 12 1 e b4V ..l D E F
X (H“1 1o HM —4!3!96“1 B e BTy Tug: Tus )FV1V2V3V4.

(4.56)

This appearance of (components of) both the four-form and its dual together
in the action is again reminiscent of exceptional field theory.

4.2 Equations of motion and symmetries

We have expanded the action, and now we turn our attention to the equations
of motion, and the role played by the non-relativistic dilatation and boost
symmetries.

4.2.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider
the result of expanding the variation of the action. We will explicitly find
that this gives the same results as varying the expansion of the action we
considered previously. The reason we take this approach is that it will provide
a useful way to keep track of which parts of the expansion of the eleven-
dimensional equations of motion appear at which order. Recall that we
view our non-relativistic limit as arising from a field redefinition, and we
do not consider possible subleading terms which would occur in a true non-
relativistic expansion. That said, we set up the expansion below in a way
that would be reminiscent of such an expansion.

The relativistic equations of motion are obtained from the variation of
the action (4.19):

55 = / A1 (/13165 Gy + 5Chy €7) (4.57)

g/w = R,uzl - 1_12F}LPl...p:*,F’Vplmp3 o %gl"/(R N %FplmpélelmM) ’ (4 58)
gre 1 (80( |§|F“Vpg) . m6’“’”01"'USFal...mFasuﬂs> . ‘
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We consider the non-relativistic expansion of the fields, in the form

P = cHW 4 ¢
guu = CQT/W + C_lHuV ) (459)

A

_ 3 -3/~
Cuvp = wpp +Crp + ¢ °Cyp,

where wy,,, = —¢ AgcTMATl,BTpC. Both G and £ admit an expansion in powers
of ¢, with

G =GO+ G0 + GO 4G L

4.60
E = 635(3) + 005(0) + 6735(_3) + ( )

We now re-organise the variation of the action that results from (4.59), by
inserting the expressions (4.59) for the metric and three-form. We choose to
consider the variations of 74 and H*” as independent, in terms of which

OWywp = —w#,,pT)\DéT)\D — BwA[HVHp],{éH’\” ) (4.61)

The general result at order ¢3" following from (4.57) is that
550G — / d%[&HW(ng;") — BWpupo HanElyr )

+ (ST“A(QTVAQQ(SnJrg) - TAuwpa/\ng)\ (462)

3n 3))
+ 0Cu ol + 0CpElr ] ;

3In+3

using +/|g| = Qc!. Hence, in general, if we expand the theory up to order
3k, for k < n < 2, the equations of motion will be

g<(3n = 3H}\ (W) pO’Q 5);3610 3)

26 = 1 4wy 2 e (4.63)
Elt =0,

with the understanding that G = £© = 0. The angle bracket notation
takes into account that the variation of H*¥ is constrained by 0 H ’WTMATVB =
0. We can solve this constraint by letting 6 H* = HPWH po M )7 such that

the naive variation 0 H*"T),,, = 0 implies instead the equation of motion

T(;w) = %(HW)H’)UT(U,,) + HVPHPUT(/W)) =0, (464)
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which is symmetric and obeys 7# 47" T, = 0. Note that the equation of
motion for C at each order is exactly that of C' at the previous order.

We should contrast the equations of motion (4.63) with the result of inde-
pendently expanding G and £. If we naively set each other of the expansion
of the latter to zero, we would find the equations G®» = 0 = £6™ at any
given order. However, in the non-relativistic expansion, treating 74 and
H" as independent fields, then equation (4.63) says that we cannot simply
expand the relativistic equations and set each order independently to zero
unless we consider the full expansion (potentially infinite if treating sublead-
ing terms). A similar subtlety is the question of which equations of motion we
are meant to expand. For instance, in the relativistic theory both £#*? = 0
and gwgp,{gmg‘m’\ = 0 are equivalent, but lead to different truncations to
finite order in the 1/c expansion. Here we have made the choice to expand
the equations of motion that appear conjugate to the variations d¢g"” and
0Cp-

Let us look for example at the first two orders, c® and ¢3. If we simply
wanted to expand the theory up to order ¢® we would find the equation
(G© —3wEBH) (uy = 0; however if we proceed with expanding up to order
¢ we find that the equation for the three-form tells us that £® = 0, so that
we can safely impose the two equations ggj% = £B) = 0 independently.

Matters are further complicated by a number of ‘off-shell” identities obeyed
by the terms appearing in the expansion of G and £. These identities will fea-
ture heavily below, and in fact are crucial for the consistency and symmetries
of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders
of the expansion of (4.57).

Terms at O(c%) Here we encounter the leading terms in the expansions of
G and &. First of all, we have

g/(ﬁj) - %T,uz/ (%TiongaﬂABHpmem + 4_1ng101 s Hp4a4Fp1...p4Fa1...o4) )
(4.65)

which obeys G, = 0 automatically. Hence the 6 H* variation at order ¢®
does not imply an actual equation of motion. One also has

pvp 1 nvpo 1 _uvpooi...or A B C
E = —50s (QF™P7 + e Eyy 0 €ABCToy " Tog T ") . (4.66)
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This is the self-duality constraint under a derivative. It obeys TMAT,,BE'(’;”” =
0, and so also the 67 variation at order c® vanishes identically. This is however
necessary for consistency: the expansion of the action itself started only at
order ¢, i.e. S©® = 0. Hence at this order we do not obtain any equations

of motion.

Terms at O(c®) At this order, there was a non-zero S© given by (4.32),
for which we required the self-duality constraint (4.33) to set to zero. Let
us see how this information is reproduced. First of all, the variation of Cj
coming from (4.62) at this order implies &3y = 0. The variation of 7#,4
involves a contribution from &), which can be read off from the finite part
of the expansion of the three-form equation of motion, which was (4.28). For
convenience, we repeat this here:

Ela? = =10, (QAHVN HIPe s lo gy o e

B GH[MMIH|V\A2T|pIBT|a]CTA1A2AeABc))

prpoq...og A B C
+ e—(F01.4.0'4F0'5.‘.0'8 - 12€ABCT0'10'2 7—0'3 7—0'4 Fa’5.‘.ag) .

2-314141
(4.67)
What one finds then is that
QT”AQQ(G — 1, AW, EQPA
T (4.68)

Qm V1...04 €V1-V4P1---PT A B_ C
= S o (F + oz p1.-pa€ABCTps Tps Tpr )7

which is proportional to the self-duality constraint. For the terms accompa-
nying the § H*” variation one finds
v 3 oA
oH" (Qg;(w) - 3w(H|PUH>\|V)8(p0) )
= 0H" (fimeancHy (o) T3 P10 By 0a Frrg. g €737 (4.69)

_QF F i 03+QH F2)

Hp1---p3

such that after projecting using (4.64)

M- A301...08 A B C
]-412 6ABCI—I)\l(,uTz/) Txa T)s FU1‘..04F0'5...0'8

Q 2 Q KPoA
+ %H/J,Z/F - ﬁHm(qu)paAF P )

gy

oA
) — SWilpe Hp) E) =

(4.70)
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using the obvious shorthand for raised indices and F? instead of writing H*¥
multiple times. This exactly reproduces the variation §S®) of the leading
part of the expansion of the action (4.32). Then, after projecting and using
the Schouten identity, (4.69) or (4.70) can be shown to again be proportional
to the self-duality constraint (specifically: the time-space projection of the
first term combines with the time-space projection of the third term, and
the space-space projection of the second term combines with the space-space
projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-
duality constraint. This is consistent with what we required from the expan-
sion of the action.

Terms at O(c") We next consider (4.62) with n = 0. First of all, the
equation of motion of C' indeed gives &), as in (4.67), while that of C gives
the constraint in the form £y. This is exactly what we obtain from varying
the finite action S directly. Note that the longitudinal projection of &) in
conjunction with the self-duality constraint implies the equation

UpapH' HY" T, T, B = — LEm»  Hrnp,  F, . (471)

1. e
thereby reproducing the equation we would get by setting G©® = 0 (com-
pare (4.65)). Hence although we could not set G(® = 0 previously, the
non-relativistic theory is not missing this equation. Note that for generic
non-vanishing Fy, equation (4.71) is incompatible with imposing foliation-
type constraints on the MNC torsion such that the left-hand side vanishes,
however if F} is also restricted to vanish (for example) one could require such
constraints (as is always possible in the NSNS sector case [16]).

Now we turn to the equations of motion following from the variations of 7
and H. For simplicity, we present here the independent equations of motion
after projecting onto longitudinal (time) and transverse (space) components.
The temporal and spatial projectors are defined as

(A, =7rant, (Ag)'y=H"H,, (Ar)",+(Ag)!, =44,
(4.72)

We start with the equations of motion of 7. The trace of the time projection
gives an equation involving the Ricci scalar:

7 AB 7.2 1 Avpo 1 ABpo C
R = §V“au + a }CLMAB + g0+ %FAupaF po — EGABCF P Tpg

17 vpo 1 VPOAL... A\ A B C
+ 4 Ewpe (F*77 4 qimeance™” T Fy T Tas A" ) -

(4.73)
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The traceless part of the time-time projection is:

Vi auapy + a"auapy + aue@ 3oy " + 5 Fa" Fau,
= E(AICDFIB)OWTWD - MTB (_TEFCMVPFCW + ECDE’FWCDTWE) .
(4.74)

The space projection is
VoI 4 + apacTHC = 2FMP F e — Leapc F'7PT,,C (4.75)

Finally, we consider the equations of motion of H. The space-space projection
is:

R(“”)—G“ABa”{AB} + % (a“a” - a2H“”)
= 7PAVWTY) g+ LHM N a, + SFHPOAFY g — e HM FAY7 Fy o
_ %GABCF(MIPABTIV)pC + Q—ZHWGABCFWABTPUC
+ %F(ulpakﬁw)pd _ IISH”VFPUME}JU/\R
+ %H’“’( - R+ %Vpap + a”{AB}apAB + %aQ
+ %FA)\,OUFAAPU - %GABCFABpanO'O) .
(4.76)

Combining the trace of (4.76) with (4.73) we find that the self-duality con-

straint (4.33) appears (contracted with F),,,,).
The time-space projection is (with e pc = n*Peppc)

A A(BC 1 BA 1 _A BC 1 _A BC
R(H ) — a“Bca (BC) + §CLBCL‘U = ZE Bcva'up + ZE Bc(lpF'U’p

ABF,upC’D + iFABpUF‘LL FABCpr,uD

1 1
+ 1€BCDAp Bpo T 7€BCD
+ %CLPBAVPT”B — %V%’“A — a”VpT“A — %a“BAICB + %a“ICA
— Va4 VA + 4TV V74 + LV, VA — L pVFa, AP

1 NA voo 5A1“‘A3‘71“'08
+8F(#VpUF Jvpo _

A B C K R
4.412Q) € BCTX, T)s H# HK)\lFO'l...O'4FO'5...O'8 .

(4.77)

One can verify that these are indeed exactly the equations of motions that
one gets by varying the finite part of the action, S, given in (4.34).
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4.2.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by
(4.37), whose origin lay in the expansion in powers of c. There is evidently
a freedom to rescale ¢ by some constant while simultaneously rescaling the
component fields such that the eleven-dimensional fields are unchanged. This
rigid dilatation leaves the full action invariant. Hence for an infinitesimal
dilatation, with dyc = —Ac, we have the transformations (4.37), and clearly
order-by-order for the action we should have

5,9 = 6AS©)

5,S® =3)\56)

\S© =080
oS = —3A5C3)

(4.78)

and so on. Recall that S© and §S© vanish identically, so the first two of
these are just 0 = 0.

A powerful consequence of the rigid dilatations is that if we know the
equations of motion for the action S at a given order k # 0 we can imme-
diately write down an action that produces them (which will agree up to total
derivatives with that arising from the expansion). This works by applying
the formula (4.62) for the variation and specialising to the dilatation varia-
tion. This is guaranteed to produce 3kS®*) . This singles out the finite order
action as being special, as here knowing the equations of motion and dilata-
tion symmetry is not enough to determine its form. Furthermore, for this
case we can promote the dilatation parameter to be coordinate dependent,
and obtain a local dilatation symmetry.

Let’s verify these statements. Under a rigid dilatation with parameter A,
the variation of the ¢® part of the action is

5,83 — / A"z Q (AGEY H™ — X (2(G D) 4 + 3eapc QT ELTC)) . (4.79)

where £4BC = TMATVBTng“Vp. It can be checked that Q’fg,)H“" = 0. Then, if
we denote the self-duality constraint by

Hil.pd — FTH1P1 Hapa 1 pi...papr...p7 A_ B_ C
S =H Y Qamar € F o ps€ABCTps Tps Tpr s

(4.80)
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we have
(Gl (4.81)

2(G)" 4+ 3eanc QT EG] =355 Furou

hence indeed referring to (4.32) for S© we indeed have
5@ =3)\SB) (4.82)

Next consider the finite part of the action:

5\S) = /dnx Q [Agffi)ﬂ“” — A (2(6W) 4 + 3€ABCQ_18(A;B;>)C)
) (4.83)
+ Q7 LEBmes O

Now we can show that

G — (2G4 + Seanc €M) = ~3F

8% M1..-[a

OrH(4.84)

such that using Sé';p = —30,0"77 we have

(5)\5(0) = /dllx (_%)\ﬁyymf@wjpg - %8U®#yp05>\5ﬂ’jp) )
) - (4.85)
B /dllx (_%AFMVQO'@“W)U - i@MVpgéAFMVPU) ’

after integrating by parts. For arbitrary local A, we therefore have 6,5 = 0
on imposing the self-duality constraint, irrespective of the transformation of
Clwp- Alternatively, if we require that

(Sz\ﬁ,uz/pa = _3)‘ﬁ,u1/pa ) (486)

then (4.85) vanishes identically without use of the constraint. This would
mean accepting a non-local transformation for CN’WP itself, which is not com-
pletely outlandish given the discussion in section 4.1.4 suggests we may think
of it as being a dual degree of freedom to Cj.

What this means in practice is that the action S© is invariant under
variations of H* and 7#,4 of the form (4.37). This implies that there is a
‘direction’ in the space of variations which leaves the action S unchanged
(or at best produces the self-duality constraint, which is not an independent
equation of motion). Hence if we vary S to obtain the equations of motion
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of H* and 7#,4, we will find that we are ‘missing’ an equation of motion.
This is exactly as in the NSNS sector case (see previous chapter and [16])
and reflects a known difficulty, even in the purely gravitational context, of
obtaining the Poisson equation from an action principle for non-relativistic
theories [25,27], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation,
we go one step further in the expansion. The variation of S, from (4.62),
is:

653 = /d11 [ HW(QQ U 3&)#ng)\1}ng)\> + 50#14)5#14)

(4.87)
+ 0T 4(2740G) — €L + OCu LY |
For dilatations we have
5\ = /dllx [)\ (H"™QG? —20(G D) a® — Beapc €T
v (—6)
N (4.88)
+ 5Acuy,,ggg§ﬂ} .
With constant A, equation (4.78) implies that
S=3) = / dz (AN + @Vpsgggp), (4.89)
where we defined the combination
N = 3(=H"GL +2(GD)a") + capc ELG (4.90)

Crucially, (4.90) does not vanish on applying the self-duality constraint, un-
like the combination of terms (4.81) and (4.84) which appeared at the pre-
vious orders, and nor is it a combination of any other equations of motion
resulting from the finite action. It can therefore be used as the equation of
motion of the ‘dilatation mode’. (We are not really interested in the C' vari-
ation appearing in (4.88), which multiplies something we have already taken
into account as an equation of motion.) It involves the fully longitudinal part
of G, which has not yet appeared in the equations of motion. Hence, we
identify it with the ‘Poisson equation’, in which the longitudinal part of C,,,
plays the role of the Newton potential (as did the longitudinal part of the
B-field in the Stueckelberg gauge-fixed NSNS sector). This is because 5(76)
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is the first equation of motion which contains two derivatives acting on the
former. Explicitly,

pp
€6)

—_1p, (9(4 HIA e o o gy gl e pleds ol ﬁh_”M)

vpo1...08 - -
!e“ o F,

1
+ 2.414!3 1...0’4F(J'54..a'8 .

