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Abstract

The main focus of this thesis is the derivation of non-relativistic particle,
string and membrane actions and equations of motion. In particular, the
theories we consider are based on (generalizations of) the Galilean algebra
and Newton-Cartan gravity. Our starting point will be computing the beta
functions of a non-relativistic string theory with Torsional Newton Cartan
symmetries in the target space. In analogy with usual relativistic string the-
ory, the equations obtained by setting these beta functions to zero are then
interpreted as the target space equations of motion for (Type I) Torsional
Newton Cartan gravity. Subsequently, we derive a target space action for this
theory, as well as for other non-Riemannian theories that are closely related to
it: Carrollian and Stringy Newton Cartan gravity. These actions correspond
to different non-Riemannian limits of the bosonic sector of the usual ten-
dimensional supergravity actions. Finally, we study a non-relativistic limit
of M-Theory, whose low energy limit gives a theory that we dub Membrane
Newton Cartan gravity, which should be thought of as the non-relativistic
limit of the bosonic sector of eleven-dimensional supergravity. Two conceptu-
ally different dimensional reductions can then be performed on MNC gravity:
one of them turns out to be precisely the same SNC gravity mentioned above,
while the other one is a novel type of non-relativistic theory associated to
D2 branes.
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Publications

My first publication concerned the computation of the beta functions for a
string theory describing a non-relativistic (Newton-Cartan) target space:

� A.D. Gallegos, U. Gürsoy and N. Zinnato
Torsional Newton Cartan gravity from non-relativistic strings,
JHEP 09 (2020) 172, [1906.01607].

This approach allowed us to obtain the equations of motion for the bosonic
sector of non-relativistic supergravity in ten dimensions. As a natural next
step, we were interested in finding the actions corresponding to these equa-
tions of motion. To this end, we embedded various non-Riemannian geome-
tries into the framework of Double Field Theory:

� A.D. Gallegos, U. Gürsoy, S. Verma and N. Zinnato
Non-Riemannian gravity actions from double field theory,
JHEP 06 (2021) 173, [2012.07765].

Once we obtained the actions for (the bosonic sector) of non-relativistic
SUGRA, we asked the question whether we could do something similar for
eleven-dimensional supergravity/M-theory. This led to the third and final
paper that will be discussed in this thesis, where we found the action and
equations of motion of non-relativistic supergravity in eleven dimensions, as
well as a novel type of non-relativistic ten-dimensional supergravity:

� C. D. A. Blair, A.D. Gallegos and N. Zinnato
A non-relativistic limit of M-theory and 11-dimensional membrane Newton-
Cartan geometry,
JHEP 10 (2021) 015, [2104.07579].

For the past four years I have been closely collaborating with Domingo Gal-
legos, who is (at the time of writing) a PhD candidate at Utrecht University.
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While both of us made essential contributions to these papers, Domingo
has not included these publications in his thesis, so that there is no overlap
between my thesis and his.

My original reason for studying non-relativistic physics was very simple:
I was hoping to gain some insights into the workings of relativistic quantum
gravity. My interest in quantum gravity led me to briefly work on a different
area of high energy physics as well, that of holographic quark-gluon plasma:

� U. Gürsoy, M. Järvinen, G. Policastro and N. Zinnato
Analytic long-lived modes in charged critical plasma,
preprint : [2112.04296].

This paper will not be discussed in this thesis.
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Chapter 1

Introduction

It is a very well known fact that the universe we live in is relativistic.
Nonetheless, there are many settings in nature that are well described by non-
relativistic physics, ranging from condensed matter systems to gravitational
systems in the post-Newtonian approximation, to non-relativistic holography.
Besides practical applications, what makes non-relativistic physics worth
studying is the hope that it will give us some insights about how our uni-
verse works at a fundamental level. One of the biggest challenges in modern
physics is how to go beyond Quantum Field Theory and General Relativity
to obtain a theory of relativistic quantum gravity. This has famously proven
extremely difficult. A different approach, however, would be to take a step
back and ask a simpler question: can we at least build a consistent theory
of non-relativistic quantum gravity? This is still not an easy question to an-
swer, but hopefully this thesis will help lay the foundation for finding such an
answer. This builds on a recent revival of interest in non-relativistic versions
of string theory, see e.g. [1–16].

A great deal has been learned about string theory from the exploration
of special limits of the theory. There are many examples. In the α′ → 0
limit, string theory predicts Einstein gravity, extended to supergravity in ten
dimensions, via the one-loop beta functionals of the worldsheet [17]. When
compactified on a circle of radius R, T-duality relates the R → 0 limit of
one string theory to the R → ∞ limit of another. The strong coupling
limit of the type IIA theory leads to the eleven-dimensional description in
terms of M-theory, from the perspective of which we can view all the dif-
ferent dual versions of ten-dimensional string theories again as different lim-
its [18, 19]. A different limit of M-theory is its low energy effective theory:
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1.1. NON-RELATIVISTIC PARTICLES

eleven-dimensional supergravity [20]. Another interesting class of limits are
those which decouple degrees of freedom, and which may again lead to new
geometric perspectives or to different dual descriptions (the most famous
example being the original derivation of the AdS/CFT correspondence [21]).

The mathematics of non-relativistic physics is based on the original work
by Cartan [22, 23], who introduced what today is known as the Newton-
Cartan (NC) geometry. This has been later generalized to a (Type I) Tor-
sional Newton-Cartan (TNC) geometry, which was found to be the bound-
ary geometry in Lifshitz holography [2, 3, 24]. Finally, a new kind of tor-
sional Newton-Cartan geometry was recently built, dubbed Type II Torsional
Newton-Cartan, which was obtained by considering a careful expansion of the
metric field for large speed of light. While this theory has many interesting
properties, in that it is possible to obtain all the equations of motion from
an action principle1 and that it passes the three classical tests of General
Relativity (see [25–27] for detailed discussions of Type II TNC), we will
only discuss Type I TNC in this thesis. The reason for this is that Type
I TNC is much easier to embed in string theory, as we will later see, and
in this thesis we will focus precisely on ‘critical’ limits of string theory and
M-theory, in which the ten- or eleven-dimensional geometry becomes non-
relativistic [28–31]. However, we will briefly discuss the main mathematical
differences between Type I and Type II TNC in the next section.

The first step in understanding non-relativistic physics is of course study-
ing how particles propagate in such a spacetime. We will therefore give a
brief introduction to non-relativistic particles in this chapter. Many of the
properties and relations studied here will also be relevant when we will move
our attention to non-relativistic strings and membranes.

1.1 Non-relativistic particles

Probably the most intuitive way of constructing a theory of non-relativistic
particles is to simply expand the metric in a large c limit, with c being the

1We will see that this is not possible for Type I TNC and related theories.
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CHAPTER 1. INTRODUCTION

speed of light. For a Minkowski spacetime in four dimensions this yields

ηµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ⇔ Ea
µ = cτµδ

a
0 + eA

′

µ δ
a
A′ , (1.1)

where Ea
µ denotes the vielbein associated with the relativistic metric ηµν , i.e.

Ea
µEνa = ηµν . Note that this implies

τµτν =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , eA
′

µ eνA′ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.2)

The index a runs over the four flat directions, while the index A′ runs over
the three transverse/space-like flat directions. Similarly, we can introduce
the inverse vielbeins,

Eµ
a = −1

c
υµδ0

a + eµA′δ
A′

a , (1.3)

from which we can find the following relations by requiring Eµ
aE

b
µ = δba:

τµe
µ
A′ = υµeA

′

µ = 0 , τµυ
µ = −1 , hµρhρν = δµν + υµτν , (1.4)

where we defined hµν ≡ eµA′e
νA′ and an analogous formula holds for hµν .

We will refer to these kinds of relations as Newton-Cartan structure. This
expansion can be easily generalized to more complicated curved backgrounds
with arbitrary metric gµν . In general, the resulting non-relativistic theory will
have a non-vanishing intrinsic torsion, in which case it is given the name of
Torsional Newton-Cartan (TNC) geometry.

Let’s analyze what we have obtained by performing this expansion. We
have essentially doubled the number of fields we originally had, since we
started with a single metric gµν and we ended up with a metric complex
(τµ, hµν). Note that the number of degrees of freedom is unchanged because
of the conditions (1.4). There is no concept of ‘metric’ anymore, since the
new objects we built are degenerate matrices. The spacetime directions are
now split in longitudinal (τµ) and transverse (hµν) components.
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1.1. NON-RELATIVISTIC PARTICLES

The same expansion can also be performed on the Poincaré algebra di-
rectly. First recall the commutation relations

[Pa, Pb] = 0 ,

[Jbc, Pa] = −2ηa[bPc] ,

[Jab, Jcd] = 4η[a[cJd]b] ,

(1.5)

where Pa is the generator of translations and Jab is the generator of spacetime
rotations. Next we introduce a U(1) extension of this algebra, whose genera-
tor, which we denote by M , commutes with all other generators. Finally we
perform a contraction of the resulting algebra [32]:

P0 →Mc2 +H , Pi → cPA′ , JA′0 → cGi , c→∞ . (1.6)

The contraction of P0 is inspired by the non-relativistic approximation of the
energy of a relativistic particle:

P0 =
√
c2PiP i +M2c4 ≈Mc2 +

PiP
i

2M
. (1.7)

Substituting in (1.5) we find the Bargmann algebra, whose non-zero commu-
tation relations are

[JA′B′ , JC′D′ ] = 4δ[A′[C′JD′]B′] ,

[JA′B′ , GC′ ] = −2δC′[A′GB′] ,

[GA′ , PB′ ] = −δA′B′M ,

[JA′B′ , GC′ ] = −2δC′[A′PB′] ,

[GA′ , H] = −PA′ .

(1.8)

This is a centrally extended Galilean algebra, with the central generator given
by M . We will often refer to the gauge field associated to the generator M
as mµ. Note that in the simple example (1.1)-(1.4) there was no mµ, but this
gauge field will always appear in more general settings.

For an arbitrary curved spacetime, we can think of generalizing the ex-
pansion of the metric as follows:

gµν = −c2τµτν + h̄µν + c−2Φ̄µν + . . . ,

gµν = hµν − c−2
(
υ̂µυ̂ν + hµρhνσΦ̄ρσ

)
+ c−4 (2υ̂µυ̂νΦ + Y µν) + . . . ,

(1.9)
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CHAPTER 1. INTRODUCTION

with

h̄µν ≡ hµν − 2τ(µmν) ,

υ̂µ ≡ υµ − hµρmρ ,

Φ ≡ −υµmµ +
1

2
hµνmµmν ,

(1.10)

which are nothing but combinations of the fields introduced previously, with
the addition of mµ. The full expansion (1.9) leads to what is known as a
Type II Torsional Newton-Cartan geometry. The corresponding algebra is
an expansion of the Poincaré algebra, rather than a contraction as the one
we saw earlier in (1.8). In this thesis we will consider the theory obtained
by the truncation of this expansion at a given power of c, in particular the
case where Φ̄µν = Yµν = 0, which leads to a Type I Torsional Newton-Cartan
geometry (we will often refer to this simply as ‘TNC’)2:

gµν = −c2τµτν + h̄µν ,

gµν = hµν − c−2υ̂µυ̂ν .
(1.11)

One can check that gµρgρν = δµν (up to terms going to zero when c → 0) if
we impose the following constraints on the TNC fields:

τµh
µν = 0 , τµυ̂

µ = −1 , hµρh̄ρν = δµν + υ̂µτν . (1.12)

Note that these are equivalent to (1.4), except they are rewritten in terms of
boost invariant quantities thanks to the presence of mµ. Boost transforma-
tions correspond to the generator Gi in (1.8) and they are explicitly:

δλτµ = 0 , δλe
A′

µ = λA
′
τµ , δλmµ = λA′e

A′

µ , (1.13)

where λA
′

is the boost parameter.
It turns out that there is a different way of deriving a theory involving

precisely the same relations as (1.12) and thus the same TNC algebra. We
start by considering the following metric:

ds2 = 2τµdx
µdu+ h̄µνdx

µdxν , (1.14)

2To be precise, this is only possible when we have vanishing torsion, i.e. Type II TNC
can reduce to Type I TNC only when time is absolute.
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1.1. NON-RELATIVISTIC PARTICLES

and we assume that there is a null isometry along the u direction, i.e. ∂u is a
Killing vector (note that guu = 0). Upon reduction along this null direction,
we are left with the two matrices

gµν = h̄µν , gµν = hµν , (1.15)

as well as the two vectors

gµu = τµ , gµu = −υ̂µ , (1.16)

and the scalar
guu = 2Φ . (1.17)

These are precisely the same fields that appear in (1.12)! This way of obtain-
ing a TNC geometry from a null reduction of General Relativity will turn out
to be extremely useful in Chapters 2 and 3 when we embed TNC in string
theory.

Up to this point we have essentially only expanded a metric, which could
be considered at most a fun exercise, so it is natural to ask the question
whether this type of expansion actually leads to an interesting physical the-
ory, i.e. can we obtain an action for this theory? As can be inferred by
the fact that this thesis exists, the answer to this question is yes. Perhaps
the easiest case to consider is obtained by starting with the usual action for
a relativistic massless point-particle and substituting the ansatz (1.14) (see
e.g. [33]):

Srel ∝
∫
ẋM ẋNgMN

e
ds ⇒ Snr ∝

∫
ẋµẋν

τρẋρ
(hµν − 2mµτν) ds ,

(1.18)
where gMN is the metric of the geometry (1.14), e is the determinant of the
vielbein and a dot denotes differentiation with respect to the parameter s.
We also remark again that we introduced the U(1) central extension of the
Galilei algebra, whose generator is denoted by mµ. This action now describes
a massive non-relativistic particle. A similar expansion can be performed on
the Einstein-Hilbert action, which would yield a non-relativistic version of
General Relativity; or on the equations of motion obtained from the Einstein-
Hilbert action, which would then produce the equations of motion for a
particle propagating in a non-relativistic curved background. In fact, this
will largely be the focus of this thesis, that is we will employ non-relativistic
parametrizations to find novel types of non-relativistic actions and equations
of motion.
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CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

In the previous section we briefly discussed some basic properties of non-
relativistic particles. This means we divided the spacetime in one longitudinal
component and the remaining transverse components. The analysis can be
generalized to multiple longitudinal directions, in which case we would have
non-relativistic strings, non-relativistic membranes, etc.

In this thesis we will only consider cases where the longitudinal space
is one-, two- or three-dimensional and we will often assume that the full
spacetime is either ten- or eleven-dimensional (for strings and membranes,
respectively). For example, the target space geometry that appears in the
two-dimensional case extends the generally covariant but non-relativistic NC
geometry to what is usually called a ‘stringy Newton-Cartan’ (SNC) geom-
etry. The full ten-dimensional Lorentz symmetry is absent, and there is
instead a split into two longitudinal directions (including time) and eight
purely spatial transverse directions which transform into each other only
under Galilean boosts. Correspondingly, one can describe the target space
geometry in terms of a pair of mutually orthogonal vielbeins, τµ

A, eµA′ , such
that τµ

A′eµA′ = 0, where A = 0, 1 indexes the longitudinal tangent space
directions and A′ = 2, . . . indexes the transverse tangent space directions.

In Chapter 2 we will study the Torsional Newton Cartan parametrization
of string theory, with the goal of computing the beta functions of the theory,
which we will then set to zero to obtain the target-space equations of motion.
This computation closely follows that of relativistic bosonic string theory,
although with some extra technical difficulties. In particular, we can only
perform this analysis when a certain constraint on torsion is imposed, so the
resulting equations will be a subset of the most general TNC equations of
motion.

Luckily, as is usually the case in physics, there are different routes leading
to the same goal. In Chapter 3 we will use a different framework (Double
Field Theory) to obtain the actions and equations of motion of three different,
albeit related, non-relativistic and ultra-relativistic theories of propagating
strings/particles: the theories we study exhibit Torsional Newton Cartan,
Carrollian and stringy Newton Cartan symmetries. More concretely, we will
be able to find the most general TNC equations of motion that we could not
find in the previous chapter by only computing the worldsheet beta functions.

In Chapter 4 we will take this discussion one step further and apply the
non-relativistic expansion to membranes, from which we will find the non-

14



1.2. OUTLINE OF THE THESIS

relativistic version of eleven-dimensional supergravity (or rather, its bosonic
sector). Once we arrive at the eleven-dimensional action, we can dimension-
ally reduce it along a longitudinal direction to once again obtain the theories
studied in the previous chapters, or we can reduce it along a transverse direc-
tion to obtain a novel type of ten-dimensional non-relativistic theory, related
to a D2 brane rather then to the fundamental string.

Finally, a word of caution about notations. In this thesis we will deal
with several different types of indices. For example, in Chapter 2 we will
deal with curved/flat worldsheet indices and curved/flat spacetime indices
that are further split in longitudinal/transverse components. In the following
chapters we will have to introduce even more kinds of indices, so it is almost
impossible to use a uniform notation for all chapters. As a rule of thumb,
greek indices will refer to curved directions, while latin indices will refer to
flat directions. We will give a summary of the notations used at the beginning
of each chapter.

15
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Chapter 2

Non-relativistic strings: the
worldsheet approach

In this chapter we ask the question whether a TNC geometry can be UV
completed in a consistent theory of quantum gravity and take a few first steps
in answering this question in the context of bosonic string theory. One of the
triumphs of the ordinary (relativistic) string theory has been the derivation of
Einstein’s equations in the weak gravity limit by demanding Weyl invariance
of the worldsheet sigma model [34]. In our case of string propagating on a
manifold with local Galilean invariance, we similarly expect that the demand
of quantum Weyl invariance on the worldsheet yields Newton’s law/Poisson’s
equation. This is what we mean precisely by the consistency of the TNC
geometry with quantum gravity.

Various proposals to realize the Galilean symmetries in string theory ex-
ist in the literature. The Newton-Cartan geometry has only recently been
embedded in string theory at the classical level, that is at the tree level of the
worldsheet non-linear sigma model [6,8,35]. Non-relativistic string theory on
a TNC background with R × S2 topology has been studied in [36–39]. As
mentioned in the introduction, a parallel and separate line of work [1,7,40,41]
which started by the original paper of Gomis and Ooguri [28] realized the
Galilean symmetry in the context of closed string theory in a particular con-
traction limit and continued by [9, 13], that ask the same question we ask
here but in the context of the Gomis-Ooguri theory.

We will follow the route taken by the papers [6, 8] where a Polyakov
type action for a string propagating in the TNC geometry was constructed.
Taking this Polyakov action as our starting point, we extend it to include
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bosonic target space matter1, i.e. the Kalb-Ramond field B̄µν and dilaton φ,
as well as an extra Kalb-Ramond one-form ℵµ, and we determine both the
target space and worldsheet symmetries of this action at the classical level.
We then go beyond the tree level and construct the worldsheet perturbation
theory in powers of the string length ls, assuming that the target TNC space
is weakly curved. We then obtain the target space equations of motion from
quantum Weyl invariance of the non-linear sigma model proposed in [8] and
its generalizations including the Kalb-Ramond and the dilaton fields.

This chapter is organized as follows. We begin, in section 2.1, by reviewing
the Polyakov-type action we used for the closed bosonic string moving in
a TNC background and then generalize it to include the Neveu-Schwarz
background matter, i.e. the dilaton and the Kalb-Ramond fields. We then
discuss how the target space and worldsheet symmetries are realized at the
classical level. Section 2.2 constitutes the core of the chapter, where we
introduce the covariant background field expansion. This expansion coincides
with the derivative expansion in the target space. We truncate this series
at the second order both in the target-space derivatives and in the quantum
fluctuations. Using this quantum effective action at the quadratic level, we
then compute the one loop contribution to the Weyl anomaly and obtain the
equations of motion for the TNC geometry arising from the vanishing of the
beta functions.

We will use greek letters coming from the second half of the alphabet,
{λ, µ, ν, . . . }, to denote target-space dimensions, while the first letters of the
alphabet, {α, β, . . . }, will be used to denote their pull-backs onto the world-
sheet. Primed capital letters, {A′, B′, . . . }, will refer to spatial flat directions
in target space. Finally, we use {a, b, . . . } to describe flat worldsheet direc-
tions.

2.1 The Type I TNC string action and its

symmetries

2.1.1 The Polyakov action without matter

The geometric data of the TNC geometry in the absence of matter fields is
encoded in a pair of vielbeins (τµ, e

A′
µ ) and a U(1) connection mµ collectively

1See also [27] for a discussion on the coupling of matter to non-relativistic gravity.
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referred as the TNC metric complex. The vielbeins eA
′

µ define a degenerate

spatial metric through hµν = eA
′

µ e
B′
ν δA′B′ and it is possible to use the inverse

of the square matrix (τµ, e
A′
ν ), denoted as (−υµ, eνA′) with υµτµ = −1 and

τµe
µ
A′ = 0, to define an independent spatial inverse metric hµν = eµA′e

ν
B′δ

A′B′ .
These spatial metrics together with the temporal coframes, τµ and υµ, are
subject to the completeness relation

δµν = −υµτν + hµρhρν . (2.1)

Quite conveniently, the TNC geometry with this geometric data can be
derived from a higher dimensional relativistic spacetime with an isometry in
the extra null direction—which we will denote as the u-direction—via the
procedure of null reduction [42]. In particular we consider the TNC manifold
to be d + 1-dimensional and the relativistic one will be d + 2-dimensional.
The metric of such relativistic spacetimes can always be written as

ḡµ̂ν̂dx
µ̂dxµ̂ = 2τ (du−m) + hµνdx

µdxν , (2.2)

with ∂u the corresponding null Killing vector. We label indices of the d + 2
dimensional space as µ̂ = {u, µ}. We also define τ = τµdx

µ, m = mµdx
µ with

xµ the coordinates of the (d+ 1)-TNC manifold. It is now possible to derive
the worldsheet action for a string moving in the TNC geometry [6,8] starting
from the ordinary Polyakov action in the relativistic target space (2.2):

L = −
√
−γ

4πl2s
γαβ (hαβ − ταmβ −mατβ)−

√
−γ

2πl2s
γαβτα∂βX

u, (2.3)

where γ is the determinant of the worldsheet metric γαβ, and where hαβ =
hµν∂αX

µ∂βX
ν and τα = τµ∂αX

ν are the pullbacks of hµν and τµ respectively.
We consider a closed string without winding, i.e. Xµ(σ0, σ1 + 2π) =

Xµ(σ0, σ1) , and with non zero momentum P along Xu

P =

∫ 2π

0

dσ1P 0
u , (2.4)

with momentum current

Pα
u =

∂L
∂∂αXu

= −
√
−γγαβτβ

2πl2s
. (2.5)
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Following [8], it is possible to rewrite (2.3) in a dual formulation where the
conservation of the momentum current (2.5) is implemented off-shell through
the classically equivalent Lagrangian

L = −
√
−γγαβh̄αβ

4πl2s
− 1

2πl2s

(√
−γγαβτβ − εαβ∂αη

)
Aβ , (2.6)

where Aα is a Lagrange multiplier that enforces conservation of Pα
u =

εαβ∂βη

2πl2s
off-shell and we defined the combination

h̄αβ ≡ hαβ − ταmβ −mατβ . (2.7)

The significance of this combination will become clear when we discuss the
symmetries of the theory below.

This procedure introduces a novel degree of freedom, a scalar field η on
the world sheet. To see that (2.6) and (2.3) are equivalent, one uses the
equation of motion for η which gives Aα = ∂αχ for some world sheet scalar χ
and identifies the latter with the u-direction χ = Xu recovering the original
Lagrangian (2.3). Following [8] we introduce the worldsheet zweibein eaα and
its inverse eαa = εαβebβεba, satisfying eaαe

b
βηab = γαβ and eαae

β
b ηab = γαβ, to

rewrite the constraints as

εαβ
(
e0
α + e1

α

)
(τβ + ∂βη) = 0 ,

εαβ
(
e0
α − e1

α

)
(τβ − ∂βη) = 0 .

(2.8)

A final field redefinition,

Aα = mα +
1

2
(λ+ − λ−) e0

α +
1

2
(λ+ + λ−) e1

α , (2.9)

yields the Lagrangian

L =
−1

4πl2s

[
2εαβmα∂βη + eηabeαae

β
b hαβ − λ+e

β
− (∂βη + τβ)− λ− (∂βη − τβ)

]
,

(2.10)

where eα± = eα0±eα1 . This is the Polyakov-type Lagrangian for a string moving
in a TNC geometry proposed in [8]. We further use the constraints to rewrite
(2.10) in a more convenient way for quantization2

L =
e

4πl2s

[
eα+e

β
−h̄αβ + λ+e

β
− (∂βη + τβ) + λ−e

β
+ (∂βη − τβ)

]
, (2.11)

2One should think of implementing these constraints inside the Polyakov path integral
to ensure equivalence of the quantum path integrals based on the Lagrangians (2.10) and
(2.11).
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We will examine the quantum path integral defined by this Lagrangian in
the rest of the chapter, but we will first extend it to include Neveu-Schwarz
matter, i.e. the Kalb-Ramond field and dilaton and then discuss the sym-
metries of this generalized action both on the worldsheet and in the target
space.

2.1.2 The Polyakov action with matter

It is straightforward to generalize the action (2.11) to include standard Neveu-
Schwarz matter, i.e. a Kalb-Ramond field Bµ̂ν̂ and a dilaton φ. Let us first
consider the B-field. Once again, to derive the corresponding Lagrangian we
can start from its null uplifted version. We then obtain the following action
by rearranging the terms that follow from the null reduction of the relativistic
d+2-dimensional bosonic Polyakov action with the presence of the B-field:

L = − 1

4πl2s

(√
−γγαβh̄αβ + εαβB̄αβ

)
− 1

4πl2s

(√
−γγαβτα − εαβℵα

)
∂βX

u ,

(2.12)

where we defined

ℵα ≡ Buα = −Bαu , (2.13)

B̄αβ ≡ Bαβ . (2.14)

Following the same procedure as in [8] described in section 2.1 we compute
the momentum along Xu

Pα
u = − 1

2πl2s

(√
−γγβατβ − εβαℵβ

)
(2.15)

and implement its conservation off-shell via

L = − 1

4πl2s

(√
−γγαβh̄αβ + εαβB̄αβ

)
− 1

2πl2s

(√
−γγαβτα − εαβℵα − εαβ∂αη

)
Aβ.

(2.16)

Making, once again, the field redefinition

Aα = mα +
1

2
(λ+ − λ−) e0

α +
1

2
(λ+ + λ−) e1

α , (2.17)
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integration over the worldsheet fields λ± now imposes the constraints

εαβ
(
e0
α + e1

α

)
(τβ + ℵβ + ∂βη) = 0 ,

εαβ
(
e0
α − e1

α

)
(τβ − ℵβ − ∂βη) = 0 .

(2.18)

We can cast (2.16) in Polyakov form:

L =
1

4πl2s
e
[
eα+e

β
−
(
h̄αβ + B̄αβ

)
+ λ+e

β
− (∂βη + ℵβ + τβ)

+λ−e
β
+ (∂βη + ℵβ − τβ)

]
,

(2.19)

where just as in (2.11) the constraints (2.18) have been used. Lagrangian
(2.19) is still invariant under (2.35) and the contribution of the B-field to the
anomaly can in principle be computed in a similar manner as performed for
(2.11).

When the worldsheet is non-flat, in addition to the B-field, it is also
possible to include a dilaton contribution of the form

Lφ =
1

16π

√
−γRφ , (2.20)

where R is the worldsheet Ricci scalar. The Polyakov path integral then
involves a sum over worldsheet topologies that is organized in powers of
exp(φ) as usual.

2.1.3 Symmetries of the Polyakov action

We will now discuss both the target space and worldsheet symmetries of the
worldsheet action (2.19) and (2.20).

Spacetime symmetries

The fields in the TNC metric complex, without matter, transform under
diffeomorphisms ξ, local Galilean boosts λA

′
, local rotations λA

′B′ and local
U(1) gauge transformation σ, with the Lagrangian (2.6) being invariant under
these transformations [8]. These transformations are easily generalized in the
presence of matter. All in all, the spacetime transformations of the objects
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that enter the calculations read

δτµ = Lξτµ ,
δeA

′

µ = LξeA
′

µ + λA
′
τµ + λA

′

B′e
B′

µ ,

δυµ = Lξυµ + λA
′
eµA′ ,

δeµA′ = LξeµA′ + λ B′

A′ eµB′ ,

δmµ = Lξmµ + λA′e
A′

µ + ∂µσ ,

δB̄µν = LξB̄µν + 2ℵ[µ∂ν]σ ,

δℵµ = Lξℵµ ,
δφ = Lξφ ,

δXµ = LξXµ .

(2.21)

In particular, the combination h̄µν defined in (2.7) and (2.14) is invariant
under local Galilean boosts and transforms under local U(1) mass transfor-
mations as

δσh̄µν = −2τ(µ∂µ)σ . (2.22)

Now, it is straightforward to check that the actions based on (2.19) and
(2.20) are invariant under diffeomorphisms, local Gallilean boosts, local ro-
tations and local U(1)m transformations. When starting with the explicitly
Galilean boost invariant form (2.19) it is crucial to use the constraints (2.18)
to show invariance under local U(1) mass transformations. However, the
classical equations of motion will not be invariant under this U(1) symmetry,
see (A.20). To fix this we will ask that the Lagrange multipliers transform
under the symmetry as

δλ+ = −eα+∂ασ , δλ− = eα−∂ασ. (2.23)

Taking this into account, both the action and the equations of motion can
be shown to be U(1) mass invariant off-shell. In what follows, in addition to
h̄µν and B̄µν defined in (2.7) and (2.14), it will prove useful to introduce the
following combinations

υ̂µ ≡ υµ − hµρmρ , (2.24)

Φ ≡ −υρmρ +
1

2
hρσmρmσ , (2.25)
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which are invariant under local Galilean boost and rotations as one can easily
check using (2.21). They do transform under local U(1) mass transformations
though:

δσυ̂
µ = −hµν∂µσ , (2.26)

δσΦ = −υ̂ν∂νσ . (2.27)

Even though they do not appear in the action at the classical level, we have
introduced υ̂µ as the local Galilean boost and rotations invariant version of υµ

(the inverse of τµ), and the target space scalar Φ which will play the role of the
Newton’s gravitational potential below. They will become important when
we discuss quantum corrections in the theory. We remind the reader that υ̂µ,
τµ, h̄µν and hµν are subject to the completeness relation δµν = −υ̂µτν+hµρh̄ρν .
Finally, we note that because of the non-trivial U(1) mass transformation of
B̄µν in (2.21), i.e. δσB̄ = ℵ ∧ dσ, the field strength, H = dB̄ will transform
under mass U(1) as

δσHµνρ = bµν∂ρσ + bνρ∂µσ + bρµ∂νσ , (2.28)

with
bµν ≡ ∂µℵν − ∂νℵµ (2.29)

being the field strength of ℵ. Notice in particular that setting Hµνρ = 0
would not be a mass U(1) invariant condition unless bµν = 0.

U(1)B one-form symmetry

In the presence of the Kalb-Ramond field there is also a U(1) one-form sym-
metry. It is well-known that the transformation

δΛBµ̂ν̂ = ∂µ̂Λν̂ − ∂ν̂Λµ̂, (2.30)

where ∂µ̂ is the partial derivative in the target space, is a symmetry of the
d+ 2-dimensional worldsheet action with relativistic target space.

After null reduction, the resulting TNC geometry with Kalb-Ramond
matter has a U(1) one-form symmetry:

δΛB̄µν = ∂µΛν − ∂νΛµ, (2.31)

δΛℵµ = ∂µΛu . (2.32)
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We see that in the TNC geometry ℵ acquires a new local U(1) symmetry,
whereas B transforms under a local one-form symmetry. It is now straight-
forward to check that the action (2.19) is invariant under (2.31) upon use
of the constraint equations (2.18). Invariance of (2.19) under (2.32) however
requires a non-trivial transformation of the worldsheet field η:

δΛη = −Λu , (2.33)

which is a trivial shift in the quantum path integral where η is path inte-
grated. Therefore, we conclude that the action, at least at the tree-level, is
invariant under both the local one-form symmetry Λµ and the new local U(1)
symmetry Λu. The fact that η is charged under the U(1) that comes from
the B-field, i.e. eq. (2.33), is expected as one can think of η as the direction
dual to u [8]. In this sense the gauge fields m and ℵ can be considered as
dual to each other.

Local worldsheet symmetries

The actions (2.11) and (2.19) are clearly invariant under the worldsheet dif-
feomorphisms. These symmetries allow us to cast the worldsheet metric in
a diagonal form γab = e−2ρηab where the conformal factor ρ determines the
Ricci curvature of the worldsheet R (locally) as

√
−γR = −2∂2ρ . (2.34)

We will refer to this choice of gauge as the conformal gauge. The reparametriza-
tion gauge-fixed Polyakov Lagrangians (2.11) and (2.19) further exhibit a
residual Lorentz/Weyl gauge invariance of the form (as can be checked straight-
forwardly)

eα± → f±e
a
± , λ± → f±λ± , (2.35)

for any worldsheet function f±. For f+ = f− this is a local Weyl transforma-
tion and for f+ = −f− it constitutes a local Lorentz transformation. Once
we have used diffeomorphism invariance to go to conformal gauge it is pos-
sible to use local Weyl invariance to fix the mode ρ and completely fix the
worldsheet metric γαβ.

The main purpose of this chapter is to discuss the fate of these residual
gauge invariances at the quantum level. Here it suffices to note that, in
the case where matter is absent, the condition for invariance of the Polyakov
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action S(e, λ,X) under the gauge transformations (2.35) at the classical level
takes the form

δS

δf±
= eγc τ

c
γ + C+λ+ + C−λ− = 0 , (2.36)

where the energy momentum one form3 τ cγ and constraint functions C± are
defined as

τ cγ ≡ −
2πl2s
e

δS

δeγc

=
2πl2sL
e

ecγ +
1

2

[
2eβb η

cbh̄γβ − λ+ (δc0 − δc1) (∂γη + τγ) (2.37)

−λ− (δc0 + δc1) (∂γη − τγ)] ,

C± ≡ −2πl2s
e

δS

δλ±
= −1

2
eβ∓ (∂βη ± τβ) . (2.38)

Equation (2.36) is nothing but a constrained traceless condition for the energy
momentum tensor, and from (2.37) and (2.38) it is clear that this conditions
holds for the Polyakov action (2.11). The rest of our work will concern the
computation of (2.36) at the quantum level, in particular, at the one-loop
level in the perturbative expansion in l2s .

2.2 Quantum weyl invariance of the TNC string

2.2.1 Background field quantization

The quantum partition function that follows from the action (2.11) is defined
by the Polyakov path integral4. As for the bosonic strings [34], it will be very
helpful to introduce the background field formalism to organize the pertur-
bative l2s expansion to study the quantum properties of the worldsheet sigma
model. To this end, we expand the worldsheet fields {Xµ, λ±, η} around a

3Even though it is possible to define an energy momentum tensor from τ cγ via Tαβ =

ηcde
d
ατ

c
β , it feels more natural to define the traceless condition in terms of the energy

momentum one form.
4It is crucial to include the contribution from the Faddeev-Popov ghosts that come from

the gauge fixing but we will not explicitly show them here. The gauge fixing procedure is
discussed in [43].
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classical configuration Ψ0 ≡ {Xµ
0 , λ

0
±, η0} as

Xµ = Xµ
0 + lsȲ

µ ,

λ± = λ0
± + lsΛ̄± ,

η = η0 + lsH̄ ,

(2.39)

where Ψ ≡ {Ȳ µ, Λ̄±, H̄} below will collectively denote the quantum fields.
Using this expansion, the one loop effective effective action Γ[Ψ0] for the
background fields can be expressed [44] as a path integral over the quantum
fields as

eiΓ̄[Ψ0](0) =

∫
DΨ eiS̄[Ψ0,Ψ](0) . (2.40)

where S̄[Ψ0,Ψ](0) is the O (l0σ) term that arises from substituting (2.39) in
(2.11). In (2.40) the zweibeins are completely fixed by the Faddeev-Popov
procedure, see [43], using the reparametrization invariance and Weyl symme-
try. This in particular fixes the function ρ. If the symmetry (2.35) is to be
consistent at the one loop level then any change of ρ should leave the effective
action invariant, this means that the Weyl invariance condition (2.36) at one
loop level becomes5

δψΓ̄ [Ψ0] (0) = 0 , δψρ = ψ . (2.41)

The goal of this section is to express S̄[Ψ0,Ψ](0) as an action over TNC
covariant fields, for this we first note that Ȳ µ does not transform as a vector
under general coordinate transformations. To get covariant expressions we
first need to rewrite Ȳ µ covariantly. This is achieved [44] by considering a
geodesic connecting Xµ

0 and Xµ
0 + Ȳ µ to rewrite Ȳ µ as

Ȳ µ = Y µ − ls
2

(
Γµρσ +Gµ

ρσ

)
0
Y ρY σ +O

(
l2s
)
, (2.42)

where Y µ is the tangent vector along the geodesic, ()0 indicates the corre-
sponding expression is evaluated at X0, Γµρσ is the TNC connection charac-
terising the non-covariant part of Ȳ µ, and Gµ

ρσ is a tensor symmetric in its

5We are assuming that a path integral measure invariant under the target spacetime
symmetries exists.
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lower indices and the solution to the tensor equation6

τ(ρG
λ
µν) = τσG

σ
(µνδ

λ
ρ) −

1

2
h̄(µνFρ)σh

σλ , (2.43)

with

F ≡ dτ , (2.44)

characterising the spacetime torsion. The derivation of (2.42) and (2.43)
from the geodesic equation of a particle evolving in a TNC background is
shown in appendix A.1. We reproduce below the connection for a generic
TNC geometry [45,46]

Γµρσ ≡ −υ̂µ∂ρτσ +
1

2
hµλ

(
∂ρh̄σλ + ∂σh̄ρλ − ∂λh̄ρσ

)
. (2.45)

It is compatible with the metrics τµ and hµν and exhibits a torsion component
T µρσ ≡ 2Γµ[ρσ] = −2υ̂µ∂[ρτσ] = −v̂µFρσ. While it is of course possible to

proceed in the computation by using the connection Γλµν , the solution to the
geodesic equation (2.42) suggests that a more natural connection to consider
will be the one given by

Γ̊λµν ≡ Γλµν +
1

2
υ̂λFµν +Gλ

µν . (2.46)

This new connection is symmetric and U(1) mass invariant. Although it is
not compatible with τµ and hµν , the action of the new covariant derivative
on these two tensors is quite simple:

D̊µτν =
1

2
Fµν , D̊ρh

µν = aλh
λ(µδν)

ρ . (2.47)

Where D̊ denotes a covariant derivative with respect to the symmetric U(1)
mass invariant connection Γ̊, the symbol D will be reserved for the covariant
derivative with respect to the standard TNC connection Γ.