(4.91)

Intriguingly, the combination of G(=* and G appearing in (4.90) has a
somewhat murky relationship to the ‘trace-reversed’ version of the metric
equation of motion. The equation G,, = 0 in the original eleven-dimensional
theory can be simplified somewhat by taking its trace and solving that for
the Ricci scalar. This trace is

"G = — SR+ L F? (4.92)

and the equation of motion without the Ricci scalar is

g_MV = guu - %g/ﬂ/gpagpa = Ruu - TIQFppUAFVpJ)\ + ﬁgm/ﬁ2 ) (493)
for which B
™GO = L2 g0 — H G, (4.94)

which is exactly the combination appearing in (4.90). Note the relative nu-
merical factors here are the same as the relative numerical factors in the
powers of ¢ in the expansion.

Now, what exactly is the equation (4.90)7 Expanding the metric equation
contributions and covariantising everything, one arrives at

vA(0 A A 1 _ABC 1 _ABC A
TH Qf“,) =27H VpICMpA—V ICA—Z(Z aAapc — 50 aAacB — @ ap
DAB C 1 mABuv 1 ruvpo 1o 1 T uvAB C
- EABC’F’ papD - gF . FAB;M/ + 4_8FN r Ful/pa + ZEABC’F"u T;,Ll/

— CLA/CA + IC’IWA/CM,,A - QTMATVBV,,QM[AB] - TIWVNCL,, ,

(4.95)
A_B_Co—-lepvp _ 1 ABC 1 T ABuv C
€EABCT, T Ty 5(_6) = —g€eapcVI'F p— 7€ABcF T,
Al...01...08 1 jad jad A B C
_'_WgFa'l...0'4Fa'5.A.0'8€ABCT)\1 T)\Q T)\3 )
(4.96)
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hence the covariant Poisson equation is

_ _1 ABC ABC A 7BCD 1 nABuv
N— —EEABc(V“F u—i—auF #+3CLMD F N) — gF # FAB;W
1 ppvpo o Q-1 A..)301..08 1 A A B C
+ @Fﬂ pUF;LVpU + me ! 871 08F0'1...O'4F0'5...O'8€ABCT>\1 T)\Q T>\3
— Vs — a*K g — K"Ky s — 20" PIC, a5 — 27V 4,

ABC/(1 1
— a7 (aaBc + 50408 + NBCGA)

=0.
(4.97)

Note that this expression could equivalently be rewritten in terms of the
Ricci tensor, using the following identity:

RAU=T"Ryu = =V s = K" Kpa — " PKpap - (4.98)

Remarkably, equation (4.97) transforms covariantly under local dilatations.
Exactly this equation will also be selected by the exceptional field theory
description as an ‘extra’ equation of motion that one can not find from
the variation of the finite part of the action. Furthermore, under Galilean
boosts (discussed in next subsection), it transforms into the other equations
of motions. All this is in keeping with the properties of the missing Poisson
equation in the NSNS sector and supports including equation (4.97) as an
equation of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the
rest of the equations of motion from the expansion at order ¢® and this extra
equation from order ¢=3. Clearly, if we would vary the action S(=3) we would
find additional O(c™®) contributions to the finite equations of motion, and if
we would vary the action S(—% we would find additional O(c~3) contributions
to the equation of motion (4.97), i.e. it would become N = O(c™3). The
guiding philosophy is to find the lowest order non-zero equation of motion
resulting from the variations of the action. For the Poisson equation associ-
ated to the degree of freedom that disappears into dilatations at the level of
S this happens to arise at lower order than the other equations of motion.

As a final remark, just as in the NSNS sector case [16], it is also possible
to define a covariant derivative that is covariant with respect to dilatations.
Letting b,, denote this dilatation connection, and simultaneously introducing

wMAB as the longitudinal spin connection, we this new affine connection is
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defined by the following metric compatibility conditions
%MT,,A = @LTI,A — quBTl,B — buT,,A — ffprA =0,

V, HY = 0, H" — b, H* + % 0 4+ T, H = 0 (4.99)
1 = Ou p pA pA =U.

The solution to these equations is

~ 1
re, =10, — 774 (b +w,*P7,5) — §H’” (b,H,, +b,H,, —b,H,,) ,

(4.100)
where the dilatation and spin connections are explicitly given by
1 1 1
b, = 3(1“ + 67'uAaA> wMAB = —aM[AB] + —TMCaABC + TH[ACLB] . (4.101)

4.2.3 Boost invariance

Now let’s consider the boost transformations defined in (4.35). The calcula-
tions are very similar to those in the previous subsection. The variation of
S®) under (4.35) vanishes identically. The variation of the finite action gives

550 = / a"a| = A (2H7 4005 + Beancn, " n.OEl )

) (0) (4.102)
+ 0 CuunEly?]
and the combination of G and £ terms appearing here is
—20G5 A — 3e 4l PA,C
= %FAW”AUAFWW %Fal 01 Foeos M, 70, P, Ceanc -
(4.103)

Using A, 47" p = 0 and the Schouten identity this can be shown to be propor-
tional to the self-duality constraint. Hence the finite action S is invariant
under boosts up to a total derivative and the self-duality constraint. To make
the action boost-invariant off-shell we must improve the transformations (4.4)
by requiring F' to transform as well, similarly to (4.86). The improved boost
transformations are

5AH —2A T,,A, 51\7'“ —H" AVA)

. (4.104)
6ACqu = _SEABC'A[M Tv Tl 5AFuup0 = _47- AF)\[;UJpAO']
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Furthermore, one can then check that the set of equations of motion pre-
sented in the previous sections is boost-invariant (i.e. closed under boosts)
as expected. This includes the extra equation of motion (4.97), which under
boosts transforms into the time-space projection of the equation of motion
of H*  equation (4.77), as well as the self-duality constraint. This further
implies that it is consistent to include it on the same footing as the remaining
equations of motion that can be derived by varying S®. Indeed, one can
obtain the boost variation directly from that of S(-%) which is:

5509 = / a"a| = A (27400 + Beanom P, OE1))
_ (4.105)

+ 01 Cunly?]

The quantity in round brackets is exactly the time-space projection of the
H" equation of motion. (As a side-remark, note that this means that the
boost variation of S~ is not identically zero, although it is zero on using
the equations of motion following from the finite action.)

4.3 Dimensional reductions and type IIA Newton-
Cartan

In this section we will propose reductions from the eleven-dimensional Newton-
Cartan theory to ten-dimensional type ITA Newton-Cartan theories. We have
a choice of whether to reduce on a longitudinal or a transverse direction.
Reducing on a longitudinal direction will lead to type ITA stringy Newton-
Cartan with RR fields. Reducing on a transverse direction will lead to a novel
type ITA Newton-Cartan geometry which can be thought of as arising from
a non-relativistic limit associated to D2 branes rather than strings. Simi-
lar reductions have been carried out in [104,105] from the M2 worldvolume
theory.

For comparison with the reduction ansatzes below, let us record here the
usual decomposition of the eleven-dimensional metric and three-form into
ten-dimensional fields:

432, = "B (dy + A))? + e 2*Pd2,, Oy = Az + ByAdy,  (4.106)
where y denotes the direction on which we reduce.
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Index book-keeping In this section, we denote the eleven-dimensional

Newton-Cartan fields and curved spacetime indices with hats, thus iL“ﬂ, %ﬂA,

Q, and so on such that the eleven-dimensional coordinates are a# = (x* y),
with = 0,...,9. We assume that we have an isometry in the y direction.
The eleven-dimensional three-forms are denoted Cjpp, Chsp-

4.3.1 Type ITA SNC

Here we present a reduction ansatz which produces the known Stueckelberg
gauge-fixed form of the SNC NSNS sector action, supplemented with RR
fields.

Reduction ansatz We want to reduce on a longitudinal direction. We
therefore split the longitudinal index A = (A,2) with A = 0,1. Then we
single out

72 = *®B(dy + A,dat), (4.107)

thereby defining the dilaton ® and RR one-form A, that will appear in the
reduced theory. If we take 75 = e72%/39), then the remaining pair of Newton-
Cartan clock forms and vectors must have the form

A = e*qh/?’THAdx“ . TA= e+¢/3(T“A8“, —T7"pA,0,) . (4.108)
A compatible ansatz for the transverse vielbein is
hey = (e7®3h,,0), R, = (e*Pht,, —e®PhY,A,). (4.109)

These are such that 7,%, 7#a and h*,, h®, are ten-dimensional fields obeying
the usual stringy Newton-Cartan completeness identities. We can define
T = TMATVBUAB, H,, = h“uhbyéab, and similarly for the projective inverses.
We also have

Q=80 Q=L Peppeay. aTy TN o h®0y . (4.110)

Finally, we make the traditional decomposition of the three-form and its field
strength:
C3 = A3+ By ANdy,
Fy =G4+ Hs A (dy + Ay),
Gy = dAsz — Ay N Hs,
Hs =dB,y,

(4.111)
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where A; = A,dx", along with
53=g3+§2/\d?/>
Fy=Gy+Hs A (dy + Ay),
Gy=dAs — Ay A Hs,
Hy = dB,.

(4.112)

Interpretation as an expansion Inserting the above ansatz into the orig-
inal limit (4.1) gives
d§%1 = 0264®/3(dy + A1)2 + 6_2‘1)/3(027',” + c_lHW)da:“dx” ,

. SO 4.113
Cy=—Lleas™ ANTP Ady + Az + Bo Ady + ¢ (A3 + By A dy) . ( )

Hence according to (4.106) this translates into the following expansion of the
ten-dimensional type ITA string frame metric g,,, NSNS two-form, B,, and
dilaton ®:

g,uz/ = CgTuV + H;W ’
By = —Repg™ A T8 + By 4 ¢2B;, (4.114)

&
e? = c.e?,

where ¢, = ¢*2. This is nothing but the limit leading to stringy Newton-

Cartan [16]. Recall that in that case the true speed of light C' was rescaled
by a dimensionless parameter, C' — c;C, and the non-relativistic limit was
defined as ¢; — oo, which also gives the relation between the expansion
parameter ¢ and the speed of light C.

In addition, we have an expansion of the RR fields:

Ay = Ay + ;2 A3, A= 4. (4.115)

It is clear from these expressions that we can equivalently view this reduction
as the result of the usual M-theory to type ITA reduction using (4.106) fol-
lowed by the SNC field redefinitions of (4.114) and (4.115). At first glance,
this is not completely general, given that the ansatz for the RR 1-form A;
does not involve a subleading term while the other gauge fields do. A justi-
fication for the above ansatz is that it correctly produces the NSNS sector
dynamics of SNC. Modifications to the ansatz would involve relaxing the im-
plicit Stueckelberg gauge-fixing in 11-dimensions and comparing this to the
possible ten-dimensional expansions. We do not consider this in this thesis.
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Constraint The constraint (4.33) becomes

QHMVIHWVQH#SVSHMMGWW%M = 4112|€H1 o G#5M6#7#86ABT#9ATH108
(4.116)
and so only involves the RR 4-form field strength. The field strength of the
NSNS two-form is not constrained. This is to be expected, as the limit of the
NSNS sector alone makes sense without any constraint, and in the eleven-
dimensional case the constraint arose as a consequence of the Chern-Simons
term, which is not present in the truncation to the NSNS sector.

Type ITA SNC with RR fields The action obtained from the reduction
ansatz (4.108) and (4.109) is

St sNe = /dlox Q (e L+ Ls+ 0 Liop) (4.117)

with

L=7TR—a"®a,as + (a* — 2D"®)(a, — 2D, P) — i’H“”PHW
%HA’“VT,U,V o l ZQGuAG . %62<I>G,uz/pAGw/pA 4 e Z(I’GABpoGp
Lo=—1G 0, (G +
Etop = %dAg A dAg N B2 y

VL VAL 6 ()

A B
4!2@ p1pa €ABT s Tug ) )

(4.118)

using the field strengths defined in (4.111) and (4.112) along with G,, =
20),A,). As before, we write for convenience G* = H* H"’ G ,,. The Ricci
scalar and connection, torsion, acceleration and so on are defined in the same
way as before but for the SNC geometry. If we ignore the RR fields, this
is exactly the Stueckelberg gauge fixed action for NSNS SNC (note that the
subleading component B2 only appears in the definition of G4) Furthermore,
one can check that the reduction of the Poisson equation agrees with the
Poisson equation for SNC, with of course additional contributions from the
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RR sector. The reduced Poisson equation is found to be

— Lepg V HAPH + VAKA — 277V, V, @ + 27V ,a, + eaAg H PV, @
+ KF A o + @ + 20" PBIIC, ap + 0B (Lansc + Saacs + mecan)
+ %HAHVHAMV - EABHCBM (CLMCA + %CLM5é) + %‘ez(b (GABGAB + %GABMVGAB/W)

- 2CLAVA(I) - QZQﬁ (éuupaéuw)a + 48%6)\1)\2#1”.MSé,ul-../L4GM5-..;L86/-\B7-)\1AT)\2B)
=0.
(4.119)

In this case [16], it is the longitudinal components of the NSNS two-form
playing the role of the Newton potential. It is also interesting to look at the
reduction of the equation (4.71), which was the equation of motion of the
longitudinal components of the three-form. This reduces to

InagH" H" T, T,,° = — 2 H" . H* Gy 0, Goyg s (4.120)

and in particular in the truncation to the NSNS sector the right-hand side
is zero. This allows imposing foliation constraints on the NSNS sector SNC
torsion 7},,”, such as those discussed in [16].

4.3.2 Type I1A D2NC

General decompositions breaking local rotational invariance The
next reduction we do involves reducing on a transverse reduction. This breaks
part of the local SO(8) rotational invariance. Accordingly, write the flat
index a = (a,7), witha =1,...,8 —¢gand 7 = 1...¢q. Simultaneously we
can consider a different decomposition of the spacetime coordinate index
f = (u,7) where u is n-dimensional and i is (11 — n)-dimensional. We then
pick a lower triangular form for the vielbein ﬁ“ﬂ such that

ca h?, 0
he, = (Au’fhfk hz) . (4.121)
The condition h%;7# 4 = 0 implies
RPta=0, h(Fa+ A7) =0. (4.122)

The diagonal blocks in (4.121) will in general not be square. Two interesting
examples however are to take these blocks to be square and invertible. In
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this subsection, we will take the lower right block to be a non-zero 1 x 1
matrix, and perform a reduction to a novel type of type ITA Newton-Cartan
geometry associated to D2 branes. In section 4.4, we will take the upper left
block to be an invertible (11 — d) x (11 — d) matrix, and offer a description
of the M-theory Newton-Cartan theory in terms of exceptional field theory.

Transverse reduction to type ITA The dimensional reduction to type
ITA corresponds to taking n = 10, and ¢ = 1 above. We again label the
coordinates again as 2/ = (2*,y). In this case hY, is a scalar and we can
identify it with the dilaton as h7, = ¢?*/3.5 Using the conditions (4.122), the
full Kaluza-Klein ansatz is:

/\a e*‘l’/?)ha 0 . e(b/gh,y,a O
hep = (€2<I>/3A: e22/3 ) h*, = —e®BA R, 23 ) (4.123)
£

uA _ €_q>/3(7_HA’ ), = €+<I>/3(7_MA7 —A, T 4), (4.124)

plus the same definitions (4.111) and (4.112) for the three-forms and field
strengths. We also have

A —8d/3 _ 1 _uvpoi...o A_B_Cya a
Q) = 8%/ Q, Q= —3!7!6’ PO T € ABC€ay.an Ty T Tp D o R4, .
(4.125)

Interpretation as an expansion Inserting the above ansatz into the orig-
inal limit (4.1) gives
ds?, = ¢ LB (dy + A)? + 6_2®/3(C27'W +c'H,),
ég = —636_¢%€A30TA ATBATC + A3+ By A dy + 0_3(23 + Eg Ady).
(4.126)

Hence according to (4.106) this translates into the following expansion of the
ten-dimensional type ITA string frame metric g,,, RR three-form, C5, and
dilaton ®:

A 2 —2
G = CpTuw + Cp Hyw

C’g = —c4D6ABCe_q)TA ATBATC + Cs + 6545'3 , (4.127)
eci> _ 0151@@ :

6Enthusiasts of non-relativistic geometries could also consider null reductions of the
already non-relativistic theory.
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along with expansions for the NSNS two-form, Bz, and RR one-form, Ay
By =By +c'By,, A=A, (4.128)

where ¢p = ¢3/4. This is an expansion and non-relativistic limit associated
to the D2 brane (the powers of ¢p appear in the same way as those of the
harmonic function in the D2 brane SUGRA solution). We can refer to it as
D2 Newton-Cartan (D2NC).