From (2.39) and (2.42) it follows that

∂αX
µ = ∂αX

µ
0 + ls∇̊αY

µ − ls
(

Γ̊µλσ

)
0
Y σ∂αX

λ
0 − l2s

(
Γ̊µρσ

)
0
∇̊αY

ρY σ

− l2σ
2

[
∂λΓ̊

µ
ρσ − 2Γ̊µνσΓ̊νλρ

]
0
Y ρY σ∂αX

λ
0 +O

(
l3s
)
,

(2.48)

6A solution to (2.43) exists as long as the torsion is taken to be twistless, namely as
long as Fµνh

µρhνσ = 0.
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where ∇̊α ≡ ∂αX
ν
0 D̊νY

µ = ∂αY
µ +

(
Γ̊µρσ

)
0
∂αX

ρ
0Y

σ is the pullback of the

TNC spacetime covariant derivative D̊ν onto the worldsheet. To compute
S̄[Ψ0,Ψ](0) we will also need the quantum expansion of the non-linear cou-
plings h̄µν(X), B̄µν(X),ℵµ(X) and τµ(X). This can be achieved by noting
that any vector Vµ(X) and tensor Wµν(X) can be expanded as

Wµν = (Wµν)0 + (∂ρWµν)0 lsY
ρ +

1

2

(
∂ρ∂σWµν − Γ̊λρσ∂λWµν

)
0
l2sY

ρY σ ,

Vµ = (Vµ)0 + (∂ρVµ)0 lsY
ρ +

1

2

(
∂ρ∂σVµ − Γ̊λρσ∂λVµ

)
0
l2sY

ρY σ ,

(2.49)

where we have made use of (2.42). It is also straightforward to show that
the pullback of any vector Vµ(X) and tensor Wµν(X) can be written in the
TNC covariant form

Wαβ

l2s
= Wµν∇̊αY

µ∇̊βY
ν + D̊σWµν∇̊αY

µY σ∂βX
ν
0 + D̊σWµν∇̊βY

νY σ∂αX
µ
0

+
1

2

(
D̊ρD̊σWµν + R̊λ

σρµWλν + R̊λ
σρνWµλ

)
Y ρY σ∂αX

µ
0 ∂βX

ν
0 +O (ls) ,

(2.50)

Vα
l2s

=
Vµ∇̊αY

µ + D̊ρVµY
ρ∂αX

µ
0

ls

+

[
D̊µVνY

µ∇̊αY
ν +

1

2

(
D̊ρD̊σVµ + R̊λ

σρµVλ

)
Y ρY σ∂αX

µ
0

]
+O (ls) ,

(2.51)

where R̊λ
σρµ ≡ ∂ρΓ̊

λ
µσ−∂µΓ̊λρσ+Γ̊λρκΓ̊

κ
µσ−Γ̊λµκΓ̊

κ
ρσ is the Riemann tensor defined

in the usual way from the connection (2.46) and where to avoid cluttering
we have dropped the zero index on the background tensor fields. Making use
of (2.50) and (2.51) we can rewrite the Polyakov action (2.11) in the TNC
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covariant way, see appendix A.3 for its derivation,

S̄0 = −
∫
d2σe

4π

[
h̄µν∇̊αY

µ∇αY ν − Λ̄+e
β
−

(
∇̊βĤ + ∇̊β (τµY

µ)
)

− Λ̄−e
β
+

(
∇̊βĤ − ∇̊β (τµY

µ)
)]

−
∫
d2σe

4π

[
Λ̄+Y

ρ (Fµρ + bµρ) e
β
−∂βX

µ
0 − Λ̄−Y

ρ (Fµρ − bµρ) eβ+∂βX
µ
0

]
−
∫
d2σe

4π

[ (
γαβAσµν + εαβĀσµν

)
Y σ∇̊αY

µ∂βX
ν
0

+
1

2

(
∆λβFµν − Σλβbµν

)
Y µ∇̊αY

ν

]
−
∫
d2σe

4π

[ (
γαβCρσµν + εαβC̄ρσµν

)
Y ρY σ∂αX

µ
0 ∂βX

ν
0

+
(
∆λαBρσµ + ΣλαB̄ρσµ

)
Y ρY σ∂αX

µ
0

]
,

(2.52)

where Ĥ = H̄ + ℵµY µ, H = dB̄, F = dτ , b = dℵ, ∆λβ ≡ λ0
−e

β
+ − λ0

+e
β
−,

Σλα ≡ λ0
−e

β
+ + λ0

+e
β
− and where the coefficients {A, Ā, B, B̄, C, C̄} are given

by

Aσµν = 2D̊σh̄µν ,

Āσµν = Hσµν ,

Cρσµν =
1

2
D̊ρD̊σh̄µν + R̊λ

(ρσ)(µh̄ν)κ ,

C̄ρσµν =
1

2
D̊ρHσµν ,

Bρσµ =
1

2
D̊ρFσµ ,

B̄ρσµ = −1

2
D̊ρbσµ .

(2.53)

We note that (2.52) is manifestly invariant under the U(1)B zero- and
one-form transformations as it is written exclusively in terms of bµν and
Hµνρ instead of ℵµ and B̄µν (the coefficient B̄µνρ should not be confused with
the Kalb-Ramond field B̄µν). Ideally one would like to do the same for the
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U(1) mass symmetry, i.e. express the action in terms of the field strength
of mµ, however this would give us an action which is manifestly U(1) mass
invariant, but not manifestly Galileian invariant. In other words, while the
action is both U(1)m and Galilean invariant, we can only choose one of these
symmetries to be manifest. Although the action will be kept in its explicit
Galilean invariant form, as written in (2.52), it can be shown that it is still
invariant off-shell under the U(1) mass symmetry after making use of the
classical equations of motion (A.20) for the background fields, as well as
the transformation rules for the quantum Lagrange multipliers, derived from
(2.23):

δΛ± = ∓eα±
(
D̊ρσ∇̊αY

ρ + D̊ρD̊σσY
ρ∂αX

σ
0

)
. (2.54)

The preservation of this symmetry at the quantum level is then expected to
be non-trivial.

2.2.2 Weyl invariance at one loop

From (2.52) we observe that Γ[Ψ0](0) is a free theory with a background
dependent normalization for the kinetic and mass terms. Nevertheless, since
we are looking at contributions up to O (D2) in target spacetime derivatives
we can treat (2.40) perturbatively as long as we can renormalize the O (D0)
terms appropriately. One can move these background dependent norms to
terms higher order in spacetime derivatives through the following coordinate
transformation

Y µ = −υ̂µ (τσY
σ) + eµA′

(
δA
′B′eρB′h̄ρσY

σ
)
≡ −υ̂µ Y 0

√
2Φ

+ eµA′Y
A′ ≡ eµIY

I ,

Ĥ =
H√
2Φ

, Λ̄± =
√

2ΦΛ± ,

(2.55)

with Φ defined in (2.25), Y I = {Y 0, Y A′} and the normalizations are judi-
ciously chosen such that the normalization of the first term in (2.52) becomes
canonical, i.e. it yields the first two terms in the zeroth order action below.
To see this, one needs to use the identity h̄µν υ̂

ν = 2Φτµ and in particular
we can identify the spacetime inverse vielbeins eµI = {−υ̂µ√

2Φ
, eµA′} satisfying

h̄µνe
µ
I e
ν
J = ηIJ . The effective action S0 is now expressed in terms of flat
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indices and can be expanded as

S0 = S
[0]
0 + S

[1]
0 + S

[2]
0 , (2.56)

with S
[a]
0 denoting the O (Da) in target spacetime derivatives. In particular

the O (D0) action is given by the free action with constraints

S
[0]
0 = −

∫
d2σe

4π

[
ηIJ∂αY

I∂αY J − Λ+e
β
−
(
∂βH + ∂βY

0
)

−Λ−e
β
+

(
∂βH − ∂βY 0

)]
.

(2.57)

Assuming a diffeomorphism invariant measure, the path integration over the
fields {Y µ, Λ̄, H̄} can be changed to an integration over {Y 0, Y A′ ,Λ, H}. Af-

ter this change of coordinates, the following propagators for S
[0]
0 can be con-

structed

〈Y I(σ)Y J(σ′)〉0 = ∆2

(
ηIJ + δI0δ

B′

0

)
ln
(
|∆σ|2

)
,

〈Y I(σ)Λ±(σ′)〉0 = δI0
∓2∆2

(σ − σ′)±
,

〈H(σ)Λ±(σ′)〉0 =
−2∆2

(σ − σ′)±
,

〈Λ±(σ)Λ±(σ′)〉0 =
4∆2

(σ − σ′)±
,

〈Λ+(σ)Λ−(σ′)〉0 = −4π∆2δ(σ − σ′) ,

(2.58)

where 〈〉0 denotes the correlation function computed with respect to the

action S
[0]
0 and where ∆2 is an unimportant overall factor. At first and second

order in covariant derivatives we can perform the further decomposition

S
[1]
0 = S1 + S̃1 ,

S
[2]
0 = S2 + S̃2 ,

(2.59)

where we make a distinction between the contributions coming directly from
coefficients {A, Ā, C, C̄, B, B̄} and the contributions coming from the non-
compatibility of the vielbeins {−υ̂µ√

2Φ
, eµA′} by considering the former in S and
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the latter in S̃. In detail we find for the S components

S1 = −
∫
d2σe

4π

[
Λ̄+Y

IeρI (Fµρ + bµρ) e
β
−∂βX

µ
0 − Λ̄−Y

IeρI (Fµρ − bµρ) eβ+∂βX
µ
0

]
(2.60)

−
∫
d2σe

4π

[(
γαβAσµν + εαβĀσµν

)
eσI e

µ
JY

I∂αY
J∂βX

ν
0

]
−
∫
d2σe

4π

[
1

2

(
∆λβFµν − Σλβbµν

)
eµI e

ν
JY

I∂αY
J

]
,

S2 = −
∫
d2σe

4π

[(
γαβCρσµν + εαβC̄ρσµν

)
eρIe

σ
JY

IY J∂αX
µ
0 ∂βX

ν
0

]
(2.61)

−
∫
d2σe

4π

[(
∆λαBρσµ + ΣλαB̄ρσµ

)
eρIe

σ
JY

IY J∂αX
µ
0

]
,

and for the S̃ components

S̃1 = −
∫
d2σe

4π

[
Λ+e

β
−H+ + Λ−e

β
+H−

2
∂αX

µ
0 D̊µ ln Φ

+
(

2h̄ρσe
ρ
ID̊µe

σ
J

)
Y I∂αY

J∂αXµ
0

]
, (2.62)

S̃2 = −
∫
d2σe

4π

[(
h̄ρσD̊µe

ρ
ID̊e

σ
J

)
∂αX

µ
0 ∂

αXν
0

]
−
∫
d2σe

4π

[(
Aσρνγ

αβ + Āσρνε
αβ
)
eσI D̊µe

ρ
JY

IY J∂αX
µ
0 ∂βX

ν
0

]
(2.63)

−
∫
d2σe

4π

[(
∆λαFσρ

2
− Σλαbsr

2

)
eσI D̊µe

ρ
JY

IY J∂αX
µ
0

]
,

where we have explicitly broken the manifest covariance of the theory by
using ∇̊αY

I = ∂αY
I +ωIJαY

J with ωIJα the spin connection7, and where the
covariant derivative D̊µe

λ
I is taken only with respect to the curved spacetime

indices. The effective action (2.40) can be now be treated perturbatively and
its corresponding Weyl variation, (2.41), can be computed as

δψΓ̄[Ψ0](0) = δψ
〈
S[1] + S[2]

〉
0

+
i

2
δψ
〈
S[1]S[1]

〉
0

− iδψ
〈
S[1]
〉

0

〈
S[1]
〉

0
− iδψ log(Z0ZFP ) +O

(
D3
)
,

(2.64)

7The spin connection is not gauge invariant and consequently it will not contribute to
the beta functions.
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where ZFP is the partition function for the Fadeev-Popov ghosts arising from
the gauge fixing procedure, see [43], and where Z0 denotes the partition func-

tion with respect to the action S
[0]
0 . By dimensional considerations we expect

δψ log(Z0ZFP ) = cTR with cT a proportionality constant8. The coefficient cT
is independent of the background fields and depends only on the dimension-
ality of the TNC spacetime. Therefore, as in the case of the ordinary string,
the requirement cT = 0 fixes the dimensionality of the background geometry.
This is the requirement of invariance under conformal reparametrizations,
hence the quantum consistency of the theory in the absence of extra dynam-
ical fields. The requirement cT = 0 fixes the critical dimension of the d + 1
dimensional TNC geometry to be [43]

dc + 1 = 25 . (2.65)

This result is somewhat expected, as quantum consistency of the ordinary
bosonic string sets d+2 = 26 and we obtain the TNC geometry by reduction
of this 26 dimensional background on a null direction. Nevertheless, it is
still a non-trivial result, as we cannot find a simple argument as to why
quantization and null reduction should commute. Taking the dimension to
be critical, we expect the right hand side of (2.64) to take the form

δψΓ̄[Ψ0](0) = −
∫
d2σ

ψ

4π

[
βρση

αβ∂αX
ρ∂βX

σ + β̄ρσε
αβ∂αX

ρ∂βX
σ

+βµ∆λβ∂βX
µ
0 + β̄µΣλβ∂βX

µ
0 + βλ0

+λ
0
−
]
,

(2.66)

where {β, βρσ, β̄ρσ, βµ, β̄m} will correspond to the beta functions. We will
exemplify the computation of the beta functions by taking the background
solution to be ∂αX

µ
0 = 0 so that we can easily compute the scalar beta

function β. Under this assumption and making use of (2.64), (2.57), and
(2.59) we find

− δψΓ̄ [Ψ0] (0) = δψ

∫
d2σe

4π

[
1

2

(
∆λβFµν − Σλβbµν

)]
∆µν

+ δψ

∫
d2σd2σ′ie2

64π2

[
(FρσFλκ − bρσbλκ) γαβ + Fρσbλκε

αβ
]
λ+λ−γ

αβ∆ρσλκ
αβ ,

(2.67)

8At one loop level this is the only contribution to the anomaly proportional to R.
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where for simplicity we have defined

∆µν
α (σ) ≡ eµI e

ν
J〈Y I(σ)∂αY

J(σ)〉0 ,
∆ρσλκ
αβ (σ, σ′) ≡ eρIe

σ
Je

λ
Ke

κ
L〈Y I(σ)∂αY

J(σ)Y K(σ′)∂βY
L(σ′)〉0 .

(2.68)

The propagators in (2.68) can be computed by making use of the zeroth
order action (2.57), and in particular the following identities follow from it

δψ

∫
d2σJαρσ∆ρσ

α (σ) = −1

2

∫
d2σ eψ ∂α

(
hρσJαρσ

)
,

δψ

∫
d2σd2σ′Jαβρσλκ∆

ρσλκ
αβ (σ, σ′) = (−2πi)

∫
d2σ eψ Jαβρσλκh

ρλhσκγαβ ,

(2.69)

where Jαρσ, J
αβ
ρσλκ are arbitrary tensors. By using (2.69) and (2.67) we finally

find β to be

β =
1

4
(bρσbλκ − FρσFλκ)hρλhσκ . (2.70)

Our analysis depends on the existence of a solution Gλ
ρσ to the geodesic

equation (2.43). It is easy to show that such solution exists as long as the
torsion is twistless, i.e. it satisfies the constraint

Fρσh
ρλhσκ = 0 , (2.71)

with corresponding solution to the geodesic equation given by

Gλ
µν =

1

2
h̄µνFρσυ̂

ρhσλ . (2.72)

For the rest of this chapter we will use (2.72) and assume (2.71) holds for
the TNC background. This requirement together with the Weyl invariance
condition β = 0 implies that, just as F , the field strength b is forced to be
twistless. This condition can be made explicit by expressing F and b in terms
of the decomposition [47]

Fρσ ≡ aρτσ − τρaσ ,
bρσ ≡ eρτσ − τρeσ ,

(2.73)
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with aρ = υ̂λFλρ the acceleration and eρ = υ̂λbλρ an electric-type field, and
where both vectors satisfy aλυ̂

λ = eλυ̂
λ = 0. For simplicity, from now on we

will assume (2.73) holds for the computation of the remaining beta functions.
It is important to note that we should think of (2.71) not as an equation of
motion arising from Weyl invariance but rather as a constraint to ensure
both general covariance and U(1) mass invariance at the quantum level.

Taking ∂αX
µ
0 satisfying (A.20) and following a similar procedure as the

one just outlined for the computation β, the remaining beta functions are
found to be

βµ =

[
1

2
D̊ · a+

(
dc
4

+
1

2

)
a2 − e2 − a · D̊φ

]
τµ , (2.74)

β̄µ = −
[

1

2
D̊ · e +

dc
4
a · e− e · D̊φ

]
τµ , (2.75)

βµν = −R̊µν +
1

4
Hρσ(µHν)λκh

ρλhσκ − 2D̊(µD̊ν)φ− eρh
ρσ (∆T )λ(µHν)λσ (2.76)

+
e2
(
2Φτµτν + h̄µν

)
− eµeν

2
− βλυ̂λh̄µν ,

β̄µν =
1

2
hρσD̊ρHσµν +

dc
4
aρh

ρσHσµν − (∆S)λ[µ D̊ν]eλ + (∆T )ρ[µ D̊ν]eρ + a[µeν]

(2.77)

+
D̊λυ

λ

2
bµν −

(
υ̂ρbµν + hρλHλµν

)
D̊ρφ ,

with a2 = aρaσh
ρσ, e2 = eρeσh

ρσ, R̊µν the Ricci tensor, · denoting an ‘inner

product’ with respect to hρσ, and where the time projector (∆T )λµ and the

space projector (∆S)λµ are defined as

(∆T )λµ = −υ̂λτµ , (∆S)λµ = hλρh̄ρµ , (2.78)

satisfying the projector identities

(∆T )λµ + (∆S)λµ = δλµ ,(
∆T/S

)λ
µ

(
∆T/S

)µ
κ

=
(
∆T/S ,

)λ
κ

(∆T )λµ (∆S)µκ = 0 .

(2.79)
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The details of the derivation of (2.74)-(2.77) can be found in appendix A.4.
The Weyl invariance of the theory at one loop will follow from the vanishing of
the beta functions. These constraints will be interpreted as the gravitational
equations of motion for the TNC background, such equations are discussed
in the following section. Before finalizing this section we comment on the
U(1) mass covariance of the beta functions (2.74)-(2.77) by noting that

δσβ = 0 ,

δσβµ = 0 ,

δσβ̄µ = 0 ,

δσβµν = 2
(
βλυ̂

λ
)
τ(µD̊ν)σ ,

δσβ̄µν = 2
(
β̄λυ̂

λ
)
τ[µD̊ν]σ ,

(2.80)

where the transformation rules (2.22), (2.26), (2.27), and (2.28) have been
used. From (2.80) we note that the vanishing of the beta functions is a U(1)m
invariant condition.

2.2.3 TNC equations of motion

The gravitational equations for the TNC background will arise from the
condition (2.71), and by setting (2.70),(2.74)-(2.77) to zero. The resulting
equations can be categorized into two twistless constraints:

Fρσ = aρτσ − τρaσ , (2.81)

bρσ = eρτσ − τρeσ , (2.82)

two scalar equations:

D · a+ a2 = 2e2 + 2 (a ·Dφ) , (2.83)

D · e = 2 (e ·Dφ) , (2.84)

and two tensor equations:

R(µν) −
1

4
Hρσ(µHν)λκh

ρλhσκ + 2D(µDν)φ = (∆S)λ(µDν)aλ +
aµaν

2
− a2 Φτµτν

+
e2
(
2Φτµτν − h̄µν

)
− eµeν

2
− eρh

ρσ (∆T )λ(µHν)λσ,

(2.85)
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1

2
hρσDρHσµν − hρσHσµνDρφ = (∆S)λ[µDν]eλ − (∆T )ρ[µDν]eρ − a[µeν]

− 1

2
aρh

ρσHσµν +

(
υ̂λDλφ−

Dλυ
λ

2

)
bµν .

(2.86)

In (2.81)-(2.86) we have used the original TNC connection (2.45) and
used D to denote its corresponding covariant derivative. The Ricci tensor
associated to the standard TNC connection can be read off from the following
relation

R̊µν −Rµν = −1

2
aµaν −Dνaµ +

1

2

(
D · a+ a2

)
h̄µν + (∆T )ρ[µDρaν]

+ (∆T )ρ(µDν)aρ −
1

2
Dρυ̂

ρFµν + a2Φτµτν .
(2.87)

Notice that it is not symmetric in the presence of torsion and, as discussed
earlier, the TNC connection is not U(1) mass invariant unless Γρ[µν] = 0.

Consequently the U(1) mass invariance of equations (2.81)-(2.86) is harder
to verify in this form, however from (2.80) we know they are indeed invariant.
We can also note that unlike the expressions (2.74)-(2.77), where the U(1)
mass invariant connection has been used, equations (2.81)-(2.86) have no
explicit dependence on the critical dimension dc. At this point it is convenient
to introduce the extrinsic curvature tensor Kµν as [48]

Kµν ≡ −
1

2
Lυ̂h̄µν = −1

2

[
υ̂λDλh̄µν + h̄µλDν υ̂

λ + h̄νλDµυ̂
λ − 4Φa(µτν)

]
,

(2.88)

and use the TNC identity

Dµh̄ρσ = 2τ(ρh̄σ)λDµυ̂
λ − 2τρτσDµΦ , (2.89)

to derive the following contractions of the extrinsic curvature

hρσKρσ = −Dλυ̂
λ ,

KρσKλκhρλhσκ = Dµυ̂
νDν υ̂

µ .
(2.90)

We can then see that Kρσhρσ shows up in the antisymmetric beta function
(2.86). To further show the role of Kµν in equations (2.81)-(2.86) it is in-
structive to look at the time-time projection of equation (2.85) to write down
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Newton’s law in a general TNC spacetime. For this it will be necessary to
use the υ̂µυ̂ν projection of the TNC identity (A.40)

υ̂νDν υ̂
λ = hλσ (DσΦ + 2aσΦ) , (2.91)

the scalar equation (2.83), and the extrinsic curvature contractions (2.90) to
find that Newton’s law takes the form

D2Φ + 3 (a ·DΦ) +m2
Φ Φ = ρκ + ρm , (2.92)

with D2 ≡ hρσDρDσ, and where the Newton’s potential mass m2
Φ, matter

density ρm, and curvature density ρK are defined as

m2
Φ ≡ a2 + 2 e2 + 4 a ·Dφ , (2.93)

ρK ≡ KρσKλκhρλhσκ − υ̂νDν (Kρσhρσ) , (2.94)

ρm ≡
1

4
υ̂µυ̂νhρλhσκHρσµHλκν − 2υ̂µυ̂νDµDνφ . (2.95)

From (2.92) we can observe that the extrinsic curvature enters Newton’s
law in the form of a matter density distribution. In contrast, we can note
that the presence of torsion modifies considerably the classical gravitational
equation of motion by adding both a mass term9 via its coupling with matter
through (2.83), and an advection term via the coupling a · DΦ. Equation
(2.92) is nothing but the temporal trace of the Ricci tensor, however it is
also instructive to compute its spatial trace RS ≡ Rµνh

µν to find that

RS =
1

4
H2
S − 2D2φ+

m2
Φ

2
− (dc − 1) e2

2
− a2 , (2.96)

with H2
S ≡ HρσµHλκνh

ρλhσκhµν . In addition, the electric Maxwell equation
(2.84) reduces to Gauss’ law only for a vanishing dilaton while the two-form
Maxwell equation (2.86) is not only sourced by φ and e but also by torsion
via the coupling aρh

ρσHσµν .
We should also mention a few properties of torsion and what role it plays

in the equations of motion. First of all we recall that the conditions Γλ[µν] = 0
and aµ = 0 are completely equivalent as long as torsion is forced to be
twistless. In the torsionless case (i.e. when the acceleration vanishes) we

9From (2.83) we note that whenever torsion vanishes the electric field e also vanishes
and cosequently m2

Φ = 0.
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notice that the electric field e is also forced to vanish. On the other hand, a
non vanishing electric field forces torsion and the Kalb-Ramond field strength
to be non-zero. The first property can be read off explicitly from (2.83), while
the second one is a consequence of the U(1) mass transformation (2.28).
Hence in the absence of torsion the mass and advection terms in Newton’s
law vanish, yielding the more familiar Poisson equation

D2Φ = ρκ + ρm . (2.97)

Lastly, we notice that for vanishing torsion the TNC equations of motion
assume the same form as the usual equations derived from relativistic string
theory.
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Chapter 3

Non-relativistic strings: the
Double Field Theory approach

In this chapter we will once again derive the target-space equations of motion
for some selected non-relativistic theories. The framework we will use is Dou-
ble Field Theory and will allow us to find the target space equations of motion
without the need to impose constraints on the geomerty (e.g. the torsion-
less constraints, as in the previous chapter). Another important difference
with the approach of the previous chapter is that this framework will allow
us to derive target-space actions for the theories we study (which should be
regarded as the bosonic sector of non-relativistic supergravity actions). The
geometries we consider are Type I Torsional Newton Cartan, stringy Newton
Cartan and Carrollian. While the latter is technically an ultra-relativistic
geometry, rater than a non-relativistic one, it will be interesting to study it
nonetheless because of its relation to Type I TNC.

Constructing actions for non-relativistic gravitational theories based on
local Galilean and Carrollian symmetries has proven to be difficult. It was not
until recently that successful attempts have been made [27,40,48] for certain
classes and limits of non-relativistic geometries. Importance of understand-
ing dynamics of non-Riemannian gravity is underpinned by the far-reaching
possibilities this entails: as mentioned in the introduction, theories based
on Galilean symmetry play a role on truncations of string theory [8, 11, 28],
post-Newtonian physics [47, 49–51], and provide a natural setting to study
response in condensed matter systems with Galilean symmetry [52–55]. Car-
rollian symmetry, on the other hand, is relevant to description of excitations
in the near horizon geometry of black holes [56–58], and is instrumental in
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flat space holography [59,60].
In the particular cases of the Bargmann and Carroll symmetries, it has

been known that the corresponding algebra of generators of the non-Riemannian
space-time symmetries can be constructed by considering a parent relativistic
theory with a null isometry [61–64]. In the context of string theory they can
be further related by means of T-duality transformations [7,65–67]. When T-
duality is applied in the null direction of the parent relativistic theory a map-
ping between non-Riemannian geometries, in particular Torsional Newton-
Cartan (TNC) or Carroll type, can be established [7, 28, 66]. We note that
this can be done for algebras obtained via group contractions of the Poincaré
group, while algebras obtained from large speed of light expansions, i.e. ex-
pansions in 1/c, will fall out of the scope of this construction [26,27].

This seems to indicate that we should be able to describe both types of
geometries, Riemannian and non-Riemannian, in a T-invariant formulation
of gravity. Indeed, such a formulation exists. It is based on doubling the de-
grees of freedom by treating D space-time coordinates and the corresponding
D space-time momenta of the compact directions on equal footing [68–72].
This results in a local O(D,D) invariant theory and the aforementioned
T-duality transformation becomes an O(D,D) rotation. This Double Field
Theory (DFT) is based on a generalized metric H and a generalized dilaton d
encompassing the degrees of freedom in the NS sector of string theory, namely
the matter content of the theory consists of metric, the Kalb-Ramond field
and dilaton. This generalized metric H is required to be an O(D,D) tensor.
Parametrization of the generalized metric in terms of the original relativistic
content {g,B, φ} is known since the postulation of Double Field Theory as
a T-duality invariant generalization of string gravity [70]. Importantly how-
ever, the generalized metric is not restricted to this form and in particular
admits non-Riemannian parametrizations, where the TNC and Carroll limits
appear as particular cases [66]. This means that the gravitional dynamics of
such non-Riemannian geometries can be obtained by simply considering the
double field equations of motion1

RMN = 0 , R = 0 , (3.1)

with R 6= ηMNRMN being the generalization of the Ricci tensor and Ricci
scalar to a local O(D,D) geometry. The tensor and curvature scalar appear-
ing in (3.1) can be written in terms of the generalized metric and dilaton

1These equations can also be unified into a single master equation, as shown in [73,74].
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allowing us to fix a non-Riemannian parametrization of H and obtaining the
corresponding gravitational equations of motion.

The goal of this chapter is to derive the actions and corresponding equa-
tions of motion of certain type of non-Riemannian geometries by means of
their embedding in Double Field Theory. The relation between DFT and
non-Riemannian geometries has already been explored in some detail in the
literature, see e.g. [75,76]. We will employ the general parametrization for H
given by Park and Morand [66] and derive the corresponding general equa-
tions of motion. We will then specify to particular cases of interest: Torsional
Newton-Cartan (TNC) theory, Carrollian theory and stringy Newton-Cartan
(SNC) theory. Some or part of these equations of motion have been ob-
tained from worldsheet beta-functions of string theory, see previous chapter
and [9, 77], or from reductions of ordinary Einstein’s equations. However,
in all of these approaches some extra geometric constraints arise. DFT for-
mulation is free of these constraints which will allow us to generalize and
complete the existing studies.

The structure of this chapter is as follows. In section 3.1 we give a brief
introduction to Double Field Theory, presenting the basic tensors which will
be used to construct the non-relativistic actions. In sections 3.2, 3.3 and 3.4
we determine, respectively, embeddings of TNC, Carroll and SNC theories in
Double Field Theory. Using these embeddings we write down the respective
actions and compute the equations of motion. In section 3.5 we compare and
discuss the equations of motion found in the current chapter with the ones
already found in the literature and in the previous chapter.

Throughout the chapter, greek indices {µ, ν, ρ, . . . } denote curved space-
time directions of TNC, Carroll and SNC. The first capital letters of the
latin alphabet (both primed and unprimed) refer to flat directions, e.g. the
TNC inverse transverse metric is given by hµν = eµA′e

ν
B′δ

A′B′ and the SNC
longitudinal vielbein is τAµ . Capital latin letters from the middle of the al-
phabet {M,N, . . . } are reserved for the DFT directions, e.g. for TNC we
will have M = 0, 1, . . . , 2d+ 1, where d = D− 1 is the dimension of the TNC
spacetime. Their lowercase counterparts refer to half of the DFT directions,
i.e. m = 0, 1, . . . , d for the TNC case.
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3.1 Doubled Gravity

In this section we review the necessary ingredients of double field gravity. We
will not be thorough in our discussion and will only discuss the key ingredi-
ents. For a broader discussion see for example [66, 68–70, 78, 79]. A Double
Field Theory of gravity should be invariant under O(D,D) rotations and un-
der double diffeomorphisms. As mentioned earlier, the basic ingredients are
the generalized metric H, generalized dilaton d, and the O(D,D) invariant
metric η, given below. Coordinates on double geometry are denoted by XM

and can be decomposed as XM = (Xµ, X̄ν) with the invariant metric

ηMN =

(
0 1
1 0

)
. (3.2)

Double diffeomorphisms are generated via the generalized Lie derivative L̂ξ
acting on an arbitrary tensor density with weight ω as [66]

LξTM1..Mn = ξN∂NTM1...Mn + ω∂Nξ
NTM1...Mn

+
n∑
i=1

(∂Mi
ξN − ∂NξMi

)T N
M1...Mi−1 Mi+1...Mn

(3.3)

with ξM = (ξµ, ξ̃µ) a generalized vector. The form (3.3) was originally devised
such that it reduces to the one form symmetry for the B-field in addition
to the standard Lie derivative Lξ on the Xµ coordinates after the so called
“section” or strong constraint ∂̄µ = 0 has been imposed [80]. This condition
arises from the covariant constraint ηMN∂

M∂N = 0 introduced to reduce
the degrees of freedom to their original value and in fact follows from the
requirement that the Lie derivatives form a closed symmetry algebra. Under
(3.3) it can be shown that after exponentiation the generalized dilaton, e−2d,
will act as a scalar density of unit weight and consequently as the integral
measure, while, by construction, H will be an O(D,D) symmetric tensor
satisfying

HACη
CDHBD = ηAB. (3.4)

3.1.1 Generalized dilaton and Metric

When considering a Riemannian manifold the generalized dilaton has a sim-
ple expression in terms of the usual dilaton φ and ordinary “undoubled”
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metric gµν which will be useful for example when considering TNC and Car-
rollian geometries:

e−2d = e−2φ
√
− det gµν ≡ e. (3.5)

The most general form of H that is symmetric and compatible with (3.4)
is classified by two non-negative integers, (n, n̄) with n + n̄ < D, and is of
the form [66]

HMN = (3.6)(
Kµν − BµρHρσBσν + 2xi(µBν)ρy

ρ
i − 2x̄ı̄(µBν)ρȳ

ρ
ı̄ −HνρBρµ + yνi x

i
µ − ȳνı̄ x̄ı̄µ

−HµρBρν + yνi x
i
µ − ȳνı̄ x̄ı̄µ Hµν

)
(3.7)

with 1 ≤ i ≤ n and 1 ≤ ı̄ ≤ n̄. Here, B is a skew-symmetric matrix that is
identified with the Kalb-Ramond field of string theory, while K and H are
symmetric matrices2. They have n+ n̄ null eigenvalues each,

Hµνxiν = Hµν x̄ı̄ν = 0, Kµνy
ν
j = Kµν ȳ

ν
̄ = 0 , (3.8)

The corresponding null eigenvectors of H and K are denoted as x, x̄ and y,
ȳ respectively. They are subject to the following completeness relation

HµρKρν + yµi x
i
ν + ȳµı̄ x̄

ı̄
ν = δµν , (3.9)

from which the following identities can be inferred

yµi x
j
µ = δji , ȳµı̄ x̄

̄
µ = δ̄ı̄ , yµi x̄

̄
µ = ȳµı̄ x

j
µ = 0,

HρµKµνH
νσ = Hρσ, KρµH

µνKνσ = Kρσ . (3.10)

Once the “section” condition is imposed, the generalized Lie derivative (3.3)
reduces to (up to GL(n)×GL(n̄) transformations and Milne shifts)

δxiµ = Lξxiµ , δx̄ı̄µ = Lξx̄ı̄µ , δyνj = Lξyνj , δȳν̄ = Lξȳν̄ ,
δHµν = LξHµν , δKµν = LξKµν , (3.11)

δBµν = LξBµν + 2∂[µξν] .

2These matrices are identified with the target space metric and inverse metric respec-
tively, when the target space is Riemannian.
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Note that the trace HM
M = 2(n− n̄)3 is an O(D,D) invariant scalar and also

that the B-field acts as an O(D,D) transformation, i.e. its contribution to
the generalized metric can be factorized as follows:

HAB =

(
1 B
0 1

)(
K Z
ZT H

)(
1 0
−B 1

)
, (3.12)

where we defined
Zµ

ν ≡ yµi x
i
ν − ȳ

µ
ı̄ x̄

ı̄
ν . (3.13)

The generalized metric (3.6) as well as the relations (3.8)-(3.10) are invariant
under the GL(n)×GL(n̄) rotations(

xiµ, y
µ
i , x̄

ı̄
µ, ȳ

ν
ı̄

)
→
(
xjµR

i
j,
(
R−1

) j
i
yνj , x̄

̄
µR̄

ı̄
̄ ,
(
R̄−1

) ̄
ı̄
ȳνj

)
, (3.14)

and under the generalized shift symmetry

(yµi )′ = yµi + V µ
i ,

(ȳµı̄ )′ = ȳµı̄ + V̄ µ
ı̄ ,

K ′µν = Kµν − 2xi(µKν)ρV
ρ
i − 2x̄ı̄(µKν)ρV̄

ρ
ı̄ +

(
xiµVρi + x̄ı̄µV̄ρı̄

) (
xiνV

ρ
i + x̄ı̄νV̄

ρ
ı̄

)
,

B′µν = Bµν − 2xi[µVν]i + 2x̄ı̄[µV̄ν ]̄ı + 2xi[µx̄
̄
ν]

(
yρi V̄ρ̄ + ȳρ̄ Vρi + VρiV̄

ρ
̄

)
,

(3.15)

with Vµi and V̄µı̄ being the transformation parameters and we defined V µ
i ≡

HµρVρi, V̄
µ
ı̄ ≡ HµρV̄ρı̄.

Finally, we note that in this thesis we do not include a cosmological con-
stant term in the DFT action. However this generalization is straightforward
as one only needs to add a term proportional to e−2dΛDFT to the action [82].
This term could potentially be important when considering non-relativistic
holography.