Constraint The constraint (4.33) becomes

H1V1 [T p2V2 LTH3V3 L] H4V4 _ et1ro -9 A B c
QH H H H GV1V2V3V4 = 3@ € Hu5M6u7€ABCTM8 Tpo  Tpio >
—® prp1vL ITRoV2 TTHEVS _ eM1-+H10 A B C
Qe " H H H Mooy = 413! GH4M5M6N7€ABCTP«8 Tuo Tuio >
(4.129)

which are equivalent. So now we have a duality relation between the RR
three-form gauge field and the NSNS two-form.

Type ITIA D2 Newton-Cartan theory The action obtained from the
reduction ansatz (4.123) and (4.124) is

Spanc = /dlox Q(ePLA L5+ N Liop) (4.130)

with
L=R—a"*a,p + 2a"a, — 5a"D,® + ID'®D,® — THM"AH,, 4
o %BQCDGMVGW/ . 1—1262@GWPAGW,;A + %L€¢EABCGAB,OUTPJC>

PO 1~ Vy...V4 1 —® _vy..v4p1...16 A B C
‘CG - IGVL‘.I/4 (G - 3!QQ€ € Hu1...u3€ABCT/L4 T,u,g, Tu(; )

1, —2dqy vi..v3 __ €1 V3HLBT P A B C)
56 7-[1/1...1/3 (H We G,ul..A;MEABCT/J@ Tue Tur 9
o 1 =~ ) -~ epl...;73(71.4.0'76ABC A B C
- a4 (GV1~-~V4 —¢€ HPImPSTHVIUI ce HV4U4TUs Tog Tor

V1...U. 1 —® vy..vqq... A B C
X (G b — ETEIT A B M6IHH1~-M3€ABCTM4 Tus  Tue ) )

£t0p == %dAg A dAg A\ B2 5

(4.131)

where the field strengths are defined as in (4.111) and (4.112) with again
G5 = dA;. Note that we obtain what appears to be an extra contribution
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to the dilaton kinetic term due to the e~® factor that in the expansion of
Cs in (4.127). We could alter this by redefining the RR fields in the reduced
theory. In addition, the reduction of the Poisson equation (4.97) gives

%6(1)6,430 (VHGABCM + GMGABCM + SCLHDAGDBC“) - %G(DEABcGABCp’V“@
+VAKA — 37"V, V,® — 30’V & + 2VADV 1, & — KAV 4P + 277V ,a,,
+ KM a + a*Ka + 20" P, ap + a*PC (3a4Bc + 30408 + NBCAA)
+ MM g0y + 1€ (GG g, + 4G G ay) — €7 5GP Gy

1 aypvpqy -® 1 A1 A2A3 LT .. b7 A B C _
5 P Hwp + €77 qEmme €ABCTN Tho” Ty Gy s = 0.

(4.132)

As in the MNC case, the longitudinal components of the three-form gauge
field play the role of the Newton potential.

4.4 Dimensional decompositions and excep-
tional field theory description

4.4.1 Exceptional field theory

We will now discuss the exceptional field theory description of the eleven-
dimensional MNC theory. ExFT automatically has a number of features
in common with the non-relativistic theory: breaking of eleven-dimensional
Lorentz symmetry, a geometry arising from mixing metric and form-field
components, and the inclusion of dual degrees of freedom. We will see how
it provides a unified framework treating the relativistic and non-relativistic
theory on an equal footing, which demonstrates that the same exceptional
Lie algebraic structures that underlie the relativistic theory are present in
the non-relativistic one. In addition, the ExFT equations of motion include
the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the
SL(3) x SL(2) ExFT [106]. This makes use of an (8 + 3)-dimensional split
of the eleven-dimensional spacetime. As such, it is a very natural fit for the
(8+3)-dimensional split into transverse and longitudinal directions present in
the MNC expansion. The SL(3) x SL(2) ExFT includes a Riemannian metric
for the eight-dimensional part of the spacetime, but the 3-dimensional part is
described by an ‘extended geometry’ involving an SL(3) x SL(2) symmetric
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generalised metric. By decomposing the eleven-dimensional Newton-Cartan
theory appropriately, we will replace the transverse Newton-Cartan metric
with an invertible eight-dimensional metric, HM g, and the longitudinal
metric with an invertible 3-dimensional metric, 7;, — 7;;, which will be
embedded into the generalised metric description. This drastic simplification
of the geometry is nonetheless sufficient to highlight the key features of the
theory.

It would also be interesting to consider for example the opposite (3 + 8)-
dimensional split corresponding to the Eggy ExFT, embedding the transverse
metric into the Eggs) generalised metric. However as the known formulation
of ExFT makes use of a Riemannian metric for the unextended part of the
spacetime, this is not immediately available for our purposes. Evidently, for
any given Fgg) ExFT, one can construct or imagine multiple other ‘hybrid’
formulations depending on how one chooses to separate or mix the longi-
tudinal and transverse directions. More ambitiously, one could choose to
work with the recently fully constructed ‘master’ Ey; ExEFT [107], for which
no coordinate decomposition is necessary. Evidently this would eschew the
technical difficulties of the latter in favour of the technicalities associated to
working with an infinite-dimensional algebra. In this chapter, although many
features that we will see are quite general, we describe the explicit details
mainly for the d < 4 cases.

ExFT ingredients The basic idea behind ExFT is to replace d-dimensional
vectors with generalised vectors VM transforming in a specified representa-
tion of Ey(4). This representation is such that we can decompose VM under
GL(d) as VM = (V' Vi;, Vijkim, - - - ) where V¥ is a d-dimensional vector, V;;
and Vjjpm a two- and five-form, and the ellipsis corresponds to higher rank
mixed symmetry tensors that appear for d > 7.7 Generalised vectors are
used to provide an Fjy4)-compatible local symmetry of generalised diffeomor-
phisms. These are defined in terms of a generalised Lie derivative which acts

"This decomposition is relevant to the description of eleven-dimensional SUGRA. There
are also mutually inequivalent GL(d— 1) decompositions relevant to the description of type
II SUGRA.

115



CHAPTER 4. NON-RELATIVISTIC MEMBRANES

on a generalised vector VM of weight )y as

SuVM = LyvM
= UNONVM — VNONUM + YMN poonUPVE + (A — s5)onUN VY
(4.133)

Here YMN pq is constructed from invariant tensors of Eyq). This together
with the weight term with coefficient —1/(9 —d) appear such that this gener-
alised Lie derivative involves an infinitesimal Eq(q), rather than GL(/V) trans-
formation. The partial derivatives written here formally involve an extended
set of coordinates y™. However, consistency requires the imposition of a con-
straint YMN roOnmOn = 0 where the derivatives can act on a single field or a
product of fields. One solution to this constraint is to view the d-dimensional
partial derivatives as being embedded such that 0y = (9;,0,...,0). We al-
ways assume we have made this choice below. (An alternative solution leads
to a ten-dimensional type IIB description.)

Given this choice, for the d < 4 cases we will look at in detail, the action
of UM = (u', \;;) on M (V% Vi;) (both having generalised diffeomorphism
weight 1/(9 — d)) is Lo VM = (L, V', L, VY — 3Vk0,\;;), where L, denotes
the usual d-dimensional Lie derivative. Identifying the two-form components
Ai; with the gauge transformation parameter of a three-form CU &, this means
we can write VM = (V1 V,] C”kV ), with VZ] gauge invariant. We use this
to give explicit parametrisations for the ExFT fields.

The field content of ExFT is as follows. We now let p, v, ... be (11 —d)-
dimensional indices. We then have an (11 — d)-dimensional metric, g,
which is a scalar of weight —2/(9 — d) under generalised diffeomorphisms.
The Ey) extended geometry is equipped with a generalised metric, My,
transforming as a rank two symmetric tensor of weight zero under generalised
diffeomorphisms. In addition, there is a ‘tensor hierarchy’ of gauge fields,
starting with an (11 — d)-dimensional one-form A,*, and continuing with
p-forms B, Cu,p, ... in particular representations of Eyg). This set of
fields mimics and extends what appears in a dimensional decomposition (or
reduction) of the bosonic fields of supergravity.

Dimensional decomposition and field redefinitions We describe now
the dimensional decomposition used to embed eleven-dimensional SUGRA
in the ExFT framework. We split the eleven-dimensional coordinates z# =
(x#,9"), making an (11 — d) + d split. The supergravity degrees of freedom
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are then similarly decomposed under this split, classified according to their
nature from the point of view of (11 — d)-dimensional spacetime, and then
rearranged into multiplets of the exceptional groups Eyq). We assume no
restriction on the coordinate dependence. This can be viewed as a partial fix-
ing of the local Lorentz symmetry in which we choose the eleven-dimensional
vielbein é*; and hence metric gy to be

L _1
é&ﬂ = <|¢| 2(9-d) eau 0) 7 Q[Lf/ — <‘¢| gidg,ul/—i_gbklA,ukAul ¢ikAul) ,

A ko, o A" Gij
(4.134)
where €, is a vielbein for an (11 — d)-dimensional (Einstein frame) metric
g and ¢'; is a vielbein for a d-dimensional metric ¢;;, with |¢| = | det(¢;;)|.

Normally one takes g, to be Lorentzian, such that this corresponds to fixing
the Lorentz symmetry as SO(1,10) — SO(1,10—d) x SO(d), however we can
also take it to be Euclidean, such that SO(1,10) — SO(11—d) x SO(1,d—1).
The latter choice is relevant for the version of ExFT applicable to the non-
relativistic theory.

The ‘Kaluza-Klein vector’ A," has a field strength defined by

F'=20,A," — 24,7 0;Au" . (4.135)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector
also appears as the connection in the derivative D,, = 9,— L, which is covari-
ant with respect to d-dimensional diffeomorphisms, using the transformation
orA," = D,A" induced by the action of 11-dimensional diffeomorphisms on
(4.134).

For the three-form and its field strength, we define a succession of gauge
field components (denoted by bold font) via

where Dy = dy" 4+ A,'dz*, the subscripts on the right-hand side denote the
form degree in (11 —d) dimensions, and we omit the implicit wedge products.

~

Similarly, for F; = dCy we let
Fy=Fy+ FyDy' + %ijDyiDyj + %FlijkDyiDijyk ) (4.137)
+ %Fz’jleyiDijykDyl ; '

The persistence of hats reflects the fact that we still want to take the non-
relativistic limit of all these quantities. Explicit component expressions can
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be found in appendix C.1. We can make similar redefinitions for the dual
six-form and its field strength.

Metric and generalised metrics The metric g,, appearing in (4.134) is
directly used as the (11 — d)-dimensional ExF'T metric (the generalised dif-
feomorphism weight —2/(9 —d) follows from the conformal factor in (4.134)).

The generalised metric My, or its generalised vielbein, may be defined
as an [y element valued in a coset Egqqy/Hg where Hg is the maximal
compact subgroup (in the Euclidean case) or a non-compact version thereof
(in the Lorentzian case). Under generalised diffeomorphisms it transforms
as a rank two symmetric tensor of weight zero. It is normally parametrised
in terms of the wholly d-dimensional components of the eleven-dimensional
fields, ¢;; and C’ijk, in a manner consistent with its transformation under
generalised diffeomorphisms. For d > 6, this parametrisation also includes
internal components of the dual-six form. For simplicity, we will restrict
to d < 4, in which case the conventional parametrisation of the generalised
metric is given by

B s+ LCPC C M
My = |6/ (be %}'kij Jpq 2¢i[k¢l]j> , (4.138)

The conformal factor here ensures that | det M| = 1.

In specific cases, we can find factorisations of the generalised metric lead-
ing to simpler expressions. This includes the SL(3) x SL(2) ExFT. Here, gen-
eralised vectors VM = (V% V;) transform in the (3, 2) of SL(3) x SL(2), with
i,J, ... three-dimensional. We can dualise V;; using the three-dimensional
epsilon symbol, and define Vi = %eijk\zk. Introduce an SL(2) fundamental
index, a = 1,2, and let VM = V@ with V! = V% and V¥ = Vi, In terms of
this basis we have a factorisation

Muyn = Mig jg = MijMag , (4.139)

where M;; = M;; with |det M;;| = 1, and M,5 = Mp, with |det M,5| =
1. When ¢;; has Lorentzian signature, the expressions which reproduce
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(4.138) are
Mij =161 Py,

~A2 ~
Mz = o2 — |¢|H2C™ —|¢|7H2C (4.140)
B e B |

5 ik A
0256‘7 ka

Gauge fields and dual degrees of freedom Along with the Kaluza-
Klein vector, A,’, coming from the metric decomposition (4.134), the p-
forms obtained from the decomposition (4.136) of the three-form fit into
Eq)-valued multiplets denoted A, By, Cpup, - ... Their field strengths are
denoted Fu, Huvp, Tuvpo, - - - To obtain full Ey4) representations, we have
to include here the set of p-forms obtained by decomposing the dual six-
form. This is unsurprising from the point of Eg(4) U-duality transformations,
which mix electric and magnetic degrees of freedom (e.g. M2 and M5 branes)
coupling respectively to p-forms and their duals.

For d = 3, this works as follows [106]. The ExFT gauge fields A,*,
Buvi, Cuvp®™, Dywpo’ have weights 1/6,2/6,3/6,4/6 respectively, and their field
strengths are denoted F,,"*, Hyuwpi, Tuwpe™ and Kppper® (the latter does not
appear in the action). Under generalised diffeomorphisms, F transforms
as a generalised vector of weight 1/6, while H and J transform via the
generalised Lie derivative acting as

LaHy = NPOH, + 0N H,;

LT = NP0 — 0;6N°T” + 9;M° T . (4.141)
These field strengths obey Bianchi identities:
3D Fup' = €750 0;5H i (4.142)
ADHopoli + 3€iik€as F i “Foo™ = OiaTrwpo™ (4.143)
5D Tpon” + 10F 0 Hponi = €P0i5K ppor” (4.144)

where D, = 0,—L4,. The ExF'T one-form can be simply identified as AM =
(A}, 5€7%C ;1). The two-form B,,,; transforms in the (3, 1) of SL(3) x SL(2)
and is identified (up to a further field redefinition) with C wi- However, rather

than give the precise field redefinitions for the potentials, it is simpler to work
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at the level of the field strengths. These are all tensors under generalised
diffeomorphisms, meaining in particular that they transform in a particular
way under d-dimensional three-form gauge transformations. This allows us
to decompose in terms of manifestly gauge invariant combinations

i i i L ik 4 AT I
‘F;,LV ! = F;u/ ) ]:uu 2 = 56 ]k(Fuij: - CjleuVl) ) H,ul/pi = _Fuypi7
R R (4.145)
where F,,', F,,,; and F,, ;. are gauge invariant and can be exactly identified

with the quantities defined in (4.137) with F,,* as in (4.135).®

The three-form situation is then where it gets interesting. There is a sin-
gle 8-dimensional three-form C uwp Obtained from the eleven-dimensional one.
There is also a single three-form C wpiji coming from the eleven-dimensional
six-form. Together these form an SL(3) singlet and SL(2) doublet, for which
the field strength obeys a self-duality constraint reproducing (in the relativis-
tic case!) the correct duality relationship between the field strengths F#VPU
and Fuypm-jk. This duality constraint, which has to be imposed by hand, in-
volves the eight-dimensional Hodge star acting on the 8-dimensional indices
and the SL(2) generalised metric acting on the SL(2) indices:

V0gIMagTHP77 = —48keape™ P MM Ty 3 (4.146)

The coefficient x is fixed via the self-consistency of (4.146) (in both the
cases where g, has Lorentzian or Euclidean signature, with M,z having
the opposite) to be kK = i@, with the choice of sign being a matter
of convention (equivalent to changing the sign of the three-form in eleven
dimensions). This is consistent with decomposing the SL(2) doublet of four-

form field strengths as

juvml =Fp0, jw/p02 = %Gijk(meijk — CijiF po) - (4.147)

Thus in general, ExF'T treats simultaneously degrees of freedom coming from
the three-form with dual degrees of freedom coming from the six-form, en-
coding the duality relations between them in its dynamics.

8The minus sign in H,,,,; ensures that the ExFT Bianchi identities (4.143) and (4.144)
reproduce those coming from SUGRA in (C.17) and is otherwise simply a matter of con-
vention in terms of what we call B,,,;.