3.1.2 Connection and Curvature

In analogy with general relativity, we will introduce a connection ΓCAB that
will allow us to covariantize derivative interactions. The following unique

3In [81] it was shown that, upon BRST quantization, a critical bosonic string theory
can only be anomaly-free if the trace of the generalized metric is zero, i.e. we have to
impose n = n̄ at the quantum level for a critical theory to be consistent.
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Christoffel connection is found [79]

ΓRMN = 2
(
P∂CPP̄

)
[MN ]

+ 2
(
P̄ S

[M P̄ Q
N ] − P

S
[M P Q

N ]

)
∂SPQR

− 4

(
1

tr (P )− 1
PR[MP

S
N ] +

1

tr (P̄ )− 1
P̄R[M P̄

S
N ]

)(
∂Sd+

(
P∂QPP̄

)
[QS]

)
,

(3.16)

with PMN and P̄MN the projector operators defined as

PMN =
1

2
(ηMN +HMN) , (3.17)

P̄MN =
1

2
(ηMN −HMN) , (3.18)

and satisfying the standard properties P 2 = P, P̄ 2 = P̄ , P P̄ = 0, P + P̄ = η,
and with the corresponding traces

tr (P ) = P M
M = D + n− n̄ , tr (P̄ ) = P̄ M

M = D − n+ n̄ . (3.19)

The connection (3.16) is determined uniquely after imposing compatibil-
ity with H, d, and the Lie derivative (3.3) as well as the additional set of
projection constraints4

P QRS
MNP ΓQRS = 0, P̄ QRS

MNP ΓQRS = 0 , (3.20)

with

P QRS
MNP ≡ P Q

M P
[R

[N P
S]

P ] +
2

tr (P )− 1
PM [NP

[R
P ] P S]Q , (3.21)

P̄ QRS
MNP ≡ P̄ Q

M P̄
[R

[N P̄
S]

P ] +
2

tr (P̄ )− 1
P̄M [N P̄

[R
P ] P̄ S]Q , (3.22)

A field strength RMNPQ for the connection Γ can be constructed as usual:

RPQMN = ∂MΓNPQ − ∂NΓMPQ + Γ R
MP ΓNRQ − Γ R

NP ΓMRQ . (3.23)

However, (3.23) is not a covariant object, in fact no fully covariant four-index
Riemann curvature can be constructed in DFT [78,80]. Nevertheless we can
build the semi-covariant curvature [78–80] RMNPQ

RMNPQ =
1

2

(
RMNPQ +RPQMN − ΓRMNΓRPQ

)
, (3.24)

4If these projections are not enforced the connection can not be fully determined [80].
However the relevant covariant curvatures constructed from it will be unique.
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satisfying symmetry properties

RMNPQ = RPQMN = R[MN ][PQ] , RM [NPQ] = 0 , (3.25)

and the semi-covariant transformation rule

δξRMNPQ = L̂ξRMNPQ + 2∇[M

((
P + P̄

) RST

N ][PQ]
∂R∂SξT

)
+2∇[P

((
P + P̄

) RST

Q][MN ]
∂R∂SξT

)
. (3.26)

Even though the curvature defined in (3.25) is not covariant we can build
the following covariant contraction

R ≡
(
PMPPNQ − P̄MP P̄NQ

)
RMNPQ , (3.27)

which we will call the doubled Ricci scalar. It can be shown that it can be
written in terms of the double fields H and d as

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL . (3.28)

Equipped with (3.27), we can write down the DFT equivalent of the Einstein-
Hilbert action

SDFT =

∫
dDxdDx̃ e−2dR . (3.29)

The equations of motion are then found by varying (3.29), and given by5

δS =

∫
dDxdDx̃e−2d

[
δHMNKMN − 2Rδd

]
, (3.30)

with KMN defined as

KMN =
1

8
∂MHKL∂NHKL −

1

4
(∂L − 2 (∂Ld))

(
HLK∂KHMN

)
+ 2∂M∂Nd

− 1

2
∂(MHKL∂LHN)K +

1

2
(∂L − 2 (∂Ld))

(
HKL∂(MHN)K +HK

(M∂KHL
N)

)
.

(3.31)

5It is important to note that the variation cannot be performed using the parametriza-
tion (3.6) for fixed (n, n̄). This would miss n× n̄ equations [83].
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We need to ensure δHMN satisfies (3.4), this can be achieved as long as we
assume the variation takes the form [70]

δHMN = PM
L δMLKP̄N

K + P̄M
L δMLKPN

K . (3.32)

After assuming the form (3.32) we find that the equations of motion associ-
ated to the action (3.29) are nothing but6

RMN = 0 ,

R = 0 ,
(3.33)

where the double Ricci tensor is now expressed in terms of K:

RMN = P̄L
MKLKPK

N + PL
MKLKP̄K

N . (3.34)

Calling RMN as generalized Ricci tensor is appropriate as it can be related to
the semi-covariant curvature via RMN = PR

MR
Q
RQSP̄

S
N . Note however that

R 6= ηMNRMN = 0.
In the following sections we will consider the action (3.29) and equations

of motion (3.1) for some choices of (3.6), in particular TNC, Carroll and
SNC parametrizations. This will allow us to write non-Riemannian gravita-
tional equations of motion by means of the parametrization (3.6). Our usage
of the relation between DFT and the previously mentioned non-relativistic
geometries will not go further than (3.6). A detailed analysis pertaining
the symmetries and related aspects of non-Riemann geometry following from
(3.6) has been done by Blair et al. in [85].

3.2 Type I TNC geometry

3.2.1 Basics

We already introduced Type I TNC geometries in the previous chapters,
however let us briefly recall some important basic properties that will be

6The same result could also be obtained by using the following property of the Riemann
tensor [84]:

δRMNPQ = ∇[MδΓN ]PQ +∇[P δΓQ]MN .
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useful in this chapter as well. The geometry and symmetries can be obtained
from null reduction of a relativistic theory described by the line element

ds2 = 2τµdx
µ(du−mνdx

ν) + hµνdx
µdxν , (3.35)

where u is the direction associated to the null isometry, i.e. ∂u is a null
Killing vector. Note that the null reduction of the relativistic connection
will not give exactly the connection we use in this text, (3.39), however the
difference between the two is simply given by the torsion component.

Instead of the set of variables {τµ, υν , hµν , hµν ,mµ} it will be more conve-
nient for us to work with the boost-invariant set {τµ, υ̂µ, h̄µν , hµν ,Φ} where
{υ̂µ, h̄µν ,Φ} are defined as

h̄µν ≡ hµν − τµmν − τνmµ,

υ̂µ ≡ υµ − hµνmν ,

Φ ≡ −υρmρ +
1

2
hρσmρmσ ,

(3.36)

which are the boost-invariant combinations with the physical interpretation
of a spatial metric, an “inverse clock”, and Newton gravitational potential
(i.e. the scalar which will appear in Poisson’s equation). While these vari-
ables are explicitly invariant under Galilean boosts, they still transform under
the U(1) extension as

δσh̄µν = −2τ(µ∂ν)σ , δσυ̂
µ = −hµν∂νσ , δσΦ = −υ̂ρ∂ρσ . (3.37)

The Galilean invariant fields are subject to the identities

h̄µρh
ρν − υ̂ντµ = δνµ , υ̂µτµ = −1 , υ̂µh̄µν = 2Φτν . (3.38)

The connection we will use is7

Γρµν = −υ̂ρ∂µτν +
1

2
hρσ
(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
(3.39)

which is manifestly boost invariant, but not manifestly U(1) invariant. Note
that this connection is compatible with hµν and τµ. The antisymmetric part
of this connection is poportional to the torsion tensor of TNC

Fµν ≡ 2∂[µτν], (3.40)

7See also [86,87] for a classification of TNC connections.
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in terms of which we define the acceleration

aµ ≡ υ̂ρFρµ. (3.41)

In the following section we will reformulate this theory by embedding it in
DFT.

3.2.2 Embedding in DFT

By examining (3.35) we can identify the following metric and inverse rela-
tivistic metrics:

gµν =

(
h̄µν τµ
τµ 0

)
, gµν =

(
hµν −υ̂µ
−υ̂µ 2Φ

)
, (3.42)

which can be embedded in DFT as

HMN =


h̄µν τµ 0 0
τµ 0 0 0
0 0 hµν −υ̂µ
0 0 −υ̂µ 2Φ

 . (3.43)

We now apply a T-duality transformation to swap the null direction u with
the dual null direction ū,

T MN =


δµν 0 0 0
0 0 0 1
0 0 δ ν

µ 0
0 1 0 0

 , (3.44)

which results in the following TNC generalized metric:

HMN =


h̄µν 0 0 τµ
0 2Φ −υ̂ν 0
0 −υ̂µ hµν 0
τν 0 0 0

 . (3.45)

The generalized metrics (3.43) and (3.45) will produce the same actions and
equations of motion, however note that the lower right block in (3.45) is now
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degenerate, meaning that the latter has a clearer non-relativistic interpreta-
tion. As shown in [12], after adding matter to this parametrization we find
that the embedding is given by8

Kmn =

(
hµν 0
0 0

)
,

Hmn =

(
hµν hµρℵρ
hνρℵρ hρσℵρℵσ

)
,

Bmn =

(
B̄µν −mµ

mν 0

)
,

(3.46)

and

xm =
1√
2

(
τµ − ℵµ

1

)
, x̄m =

1√
2

(
τµ + ℵµ
−1

)
,

ym =
1√
2

(
−υµ

1− υµℵµ

)
, ȳm =

1√
2

(
−υµ

−1− υµℵµ

)
, (3.47)

where ℵµ ≡ −Bµu appears from the dimensional reduction of the B-field.
We also define

bµν ≡ ∂[µℵν], eµ ≡ υ̂ρbρµ. (3.48)

The tensors Kµν and Hµν both have 2 = 1 + 1 null eigenvectors and the
trace of the generalized metric is HM

M = 0, implying that a TNC geometry
corresponds to a (1, 1) theory in the DFT framework.

3.2.3 Action and equations of motion

Having obtained the embedding of TNC geometry in Double Field Theory, we
can now immediately write down its action using the DFT action in equation
(3.29). We first introduce the following notation. Given an arbitrary tensor
Aµν... we will define for brevity

Aµν... ≡ Aρσ...h
µρhνσ . . . (3.49)

8Note that now we are briefly using m,n as indices of the DFT tensors, as a way to
avoid introducing new symbols. We have m = 0, 1, . . . , d + 1 and µ = 0, 1, . . . , d where d
is the dimension of the TNC spacetime and d+ 1 = D is the dimension of its uplift, which
includes the null direction u.
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Note that the only TNC fields which naturally have upper indices are υ̂µ and
hµν , hence any other tensor with upper indices is to be understood as defined
via (3.49).

Now, the TNC action is given by9

S =

∫
ddx e

[
R+

1

2
aµaµ +

1

2
eµeµ − 4aµDµφ+ 4DµφDµφ−

1

12
HµνρHµνρ

−1

2
υ̂ρHρµνb

µν − 1

2
(F µνFµν + bµνbµν) Φ

]
,

(3.50)

with H = dB, b = dℵ and

e ≡
√

deth̄

2Φ
e−2φ . (3.51)

We choose the independent fields of our theory to be Φ, υ̂µ, hµν , Bµν and ℵµ,
see Appendix B.1 for useful identites.

The variation of the action (3.50) with respect to Φ imposes a generalized
twistlessness constraint on torsion:

FµνF
µν = bµνb

µν . (3.52)

The equations for the matter fields are

DµD
µφ+ aµDµφ− 2DµφD

µφ =
1

2
e2 − 1

12
HµνρH

µνρ − 1

2
υ̂λHλµνb

µν

− 1

2
FµνF

µνΦ , (3.53)

Dρbρµ − 2Dρφ bρµ =
1

2
F ρσHρσµ , (3.54)

DρHρµν + aρHρµν − 2DρφHρµν = 2D[µeν] − 2υ̂λDλbµν + 2a[µeν] + 4bρ[µFν]ρΦ

+ (2υ̂ρDρφ−Dρυ̂
ρ) bµν , (3.55)

9It is worth noting that this same action can also be obtained as the dimensional
reduction of the standard NS-NS sector of supergravity

SNS−NS =

∫
dDx e−2φ

√
−det g

(
R− 1

12
H2 + 4 (∂φ)

2

)
,

where g is the Riemannian metric appearing in (3.42), Hµνρ is the field-strength of the
B-field and D = d+1 with d the dimension of the TNC spacetime. Note however that this
null reduction is not fully consistent, as one needs to impose Poisson’s equation on-shell,
rather than deriving it from the (null-reduced) action.
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while the equation for τµ is

DρFρµ + aρFρµ − 2DρφFρµ =
1

2
bρσHρσµ + eρbρµ . (3.56)

The equation obtained from the variation with respect to hµν requires more
care. First of all, notice that we have τµτνδh

µν = 0. This means that the
most general variation of hµν is given by

δhµν = (∆S)µρ δM
ρν + δMµρ (∆S)νρ , (3.57)

where δMµν is an arbitrary symmetric tensor and (∆S)µν = hµρh̄ρν . It also
follows that the time-time projection of the equation obtained from this vari-
ation will be trivially zero, i.e. we will not be able to obtain Newton’s law
from this variation. This will also be true for variation of the Carrollian
and SNC actions and is, in fact, a general property inherited from Double
Field Theory [83]. By imposing an ansatz on the generalized metric and then
computing the variation of the resulting action we will end up with n × n̄
equations less than we would initially expect. However, this problem can be
easily avoided by taking the variation of the DFT action first and imposing
the TNC ansatz on the resulting equations of motion (3.1). With this in
mind, we find that the variation of (3.50) with respect to hµν produces the
equation

R(µν) + 2D(µDν)φ−
1

4
hρσhλκHµρλHνσκ =

aµaν − eµeν
2

− υ̂ρD(µFν)ρ

− (FµρFνσh
ρσ − bµρbνσhρσ) Φ + Rρσ (∆T )ρµ (∆T )σν ,

(3.58)

where we defined

Rµν ≡ Rµν + 2DµDνφ−
1

4
hρσhλκHµρλHνσκ + a2τµτνΦ− e2τµτνΦ . (3.59)

Note that, because of the presence of Rµν in (3.58), the time-time projection
of Einstein’s equations is identically zero. As we already explained, Newton’s
law can be found by imposing the TNC ansatz on the DFT equations (3.1).
The resulting equation is

DµDµΦ + 3aµDµΦ +m2
ΦΦ− 2FµνF

µνΦ2 = ρK + ρm , (3.60)
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with

m2
Φ = a2 + e2 + 4aµDµφ− υ̂ρHρµνb

µν ,

ρK = υ̂µDµDν υ̂
ν +Dµυ̂

νDν υ̂
µ = −υ̂µDµKνν +KµνKµν ,

ρm =
1

4
υ̂µυ̂νHµρσH

ρσ
ν − 2υ̂µυ̂νDµDνφ .

(3.61)

Notice that by using the identities

υ̂µυ̂νRµν = −υ̂µDµDν υ̂
ν + υ̂µDνDµυ̂

ν + aµDµΦ + 2a2Φ ,

Dµυ̂
ρDρυ̂

ν + υ̂ρDµDρυ̂
ν = hνσ (DµDσΦ + 2Dµaσ Φ + 2aσDµΦ) ,

(3.62)

we can rewrite (3.60) as

υ̂µυ̂νRµν =
1

4
υ̂µυ̂νHµρσH

ρσ
ν − 2υ̂µυ̂νDµDνφ− a2Φ + e2Φ , (3.63)

so that the full Einstein’s equations can compactly be written as

R(µν) + 2D(µDν)φ−
1

4
hρσhλκHµρλHνσκ =

aµaν − eµeν
2

− υ̂ρD(µFν)ρ

+ υ̂λhρσbρ(µHν)λσ − (FµρFνσh
ρσ − bµρbνσhρσ) Φ .

(3.64)

In summary, the TNC equations of motion are given by

FµνF
µν = bµνb

µν , (3.65)

DρFρµ + aρFρµ − 2DρφFρµ =
1

2
bρσHρσµ + eρbρµ , (3.66)

Dρbρµ − 2Dρφ bρµ =
1

2
F ρσHρσµ , (3.67)

DµD
µφ+ aµDµφ− 2DµφD

µφ =
1

2
e2 − 1

12
HµνρH

µνρ − 1

2
υ̂λHλµνb

µν

− 1

2
FµνF

µνΦ , (3.68)

DρHρµν + aρHρµν − 2DρφHρµν = 2D[µeν] − 2υ̂λDλbµν + 2a[µeν] + 4bρ[µFν]ρΦ

+ (2υ̂ρDρφ−Dρυ̂
ρ) bµν , (3.69)

R(µν) + 2D(µDν)φ =
1

4
Hµ

ρσHνρσ +
aµaν − eµeν

2
− υ̂ρD(µFν)ρ

+ υ̂λbρ(µHν)λρ − (FµρFνσh
ρσ − bµρbνσhρσ) Φ ,

(3.70)
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where we remind the reader of the short-hand notation (3.49), as well as the
following definitions

aµ = υ̂ρFρµ = 2υ̂ρ∂[ρτµ],

eµ = υ̂ρbρµ = 2υ̂ρ∂[ρℵµ] ,
(3.71)

and Φ is Newton’s potential, not to be confused with the dilaton φ.
Note that these equations are manifestly invariant under almost all trans-

formations described by the Bargmann algebra. The only nontrivial trans-
formation corresponds to the U(1) generator mµ. However, a straightforward
(but tedious) computation shows that these equations are indeed invariant
under mass U(1), although not manifestly so. We will discuss some properties
of these equations and their relation to known results in section 3.5.

3.3 Carrollian geometry

3.3.1 Basics

The Carroll algebra can be obtained by considering a particular contraction
(c → 0) of the Poincaré algebra [88–90]. In [91] it was suggested that this
algebra could play an important role in flat space holography, hence it would
be interesting to study how field theories couple to Carrollian spacetime, see
e.g. [92–94]. To this end, one needs a gravitational action coupled to matter,
and this is precisely what we will compute below.

We will describe a Carrollian geometry using the same set of symbols we
already introduced for the TNC case above. However, these fields will now
transform under Carrollian boosts rather than Galilean boosts:

δCτµ = λµ , δCh
µν = 2hρ(µυν)λρ . (3.72)

Moreover, we replace the gauge field mµ by a contravariant vector Mµ, which
transforms as

δMµ = LξMµ + eµaλ
a = LξMµ + hµνλν . (3.73)

This allows us to build the following manifestly boost-invariant tensors

τ̂µ = τµ − hµνMν ,

ĥµν = hµν − 2M (µυν) + 2Φυµυν ≡ h̄µν + 2Φυµυν , (3.74)

Φ = −Mµτµ +
1

2
hµνM

µMν = −Mµτ̂µ −
1

2
hµνM

µMν ,
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which we interpret as the boost-invariant clock one-form, inverse spatial met-
ric and Newton’s potential respectively. They satisfy the following orthogo-
nality and completeness relations

ĥµρhρν − υµτ̂ν = δµν , τ̂µĥ
µρ = 0 = υµhµρ . (3.75)

It is possible to embed a Carrollian geometry in a Lorentzian one just as we
did for TNC in (3.35):

ds2 = du(2Φ du− 2τ̂µdx
µ) + hµνdx

µdxν . (3.76)

A connection compatible with τ̂µ, υ
µ, hµν and ĥµν can be constructed [89,95]:

Γ̃ρµν = −υρ∂µτ̂ν +
1

2
ĥµλ (∂µhνλ + ∂νhµλ − ∂λhµν)− ĥµλKλµτ̂ν , (3.77)

where we introduced the extrinsic curvature

Kµν = −1

2
Lυhµν = −1

2
(υρ∂ρhµν + (∂µυ

ρ)hρν + (∂νυ
ρ)hµρ) . (3.78)

However, we will find it more convenient to use a slightly different connection,

Γρµν ≡ Γ̃ρµν + ĥρλKλµτ̂ν . (3.79)

Using τ̂µĥ
µν = 0, it is easy to show that this connection is still compatible

with τ̂µ and ĥµν , but now we have

Dµυ
ν = −ĥνλKλµ, Dρhµν = −2Kρ(µτ̂ν) , (3.80)

where we used
υµKµν = υρDρυ

µ = 0 . (3.81)

We also define the following tensors in analogy with TNC:

Fµν ≡ 2∂[µτ̂ν] , aµ ≡ υρFρµ . (3.82)

3.3.2 Embedding in DFT

Given the relativistic geometry (3.76), we can construct the generalized met-
ric

HMN =


hµν −τ̂µ 0 0
−τ̂µ 2Φ 0 0

0 0 h̄µν υµ

0 0 υµ 0

 . (3.83)
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There are clearly some similarities between this metric and the TNC one
(3.43). In fact when the scalars Φ(C) and Φ(TNC) are both zero (which implies
Mµ = mµ = 0) it is easy to see that the two generalized metrics become
identical up to some obvious identifications. When the two scalars are not
zero we still have a relation between the two geometries, but it is a bit more
involved. To see this we can start from (3.83) and then apply a T-duality
transformation that swaps the Carrollian directions µ with their dual ones µ̄
and arrive at

HMN →


h̄µν 0 0 υµ

0 2Φ −τ̂ν 0
0 −τ̂µ hµν 0
υν 0 0 0

 . (3.84)

This is equivalent to (3.45) if we make the identifications

h̄µν(C) ↔ h̄(TNC)
µν , τ̂ (C)

µ ↔ υ̂µ(TNC), Φ(C) ↔ Φ(TNC), (3.85)

h(C)
µν ↔ hµν(TNC), υµ(C) ↔ τ (TNC)

µ , Mµ
(C) ↔ m(TNC)

µ . (3.86)

These are the same transformations that were proposed and discussed in
[89, 95, 96], however when working in the DFT framework it is more clear
what the interpretation of this relationship is, i.e. at least part of it is
a T-duality following from the fact that this theory is embedded in string
theory! More precisely, this relation between TNC and Carrollian generalized
metrics involves the exchange of covariant tensors with contravariant ones
(and vice versa), including the generalized metric, so that it cannot only
be a T-duality. In fact, it is not even clear that the transformations in
(3.85)-(3.86) are allowed within the framework of DFT, although at the very
least they seem to suggest that there may be a deep relationship between
TNC and Carrollian geometries. Although it is likely not correct to call this
relationship a ‘duality’, we will do so anyway for brevity.

Note that this ‘duality’ is mapping two theories that are in principle really
different, since one is a non-relativistic theory while the other is an ultra-
relativistic theory. It is also interesting to note that when acting with this
transformation on the Carrollian side we are effectively generating massive
particles, which will correspond to the eigenstates of the U(1) generator on
the TNC side.

Moreover we remark that this duality only maps the TNC generalized
metric to the Carrollian. To map the full actions to one another we would
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need to transform the partial derivatives as well, i.e. we would need a trans-
formation of the form

(∂µ)(Car) ↔ (∂µ)(TNC), (3.87)

but it is not clear what a partial derivative with upper index means in a
non-relativistic (or ultra-relativistic) theory. It will be interesting to explore
this duality in more detail in future works, to understand if the two actions
can indeed be mapped to each other.

3.3.3 Action and equations of motion

Once again, given an arbitrary tensor Aµν... we define

Aµν... ≡ Aρσ...ĥ
µρĥνσ . . . (3.88)

The only Carroll fields which naturally have upper indices are υµ, h̄µν , ĥµν

and Mµ, hence any other tensor with upper indices is to be understood as
defined via (3.88).

The action for a Carrollian gravitational theory is given by

S =

∫
ddx e

[
R+

1

2
(aµaµ + eµeµ)− 4aµDµφ+ 4DµφDµφ+ 4υµDµφ υ

νDνΦ

+2Φ

(
KµνKµν −K2 − 4υµDµφ υ

νDνφ− 4KυµDµφ+
1

4
υρυσHµν

ρHµνσ

)
+2KυµDµΦ− 1

12
HµνρH

µνρ +
1

2
bµνHµνρυ

ρ

]
,

(3.89)

with K ≡ ĥµνKµν = −Dµυ
µ, R ≡ ĥµνRµν and the measure is defined as

e = e−2φ

√
2Φ

det h̄µν
= e−2φ

√
2Φ det h̄µν , (3.90)

where h̄µν = hµν − τ̂µτ̂ν
2Φ

. We choose the independent fields of our theory to

be Φ, υµ, ĥµν , Bµν and ℵµ, see Appendix B.2 for useful identites.
As for TNC, this action can be obtained as the dimensional reduction

of the standard NS-NS sector of the supergravity action, with (relativis-
tic) metric given by gµν appearing in (3.76). Furthermore note that when
Φ(Carroll) = 0 this action correctly reduces to (3.50) with Φ(TNC) = 0. An
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important point to note here is that a null reduction should not yield a Carrol-
lian geometry (as that always gives TNC instead10), so, although the action
(3.89) is invariant under the correct boost transformations (3.72) and (3.73),
it is unclear whether it can truly be interpreted as the action of an ultra-
relativistic theory. However, in this thesis we are only interested in (3.89)
because of its relationship to TNC, so we leave the precise interpretation of
this theory as an open question for future work.

The variation of the action with respect to Φ gives

Rµνυ
µυν =

1

4
υρυσHµν

ρHµνσ − 2υµυνDµDνφ . (3.91)

Note that contrary to what happened for TNC, this equation does not impose
any constraint on the antisymmetric part of the connection, however it does
impose a constraint on intrinsic torsion, which in the Carrollian case is given
by the extrinsic curvature [97].

The equations for the matter fields are

DµD
µφ+ aµDµφ− 2DµφD

µφ = 2υµυν (ΦDµDνφ− 2ΦDµφDνφ+DµφDνΦ)

− 2KΦυµDµφ−
1

12
HµνρHµνρ +

1

2
υρυσΦH µν

ρ Hσµν +
eµeµ

2
+

1

2
υρbµνHρµν ,

(3.92)

Dρbρµ − 2Dρφ bρµ = −2ΦυρDρeµ − 2ΦeρKρµ + 2ΦeµK + 4ΦυρDρΦ eµ

+
1

2
F ρσHρσµ + 2DρΦ υσHρσµ − 2ΦυρaσHρσµ ,

(3.93)

DρHρµν + aρHρµν−2DρφHρµν = υρDρbµν − 2υρDρφ bµν − 2K ρ
[µ bν]ρ −Kbµν

+ 2Φυρυσ (DρHσµν − 2DρφHσµν) + 2υρυσDρΦHσµν

+ 4ΦυσK ρ
[µHν]ρσ − 2KΦυρHρµν .

(3.94)

The equation for υµ is

DρFρµ + aρFρµ−2DρφFρµ = −4ΦυρD(ρaµ) + 2ΦaµK + 4ΦυρDρφ aµ

+ 2υρDρDµΦ + 2KρµDρΦ− 2KDµΦ− 4υρDρφDµΦ

+
1

2
bρσHρσµ − eρbρµ − 2ΦυρeσHρσµ − 2υρDρΦ aµ .

(3.95)

10I would like to thank Jelle Hartong for pointing this out.
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Einstein’s equations are given by

R(µν) + 2D(µDν)φ−
1

4
H ρσ
µ Hνρσ =

aµaν − eµeν
2

+D(µaν) − F ρ
(µ Kν)ρ

+ 2υρKµνDρΦ− 2ΦKKµν + 2ΦυρDρKµν
− 4ΦυρKµνDρφ− ΦυλυκH ρ

µλ Hνκρ + υρb σ
(µHν)ρσ .

(3.96)

Once again one equation is missing, but it can be found directly from
DFT:

DµDµΦ− aµDµΦ−2DµφDµΦ + (a2 − e2)Φ =
1

4
(F µνFµν − bµνbµν)

− 2KΦυρDρΦ + 2Φυρυσ (DρDσΦ− 2DρφDσΦ) .

(3.97)

It is also possible to rewrite these equations in terms of h̄µν = ĥµν +
2Φυµυν , rather than ĥµν . The new connection Γ̄ρµν is defined as

Γρµν = Γ̄ρµν + 2ΦυρKµν , (3.98)

where quantities with a bar on them are understood to be defined with h̄µν

instead of ĥµν , i.e.

Γ̄ρµν = −υρ∂µτ̂ν +
1

2
h̄µλ (∂µhνλ + ∂νhµλ − ∂λhµν) . (3.99)

The new Ricci tensor is related to the old one via

Rµν = R̄µν − 2υρD̄ρΦKµν + 2ΦKKµν − 2ΦυρD̄ρKµν . (3.100)

The action and equations will look nicer when using this connection, however
h̄µν , ĥµν and τ̂µ are not compatible now:

D̄µh̄
ρσ = 2υρυσD̄µΦ− 8Kµλh̄λ(ρυσ)Φ ,

D̄µĥ
ρσ = −4Kµλh̄λ(ρυσ)Φ ,

D̄µτ̂ν = −2KµνΦ .

(3.101)

The action can then be rewritten as

S =

∫
ddx e

[
R̄+

1

2
aµaµ +

1

2
eµeµ − 4aµD̄µφ+ 4D̄µφD̄µφ+ 4υµυνD̄µφ D̄νΦ

−8ΦKυρD̄ρφ−
1

12
HµνρH

µνρ +
1

2
bµνυρHµνρ

]
,

(3.102)
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where now the tensors with upper indices are defined using h̄µν and we will
always write any expression such that no derivatives act on h̄µν , e.g. D̄µφ =
h̄µνD̄νφ 6= D̄ν

(
h̄µνφ

)
. The resulting equations of motion for the geometric

fields are

R̄µνυ
µυν =

1

4
υρυσHµν

ρHµνσ − 2υµυνD̄µD̄νφ , (3.103)

D̄ρFρµ + aρFρµ − 2D̄ρφFρµ =
1

2
bρσHρσµ + eρbµρ + 2D̄ρKρµ − 2KD̄µΦ

+ 2υρD̄µD̄ρΦ− 4υρD̄ρφDµΦ ,

(3.104)

R̄(µν) + 2D̄(µD̄ν)φ−
1

4
H ρσ
µ Hνρσ =

aµaν − eµeν
2

+D(µaν) − F(µ
ρKν)ρ

+ υρb(µ
σHν)ρσ + 4Φυρ

(
D̄ρKµν −KKµν +

D̄ρΦ

Φ
Kµν

)
.

(3.105)

The equations for the matter fields are

D̄µD̄
µφ+ aµD̄µφ− 2D̄µφD̄

µφ = 2υµυνDµΦDνφ−
1

2
HρµνHρµν

+
1

2
eµeµ +

1

2
υρbµνHρµν ,

(3.106)

D̄ρbρµ − 2D̄ρφ bρµ =
1

2
F ρσHρσµ + 2υρD̄σΦHρσµ , (3.107)

D̄ρHρµν + aρHρµν − 2D̄ρφHρµν = 2b ρ
[µ Kν]ρ −Kbµν

+ υρ
(
D̄ρbµν − 2D̄ρφ bµν + 2υσD̄σΦHρµν

)
.

(3.108)

The ‘missing’ equation is

D̄µD̄µΦ− aµD̄µΦ− 2D̄µφ D̄µΦ =
1

4
(F µνFµν − bµνbµν) . (3.109)
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As in the case of TNC, we note that the equations (3.103)-(3.108) are
manifestly invariant under transformations corresponding to the Carroll al-
gebra. We also recall the following definitions:

aµ = υρFρµ = 2υρ∂[ρτ̂µ],

eµ = υρbρµ = 2υρ∂[ρℵµ],

Kµν = −1

2
Lυhµν = −1

2
(υρ∂ρhµν + (∂µυ

ρ)hρν + (∂νυ
ρ)hµρ) ,

(3.110)

which have the physical interpretation of the acceleration field, the electric
field and the extrinsic curvature of the geometry.

3.4 Stringy Newton-Cartan geometry

3.4.1 Basics

In [28,29,98–100] a non-relativistic string theory was formulated, which was
then found to correspond to a target space geometry called Stringy Newton-
Cartan (SNC) [1, 7, 11, 31, 101, 102]. A D-dimensional SNC spacetime natu-
rally splits into two longitudinal directions and D − 2 transverse directions,
that are mapped to each other by means of string Galilean boosts. Recent
works have delved deeper into the quantum aspects of such non-relativistic
string theory, in particular studying the Weyl symmetry and computing the
beta functions, that are required to vanish for the theory to be anomaly-
free [9, 77].

The basic geometric fields are the longitudinal and transverse vielbeins,
τAµ , υ

µ
A, E

A′
µ , E

µ
A′ where the index A runs over the two longitudinal directions

and A′ runs over the remaining transverse directions. Using the transverse
vielbeins we can build, as usual, two tensors h⊥µν and hµν . These fields satisfy
the following completeness relations

hµρh⊥ρν − υ
µ
Aτ

A
ν = δµν , υµAτ

B
µ = −δBA , τAµ h

µρ = υµAh
⊥
µρ = 0 ,

(3.111)
and transform under string boosts with parameter ΣA′

A as

δΣυ
µ
A = −Eµ

A′Σ
A′

A , δΣE
A′

µ = −τAµ ΣA′

A , δEµ
A′ = δΣτ

A
µ = 0 .

(3.112)
The metric of the longitudinal space is ηAB = diag (−1, 1) and our convention
for the longitudinal Levi-Civita symbol is ε01 = +1.
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Furthermore, we can introduce a ZA symmetry in the theory via the gauge
field mA

µ , which transforms under boosts as

δΣm
A
µ = EA′

µ ΣA
A′ . (3.113)

This allows us to build the following manifestly boost invariant quantities:

h̄µν = h⊥µν + 2ηABm
A
(µτ

B
ν) ,

uµA = υµA + hµρmρA ,

ΦAB = 2uρ(Am B)
ρ − hµνmA

µm
B
ν = −uµAuνBh̄µν ,

(3.114)

which satisfy

hµρh̄ρν − uµAτ
A
ν = δµν , uµAτ

B
µ = −δBA , uµAh̄µρ = ΦABτ

B
ρ . (3.115)

The ZA transformations of the fields are

δZm
A
µ = Dµσ

A ,

δZ h̄µν = 2ηABτ
AB
(µ Dν)σ

B ,

δZu
µ
A = hµρDρσ

A ,

δZΦAB = 2uρ(ADρσ
B) .

(3.116)

Note that at this point this transformation is a symmetry of SNC only if
the foliation constraint is imposed. However, one can avoid imposing this
constraint by requiring the B-field to transform as well [10], the full ZA
transformations are then given by the upcoming (3.149).

Using these fields it is also possible to construct the following boost-
invariant connection:

Γρµν = −uρA
(
∂µτ

A
ν + ωµε

A
Bτ

B
ν

)
+

1

2
hρσ
(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
= −uρA∇µτ

A
ν +

1

2
hρσ
(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
,

(3.117)

where we introduced the spin connection ω AB
µ ≡ ωµε

AB, associated with the
longitudinal covariant derivative ∇µ. The connection (3.117) is compatible
with hµν and τAµ and has an antisymmetric component

2Γρ[µν] ≡ −u
ρ
AF

A
µν , (3.118)
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where we defined the ‘torsion’ tensors as11

FA
µν ≡ 2∂[µτ

A
ν] + 2εABω[µτ

B
ν] = 2∇[µτ

A
ν] . (3.119)

We can also decompose these tensors as

FA
µν = fAεBCτ

B
µ τ

C
ν + 2a BA

[µ τν]B + F̃A
µν , (3.120)

where we defined the acceleration aµAB, the temporal part of torsion fA and

the transverse torsion tensor F̃A
µν as

uρAFρµB ≡ aµAB , uµAa BC
µ = εABfC , uµAF̃µνB = 0 . (3.121)

Finally, we define the extrinsic curvature in the usual way:

KAµν = −1

2
Luh̄µν , (3.122)

which satisfies in particular

KAµνhµν = −Dµu
µA,

hµνhρσKAµρKBνσ = Dµu
νADνu

µB +
1

4
hµνhρσFµνCFρσDΦACΦBD.

(3.123)

We should also mention that our notation for SNC in this chapter is
somewhat different from the one usually found in the literature. We have
adapted our notation so that it will be easier to match and compare results
with TNC and Carroll. In the next chapter we will conform our notation
and conventions to the more standard ones.

3.4.2 Embedding in DFT

To find the embedding of SNC in DFT we will use the same approach used
for TNC [12], namely we will compare the SNC worldsheet action [9],

SSNC =− 1

2

∫
d2σ

[
e ∂Xµ∂Xν h̄µν + εαβ

(
λeατµ + λ̄ēατ̄µ

)
∂βX

µ
]

− 1

2

∫
d2σ εαβ∂αX

µ∂βX
νBµν ,

(3.124)

11Note that FAµν = 0 is the so called foliation constraint.
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with the worldsheet action written in terms of DFT fields12,

SDFT =− 1

2

∫
d2σ

[
e ∂Xµ∂Xν Kµν + 2εαβ

(
βαax

a
µ + β̄αāx̄

ā
µ

)
∂βX

µ
]

− 1

2

∫
d2σ

[
εαβ∂αX

µ∂βX
νBµν − 2γαβ

(
βαax

a
µ − β̄αāx̄āµ

)
∂βX

µ
]
.

(3.125)

To make the identifications needed to define the SNC embedding we need to
rewrite (3.124) in a more suitable way. In particular there are two issues we
need to address:

1. We need to have a term proportional to γαβλ∂βX
µ and γαβλ̄∂βX

µ to
be able to properly identity the null eigenvectors of DFT;

2. We need to make sure that Kµν is a degenerate matrix, which is not
the case if we naively identify Kµν = h̄µν .

The first issue is simply solved by the following field redefinition:

Aα =
1

2
(λ− λ̄)e0

α +
1

2
(λ+ λ̄)e1

α =
1

2
λeα −

1

2
λ̄ēα . (3.126)

In terms of these new Lagrange multipliers, the SNC action becomes

SSNC =− 1

2

∫
d2σ

[
e ∂Xµ∂Xν h̄µν + 2εαβτ 1

µAα∂βX
µ
]

− 1

2

∫
d2σ

[
εαβ∂αX

µ∂βX
νBµν + 2eγαβτ 0

µAα∂βX
µ
]
,

(3.127)

This form of the action makes it easy for us to identify the null eigenvectors of
DFT, however we still have to solve problem (2), i.e. the fact that Kµν = h̄µν
is not a degenerate matrix. To solve this issue we can make use of the

12We define eα ≡ e0
α + e1

α, ēα ≡ e0
α − e1

α, and similarly for τ and τ̄ . Notice that

γαβ = ηabeαae
β
b = −eα0 e

β
0 + eα1 e

β
1 = −4e(αēβ) where eα ≡ 1

2 (eα0 + eα1 ), ēα ≡ 1
2 (eα0 − eα1 ),

such that eαeα = 1 = ēαēα and eαēα = 0. Moreover we have εαβ = eεabeαae
β
b with

ε01 = −ε01 = +1 and eαa = e−1εαβebβεba, which implies eα = − 1
2eε

αβ ēβ and ēα = 1
2eε

αβeβ .