120



4.4. DIMENSIONAL DECOMPOSITIONS AND EXCEPTIONAL FIELD
THEORY DESCRIPTION

Dynamics: SL(3) x SL(2) ExFT pseudo-action The ExFT Lagrangian
can be uniquely fixed by the requirement of invariance under the local sym-
metries (generalised diffeomorphisms, gauge transformations of the tensor
hierarchy, and finally (11 — d)-dimensional diffeomorphisms). When 11 —d is
even, this gives a pseudo-action which must be accompanied by a self-duality
constraint such as (4.146). This includes the case d = 3. The pseudo-action
in this case can be written as S = [ d®z d%y+/|g|Lrwrr where the Lagrangian
has the (quite general) expression

ﬁExFT = Rext (9) + Ekin + ﬁint + \/H 1£t0p . (4148)

Here, with D, = 8, — L 4,, we have

1 17 loa 1 v g 1 v
Rexi(9) = Zg" D,9,6D,g" — 59" D,9""D,gvs + Zg" D,IngD,Ing

1
+ §Du In¢D,g"" . (4.149)

1 J 1 1 o
Liin = DpMYD" Mij + 7Dy MopgD" M = 2 Mg Mo F'* F
1 ij v 1 « vpo

1 1
Lin = MMV O MO Myt + LMV 0 MO Oy M

1 1
— §MMN8MMKL8KMLN + 58MMMN(9N In |g|

+ iMMN (OMGuOng" + Oy In|g|On 1n|g]) . (4.151)
The topological (Chern-Simons) term can be defined via its variation:
OLyop = KeMHE ( - 5./4#1io‘eagjﬂg._,ﬂsﬂ%%uwgi
+ 6AB,, 1y (Eaﬁfusmmj%musﬁ - %Eijk,}{usuwsj%uwmask)
+ AACy o €ap (ij%mﬂsﬁ + 4fu4#5i67'[#6~~#8i)

- aiaADyl...p4iju5...uga) )
(4.152)

where the ‘improved” A variation includes by definition contributions of vari-
ations of lower rank gauge fields, for explicit expressions (which we do not
require) see [106]. Finally, we must impose the constraint (4.146) after vary-
ing the above pseudo-action.
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4.4.2 Obtaining the eleven-dimensional Newton-Cartan
theory via ExFT

In this subsection, we perform a dimensional decomposition of the eleven-
dimensional MNC variables, and use this to explain how exceptional field
theory describes this theory.

Dimensional decomposition of eleven-dimensional Newton-Cartan
theory We start with the eleven-dimensional coordinates labelled as z# =
(x#,y?) with p = 1,...,11 —d and 7 = 1...,d. We keep all coordinate
dependence on g throughout. Thus this is a decomposition rather than a
reduction. In terms of the vielbein decomposition (4.121), we take ¢ = d — 3
and n = 11 — d. The flat indices area=1,...,11 —dand7=1,...,d — 3.
Explicitly, we take the SO(8) vielbein to have the form

1 1

~ —0_7.a A 9— d

haﬂ = L g_d,e K Q ) h“a = & s 0 ) (4153)
ARRY Ry —Q-der, A F hi;

1
—de

with e?, an invertible vielbein for an (11 — d)-dimensional metric, g,, =
eaueb,,éab. We also have to take

= (A A ),y =(0,70). (4.154)
where 7;; = TiATj nag, with A = 0,1,2 as before. The conformal factor 2
appearing in (4.153) is defined by

2 _ __ 1 0.t JleJdr o o L .
O = =g € T T Tiags Hiaga - Higjg

(4.155)

N 2
and related to that of the eleven-dimensional theory by €2 = (dete)Q) 9-d.
It is useful to write down the full transverse and longitudinal metrics:

2
]:I,)p _ ) 9-d I + HklAukAyl ijA“k ’
HikAuk H’L]
A AMkAl,lTkl AH Thkj
Tho = Aykai Tij ’
2 2 (4.156)
A nn 9—d gtV —d mp J
HY = QL o - 57 A )
_Qg_dgVO'AU’L HZ] _'_ Q d pO'A lA ]
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In this way all the degenerate structure is encoded in the d-dimensional part
of the spacetime, with a degenerate d-dimensional metric H;; = h';h7 ;0.
This ensures that the metric g,, can be identified with the metric appear-
ing in exceptional field theory, while the degenerate Newton-Cartan metric
structure will appear in the generalised metric. In addition, we redefine the
three-form and its field strength according to (4.136) and (4.137), now with-
out hats:

03 = Cg + CQZDyZ + %CliijiDyj + %C’ijDysz]Dyk s (4157)

Fy=F,+ F3Dy' + LFy;Dy’' Dy’ + %Flz‘jkDyiD?Jijk (4.158)
+ %Fz’jleyiD?/ijkDyl ) '
where again Dy’ = dy’ + A,'dz". We carry out an analogous decomposition

for 53 and E, and for Cs and F%. Finally, we can consider the Newton-Cartan
torsion: with 7,* = 20,7 we have

= ijA = 28[iTj]A, TMZ'A = T#Z’A — A‘ujlj_’ji = DuTZ‘A, (4 159)

T = ;wA - 2T[MIZ'IIL‘AV}i + A#iAl/jTij = Fw/jTjA . .
Embedding the limit in ExFT Let’s start by considering the expansions
(4.1) and (4.3) of the original eleven-dimensional metric and three-form. We
make use of the decompositions (4.156) and (4.157) for the Newton-Cartan
variables and three-form appearing in the decomposition, and then use these
to work out the decomposition (4.134) of the eleven-dimensional metric and
that (4.136) of the three-form. The potentially singular terms as ¢ — oo then
appear in the d-dimensional components of the metric and of the three-form,
with

¢y = iyt c Hy,  Cyp = —FPeaper 10,5 + Ciyjp + ¢ 3C g, (4.160)

The metric g, and Kaluza-Klein vector A," appearing in (4.134) are then
exactly those appearing in H w0 (4.156). The redefined form components
carrying an (11 — d)-dimensional index are all non-singular, so C;; = C i, +
O(c™3), and so on. One point of danger is that C’ijk still appears in the
field strengths (4.137) of these fields. However, consulting the more explicit
expressions (C.16), one sees that the field strength F,,,* appearing in ExFT
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in fact involves the combination F,,;; = F wij — C’iij Wk , which is in fact
independent of C’ijk, such that Fm,ij — CijkFf = F i — CinF".

For the generalised metric (4.138), inserting the expressions (4.160) one
finds that all terms at leading order in ¢ cancel, and sending ¢ — oo one has

a manifestly finite and boost invariant expression®:

(4.161)

2 My MM
Mpyy = Q9 <ng] Mz‘jkl) ;

with
Mij - Hij N GABCT(iACj)lekBTlC + CiklcjmnHkam )
MH = —EABCTiATkBTlC + 2Cl.qup[k7_l}q ’ (4.162)
Mijkl _ 2Hz’[k7_l}j + QTi[kHl]j ‘

The parametrisation (4.161) can be viewed as a non-Riemannian parametri-
sation of the generalised metric, and viewed simply as an alternative pos-
sibility to taking the usual form (4.138). The reason why this is a non-
Riemannian parametrisation is most clearly seen by looking at the inverse
generalised metric M™Y. In the Riemannian case, the parametrisation
(4.138) implies that the d x d block M¥ is given by M = ||~/ (9=d)4ii
and therefore corresponds to the inverse spacetime metric. Assuming this
block is invertible then uniquely fixes (given the definition of the gener-
alised metric as a particular coset element obeying certain properties) the
rest of the anrametrisation. In the non-Riemannian case, we instead have

MUY = Q 9-d HY  which is non-invertible. This leads instead to an alter-
native parametrisation. This is exactly as in the DFT case [66], which was
generalised to ExFT in [76]. The expression (4.161) can be checked to be
equivalent to the non-Riemannian SL(5) generalised metric worked out from
first principles in [76]. In fact, from this point of view, one need not even go
through the complications of taking the limit, but simply write down (4.161),
insert it into the ExF'T and study the resulting dynamics.

Returning to the embedding of the expansion in ExFT, we also need
to worry about the singular pieces in the expansion of the dual gauge field

9Proving this requires the fact that H*(* H47 = 0 when H% has rank 1. For d > 4 this
would suggest we would have problems, however starting at d = 5 the representation on
which M ;N acts enlarges and the structure of the generalised metric therefore changes.
Note for d > 5 it will also explicitly contain components of the dual six-form.
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Cs. This inevitably appears in the tensor hierarchy for all exceptional field
theories. From (4.51), we have Cs ~ ABC3ANTATAT+ ..., and so given
the decomposition according to (4.154) and (4.157), any component of Cs
Carrymg three d-dimensional indices will be singular, i.e. C wwpijks C wijkls
C pijkims ngklmn The claim is that, remarkably, all such smgularltles cancel
automatically thanks to the precise combinations of Cs and Cs that appear
in the ExFT fields. For d = 3,4, this is most straightforwardly checked at the
level of the ExFT field strengths.!®. One sees from (4.147) for SL(3) x SL(2)
(and from (C.43) for SL(5)) that the components of F; always appear in the
combinations Fuypaijk — C’ijkl:"w,pa and Ful,pijkl +4é[ijkﬁ\uvm\l] exactly such
that the singularity coming from C'ijk cancels that coming from F,, which was
written down in (4.52). That the ExFT gauge potentials themselves are non-
singular can further be verified by hunting down the correct field redefinitions
that relate the ExFT gauge fields to the eleven-dimensional ones. Note that
for d > 6 the components éijklmn are present and appear in the generalised
metric itself: we have not verified explicitly but the expectation would be
that it does so in a way that ensures the generalised metric remains finite.

Summary From the above we can conclude that the fields used in ExFT
are manifestly non-singular in the non-relativistic limit (equivalently this
shows that the fields which are U-duality covariant in a genuine dimensional
reduction are non-singular). We can also view the distinction between the
relativistic and the non-relativistic eleven-dimensional theory as being solely
governed by the choice of parametrisation of the generalised metric. Having
picked a generalised metric parametrisation, it is then consistent to directly
identify the ExF'T gauge fields and metric g,,, with the gauge field compo-
nents and metric of the decomposed relativistic or non-relativistic theory.
This is summarised in figure 4.1. The upper triangular half of this diagram
corresponds to first embedding the relativistic fields in ExF'T in the usual
manner, with a Riemannian parametrisation of the generalised metric, and
then taking the non-relativistic limit giving a non-Riemannian parametrisa-
tion. The lower triangular half corresponds to first taking the non-relativistic
limit for the original eleven-dimensional fields, and then embedding these into
ExF'T, giving the same non-Riemannian parametrisation. In both cases, one

100nly the field strengths appear in the equations of motion, and the action can also
be defined solely in terms of the field strengths by rewriting the Chern-Simons term in a
standard way as an integral over a higher-dimensional spacetime.
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needs to make the appropriate dimensional decomposition of the fields of
the Newton-Cartan theory, corresponding to fixing the local tangent space
(non-Lorentzian) symmetry.

Fix Lorentz

11-d SUGRA ExFT (rel)

Non-rel limit E

1

1

1

v . <
Fix non-Lorentz

Non-rel SUGRA ExFT (non-rel)

Non-rel limit

Figure 4.1: Relationship between non-relativistic limit and non-relativistic
parametrisation of ExF'T

Inserting the non-Riemannian parametrisation into the ExF'T action or
equations of motion will then reproduce the finite action and equations of
motion results from taking the limit, after decomposing. For the action, we
calculate this decomposition in appendix C.1. What we will show next is that,
remarkably, the ExFT equations of motion also automatically reproduce the
Poisson equation (4.97).

4.4.3 Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic
parametrisation of the generalised metric. We focus on the d = 3 SL(3) x
SL(2) ExFT. For the d = 3 Newton-Cartan geometry, H” and H;; have
rank zero and so are identically zero. The longitudinal metric 7;; is a three-
by-three matrix and in fact invertible, with 92 = —det7. The resulting
non-Riemannian parametrisation of the generalised metric (4.139) is

20 1

Mij = Q775 Mag = ( 1 0

) , p=2e7Cyy . (4.163)
Comparing (4.163) and (4.140), we can note that (4.163) is the most general
possible SL(2) non-Riemannian parametrisation (up to the sign of the off-
diagonal components), as this is completely fixed by requiring Moy = 0
which prevents us from interpreting that component as the determinant of a
standard three-dimensional spacetime metric.
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Normally, the generalised metric M,z encodes two degrees of freedom.
It is clear that the non-Riemannian parametrisation given by (4.163) is re-
stricted and is missing one degree of freedom. We may identify this missing
degree of freedom with the overall scale of the longitudinal metric, as the
latter only appears in the combination |det7|~*/37;, which is conformally
invariant. This makes the dilatation invariance trivial in this formulation.

If we insert this parametrisation into the SL(3) x SL(2) pseudo-action,
with Lagrangian (4.148), we find that L;, as defined in (4.151) vanishes,
while

1 y 1 1 3
1 DuMID M5 + ZDMMQBD“MO“B = ZD,L(Q?/?’TU)DN(Q—Q/?’T,-J-) . (4.164)

This reproduces exactly the expected terms in the d = 3 case of (C.26) and
(C.27).

Notice that the kinetic terms for M,z completely drop out. So if we
insert the non-relativistic parametrisation into the action, and then vary
with respect to ¢, we will never find an equation involving D*D,, ¢, i.e the
Poisson equation. However, instead we can consider the equations of motion
of the generalised metric, which can be evaluated independently of its choice
of parametrisation. These will provide the missing Poisson equation. This is
exactly analogous to the situation in DFT, see the discussions in [83] and in
the previous chapter. One has to make a choice about whether you allow the
equations of motion that follow from variations of the generalised metric that
do not preserve the non-Riemannian parametrisation. In both the DFT SNC
case, and the present case, there is exactly one such independent variation,
which provides an additional equation of motion beyond what is obtained by
varying the fields of the parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised
metric M,z in the action is

58 = / A8z dY /GEM P Ko | (4.165)
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with
Kas = =57 (Pu(vV/gD"Mag) — Moy MsDy(y/gD' M™))
1 , : 1
+ ZMQVM,BéMijFuVWFMW& + %Ma'yMIB(SjMVpJ’YjMVpJé
+ MY (Dol MM 0190 Mia + i M 0515/ Mg + Dia) 91001 9™ )
— %M”@iaf)ﬂg lng + \/Lyai(a‘(\/gaﬂm/\/l”)
— 3 M (Dyo MM Oy Mij + Dy M0 M y5)
+ 575 (0 (VIMI M0 Mp)s) — My (aM )0 (VGMI MO 0; M™)
ﬁg(am(\/g./\/lij/\/lwaj(s/\/lag) — MMMW@E(\/EM”M“@HMW) .
(4.166)
Now, the variation 6 M? cannot be arbitrary but must preserve the condition
| det M| = 1. This ensures that one gets two rather than three independent

equations, corresponding to the usual two degrees of freedom encoded in
M. The true equation of motion taking this into account is:

Rap = Kag — EMasMPK 5= 0. (4.167)

This can be thought of as the vanishing of a generalised Ricci tensor, R,3. For
the non-Riemannian parametrisation (4.163), the two independent equations
are

RQQ = ICQQ = O, RH — QC,O,R,QQ = ICH — 2Q0K12 =0. (4168)
Setting 0;1 = 0;, 0;2 = 0, we have explicitly that
Ko = "‘%MijFWiF'WJ 56 F/wpaF#Vpa =0. (4'169)

This is the equation of motion (4.71) arising as the totally longitudinal part
of the equation of motion of the three-form. This is consistent with its
appearance here as the equation of motion of ¢, which is indeed the totally
longitudinal part of the three-form.

The other equation of motion is (after using (4.169))

0=Ki1 — 20K,
= — e Du(V5g" Foig)
— %M’“li”FWMF“”mn + o F i F* " tn g €77 €™ (4.170)
+ %MU (81/\/1“83-/\/1“ + 81'9#,,83'9/“/) — %M”&-M“@Mﬂ
- %M”@zf)] lng — \/Lg&(\/ﬁc?]/\/l”) .
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Here we have F;;, = D, Cjji, — 30;;C\ %), having used D, My, = D, My, —
€I*9; A, ;xkMi2. We can then identify (4.170) as the Poisson equation for
¢ = €9k Cy, as it has the form \/LgDu(\/EDﬂgo) +--- = 0. It is conjugate to
the variation 0 M. For the non-Riemannian parametrisation, M = 0, so
allowing this variation corresponds to allowing variations that do not respect
the parametrisation. In terms of the expansion of M in powers of 1/c,
this variation is subleading in origin. Finally, one can precisely check that
this equation (4.170) is indeed exactly the Poisson equation (4.97), which we
found at subleading order in the expansion of the relativistic theory, and here
is rewritten in terms of ExF'T variables after making the dimensional decom-
position of all the fields. (It can be easily checked that the gauge field terms
match, using (C.29) to relate the seven-form components appearing here to
those of ﬁ4, and a patient calculation shows that inserting the dimensional
decomposition of the eleven-dimensional fields matches perfectly.)

Structure of generalised Ricci tensor Geometrically, R, should be
thought of as (the SL(2) part of) a generalised Ricci tensor. It is a symmetric
generalised tensor of weight 0 and obeys M*R,5 = 0. When we take the
relativistic parametrisation (4.140) of the generalised metric, it can therefore
be parametrised as

a1 C\ [19I"*R, Re 1 0
Raﬁ_?(o 1)( Re |6 PRs)\E 1) (4.171)

with R4 and R tensors of three-dimensional weight 0, such that the varia-
tion of the action leads to

5 1/2 .
08 D — /dSZE de\/§< ||§j‘1/2 R¢ + |¢|_1/25CR0) . (4.172)

Let’s examine what happens to the components of R, in the non-relativistic
limit. We have |¢|'/? = Qc®, C = —c*Q + C + ¢3C. This leads to the
expression

_1 1 C C3Q(R¢—Rc) Rc—R¢ 1 0
Ras = 3 (o ) rer,  eror,)\e 1) A1)

So in principle the independent equations are still R¢ and Ry4. However,
we already know that this generalised Ricci tensor has no leading parts in
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¢ when we take the limit (because none of the ExFT fields contain singular
terms). If we expand

Ry =RV +ERY+cREY . Re = ERE+ORIY +*REY, (4.174)

it must be that we have Rgs) = Rg’), Rf) = R(C?), viewed as off-shell iden-
tities, and the independent equations of motion, i.e. those appearing as the
actual finite entries of R,3, are actually

Rf’) —0, R((};?») ~REY =0, (4.175)

The former is conjugate to 6 M?? and the latter to the S M that is forbidden
if we insist on keeping a non-Riemannian parametrisation. We can go back
to the variation (4.172) and expand that:

05 = — /d% 4%y /g (0InQ(Ry — Re) + Q¢ ?6CRe) (4.176)
hence the first non-zero variations are
55 = — / d®z d®y /g (0—351119(735;3) ~RE + 9—15072(5’)) . (4177)

We see again that we get the longitudinal equation of motion for the three-
form at finite order, and the extra Poisson equation of motion comes from
a subleading variation associated to the variation of the volume factor (2,
which otherwise has no dynamics associated to it in this formulation.

4.4.4 Generating non-relativistic generalised metrics
via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the
generalised metric Mg, via M — M’ = UT MU with det U = 1. Parametris-

ing U = d the transformation of the non-relativistic parametrisation

(4.163) gives

, ( 2a(ap +c¢)  2abp + ad + bc) | (4.178)

o8 = \2abyp + ad + be  2b(bp + d)
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and this remains in the non-relativistic form only if b = 0, or else if ¢ is

constant and d = —by. In the former case, the effect of the transformation

is ¢ — a(ap + ¢) and so amounts to a scaling and shift of the three-form.
The genuine non-geometric U-dualities correspond to the SL(2) inversion

symmetry with a = d = 0, bc = —1. If ¢ < 0, this takes us from the
non-relativistic parametrisation to a a relativistic one with
¢ij = (—i)Q/S(det 7')_1/37'2']‘ s Cijk == _ieijk . (4179)

These obey |det ¢| = C? which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of
[76,108], namely the M2 brane solution in the form

ds® = f2Bnydy'dy’ + fV38,,de de”,  Cyp = (fF' +)egn,  (4.180)

where the harmonic function f obeys 0,0"f = 0 and + is a constant. This
has constant exceptional field theory eight-dimensional metric, g, = d..,
while

—(f+27) —(1+7f)
Mij:mj, Magz (—q/(l—l—’yfr); —f,y > (4.181)

Sending f — 0 corresponds exactly to the original limit (4.1). Alternatively,
we can formally U-dualise along the y* directions (including time) to obtain

a solution with ; ;
— L+
Mg = . 4.182
’ (1 +af —(f+ 27)) (4.182)

The standard M2 solution has v = —1 and f = 1 + %, with r* = §,, 2" z".
In this case, the generalised metric (4.182) corresponds to the negative M2
solution [109]:

ds? = [Py dy'dy’ + V36, dat da?
Cigr = (71 = Deijie, (4.183)

F=1-4.

This solution has a naked singularity at f: 0 < f—2=0. Evidently the
generalised metric (4.182) is non-singular everywhere and at f = 0 becomes
non-relativistic. This suggests [12] interpreting such backgrounds as contain-
ing a singular locus at which the geometry degenerates to a non-relativistic
one.
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If we alternatively take v = 0 then the generalised metric (4.182) has the
— 1

non-relativistic form everywhere, with ¢ = —3f. If we now reconsider the
equation of motion (4.170) which can only be found by varying the generalised
metric before inserting the parametrisation, then this is exactly the equation
V2f = 0 obeyed by the harmonic function. Finally, we can reconstruct the
full eleven-dimensional MNC geometry:

74 =(0,64), HY = (58 8) , Cop=—1f. (4.184)

4.4.5 Gauge fields and self-duality in SL(3)xSL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3) x SL(2)
ExFT. Let’s repeat the parametrisations (4.145) and (4.147) now for the field
strength components of the non-relativistic theory:

]:lell = F,uuz7 ‘7:#1/22 = §€zjk<Fuij - Cjk‘lFMVl) ) H#Vpi = _FHVPZ"
(4.185)

I = F Eijk(Fuypm‘jk — Ciij/u/pa> . (4186)

2
wpo = Frvpo s Tuwpo

Then the kinetic terms (4.150) in the SL(3) x SL(2) ExFT pseudo-action
(4.148) are

| =

— Mg Mg Fu  FHP — G MO, HPP

— vl _j 1 %] v
= —%Q 2/3’7'1']'FM EJMFHV]C[ — EQQ/3TJF#VPZ'F# pj 5

(4.187)

which matches the corresponding terms in the decomposition (C.26) of the
non-relativistic action.

To discuss the three-form gauge field, consider the SL(3) x SL(2) ExFT
equation of motion obtained from the pseudo-action by varying C,,,*:

Dy (V[0 Mas T77) — 20, (/g MIH?))

, 4.188
— 48/'{6&56‘uyp01"'05 (Do'l jo’g...o’g,ﬁ + 4f01022ﬁ7{030405i) = ( )

After varying, we must also impose the constraint (4.146). This constraint
involves the generalised metric, and so it is sensitive to whether we are de-
scribing the relativistic or non-relativistic theory. However, in either case,
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using the constraint in the equation of motion of C,,,? in fact produces the
Bianchi identity (4.144) for Ju’ = FLupe. In the relativistic case, with
the Riemannian parametrisation (4.140) of the generalised metric (or its Eu-
clidean version), we could go on to use the constraint to eliminate j,wpc,z
from the equation of motion of C,,,%. The result would be the equation of
motion of the three-form C\,, following from the decomposition of eleven-
dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the
non-relativistic parametrisation (4.163). In this case, choosing the minus sign

for k, the constraint (4.146) implies that

vpo 1 _puvpody..\
Vg Froee — _Zeu PN

i ” (4.189)
VG FMP = 5P MAMEL L gk -

So we can no longer eliminate F',, ., in favour of F,,,. This is clearly
as expected for the MNC theory for which the former indeed appears ex-
plicitly in the action and equations of motion (note it is related to F,,»
via (C.29)). We therefore see that the ExFT constraint gives not only the
expected constraint (4.33) that the original four-form field strength becomes
self-dual, but also the duality condition with opposite sign which is obeyed
by the dual seven-form (4.55). Thus the SL(3) x SL(2) ExFT contains the
expected degrees of freedom of the non-relativistic theory, and efficiently re-
arranges them into self-dual and anti-self-dual parts automatically on the
non-Riemannian parametrisation.
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Chapter 5

Discussion and Outlook

The main focus of this thesis was to derive actions and equations of mo-
tion describing non-relativistic physics. The results we obtained are the
non-relativistic versions of (the bosonic sector of) the usual relativistic ten-
and eleven-dimensional supergravity actions that have been known for many
years. The study of non-relativistic physics can be considered to be still in
its early stages. This means that several results one would like to obtain can
be (hopefully) derived by closely following the same approach already known
for their relativistic counterparts. However, non-relativistic theories offer
a degree of novelty as can be seen for example in Chapter 2, with the non-
relativistic Polyakov action involving several different fields and the quantum
fields expansion being much more complicated than in the relativistic case.
Nonetheless, we were able to derive the target-space equations of motion,
altough after imposing the twistless torsion constraint and with the caveat
of Section 3.5. It would be interesting to derive the beta functions when
no constraint on torsion is imposed. However, this involves solving the non-
relativistic geodesic equation in general, which turns out to not have a simple
linear or quadratic dependance on the embedding fields. Alternatively, one
could try to study a theory where the worldsheet itself is non-relativistic,
which should be equivalent to Spin Matrix Theory [§]

In Chapter 3 we were able to bring this analysis one step further and
find the equations of motion and actions for TNC, SNC and Carrollian grav-
ity, while in Chapter 4 we obtained an action and equations of motion for
eleven-dimensional non-relativistic supergravity. An obvious direction to ex-
pand this work would be to find solutions to the equations of motion we pre-
sented here. For example, the definition of a black hole in a non-Riemannian
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manifold is unclear [110-113], and we believe that the actions presented in
this work would help clarify their physical interpretation. The fact that we
have an action at our disposal allows us to derive interesting properties of
a given solution. In particular, variations of on-shell actions (note that the
DFT on-shell action is trivially zero up to boundary terms) would allow for
investigation of the thermodynamical properties of such hypothetical black
holes and possibly relate them to holographically dual theories in nonrel-
ativistic quantum plasmas. Moreover, there has been recently a renewed
interest in Carrollian gravity, as it has been suggested that it may help to
better understand inflation and dark matter [114].

In our analysis of non-relativistic theories, we have mostly concerned
ourselves with ‘Type I’ expansions, but it would be equally interesting to
derive similar results for an expansion of the type given in (1.9), where more
fields are included giving a very different algebra. For example, in the eleven-
dimensional case of Chapter 4 we could expand the metrix as g, = ¢*7,, +
¢ 'H,,+c*X,,+.... Itis possible to check that doing so does not affect the
expansion of the action up to order ¢, and it would be expected on general
grounds [115] that the first appearance of the first subleading terms simply
re-imposes the equations of motion already encountered (as we saw with
Cs and the equations of motion of C3). In addition, we could reformulate
the expansion by introducing additional one-form gauge fields (as for this
case in [105]), accompanied by a shift symmetry, such that the three-form
C\wp does not transform under boosts. The resulting more general expansion
could then be attacked order-by-order without necessarily sending ¢ — oo
or truncating as we did. Here it would be interesting to compare with the
approach of [27], inputting the eleven-dimensional three-form as matter. A
complicating feature, relative to usual 1/c expansions of general relativity
leading to Newton-Cartan [25,103,115] for example, is that the longitudinal
vielbein appears in both the metric and three-form and does so at different
orders in c.

Another possible approach would be to try and find an embedding of the
Type II TNC in Double Field Theory (if possible). However, we expect this
to be nontrivial. Recall that, upon BRST quantization, a critical bosonic
string theory can only be anomaly-free when the trace of the generalized
metric satisfies TrH = n —n = 0 [81]. On the other hand, we know that
it is possible to derive all the equations of motion from an action principle
for Type IT TNC [25], which implies that the embedding of this theory in
DFT should have n x n = 0. The only way to have n = n and n xn =0
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is if n = n = 0, but this corresponds to a Riemannian geometry and so we
cannot identify this theory with Type II TNC. This seems to indicate that
Type I TNC cannot be embedded in DFT as a quantum consistent theory,
or maybe it cannot be embedded in DFT at all. Either way, this direction
should be explored in more detail.

A different route is the study of the spacetime actions for the non-
relativistic duality web [28] in eleven and ten dimensions. This can pro-
ceed both by applying standard dimensional reduction and dualisation to
our eleven-dimensional action, and by applying similar methods to individ-
ual supergravities by taking covariant non-relativistic limits associated to
each p-brane present in the theory. In Chapter 4 we performed a dimen-
sional reduction to type IIA, but we did not discuss the expected T-duality
relationship to type IIB, for example. Similarly, there is presumably a het-
erotic SNC which could be obtained by reducing non-relativistic M-theory
on a longitudinal interval, although it is not immediately obvious what the
result of reducing on a transverse interval should be. Note that the appear-
ance of the original and dual field strength together in the eleven-dimensional
theory suggests that the appropriate formalism for describing generalisations
of Newton-Cartan geometries in type II should be the formalism where the
RR p-forms are treated ‘democratically’ [116], accompanied by a self-duality
constraint.
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Samenvatting

De belangrijkste focus van dit proefschrift is de afleiding van niet-relativistische
deeltjes-, snaar- en membraanacties en bewegingsvergelijkingen. In het bi-
jzonder zijn de theorieén die we beschouwen gebaseerd op (generalisaties
van) de Galilese algebra/Newton-Cartan zwaartekracht. Ons beginpunt is
het berekenen van de betafuncties van een niet-relativistische snaartheorie
met Torsionele Newton Cartan-symmetrieén in de doelruimte. In analogie
met de gebruikelijke relativistische snaartheorie worden de vergelijkingen,
die worden verkregen door deze betafuncties op nul te zetten, vervolgens
geinterpreteerd als de doelruimte-bewegingsvergelijkingen voor (Type I) Tor-
sionele Newton Cartan-zwaartekracht. Vervolgens leiden we een doelruimte-
actie af voor deze theorie, evenals voor andere niet-Riemanniaanse theo-
rieén die er nauw mee verwant zijn: Carrolliaanse en String-achtige Newton
Cartan-zwaartekracht. Deze acties komen overeen met verschillende niet-
Riemanniaanse limieten van de bosonische sector van de gebruikelijke tiendi-
mensionale superzwaartekrachtacties. Ten slotte bestuderen we een niet-
relativistische limiet van M-theorie, waarvan de lage energielimiet een theo-
rie geeft die we Membraan Newton Cartan-zwaartekracht noemen, die moet
worden beschouwd als de niet-relativistische limiet van de bosonische sector
van elfdimensionale superzwaartekracht. Twee conceptueel verschillende di-
mensionale reducties kunnen dan uitgevoerd worden op MNC-zwaartekracht:
een ervan blijkt precies dezelfde SNC-zwaartekracht te zijn die hierboven is
genoemd, terwijl de andere een nieuw type niet-relativistische theorie is die
is gekoppeld aan D2-branen.
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Appendix A

Type I TNC beta functions:
computational details

A.1 Geodesic equation and normal coordinates
in TNC geometry

The action of a particle moving in a TNC background is given by [1]

b
Spart X / Ny (A1)

T,L%

The geodesic equation can be obtained by minimizing such action, the cor-
responding equations of motion are found to be

1 - _
5 0P = Oy, - oy >

Nhg, @ — 7.hy 3t a”

N

(P Frp — 7 Ophy) thn,] .

ey
- U'l/',”E Y

(A.2)

where we have defined N = 7,2?. Contracting (A.2) with h?* gives us the
geodesic equation

N, huF,,h?
=\ DTN VA DY uvtiop Ry
@+ Iy, 2t Ay aha’a? . (A.3)
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We want to construct a solution of (A.3) such that z#(0) = X! and
o#(1) = X} + I,Y* where we can identify the vector i#(0) = [,Y*. The
following expansion on [, satisfying the previously mentioned conditions can
be constructed

2
o' = XE 4 ALY+ %zgyg‘ + O3, (A.4)

substituting (A.4) in (A.3) it follows that

7'1,Y2”YA + @m,Y“Y”Y’\ - %BwhAUFUpY”Y“Y”
T.Y " ’

(Y3 + 1), YY) = (A.5)
where all the geometric background functions are evaluated at X}'. Equation
(A.5) has a solution of the form

Y3 =T, Y'Y — G Y"Y", (A.6)
with G;)V a tensor satisfying

o 1~ o
T(PG;iu) = T 5;\) — §h(m,Fp)Uh A. (A?)