Note that our convention for the worldsheet Levi-Civita symbol εαβ is the opposite of the
one for the longitudinal SNC Levi-Civita symbol εAB .
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Stueckelberg symmetry of the SNC action. The action (3.124) is invariant
under the following transformations with parameters CA [10, 11]:

δh̄µν = 2CA
(µτ

B
ν)ηAB , δBµν = −2CA

[µτ
B
ν] εAB , (3.128)

λ′ = λ+ e−1εαβ ēαC̄β , λ̄′ = λ̄+ e−1εαβeαCβ , (3.129)

where Cµ = C0
µ + C1

µ and C̄µ = C0
µ − C1

µ. This means we can rewrite the
action in terms of h⊥µν and B̄µν by choosing CA

µ = −mA
µ . After redefining the

Lagrange multipliers one more time we arrive at the action

SSNC =− 1

2

∫
d2σ

[
e ∂Xµ∂Xν h⊥µν + 2εαβτ 1

µAα∂βX
µ
]

− 1

2

∫
d2σ

[
εαβ∂αX

µ∂βX
νB̄µν + 2eγαβτ 0

µAα∂βX
µ
]
,

(3.130)

where now all the tensors appearing in (3.130) are manifestly ZA invariant.
This allows us to make the following identifications:

Kµν = h⊥µν , Bµν = B̄µν , (3.131)

and (
βαxµ + β̄αx̄µ

)
= (τµ + τ̄µ)Aα = 2τ 0

µAα ,(
βαxµ − β̄αx̄µ

)
= − (τµ − τ̄µ)Aα = −2τ 1

µAα .
(3.132)

This is solved by (note the mismatch of bars between DFT and SNC fields)

xµ =
1√
2
τ̄µ , βα =

1√
2
Aα ,

x̄µ =
1√
2
τµ , β̄α =

1√
2
Aα .

(3.133)

By requiring xµy
µ = 1 = x̄µȳ

µ, we find

yµa = −
√

2 ῡµ, ȳµā = −
√

2 υµ . (3.134)

Moreover we have
Hµν = hµν (3.135)

and
Zν
µ = τµυ

ν − τ̄µῡν . (3.136)
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In summary, stringy Newton-Cartan can be embedded in DFT via

Kµν = h⊥µν , Hµν = hµν , (3.137)

Bµν = Bµν , Zν
µ = −τµυν + τ̄µῡ

ν , (3.138)

and the eigenvectors are

xµ =
1√
2
τ̄µ , yµ = −

√
2 ῡµ ,

x̄µ =
1√
2
τµ , ȳµ = −

√
2 υµ .

(3.139)

An issue with this parametrization is that it does not include the gauge field
mA
µ . To reinstate it we can once again make a Stueckelberg transformation

(or a shift transformation (3.15) from the point of view of DFT):

(yµ)′ = yµ +HµρVρ ,

(ȳµ)′ = ȳµ +HµρV̄ρ ,

(Kµν)
′ = Kµν − 2x(µKν)ρV

ρ − 2x̄(µKν)ρV̄
ρ +

(
xµVρ + x̄µV̄ρ

) (
xνV

ρ + x̄νV̄
ρ
)
,

(Bµν)′ = Bµν − 2x[µVν] + 2x̄[µV̄ν] + 2x[µx̄ν]

(
yρV̄ρ + ȳρVρ + VρV̄

ρ
)
,

(3.140)

where Vµ, V̄µ are two arbitrary local parameters and we set V ρ ≡ HρµVµ for
brevity. The choice Vµ = 1

2
mµ, V̄µ = 1

2
m̄µ gives

(yµ)′ = −ῡµ +
1

2
mµ ,

(ȳµ)′ = −υµ +
1

2
m̄µ ,

(Kµν)
′ = hµν −

1

2
ϕ̄τµτν −

1

2
ϕτ̄µτ̄ν − T τ(µτ̄ν) ,

(Bµν)′ = Bµν + T τ[µτ̄ν] ,

(3.141)

with

ϕ ≡ 2ūµmµ +
1

2
m2 ,

ϕ̄ ≡ 2uµm̄µ +
1

2
m̄2 ,

T ≡ uµmµ + ūµm̄µ +
1

2
m · m̄ ,

(3.142)

69



CHAPTER 3. NON-RELATIVISTIC STRINGS: THE DOUBLE FIELD
THEORY APPROACH

and

uµ ≡ υµ − 1

2
hµρm̄ρ , ūµ ≡ ῡµ − 1

2
hµρmρ , (3.143)

h̄µν = h⊥µν − τ(µm̄ν) − τ̄(µmν) , Bµν = B̄µν + τ[µm̄ν] − τ̄[µmν] . (3.144)

Changing back from lightcone coordinates we finally find

Kµν = h̄µν + ΦABτ
A
µ τ

B
ν ,

Hµν = hµν ,

Zµ
ν = −εABuµAτBν ,

Bµν = Bµν −
1

2
ΦεABτ

A
µ τ

B
ν ,

(3.145)

where we defined Φ ≡ ΦA
A.

3.4.3 Action and equations of motion

Given an arbitrary tensor Aµν... we will define

Aµν... ≡ Aρσ...h
µρhνσ . . . (3.146)

The only SNC fields which naturally have upper curved indices are uµA and
hµν , hence any other tensor with upper indices is to be understood as defined
via (3.146). Similarly, we will use the longitudinal vielbeins τ and u do
interchange curved and flat longitudinal indices, i.e. given an arbitrary tensor
A we have for example AAB = Aµ

νuµAτνB.
Using the parametrization (3.145) we find that the SNC action is given

by

S =

∫
dDx e

[
R− aµAB(aµ(AB) −

1

2
ηABaµ) + (aµ − 2Dµφ) (aµ − 2Dµφ)

−1

2
F µνAFB

µν(ΦAB −
1

2
ηABΦ) +

1

2
εABu

ρAF µνBHρµν −
1

12
HρµνHρµν

]
,

(3.147)

where we defined aµ ≡ a A
µA , Φ ≡ ΦA

A and the invariant measure is given by

e ≡ e−2φ

√
det h̄

det Φ
. (3.148)
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This action is invariant under the ZA transformations

δuµA = hµνDνσ
A, δΦAB = 2uµ(ADµσ

B) .
(3.149)

The equations of motion can be found by varying the action with respect
to the independent fields hµν , uµA and ΦAB

13, also see Appendix B.3 for useful
identities. Sometimes it will be useful to further decompose the acceleration
in its antisymmetric and traceless symmetric components:

a AB
µ = SABµ +

1

2
ηABaµ + εABAµ , (3.150)

with S AB
µ ηAB = 0 and we recall aµ = a AB

µ ηAB.
Taking the variation of (3.147) with respect to ΦAB we find the equation14

F µνAFµνA = 0 , (3.151)

which we will use when writing the remaining equations.
The space projection of the equation of motion for uµA is

DρF µ
ρA + a B

ρA F
µρ
B − 2F µ

ρAD
ρφ =

1

2
εABF

ρσBHµ
ρσ , (3.152)

while the time projection is

DρS AB
ρ + aρS AB

ρ − 2SρABDρφ = −1

4
F µνAFB

µνΦ + 2ε
(A
CF

B)C , (3.153)

where we defined

FBC ≡ −AρS BC
ρ +

1

4
uρ(BFC)

µνH
µν
ρ . (3.154)

The equation for the B-field is

DρH µν
ρ + aρH µν

ρ − 2DρφH µν
ρ = 2Ωµν + εABHµνAB , (3.155)

13Note that, despite appearances, the action does not depend on the spin connection,
i.e. δS/δωµ = 0.

14The action actually only depends on the trace of the tensor ΦAB , as can be seen by
expanding the Ricci scalar and noticing that the FµνAFµν

BΦAB terms cancel out. This
is why the corresponding equation is a singlet and not a tensor.
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where we defined

HµνAB ≡ 2uρADρF
µνB − 2uρAF µνBDρφ− 2D[µaν]AB − 2SµACS

νBC

−KAF µνB + 2F
[µ
ρCF

ν]ρAΦBC ,
(3.156)

as well as Ωµν ≡ 2∂[µων] and KA ≡ hµνKAµν .
The dilaton equation is

DµDµφ+2aµD
µφ− 2DµφDµφ =

1

2
Dµaµ +

1

2
aµa

µ

+
1

4
εABu

ρAF µνBHρµν −
1

12
HρµνHρµν .

(3.157)

The space-space projection of Einstein’s equations is

R(µν) + 2D(µDν)φ− 1

4
Hµ

ρσH
νρσ = uρAD

(µF ν)A
ρ + SµABSνAB

− εABuσAF
ρ(µ
BH

ν)
ρσ −

1

2
F µρAF ν

ρAΦ .

(3.158)

The time-space projection is

hµρuσAR(ρσ)+2uρADµDρφ+ aµuρADρφ−
1

4
Hµ

ρσH
ρσ
λ uλA =

1

2
uρAuσBDρF

µB
σ

− uρBD
µa (AB)

ρ + uρADµaρ −
1

2
uρBDρa

µ
BA +

1

2
uρADρa

µ

− 2aµ[AB]uρBDρφ− aµuρADρφ−
1

2
aµKA +

1

2
aµBAKB

− F µ
ρCa

ρB(AΦ
C)
B + aρF µ

ρCΦAC +
1

2
aρF µA

ρ Φ +
1

2
F µρBDρΦ

A
B

− 1

2
F µρADρΦ + εABPµB ,

(3.159)

where

PµB = −1

2
uσBDρHµ

ρσ + uρBHµ
ρσD

σφ+ aρuλBHµ
ρλ +

1

2
F µρCuσBuλCHρσλ

− 1

2
aρCBuσCH

µ
ρσ −DµfB − 1

2
aµfB + aµBCfC +

1

2
aµCBfC + aµBCfC .

(3.160)
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Finally the time-time component (found directly from DFT) is given by

uµAuνARµν+2uµAuνADµDνφ−
1

4
uµAuνAHµρσH

ρσ
ν =

3

2
SρABDρΦAB

− 3

4
aµDµΦ− 3

4
aµaµΦ + SµABSµACΦ C

B − 2fAfA + εABQAB ,
(3.161)

where

QAB = −1

2
uρAu

σ
BD

λHρσλ + uµAu
ν
BHµνρD

ρφ+ uµAu
ν
BDµAν + 2fAu

µ
BDµφ

+
3

2
uµADµfB − uµAu

νCSρCBHµνρ − aρHABρ + fAKB + 3AµSµACΦ C
B

− 1

4
F µν

Au
ρCHρµνΦBC −

1

4
F µν

Bu
ρ
AHρµνΦ +

1

4
F µνCuρAHρµνΦBC .

(3.162)

We remind the reader of the definitions of some of the fields appearing in
these equations:

Fµν
A = 2∇[µτν]

A ≡ fAεBCτµ
Bτν

C + 2a[µ
BAτν]B + F̃µν

A ,

aµ
AB = uρAFρµ

B ≡ SµAB +
1

2
ηABaµ + εABAµ.

(3.163)

These equations are clearly more complicated than the ones found for
TNC or Carroll, as there is no obvious way to combine the time and space
projections of an equation into a single simpler equation. Despite this tech-
nical difficulty, it is possible to show that these equations are invariant under
the SNC algebra as expected. In the next section we will discuss these equa-
tions and their relations to previous results.

3.5 Comparison with known results

3.5.1 TNC beta functions

In the previous chapter we computed the beta functions for string theory de-
scribing a Type I TNC target space. Let us recall the results. The equations
obtained by setting those beta functions to zero were the two twistlessness
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contraints

Fµν = aµτν − τµaν , (3.164)

bµν = eµτν − τµeν , (3.165)

two scalar equations

D · a+ a2 = 2e2 + 2 (a ·Dφ) , (3.166)

D · e = 2 (e ·Dφ) , (3.167)

and two tensor equations

R(µν) −
1

4
Hρσ

(µHν)ρσ + 2D(µDν)φ =
e2
(
2Φτµτν − h̄µν

)
− eµeν

2

+ (∆S)ρ(µDν)aρ − eσ (∆T )ρ(µHν)ρσ +
aµaν − 2a2 Φτµτν

2
,

(3.168)

DρHρµν + aρHρµν − 2Hρ
µνDρφ = 2 (∆S)ρ[µDν]eρ − 2 (∆T )ρ[µDν]eρ − 2a[µeν]

+ (2υ̂ρDρφ−Dρυ
ρ) bµν ,

(3.169)

where we remind the reader of the definitions of the projectors (∆T )µν ≡
−υ̂µτν and (∆S)µν ≡ hµρh̄ρν , which satisfy

(∆S)µν + (∆T )µν = δµν . (3.170)

We now want to compare these equations with the ones obtained from DFT.
First of all, notice that in the previous chapter twistless torsion was assumed
from the start, which explains the difference between the equations (3.164)-
(3.165) and (3.52). To compare the rest of the equations, we impose the
twistlessness constraints in equations (3.53)-(3.56) and (3.64). We then find
two scalar equations

D · a+ a2 = e2 + 2 (a ·Dφ) , (3.171)

D · e = 2 (e ·Dφ) , (3.172)
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and two tensor equations

R(µν) −
1

4
Hρσ

(µHν)ρσ + 2D(µDν)φ =
2e2Φτµτν − eµeν

2
− 2a2 Φτµτν − aµaν

2
+ (∆S)ρ(µDν)aρ − eσ (∆T )ρ(µHν)ρσ ,

(3.173)

DρHρµν + aρHρµν − 2Hρ
µνDρφ = 2 (∆S)ρ[µDν]eρ − 2 (∆T )ρ[µDν]eρ − 2a[µeν]

+ (2υ̂ρDρφ−Dρυ
ρ) bµν , (3.174)

where in the last equation we also used the Bianchi identity for bµν . The main
difference between these two sets of equations is the factor in front of e2 in
(3.166) and (3.171). The further difference in equations (3.168) and (3.173)
arise precisely because of this factor of 2, since one needs to use the scalar
equations to prove that the remaining equations are U(1)m invariant. In
other words, the form of Einstein’s equations depends on the factor in front
of e2 in the scalar equation, because of the requirement of U(1)m invariance,
also see upcoming equations (3.175) and (3.176). Hence it looks like the DFT
and beta functions computations produce almost the same result with the
difference being a factor of two in (3.166) and (3.171). It is worth noting
that this difference goes away when we consider torsionless geometries, since
in that case we have eµ = 0 and worldsheet beta functions and Double Field
Theory give rise to the same set of equations in the target space.

Despite this difference, both sets of equations describe spacetimes with
the same symmetries. In fact, we could generalize them further by modifying
equations (3.171) and (3.173) by introducing an arbitrary constant λ15:

D · a+ a2 = (1 + λ)e2 + 2 (a ·Dφ) , (3.175)

R(µν)−
1

4
Hρσ

(µHν)ρσ + 2D(µDν)φ =
e2
(
2Φτµτν − λ h̄µν

)
− eµeν

2

− 2a2 Φτµτν − aµaν
2

+ (∆S)ρ(µDν)aρ − eσ (∆T )ρ(µHν)ρσ ,

(3.176)

while keeping the other equations unchanged. These equations are U(1)m

15Note that this arbitraryness is a consequence of the fact that we are considering
twistless torsion. For generic torsion the value of λ is fixed to be λ = 0 by symmetry.
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invariant for any choice of the constant λ16 (although recall that this is only
true if we impose twistless torsion) and they are written in terms of manifestly
boost-invariant quantities. Therefore, they describe theories with extended
Galilean symmetry. The only difference between the theories with λ = 0
and λ = 1 is that the former can be found by a variational principle starting
from the action (3.50), while the latter can be found by requiring vanishing
of Weyl anomaly in the string embedding.

Finally, note that to arrive at the parametrization (3.46)-(3.47) one needs
to perform field redefinitions involving both the B-field and ℵ. While such
field redefinitions are allowed at the classical level, it is not clear whether
this will produce the same actions at the quantum level as the path integral
measure may, in principle, transform as well. This question is beyond the
scope of this work and should be addressed separately in future.

3.5.2 SNC beta functions

In [9, 77] the beta functions for a worldsheet with SNC target space have
been computed. They imposed the so called foliation constraint through
their computation:

∇[µτν]
A = 0 = Fµν

A. (3.177)

If we impose this geometrical constraint, the equations (3.152)-(3.162) be-
come much simpler:

DρH µν
ρ − 2DρφH µν

ρ = 0,

DµDµφ− 2DµφDµφ = − 1

12
HρµνHρµν ,

R(µν) + 2D(µDν)φ− 1

4
Hµ

ρσH
νρσ = 0, (3.178)

R(µA) + 2uρADµDρφ−
1

4
Hµ

ρσH
ρσ
λ uλA =

1

2
εABu

σB
(
DρHµ

ρσ − 2Hµ
ρσD

ρφ
)
,

RA
A + 2uνAD

ADνφ−
1

4
HAρσH

Aρσ = −1

2
εAB

(
DλHABλ − 2HABλD

λφ
)
,

16To see this one needs to use (B.10) and (B.11) to show that the variation of R(µν)

contains the term τ(µDν)σD · a = λe2τ(µDν)σ + . . . , where we are ignoring terms not

proportional to λ. Notice that this cancels the variation − 1
2λe

2δh̄µν coming from the
r.h.s. of (3.176). It is also easy to see that the remaining terms proportional to λ are
independently zero since the U(1)m variation of e2 is zero in the twistless case.
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where in the first equation we used the fact that the foliation constraint
implies17

Ωµν = uρAτ
A
[µΩν]ρ =⇒ Ωµν = 0 . (3.179)

Note that the connection used in the present work is in general different
from the one used in the literature, however they are actually equal when
the foliation constraint is imposed. The connection used in [9, 77] is

Γ̄ρµν =
1

2
hρσ
(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
+

1

2
uρAuσA (∂µτνσ + ∂ντµσ − ∂στµν) ,

(3.180)
where τµν ≡ τAµ τνA. One can check that when FA

µν = 0 we have

Γρµν = Γ̄ρµν . (3.181)

This means that the equations (3.178) are exactly the same as the ones
that are obtained by requiring the cancellation of the Weyl anomaly in the
worldsheet theory.

3.5.3 Comparison between TNC and SNC equations
of motion

It was found in [10] that, under certain assumptions which we review below,
the SNC worldsheet action reduces to that of TNC. It is then natural to ask
whether the equations of motion of SNC also reduce to the ones of TNC.
The basic condition under which SNC reduces to TNC is the presence of an
isometry along a compact longitudinal direction. We can then split the SNC
spacetime directions as m = (µ, u), where u is the compact direction and µ
will describe the TNC directions. Then we impose the following gauge choice
on the SNC fields:

mA
M = 0 , τ 0

ν = 0 , τ 1
u = 1 , EA′

u = 0 . (3.182)

Substituting this ansatz in the equations of motion would be quite tedious.
Luckily, since the equations of motion are obtained from an action, which
in turn is obtained from the generalized metric of DFT, it will suffice to
compare the generalized metrics rather than the equations or the actions.

17Note that this is a sort of ”twistlelss condition” on the field strength of ωµ.
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Comparing (3.46)-(3.47) with (3.145) we see that the two parametrizations
are indeed the same once we impose the following identifications:

υµ1 = 0 , υu1 = 1 ,

υµ0 = υµ , υu0 = υµℵµ ,
hµν(SNC) = hµν(TNC), hµu(SNC) = hµρℵρ , (3.183)

huu(SNC) = hρσℵρℵσ , B(SNC)
µν = B(TNC)

µν ,

B(SNC)
µu = −mµ .

In addition, it is not hard to check that the invariant measure of SNC (3.148)
correctly reduces to the one of TNC (3.51).

This identification implies that the SNC equations of motion will match
the ones obtained for TNC, at least in the DFT formulation. Unfortunately,
the SNC beta functions have only been computed under the assumption that
the foliation constraint is satisfied18, and similarly the TNC beta functions
have been computed assuming twistless torsion, so we cannot compare the
full SNC and TNC equations obtained from DFT with the ones obtained by
setting the beta functions to zero. However we already showed that when
Fµν

A = 0 the SNC equations (3.178) do indeed match the ones computed
in [9, 77]. Using the identification between the SNC and TNC generalized
metrics, this also implies that the SNC beta functions with Fµν

A = 0 match
the TNC beta functions with Fµν = 0.

18The SNC beta functions without the requirement of the foliation constraint were also
computed, but only at the linearized level.
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Chapter 4

Non-relativistic membranes

Having studied non-relativistic particles and strings, we now turn to the last
natural step of this thesis: non-relativistic membranes. To do this, we will use
an approach similar to the one used for Stringy Newton Cartan, namely we
will expand the basic fields appearing in the eleven-dimensional supergravity
action for large c and then send c→∞. This will yield an action for eleven-
dimensional non-relativistic supergravity, together with the corresponding
equations of motion. We will also analyze this low-energy limit of M-theory
through the framework of Exceptional Field Theory (ExFT), a generalization
of Double Field Theory which we introduced in the previous chapter.

The eleven-dimensional theory we construct has a number of interesting
features:

� Membrane Newton-Cartan geometry (see section 4.1.1). The geome-
try has three ‘longitudinal’ and eight ‘transverse’ directions, which we
can describe in terms of an eleven-dimensional Newton-Cartan metric
structure. This appears by taking the eleven-dimensional metric and
its inverse to have the form

ĝµν = c2ηABτµ
Aτν

B + c−1Hµν ,

ĝµν = cHµν + c−2ηABτµAτ
ν
B ,

(4.1)

where A = 0, 1, 2 labels the longitudinal Newton-Cartan vielbeins, or
clock forms, τµ

A, and Hµν and τµA are projective inverses obeying the
Newton-Cartan completeness relations

HµρHρν + τµAτν
A = δµν , Hµντν

A = 0 = Hµντ
ν
A , τµAτµ

B = δBA .
(4.2)
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We also expand the three-form as

Ĉµνρ = −c3εABCτµ
Aτν

Bτρ
C + Cµνρ + c−3C̃µνρ . (4.3)

Here c is a dimensionless parameter whose c → ∞ limit can be inter-
preted as a non-relativistic limit. It is the geometry that results from
this limit that we refer to as membrane Newton-Cartan. The powers
of c in (4.1), along with the leading order power in (4.3), follow the
pattern of the powers of the harmonic function in the M2 brane su-
pergravity solution (see (4.180)). Note that c is not the speed of light,
although it is related to it, see discussion after (4.114). (The minus
sign in the c3 term in (4.3) is a choice of convention, and matches with
e.g. expressions in the SNC literature on dimensional reduction [16].)

� Transverse self-duality (see section 4.1.2). Requiring singular terms to
cancel in the c→∞ limit requires that the finite part Fµνρσ = 4∂[µCνρσ]

of the four-form field strength obey a self-duality constraint in the eight-
dimensional transverse space. This is a consequence of the presence of
the Chern-Simons term in the eleven-dimensional action.

� Dual degrees of freedom (see section 4.1.4). The subleading part C̃µνρ
of the three-form in the expansion appears in the dynamics with its
equation of motion imposing the self-duality constraint. The anti-self-
dual transverse projection of the field strength F̃µνρσ = 4∂[µC̃νρσ] of this
subleading part can be identified with the totally longitudinal part of
the seven-form field strength dual to Fµνρσ. Hence the non-relativistic
limit involves what would normally be physical and dual degrees of free-
dom, however, rather than being related to each other as would usually
be the case, these degrees of freedom get reorganised into separately
self- and anti-self-dual parts.

� Dilatation invariance and a ‘missing’ equation of motion (see section
4.2.2). The eleven-dimensional theory is invariant under a ‘dilatation’
symmetry which scales each field with a weight inherited from the power
of c that accompanies them in the initial expansion. This is an ‘emer-
gent’ local symmetry [16] and it has the effect of removing a variational
degree of freedom when we vary the finite part of the action. Hence, at
this order, there is a ‘missing’ equation of motion. As we have seen in
the previous chapter, this is a familiar feature of non-relativistic the-
ories, with the naively missing equation corresponding to the Poisson
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equation for the Newtonian gravitational potential. However, we can
identify this missing equation by looking at the next order in the 1/c
expansion [16, 25, 27, 103]. Indeed, here we identify this missing equa-
tion by extracting it from the dilatation variation of the action at the
next subleading order. In parallel with the situation in the DFT de-
scription of the NSNS sector that we saw in the previous chapter, we
also find it directly from the equations of motion of the exceptional
field theory description.

� Boost invariance (see section 4.2.3). The eleven-dimensional theory is
also invariant under Galilean boost transformations of the form

δHµν = 2Λ(µ
Aτν)A ,

δτµA = −HµνΛνA ,

δCµνρ = −3εABCΛ[µ
Aτν

Bτρ]
C ,

(4.4)

where the (infinitesimal) boost parameter Λµ
A satisfies τµAΛµ

B = 0.
The slightly unusual feature here is the transformation of the three-form
itself. This transformation (4.4) is to be expected based on similar
observations in the case of stringy Newton-Cartan. There one can
either introduce additional one-form gauge fields transforming under
boosts, and treat the two-form gauge field as invariant, or else absorb
the former into the latter via a sort of Stueckelberg gauge fixing [10,16].
We do not introduce additional one-forms and so generalise this second
picture.

� Reduction to type IIA SNC (see section 4.3.1). Reduction of the theory
on a longitudinal isometry direction produces the full type IIA SNC
theory, coupling the known NSNS sector to RR fields. This is the same
theory that we studied in the previous chapter (after setting the ZA
generator to zero).

� Reduction to type IIA D2NC (see section 4.3.2) Reduction of the theory
on a transverse isometry directions produces a novel type IIA non-
relativistic theory, that can be associated to D2 branes rather than
strings.

� Exceptional field theory embedding and U-duality (see section 4.4). Fi-
nally, the eleven-dimensional MNC theory can be very naturally em-
bedded within exceptional field theory (which also manifestly breaks
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Lorentz invariance and treats original and dual degrees of freedom to-
gether), demonstrating that the same exceptional Lie algebraic struc-
tures that appear in the relativistic theory are preserved by the limit.
Furthermore, we can easily use ExFT to study transformations be-
tween relativistic and non-relativistic geometries, and to obtain equa-
tions of motion which are otherwise missing from the action of the
non-relativistic theory. The achievement of ExFT is to present a unified
treatment of both eleven- and ten-dimensional supergravities in which
Ed(d) symmetry is manifest. The metric and gauge field degrees of free-
dom are reorganised into Ed(d) multiplets. For instance, the wholly
d-dimensional components of the metric and three-form (and possibly
also of the dual six-form) appear in a generalised metric. For the cases
d = 3, 4, this has an expression

MMN = |ĝ|1/(9−d)

(
ĝij + 1

2
Ĉi

pqĈjpq Ĉi
kl

Ĉk
ij 2ĝi[kĝl]j

)
. (4.5)

If we adopt the same expansion as in equation (4.1), then in the limit
c → ∞, we obtain an alternative non-relativistic or non-Riemannian
parametrisation1

MMN = Ω
2

9−d

(
Mij Mi

kl

Mk
ij Mijkl

)
, (4.6)

with

Mij = Hij − εABCτ(i
ACj)klτ

kBτ lC + CiklCjmnH
kmτ ln ,

Mi
kl = −εABCτiAτ kBτ lC + 2CipqH

p[kτ l]q ,

Mijkl = 2H i[kτ l]j + 2τ i[kH l]j ,

(4.7)

and where Ω is a measure factor, and τ ij ≡ τ iAτ
j
Bη

AB. This alterna-
tive parametrisation then changes the nature of the duality relation-
ships encoded by the dynamics of the generalised gauge fields of excep-
tional field theory. This allows the exceptional field theory formulation
to automatically capture the interesting reorganisation of degrees of

1The flat space limit of (4.1) was already studied in exceptional field theory in [76], and
the general non-Riemannian parametrisation of the SL(5) generalised metric worked out -
this can be shown to be equivalent to (4.6). However a full analysis of the Newton-Cartan
interpretation and dynamics was not carried out.
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freedom implied by the non-relativistic limit. In addition, the missing
equation of motion is associated to variations which do not preserve the
non-relativistic nature of the parametrisation (4.6) of the generalised
metric.

The outline of this chapter is very simple. In section 4.1 we carry out the
expansion at the level of the bosonic action. In section 4.2 we discuss the
equations of motion and symmetries. In section 4.3, we carry out dimensional
reductions to type IIA. In section 4.4, we discuss the embedding in ExFT.

4.1 Membrane Newton-Cartan limit and eleven-

dimensional SUGRA

4.1.1 Setting up the expansion

Metric We start by writing the eleven-dimensional metric and its inverse
as

ĝµν = c2τµν + c−1Hµν , ĝµν = cHµν + c−2τµν . (4.8)

We can view this simply as a field redefinition which introduces the eleven-
dimensional Newton-Cartan variables alongside the (dimensionless) param-
eter c. We will seek to send c to infinity and interpret the result as a non-
relativistic limit. In principle, we can also think of this ansatz as containing
the first terms in an infinite expansion in c−3, and we will occasionally allow
such a perspective to influence our presentation. However, we leave the de-
velopment of the full non-relativistic expansion to future work. To see that
the field redefinition (4.8) makes sense in Newton-Cartan terms we look at
the condition δνµ = ĝµρĝ

ρν , which gives at order c3, c0 and c−3 respectively
the following three conditions2:

τµρH
ρν = 0 , τµρτ

ρν +HµρH
ρν = δνµ , Hµρτ

ρν = 0 . (4.9)

We view these as the defining conditions for τµν , viewed as a longitudinal
Newton-Cartan metric (of Lorentzian signature), and Hµν , viewed as the
corresponding orthogonal transverse Newton-Cartan metric (of Euclidean

2Note that the last of these identity heavily relies on the fact that we are truncating the
expansion of the metric at order c−2. If we included more subleading terms this identity
would not hold anymore.
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signature).3 Letting A = 0, 1, 2 and a = 1, . . . 8 denote longitudinal and
transverse flat indices, respectively, we can introduce projective vielbeins
such that

τµν ≡ τµ
Aτν

BηAB , τµν ≡ τµAτ
ν
Bη

AB , τµAτµ
B = δBA , (4.10)

Hµν ≡ hµah
ν
bδ
ab , Hµν ≡ haµh

b
νδab , hµah

b
µ = δba , (4.11)

and hence obeying the Newton-Cartan completeness relations following from
(4.9). Here ηAB is the flat three-dimensional Minkowski metric and δab is the
flat Euclidean eight-dimensional metric. We can then compute the determi-
nant of the eleven-dimensional metric:

det ĝµν = −c−2Ω2 ,

Ω2 ≡ − 1
3!8!
εµ1...µ11εν1...ν11τµ1ν1τµ2ν2τµ3ν3Hµ4ν4 . . . Hµ11ν11 ,

(4.12)

where εµ1...µ11 denotes the eleven-dimensional Levi-Civita symbol. Hence√
−ĝ = c−1Ω and it is Ω which will be used as the measure factor in the

non-relativistic action. In terms of the vielbeins, we can write

Ω =
∣∣∣ 1

3!8!
εµνρσ1...σ8εABCεa1...a8τµ

Aτν
Bτρ

Cha1σ1 . . . h
a8
σ8

∣∣∣ (4.13)

and note that

∂µ ln Ω = τ νA∂µτν
A + hνa∂µh

a
ν . (4.14)

We can obtain further useful identities by substituting the expressions (4.8)
into contractions of the Levi-Civita symbol and the metric. One that we will
use later is

n!H [µ1|ν1 . . . H |µn]νn = −ε
µ1...µnλ1...λ11−nεν1...νnσ1...σ11−n

3!(8− n)!Ω2

× τλ1σ1 . . . τλ3σ3Hλ4σ4 . . . Hλ11−nσ11−n .

(4.15)

Three-form For the three-form, let

Ĉ3 = C3 − 1
6
c3εABCτ

A ∧ τB ∧ τC + c−3C̃3 , (4.16)

3As in the stringy Newton-Cartan case, we could choose to include additional one-
forms in the expansion (4.8), however these can be eliminated by a Stueckelberg gauge
fixing [10,16].

85



CHAPTER 4. NON-RELATIVISTIC MEMBRANES

so that

F̂4 = F4 − 1
2
c3εABCdτ

A ∧ τB ∧ τC + c−3F̃4 , (4.17)

where

F4 ≡ dC3 , F̃4 ≡ dC̃3 . (4.18)

Although C̃3 is subleading, it will explicitly appear in the action and dy-
namics of the non-relativistic limit. Its equation of motion will impose a
self-duality constraint on F4, and we will be able to identify a certain projec-
tion of its field strength with the totally longitudinal components of the dual
seven-form field strength. We can therefore interpret the subleading part of
Ĉ3 as being ‘dual’ to the finite part. This is clearly a general fact: the Hodge
star itself has an expansion in powers of c and so inevitably mixes up the
terms at different powers of c in any p-form it acts on. What is non-trivial
is that the Chern-Simons term of the eleven-dimensional theory will lead to
both C3 and C̃3 playing a role in the non-relativistic limit.

4.1.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

S =

∫
d11x

(√
|ĝ|
[
R̂(ĝ)− 1

48
F̂ µνρσF̂µνρσ

]
+ εµ1...µ11

1442
F̂µ1...F̂µ5...Ĉµ9µ10µ11

)
.

(4.19)

Here F̂4 = dĈ3. In form notation the Chern-Simons term is 1
6
F̂4 ∧ F̂4 ∧ Ĉ3,

the equation of motion of the three-form is d?̂F̂4 = 1
2
F̂4 ∧ F̂4 and its Bianchi

identity is dF̂4 = 0. The Hodge dual field strength is F̂7 = ?̂F̂4, which obeys
the Bianchi identity dF̂7 = 1

2
F̂4 ∧ F̂4 and the equation of motion d?̂F̂7 = 0.

Chern-Simons term We start with the expansion of the Chern-Simons
term. Leaving wedge products implicit, we can simply compute

1
6
F̂4F̂4Ĉ3 = 1

6
F4F4C3 − 1

6
(3c3F4F4 + 6F4F̃4)1

6
εABCτ

AτBτC

− 1
3
d
(
c3F4C3

1
6
εABCτ

AτBτC + 1
6
εABCτ

AτBτC(F4C̃3 + C3F̃4)
)

+O(c−3) .

(4.20)

We drop the total derivative.
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Kinetic term for three-form First, let’s write the component expression

F̂µ1µ2µ3µ4 = −6c3T[µ1µ2
Aτµ3

Bτµ4]
CεABC + Fµ1µ2µ3µ4 + c−3F̃µ1µ2µ3µ4 , (4.21)

where we introduce the Newton-Cartan torsion

Tµν
A ≡ 2∂[µτν]

A . (4.22)

Any term involving three Hµν contracting the first term in (4.21) vanishes
as one Hµν must necessarily contract a τµ

A. As a result,√
|ĝ|ĝµ1µ4 . . . ĝµ4ν4F̂µ1...µ4F̂ν1...ν4

= Ω
[
c3
(
Hµ1ν1 . . . Hµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4 − 12Hµ1ν1Hµ2ν2Tµ1µ2

ATν1ν2A
)

− 24HµνTµρ
ATνσ

Bτ ρAτ
σ
B − 12Hµ1ν1Hµ2ν2Fµ1µ2µ3µ4Tν1ν2

Aτµ3Bτµ4CεABC

+ 4Hµ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 2Hµ1ν1 . . . Hµ4ν4Fµ1µ2µ3µ4F̃ν1ν2ν3ν4

]
+O(c−3) .

(4.23)

Kinetic term/Chern-Simons cancellations and self-duality We now
examine the O(c3) terms in (4.20) and (4.23) which involve a field strength

F4, as well as the O(c0) terms involving the subleading F̃4. These cannot
possibly be cancelled by a contribution from the expansion of the Ricci scalar.
The relevant terms are:

− 1
2·4!

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4(c
3Fν1ν2ν3ν4 + 2F̃ν1ν2ν3ν4)

− 1
2·4!4!3!

εµ1......µ11Fµ1µ2µ3µ4(c
3Fµ5µ6µ7µ8 + 2F̃µ5µ6µ7µ8)εABCτµ9

Aτµ10
Bτµ11

C .

(4.24)

To cancel the terms at order c3, we are led to require the following constraint:

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − εµ1......µ11
4!3!

Fµ5µ6µ7µ8εABCτµ9
Aτµ10

Bτµ11
C .

(4.25)
This says that the totally transverse part of Fµνρσ is self-dual (or anti-self-
dual). This is self-consistent thanks to (4.15). We will refer to this as the
self-duality constraint.
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Three-form equation of motion As a sanity check that requiring the
constraint (4.25) is sensible and necessary, let us at this point also take the
limit at the level of the equation of motion of the three-form gauge field. We
will revisit the equations of motion, including that of the metric, in more
detail in section 4.2. For the three-form, we have originally:

∂σ(
√
|ĝ|ĝµλ1 ĝνλ2 ĝρλ3 ĝσλ4F̂λ1...λ4) = 1

2·4!4!
εµνρσ1...σ8F̂σ1...σ4F̂σ5...σ8 . (4.26)

Inserting the expansion, one has firstly at O(c3) that

∂σ
(
ΩHµλ1Hνλ2Hρλ3 Hσλ4Fλ1...λ4

)
= − 1

3!4!
εµνρσσ1...σ7∂σ(Fσ1...σ4εABCτσ5

Aτσ6
Bτσ7

C) ,
(4.27)

which is the duality relation (4.25) under a derivative.

At O(c0) we have the finite equation of motion

∂σ

(
Ω
(
4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 − 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2

AεABC

+Hµλ1Hνλ2Hρλ3Hσλ4F̃λ1...λ4
))

= 1
2·4!4!

εµνρσ1...σ8(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2
Aτσ3

Bτσ4
CF̃σ5...σ8) .