o (v

For (A.7) to have a solution it is necessary to impose F,,h?*h” = 0, obtain-

ing G, = $huwash’*, meaning that the quantum field Y# can be written in

terms of the covariant vector Y# as
ls
2

_ 1-
yr=yr— (Fga + —hp,,a,,h‘“’) YV +0 () . (A.8)

2

A.2 Tree level contributions from the Dilaton

In this section we will compute the tree level contributions to the beta func-
tions. To this end we will need the contribution to the energy-momentum
tensor coming from (2.20) and then compute its (classical) trace. Notice that
the energy-momentum tensor will receive a contribution from this term even
when the worldsheet is flat. The result is given by

2 . ~ ~
(—-”) VTN = —p = —OX 0,0 — 1?0, X 05X"0,0,0,  (A.9)

Oé,
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where [J is the d’Alembertian on the worldsheet, (] = ~*# 0,0p. To rewrite
this in a useful way we need the equations of motion for the classical fields.
These are found by varying the Lagrangian (2.19):

0=~ (0, — 20,10p) DX 05 X" + 20, IX" + 2AN0, X ), T,

+ Tp0a AN = 28X 0 X0, R ) — R0, 5" (A.10)
— " (8,Bu, — 20,B,,) 0.X"05X"
0= €20, X"7, + €2 (0un + 0, X"N,) , (A.11)
0= €50, X"7, — €5 (0an + 0o X"N,) , (A.12)
0= 0,2\, (A.13)
where
AN = x_el —Nef SA =M ef 4 a6l (A.14)

We now multiply the first equation by %h"p', the second equation by ei&g
and the third one by e? 0p to find

. 1
—0X? = (I, + 0°0,7,) 0a X 95 X"y — éh”"HowaaX”c?BX”eaﬂ
+ 0P, OXH + R AN O X 0Ty — RSN 00 X R,

(A.15)
(1, + R, OXH = e%e? (9,7, + 9,R,) D X" X" — [y, (A.16)
(1, — R,) OX* = e%e? (9,7, — AN,) 0. X 0 X" + Oy, (A.17)

where we have also used (A.13) to simplify (A.15). By adding and subtracting
(A.16) and (A.17) we find

7, OX" = e%e” (9,7 + ORy)) aX X"

= — (vP0,m, + €PO,N,) 0, X 05 X", (A.18)
R, O0X* = — (29,7, — 7*P0,R,) 0, X" 0 X" — Oy (A.19)

Substituting (A.18) in (A.15) we finally have

. 1
—OX? =(T* A — P9, R, e*® — ZhP"H, ,,e*? | 0, X" 93 X"
( Y U OuS€ 5 puv € B (A.20)

+ h‘”’A)\“@aX“@[MTU] — h””E)\O‘aaX“é?[#NU] .
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ow that we have an expression for In terms o we can rewrite
Now that h for OX? in t f 0,X7, t

(A.9) as

27T « (2 [ « v [ «
=7 YPTEN = =1 D 0,70) AN 00 X" + h*7 Dy O Ro) SA“ 0o X

1
+ 'Ya/BDuDuQS + e (@'ODpQS auNu + éhpgDpCbHauu)} O X" 0 X"

1 _
= = 5 B 0a X605 X5V + B, 00 X{ 0 X5 e
FBIAN D XN + BINN D XN
(A.21)
from which one can easily read the dilaton contributions to the beta functions
(2.81)-(2.86) :
82, = —2DDyyé — 262, Dro,
B%, = =bu Dy — 1" Hypy Dy,
B? = h"F,eDys,
B2 = —~h"bu.Dy.

(A.22)

For completeness we mention that the time projection of (A.15) is given

by

OaAXY = [0” (Dphy — 2D, k) Y7 + (07 Hpp + 28b,) 7] 00 X 05 XY
+ A AN 0 XY — ¢, N0 X} . (A.23)

A.3 Covariant expansion of the one loop ef-
fective action

We will make use of (2.39), (2.48) and (2.49) to write down the covariant
expansion of the couplings appearing on the Polyakov action (2.11). Starting
with the An couplings

/d;ae [(ree? + 2 ) apn] = / Poe [SAVH] 10 (A20)

144
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where we have defined $A? = (/igf + A,ei). We can then look at the hag

coupling

d? _ - o o
/ T e By = / Poe lhwvawvaw

13
+ 2D,h,, VoYY 7O XY
1o o - o _
- <§DnghW + R{mhw) YPY 70, X405 XY
+ O (ly)
(A.25)

where we recall that H = dB, F = dr, b = dR, AN = A2 — \%¢”, and
SN =0 4206
Moving to the vector couplings we have

2
/ dl;e [/\j:t?g:Ta} = /d206 {l_\ie;ﬁ (VQ (r,Y") — FMprE)aX6‘>

1 o
+ 5 Fu XY VLY

(A.26)
+ %prwwyuie;aaxg]
+0(ls)
and
Po ., N o
/ RANIENE / doe [EA (NuVaY” + DR, Y70,
- %bw,maw%aw (A27)
- %f)pbwwwmaaaxg]
+0(ls)
where we have used (2.47) as well as the identity
R, Ry = —D,D, R, + D, DX, . (A.28)
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We can finally move to the last coupling:

d’ce _ o
/ B € Bos(X) = / d?oee™? {vaawwaﬁxg

s

1o
+ 5D,,HWYPYUawngaﬁxg] (4.29)

+0() ,

where we have used the identity

/d2aee°‘5 [BW%QY“@/;Y”] = /d2aeeaﬂ [(lo?l,Bw) YU%QY“E)BXS
1 /o _
+5 (7 Bro YPY“aaX#aﬁX”} .

(A.30)

Before combining (A.24), (A.25), (A.26), (A.27) and (A.29) to write down
the action Sy we will take a look at the transformation properties of H in-
herited from the Kalb-Ramond U(1) transformation, namely if the transfor-
mation of the original fields are

AN, =0, A, (X),

oan = —Au(X), A3
then the quantum field H will transform as
6H = —D,AY* +O(l,) . (A.32)
It is then convenient to define a new field H as
H=H+R,Y*" (A.33)

such that 6H = O (l,), making it invariant under the Kalb-Ramond U(1)
transformation at the level of the action S;. By making use of this field

146



A.4. DERIVING THE BETA FUNCTIONS

redefinition, the action Sy is written as

47

_ d2 _ . _ o A °
Sy = — / doe {hwvaY“V“Y” —Ave? (VoH + V5 (,17))

A (Vo =V (71 ]

d*ce [+ _
- / . [A+Yp (Fup + byp) eé@BXé‘ —AYP (Fup = bup) eﬁagXé‘]

d20'€ ap aB x P w v
- | (Y2 Ay + €2°A,,,) YOV Y95 X

+= (ANE,, — ¥2%,,) w%aw}

DN | —

d20-€ Olﬁ QIB — o L y
B A7 (7 Coopur + € Cpaw) YPY?0,X5 05X

+ (AXN*Byop + XX By praaxg} :

(A.34)
where the coefficients {A, A, C,C, B, B} are given by
AU;U/ = QEJBMV7
Aa,uy - Ha’p,l/ )
1. _ \ _
Coopw = EDpDoh/W + B (o) (P
_ 1o
Cpa/.w - §DpHO',LLV7 <A35)
1o
Boop = §DPFM )
1o
Bp«fu §pr(w

A.4 Deriving the beta functions

Making use of decomposition (2.59) and assuming we are working on the
critical spacetime dimension, the Weyl variation of the effective action can
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be written as (up to seond order in spacetime derivatives)

5T [Wo)(0) = 64(S1 + S1 + So + So)o + %5w<(3131 + 23181> + 8810,
(A.36)
where we have also made use of the Ward identity
1
/ d*o I (Y (0)0,Y 7 (o)) = -5 / o (Y)Y (0))0u T2, (A.37)

with J7; an arbitrary spacetime tensor introduced to move the disconnected
part of the variation to one order higher in derivatives. We will start by
computing the two-point correlations

0y (S1 + Sa)

d2 o 1o dc 3 7
R e

1 o d.+2
~h’D,Hy, — Dye, + i

+

Do
a,h" Hypy + AT“bW] PO, XL XY

. d,
+ [—D ca+ (Z + Z) aQ} T, AN 0 XY

+ {—llo).e— (%—i—%) a-e} TI,Z)\aaaXé’}—l—...
(A.38)

where we have neglected terms that will not contribute to the final result,
7.7 denotes an inner product with respect to h?° and where we have used
the identity

Sy / o (Y(o)Y (o)) = / Ao Ji; 699 (A.39)

with J;; an arbitrary tensor, this last identity follows from the renormaliza-
tion of the propagators (2.58). In deriving (A.38) we have introduced a total
derivative' [ d*00,e, made use of the Ward identity (A.37), the background
equation (A.20), the Bianchi identity

If this total derivative is not included then the U(1) mass variation of the antisym-
metric beta function will not be zero but rather a total derivative, leaving the effective
action invariant but not the beta function itself.
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(Duhos + Dolioy = Dol + hava ) 7 =0, (A.40)

and the TNC identities

1o o - o o - 1/ - o
hP° <§DpDo'h,ul/ - DPD(Mh’l/)O') = 5 <D “a+ a2> hMV + D(Nh"/)a'aphpg )

o — o 1 1 .-
h*?a,D,h,e = (Ar)" Dya, — 5 Gt — §a2hm, ,
PO DA 7 _ > 1 1 A A 1")
W7 0*Dyhgy = —Da0*

(A.41)
where (Ar)? and (Ag)?, are the usual TNC temporal and spatial projectors
Ap) = —0P1,,
( T)ﬁ L (A.42)
(As) = Wy,

To compute the four point functions arising from (S;S81)g we will need
the non-vanishing four-point identities

5¢/d2ggjol JUKL<Y18QYJ(J)YK65YL(J’)> = —/d20¢Jijk15ik6jl7aﬂ,

5y / Loda’ 1 (ALY (0)A_Y (o)) = — / Ao J;;6
Jinj 0064

V20
(A.43)

Sy / PPod*c’ Iy (YTeL0Y 7 (0) ALY R (0")) = ¢ / d*ovp

with {Jrsxr, Jrs, Jrox} arbitrary O (D?) tensors, ¢y an arbitrary constant
and where the last identity is only true up to second order in spacetime
derivatives®. The presence of ¢y might seem like a problem to the uniqueness
of the resulting beta functions, however by noting that the U(1) mass symme-
try is non-compatible with the derivative expansion® we find that constants

2This identity can be derived through integration by parts and making use of propa-
gators (2.58).

8A U(1) mass transformation changes the O (D) of the actions Si*.
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of the ¢q type will be completely fixed by asking for U(1) mass invariance at
second order in covariant derivatives. The ambiguity in defining the O (D)
can also be seen from the two point function Ward identity (A.37) as well as
from the four point function identity

/ Lod?o’ (xf(f;J)X/(f;{L)) (Y1 (0)0aY ()Y 5 ()05 (o)) = O (D?)
(A.44)

with V% an arbitrary tensor. Making use of (A.43), it is found that

) dQO"l/J - A2 - Cl2
§5w <8181> = —/ e |:4_11Hp qugV + (AT)# Dl,ap - h/W (ez + Z)

¢? (QCI)T#TV + BW) — e e,
_l’_
2
5
— a2q)7'u7',, (Cl + 5):| VQﬁaanaﬁXg

d*o [ a,h* H,,, 1 -
_/ e |:_ P 9 K + <CB - 5) aphp (AT)i Haz//\

+ C4ephpg (AT)i; Hl/)\o'

+ Co (AT)Z byep + auel,} Eaﬂaana[ng

2
_ / = [(c5a® 4 c6e®) AN + (cra - ¢) DA 7,04 X -

AT
(A.45)
To derive (A.45) we made use of the projected Bianchi identity
. o - 1 - 1 -
(Dpho—y — Dahpy — §aphw + 5(10th) = 07 (A46)
the Bianchi identity (A.40), the TNC identities
- o — p 2 1 1 97
h*?a,D by, = (Ar)) Dya, — a,a, — —ahy,,
o O 2 2 (A.47)
h*?¢, D, h,, = (Ar)” D,e, — Sty 5 (e-a)hu,
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and we have used the Ward identity (A.43) to introduce the O (D?) zeros

/ aZU [(auav — eyt + (@ _282) (P + Q(I)TMTV)) 76”] Ou X 05Xy
T

(A.48)

d*c 5 ,
+/E [(aue,,) e ]8QX585X6/ =0 (D ) ,

2
/i—; [auay + a? (?LW + QQ)TMTV)] Do X§O*X) =0 (D3) )
(A.49)

_ Following an analogous procedure we can compute the contributions from
S, in particular we find that

5 <31 +S + %Sl (S + 81)>

o / 2oy [ (A7), Dyay
N 47

2
_ / d20'¢ _aphpa (AT)f; HUZ//\
4 2

+ P (a-e) 1T,

+ (co — 1) aqury] 0. XXy (A.50)

] PO, X 05 XY

oy [a-e ., a* .., .
_/ = {Tm —ZAA]T,,aaXO,

where we have used the identities

_ _ - o .. 1
(hpa — hp,\hmh’\””) Duenye?(W = —§a27'uﬂ,<1>,
1 (A.51)
KT A oSl o A
(6; — WM hio ) €0 D,ye5 67 = 5aoh’ (A7), -

We can note that the analogous S computation in the standard bosonic string
will result in a vanishing result, however in our case this is no longer true as
h*? hyy # 6% as well as due to the presence of a non-trivial coupling with the
Lagrange multipliers. Combining (A.38), (A.45), (A.50), and the classical
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dilaton contribution (A.22) results in the beta functions

1o d. 1 °
ﬁ‘u:|:§D-a+(Z+§+C5>6L2+0622—G'D¢:|7—,u7 (A52)
_ 1o d. 1 °
Bu=—|sD-e+|=+-—c]a-e—e-Do|7,, (A.53)

2 4 2

o 1. 1. d. 1 . -
BMV:_RMV+ZH’0 MHPUV+|:§D'Q+<Z+§) Z—QQ—Q-DQ{|hMV

(A.54)
7
+C4ephpU(AT)2Hzx}\cr+|:60a'2+(00_cl_§) azl b7,
1 o 2 (207,71, + h) — eyt o o
—l—[clJrﬂ(AT)iDyaA—k (227, 2“) P2 —2D,D,¢,

_ 1 . d, . .
Blw = éhpUDPHU,uV + ZaphpaHUlW - DHQV + C2 (AT)Z D”ep + a“el’ (A55)
f)/\UA po A AP po -
+ 9 bl“’ -+ (C3 — 1) aph (AT)M Hm,)\ — (U b/“, -+ h ngy) Dp(b

The free coefficients in (A.52)-(A.55) can be fixed by asking for {3, B., B B }
to be gauge invariant, this condition fixes the coefficients to cg = 3,¢p =
0,c1 = —%,cg =2,c3=1,¢4=—1,c5 =0,¢c6 = —1,¢c7 = % resulting in the
beta functions (2.74)-(2.77) presented in the main text.
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TINC, SNC and Carrollian
identities

B.1 TNC identities

B.1.1 Geometric identities
The connection we use is
1 _ _ _
Ffw = —@pﬁuﬂ, + §h”" (8Mh,,a + (’9,,h,w — (%hw) . (B.l)

Integration by parts is not as straightforward as in usual general relativity.
Instead we have

DMA’u = 6_1au (6 AM) - aMAM + QAMDMQS’ (BQ)

where A* is an arbitrary vector.
Many geometric identities can be derived from the completeness relation

— M7, + hPh,, = 0. (B.3)

For example we can take the derivative of this relation and then multiply
with A. This gives

D,yhy = 27, kD0 — 27,7,D,9 (B.4)
and

DyD by, = 27,0\ Dy D,0* + 27, Dyhyy\D,0* — 27,7,D,D,®.  (B.5)
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More useful identities can be derived by the definition of the connection:
hpUDU?L/W = 4hpUFg(uTy)(I) —+ 2T(“Dl,)’ﬁp ,
0’ Dot = W7 (D, P + 2a,9P) , (B.6)
R Dyo" = h"P D, 0" + 29 F,,h'Ph" .

B.1.2 Variational calculus

We choose the independent geometric fields to be h*”, 0* and ®. The varia-
tions of the dependant fields are given by

(57LW = —27,7,0P :I— QT(HBZ,),,(S@'O — Bupﬁwéhm , (B.7)

_ s
0T, = T, T,00 hypTs0 .