(4.28)

This will be reproduced from the action that we find below.

Ricci scalar Now we come to the Ricci scalar. A very quick way to take
the limit is to start with the explicit expression for the Ricci scalar in terms
of the metric and its derivatives:

R̂ =
1

4
ĝµν∂µĝρσ∂ν ĝ

ρσ − 1

2
ĝµν∂ν ĝ

ρσ∂ρĝµσ

− 1

4
ĝµν∂µ ln ĝ ∂ν ln ĝ − ĝµν∂µ∂ν ln ĝ − ∂µ ln ĝ ∂ν ĝ

µν − ∂µ∂ν ĝµν .
(4.29)
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Calculating the expansion is trivial. One has R̂ = c4R(4) + cR(0) + O(c−2)
with

R(4) =
1

4
Hµν∂νH

ρσ∂µτρσ −
1

2
Hµν∂νH

ρσ∂ρτµσ ,

R(0) =
1

4
Hµν(∂µτρσ∂ντ

ρσ + ∂µHρσ∂νH
ρσ) +

1

4
τµν∂µτρσ∂νH

ρσ

− 1

2
Hµν∂ντ

ρσ∂ρτµσ −
1

2
Hµν∂νH

ρσ∂ρHµσ −
1

2
τµν∂νH

ρσ∂ρτµσ

−Hµν∂µ ln Ω ∂ν ln Ω− 2Hµν∂µ∂ν ln Ω− 2∂µ ln Ω ∂νH
µν − ∂µ∂νHµν .

(4.30)

Recall that the measure
√
−ĝ introduces a further power of c−1. The singular

piece can be easily rewritten as

R(4) = −1
2
HµνHρσ(∂µτρ

A∂ντσ
B − ∂ρτµA∂ντσB)ηAB = −1

4
HµνHρσTµρ

ATνσA .

(4.31)

This cancels exactly the remaining singular term appearing in the expansion
(4.23) of the kinetic term for the three-form. An entirely similar cancellation
appeared in the NSNS sector expansion of [16], and as noted there is remi-
niscent of what happens when taking the Gomis-Ooguri limit on the string
worldsheet.

4.1.3 Result of expansion and covariant formulation

Action and constraint Combining (4.20), (4.23) and (4.30) we obtain
the expansion of the eleven-dimensional SUGRA action in the form S =
c3S(3) + c0S(0) + . . . . The singular part is:

S(3) = −
∫

d11x 1
2·4!
Fµ1...µ4Fν1...ν4

×
(
ΩHµ1ν1 . . . Hµ4ν4 + 1

4!3!
εµ1...µ4ν1...ν7εABCτν5

Aτν6
Bτν7

C
)
,

(4.32)

and in order to have a good c→∞ limit, we impose the constraint

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − εµ1......µ11
4!3!

Fµ5µ6µ7µ8εABCτµ9
Aτµ10

Bτµ11
C ,

(4.33)
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to ensure that S(3) vanishes4. The finite part of the action is:

S(0) =

∫
d11xΩ

[
R(0) + 1

2
HµνTµρ

ATνσ
Bτ ρAτ

σ
B

− 1
12
Hµ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 1
4
Hµ1ν1Hµ2ν2Fµ1...µ4εABCTν1ν2

Aτµ3Bτµ4C

− 1
·4!
F̃ν1ν2ν3ν4 (Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4

+ 1
4!3!Ω

εν1ν2ν3ν4µ1...µ7Fµ1µ2µ3µ4εABCτµ5
Aτµ6

Bτµ7
C
)]

+ 1
6
F4 ∧ F4 ∧ C3 ,

(4.34)

where R(0) is defined in (4.30). The equation of motion of Cµνρ gives exactly
(4.28), and we will discuss the equations of motion of the Newton-Cartan

fields in detail in section 4.2. The equation of motion of C̃µνρ is (4.27),
giving the constraint under a derivative. Alternatively if we were just to take
the action (4.34) at face value, forgetting about its origin via an expansion

of the three-form, we could make the choice to view F̃µνρσ as an independent
field, serving as a Lagrange multiplier imposing the constraint in its form
(4.33).

Symmetries The action is diffeomorphism invariant (as follows from the
covariant rewriting we carry out below), as well as gauge invariant under

δC3 = dλ2, δC̃3 = dλ̃2. The vielbeins haµ and τAµ transform under SO(8)
and SO(1, 2) rotational symmetries respectively, which are also symmetries
of the action. The non-relativistic theory is also invariant under Galilean
boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of free-
dom. The parameter for such a boost is denoted Λµ

A such that τµAΛµ
B = 0.

We can give the (infinitesimal) action of these symmetries as

δΛHµν = 2Λ(µ
Aτν)A ,

δΛτ
µ
A = −HµνΛνA ,

δΛCµνρ = −3εABCΛ[µ
Aτν

Bτρ]
C .

(4.35)

4Strictly speaking this is a sufficient condition for the vanishing of S(3), as we could
alternatively integrate by parts and use (4.27). However the full constraint (4.33) will
follow from the expansion of the metric equations of motion that we discuss in section
4.2.1, as well as in the expansion of the dual field strength discussed in section 4.1.4, and
also follows directly from the exceptional field theory formulation of section 4.4.
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The action S(0) is invariant under these transformations on using the self-
duality constraint. One way for the action to be exactly invariant would be
to treat F̃µνρσ as an independent field transforming as

δΛF̃µνρσ = −4Λ[µ
AFνρσ]λτ

λ
A , (4.36)

or to have C̃µνρ transform in a way leading to this transformation.

The dilatations are meanwhile induced by the expansion in powers of
c, with the dilatation weight of each field equal to the power of c which
accompanies it in the expansion. The (infinitesimal) action of dilatations is
hence:

δλH
µν = +λHµν ,

δλHµν = −λHµν ,

δλτ
µ
A = −λτµA ,

δλτµ
A = +λτµ

A ,

δλCµνρ = 0 .

(4.37)

Note δΩ = −λΩ. For λ coordinate dependent this is a symmetry of the
action S(0) on using the self-duality constraint (4.33). If we treat F̃µνρσ as an

independent field transforming as δλF̃µνρσ = −3λF̃µνρσ, then the action S(0)

is exactly invariant. We will explicitly verify the invariance of the action and
study these symmetries in more detail in section 4.2.

Newton-Cartan connections and covariant rewriting The way we
obtained the action (4.34) was by a straightforward computation at the level
of the metric and three-form. To better understand the result, we rewrite
the action in a covariant way by introducing the following connection

Γρµν = τ ρA∂µτν
A +

1

2
Hρσ (∂µHσν + ∂νHµσ − ∂σHµν) , (4.38)

whose covariant derivative we denote by ∇µ. This satisfies the following
metric compatibility conditions:

∇ρH
µν = 0 = ∇ρτµ

A , (4.39)
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though it is not the unique solution5. The antisymmetric component of (4.38)
is the torsion (4.22):

Γρ[µν] =
1

2
τ ρATµν

A . (4.40)

It is also useful to define the ‘acceleration’ and its trace

aµ
AB ≡ −τ ρATBρµ , aµ ≡ aµ

ABηAB , (4.41)

as well as its symmetric traceless component

aµ
{AB} ≡ aµ

(AB) − 1

dL
ηABaµ , (4.42)

where dL is the dimension of the longitudinal space (which is dL = 3 here,
but we will will also use this notation in the reduction to the dL = 2 case
of SNC in section 4.3.1). The final tensor that will appear is the extrinsic
curvature defined by

KµνA =
1

2
LτρAHµν , KA ≡ HµνKµνA , (4.43)

and obeying the following useful identities

τµ(AKµνB) = 0, ∇µτ
νA = HνρKµρA . (4.44)

Finally, let’s introduce some notation to make the expressions more compact.
Given an arbitrary tensor Mµν carrying lower indices, we will employ for
convenience the following short-hand notation:

Mµν ≡ HµρHνσMρσ , MAB ≡ τµAτ
ν
BMµν , ∇ρMAB ≡ ∇ρ (τµAτ

ν
BMµν) ,

(4.45)
and similarly for tensors of arbitrary rank. The meaning of raised indices
should then hopefully clear from context – note that e.g. the field strengths,
Newton-Cartan torsion and covariant derivative are all naturally defined with
lower curved indices so when they appear instead with raised curved or lon-
gitudinal flat indices this uses the above notation.

5Here∇ acts only on the curved indices. It would also be possible to define a connection
covariant under local SO(1, 2) transformations by replacing the partial derivative ∂µτν

A

term with a spin covariant derivative, as we did in the previous chapter.
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The action can then be written in terms of these manifestly covariant
quantities as

S =

∫
d11xΩ

(
L+ LF̃ + Ω−1Ltop

)
, (4.46)

with

L = R− aµABaµ(AB) +
3

2
aµaµ −

1

12
F µνρAFµνρA +

1

4
εABCF

ABµνTµν
C ,

LF̃ = − 1

4!
F̃ν1...ν4

(
F ν1...ν4 +

1

4!3!Ω
εν1...ν4µ1...µ7Fµ1...µ4εABCτµ5

Aτµ6
Bτµ7

C

)
,

Ltop =
1

6
F4 ∧ F4 ∧ C3 =

1

6

1

3!4!2
εµ1...µ11Fµ1...µ4Fµ5...µ8Cµ9...µ11 ,

(4.47)

where the Ricci scalar R is defined in terms of the usual Riemann curvature
tensor of the connection (4.38) via

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ , R = Rρ

µρνH
µν . (4.48)

4.1.4 Dual field strength

The appearance of the two field strengths F4 and F̃4 in the finite action (4.34)
may seem rather exotic. In fact, we can relate the latter to components of
the dual seven-form field strength, revealing that the non-relativistic action
involves a partially democratic treatment of what are originally dual degrees
of freedom. In eleven-dimensional SUGRA, we have

F̂7 = dĈ6 + 1
2
Ĉ3 ∧ F̂4 , F̂7 = ?̂F̂4 . (4.49)

With our expansion, we can compute ?̂F̂4 in components:

(?̂F̂4)µ1...µ7 = Ωεµ1...µ7ν1...ν4
(
c3Hν1λ1 . . . Hν4λ4Fρ1...ρ4 +Hν1λ1 . . . Hν4λ4F̃λ1...λ4

+ 4Hν1λ1 . . . Hν3λ3τ ν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2
Aτ ν3Bτ ν4CεABC

)
+O(c−3) .

(4.50)

We then search for an expansion of Ĉ6 that can reproduce the singular term
and lead to a sensible definition of the dual six-form in the non-relativistic
theory. This is provided by

Ĉ6 = −1
2
c3C3 ∧ 1

6
εABCτ

A ∧ τB ∧ τC +C6− 1
2
C̃3 ∧ 1

6
εABCτ

A ∧ τB ∧ τC , (4.51)
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leading to

F̂7 = − εABC
6
c3τA∧τB∧τC∧F4+dC6+ 1

2
C3∧F4− εABC

6
τA∧τB∧τC∧F̃4 , (4.52)

where we are ignoring terms of order c−3. The singular piece in (4.52) agrees
with that in (4.50) on using the self-duality constraint (4.33) obeyed by F4.
From the finite terms, we can define in the non-relativistic limit the quantity
F7 ≡ dC6 + 1

2
C3∧F4 which obeys again dF7 = 1

2
F4∧F4. We could also define

this quantity directly in the non-relativistic theory after taking the limit by
starting with the equation of motion (4.28) of the gauge field. In that case, we
would define the dual seven-form field strength to be the quantity appearing
under the exterior derivative, including all terms on the left-hand side of
(4.28) as well as that involving dτ on the right-hand side. In components,
this means

Fµ1...µ7 = 1
4!

Ωεµ1...µ7ν1...ν4(H
ν1λ1 . . . Hν4λ4F̃λ1...λ4 + 4Hν1λ1 . . . Hν3λ3τ ν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2
Aτ ν3Bτ ν4CεABC

+ 1
4!3!

Ω−1εν1...ν4λ1...λ7εABCτλ1
Aτλ2

Bτλ3
CF̃λ4...λ7) .

(4.53)

Now, we can take the totally longitudinal contraction

Fµ1...µ4ABC = 1
4!

Ωεµ1...µ4ν1...ν4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
CH

ν1λ1 . . . Hν4λ4F̃λ1...λ4

+ εABCF̃µ1...µ4 .
(4.54)

Using (4.15), it can be shown that whereas the transverse part of Fµνρσ obeys
a self-duality constraint, the longitudinal part of Fµ1...µ7 obeys an anti-self-
duality constraint:

ΩHµ1ν1 . . . Hµ4ν4Fµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C

= + 1
4!3!
εµ1...µ4ν1...µ4λ1...λ3εDEF τλ1

Dτλ2
Eτλ3

FFµ1...µ4ABC .

(4.55)

The conclusion is that (4.54) shows that the totally longitudinal part of

Fµ1...µ7 can be identified with the anti-self-dual transverse part of F̃µνρσ. No-
tice that the longitudinal part of the latter projects trivially out of the action,
and in fact it is exactly the projection as on the right-hand side of (4.54)
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which appears in (4.34). Hence we can re-express the terms in the Lagrangian

involving F̃µνρσ as

LF̃ = −1
2

1
4!
Fµ1...µ4λ1...λ3

1
6
εABCτλ1Aτ

λ2
Bτ

λ3
C×

×
(
Hµ1ν1 . . . Hµ4ν4 + 1

4!3!Ω
εµ1...µ4ν1...ν7εDEF τν5

Dτν6
Eτν7

F
)
Fν1ν2ν3ν4 .

(4.56)

This appearance of (components of) both the four-form and its dual together
in the action is again reminiscent of exceptional field theory.

4.2 Equations of motion and symmetries

We have expanded the action, and now we turn our attention to the equations
of motion, and the role played by the non-relativistic dilatation and boost
symmetries.

4.2.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider
the result of expanding the variation of the action. We will explicitly find
that this gives the same results as varying the expansion of the action we
considered previously. The reason we take this approach is that it will provide
a useful way to keep track of which parts of the expansion of the eleven-
dimensional equations of motion appear at which order. Recall that we
view our non-relativistic limit as arising from a field redefinition, and we
do not consider possible subleading terms which would occur in a true non-
relativistic expansion. That said, we set up the expansion below in a way
that would be reminiscent of such an expansion.

The relativistic equations of motion are obtained from the variation of
the action (4.19):

δS =

∫
d11x(

√
|ĝ|δĝµνGµν + δĈµνρEµνρ) , (4.57)

where

Gµν = Rµν − 1
12
F̂µρ1...ρ3F̂ν

ρ1...ρ3 − 1
2
ĝµν(R− 1

48
F̂ ρ1...ρ4F̂ρ1...ρ4) ,

Eµνρ = −1
6

(
∂σ(
√
|ĝ|F̂ µνρσ)− 1

2·4!·4!
εµνρσ1...σ8F̂σ1...σ4F̂σ5...σ8

)
.

(4.58)
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We consider the non-relativistic expansion of the fields, in the form

ĝµν = cHµν + c−2τµν ,

ĝµν = c2τµν + c−1Hµν ,

Ĉµνρ = c3ωµνρ + Cµνρ + c−3C̃µνρ ,

(4.59)

where ωµνρ = −εABCτµAτνBτρC . Both G and E admit an expansion in powers
of c3, with

G = c6G(6) + c3G(3) + c0G(0) + c−3G(−3) + . . . ,

E = c3E(3) + c0E(0) + c−3E(−3) + . . . .
(4.60)

We now re-organise the variation of the action that results from (4.59), by
inserting the expressions (4.59) for the metric and three-form. We choose to
consider the variations of τµA and Hµν as independent, in terms of which

δωµνρ = −ωµνρτDλ δτλD − 3ωλ[µνHρ]κδH
λκ . (4.61)

The general result at order c3n following from (4.57) is that

δS(3n) =

∫
d11x

[
δHµν(ΩG(3n)

µν − 3ωµρσHλνEρσλ(3n−3))

+ δτµA(2τ νAΩG(3n+3)
µν − τAµωρσλEρσλ(3n−3))

+ δCµνρEµνρ(3n) + δC̃µνρEµνρ(3n+3)

]
,

(4.62)

using
√
|ĝ| = Ωc−1. Hence, in general, if we expand the theory up to order

3k, for k ≤ n ≤ 2, the equations of motion will be

G(3n)
〈µν〉 = 3Hλ〈µων〉ρσΩ−1Eλρσ(3n−3) ,

2G(3n+3)
µA = τµAωρσλΩ

−1Eρσλ(3n−3) ,

Eµνρ(3n) = 0 ,

(4.63)

with the understanding that G(9) = E (6) = 0. The angle bracket notation
takes into account that the variation of Hµν is constrained by δHµντµ

Aτν
B =

0. We can solve this constraint by letting δHµν = Hρ(µHρσM
ν)σ such that

the naive variation δHµνTµν = 0 implies instead the equation of motion

T〈µν〉 = 1
2
(HµρH

ρσT(σν) +HνρH
ρσT(µσ)) = 0 , (4.64)
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which is symmetric and obeys τµAτ
ν
BT〈µν〉 = 0. Note that the equation of

motion for C̃ at each order is exactly that of C at the previous order.

We should contrast the equations of motion (4.63) with the result of inde-
pendently expanding G and E . If we naively set each other of the expansion
of the latter to zero, we would find the equations G(3n) = 0 = E (3n) at any
given order. However, in the non-relativistic expansion, treating τµA and
Hµν as independent fields, then equation (4.63) says that we cannot simply
expand the relativistic equations and set each order independently to zero
unless we consider the full expansion (potentially infinite if treating sublead-
ing terms). A similar subtlety is the question of which equations of motion we
are meant to expand. For instance, in the relativistic theory both Eµνρ = 0
and gµσgρκgσλEσκλ = 0 are equivalent, but lead to different truncations to
finite order in the 1/c expansion. Here we have made the choice to expand
the equations of motion that appear conjugate to the variations δgµν and
δCµνρ.

Let us look for example at the first two orders, c6 and c3. If we simply
wanted to expand the theory up to order c6 we would find the equation(
G(6) − 3ωE (3)H

)
〈µν〉 = 0, however if we proceed with expanding up to order

c3 we find that the equation for the three-form tells us that E (3) = 0, so that
we can safely impose the two equations G(6)

〈µν〉 = E (3) = 0 independently.

Matters are further complicated by a number of ‘off-shell’ identities obeyed
by the terms appearing in the expansion of G and E . These identities will fea-
ture heavily below, and in fact are crucial for the consistency and symmetries
of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders
of the expansion of (4.57).

Terms at O(c6) Here we encounter the leading terms in the expansions of
G and E . First of all, we have

G(6)
µν = 1

2
τµν
(

1
2
TAρ1σ1T

B
ρ2σ2

ηABH
ρ1σ1Hρ2σ2 + 1

48
Hρ1σ1 . . . Hρ4σ4Fρ1...ρ4Fσ1...σ4

)
,

(4.65)

which obeys G〈µν〉 = 0 automatically. Hence the δHµν variation at order c6

does not imply an actual equation of motion. One also has

Eµνρ(3) = −1
6
∂σ
(
ΩF µνρσ + 1

3!4!
εµνρσσ1...σ7Fσ1...σ4εABCτσ5

Aτσ6
Bτσ7

C
)
. (4.66)
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This is the self-duality constraint under a derivative. It obeys τµ
Aτν

BEµνρ(3) =

0, and so also the δτ variation at order c6 vanishes identically. This is however
necessary for consistency: the expansion of the action itself started only at
order c3, i.e. S(6) ≡ 0. Hence at this order we do not obtain any equations
of motion.

Terms at O(c3) At this order, there was a non-zero S(3) given by (4.32),
for which we required the self-duality constraint (4.33) to set to zero. Let
us see how this information is reproduced. First of all, the variation of C3

coming from (4.62) at this order implies E(3) = 0. The variation of τµA
involves a contribution from E(0), which can be read off from the finite part
of the expansion of the three-form equation of motion, which was (4.28). For
convenience, we repeat this here:

Eµνρ(0) = −1
6
∂σ

(
Ω
(
4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 + F̃ µνρσ

− 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2
AεABC

))
+ εµνρσ1...σ8

2·3!4!4!
(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2

Aτσ3
Bτσ4

CF̃σ5...σ8) .

(4.67)

What one finds then is that

2τ νAΩG(6)
µν − τµAωρσλE (0)ρσλ

= ΩτµA

2·4!
Fν1...ν4

(
F ν1...ν4 + εν1...ν4ρ1...ρ7

Ω3!4!
Fρ1...ρ4εABCτρ5

Aτρ6
Bτρ7

C
)
,

(4.68)

which is proportional to the self-duality constraint. For the terms accompa-
nying the δHµν variation one finds

δHµν(ΩG(3)
µν − 3ω(µ|ρσHλ|ν)Eρσλ(0) )

= δHµν
(

1
4·4!2

εABCHλ1(µτν)
Aτλ2

Bτλ3
CFσ1...σ4Fσ5...σ8ε

λ1...λ3σ1...σ8

− Ω
12
Fµρ1...ρ3Fν

ρ1...ρ3 + Ω
96
HµνF

2
)
,

(4.69)

such that after projecting using (4.64)

ΩG(3)
〈µν〉 − 3ω〈µ|ρσHλ|ν〉Eρσλ(0) = ελ1...λ3σ1...σ8

8·4!2
εABCHλ1(µτν)

Aτλ2
Bτλ3

CFσ1...σ4Fσ5...σ8

+ Ω
96
HµνF

2 − Ω
12
Hκ(µFν)ρσλF

κρσλ ,

(4.70)
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using the obvious shorthand for raised indices and F 2 instead of writing Hµν

multiple times. This exactly reproduces the variation δS(3) of the leading
part of the expansion of the action (4.32). Then, after projecting and using
the Schouten identity, (4.69) or (4.70) can be shown to again be proportional
to the self-duality constraint (specifically: the time-space projection of the
first term combines with the time-space projection of the third term, and
the space-space projection of the second term combines with the space-space
projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-
duality constraint. This is consistent with what we required from the expan-
sion of the action.

Terms at O(c0) We next consider (4.62) with n = 0. First of all, the

equation of motion of C indeed gives E(0), as in (4.67), while that of C̃ gives
the constraint in the form E(3). This is exactly what we obtain from varying
the finite action S(0) directly. Note that the longitudinal projection of E(0) in
conjunction with the self-duality constraint implies the equation

1
2
ηABH

µρHνσTµν
ATρσ

B = − 1
48
Hµ1ν1 . . . Hµ4ν4Fµ1...µ4Fν1...ν4 , (4.71)

thereby reproducing the equation we would get by setting G(6) = 0 (com-
pare (4.65)). Hence although we could not set G(6) = 0 previously, the
non-relativistic theory is not missing this equation. Note that for generic
non-vanishing F4, equation (4.71) is incompatible with imposing foliation-
type constraints on the MNC torsion such that the left-hand side vanishes,
however if F4 is also restricted to vanish (for example) one could require such
constraints (as is always possible in the NSNS sector case [16]).

Now we turn to the equations of motion following from the variations of τ
and H. For simplicity, we present here the independent equations of motion
after projecting onto longitudinal (time) and transverse (space) components.
The temporal and spatial projectors are defined as

(∆T )µ ν = τµAτν
A , (∆S)µ ν = HµρHρν , (∆T )µ ν + (∆S)µ ν = δµν .

(4.72)
We start with the equations of motion of τ . The trace of the time projection
gives an equation involving the Ricci scalar:

R = 7
3
∇µaµ + aµ{AB}aµAB + 7

6
a2 + 1

36
FAνρσF

Aνρσ − 1
6
εABCF

ABρσTρσ
C

+ 1
4!
F̃µνρσ

(
F µνρσ + 1

Ω4!3!
εABCε

µνρσλ1...λ7Fλ1...λ4τλ5
Aτλ6

Bτλ7
C
)
.

(4.73)
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The traceless part of the time-time projection is:

∇µaµ{AB} + aµaµ{AB} + aµ[C(A]a
µ
{B)D}η

CD + 1
12
FA

µνρFBµνρ

= ε(A|CDF|B)
CµνTµν

D − ηAB
3

(
− 1

12
FCµνρFCµνρ + εCDEF

µνCDTµν
E
)
.

(4.74)

The space projection is

∇ρT
µρ
A + aρACT

µρC = 1
6
F µνρσFAνρσ − 1

2
εABCF

µρσBTρσ
C . (4.75)

Finally, we consider the equations of motion ofH. The space-space projection
is:

R(µν)−aµABaν{AB} + 1
6

(
aµaν − a2Hµν

)
= τ ρA∇(µT ν)

ρA + 1
6
Hµν∇ρaρ + 1

4
F µρσAF ν

ρσA − 1
36
HµνFAρσλFAρσλ

− 1
2
εABCF

(µ|ρABT |ν)
ρ
C + 1

24
HµνεABCF

ρσABTρσ
C

+ 1
6
F (µ|ρσλF̃ |ν)

ρσλ − 1
48
HµνF ρσλκF̃ρσλκ

+ 1
2
Hµν

(
−R+ 7

3
∇ρaρ + aρ{AB}aρAB + 7

6
a2

+ 1
36
FAλρσF

Aλρσ − 1
6
εABCF

ABρσTρσ
C
)
.

(4.76)

Combining the trace of (4.76) with (4.73) we find that the self-duality con-

straint (4.33) appears (contracted with F̃µνρσ).

The time-space projection is (with εABC ≡ ηADεDBC)

R(µA) − aµBCaA(BC) + 1
2
aBa

µBA = 1
4
εABC∇ρF µ

ρ
BC + 1

4
εABCaρF

µρBC

+ 1
4
εBCDaρ

ABF µρCD + 1
4
FABρσF µ

Bρσ + 1
4
εBCDF

ABCρTρ
µD

+ 1
2
aρBA∇ρτ

µ
B − 1

2
∇2τµA − aρ∇ρτ

µA − 1
2
aµBAKB + 1

2
aµKA

− 1
2
∇Ba

µBA +∇Aaµ + 1
2
T µσB∇BτσA + 1

2
∇ρ∇µτ ρA − 1

2
τ ρB∇µaρ

AB

+ 1
6
F (µ

νρσF̃
A)νρσ − ελ1...λ3σ1...σ8

4·4!2Ω
εABCτλ2

Bτλ3
CHµκHκλ1Fσ1...σ4F̃σ5...σ8 .

(4.77)

One can verify that these are indeed exactly the equations of motions that
one gets by varying the finite part of the action, S(0), given in (4.34).
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4.2.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by
(4.37), whose origin lay in the expansion in powers of c. There is evidently
a freedom to rescale c by some constant while simultaneously rescaling the
component fields such that the eleven-dimensional fields are unchanged. This
rigid dilatation leaves the full action invariant. Hence for an infinitesimal
dilatation, with δλc = −λc, we have the transformations (4.37), and clearly
order-by-order for the action we should have

δλS
(6) = 6λS(6) ,

δλS
(3) = 3λS(3) ,

δλS
(0) = 0 · λS(0) ,

δλS
(−3) = −3λS(−3) ,

(4.78)

and so on. Recall that S(6) and δS(6) vanish identically, so the first two of
these are just 0 = 0.

A powerful consequence of the rigid dilatations is that if we know the
equations of motion for the action S(3k) at a given order k 6= 0 we can imme-
diately write down an action that produces them (which will agree up to total
derivatives with that arising from the expansion). This works by applying
the formula (4.62) for the variation and specialising to the dilatation varia-
tion. This is guaranteed to produce 3kS(3k). This singles out the finite order
action as being special, as here knowing the equations of motion and dilata-
tion symmetry is not enough to determine its form. Furthermore, for this
case we can promote the dilatation parameter to be coordinate dependent,
and obtain a local dilatation symmetry.

Let’s verify these statements. Under a rigid dilatation with parameter λ,
the variation of the c3 part of the action is

δλS
(3) =

∫
d11xΩ

(
λG(3)

µνH
µν − λ

(
2(G(6))AA + 3εABCΩ−1EABC(0)

))
, (4.79)

where EABC ≡ τµ
Aτν

Bτρ
CEµνρ. It can be checked that G(3)

µνHµν = 0. Then, if
we denote the self-duality constraint by

Θµ1...µ4 ≡ Hµ1ρ1 . . . Hµ4ρ4Fρ1...ρ4 + 1
Ω3!4!

εµ1...µ4ρ1...ρ7Fρ1...ρ4εABCτρ5
Aτρ6

Bτρ7
C ,

(4.80)
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we have
2(G(6))AA + 3εABCΩ−1EABC(0) = 3 1

2·4!
Fµ1...µ4Θ

µ1...µ4 , (4.81)

hence indeed referring to (4.32) for S(3) we indeed have

δλS
(3) = 3λS(3) . (4.82)

Next consider the finite part of the action:

δλS
(0) =

∫
d11xΩ

[
λG(0)

µνH
µν − λ

(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
+ Ω−1E (3)µνρδλC̃µνρ

]
.

(4.83)

Now we can show that

G(0)
µνH

µν −
(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
= −1

8
F̃µ1...µ4Θ

µ1...µ4 , (4.84)

such that using Eµνρ(3) = −1
6
∂σΘµνρσ we have

δλS
(0) =

∫
d11x (−1

8
λF̃µνρσΘµνρσ − 1

6
∂σΘµνρσδλC̃µνρ) ,

=

∫
d11x (−1

8
λF̃µνρσΘµνρσ − 1

24
ΘµνρσδλF̃µνρσ) ,

(4.85)

after integrating by parts. For arbitrary local λ, we therefore have δλS
(0) = 0

on imposing the self-duality constraint, irrespective of the transformation of
C̃µνρ. Alternatively, if we require that

δλF̃µνρσ = −3λF̃µνρσ , (4.86)

then (4.85) vanishes identically without use of the constraint. This would

mean accepting a non-local transformation for C̃µνρ itself, which is not com-
pletely outlandish given the discussion in section 4.1.4 suggests we may think
of it as being a dual degree of freedom to C3.

What this means in practice is that the action S(0) is invariant under
variations of Hµν and τµA of the form (4.37). This implies that there is a
‘direction’ in the space of variations which leaves the action S(0) unchanged
(or at best produces the self-duality constraint, which is not an independent
equation of motion). Hence if we vary S(0) to obtain the equations of motion
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of Hµν and τµA, we will find that we are ‘missing’ an equation of motion.
This is exactly as in the NSNS sector case (see previous chapter and [16])
and reflects a known difficulty, even in the purely gravitational context, of
obtaining the Poisson equation from an action principle for non-relativistic
theories [25, 27], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation,
we go one step further in the expansion. The variation of S(−3), from (4.62),
is:

δS(−3) =

∫
d11x

[
δHµν(ΩG(−3)

µν − 3ωµρσHλνEρσλ(−6)) + δC̃µνρEµνρ(0)

+ δτµA(2τ νAΩG(0)
µν − τAµωρσλE

ρσλ
(−6)) + δCµνρEµνρ(−3)

]
.

(4.87)

For dilatations we have

δλS
(−3) =

∫
d11x

[
λ
(
HµνΩG(−3)

µν − 2Ω(G(0))A
A − 3εABCEABC(−6)

)
+ δλC̃µνρEµνρ(0)

]
.

(4.88)

With constant λ, equation (4.78) implies that

S(−3) =

∫
d11x (ΩN + C̃µνρEµνρ(0) ) , (4.89)

where we defined the combination

N ≡ 1
3
(−HµνG(−3)

µν + 2(G(0))A
A) + εABCΩ−1EABC(−6) . (4.90)

Crucially, (4.90) does not vanish on applying the self-duality constraint, un-
like the combination of terms (4.81) and (4.84) which appeared at the pre-
vious orders, and nor is it a combination of any other equations of motion
resulting from the finite action. It can therefore be used as the equation of
motion of the ‘dilatation mode’. (We are not really interested in the C̃ vari-
ation appearing in (4.88), which multiplies something we have already taken
into account as an equation of motion.) It involves the fully longitudinal part
of G(0), which has not yet appeared in the equations of motion. Hence, we
identify it with the ‘Poisson equation’, in which the longitudinal part of Cµνρ
plays the role of the Newton potential (as did the longitudinal part of the
B-field in the Stueckelberg gauge-fixed NSNS sector). This is because E(−6)
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is the first equation of motion which contains two derivatives acting on the
former. Explicitly,

Eµνρ(−6)

= −1
6
∂σ

(
Ω
(
4H [µ|λ1τ |ν|λ2τ |ρ|λ3τ |σ]λ4Fλ1...λ4 + 6H [µ|λ1H |ν|λ2τ |ρ|λ3τ |σ]λ4F̃λ1...λ4

)
+ 1

2·4!4!3!
εµνρσ1...σ8F̃σ1...σ4F̃σ5...σ8 .

(4.91)

Intriguingly, the combination of G(−3) and G(0) appearing in (4.90) has a
somewhat murky relationship to the ‘trace-reversed’ version of the metric
equation of motion. The equation Gµν = 0 in the original eleven-dimensional
theory can be simplified somewhat by taking its trace and solving that for
the Ricci scalar. This trace is

ĝµνGµν = −9
2
R + 1

32
F̂ 2 (4.92)

and the equation of motion without the Ricci scalar is

Ḡµν ≡ Gµν − 1
9
ĝµν ĝ

ρσGρσ = Rµν − 1
12
F̂µ

ρσλF̂νρσλ + 1
144
ĝµνF̂

2 , (4.93)

for which
τµνḠ(0)

µν = 1
3
(2τµνG(0)

µν −HµνG(−3)
µν ) , (4.94)

which is exactly the combination appearing in (4.90). Note the relative nu-
merical factors here are the same as the relative numerical factors in the
powers of c in the expansion.

Now, what exactly is the equation (4.90)? Expanding the metric equation
contributions and covariantising everything, one arrives at

τµνḠ(0)
µν = 2τµA∇ρKµρA −∇AKA − 1

4
aABCaABC − 1

2
aABCaACB − aAaA

− εABCFDABρaρD
C − 1

8
FABµνFABµν + 1

48
F̃ µνρσF̃µνρσ + 1

4
εABCF̃

µνABTµν
C

− aAKA +KµνAKµνA − 2τµAτ νB∇νaµ[AB] − τµν∇µaν ,

(4.95)

εABCτµ
Aτν

Bτρ
CΩ−1Eµνρ(−6) = −1

6
εABC∇µFABC

µ − 1
4
εABCF̃

ABµνTµν
C

+ ελ1...σ1...σ8
2·4!2Ω

1
6
F̃σ1...σ4F̃σ5...σ8εABCτλ1

Aτλ2
Bτλ3

C ,

(4.96)
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hence the covariant Poisson equation is

N = −1
6
εABC(∇µFABC

µ + aµF
ABCµ + 3aµD

AFBCDµ)− 1
8
FABµνFABµν

+ 1
48
F̃ µνρσF̃µνρσ + Ω−1

2·4!23!
ελ1...λ3σ1...σ8F̃σ1...σ4F̃σ5...σ8εABCτλ1

Aτλ2
Bτλ3

C

−∇AKA − aAKA −KµνAKµνA − 2aµ[AB]KµAB − 2τµν∇µaν

− aABC(1
4
aABC + 1

2
aACB + ηBCaA)

= 0 .

(4.97)

Note that this expression could equivalently be rewritten in terms of the
Ricci tensor, using the following identity:

RA
A = τµνRµν = −∇AKA −KµνAKµνA − aµABKµAB . (4.98)

Remarkably, equation (4.97) transforms covariantly under local dilatations.
Exactly this equation will also be selected by the exceptional field theory
description as an ‘extra’ equation of motion that one can not find from
the variation of the finite part of the action. Furthermore, under Galilean
boosts (discussed in next subsection), it transforms into the other equations
of motions. All this is in keeping with the properties of the missing Poisson
equation in the NSNS sector and supports including equation (4.97) as an
equation of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the
rest of the equations of motion from the expansion at order c0 and this extra
equation from order c−3. Clearly, if we would vary the action S(−3) we would
find additional O(c−3) contributions to the finite equations of motion, and if
we would vary the action S(−6) we would find additional O(c−3) contributions
to the equation of motion (4.97), i.e. it would become N = O(c−3). The
guiding philosophy is to find the lowest order non-zero equation of motion
resulting from the variations of the action. For the Poisson equation associ-
ated to the degree of freedom that disappears into dilatations at the level of
S(0), this happens to arise at lower order than the other equations of motion.

As a final remark, just as in the NSNS sector case [16], it is also possible
to define a covariant derivative that is covariant with respect to dilatations.
Letting bµ denote this dilatation connection, and simultaneously introducing
ωµ

AB as the longitudinal spin connection, we this new affine connection is
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defined by the following metric compatibility conditions

∇̃µτν
A = ∂µτν

A − ωµABτνB − bµτνA − Γ̃ρµντρ
A = 0 ,

∇̃µH
ρσ = ∂µH

ρσ − bµHρσ + Γ̃ρµλH
λσ + Γ̃σµλH

ρλ = 0 .
(4.99)

The solution to these equations is

Γ̃ρµν = Γρµν − τ ρA
(
bµτν

A + ωµ
ABτνB

)
− 1

2
Hρσ (bµHνρ + bνHµρ − bρHµν) ,

(4.100)

where the dilatation and spin connections are explicitly given by

bµ =
1

3
aµ +

1

6
τµ
AaA , ωµ

AB = −aµ[AB] +
1

2
τµ
CaABC + τµ

[AaB] . (4.101)

4.2.3 Boost invariance

Now let’s consider the boost transformations defined in (4.35). The calcula-
tions are very similar to those in the previous subsection. The variation of
S(3) under (4.35) vanishes identically. The variation of the finite action gives

δS(0) =

∫
d11x

[
− Λρ

A
(

2Hµρτ νAΩG(3)
µν + 3εABCτµ

Bτν
CEµνρ(0)

)
+ δΛC̃µνρEµνρ(3)

]
,

(4.102)

and the combination of G and E terms appearing here is

−2ΩG(3)
AµΛµA − 3εABCEµAB(0) Λµ

C

= 1
6
FAµνρΛσ

AFσµνρ − ελ1...λ3σ1...σ8
4·4!2Ω

Fσ1...σ4Fσ5...σ8Λλ1
Aτλ2

Bτλ3
CεABC .