The variation of the measure is then

de = g (;}ﬂaaﬁm — %D — 45¢) = g (—hpeOh? + 27,607 — 45¢) . (B.8)

The variation of the acceleration is
da, = 60°F,, + 20°D|,07, — a,0"07,. (B.9)
The variation of the connection is

1 1
(SFZV = —§5ﬁpFuV - @pDH(sTlI - §®pFHVTU($OU

n %hpcr (Dy8Ts + DyShyr — Do) + %ahm (Dylows + Dyl — Do)

— 2@T(MFV)U5hpU — QT(MF,,)UhpU(s@ — 5T(MF,,)JhpUCI> + hpal_b\(,qu)U(sﬁ)\ .
(B.10)

The Palatini identity in the presence of torsion is

ORuw = D,0Iy, — Doy, — 217, 010, = D,0Iy, — D, oIy + 07 F,,0I7 .
(B.11)
The indipendent matter fields are R, B, and ¢. The variation of b, is

Obyu = 2D}, 08, — 2TF 10X, (B.12)
so that the variation of the electric field is
de, = 00°by, + 2D, 08, — 2@”F[pﬂy]5Np, (B.13)
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while that of H,,, can be written as
0H py = 3D,0B) — 217,10 Bye — 217, 10 By — 217,10 By - (B.14)
The Kalb-Ramond fields satisfy the usual Bianchi identities
dH =db=0. (B.15)

In the twistless case we have b, = ¢,7, — ¢,7,, then we can express the
Bianchi identity in terms of ¢, rather than b,,. We find

8[pbuy} = QD[ueyTp} + QQ[uequ} =0. (B.16)
A similar identity can be derived for the acceleration, yielding

E)[pFW] = QD[MCLVTp] =0. (B17)

B.2 Carroll identities

B.2.1 Geometric identities
The connection we utilize when varying the action is
1~
v, =—v0,7, + §h’” (Ouhvo + Ovhys — Oshyw) (B.18)
from which we find the following identitiy
D, A" =¢e719, (e A*) — a, A" + 2A"D,¢, (B.19)

valid for any arbitrary vector A*. From the completeness relation and the
definition of the connection it is possible to derive the following identities:

Dohy = =Koty — Koo
D" = —h""K,, (B.20)

v’D,ut =0,
where the extrinsic curvature was defined in the main text as

1 1
K = —§£UhW =3 (VP0,hy + (0,0°) By + (0,0°) hyy) - (B.21)
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B.2.2 Variational calculus

We will use fL’“’, vt @ as indipendent geometric fields. The other geometric
fields are related to them via

Py = 270l p 00" — hyphyedh?
07y = TuT,00° — T, 0hP (B.22)
ShH = Sh* — 4dpHeuY) — 26 vH” .

The variation of the measure is then

_ ¢ (7057 5;{)_ _°(_ NT% Aol
56_2(h Ohpo + = 45¢) 2( PSP + 28,00" — 466) . (B.23)

The variation of the acceleration is
da, = OV’ F,, + 207D, 07, — a,vPoT, . (B.24)
The variation of the connection is
1 1 .
0T}, = =500 Fy = D07, — Sv Fufpdv” + he by Fryyo 0™

1. 1 .-
+ §hp” (Dudhye + D,ohy — Dyohy,) + §6h”" (Dyhyo + Dyhyo — Dohyy)
(B.25)

The Palatini identity is
ORuw = Dpol'y, — D, oI, — 217, 1017 = D,oly, — D, oI, + U”F,,pé(ll;)g%é)

The variations of the Kalb-Ramond matter fields are given by (B.12)-
(B.14).

B.3 SNC identities

B.3.1 Geometric identities

The connection is
1 _ _
FZV = —uPAV,m,A + Ehpa (Duhl,g + Dyhlw — Dahm,) , (B27)
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where we introduced the spin connection via
V#TVA = 8#7,,‘4 + Q“ABT,,B = (9#7'1,‘4 + w#GABT,,B , (B.28)

and our convention for the longitudinal epsilon symbol is €y, = +1. This
connection is boost invariant and compatible with A*” and T#A,
v A
D,n*" = D,7; =0, (B.29)

where we are using the symbol D (not to be confused with the dimensionality
of spacetime) to denote the full covariant derivative, i.e.

D,u,TVA = a,u,TVA - FZVT,)A + W'U,EABTVB =0. (B?)O)
Integration by parts is then performed with the use of the identity
D,A* = e 10, (e A*) — a, A" +2A"D,¢, (B.31)

where we recall a, = a,*Pnap.
From the completeness relation we find the following decomposition

Dyhy = 27, hiyo D’y — 7,7,° D@ s (B.32)
From the definition of the connection we find
h*? (Dyhys + Dyhye — Dohyy) = =20 F, A1, @5 . (B.33)

From the projections of this identity it follows that

1

heD ) 4 = §FWBc1>B A (B.34)

and .
UV(ADV’LLIU’B) — h/“’ (ay(AcéB)C + §DU®AB) . <B35)

Since @45 is a 2 X 2 symmetric matrix, we can write its inverse as

_ S5 —nap?d
ot = B.36
(@71 ap = SAE D, (B.36)

where det ® = %eAB PP 4o Pgp and & = CI)ﬁ. Moreover, since the longitu-
dinal indices can only take two different values, we have that

Tl =0, (B.37)
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for any tensor 1" with three or more antisymmetrized longitudinal indices.
The field strength of 7';4 can be decomposed as

FWA = fAT#BT,,CeBC + 2a[uBATl,]B + .FWA , (B.38)
with
w2 F,pp =0, ua,BY = AP FO. (B.39)

B.3.2 Variational calculus

The independent fields are w4, ", 8 and B,,. They are related to the
other SNC fields via
571/4 = THBTPA(SupB — TpAﬁWéhp” ,

K _ S B.40
Ry = 270, Pyt 4 — hyuphyeOh?” — 7,47, 250 4. ( )

The variation of the connection is

oT%, = —u’ 4 (Dyo7,* + 17,
+ 21" (Dybhye + Dyohyy — Dydhy,) + 26077 (Dyhye + Dyhye — Dohyy)
+ B (T 0w + T g10ha) + 0077 (T by + Thihag) -

[no] [vo (uo]

]57;,’4 + EABTVB(SWM) — 5u”AFEW]TUA

(B.41)

The variation of the Ricci scalar can be found as usual through the Palatini
identity:

0R,, = D,0T%, — D,6T%, — 2T, 617,

B (B.42)
= D01y, — D00, — 2u” 4V}, 74015,

The variation of the field strength of the B-field can be read off from
(B.14).
B.4 Actions in Einstein frame
In this section we will perform a conformal redefinition of the metric complex

to rewrite the non-relativistic string frame actions (3.50), (3.89), (3.102) and
(3.147) in Einstein frame.
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B.4.1 TNC

The action and equations of motion can be written in terms of the basic fields
h*  o* and ®. The aforementioned fields transform as

hHY — e OCpHY
vt — e Pyt (B.43)
P — e P,

where e®? is the conformal factor and o = ﬁ. Then, in Einstein frame,
the TNC action (3.50) can be rewritten as

/d th y 1 1
/dd ¢ “ [ §a“au 26_20‘%’“‘6“ —aD"oD,¢

e Y s e H 1 e 2P H b —

1 v —2a v
12 -3 5 (F"Fu +e 20" b,,) @

(B.44)

B.4.2 Carroll

The action and equations of motion are written in terms of the basic fields
h* , v* and ®. These fields transform as

i s eotf
vt — et (B.45)
P — "D

where once again we have o = 7. In Einstein frame, the action (3.89) is

/ d®z \/2® det b, {RJF —ata, + e “20dete, — aD*¢D, ¢ + 2Kv" D,®

1
+20 (lC’“’ICW - K? + av"D,¢v"D,¢ + Z—leQO‘d’U”U"H“”pHMW>

70{ v 17& v
—12 2 ¢HWpH“p+26 2 d’b"H v’

(B.46)
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Similarily we can transform the action (3.102):

- 1 1 L
S = / d®z /20 det h,, {72 + 5@“% + 56_26“‘%“6“ —aD'¢D,¢

1
——e kg

1% 1 —z v
T WpHu (S 56 20 UpHWp

(B.47)

B.4.3 SNC

The action and equations of motion can be written in terms of the basic fields
h# vl and @ 4p, which transform as
Y — e OpH
uly — e %l (B.48)
Dup — e Dyp,

where now we have o = 4 . The action (3.147) can be written in Einstein
frame as

det h,, 1
o= / AV m [R — a"*(ayap) — 577A3au) +ad'a, +aad"Dyg
1 1
+ ala—1)D*¢ D, ¢ — éF‘LWAFﬁ,((I)AB - 57],43(1))
1 1
—|—§e_o‘¢eABupAF“”BHPW — Ee_Qa‘z’Hp“”HpW )

(B.49)
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Appendix C

Non-relativistic
parametrizations of ExFT

C.1 Dimensional decomposition of non-relativistic
action for ExFT

Decomposition of R Consider the part of the scalar curvature R
defined in (4. 30) not involving the longitudinal metric, but just the trans—
verse metrics H; a0 and H™ and the measure factor (). In the dimensional
decomposition used in exceptional field theory, the latter two factorise as

Hpp = UpPU Hys,  HY = (UH),M(U)"HP (C.1)

with

o (0 AJ 7 _ (Guw O a0 (G0
Ui _<O (5/)’ HW_(O Hz'j)7 H™ = 0 HY)- (C2)

Here G is the inverse of G, but HY and H;; are not invertible. The idea

is to completely factor out the matrix U from derivatives of G. Defining

0, Hy, = U SU UL OH O, H" = U7 (U2 (U ):P0hs . (C.3)

GAR
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we have the relatively simple expressions
o ( DG, HuD,A
e HleuApk Dquk ’
a7 . aiGup HklaiAl/l
OHinp = (HﬂaiA,,k Oy )
- .. D (Jve (Yo P k
om, - (DG mCIDAT
H -G D, A’ D, H’
. a,GVp —G””(‘)-A k
b G A 140
o, (—GwaiAgﬂ o, Ho* ) ’

where D, = 0, — A,'0;. For instance, consider the following terms in the
scalar curvature:

LH™OH 3p50H " — YH"™OH " OH 06 . (C.5)
A fairly straightforward calculations shows that these equal
LG D, G o D, G — LG' D, G D, Gy — LG G H i F,
+1G"D,H;;D,HY + 1HY(9,G,,0;G" + 0;Hu0;H*) — LH" 9, H* 9, H
— Y0l + HTH,) DA 0,G™ + G HUH oA, 0 A,

(C.6)
where wa =2D,, A%, D, =0, — La,, and acting on G, and G*, we have
D, = D,.

Next, consider the part of R(®) that involves 7:

TRD O A ~po 140 agiey 1 ~av 6G 9 ~ 1 77iab g ~Apoa A
H* 8,17,;&8{,# + Z’/’M aﬂTﬁ&a,;Hp — 57’“ 8,;Hp 8,;7,1& — §HM &;Tp 8,57'/1&.

(C.7)

1
1
Similar calculations to above give

1 0] ik l j 1, ik N k
16" D7D, + ¢ 70, A, 0A — 3% 7D, A O,GM
-+ }LH”(?Z-TM@]'TM —+ iT”(‘?ﬂklaijl - %Tz]aijlakTil — %H”(‘?ﬂklakm .

(C.8)

The terms involving 7%7;; on the first line here combine with the terms
involving H* Hy; in the last line of (C.6) and sum up to give §; = H** Hy; +
7% 715, after which point the rest of the calculation proceeds identically to
that normally used in exceptional field theory.
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Finally one has the terms
- Gﬂﬁéﬂ In Q 5,; In Q + 25ﬂ In ngﬂﬁ - (%&;@‘” - Gﬂﬁaﬂ&; In Q ) <C9)

where 2 has weight 1, and in the final two terms 5u = Du, 0; = 0;. Note
D,InQ = D,InQ — 9;A,". We let Q = Q./|G], where Q has weight 1
under internal diffeomorphisms. Straightforward manipulations allow one to
rewrite (C.9) in the decomposition and combine with (C.6) and (C.8) After
dropping a total derivative, the final result is:

RO(H,#) = Rew(G) + RO(H,7) — 1F,,'F,, G" G Hy
+1G"(D,Hy;D,H"Y + D,7;;D, 7 + D, InQ*D, In Q%)
+ LHY(0,G,0;,G* + 9;In |G|9;In |G]) ,
(C.10)

where

Re(g9) =2G**D,G,,D,G” — LG" D,G* D,G,, — 1G* D, In |G| D, n |G|
— D,In|G|D,G" — G*'D,D,n|G| — D,D,G" ,
(C.11)

R(O) (H, 7') = +iHij8iTk18j7kl + %TijaiTklaijl - %TijaijlakTu
+1HY9,Hyo;HY — LH90; H*" 0y Hy — L H70;In 0*9;In Q°
— %HijakalakTﬂ — &ln 920]-Hij — azajH” — H”@i@jln QQ .
(C.12)

The measure factor is Q = Qy/ |G|. To obtain an Einstein frame action, we

let
2

G, = g, . (C.13)

Gauge fields The compact expressions (4.136) and (4.137) are equivalent
to

Cliiop = (Uﬁl)/\lﬂ(Ufl)AQﬁ(UA)/\SﬁCXl...x,» ;

—1\A1 —1\A2 —1\A3 —1\\4 (014)
Fliopse = (U )M a(U0)20(U0) 2 5(UT ) M6 Fs sy
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giving in components

Cz’jk = Cijk, ij = C#ij - Akaijk,
Cuui = Cum' - QA[;LjCV]Z'j + AujAkaijk ) (015)
Cuvp = Cup — 3A[uicw)]i + 3A[uiAVij}ij - AuiAvjAkaijk )

Frnpg = 40mClpq) » F imnp = DpCrnp — 301mClujny)
Fvmn = 2Dy Cljmn + F 10 Cpmn + 205 C )i

prm = 3D[MCVP]m + 3F[uvncp]mn - amCM”P’

Flvpe = 4D, Cpe) + 6F[uvmcprﬂm>

where F,," is as defined in (4.135). The original Bianchi identity dFy = 0
becomes a set of equations

(C.16)

D;LF mnpg T 4a[mF npq) »
2Dy F iy = _3a[m|FlW|"P] — Fu F gy
3DLF ypmn = 20| F pwpin) + 3Fu” F pjpmn (C.17)
ADFypoy = —OnF po + 6 F1” F polmp »
SDF ey = 10F"F poxim -

The above formulae are applicable to any dimensional reduction. In partic-

ular for the 11-dimensional MNC theory they allow us to easily decompose

the terms in the action (4.34). For example, using the Einstein frame metric

to raise indices, the kinetic terms for the field strength are:

_%F[ﬂlﬁl lﬁ[ﬂZDQ ]f[ﬂsﬁs ’f_mmFﬂlﬂzﬂsM F171I92193174
6/(9—d) _ij g 4/(9—d) pyij -kl v
— _1_129 /(9=d) -ij n PiF i — %Q /(9=d) rij - F o aF"
— QMO DM R FY Gy — SHTHY H ™ P F 0 F g -

(C.18)

Similar manipulations apply to the rest of the action. Let us also indicate
how the factorisation applies to an equation of the form 0, XA"P% = QA7
where X has weight 1, and both X and © admit a factorisation via U~! in
terms of quantities X and © independent of bare A, This is of course the
form of the gauge field equation of motion (4.28). After decomposing, one
has the simple expression

Dy X7 4 X 4 LF G X = 910 (C.19)
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Constraint The constraint (4.33) decomposes in terms of the redefined
strengths:

6 O
—d M1 Havy _ ememan-Paike no A_B_Cp
Q9 dg .- g Fl/1...1/4 - = 416,/ Ti Tj Tk Ful...u4;
4 U
— nivi n3vs rrij o et M3 PAPiTe po A B_C R R
Q9-dg g HYE 5 = 41-6,/g ' Tq Tr Foyig s
) PO
— g M1V M2V TTE1)1 ETi2]2 L _emrennnan - PaPdeapo A B _Cr
Q9 dg g H H FV1V2J1]2 - 41-6,/g Tp Tq Tr Fljl...l/47
H1v1 Iyi1g1 133 L e po A_B_Cpp
g H . H FV]1j2]3 == 4!-6\/57 7_p Tq Ty Ful...u47
2 . . N
Q dH . H F31J2JSJ4 = 116./g Tp Tq Tr Flll.‘.l/4 .
(C.20)
For instance, when d = 3 only the first of these is non-zero, giving:
v V4 _ 1 qv1..v415k 1 A_B_C
\/gqul b _g,u4 FV1...I/4 - 4'6M1 Har J EA cTy Tj Tk Ful...u4>
— 1 pi..pavi..vg
= — € QF, ., .
(C.21)
When d = 4 only the first two are non-zero:
1% ny _ 1 vy...v3li kl A_B_C
\/—Q5g#1 T M 41.7‘,/1 = 3'6#1 -pavy...v3ley €ABCTi 7—] T Fulugugla

1 _p1...pu3iv1...v4pgT 1
€

11 3V3 T4, _
\/_Q5g'u . u H]FV1V2V3j -

A_B_C
6ABCTp Tq Tr FU1...I/4J

(C.22)

or if we take $€Me per AP, hy = Q) these are

1 v v N7 SR Y
JINE g gMa R, = %ne’“ R A (C.23)

.. o1
pivi H3V3 [yij = Lpehrpsvivapi)y
\/gg ... g H FV1V2V3] = 4!776 hQ5FV1...V4'

Here H" = h'h’ (as it has rank 1), and so both of these are equivalent.