(4.103)

Using ΛµAτ
µ
B = 0 and the Schouten identity this can be shown to be propor-

tional to the self-duality constraint. Hence the finite action S(0) is invariant
under boosts up to a total derivative and the self-duality constraint. To make
the action boost-invariant off-shell we must improve the transformations (4.4)

by requiring F̃ to transform as well, similarly to (4.86). The improved boost
transformations are

δΛHµν = 2Λ(µ
Aτν)A , δΛτ

µ
A = −HµνΛνA ,

δΛCµνρ = −3εABCΛ[µ
Aτν

Bτρ]
C , δΛF̃µνρσ = −4τλAFλ[µνρΛσ]

A .
(4.104)
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Furthermore, one can then check that the set of equations of motion pre-
sented in the previous sections is boost-invariant (i.e. closed under boosts)
as expected. This includes the extra equation of motion (4.97), which under
boosts transforms into the time-space projection of the equation of motion
of Hµν , equation (4.77), as well as the self-duality constraint. This further
implies that it is consistent to include it on the same footing as the remaining
equations of motion that can be derived by varying S(0). Indeed, one can
obtain the boost variation directly from that of S(−3), which is:

δS(−3) =

∫
d11x

[
− Λρ

A
(

2Hµρτ νAΩG(0)
µν + 3εABCτµ

Bτν
CEµνρ(−3)

)
+ δΛC̃µνρEµνρ(0)

]
.

(4.105)

The quantity in round brackets is exactly the time-space projection of the
Hµν equation of motion. (As a side-remark, note that this means that the
boost variation of S(−3) is not identically zero, although it is zero on using
the equations of motion following from the finite action.)

4.3 Dimensional reductions and type IIA Newton-

Cartan

In this section we will propose reductions from the eleven-dimensional Newton-
Cartan theory to ten-dimensional type IIA Newton-Cartan theories. We have
a choice of whether to reduce on a longitudinal or a transverse direction.
Reducing on a longitudinal direction will lead to type IIA stringy Newton-
Cartan with RR fields. Reducing on a transverse direction will lead to a novel
type IIA Newton-Cartan geometry which can be thought of as arising from
a non-relativistic limit associated to D2 branes rather than strings. Simi-
lar reductions have been carried out in [104, 105] from the M2 worldvolume
theory.

For comparison with the reduction ansatzes below, let us record here the
usual decomposition of the eleven-dimensional metric and three-form into
ten-dimensional fields:

dŝ2
11 = e4Φ̂/3(dy + Â1)2 + e−2Φ̂/3dŝ2

10 , Ĉ3 = Â3 + B̂2 ∧ dy , (4.106)

where y denotes the direction on which we reduce.
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Index book-keeping In this section, we denote the eleven-dimensional
Newton-Cartan fields and curved spacetime indices with hats, thus ĥaµ̂, τ̂µ̂

A,

Ω̂, and so on such that the eleven-dimensional coordinates are xµ̂ = (xµ, y),
with µ = 0, . . . , 9. We assume that we have an isometry in the y direction.
The eleven-dimensional three-forms are denoted Cµ̂ν̂ρ̂, C̃µ̂ν̂ρ̂.

4.3.1 Type IIA SNC

Here we present a reduction ansatz which produces the known Stueckelberg
gauge-fixed form of the SNC NSNS sector action, supplemented with RR
fields.

Reduction ansatz We want to reduce on a longitudinal direction. We
therefore split the longitudinal index A = (A, 2) with A = 0, 1. Then we
single out

τ̂ 2 ≡ e2Φ/3(dy + Aµdx
µ) , (4.107)

thereby defining the dilaton Φ and RR one-form Aµ that will appear in the
reduced theory. If we take τ̂2 = e−2Φ/3∂y then the remaining pair of Newton-
Cartan clock forms and vectors must have the form

τ̂A = e−Φ/3τµ
Adxµ , τ̂A = e+Φ/3(τµA∂µ,−τ νAAν∂y) . (4.108)

A compatible ansatz for the transverse vielbein is

ĥaµ̂ = (e−Φ/3haµ, 0) , ĥµ̂a = (eΦ/3hµa,−eΦ/3hνaAν) . (4.109)

These are such that τµ
A, τµA and hµa, h

a
µ are ten-dimensional fields obeying

the usual stringy Newton-Cartan completeness identities. We can define
τµν ≡ τµ

Aτν
BηAB, Hµν ≡ haµh

b
νδab, and similarly for the projective inverses.

We also have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
2!8!
εµνσ1...σ8εABεa1...a8τµ

Aτν
Bha1σ1 . . . h

a8
σ8 . (4.110)

Finally, we make the traditional decomposition of the three-form and its field
strength:

C3 = A3 +B2 ∧ dy ,
F4 = G4 +H3 ∧ (dy + A1) ,

G4 = dA3 − A1 ∧H3 ,

H3 = dB2 ,

(4.111)
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where A1 ≡ Aµdx
µ, along with

C̃3 = Ã3 + B̃2 ∧ dy ,
F̃4 = G̃4 + H̃3 ∧ (dy + A1) ,

G̃4 = dÃ3 − A1 ∧ H̃3 ,

H̃3 = dB̃2 .

(4.112)

Interpretation as an expansion Inserting the above ansatz into the orig-
inal limit (4.1) gives

dŝ2
11 = c2e4Φ/3(dy + A1)2 + e−2Φ/3(c2τµν + c−1Hµν)dx

µdxν ,

Ĉ3 = −c3 1
2
εABτ

A ∧ τB ∧ dy + A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .
(4.113)

Hence according to (4.106) this translates into the following expansion of the
ten-dimensional type IIA string frame metric ĝµν , NSNS two-form, B̂2, and

dilaton Φ̂:

ĝµν = c2
sτµν +Hµν ,

B̂2 = −c2
sεABτ

A ∧ τB +B2 + c−2
s B̃2 ,

eΦ̂ = cse
Φ ,

(4.114)

where cs ≡ c3/2. This is nothing but the limit leading to stringy Newton-
Cartan [16]. Recall that in that case the true speed of light C was rescaled
by a dimensionless parameter, C → csC, and the non-relativistic limit was
defined as cs → ∞, which also gives the relation between the expansion
parameter c and the speed of light C.

In addition, we have an expansion of the RR fields:

Â3 = A3 + c−2
s Ã3 , Â1 = A1 . (4.115)

It is clear from these expressions that we can equivalently view this reduction
as the result of the usual M-theory to type IIA reduction using (4.106) fol-
lowed by the SNC field redefinitions of (4.114) and (4.115). At first glance,
this is not completely general, given that the ansatz for the RR 1-form A1

does not involve a subleading term while the other gauge fields do. A justi-
fication for the above ansatz is that it correctly produces the NSNS sector
dynamics of SNC. Modifications to the ansatz would involve relaxing the im-
plicit Stueckelberg gauge-fixing in 11-dimensions and comparing this to the
possible ten-dimensional expansions. We do not consider this in this thesis.
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Constraint The constraint (4.33) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = − 1
4!2!
εµ1...µ10Gµ5µ6µ7µ8εABτµ9

Aτµ10
B

(4.116)
and so only involves the RR 4-form field strength. The field strength of the
NSNS two-form is not constrained. This is to be expected, as the limit of the
NSNS sector alone makes sense without any constraint, and in the eleven-
dimensional case the constraint arose as a consequence of the Chern-Simons
term, which is not present in the truncation to the NSNS sector.

Type IIA SNC with RR fields The action obtained from the reduction
ansatz (4.108) and (4.109) is

SIIA SNC =

∫
d10xΩ

(
e−2ΦL+ LG̃ + Ω−1Ltop

)
, (4.117)

with

L = R− aµABaµ{AB} + (aµ − 2DµΦ)(aµ − 2DµΦ)− 1
12
HµνρHµνρ

− εAB

2
HAµνT

µν
B − 1

2
e2ΦGµAGµA − 1

12
e2ΦGµνρAGµνρA + εAB

4
e2ΦGABρσG

ρσ,

LG̃ = − 1
4!
G̃ν1...ν4

(
Gν1...ν4 + 1

4!2!Ω
εν1...ν4µ1...µ6Gµ1...µ4εABτµ5

Aτµ6
B
)
,

Ltop = 1
2
dA3 ∧ dA3 ∧B2 ,

(4.118)

using the field strengths defined in (4.111) and (4.112) along with Gµν ≡
2∂[µAν]. As before, we write for convenience Gµν ≡ HµρHνσGρσ. The Ricci
scalar and connection, torsion, acceleration and so on are defined in the same
way as before but for the SNC geometry. If we ignore the RR fields, this
is exactly the Stueckelberg gauge fixed action for NSNS SNC (note that the

subleading component B̃2 only appears in the definition of G̃4). Furthermore,
one can check that the reduction of the Poisson equation agrees with the
Poisson equation for SNC, with of course additional contributions from the
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RR sector. The reduced Poisson equation is found to be

− 1
2
εAB∇µHABµ +∇AKA − 2τµν∇µ∇νΦ + 2τµν∇µaν + εABHABµ∇µΦ

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(

1
4
aABC + 1

2
aACB + ηBCaA

)
+ 1

4
HAµνHAµν − εABHCBµ

(
aµC

A + 1
2
aµδ

A
C

)
+ 1

4
e2Φ
(
GABGAB + 1

2
GABµνGABµν

)
− 2aA∇AΦ− e2Φ 1

48

(
G̃µνρσG̃µνρσ + 1

48Ω
ελ1λ2µ1...µ8G̃µ1...µ4G̃µ5...µ8εABτλ1

Aτλ2
B
)

= 0 .

(4.119)

In this case [16], it is the longitudinal components of the NSNS two-form
playing the role of the Newton potential. It is also interesting to look at the
reduction of the equation (4.71), which was the equation of motion of the
longitudinal components of the three-form. This reduces to

1
2
ηABH

µρHνσTµν
ATρσ

B = − 1
48
e2ΦHµ1ν1 . . . Hµ4ν4Gµ1...µ4Gν1...ν4 , (4.120)

and in particular in the truncation to the NSNS sector the right-hand side
is zero. This allows imposing foliation constraints on the NSNS sector SNC
torsion Tµν

A, such as those discussed in [16].

4.3.2 Type IIA D2NC

General decompositions breaking local rotational invariance The
next reduction we do involves reducing on a transverse reduction. This breaks
part of the local SO(8) rotational invariance. Accordingly, write the flat
index a = (a, ı̄), with a = 1, . . . , 8 − q and ı̄ = 1 . . . q. Simultaneously we
can consider a different decomposition of the spacetime coordinate index
µ̂ = (µ, i) where µ is n-dimensional and i is (11 − n)-dimensional. We then
pick a lower triangular form for the vielbein ĥaµ̂ such that

ĥaµ̂ =

(
haµ 0

Aµ
khı̄k hı̄i

)
. (4.121)

The condition ĥaµ̂τ̂
µ̂
A = 0 implies

haµτ̂
µ
A = 0 , hı̄i(τ̂

i
A + Aµ

iτ̂µA) = 0 . (4.122)

The diagonal blocks in (4.121) will in general not be square. Two interesting
examples however are to take these blocks to be square and invertible. In
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this subsection, we will take the lower right block to be a non-zero 1 × 1
matrix, and perform a reduction to a novel type of type IIA Newton-Cartan
geometry associated to D2 branes. In section 4.4, we will take the upper left
block to be an invertible (11− d)× (11− d) matrix, and offer a description
of the M-theory Newton-Cartan theory in terms of exceptional field theory.

Transverse reduction to type IIA The dimensional reduction to type
IIA corresponds to taking n = 10, and q = 1 above. We again label the
coordinates again as xµ̂ = (xµ, y). In this case hȳy is a scalar and we can
identify it with the dilaton as hȳy ≡ e2Φ/3.6 Using the conditions (4.122), the
full Kaluza-Klein ansatz is:

ĥaµ̂ =

(
e−Φ/3haµ 0
e2Φ/3Aµ e2Φ/3

)
, ĥµ̂a =

(
eΦ/3hµa 0
−eΦ/3Aνh

ν
a e−2Φ/3

)
, (4.123)

τ̂µ̂
A = e−Φ/3(τµ

A, 0) , τ̂ µ̂A = e+Φ/3(τµA,−Aντ νA) , (4.124)

plus the same definitions (4.111) and (4.112) for the three-forms and field
strengths. We also have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
3!7!
εµνρσ1...σ7εABCεa1...a7τµ

Aτν
Bτρ

Cha1σ1 . . . h
a7
σ1 .
(4.125)

Interpretation as an expansion Inserting the above ansatz into the orig-
inal limit (4.1) gives

dŝ2
11 = c−1e4Φ/3(dy + A1)2 + e−2Φ/3(c2τµν + c−1Hµν) ,

Ĉ3 = −c3e−Φ 1
3!
εABCτ

A ∧ τB ∧ τC + A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .

(4.126)

Hence according to (4.106) this translates into the following expansion of the
ten-dimensional type IIA string frame metric ĝµν , RR three-form, Ĉ2, and

dilaton Φ̂:

ĝµν = c2
Dτµν + c−2

D Hµν ,

Ĉ3 = −c4
DεABCe

−ΦτA ∧ τB ∧ τC + C3 + c−4
D C̃3 ,

eΦ̂ = c−1
D eΦ ,

(4.127)

6Enthusiasts of non-relativistic geometries could also consider null reductions of the
already non-relativistic theory.
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along with expansions for the NSNS two-form, B̂2, and RR one-form, Â1:

B̂2 = B2 + c−4
D B̃2, , Â1 = A1 , (4.128)

where cD ≡ c3/4. This is an expansion and non-relativistic limit associated
to the D2 brane (the powers of cD appear in the same way as those of the
harmonic function in the D2 brane SUGRA solution). We can refer to it as
D2 Newton-Cartan (D2NC).

Constraint The constraint (4.33) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = εµ1...µ10
3!3!

e−ΦHµ5µ6µ7εABCτµ8
Aτµ9

Bτµ10
C ,

Ωe−ΦHµ1ν1Hµ2ν2Hµ3ν3Hν1ν2ν3 = εµ1...µ10
4!3!

Gµ4µ5µ6µ7εABCτµ8
Aτµ9

Bτµ10
C ,

(4.129)

which are equivalent. So now we have a duality relation between the RR
three-form gauge field and the NSNS two-form.

Type IIA D2 Newton-Cartan theory The action obtained from the
reduction ansatz (4.123) and (4.124) is

SD2NC =

∫
d10xΩ

(
e−2ΦL+ LG̃ + Ω−1Ltop

)
, (4.130)

with

L =R− aµABaµ(AB) + 3
2
aµaµ − 5aµDµΦ + 9

2
DµΦDµΦ− 1

4
HµνAHµνA

− 1
4
e2ΦGµνGµν − 1

12
e2ΦGµνρAGµνρA + 1

4
eΦεABCGABρσT

ρσ
C ,

LG̃ = − 1
4!
G̃ν1...ν4

(
Gν1...ν4 − 1

3!2Ω
e−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5
Bτµ6

C
)

− 1
3!
e−2ΦH̃ν1...ν3

(
Hν1...ν3 − εν1...ν3µ1...µ7

4!3!Ω
eΦGµ1...µ4εABCτµ5

Aτµ6
Bτµ7

C
)
,

= − 1
4!

(
G̃ν1...ν4 − e−ΦH̃ρ1...ρ3

ερ1...ρ3σ1...σ7εABC
3!2Ω

Hν1σ1 . . . Hν4σ4τσ5
Aτσ6

Bτσ7
C
)

×
(
Gν1...ν4 − 1

3!2Ω
e−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5
Bτµ6

C
)
,

Ltop = 1
2
dA3 ∧ dA3 ∧B2 ,

(4.131)

where the field strengths are defined as in (4.111) and (4.112) with again
G2 ≡ dA1. Note that we obtain what appears to be an extra contribution
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to the dilaton kinetic term due to the e−Φ factor that in the expansion of
Ĉ3 in (4.127). We could alter this by redefining the RR fields in the reduced
theory. In addition, the reduction of the Poisson equation (4.97) gives

1
6
eΦεABC

(
∇µG

ABCµ + aµG
ABCµ + 3aµD

AGDBCµ
)
− 1

3
eΦεABCG

ABCµ∇µΦ

+∇AKA − 3τµν∇µ∇νΦ− 3aA∇AΦ + 2∇AΦ∇AΦ−KA∇AΦ + 2τµν∇µaν

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(

1
4
aABC + 1

2
aACB + ηBCaA

)
+ 1

4
HABµHACµ + 1

8
e2Φ
(
GABµνGABµν + 4GAµGAµ

)
− e2Φ 1

48
G̃µνρσG̃µνρσ

− 1
12
H̃µνρH̃µνρ + e−Φ 1

4!3!3!Ω
ελ1λ2λ3µ1...µ7εABCτλ1

Aτλ2
Bτλ3

CG̃µ1...µ4H̃µ5...µ7 = 0 .

(4.132)

As in the MNC case, the longitudinal components of the three-form gauge
field play the role of the Newton potential.

4.4 Dimensional decompositions and excep-

tional field theory description

4.4.1 Exceptional field theory

We will now discuss the exceptional field theory description of the eleven-
dimensional MNC theory. ExFT automatically has a number of features
in common with the non-relativistic theory: breaking of eleven-dimensional
Lorentz symmetry, a geometry arising from mixing metric and form-field
components, and the inclusion of dual degrees of freedom. We will see how
it provides a unified framework treating the relativistic and non-relativistic
theory on an equal footing, which demonstrates that the same exceptional
Lie algebraic structures that underlie the relativistic theory are present in
the non-relativistic one. In addition, the ExFT equations of motion include
the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the
SL(3) × SL(2) ExFT [106]. This makes use of an (8 + 3)-dimensional split
of the eleven-dimensional spacetime. As such, it is a very natural fit for the
(8+3)-dimensional split into transverse and longitudinal directions present in
the MNC expansion. The SL(3)×SL(2) ExFT includes a Riemannian metric
for the eight-dimensional part of the spacetime, but the 3-dimensional part is
described by an ‘extended geometry’ involving an SL(3)× SL(2) symmetric
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generalised metric. By decomposing the eleven-dimensional Newton-Cartan
theory appropriately, we will replace the transverse Newton-Cartan metric
with an invertible eight-dimensional metric, Ĥ µ̂ν̂ → gµν , and the longitudinal
metric with an invertible 3-dimensional metric, τ̂µ̂ν → τij, which will be
embedded into the generalised metric description. This drastic simplification
of the geometry is nonetheless sufficient to highlight the key features of the
theory.

It would also be interesting to consider for example the opposite (3 + 8)-
dimensional split corresponding to the E8(8) ExFT, embedding the transverse
metric into the E8(8) generalised metric. However as the known formulation
of ExFT makes use of a Riemannian metric for the unextended part of the
spacetime, this is not immediately available for our purposes. Evidently, for
any given Ed(d) ExFT, one can construct or imagine multiple other ‘hybrid’
formulations depending on how one chooses to separate or mix the longi-
tudinal and transverse directions. More ambitiously, one could choose to
work with the recently fully constructed ‘master’ E11 ExFT [107], for which
no coordinate decomposition is necessary. Evidently this would eschew the
technical difficulties of the latter in favour of the technicalities associated to
working with an infinite-dimensional algebra. In this chapter, although many
features that we will see are quite general, we describe the explicit details
mainly for the d ≤ 4 cases.

ExFT ingredients The basic idea behind ExFT is to replace d-dimensional
vectors with generalised vectors V M transforming in a specified representa-
tion of Ed(d). This representation is such that we can decompose V M under
GL(d) as V M = (V i, Vij, Vijklm, . . . ) where V i is a d-dimensional vector, Vij
and Vijklm a two- and five-form, and the ellipsis corresponds to higher rank
mixed symmetry tensors that appear for d ≥ 7.7 Generalised vectors are
used to provide an Ed(d)-compatible local symmetry of generalised diffeomor-
phisms. These are defined in terms of a generalised Lie derivative which acts

7This decomposition is relevant to the description of eleven-dimensional SUGRA. There
are also mutually inequivalent GL(d−1) decompositions relevant to the description of type
II SUGRA.
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on a generalised vector V M of weight λV as

δUV
M = LUV M

≡ UN∂NV
M − V N∂NU

M + Y MN
PQ∂NU

PV Q + (λV − 1
9−d)∂NU

NV M .

(4.133)

Here Y MN
PQ is constructed from invariant tensors of Ed(d). This together

with the weight term with coefficient −1/(9−d) appear such that this gener-
alised Lie derivative involves an infinitesimal Ed(d), rather than GL(N) trans-
formation. The partial derivatives written here formally involve an extended
set of coordinates yM . However, consistency requires the imposition of a con-
straint Y MN

PQ∂M∂N = 0 where the derivatives can act on a single field or a
product of fields. One solution to this constraint is to view the d-dimensional
partial derivatives as being embedded such that ∂M = (∂i, 0, . . . , 0). We al-
ways assume we have made this choice below. (An alternative solution leads
to a ten-dimensional type IIB description.)

Given this choice, for the d ≤ 4 cases we will look at in detail, the action
of UM = (ui, λij) on V M = (V i, Vij) (both having generalised diffeomorphism
weight 1/(9− d)) is LUV M = (LuV

i, LuV
ij − 3V k∂[kλij]), where Lu denotes

the usual d-dimensional Lie derivative. Identifying the two-form components
λij with the gauge transformation parameter of a three-form Ĉijk, this means

we can write V M = (V i, Ṽij− ĈijkV
k), with Ṽij gauge invariant. We use this

to give explicit parametrisations for the ExFT fields.
The field content of ExFT is as follows. We now let µ, ν, . . . be (11− d)-

dimensional indices. We then have an (11 − d)-dimensional metric, gµν ,
which is a scalar of weight −2/(9 − d) under generalised diffeomorphisms.
The Ed(d) extended geometry is equipped with a generalised metric, MMN ,
transforming as a rank two symmetric tensor of weight zero under generalised
diffeomorphisms. In addition, there is a ‘tensor hierarchy’ of gauge fields,
starting with an (11 − d)-dimensional one-form AµM , and continuing with
p-forms Bµν , Cµνρ, . . . in particular representations of Ed(d). This set of
fields mimics and extends what appears in a dimensional decomposition (or
reduction) of the bosonic fields of supergravity.

Dimensional decomposition and field redefinitions We describe now
the dimensional decomposition used to embed eleven-dimensional SUGRA
in the ExFT framework. We split the eleven-dimensional coordinates xµ̂ =
(xµ, yi), making an (11 − d) + d split. The supergravity degrees of freedom
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are then similarly decomposed under this split, classified according to their
nature from the point of view of (11 − d)-dimensional spacetime, and then
rearranged into multiplets of the exceptional groups Ed(d). We assume no
restriction on the coordinate dependence. This can be viewed as a partial fix-
ing of the local Lorentz symmetry in which we choose the eleven-dimensional
vielbein êâµ̂ and hence metric ĝµ̂ν̂ to be

êâµ̂ =

(
|φ|−

1
2(9−d) eaµ 0
Aµ

kφı̄k φı̄i

)
, ĝµ̂ν̂ =

(
|φ|−

1
9−d gµν + φklAµ

kAν
l φikAν

l

φjkAν
k φij

)
,

(4.134)
where eaµ is a vielbein for an (11 − d)-dimensional (Einstein frame) metric
gµν and φı̄i is a vielbein for a d-dimensional metric φij, with |φ| ≡ | det(φij)|.
Normally one takes gµν to be Lorentzian, such that this corresponds to fixing
the Lorentz symmetry as SO(1, 10)→ SO(1, 10−d)×SO(d), however we can
also take it to be Euclidean, such that SO(1, 10)→ SO(11−d)×SO(1, d−1).
The latter choice is relevant for the version of ExFT applicable to the non-
relativistic theory.

The ‘Kaluza-Klein vector’ Aµ
i has a field strength defined by

Fµν
i = 2∂[µAν]

i − 2A[µ|
j∂jA|ν]

i . (4.135)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector
also appears as the connection in the derivativeDµ = ∂µ−LAµ which is covari-
ant with respect to d-dimensional diffeomorphisms, using the transformation
δΛAµ

i = DµΛi induced by the action of 11-dimensional diffeomorphisms on
(4.134).

For the three-form and its field strength, we define a succession of gauge
field components (denoted by bold font) via

Ĉ3 = Ĉ3 + Ĉ2iDy
i + 1

2
Ĉ1ijDy

iDyj + 1
3!
ĈijkDy

iDyjDyk (4.136)

where Dyi ≡ dyi +Aµ
idxµ, the subscripts on the right-hand side denote the

form degree in (11−d) dimensions, and we omit the implicit wedge products.
Similarly, for F̂4 = dĈ3 we let

F̂4 = F̂ 4 + F̂ 3iDy
i + 1

2
F̂ 2ijDy

iDyj + 1
3!
F̂ 1ijkDy

iDyjDyk ,

+ 1
4!
F̂ ijklDy

iDyjDykDyl ,
(4.137)

The persistence of hats reflects the fact that we still want to take the non-
relativistic limit of all these quantities. Explicit component expressions can
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be found in appendix C.1. We can make similar redefinitions for the dual
six-form and its field strength.

Metric and generalised metrics The metric gµν appearing in (4.134) is
directly used as the (11 − d)-dimensional ExFT metric (the generalised dif-
feomorphism weight −2/(9−d) follows from the conformal factor in (4.134)).

The generalised metricMMN , or its generalised vielbein, may be defined
as an Ed(d) element valued in a coset Ed(d)/Hd where Hd is the maximal
compact subgroup (in the Euclidean case) or a non-compact version thereof
(in the Lorentzian case). Under generalised diffeomorphisms it transforms
as a rank two symmetric tensor of weight zero. It is normally parametrised
in terms of the wholly d-dimensional components of the eleven-dimensional
fields, φij and Ĉijk, in a manner consistent with its transformation under
generalised diffeomorphisms. For d ≥ 6, this parametrisation also includes
internal components of the dual-six form. For simplicity, we will restrict
to d ≤ 4, in which case the conventional parametrisation of the generalised
metric is given by

MMN = |φ|1/(9−d)

(
φij + 1

2
Ĉi

pqĈjpq Ĉi
kl

Ĉk
ij 2φi[kφl]j

)
. (4.138)

The conformal factor here ensures that | detM| = 1.

In specific cases, we can find factorisations of the generalised metric lead-
ing to simpler expressions. This includes the SL(3)×SL(2) ExFT. Here, gen-
eralised vectors V M = (V i, Vij) transform in the (3,2) of SL(3)×SL(2), with
i, j, . . . three-dimensional. We can dualise Vij using the three-dimensional

epsilon symbol, and define Ṽ i ≡ 1
2
εijkṼjk. Introduce an SL(2) fundamental

index, α = 1, 2, and let V M ≡ V iα with V i1 ≡ V i and V i2 ≡ Ṽ i. In terms of
this basis we have a factorisation

MMN =Miα,jβ =MijMαβ , (4.139)

where Mij =Mji with | detMij| = 1, and Mαβ =Mβα with | detMαβ| =
1. When φij has Lorentzian signature, the expressions which reproduce
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(4.138) are

Mij = |φ|−1/3φij ,

Mαβ =

(
|φ|1/2 − |φ|−1/2Ĉ

2
−|φ|−1/2Ĉ

−|φ|−1/2Ĉ −|φ|−1/2

)
,

Ĉ ≡ 1
3!
εijkĈijk .

(4.140)

Gauge fields and dual degrees of freedom Along with the Kaluza-
Klein vector, Aµ

i, coming from the metric decomposition (4.134), the p-
forms obtained from the decomposition (4.136) of the three-form fit into
Ed(d)-valued multiplets denoted Aµ, Bµν , Cµνρ, . . . . Their field strengths are
denoted Fµν , Hµνρ,Jµνρσ, . . . . To obtain full Ed(d) representations, we have
to include here the set of p-forms obtained by decomposing the dual six-
form. This is unsurprising from the point of Ed(d) U-duality transformations,
which mix electric and magnetic degrees of freedom (e.g. M2 and M5 branes)
coupling respectively to p-forms and their duals.

For d = 3, this works as follows [106]. The ExFT gauge fields Aµiα,
Bµνi, Cµνρα, Dµνρσi have weights 1/6, 2/6, 3/6, 4/6 respectively, and their field
strengths are denoted Fµνiα, Hµνρi, Jµνρσα and Kµνρσλi (the latter does not
appear in the action). Under generalised diffeomorphisms, F iα transforms
as a generalised vector of weight 1/6, while H and J transform via the
generalised Lie derivative acting as

LΛHi = Λjβ∂jβHi + ∂iβΛjβHj ,

LΛJ α = Λjβ∂jβJ α − ∂jβΛjαJ β + ∂jβΛjβJ α .
(4.141)

These field strengths obey Bianchi identities:

3D[µFνρ]
iα = εijkεαβ∂jβHµνρk , (4.142)

4D[µHνρσ]i + 3εijkεαβF[µν
jαFρσ]

kβ = ∂iαJµνρσα , (4.143)

5D[µJνρσλ]
α + 10F[µν

iαHρσλ]i = εαβ∂iβKµνρσλi , (4.144)

whereDµ ≡ ∂µ−LAµ . The ExFT one-form can be simply identified asAµM =
(Aµ

i, 1
2
εijkCµjk). The two-form Bµνi transforms in the (3̄,1) of SL(3)×SL(2)

and is identified (up to a further field redefinition) with Ĉµνi. However, rather
than give the precise field redefinitions for the potentials, it is simpler to work
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at the level of the field strengths. These are all tensors under generalised
diffeomorphisms, meaining in particular that they transform in a particular
way under d-dimensional three-form gauge transformations. This allows us
to decompose in terms of manifestly gauge invariant combinations

Fµνi1 ≡ Fµν
i , Fµνi2 ≡

1

2
εijk(F̂ µνjk − ĈjklF̂ µν

l) , Hµνρi ≡ −F̂ µνρi ,

(4.145)
where Fµν

i, F̂ µνρi and F̂ µνjk are gauge invariant and can be exactly identified
with the quantities defined in (4.137) with Fµν

i as in (4.135).8

The three-form situation is then where it gets interesting. There is a sin-
gle 8-dimensional three-form Ĉµνρ obtained from the eleven-dimensional one.

There is also a single three-form Ĉµνρijk coming from the eleven-dimensional
six-form. Together these form an SL(3) singlet and SL(2) doublet, for which
the field strength obeys a self-duality constraint reproducing (in the relativis-
tic case!) the correct duality relationship between the field strengths F̂ µνρσ

and F̂ µνρσijk. This duality constraint, which has to be imposed by hand, in-
volves the eight-dimensional Hodge star acting on the 8-dimensional indices
and the SL(2) generalised metric acting on the SL(2) indices:√

|g|MαβJ µνρσβ = −48κεαβε
µνρσλ1...λ4Jλ1...λ4β . (4.146)

The coefficient κ is fixed via the self-consistency of (4.146) (in both the
cases where gµν has Lorentzian or Euclidean signature, with Mαβ having
the opposite) to be κ = ± 1

2·(24)2
, with the choice of sign being a matter

of convention (equivalent to changing the sign of the three-form in eleven
dimensions). This is consistent with decomposing the SL(2) doublet of four-
form field strengths as

Jµνρσ1 ≡ F̂ µνρσ , Jµνρσ2 ≡ 1
6
εijk(F̂ µνρσijk − ĈijkF̂ µνρσ) . (4.147)

Thus in general, ExFT treats simultaneously degrees of freedom coming from
the three-form with dual degrees of freedom coming from the six-form, en-
coding the duality relations between them in its dynamics.

8The minus sign in Hµνρi ensures that the ExFT Bianchi identities (4.143) and (4.144)
reproduce those coming from SUGRA in (C.17) and is otherwise simply a matter of con-
vention in terms of what we call Bµνi.
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Dynamics: SL(3)× SL(2) ExFT pseudo-action The ExFT Lagrangian
can be uniquely fixed by the requirement of invariance under the local sym-
metries (generalised diffeomorphisms, gauge transformations of the tensor
hierarchy, and finally (11−d)-dimensional diffeomorphisms). When 11−d is
even, this gives a pseudo-action which must be accompanied by a self-duality
constraint such as (4.146). This includes the case d = 3. The pseudo-action
in this case can be written as S =

∫
d8x d6y

√
|g|LExFT where the Lagrangian

has the (quite general) expression

LExFT = Rext(g) + Lkin + Lint +
√
|g|
−1
Ltop . (4.148)

Here, with Dµ = ∂µ − LAµ , we have

Rext(g) =
1

4
gµνDµgρσDνgρσ −

1

2
gµνDµgρσDρgνσ +

1

4
gµνDµ ln gDν ln g

+
1

2
Dµ ln gDνgµν , (4.149)

Lkin =
1

4
DµMijDµMij +

1

4
DµMαβDµMαβ − 1

4
MijMαβFµνiαFµνjβ

− 1

12
MijHµνρiHµνρ

j −
1

96
MαβJµνρσαJ µνρσβ , (4.150)

Lint =
1

4
MMN∂MMkl∂NMkl +

1

4
MMN∂MMαβ∂NMαβ

− 1

2
MMN∂MMKL∂KMLN +

1

2
∂MMMN∂N ln |g|

+
1

4
MMN (∂Mgµν∂Ng

µν + ∂M ln |g|∂N ln |g|) . (4.151)

The topological (Chern-Simons) term can be defined via its variation:

δLtop = κεµ1...µ8
(
− δAµ1 iαεαβJµ2...µ5βHµ6µ7µ8i

+ 6∆Bµ1µ2i
(
εαβFµ3µ4 iαJµ5...µ8β − 4

9
εijkHµ3µ4µ5jHµ6µ7µ8k

)
+ 4∆Cµ1µ2µ3αεαβ

(
Dµ4Jµ5...µ8β + 4Fµ4µ5 iβHµ6...µ8i

)
− ∂iα∆Dµ1...µ4 iJµ5...µ8α

)
,

(4.152)

where the ‘improved’ ∆ variation includes by definition contributions of vari-
ations of lower rank gauge fields, for explicit expressions (which we do not
require) see [106]. Finally, we must impose the constraint (4.146) after vary-
ing the above pseudo-action.
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4.4.2 Obtaining the eleven-dimensional Newton-Cartan
theory via ExFT

In this subsection, we perform a dimensional decomposition of the eleven-
dimensional MNC variables, and use this to explain how exceptional field
theory describes this theory.

Dimensional decomposition of eleven-dimensional Newton-Cartan
theory We start with the eleven-dimensional coordinates labelled as xµ̂ =
(xµ, yi) with µ = 1, . . . , 11 − d and i = 1 . . . , d. We keep all coordinate
dependence on yi throughout. Thus this is a decomposition rather than a
reduction. In terms of the vielbein decomposition (4.121), we take q = d− 3
and n = 11 − d. The flat indices are a = 1, . . . , 11 − d and ı̄ = 1, . . . , d − 3.
Explicitly, we take the SO(8) vielbein to have the form

ĥaµ̂ =

(
Ω
− 1

9−d eaµ 0
Aµ

khı̄k hı̄i

)
, ĥµ̂a =

 Ω
1

9−d eµa 0

−Ω
1

9−d eρaAρ
k hiı̄

 , (4.153)

with eaµ an invertible vielbein for an (11 − d)-dimensional metric, gµν =
eaµe

b
νδab. We also have to take

τ̂µ̂
A = (Aµ

iτi
A, τi

A) , τ̂ µ̂A = (0, τ iA) . (4.154)

where τij = τi
Aτj

BηAB, with A = 0, 1, 2 as before. The conformal factor Ω
appearing in (4.153) is defined by

Ω2 = − 1
3!(d−3)!

εi1...idεj1...jdτi1j1τi2j2τi3j3Hi4j4 . . . Hidjd , (4.155)

and related to that of the eleven-dimensional theory by Ω̂ = (det e)Ω
− 2

9−d .
It is useful to write down the full transverse and longitudinal metrics:

Ĥµ̂ν̂ =

(
Ω
− 2

9−d gµν +HklAµ
kAν

l HjkAµ
k

HikAν
k Hij

)
,

τ̂µ̂ν̂ =

(
Aµ

kAν
lτkl Aµ

kτkj
Aν

kτki τij

)
,

Ĥ µ̂ν̂ =

 Ω
2

9−d gµν −Ω
2

9−d gµρAρ
j

−Ω
2

9−d gνσAσ
i H ij + Ω

2
9−d gρσAρ

iAσ
j

 ,

τ̂ µ̂ν̂ =

(
0 0
0 τ ij

)
.

(4.156)
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In this way all the degenerate structure is encoded in the d-dimensional part
of the spacetime, with a degenerate d-dimensional metric Hij ≡ hı̄ih

̄
jδı̄̄.