Result Putting everything together, the dimensional decomposition of the
finite action S

SO = /dll_dfﬂ ddy\/g(Rext(g) + Lyin + Line + L7 + \/gilﬁcs) . (C.29)
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Here, using ¢g"” to raise (11 — d)-dimensional indices, we have

1 v g 1 v g
Rext(g) =—g" D,ugpaDugp - =g" Dugp ngucr
1 2 (C.25)
1 1 :
+ ZQWD” IngD, Ing+ §Du IngD,g"" ,
Lin = Y(D,HYD"H,; + D, 77 D¥7;; — s~ D, In Q> D* In Q°)

1ryig A_kB_IC 1 rrij rykl
+§H]F;u'kl€ABCDM7—j T T —ZHJH quFuika'ujlq

+ iQQ*d( FHViF“VjHZ’j +Fuyleu EABcTATkBTlC HikalF'w,ikFule)
- %Q T FuvaWPJ + %DHTkATAkD“TlBTBl
(C.26)
2 o2
Q90 Lo, = LHY (8,6"0; 9,0 + 050 g0;1n g) + 1Q0-40,(HIQ -4
}LH”E)Z-Tklakal + iTijaiTklaijl — %TijaijlakTil
— LHY9,7M 0y + 1 HY0; Hyo; HY — SHY0,H" 0, Hy
+ L L HI9, 02 0,0 0% — 10,10 0% 0, HY
- l]¥ijPIM[_[mn7—pq-1:12'kTrL;IJI'_‘jlnq + %HimHjnFijklEABCTmnATkBTZC

1H”Tzk T ATZ m'p.

)0jIn g

(C.27)

The term Lz consists of a sum of contractions of F wpos INﬂwp,-, ete. (fol-
lowing analogous redefinition of the components) with the constraints as
decomposed in (C.20). For instance, when d = 3,

Li= _%ﬁm...m(\/gggmyl R S i6#1~~ﬂ4l/1~--V4QFV1'“V4) , (C.28)

Al
In this case the relationship between the dual seven-form field strength and
F,, . gives

~V]...lV4

%Eiijm--./Mijk = Q( 1 41\/_€u1 pavy.. V4F ) <C29)
When d = 4,
,CI:: = —% (Fﬂllmu:aihi _ Q1/5e>\1 A401...03 i' \/901;11 . -903M3F)\1-v~)\4> X

4 .
% (\/gﬁgguwl N -g#SVShJFVU/Ql/gj _ Q%6“1"'#3'/1"'”41711/1...1/4) ,
(C.30)
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Using (4.54) we can rewrite (C.30) in terms of the dual seven-form field
strength directly as

- 1
o E'ijl —Z _piv 133 ,] €M1 13V vy
EF — 314 F,ul...,ugijkl (\/§Q 59 - g h Fl/11/21/3j - 41 Fl/]_...l/4

(C.31)
Finally, the Chern-Simons term can be worked out by taking wedge products
of (4.137) and (4.136), we do not display this explicitly.

C.2 The SL(5) ExFT and its non-relativistic
parametrisation

In the d = 4 case, more of the degenerate Newton-Cartan structure is pre-
served.

Elements of SL(5) ExFT For d = 4, generalised vectors VM = (Vi V)
transform in the 10 of SL(5), with 4, j,... now four-dimensional. This rep-
resentation is the antisymmetric representation, and we can see this more
clearly as follows. Let M, N, ... denote fundamental five-dimensional in-
dices of SL(5). Then we can equivalently write a generalised vector as car-
rying an antisymmetric pair of such indices, VM = VMV = _yNM_ and
on writing M = (4,5) we can identify V® = V' and V¥ = Le¥V},. The
generalised Lie derivative acting on vectors of weight Ay is explicitly

LAVMN = IAPCOpo VAN 42050 ATMVNIC 1 1(1 4 Ay + w)9po ATV
(C.32)
The section condition is eMVPXY \dpo = 0, and below we work with
the M-theory solution, where splitting M = (4,5) the derivatives 0;; are
viewed as identically zero, and the derivatives 0;5 are identified with the
4-dimensional partial derivatives.
In this case, the generalised metric admits a factorisation

MMNJDQ = —(mMpmgM — mMgmpN) y (C33)

where the ‘little metric’ ma is symmetric and has unit determinant. The
overall sign in this expression needed for the ExFT action to reproduce
SUGRA correctly when we include timelike signatures in the generalised
metric, according to the conventions of [76].
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The gauge fields, A", By, Cupy™ and D,y p0 0 have weights 1/5, 2/5,
3/5 and 4/5 respectively, with field strengths denoted F,,™, ., jw,pgN
and K, poan. Under generalised diffeomorphisms, F M transforms as a gen-
eralised vector of weight 1/5, while H and J transform via the generalised
Lie derivative acting as

LAHm = %APQGPQHM + HpaMQAPQ,

C.34
EAJM :8pg(%APQJM) —8PQAPMJQ. ( )

They obey Bianchi identities:
BD[#FVP]MN = %EMNPQ’C(?PQHMVMC 9 (035)
4D[,uH1/pa]./\/l + %EMNP/CE-F[;LVNpra]KE = aNMjpup0N7 (CB6)
5’D[;u.7ypa>\}M + 1Oﬁ,LVMN%pUA]N = %EMNPQKaNPICquU)\Q/C . (037)

The dynamics follow from the variation of an action S = f d"z d'% Lipr
where Lggpr has the same form as (4.148), with R. again as defined in
(4.149), and [117]

Liin = 5D MunD* MM — LMy F M PN — LMY ’HWPM’H“(”P % :
C.38

Lint(m, g) = TlgMMNaMMKLaNMKL - %MMNaMMKLaKMLN

+ 20 MM N oy In |g| + LMMY (0419, On g™ + Oar In|g|On In |g]) -
(C.39)

The topological term can be defined via its variation (again up to a choice of
sign equivalent to changing the sign of C3 in eleven-dimensional SUGRA):

_ —eM1ekT MN MN
5£t0p = eeT (25“4#1 %uzusmMHusuemN + 67:#1#2 ABM3#4M%H5P«6H7N

aNMAC“1u2“3NL7#4,,./,L7M> .
(C.40)

We refer to the original paper [117] or the review [118] for explicit details.
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PARAMETRISATION

Review of 11-dimensional SUGRA embedding We start with the
little metric, maqn. The parametrisation reproducing (4.138) is

k
= e )
—|o| 20 C" 9|2 (=1)! + |¢| V29 C C (C.41)

— 1 _ijkl
C = ae C]kl .

For the gauge fields, we can again identify A} = (A4, .C uij). However, we
already require dualisations when treating the two-forms. We get four 7-
dimensional two-forms, C’WZ and a smgle three-form C wp- The latter can
be dualised into an extra two-form, C’W (identifiable with the components
C uvijki of the six-form in eleven-dimensions) such that By, ~ (C’ i 5#1/)
gives a five-dimensional representation of SL(5). Meanwhile, we can view
C uwp together with the four four-forms C wpijk @S comprising the conjugate
five-dimensional representation. The equations of motion of the SL(5) ExFT
then imply that the field strengths of these two- and three-forms are related
by duality. This involves the seven-dimensional Hodge star acting on the
seven-dimensional indices and the generalised metric acting on the SL(5)
indices:

V0gmMPH ey = Lo g M (C.42)

Again, the field strengths are all tensors under generalised diffeomorphisms,
we may make the (usual) identifications consistent with the Bianchi identities
[118]
Jt:uuZ5 Fuuza fuuij = %ez]kl( prkl — Cklm )7
Huupi = _F/u/pia Huup5 - il EZ]kl(Fuupijkl - 4Fuupicjkl) ) (043)
I (iikl ~ T
juww5 = _FNVPU7 juww = + e (prajkl - CjleWpa) .

Generalised metric The distinction between Riemannian and non-Riemannian
parametrisations can be seen at the level of the unit-determinant five-by-five
little generalised metric. For an M-theory parametrisation, this can be writ-

ten as:

mij  Mys 1 iklm _jpqr
MMN = < ,  Mss det(mij) — §MisMj5€ e/l MEpMigMmr = L.

e (C.44)
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If det(m;;) # O this leads to the Riemannian parametrisation (C.41) en-
coding a four-dimensional metric, g;;, and a three-form, ngk However, we
can also have det(m;;) = 0 with m;; of rank 3 and this leads to a non-
Riemannian parametrisation which was worked out in [76]. We can redis-
cover this parametrisation by taking the non-relativistic limit of (C.41) using
(4.160). The resulting expression for m iy is

MMN = Q5%

Eklmn€A A B C k
Tij 2P Hym T " — T C
klmn ; - Jjkim ; 9
Ape 66“30 ijTlATmBTnC — Tjka 7,,C'C7 — ——A8C ;ABC Hz-j77f‘7'lB7'mCCZ

(C.45)

in terms of four-dimensional Newton-Cartan variables and C* = %e”klc Skl

The unit determinant constraint implies that
Ltdagineda . o . — ()2
— 3¢ € 7—11]17_12]27—13]3HZ4J4 =07, (0-46)

which is the definition of 2 in this case. As H;; has rank 1, we can introduce
a projective vielbein h; such that H;; = h;h; and we take

%eijkleABCTiATjBTkChl =0, (C.A47)
choosing to fix an arbitrary sign (by sending 7,4 — —7;# if necessary) which

could appear here (2 is assumed positive). Then (C.45) can be written as

k
g T ~Oh = C*
= (_th_Tjk:Ck 7,;C'C’ +2Qh,C" )’ (C48)

which in this form can be checked to correspond to the parametrisation writ-
ten down in [76] from first principles. Note that the boost invariance, acting

as
hi = WA AT, 6C = —QAARIT ., T4AP =0, (C.49)

corresponds to a shift symmetry of the parametrisation (C.48) pointed out in
[76]. This generalises the Milne shift redundancy of the DFT non-Riemannian
parametrisation [66]. Here we introduced the inverse vielbeins h® and 7°4
obeying the obvious relations

hth:]_, TiATjA+hihj:5§-, TiAhiZO TiAhiZO, TiATZ‘BZCSE.
(C.50)
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The generalised metric in the 10 x 10 representation followng from the little
metric (C.45) can be seen to take the form (4.161), after rewriting in the
basis where generalised indices run over vector and two-form indices, and
using the identities

eil.--i3k€j1~~~j317_kl — _3102 (Tj1[i17_i2|j2\[_[i3113 + TjQ[ilTiQUS‘H%]jl
+ pslinpilitl pisliz (C.51)
621,,.13k631...g3ZHkl — 3102 bl pizli2] islis]

It is useful to record the explicit expression for the inverse little metric:

T —207h0CT) —Qp
mMN:Q4/5< Co-ih 0 ) . (C.52)

Clearly, variations dm™V with ém® # 0 do not preserve this parametrisa-
tion. This means that if we look at the equations of motion Ry = 0 of the
generalised metric, we expect that Rs5 = 0 provides an additional equation
of motion that we would not find by varying the action evaluated on the
non-relativistic parametrisation.

Field strengths and self-duality in SL(5) ExFT Our field strengths
(C.43) are now

5 7 iJ 1 ijkl m
]:,ul/ :Fuua F/.wjziej (Fuykl_cklmFuV )7

Huupi = _F;U/pia H;uzpB = _ieijkl(Fuupzjkzl - 4Fuupicjk’l)a (053)

jpupUS = _Fuupaa j,ul/po'i = +%Eijkl(F,uup0'jkl - Cjle,uZ/po') .
The kinetic terms (C.38) in the SL(5) ExFT action are:

1 M N 1, MN
— ZMMN.F“V F;w — Em HHVPMHHVpN

— —iQQm (HijFW"FWj — eABCTiATBjTCkF“”iFij + TéchHle“”ikFle)
. %QAL/EJTZ']‘FuvpiFMij + %Q_l/5hiFW/pi%EjklmF/u/pjklm ’
(C.54)
which match exactly the corresponding terms in (C.26) and (C.30), including
the appearance of components of the dual seven-form field strength.

We see again that the ExFT description automatically contains the cor-
rect dual fields to reproduce the non-relativistic action immediately. It’s
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worthwhile to go into some detail about the appearance of dual fields in
the relativistic case. As mentioned above, the decomposition of the 11-
dimensional three-form in the (7 + 4)-dimensional split produces four two-
forms, C wi and a smgle three-form, C uwp- We exchange the latter for an

additional two-form, C,,, in order to obtain the five-dimensional SL(5) multi-

e
plet Bm = (C’ iy C uv)- This is normally done by introducing the two-form
into the action as a Lagrange multiplier enforcing the Bianchi identity for
FWW When this is done, the terms 1nvolv1ng F4 in the action are schemat-
ically Fiy A, Fy — Cg A (dF4 +..0)+ F, A X5, where X3 denotes whatever
appears alongside F, in the decomp051t10n of the Chern-Simons term. In-
tegrating by parts one defines a field strength Hs ~ dCs + X3 and treating
F, then as an independent field, one can integrate that out of the action to
produce a kinetic term for Hs. The latter is then the M = 5 component of
the ExF'T field strength H,, 0, and in this way the ExF'T action matches
the partially dualised SUGRA action.

In the non-relativistic theory, there is already no kinetic term for Fy in
the decomposed action, as seen from (C.26). It only appears (linearly) in the
constraint term (C.30), schematically in the form F4 A (*71*:‘4 + f‘gihi). So in-
stead if we carry out the same procedure, we find that F'y equation of motion
sets Hy = «7F, + F3;h*, which in this case exactly corresponds to the rela-
tionship between the dual seven-form and Fj as expressed by (4.54). Hence
now it is this H3 that we identify with H,,jn via the above arguments. All
this exactly mirrors what happened for the SL(3) x SL(2) case.

We finish with a brief look at the equations of motion. The field strength
Juwpe of the gauge field C,,,, only appears in the topological term. This gauge
field also appears in the field strength H,,,. Its equation of motion has the
form Opp 0PN = 0 where

grveM = \/gmMP’H“”pp + %e“”p‘”“'”“jﬂ,umM : (C.55)
Meanwhile the equation of motion of B, A is

0= Dp(\/EmMNH“””N) + %EMPQICEaPQ<\/gMICL,IC/L/.F‘W’C/D)

C.56)
Al A (
- %EHV ! Ef)\l)\QMNH)\g,...)\g,N .

The M = 5 component combines with the M = 5 component of the Bianchi
identity (C.37) to give D05 = 0. Hence we integrate and set #PM = (.
Let’s examine the content of this constraint. Firstly, the 5 component
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implies

9_1/5\/§thpl/pj . %6”Vp01'"g4Fal...a4 =0. (C57)

This is the 11-dimensional self-duality constraint (4.33) on the transverse
part of the four-form field strength, here decomposed as in (C.22). Secondly,
setting 9#vPt — C'9*P5 = () and projecting gives

VIQUPFRP e P T Ay Foy i =0,

\/gQ4/5TiAF,LWpi _ %Euulmlm(MTiA%EijleUL..m;jkl —0. (058)
The first of these is part of the self-duality condition (4.55) obeyed by the
totally longitudinal part of the dual-seven form. The second is part of the
duality between the partly longitudinal four-form and the rest of the seven-
form. We see again that the ExF'T rearrangement of degrees of freedom
exactly captures the novel features of the eleven-dimensional non-relativistic
limit.
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