This ensures that the metric gµν can be identified with the metric appear-
ing in exceptional field theory, while the degenerate Newton-Cartan metric
structure will appear in the generalised metric. In addition, we redefine the
three-form and its field strength according to (4.136) and (4.137), now with-
out hats:

C3 = C3 + C2iDy
i + 1

2
C1ijDy

iDyj + 1
3!
CijkDy

iDyjDyk , (4.157)

F4 = F 4 + F 3iDy
i + 1

2
F 2ijDy

iDyj + 1
3!
F 1ijkDy

iDyjDyk

+ 1
4!
F ijklDy

iDyjDykDyl ,
(4.158)

where again Dyi ≡ dyi +Aµ
idxµ. We carry out an analogous decomposition

for C̃3 and F̃4, and for C6 and F7. Finally, we can consider the Newton-Cartan
torsion: with T̂µ̂ν̂

A ≡ 2∂[µ̂τ̂ν̂]
A we have

Tij
A ≡ T̂ij

A = 2∂[iτj]
A , Tµi

A ≡ T̂µi
A − AµjT̂ji = Dµτi

A ,

Tµν
A ≡ T̂µν

A − 2T̂[µ|i|
AAν]

i + Aµ
iAν

jT̂ij = Fµν
jτj

A .
(4.159)

Embedding the limit in ExFT Let’s start by considering the expansions
(4.1) and (4.3) of the original eleven-dimensional metric and three-form. We
make use of the decompositions (4.156) and (4.157) for the Newton-Cartan
variables and three-form appearing in the decomposition, and then use these
to work out the decomposition (4.134) of the eleven-dimensional metric and
that (4.136) of the three-form. The potentially singular terms as c→∞ then
appear in the d-dimensional components of the metric and of the three-form,
with

φij = c2τij + c−1Hij , Ĉijk = −c3εABCτi
Aτj

Bτk
C +Cijk + c−3C̃ijk . (4.160)

The metric gµν and Kaluza-Klein vector Aµ
i appearing in (4.134) are then

exactly those appearing in Ĥµν in (4.156). The redefined form components

carrying an (11−d)-dimensional index are all non-singular, so Ĉµij = Cµij +

O(c−3), and so on. One point of danger is that Ĉijk still appears in the
field strengths (4.137) of these fields. However, consulting the more explicit
expressions (C.16), one sees that the field strength FµνM appearing in ExFT
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in fact involves the combination Fµνij = F̂ µνij − ĈijkFµν
k, which is in fact

independent of Ĉijk, such that F̂ µνij − ĈijkFµν
k = F µνij −CijkFµν

k.
For the generalised metric (4.138), inserting the expressions (4.160) one

finds that all terms at leading order in c cancel, and sending c→∞ one has
a manifestly finite and boost invariant expression9:

MMN = Ω
2

9−d

(
Mij Mi

kl

Mk
ij Mijkl

)
, (4.161)

with

Mij = Hij − εABCτ(i
ACj)klτ

kBτ lC + CiklCjmnH
kmτ ln ,

Mi
kl = −εABCτiAτ kBτ lC + 2CipqH

p[kτ l]q ,

Mijkl = 2H i[kτ l]j + 2τ i[kH l]j .

(4.162)

The parametrisation (4.161) can be viewed as a non-Riemannian parametri-
sation of the generalised metric, and viewed simply as an alternative pos-
sibility to taking the usual form (4.138). The reason why this is a non-
Riemannian parametrisation is most clearly seen by looking at the inverse
generalised metric MMN . In the Riemannian case, the parametrisation
(4.138) implies that the d × d block Mij is given by Mij = |φ̂|−1/(9−d)φ̂ij

and therefore corresponds to the inverse spacetime metric. Assuming this
block is invertible then uniquely fixes (given the definition of the gener-
alised metric as a particular coset element obeying certain properties) the
rest of the parametrisation. In the non-Riemannian case, we instead have

Mij = Ω
− 2

9−dH ij, which is non-invertible. This leads instead to an alter-
native parametrisation. This is exactly as in the DFT case [66], which was
generalised to ExFT in [76]. The expression (4.161) can be checked to be
equivalent to the non-Riemannian SL(5) generalised metric worked out from
first principles in [76]. In fact, from this point of view, one need not even go
through the complications of taking the limit, but simply write down (4.161),
insert it into the ExFT and study the resulting dynamics.

Returning to the embedding of the expansion in ExFT, we also need
to worry about the singular pieces in the expansion of the dual gauge field

9Proving this requires the fact that Hi[kH l]j = 0 when Hij has rank 1. For d > 4 this
would suggest we would have problems, however starting at d = 5 the representation on
which MMN acts enlarges and the structure of the generalised metric therefore changes.
Note for d > 5 it will also explicitly contain components of the dual six-form.
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Ĉ6. This inevitably appears in the tensor hierarchy for all exceptional field
theories. From (4.51), we have Ĉ6 ∼ c3C3 ∧ τ ∧ τ ∧ τ + . . . , and so given
the decomposition according to (4.154) and (4.157), any component of Ĉ6

carrying three d-dimensional indices will be singular, i.e. Ĉµνρijk, Ĉµνijkl,

Ĉµijklm, Ĉijklmn. The claim is that, remarkably, all such singularities cancel

automatically thanks to the precise combinations of Ĉ6 and Ĉ3 that appear
in the ExFT fields. For d = 3, 4, this is most straightforwardly checked at the
level of the ExFT field strengths.10. One sees from (4.147) for SL(3)× SL(2)
(and from (C.43) for SL(5)) that the components of F̂7 always appear in the
combinations F̂ µνρσijk−ĈijkF̂ µνρσ and F̂ µνρijkl+4Ĉ [ijkF̂ |µνρσ|l] exactly such

that the singularity coming from Ĉijk cancels that coming from F̂7, which was
written down in (4.52). That the ExFT gauge potentials themselves are non-
singular can further be verified by hunting down the correct field redefinitions
that relate the ExFT gauge fields to the eleven-dimensional ones. Note that
for d ≥ 6 the components Ĉijklmn are present and appear in the generalised
metric itself: we have not verified explicitly but the expectation would be
that it does so in a way that ensures the generalised metric remains finite.

Summary From the above we can conclude that the fields used in ExFT
are manifestly non-singular in the non-relativistic limit (equivalently this
shows that the fields which are U-duality covariant in a genuine dimensional
reduction are non-singular). We can also view the distinction between the
relativistic and the non-relativistic eleven-dimensional theory as being solely
governed by the choice of parametrisation of the generalised metric. Having
picked a generalised metric parametrisation, it is then consistent to directly
identify the ExFT gauge fields and metric gµν with the gauge field compo-
nents and metric of the decomposed relativistic or non-relativistic theory.

This is summarised in figure 4.1. The upper triangular half of this diagram
corresponds to first embedding the relativistic fields in ExFT in the usual
manner, with a Riemannian parametrisation of the generalised metric, and
then taking the non-relativistic limit giving a non-Riemannian parametrisa-
tion. The lower triangular half corresponds to first taking the non-relativistic
limit for the original eleven-dimensional fields, and then embedding these into
ExFT, giving the same non-Riemannian parametrisation. In both cases, one

10Only the field strengths appear in the equations of motion, and the action can also
be defined solely in terms of the field strengths by rewriting the Chern-Simons term in a
standard way as an integral over a higher-dimensional spacetime.
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needs to make the appropriate dimensional decomposition of the fields of
the Newton-Cartan theory, corresponding to fixing the local tangent space
(non-Lorentzian) symmetry.

11-d SUGRA ExFT (rel)

ExFT (non-rel)Non-rel SUGRA

Fix Lorentz

Fix non-Lorentz

Non-rel limitNon-rel limit

Figure 4.1: Relationship between non-relativistic limit and non-relativistic
parametrisation of ExFT

.

Inserting the non-Riemannian parametrisation into the ExFT action or
equations of motion will then reproduce the finite action and equations of
motion results from taking the limit, after decomposing. For the action, we
calculate this decomposition in appendix C.1. What we will show next is that,
remarkably, the ExFT equations of motion also automatically reproduce the
Poisson equation (4.97).

4.4.3 Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic
parametrisation of the generalised metric. We focus on the d = 3 SL(3) ×
SL(2) ExFT. For the d = 3 Newton-Cartan geometry, H ij and Hij have
rank zero and so are identically zero. The longitudinal metric τij is a three-
by-three matrix and in fact invertible, with Ω2 = − det τ . The resulting
non-Riemannian parametrisation of the generalised metric (4.139) is

Mij = Ω−2/3τij , Mαβ =

(
2ϕ 1
1 0

)
, ϕ ≡ 1

3!
εijkCijk . (4.163)

Comparing (4.163) and (4.140), we can note that (4.163) is the most general
possible SL(2) non-Riemannian parametrisation (up to the sign of the off-
diagonal components), as this is completely fixed by requiring M22 = 0
which prevents us from interpreting that component as the determinant of a
standard three-dimensional spacetime metric.
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Normally, the generalised metric Mαβ encodes two degrees of freedom.
It is clear that the non-Riemannian parametrisation given by (4.163) is re-
stricted and is missing one degree of freedom. We may identify this missing
degree of freedom with the overall scale of the longitudinal metric, as the
latter only appears in the combination | det τ |−1/3τij, which is conformally
invariant. This makes the dilatation invariance trivial in this formulation.

If we insert this parametrisation into the SL(3) × SL(2) pseudo-action,
with Lagrangian (4.148), we find that Lint as defined in (4.151) vanishes,
while

1

4
DµMijDµMij +

1

4
DµMαβDµMαβ =

1

4
Dµ(Ω2/3τ ij)Dµ(Ω−2/3τij) . (4.164)

This reproduces exactly the expected terms in the d = 3 case of (C.26) and
(C.27).

Notice that the kinetic terms for Mαβ completely drop out. So if we
insert the non-relativistic parametrisation into the action, and then vary
with respect to ϕ, we will never find an equation involving DµDµϕ, i.e the
Poisson equation. However, instead we can consider the equations of motion
of the generalised metric, which can be evaluated independently of its choice
of parametrisation. These will provide the missing Poisson equation. This is
exactly analogous to the situation in DFT, see the discussions in [83] and in
the previous chapter. One has to make a choice about whether you allow the
equations of motion that follow from variations of the generalised metric that
do not preserve the non-Riemannian parametrisation. In both the DFT SNC
case, and the present case, there is exactly one such independent variation,
which provides an additional equation of motion beyond what is obtained by
varying the fields of the parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised
metric Mαβ in the action is

δS =

∫
d8x d6Y

√
gδMαβKαβ , (4.165)
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with

Kαβ = −1
4

1√
g

(
Dµ(
√
gDµMαβ)−MαγMβδDµ(

√
gDµMγδ)

)
+

1

4
MαγMβδMijFµνiγFµνjδ +

1

96
MαγMβδJµνρσγJ µνρσδ

+ 1
4
Mij

(
∂i(α|Mkl∂j|β)Mkl + ∂i(α|Mγδ∂j|β)Mγδ + ∂i(α|gµν∂j|β)g

µν
)

− 1
2
Mij∂iα∂jβ ln g + 1√

g
∂i(α|(

√
g∂j|β)Mij)

− 1
2
Mij

(
∂i(α|Mkl∂k|β)Mlj + ∂i(α|Mγδ∂jγM|β)δ

)
+ 1

2
√
g
(∂iγ(
√
gMijMγδ∂j(αMβ)δ)−Mγ(αMβ)δ∂jκ(

√
gMijMεγ∂iεMκδ)

− 1
4
√
g
(∂iγ(
√
gMijMγδ∂jδMαβ)−MαγMβδ∂iε(

√
gMijMεκ∂jκMγδ) .

(4.166)

Now, the variation δMαβ cannot be arbitrary but must preserve the condition
| detM| = 1. This ensures that one gets two rather than three independent
equations, corresponding to the usual two degrees of freedom encoded in
Mαβ. The true equation of motion taking this into account is:

Rαβ ≡ Kαβ − 1
2
MαβMγδKγδ = 0 . (4.167)

This can be thought of as the vanishing of a generalised Ricci tensor,Rαβ. For
the non-Riemannian parametrisation (4.163), the two independent equations
are

R22 = K22 = 0 , R11 − 2ϕR22 = K11 − 2ϕK12 = 0 . (4.168)

Setting ∂i1 ≡ ∂i, ∂i2 = 0, we have explicitly that

K22 = +1
4
MijFµν

iF µνj + 1
96
F µνρσF

µνρσ = 0 . (4.169)

This is the equation of motion (4.71) arising as the totally longitudinal part
of the equation of motion of the three-form. This is consistent with its
appearance here as the equation of motion of ϕ, which is indeed the totally
longitudinal part of the three-form.

The other equation of motion is (after using (4.169))

0 = K11 − 2ϕK12

= − 1√
g

1
6
εijkDµ(

√
ggµνF νijk)

− 1
8
MkmMlnF µνklF

µν
mn + 1

96
F µνρσijkF

µνρσ
lmn

1
3!3!
εijkεlmn

+ 1
4
Mij

(
∂iMkl∂jMkl + ∂igµν∂jg

µν
)
− 1

2
Mij∂iMkl∂kMjl

− 1
2
Mij∂i∂j ln g − 1√

g
∂i(
√
g∂jMij) .

(4.170)
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Here we have F µijk = DµCijk− 3∂[iC |µ|jk], having used DµM11 = DµM11−
εijk∂iAµjkM12. We can then identify (4.170) as the Poisson equation for
ϕ ≡ 1

6
εijkCijk, as it has the form 1√

g
Dµ(
√
gDµϕ) + · · · = 0. It is conjugate to

the variation δM11. For the non-Riemannian parametrisation, M11 = 0, so
allowing this variation corresponds to allowing variations that do not respect
the parametrisation. In terms of the expansion of Mαβ in powers of 1/c,
this variation is subleading in origin. Finally, one can precisely check that
this equation (4.170) is indeed exactly the Poisson equation (4.97), which we
found at subleading order in the expansion of the relativistic theory, and here
is rewritten in terms of ExFT variables after making the dimensional decom-
position of all the fields. (It can be easily checked that the gauge field terms
match, using (C.29) to relate the seven-form components appearing here to

those of F̃4, and a patient calculation shows that inserting the dimensional
decomposition of the eleven-dimensional fields matches perfectly.)

Structure of generalised Ricci tensor Geometrically, Rαβ should be
thought of as (the SL(2) part of) a generalised Ricci tensor. It is a symmetric
generalised tensor of weight 0 and obeys MαβRαβ = 0. When we take the
relativistic parametrisation (4.140) of the generalised metric, it can therefore
be parametrised as

Rαβ = 1
2

(
1 Ĉ
0 1

)(
|φ|1/2Rφ RC

RC |φ|−1/2Rφ

)(
1 0

Ĉ 1

)
, (4.171)

with Rφ and RC tensors of three-dimensional weight 0, such that the varia-
tion of the action leads to

δS ⊃ −
∫

d8x d6y
√
g

(
δ|φ|1/2

|φ|1/2
Rφ + |φ|−1/2δĈRC

)
. (4.172)

Let’s examine what happens to the components of Rαβ in the non-relativistic

limit. We have |φ|1/2 = Ωc3, Ĉ = −c3Ω + C + c−3C̃. This leads to the
expression

Rαβ = 1
2

(
1 C
0 1

)(
c3Ω(Rφ −RC) RC −Rφ

RC −Rφ c−3Ω−1Rφ

)(
1 0
C 1

)
. (4.173)

So in principle the independent equations are still RC and Rφ. However,
we already know that this generalised Ricci tensor has no leading parts in
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c when we take the limit (because none of the ExFT fields contain singular
terms). If we expand

Rφ = c3R(3)
φ +c0R(0)

φ +c−3R(−3)
φ , RC = c3R(3)

C +c0R(0)
C +c−3R(−3)

C , (4.174)

it must be that we have R(3)
φ = R(3)

C , R(0)
φ = R(0)

C , viewed as off-shell iden-
tities, and the independent equations of motion, i.e. those appearing as the
actual finite entries of Rαβ, are actually

R(3)
φ = 0 , R(−3)

φ −R(−3)
C = 0 . (4.175)

The former is conjugate to δM22 and the latter to the δM11 that is forbidden
if we insist on keeping a non-Riemannian parametrisation. We can go back
to the variation (4.172) and expand that:

δS = −
∫

d8x d6y
√
g
(
δ ln Ω(Rφ −RC) + Ω−1c−3δCRC

)
, (4.176)

hence the first non-zero variations are

δS = −
∫

d8x d6y
√
g
(
c−3δ ln Ω(R(−3)

φ −R(−3)
C ) + Ω−1δCR(3)

C

)
. (4.177)

We see again that we get the longitudinal equation of motion for the three-
form at finite order, and the extra Poisson equation of motion comes from
a subleading variation associated to the variation of the volume factor Ω,
which otherwise has no dynamics associated to it in this formulation.

4.4.4 Generating non-relativistic generalised metrics
via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the
generalised metricMαβ, viaM→M′ = UTMU with detU = 1. Parametris-

ing U =

(
a b
c d

)
the transformation of the non-relativistic parametrisation

(4.163) gives

M′
αβ =

(
2a(aϕ+ c) 2abϕ+ ad+ bc

2abϕ+ ad+ bc 2b(bϕ+ d)

)
, (4.178)
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and this remains in the non-relativistic form only if b = 0, or else if ϕ is
constant and d = −bϕ. In the former case, the effect of the transformation
is ϕ→ a(aϕ+ c) and so amounts to a scaling and shift of the three-form.

The genuine non-geometric U-dualities correspond to the SL(2) inversion
symmetry with a = d = 0, bc = −1. If ϕ < 0, this takes us from the
non-relativistic parametrisation to a a relativistic one with

φij = (− 1
2ϕ

)2/3(det τ)−1/3τij , Cijk = − 1
2ϕ
εijk . (4.179)

These obey | detφ| = C2 which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of

[76,108], namely the M2 brane solution in the form

ds2 = f−2/3ηijdy
idyj + f 1/3δµνdx

µdxν , Cijk = (f−1 + γ)εijk , (4.180)

where the harmonic function f obeys ∂µ∂
µf = 0 and γ is a constant. This

has constant exceptional field theory eight-dimensional metric, gµν = δµν ,
while

Mij = ηij , Mαβ =

(
−γ(f + 2γ) −(1 + γf)
−(1 + γf) −f

)
. (4.181)

Sending f → 0 corresponds exactly to the original limit (4.1). Alternatively,
we can formally U-dualise along the yi directions (including time) to obtain
a solution with

Mαβ =

(
−f 1 + γf

1 + γf −γ(f + 2γ)

)
. (4.182)

The standard M2 solution has γ = −1 and f = 1 + q
r6

, with r2 ≡ δµνx
µxν .

In this case, the generalised metric (4.182) corresponds to the negative M2
solution [109]:

ds2 = f̃−2/3ηijdy
idyj + f̃ 1/3δµνdx

µdxν ,

Cijk = (f̃−1 − 1)εijk ,

f̃ = 1− q
r6
.

(4.183)

This solution has a naked singularity at f̃ = 0 ⇔ f − 2 = 0. Evidently the
generalised metric (4.182) is non-singular everywhere and at f̃ = 0 becomes
non-relativistic. This suggests [12] interpreting such backgrounds as contain-
ing a singular locus at which the geometry degenerates to a non-relativistic
one.
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If we alternatively take γ = 0 then the generalised metric (4.182) has the
non-relativistic form everywhere, with ϕ ≡ −1

2
f . If we now reconsider the

equation of motion (4.170) which can only be found by varying the generalised
metric before inserting the parametrisation, then this is exactly the equation
∇2f = 0 obeyed by the harmonic function. Finally, we can reconstruct the
full eleven-dimensional MNC geometry:

τ̂µ̂
A = (0, δi

A) , Ĥ µ̂ν̂ =

(
δµν 0
0 0

)
, C012 = −1

2
f . (4.184)

4.4.5 Gauge fields and self-duality in SL(3)×SL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3)×SL(2)
ExFT. Let’s repeat the parametrisations (4.145) and (4.147) now for the field
strength components of the non-relativistic theory:

Fµνi1 ≡ Fµν
i , Fµνi2 ≡

1

2
εijk(F µνjk −CjklF µν

l) , Hµνρi ≡ −F µνρi ,

(4.185)

Jµνρσ1 ≡ F µνρσ , Jµνρσ2 ≡ 1

6
εijk(F µνρσijk −CijkF µνρσ) . (4.186)

Then the kinetic terms (4.150) in the SL(3) × SL(2) ExFT pseudo-action
(4.148) are

−1
4
MijMαβFµνiαFµνjβ − 1

12
MijHµνρiHµνρ

j

= −1
4
Ω−2/3τijF

µνiεjklF µνkl −
1

12
Ω2/3τ ijF µνρiF

µνρ
j ,

(4.187)

which matches the corresponding terms in the decomposition (C.26) of the
non-relativistic action.

To discuss the three-form gauge field, consider the SL(3) × SL(2) ExFT
equation of motion obtained from the pseudo-action by varying Cµνρα:

Dσ(
√
|g|MαβJ µνρσβ)− 2∂iα(

√
|g|MijHµνρ

j)

− 48κεαβε
µνρσ1...σ5

(
Dσ1Jσ2...σ5β + 4Fσ1σ2 iβHσ3σ4σ5i

)
= 0 .

(4.188)

After varying, we must also impose the constraint (4.146). This constraint
involves the generalised metric, and so it is sensitive to whether we are de-
scribing the relativistic or non-relativistic theory. However, in either case,
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using the constraint in the equation of motion of Cµνρ2 in fact produces the
Bianchi identity (4.144) for Jµνρσ1 = F µνρσ. In the relativistic case, with
the Riemannian parametrisation (4.140) of the generalised metric (or its Eu-
clidean version), we could go on to use the constraint to eliminate Jµνρσ2

from the equation of motion of Cµνρ2. The result would be the equation of
motion of the three-form Cµνρ following from the decomposition of eleven-
dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the
non-relativistic parametrisation (4.163). In this case, choosing the minus sign
for κ, the constraint (4.146) implies that

√
gF µνρσ = − 1

4!
εµνρσλ1...λ4F λ1...λ4 ,√

gF µνρσ
ijk = + 1

4!
εµνρσλ1...λ4F λ1...λ4ijk .

(4.189)

So we can no longer eliminate F µνρσijk in favour of F µνρσ. This is clearly
as expected for the MNC theory for which the former indeed appears ex-
plicitly in the action and equations of motion (note it is related to F̃ µνρσ

via (C.29)). We therefore see that the ExFT constraint gives not only the
expected constraint (4.33) that the original four-form field strength becomes
self-dual, but also the duality condition with opposite sign which is obeyed
by the dual seven-form (4.55). Thus the SL(3) × SL(2) ExFT contains the
expected degrees of freedom of the non-relativistic theory, and efficiently re-
arranges them into self-dual and anti-self-dual parts automatically on the
non-Riemannian parametrisation.
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Chapter 5

Discussion and Outlook

The main focus of this thesis was to derive actions and equations of mo-
tion describing non-relativistic physics. The results we obtained are the
non-relativistic versions of (the bosonic sector of) the usual relativistic ten-
and eleven-dimensional supergravity actions that have been known for many
years. The study of non-relativistic physics can be considered to be still in
its early stages. This means that several results one would like to obtain can
be (hopefully) derived by closely following the same approach already known
for their relativistic counterparts. However, non-relativistic theories offer
a degree of novelty as can be seen for example in Chapter 2, with the non-
relativistic Polyakov action involving several different fields and the quantum
fields expansion being much more complicated than in the relativistic case.
Nonetheless, we were able to derive the target-space equations of motion,
altough after imposing the twistless torsion constraint and with the caveat
of Section 3.5. It would be interesting to derive the beta functions when
no constraint on torsion is imposed. However, this involves solving the non-
relativistic geodesic equation in general, which turns out to not have a simple
linear or quadratic dependance on the embedding fields. Alternatively, one
could try to study a theory where the worldsheet itself is non-relativistic,
which should be equivalent to Spin Matrix Theory [8]

In Chapter 3 we were able to bring this analysis one step further and
find the equations of motion and actions for TNC, SNC and Carrollian grav-
ity, while in Chapter 4 we obtained an action and equations of motion for
eleven-dimensional non-relativistic supergravity. An obvious direction to ex-
pand this work would be to find solutions to the equations of motion we pre-
sented here. For example, the definition of a black hole in a non-Riemannian
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manifold is unclear [110–113], and we believe that the actions presented in
this work would help clarify their physical interpretation. The fact that we
have an action at our disposal allows us to derive interesting properties of
a given solution. In particular, variations of on-shell actions (note that the
DFT on-shell action is trivially zero up to boundary terms) would allow for
investigation of the thermodynamical properties of such hypothetical black
holes and possibly relate them to holographically dual theories in nonrel-
ativistic quantum plasmas. Moreover, there has been recently a renewed
interest in Carrollian gravity, as it has been suggested that it may help to
better understand inflation and dark matter [114].

In our analysis of non-relativistic theories, we have mostly concerned
ourselves with ‘Type I’ expansions, but it would be equally interesting to
derive similar results for an expansion of the type given in (1.9), where more
fields are included giving a very different algebra. For example, in the eleven-
dimensional case of Chapter 4 we could expand the metrix as gµν = c2τµν +
c−1Hµν+c−4Xµν+. . . . It is possible to check that doing so does not affect the
expansion of the action up to order c0, and it would be expected on general
grounds [115] that the first appearance of the first subleading terms simply
re-imposes the equations of motion already encountered (as we saw with
C̃3 and the equations of motion of C3). In addition, we could reformulate
the expansion by introducing additional one-form gauge fields (as for this
case in [105]), accompanied by a shift symmetry, such that the three-form
Cµνρ does not transform under boosts. The resulting more general expansion
could then be attacked order-by-order without necessarily sending c → ∞
or truncating as we did. Here it would be interesting to compare with the
approach of [27], inputting the eleven-dimensional three-form as matter. A
complicating feature, relative to usual 1/c expansions of general relativity
leading to Newton-Cartan [25,103,115] for example, is that the longitudinal
vielbein appears in both the metric and three-form and does so at different
orders in c.

Another possible approach would be to try and find an embedding of the
Type II TNC in Double Field Theory (if possible). However, we expect this
to be nontrivial. Recall that, upon BRST quantization, a critical bosonic
string theory can only be anomaly-free when the trace of the generalized
metric satisfies TrH = n − n̄ = 0 [81]. On the other hand, we know that
it is possible to derive all the equations of motion from an action principle
for Type II TNC [25], which implies that the embedding of this theory in
DFT should have n × n̄ = 0. The only way to have n = n̄ and n × n̄ = 0
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is if n = n̄ = 0, but this corresponds to a Riemannian geometry and so we
cannot identify this theory with Type II TNC. This seems to indicate that
Type II TNC cannot be embedded in DFT as a quantum consistent theory,
or maybe it cannot be embedded in DFT at all. Either way, this direction
should be explored in more detail.

A different route is the study of the spacetime actions for the non-
relativistic duality web [28] in eleven and ten dimensions. This can pro-
ceed both by applying standard dimensional reduction and dualisation to
our eleven-dimensional action, and by applying similar methods to individ-
ual supergravities by taking covariant non-relativistic limits associated to
each p-brane present in the theory. In Chapter 4 we performed a dimen-
sional reduction to type IIA, but we did not discuss the expected T-duality
relationship to type IIB, for example. Similarly, there is presumably a het-
erotic SNC which could be obtained by reducing non-relativistic M-theory
on a longitudinal interval, although it is not immediately obvious what the
result of reducing on a transverse interval should be. Note that the appear-
ance of the original and dual field strength together in the eleven-dimensional
theory suggests that the appropriate formalism for describing generalisations
of Newton-Cartan geometries in type II should be the formalism where the
RR p-forms are treated ‘democratically’ [116], accompanied by a self-duality
constraint.
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Samenvatting

De belangrijkste focus van dit proefschrift is de afleiding van niet-relativistische
deeltjes-, snaar- en membraanacties en bewegingsvergelijkingen. In het bi-
jzonder zijn de theorieën die we beschouwen gebaseerd op (generalisaties
van) de Galilese algebra/Newton-Cartan zwaartekracht. Ons beginpunt is
het berekenen van de bètafuncties van een niet-relativistische snaartheorie
met Torsionele Newton Cartan-symmetrieën in de doelruimte. In analogie
met de gebruikelijke relativistische snaartheorie worden de vergelijkingen,
die worden verkregen door deze bètafuncties op nul te zetten, vervolgens
gëınterpreteerd als de doelruimte-bewegingsvergelijkingen voor (Type I) Tor-
sionele Newton Cartan-zwaartekracht. Vervolgens leiden we een doelruimte-
actie af voor deze theorie, evenals voor andere niet-Riemanniaanse theo-
rieën die er nauw mee verwant zijn: Carrolliaanse en String-achtige Newton
Cartan-zwaartekracht. Deze acties komen overeen met verschillende niet-
Riemanniaanse limieten van de bosonische sector van de gebruikelijke tiendi-
mensionale superzwaartekrachtacties. Ten slotte bestuderen we een niet-
relativistische limiet van M-theorie, waarvan de lage energielimiet een theo-
rie geeft die we Membraan Newton Cartan-zwaartekracht noemen, die moet
worden beschouwd als de niet-relativistische limiet van de bosonische sector
van elfdimensionale superzwaartekracht. Twee conceptueel verschillende di-
mensionale reducties kunnen dan uitgevoerd worden op MNC-zwaartekracht:
een ervan blijkt precies dezelfde SNC-zwaartekracht te zijn die hierboven is
genoemd, terwijl de andere een nieuw type niet-relativistische theorie is die
is gekoppeld aan D2-branen.

139



CHAPTER 5. DISCUSSION AND OUTLOOK

140



Appendix A

Type I TNC beta functions:
computational details

A.1 Geodesic equation and normal coordinates

in TNC geometry

The action of a particle moving in a TNC background is given by [1]

Spart ∝
∫
dλ
h̄µν ẋ

µẋν

τσẋσ
. (A.1)

The geodesic equation can be obtained by minimizing such action, the cor-
responding equations of motion are found to be[

1

2
∂sh̄µν − ∂µh̄σν −

(
h̄µνFσρ − τσ∂ρh̄µν

)
ẋρ

2N
− Ṅ h̄µντσ

N2

]
ẋµẋν

+
Ṅ h̄snẋ

ν − τσh̄µν ẍµxν

N
= h̄σν ẍ

ν ,

(A.2)

where we have defined N ≡ τpẋ
p. Contracting (A.2) with hσλ gives us the

geodesic equation

ẍλ + Γλµν ẋ
µẋν =

Ṅ

N
ẋλ − h̄µνFσρh

σλ

2N
ẋµẋν ẋρ . (A.3)
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We want to construct a solution of (A.3) such that xµ(0) = Xµ
0 and

xµ(1) = Xµ
0 + lsȲ

µ where we can identify the vector ẋµ(0) = lsY
µ. The

following expansion on ls satisfying the previously mentioned conditions can
be constructed

xµ = Xµ
0 + λlsY

µ +
λ2

2
l2sY

µ
2 +O(l3s) , (A.4)

substituting (A.4) in (A.3) it follows that

(
Y λ

2 + ΓλµνY
µY ν

)
=
τνY

ν
2 Y

λ + ∂µτνY
µY νY λ − 1

2
h̄µνh

λσFσρY
ρY µY ν

τκY κ
, (A.5)

where all the geometric background functions are evaluated at Xµ
0 . Equation

(A.5) has a solution of the form

Y λ
2 = −ΓλµνY

µY ν −Gλ
µνY

µY ν , (A.6)

with Gλ
µν a tensor satisfying

τ(ρG
λ
µν) = τσG

σ
(µνδ

λ
ρ) −

1

2
h̄(µνFρ)σh

σλ . (A.7)

For (A.7) to have a solution it is necessary to impose Fρσh
ρµhσν = 0, obtain-

ing Gλ
µν = 1

2
h̄µνaσh

σλ, meaning that the quantum field Ȳ µ can be written in
terms of the covariant vector Y µ as

Ȳ µ = Y µ − ls
2

(
Γµρσ +

1

2
h̄ρσaνh

µν

)
Y ρY σ +O

(
l2s
)
. (A.8)

A.2 Tree level contributions from the Dilaton

In this section we will compute the tree level contributions to the beta func-
tions. To this end we will need the contribution to the energy-momentum
tensor coming from (2.20) and then compute its (classical) trace. Notice that
the energy-momentum tensor will receive a contribution from this term even
when the worldsheet is flat. The result is given by(

−2π

α′

)
γαβTDilαβ = −�̂φ = −�̂Xµ∂µφ− γαβ∂αXµ∂βX

ν∂µ∂νφ , (A.9)
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where �̂ is the d’Alembertian on the worldsheet, �̂ = γαβ∂α∂β. To rewrite
this in a useful way we need the equations of motion for the classical fields.
These are found by varying the Lagrangian (2.19):

0 =− γαβ
(
∂ρh̄µν − 2∂µh̄νρ

)
∂αX

µ∂βX
ν + 2h̄µρ�̂X

µ + 2∆λα∂αX
µ∂[µτρ]

+ τρ∂α∆λα − 2Σλα∂αX
µ∂[µℵρ] − ℵρ∂αΣλα (A.10)

− εαβ
(
∂ρB̄µν − 2∂µB̄ρν

)
∂αX

µ∂βX
ν ,

0 = eα−∂αX
µτµ + eα− (∂αη + ∂αX

µℵµ) , (A.11)

0 = eα+∂αX
µτµ − eα+ (∂αη + ∂αX

µℵµ) , (A.12)

0 = ∂αΣλα , (A.13)

where

∆λβ ≡ λ−e
β
+ − λ+e

β
− , Σλβ ≡ λ−e

β
+ + λ+e

β
− . (A.14)

We now multiply the first equation by 1
2
hρρ

′
, the second equation by eβ+∂β

and the third one by eβ−∂β to find

−�̂Xρ =
(
Γρµν + υ̂ρ∂µτν

)
∂αX

µ∂βX
νγαβ − 1

2
hρσHσµν∂αX

µ∂βX
νεαβ

+ υ̂ρτµ�̂X
µ + hρσ∆λα∂αX

µ∂[µτσ] − hρσΣλα∂αX
µ∂[µℵσ] ,

(A.15)

(τµ + ℵµ)�Xµ = eα+e
β
− (∂µτν + ∂µℵν) ∂αXµ∂βX

ν − �̂η , (A.16)

(τµ − ℵµ)�Xµ = eα+e
β
− (∂ντµ − ∂νℵµ) ∂αX

µ∂βX
ν + �̂η , (A.17)

where we have also used (A.13) to simplify (A.15). By adding and subtracting
(A.16) and (A.17) we find

τµ�̂X
µ = eα+e

β
−
(
∂(µτν) + ∂[µℵν]

)
∂αX

µ∂βX
ν

= −
(
γαβ∂µτν + εαβ∂µℵν

)
∂αX

µ∂βX
ν , (A.18)

ℵµ�̂Xµ = −
(
εαβ∂µτν − γαβ∂µℵν

)
∂αX

µ∂βX
ν − �̂η . (A.19)

Substituting (A.18) in (A.15) we finally have

−�̂Xρ =

(
Γρµνγ

αβ − υ̂ρ∂µℵνεαβ −
1

2
hρσHρµνε

αβ

)
∂αX

µ∂βX
ν

+ hρσ∆λα∂αX
µ∂[µτσ] − hρσΣλα∂αX

µ∂[µℵσ] .

(A.20)
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Now that we have an expression for �̂Xρ in terms of ∂αX
ρ, we can rewrite

(A.9) as

2π

l2s
γαβTDilαβ = −hρσDρφ ∂[µτσ] ∆λα∂αX

µ + hρσDρφ ∂[µℵσ] Σλα∂αX
µ

+

[
γαβDµDνφ+ εαβ

(
υ̂ρDρφ ∂µℵν +

1

2
hρσDρφHσµν

)]
∂αX

µ∂βX
ν

=− 1

2

[
βφρσ∂αX

ρ
0∂βX

σ
0 γ

αβ + β̄φρσ∂αX
ρ
0∂βX

σ
0 ε

αβ

+βφµ∆λα∂αX
µ + β̄φµΣλα∂αX

µ
]
,

(A.21)

from which one can easily read the dilaton contributions to the beta functions
(2.81)-(2.86) :

βφµν = −2D̊(µD̊ν)φ− 2Gλ
µνD̊λφ ,

β̄φµν = −bµν υ̂ρD̊ρφ− hρσHσµνD̊ρφ ,

βφµ = hρσFµσD̊ρφ ,

β̄φµ = −hρσbµσD̊ρφ .

(A.22)

For completeness we mention that the time projection of (A.15) is given
by

∂α∆λα =
[
υ̂ρ
(
Dρh̄µν − 2Dµh̄νρ

)
γαβ + (υ̂ρHρµν + 2Φbµν) γ

αβ
]
∂αX

µ
0 ∂βX

ν
0

+ aµ∆λα∂αX
µ
0 − eµΣλα∂αX

µ
0 . (A.23)

A.3 Covariant expansion of the one loop ef-

fective action

We will make use of (2.39), (2.48) and (2.49) to write down the covariant
expansion of the couplings appearing on the Polyakov action (2.11). Starting
with the λη couplings∫

d2σ

l2s
e
[(
λ+e

β
− + λ−e

β
+

)
∂βη
]

=

∫
d2σe

[
ΣΛ̄β∇̊βH̄

]
+O (ls) , (A.24)
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where we have defined ΣΛ̄β ≡
(

Λ̄+e
β
− + Λ̄−e

β
+

)
. We can then look at the h̄αβ

coupling∫
d2σ

l2s
eγαβh̄αβ =

∫
d2σe

[
h̄µν∇̊αY

µ∇̊αY ν

+ 2D̊σh̄µν∇̊αY
µY σ∂αXν

0

+

(
1

2
D̊ρD̊σh̄µν + R̊λ

ρσµh̄νλ

)
Y ρY σ∂αX

µ
0 ∂βX

ν
0

]
+O (ls) ,

(A.25)

where we recall that H = dB̄, F = dτ , b = dℵ, ∆λβ ≡ λ0
−e

β
+ − λ0

+e
β
−, and

Σλβ ≡ λ0
−e

β
+ + λ0

+e
β
−.

Moving to the vector couplings we have∫
d2σ

l2s
e
[
λ±e

α
∓τα
]

=

∫
d2σe

[
Λ̄±e

α
∓

(
∇̊α (τµY

µ)− FµρY ρ∂αX
µ
0

)
+

1

2
Fµνλ

0
±e

α
∓Y

µ∇̊αY
ν

+
1

2
D̊ρFσµY

ρY σλ0
±e

α
∓∂αX

µ
0

]
+O (ls) ,

(A.26)

and ∫
d2σ

l2s
e [Σλαℵα] =

∫
d2σe

[
ΣΛ̄α

(
ℵµ∇̊αY

µ + D̊ρℵµY ρ∂αX
µ
0

)
+

1

2
bµνΣλ

αY µ∇̊αY
ν

+
1

2
D̊ρbσµY

ρY σΣλα∂αX
µ
0

]
+O (ls) ,

(A.27)

where we have used (2.47) as well as the identity

R̊λ
σρµℵλ = −D̊ρD̊µℵσ + D̊µD̊ρℵσ . (A.28)
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We can finally move to the last coupling:

∫
d2σ e

l2s
εαβB̄αβ(X) =

∫
d2σeεαβ

[
Hσµν∇̊αY

µY σ∂βX
ν
0

+
1

2
D̊ρHσµνY

ρY σ∂αX
µ
0 ∂βX

ν
0

]
+O (ls) ,

(A.29)

where we have used the identity∫
d2σeεαβ

[
B̄µν∇̊αY

µ∇̊βY
ν
]

=

∫
d2σeεαβ

[(
D̊νB̄σµ

)
Y σ∇̊αY

µ∂βX
ν
0

+
1

2

(
R̊λ

ρµνB̄λσ

)
Y ρY σ∂αX

µ∂βX
ν

]
.

(A.30)

Before combining (A.24), (A.25), (A.26), (A.27) and (A.29) to write down
the action S̄0 we will take a look at the transformation properties of H̄ in-
herited from the Kalb-Ramond U(1) transformation, namely if the transfor-
mation of the original fields are

δΛℵµ = ∂µΛu(X) ,

δΛη = −Λu(X) ,
(A.31)

then the quantum field H̄ will transform as

δH̄ = −DρΛuY
ρ +O (ls) . (A.32)

It is then convenient to define a new field Ĥ as

Ĥ = H̄ + ℵµY µ , (A.33)

such that δĤ = O (ls), making it invariant under the Kalb-Ramond U(1)
transformation at the level of the action S̄0. By making use of this field
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redefinition, the action S̄0 is written as

S̄0 = −
∫
d2σe

4π

[
h̄µν∇̊αY

µ∇αY ν − Λ̄+e
β
−

(
∇̊βĤ + ∇̊β (τµY

µ)
)

−Λ̄−e
β
+

(
∇̊βĤ − ∇̊β (τµY

µ)
)]

−
∫
d2σe

4π

[
Λ̄+Y

ρ (Fµρ + bµρ) e
β
−∂βX

µ
0 − Λ̄−Y

ρ (Fµρ − bµρ) eβ+∂βX
µ
0

]
−
∫
d2σe

4π

[ (
γαβAσµν + εαβĀσµν

)
Y σ∇̊αY

µ∂βX
ν
0

+
1

2

(
∆λβFµν − Σλβbµν

)
Y µ∇̊αY

ν

]
−
∫
d2σe

4π

[ (
γαβCρσµν + εαβC̄ρσµν

)
Y ρY σ∂αX

µ
0 ∂βX

ν
0

+
(
∆λαBρσµ + ΣλαB̄ρσµ

)
Y ρY σ∂αX

µ
0

]
,

(A.34)

where the coefficients {A, Ā, C, C̄, B, B̄} are given by

Aσµν = 2D̊σh̄µν ,

Āσµν = Hσµν ,

Cρσµν =
1

2
D̊ρD̊σh̄µν + R̊λ

(ρσ)(µh̄ν)λ ,

C̄ρσµν =
1

2
D̊ρHσµν ,

Bρσµ =
1

2
D̊ρFσµ ,

B̄ρσµ = −1

2
D̊ρbσµ .

(A.35)

A.4 Deriving the beta functions

Making use of decomposition (2.59) and assuming we are working on the
critical spacetime dimension, the Weyl variation of the effective action can
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be written as (up to seond order in spacetime derivatives)

δψΓ̄[Ψ0](0) = δψ〈S1 + S̃1 + S2 + S̃2〉0 +
i

2
δψ〈
(
S̃1S̃1 + 2S̃1S1

)
+ S1S1〉0 ,

(A.36)

where we have also made use of the Ward identity∫
d2σJαIJ〈Y I(σ)∂αY

J(σ)〉 = −1

2

∫
d2σ〈Y I(σ)Y J(σ)〉∂αJαIJ , (A.37)

with JαIJ an arbitrary spacetime tensor introduced to move the disconnected
part of the variation to one order higher in derivatives. We will start by
computing the two-point correlations

δψ〈S1 + S2〉

= −
∫
d2σψ

4π

{[
−R̊µν +

(
1

2
D̊ · a+ a2

(
dc
4

+
3

4

))
h̄µν

]
γαβ∂αX

µ
0 ∂βX

ν
0

+

[
1

2
hρσD̊ρHσµν − D̊µeν +

dc + 2

4
aρh

ρσHσµν +
D̊λυ̂

λ

2
bµν

]
εαβ∂αX

µ
0 ∂βX

ν
0

+

[
1

2
D̊ · a+

(
dc
4

+
3

4

)
a2

]
τν∆λ

α∂αX
ν
0

+

[
−1

2
D̊ · e−

(
dc
4

+
3

4

)
a · e

]
τνΣλ

α∂αX
ν
0

}
+ . . .

(A.38)

where we have neglected terms that will not contribute to the final result,
” · ” denotes an inner product with respect to hρσ and where we have used
the identity

δψ

∫
d2σJIJ〈Y I(σ)Y J(σ)〉 =

∫
d2σJijδ

ijψ , (A.39)

with JIJ an arbitrary tensor, this last identity follows from the renormaliza-
tion of the propagators (2.58). In deriving (A.38) we have introduced a total
derivative1

∫
d2σ∂αe

α, made use of the Ward identity (A.37), the background
equation (A.20), the Bianchi identity

1If this total derivative is not included then the U(1) mass variation of the antisym-
metric beta function will not be zero but rather a total derivative, leaving the effective
action invariant but not the beta function itself.
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(
D̊µh̄σν + D̊ν h̄σµ − D̊σh̄µν + h̄µνaσ

)
hλσ = 0 , (A.40)

and the TNC identities

hρσ
(

1

2
D̊ρD̊σh̄µν − D̊ρD̊(µh̄ν)σ

)
=

1

2

(
D̊ · a+ a2

)
h̄µν + D̊(µh̄ν)σaρh

ρσ ,

hρσaσD̊µh̄νσ = (∆T )ρν D̊µaρ −
1

2
aµaν −

1

2
a2h̄µν ,

hρσR̊λ
(µν)ρh̄σλ = −R̊µν −

1

4
aµaν −

1

2
(∆S)λ(µ D̊ν)aλ ,

hρσυ̂λD̊ρh̄σλ = −D̊λυ̂
λ ,

(A.41)

where (∆T )ρµ and (∆S)ρµ are the usual TNC temporal and spatial projectors

(∆T )ρµ ≡ −υ̂
ρτµ ,

(∆S)ρµ ≡ hρλh̄λµ .
(A.42)

To compute the four point functions arising from 〈S1S1〉0 we will need
the non-vanishing four-point identities

δψ

∫
d2σd2σ′

2πi
JIJKL〈Y I∂αY

J(σ)Y K∂βY
L(σ′)〉 = −

∫
d2σψJijklδ

ikδjlγαβ ,

δψ

∫
d2σd2σ′

4πi
JIJ〈Λ+Y

I(σ)Λ−Y
J(σ′)〉 = −

∫
d2σψJijδ

ij ,

δψ

∫
d2σd2σ′JIJK〈Y Ieβ∓∂βY

J(σ)Λ±Y
K(σ′)〉 = c0

∫
d2σψ

Jiλj υ̂
λδij√

2Φ
,

(A.43)

with {JIJKL, JIJ , JIJK} arbitrary O (D2) tensors, c0 an arbitrary constant
and where the last identity is only true up to second order in spacetime
derivatives2. The presence of c0 might seem like a problem to the uniqueness
of the resulting beta functions, however by noting that the U(1) mass symme-
try is non-compatible with the derivative expansion3 we find that constants

2This identity can be derived through integration by parts and making use of propa-
gators (2.58).

3A U(1) mass transformation changes the O (D) of the actions S
[a]
0 .
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of the c0 type will be completely fixed by asking for U(1) mass invariance at
second order in covariant derivatives. The ambiguity in defining the O (D)
can also be seen from the two point function Ward identity (A.37) as well as
from the four point function identity∫

d2σd2σ′
(
V α

(IJ)V
β

(KL)

)
〈Y I(σ)∂αY

J(σ)Y K(σ′)∂βY
L(σ′)〉 = O

(
D3
)
,

(A.44)

with V α
IJ an arbitrary tensor. Making use of (A.43), it is found that

i

2
δψ〈S1S1〉 = −

∫
d2σψ

4π

[
1
4
Hρσ

µHρσν + c1 (∆T )λµ D̊νaρ − h̄µν
(
e2 +

a2

4

)
+

e2
(
2Φτµτν + h̄µν

)
− eµeν

2
+ c4eρh

ρσ (∆T )λµHνλσ

− a2Φτµτν

(
c1 +

5

2

)]
γαβ∂αX

µ
0 ∂βX

ν
0

−
∫
d2σψ

4π

[
−aρh

ρσHσµν

2
+

(
c3 −

1

2

)
aρh

ρσ (∆T )λµHσνλ

+ c2 (∆T )ρµ D̊νeρ + aµeν

]
εαβ∂αX

µ
0 ∂βX

ν
0

−
∫
d2σψ

4π

[(
c5a

2 + c6e
2
)

∆λα + (c7a · e) Σλα
]
τν∂αX

ν
0 .

(A.45)

To derive (A.45) we made use of the projected Bianchi identity(
D̊ρh̄σν − D̊σh̄ρν −

1

2
aρh̄σν +

1

2
aσh̄ρν

)
= 0 , (A.46)

the Bianchi identity (A.40), the TNC identities

hρσaσD̊µh̄νσ = (∆T )ρν D̊µaρ −
1

2
aµaν −

1

2
a2h̄µν ,

hρσeσD̊µh̄νσ = (∆T )ρν D̊µeρ −
1

2
eµaν −

1

2
(e · a) h̄µν ,

(A.47)
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and we have used the Ward identity (A.43) to introduce the O (D2) zeros∫
d2σ

4π

[(
aµaν − eµeν + (a2 − e2)

(
h̄µν + 2Φτµτν

)
2

)
γαβ

]
∂αX

µ
0 ∂βX

ν
0

(A.48)

+

∫
d2σ

4π

[
(aµeν) ε

αβ
]
∂αX

µ
0 ∂βX

ν
0 = O

(
D3
)
,∫

d2σ

4π

[
aµaν + a2

(
h̄µν + 2Φτµτν

)]
∂αX

µ
0 ∂

αXν
0 = O

(
D3
)
.

(A.49)

Following an analogous procedure we can compute the contributions from
S̃, in particular we find that

δψ

〈
S̃1 + S̃2 +

i

2
S̃1

(
S̃1 + S1

)〉
= −

∫
d2σψ

4π

[
(∆T )λµ D̊νaλ

2
+ c̃0Φ (a · e) τµτν

+ (c0 − 1) a2Φτµτν

]
∂αX

µ
0 ∂

αXν
0

−
∫
d2σψ

4π

[
−
aρh

ρσ (∆T )λµHσνλ

2

]
εαβ∂αX

µ
0 ∂βX

ν
0

−
∫
d2σψ

4π

[
a · e

4
Σλα − a2

4
∆λα

]
τν∂αX

ν
0 ,

(A.50)

where we have used the identities(
h̄ρσ − h̄ρλh̄σκhλκ

)
D̊µe

ρ
i D̊νe

σ
j δ

ij = −1

2
a2τµτνΦ ,(

δλσ − hλκh̄κσ
)
eρi D̊µe

σ
j δ

ij =
1

2
aσh

ρσ (∆T )λµ .
(A.51)

We can note that the analogous S̃ computation in the standard bosonic string
will result in a vanishing result, however in our case this is no longer true as
hρσh̄σλ 6= δρλ as well as due to the presence of a non-trivial coupling with the
Lagrange multipliers. Combining (A.38), (A.45), (A.50), and the classical
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dilaton contribution (A.22) results in the beta functions

βµ =

[
1

2
D̊ · a+

(
dc
4

+
1

2
+ c5

)
a2 + c6e

2 − a · D̊φ
]
τµ , (A.52)

β̄µ = −
[

1

2
D̊ · e +

(
dc
4

+
1

2
− c7

)
a · e− e · D̊φ

]
τµ , (A.53)

βµν = −R̊µν +
1

4
Hρσ

µHρσν +

[
1

2
D̊ · a+

(
dc
4

+
1

2

)
a2 − e2 − a · D̊φ

]
h̄µν

(A.54)

+ c4eρh
ρσ (∆T )λµHνλσ +

[
c̃0a · e +

(
c0 − c1 −

7

2

)
a2

]
Φτµτν

+

[
c1 +

1

2

]
(∆T )λµ D̊νaλ +

e2
(
2Φτµτν + h̄µν

)
− eµeν

2
− 2D̊µD̊νφ ,

β̄µν =
1

2
hρσD̊ρHσµν +

dc
4
aρh

ρσHσµν − D̊µeν + c2 (∆T )ρµ D̊νeρ + aµeν (A.55)

+
D̊λυ

λ

2
bµν + (c3 − 1) aρh

ρσ (∆T )λµHσνλ − (υ̂ρbµν + hρσHσµν) D̊ρφ .

The free coefficients in (A.52)-(A.55) can be fixed by asking for {β, β̄µ, βµν , β̄µν}
to be gauge invariant, this condition fixes the coefficients to c0 = 3, c̃0 =
0, c1 = −1

2
, c2 = 2, c3 = 1, c4 = −1, c5 = 0, c6 = −1, c7 = 1

2
resulting in the

beta functions (2.74)-(2.77) presented in the main text.
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Appendix B

TNC, SNC and Carrollian
identities

B.1 TNC identities

B.1.1 Geometric identities

The connection we use is

Γρµν = −υ̂ρ∂µτν +
1

2
hρσ
(
∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν

)
. (B.1)

Integration by parts is not as straightforward as in usual general relativity.
Instead we have

DµA
µ = e−1∂µ (eAµ)− aµAµ + 2AµDµφ , (B.2)

where Aµ is an arbitrary vector.
Many geometric identities can be derived from the completeness relation

− υ̂µτν + hµρh̄ρν = δµν . (B.3)

For example we can take the derivative of this relation and then multiply
with h̄. This gives

Dρh̄µν = 2τ(µh̄ν)λDρυ̂
λ − 2τµτνDρΦ , (B.4)

and

DσDρh̄µν = 2τ(µh̄ν)λDσDρυ̂
λ + 2τ(µD̄σhν)λDρυ̂

λ − 2τµτνDσDρΦ . (B.5)
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More useful identities can be derived by the definition of the connection:

hρσDσh̄µν = 4hρσFσ(µτν)Φ + 2τ(µDν)υ̂
ρ ,

υ̂ρDρυ
µ = hρσ (DσΦ + 2aσΦ) ,

hµρDρυ̂
ν = hνρDρυ̂

µ + 2ΦFρσh
µρhνσ .

(B.6)

B.1.2 Variational calculus

We choose the independent geometric fields to be hµν , υ̂µ and Φ. The varia-
tions of the dependant fields are given by

δh̄µν = −2τµτνδΦ + 2τ(µh̄ν)ρδυ̂
ρ − h̄µρh̄νσδhρσ ,

δτµ = τµτρδυ̂
ρ − h̄µρτσδ .

(B.7)

The variation of the measure is then

δe =
e

2

(
h̄ρσδh̄ρσ −

δΦ

Φ
− 4δφ

)
=
e

2

(
−h̄ρσδhρσ + 2τρδυ̂

ρ − 4δφ
)
. (B.8)

The variation of the acceleration is

δaµ = δυ̂ρFρµ + 2υ̂ρD[ρδτµ] − aµυ̂ρδτρ . (B.9)

The variation of the connection is

δΓρµν = −1

2
δυ̂ρFµν − υ̂ρDµδτν −

1

2
υ̂ρFµντσδυ̂

σ

+
1

2
hρσ
(
Dµδh̄νσ +Dνδh̄µσ −Dσδh̄µν

)
+

1

2
δhρσ

(
Dµh̄νσ +Dν h̄µσ −Dσh̄µν

)
− 2Φτ(µFν)σδh

ρσ − 2τ(µFν)σh
ρσδΦ− δτ(µFν)σh

ρσΦ + hρσh̄λ(µFν)σδυ̂
λ .

(B.10)

The Palatini identity in the presence of torsion is

δRµν = DρδΓ
ρ
νµ −DνδΓ

ρ
ρµ − 2Γσ[νρ]δΓ

ρ
σµ = DρδΓ

ρ
νµ −DνδΓ

ρ
ρµ + υ̂σFνρδΓ

ρ
σµ .

(B.11)
The indipendent matter fields are ℵµ, Bµν and φ. The variation of bµν is

δbµν = 2D[µδℵν] − 2Γρ[µν]δℵρ , (B.12)

so that the variation of the electric field is

δeµ = δυ̂ρbρµ + 2D[µδℵν] − 2υ̂νΓρ[µν]δℵρ , (B.13)
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while that of Hµνρ can be written as

δHρµν = 3D[ρδBµν] − 2Γσ[ρµ]δBνσ − 2Γσ[νρ]δBµσ − 2Γσ[µν]δBρσ . (B.14)

The Kalb-Ramond fields satisfy the usual Bianchi identities

dH = db = 0 . (B.15)

In the twistless case we have bµν = eµτν − eντµ, then we can express the
Bianchi identity in terms of eµ rather than bµν . We find

∂[ρbµν] = 2D[µeντρ] + 2a[µeντρ] = 0 . (B.16)

A similar identity can be derived for the acceleration, yielding

∂[ρFµν] = 2D[µaντρ] = 0 . (B.17)

B.2 Carroll identities

B.2.1 Geometric identities

The connection we utilize when varying the action is

Γρµν = −υρ∂µτ̂ν +
1

2
ĥρσ (∂µhνσ + ∂νhµσ − ∂σhµν) , (B.18)

from which we find the following identitiy

DµA
µ = e−1∂µ (eAµ)− aµAµ + 2AµDµφ , (B.19)

valid for any arbitrary vector Aµ. From the completeness relation and the
definition of the connection it is possible to derive the following identities:

Dρhµν = −Kρµτ̂ν −Kρν τ̂µ ,
Dµυ

ν = −ĥνρKρµ ,
υρDρυ

µ = 0 ,

(B.20)

where the extrinsic curvature was defined in the main text as

Kµν = −1

2
Lυhµν = −1

2
(υρ∂ρhµν + (∂µυ

ρ)hρν + (∂νυ
ρ)hµρ) . (B.21)
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B.2.2 Variational calculus

We will use ĥµν , υµ,Φ as indipendent geometric fields. The other geometric
fields are related to them via

δhµν = 2τ(µhν)ρδυ
ρ − hµρhνσδĥρσ ,

δτ̂µ = τµτρδυ
ρ − hµρτσδĥρσ ,

δh̄µν = δĥµν − 4Φυ(µδυν) − 2δΦ υµυν .

(B.22)

The variation of the measure is then

δe =
e

2

(
h̄ρσδh̄ρσ +

δΦ

Φ
− 4δφ

)
=
e

2

(
−hµνδĥµν + 2τ̂µδυ

µ − 4δφ
)
. (B.23)

The variation of the acceleration is

δaµ = δυρFρµ + 2υρD[ρδτ̂µ] − aµυρδτ̂ρ . (B.24)

The variation of the connection is

δΓρµν = −1

2
δυρFµν − υDµδτ̂ν −

1

2
υρFµν τ̂σδυ

σ + ĥρσhλ(µFν)σδυ
λ

+
1

2
ĥρσ (Dµδhνσ +Dνδhµσ −Dσδhµν) +

1

2
δĥρσ (Dµhνσ +Dνhµσ −Dσhµν) .

(B.25)

The Palatini identity is

δRµν = DρδΓ
ρ
νµ −DνδΓ

ρ
ρµ − 2Γσ[νρ]δΓ

ρ
σµ = DρδΓ

ρ
νµ −DνδΓ

ρ
ρµ + υσFνρδΓ

ρ
σµ .

(B.26)
The variations of the Kalb-Ramond matter fields are given by (B.12)-

(B.14).

B.3 SNC identities

B.3.1 Geometric identities

The connection is

Γρµν = −uρA∇µτν
A +

1

2
hρσ
(
Dµh̄νσ +Dν h̄µσ −Dσh̄µν

)
, (B.27)
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where we introduced the spin connection via

∇µτν
A = ∂µτν

A + Ωµ
ABτνB ≡ ∂µτν

A + ωµε
A
Bτν

B , (B.28)

and our convention for the longitudinal epsilon symbol is ε01 = +1. This
connection is boost invariant and compatible with hµν and τµ

A,

Dρh
µν = Dρτ

A
µ = 0 , (B.29)

where we are using the symbol D (not to be confused with the dimensionality
of spacetime) to denote the full covariant derivative, i.e.

Dµτν
A = ∂µτν

A − Γρµντρ
A + ωµε

A
Bτν

B = 0 . (B.30)

Integration by parts is then performed with the use of the identity

DµA
µ = e−1∂µ (eAµ)− aµAµ + 2AµDµφ , (B.31)

where we recall aµ = aµ
ABηAB.

From the completeness relation we find the following decomposition

Dρh̄µν = 2τ A
(µ h̄ν)σDρu

σ
A − τµAτνBDρΦAB . (B.32)

From the definition of the connection we find

hρσ
(
Dµh̄νσ +Dν h̄µσ −Dσh̄µν

)
= −2hρσF A

σ(µ τ B
ν) ΦAB . (B.33)

From the projections of this identity it follows that

hρ[µDρu
ν]
A =

1

2
F µνBΦBA (B.34)

and

uν (ADνu
µ
B) = hµν

(
a C
ν(A ΦB)C +

1

2
DνΦAB

)
. (B.35)

Since ΦAB is a 2× 2 symmetric matrix, we can write its inverse as

(Φ−1)AB =
ΦAB − ηABΦ

det Φ
, (B.36)

where det Φ = 1
2
εABεCDΦACΦBD and Φ = ΦA

A. Moreover, since the longitu-
dinal indices can only take two different values, we have that

T [αβγ... ] = 0 , (B.37)
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for any tensor T with three or more antisymmetrized longitudinal indices.
The field strength of τAµ can be decomposed as

Fµν
A = fAτµ

Bτν
CεBC + 2a[µ

BAτν]B + FµνA , (B.38)

with

uµAFµρB = 0, uµAaµ
BC = εABfC . (B.39)

B.3.2 Variational calculus

The independent fields are uµA, h
µν ,ΦAB and Bµν . They are related to the

other SNC fields via

δτµ
A = τµ

Bτρ
AδuρB − τρAh̄µσδhρσ ,

δh̄µν = 2τ(µ
Ah̄ν)ρu

ρ
A − h̄µρh̄νσδhρσ − τµAτνBδΦAB .

(B.40)

The variation of the connection is

δΓρµν = −uρA
(
Dµδτν

A + Γσ[µν]δτσ
A + εABτνBδωµ

)
− δuρAΓσ[µν]τσ

A

+ 1
2
hρσ
(
Dµδh̄νσ +Dνδh̄µσ −Dσδh̄µν

)
+ 1

2
δhρσ

(
Dµh̄νσ +Dν h̄µσ −Dσh̄µν

)
+ hρσ

(
Γλ[µσ]δh̄λν + Γλ[νσ]δh̄λµ

)
+ δhρσ

(
Γλ[µσ]h̄λν + Γλ[νσ]h̄λµ

)
.

(B.41)

The variation of the Ricci scalar can be found as usual through the Palatini
identity:

δRµν = DρδΓ
ρ
νµ −DνδΓ

ρ
ρµ − 2Γρ[νσ]δΓ

σ
ρµ

= DρδΓ
ρ
νµ −DνδΓ

ρ
ρµ − 2uρA∇[ντ

A
σ]δΓ

σ
ρµ .

(B.42)

The variation of the field strength of the B-field can be read off from
(B.14).

B.4 Actions in Einstein frame

In this section we will perform a conformal redefinition of the metric complex
to rewrite the non-relativistic string frame actions (3.50), (3.89), (3.102) and
(3.147) in Einstein frame.
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B.4.1 TNC

The action and equations of motion can be written in terms of the basic fields
hµν , v̂µ and Φ. The aforementioned fields transform as

hµν → e−αφhµν ,

υµ → e−αφυµ ,

Φ→ e−αφΦ ,

(B.43)

where e−αφ is the conformal factor and α ≡ 4
d−1

. Then, in Einstein frame,
the TNC action (3.50) can be rewritten as

S =

∫
ddx

√
det h̄µν

2Φ

[
R+

1

2
aµaµ +

1

2
e−2αφeµeµ − αDµφDµφ

− 1

12
e−2αφHµνρHµνρ −

1

2
e−2αφυ̂ρHρµνb

µν − 1

2

(
F µνFµν + e−2αφbµνbµν

)
Φ

]
.

(B.44)

B.4.2 Carroll

The action and equations of motion are written in terms of the basic fields
ĥµν , vµ and Φ. These fields transform as

ĥµν → e−αφĥµν ,

υµ → e−αφυµ ,

Φ→ e+αφΦ ,

(B.45)

where once again we have α ≡ 4
d−1

. In Einstein frame, the action (3.89) is

S =

∫
ddx

√
2Φ det h̄µν

[
R+

1

2
aµaµ +

1

2
e−2αφeµeµ − αDµφDµφ+ 2KυµDµΦ

+2Φ

(
KµνKµν −K2 + α υµDµφ υ

νDνφ+
1

4
e−2αφυρυσHµν

ρHµνσ

)
− 1

12
e−2αφHµνρH

µνρ +
1

2
e−2αφbµνHµνρυ

ρ

]
.

(B.46)
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Similarily we can transform the action (3.102):

S =

∫
ddx

√
2Φ det h̄µν

[
R̄+

1

2
aµaµ +

1

2
e−2αφeµeµ − α D̄µφD̄µφ

− 1

12
e−2αφHµνρH

µνρ +
1

2
e−2αφbµνυρHµνρ

]
.

(B.47)

B.4.3 SNC

The action and equations of motion can be written in terms of the basic fields
hµν , vµA and ΦAB, which transform as

hµν → e−αφhµν ,

uµA → e−αφuµA ,

ΦAB → e−αφΦAB ,

(B.48)

where now we have α ≡ 4
D

. The action (3.147) can be written in Einstein
frame as

S =

∫
dDx

√
det h̄µν
det ΦAB

[
R− aµAB(aµ(AB) −

1

2
ηABaµ) + aµaµ + α aµDµφ

+ α(α− 1)DµφDµφ−
1

2
F µνAFB

µν(ΦAB −
1

2
ηABΦ)

+
1

2
e−αφεABu

ρAF µνBHρµν −
1

12
e−2αφHρµνHρµν

]
.

(B.49)
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Appendix C

Non-relativistic
parametrizations of ExFT

C.1 Dimensional decomposition of non-relativistic

action for ExFT

Decomposition of R(0) Consider the part of the scalar curvature R(0) as
defined in (4.30) not involving the longitudinal metric, but just the trans-
verse metrics Ĥµ̂ν̂ and Ĥ µ̂ν̂ and the measure factor Ω̂. In the dimensional
decomposition used in exceptional field theory, the latter two factorise as

Ĥµ̂ν̂ = Uµ̂
ρ̂Uν̂

σ̂H̄ρ̂σ̂ , Ĥ µ̂ν̂ = (U−1)ρ̂
µ̂(U−1)σ̂

ν̂H̄ ρ̂σ̂ , (C.1)

with

Uµ̂
ν̂ =

(
δµ
ν Aµ

j

0 δi
j

)
, H̄µ̂ν̂ =

(
Gµν 0

0 Hij

)
, H̄ µ̂ν̂ =

(
Gµν 0

0 H ij

)
. (C.2)

Here Gµν is the inverse of Gµν , but H ij and Hij are not invertible. The idea

is to completely factor out the matrix U from derivatives of Ĝ. Defining

∂µ̂Ĥν̂ρ̂ = Uµ̂
σ̂Uν̂

λ̂Uρ̂
κ̂∂H σ̂λ̂κ̂ , ∂µ̂Ĥ

ν̂ρ̂ = Uµ̂
σ̂(U−1)λ̂

ν̂(U−1)κ̂
ρ̂∂hσ̂

λ̂κ̂ , (C.3)
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we have the relatively simple expressions

∂Hµν̂ρ̂ =

(
D̄µGνρ HklD̄µAν

l

HjlD̄µAρ
k D̄µHjk

)
,

∂H iν̂ρ̂ =

(
∂iGνρ Hkl∂iAν

l

Hjl∂iAρ
k ∂iHjk

)
,

∂Hµ
ν̂ρ̂ =

(
D̄µG

νρ −GνσD̄µAσ
k

−GρσD̄µAσ
j D̄µH

jk

)
,

∂H i
ν̂ρ̂ =

(
∂iG

νρ −Gνσ∂iAσ
k

−Gρσ∂iAσ
j ∂iH

jk

)
,

(C.4)

where D̄µ ≡ ∂µ − Aµ
i∂i. For instance, consider the following terms in the

scalar curvature:

1
4
H̄ µ̂ν̂∂H µ̂ρ̂σ̂∂H ν̂

ρ̂σ̂ − 1
2
H̄µν∂Hµ

ρσ∂Hρνσ . (C.5)

A fairly straightforward calculations shows that these equal

1
4
GµνDµGρσDνG

ρσ − 1
2
GµνDµG

ρσDρGνσ − 1
4
GµνGρσHijFµρ

iFνσ
j

+ 1
4
GµνDµHijDνH

ij + 1
4
H ij(∂iGρσ∂jG

ρσ + ∂iHkl∂jH
kl)− 1

2
H ij∂iH

kl∂kHjl

− 1
2
(δik +H ijHjk)D̄µAν

k∂iG
µν +GµνH ijHjk∂lAµ

k∂iAν
l ,

(C.6)

where Fµν
i ≡ 2D̄[µAν]

i, Dµ = ∂µ−LAµ , and acting on Gµν and Gµν , we have
Dµ = D̄µ.

Next, consider the part of R(0) that involves τ :

1
4
Ĥ µ̂ν̂∂µ̂τ̂ρ̂σ̂∂ν̂ τ̂

ρ̂σ̂ + 1
4
τ̂ µ̂ν̂∂µ̂τρ̂σ̂∂ν̂Ĥ

ρ̂σ̂ − 1
2
τ̂ µ̂ν̂∂ν̂H

ρ̂σ̂∂ρ̂τ̂µ̂σ̂ − 1
2
Ĥ µ̂ν̂∂ν̂ τ̂

ρ̂σ̂∂ρ̂τ̂µ̂σ̂ .
(C.7)

Similar calculations to above give

1
4
GµνDµτijDντ

ij + gµντ ikτkj∂iAµ
l∂lAν

j − 1
2
τ ikτkjD̄µAν

k∂iG
µν

+ 1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil − 1
2
H ij∂jτ

kl∂kτil .

(C.8)

The terms involving τ ikτkj on the first line here combine with the terms
involving H ikHkj in the last line of (C.6) and sum up to give δij = H ikHkj +
τ ikτkj, after which point the rest of the calculation proceeds identically to
that normally used in exceptional field theory.
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Finally one has the terms

− Ḡµ̂ν̂ ∂̄µ̂ ln Ω̂ ∂̄ν̂ ln Ω̂ + 2∂̄µ̂ ln Ω̂ ∂Gν̂
µ̂ν̂ − ∂µ̂∂ν̂Ĝµ̂ν̂ − Ĝµ̂ν̂∂µ̂∂ν̂ ln Ω̂ , (C.9)

where Ω̂ has weight 1, and in the final two terms ∂̄µ ≡ D̄µ, ∂̄i ≡ ∂i. Note

Dµ ln Ω̂ = D̄µ ln Ω̂ − ∂iAµ
i. We let Ω̂ = Ω

√
|G|, where Ω has weight 1

under internal diffeomorphisms. Straightforward manipulations allow one to
rewrite (C.9) in the decomposition and combine with (C.6) and (C.8) After
dropping a total derivative, the final result is:

R(0)(Ĥ, τ̂) = Rext(G) +R(0)(H, τ)− 1
4
Fµν

iFρσ
jGµρGνσHij

+ 1
4
Gµν(DµHijDνH

ij +DµτijDντ
ij +Dµ ln Ω2Dν ln Ω2)

+ 1
4
H ij(∂iGµν∂jG

µν + ∂iln |G|∂jln |G|) ,
(C.10)

where

Rext(g) =1
4
GµνDµGρσDνG

ρσ − 1
2
GµνDµG

ρσDρGνσ − 1
4
GµνDµ ln |G|Dν ln |G|

−Dµ ln |G|DνG
µν −GµνDµDν ln |G| −DµDνG

µν ,

(C.11)

R(0)(H, τ) = +1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil

+ 1
4
H ij∂iHkl∂jH

kl − 1
2
H ij∂jH

kl∂kHil − 1
4
H ij∂iln Ω2∂jln Ω2

− 1
2
H ij∂jτ

kl∂kτil − ∂iln Ω2∂jH
ij − ∂i∂jH ij −H ij∂i∂jln Ω2 .

(C.12)

The measure factor is Ω̂ = Ω
√
|G|. To obtain an Einstein frame action, we

let

Gµν = Ω
− 2

9−d gµν . (C.13)

Gauge fields The compact expressions (4.136) and (4.137) are equivalent
to

C µ̂ν̂ρ̂ = (U−1)λ̂1 µ̂(U−1)λ̂2 ν̂(U
−1)λ̂3 ρ̂Cλ̂1...λ̂3 ,

F µ̂ν̂ρ̂σ̂ = (U−1)λ̂1 µ̂(U−1)λ̂2 ν̂(U
−1)λ̂3 ρ̂(U

−1)λ̂4 σ̂Fλ̂1...λ̂4 ,
(C.14)
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giving in components

Cijk ≡ Cijk , Cµij ≡ Cµij − AµkCijk ,
Cµνi ≡ Cµνi − 2A[µ

jCν]ij + Aµ
jAν

kCijk ,

Cµνρ ≡ Cµνρ − 3A[µ
iCνρ]i + 3A[µ

iAν
jCρ]ij − AµiAνjAρkCijk ,

(C.15)

Fmnpq = 4∂[mCnpq] , F µmnp = DµCmnp − 3∂[mC |µ|np]

F µνmn = 2D[µCν]mn + F µν
pCpmn + 2∂[mC |µν|n] ,

F µνρm = 3D[µCνρ]m + 3F [µν
nCρ]mn − ∂mCµνρ ,

F µνρσ = 4D[µCνρσ] + 6F [µν
mCρσ]m ,

(C.16)

where Fµν
i is as defined in (4.135). The original Bianchi identity dF4 = 0

becomes a set of equations

DµFmnpq = 4∂[mF npq] ,
2D[µF ν]mnp = −3∂[m|F µν|np] − FµνqF qmnp ,
3D[µF νρ]mn = 2∂[m|F µνρ|n] + 3F[µν

pF ρ]pmn ,
4D[µF νρσ]m = −∂mF µνρσ + 6F[µν

pF ρσ]mp ,
5D[µF νρσλ] = 10F[µν

mF ρσλ]m .

(C.17)

The above formulae are applicable to any dimensional reduction. In partic-
ular for the 11-dimensional MNC theory they allow us to easily decompose
the terms in the action (4.34). For example, using the Einstein frame metric
to raise indices, the kinetic terms for the field strength are:

− 1
12
Ĥ µ̂1ν̂1Ĥ µ̂2ν̂2Ĥ µ̂3ν̂3 τ̂ µ̂4ν̂4Fµ̂1µ̂2µ̂3µ̂4Fν̂1ν̂2ν̂3ν̂4

= − 1
12

Ω6/(9−d)τ ijF µνρ
iF µνρj − 1

4
Ω4/(9−d)H ijτ klF µνikF

µν
jl

− 1
4
Ω2/(9−d)H ijHklτ pqF µikpF

ν
jlq − 1

4
H ijHklHmnτ pqF ikmpF jlnq .

(C.18)

Similar manipulations apply to the rest of the action. Let us also indicate
how the factorisation applies to an equation of the form ∂σ̂X

µ̂ν̂ρ̂σ̂ = Θµ̂ν̂ρ̂

where X has weight 1, and both X and Θ admit a factorisation via U−1 in
terms of quantities X̄ and Θ̄ independent of bare Aµ

i. This is of course the
form of the gauge field equation of motion (4.28). After decomposing, one
has the simple expression

DσX̄
µ̂ν̂ρ̂σ + ∂lX̄

µ̂ν̂ρ̂l + 3
2
Fκλ

lδ
[µ̂
l X̄

ν̂ρ̂]κλ = Θ̄µ̂ν̂ρ̂ . (C.19)
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Constraint The constraint (4.33) decomposes in terms of the redefined
strengths:

Ω
6

9−d gµ1ν1 . . . gµ4ν4F ν1...ν4 = − εµ1...µ4ν̂1...ν̂4ijkεABC
4!·6√g τi

Aτj
Bτk

CF ν̂1...ν̂4 ,

Ω
4

9−d gµ1ν1 . . . gµ3ν3H ijF ν1ν2ν3j = − εµ1...µ3iν̂1...ν̂4pqrεABC
4!·6√g τp

Aτq
Bτr

CF ν̂1...ν̂4 ,

Ω
2

9−d gµ1ν1gµ2ν2H i1j1H i2j2F ν1ν2j1j2 = − εµ1µ2i1i2ν̂1...ν̂4pqrεABC
4!·6√g τp

Aτq
Bτr

CF ν̂1...ν̂4 ,

gµ1ν1H i1j1 . . . H i3j3F νj1j2j3 = − εµi1...i3ν̂1...ν̂4pqr.εABC
4!·6√g τp

Aτq
Bτr

CF ν̂1...ν̂4 ,

Ω
− 2

9−dH i1j1 . . . H i4j4F j1j2j3j4 = − εi1...i4ν̂1...ν̂4pqrεABC
4!·6√g τp

Aτq
Bτr

CF̂ ν̂1...ν̂4 .

(C.20)

For instance, when d = 3 only the first of these is non-zero, giving:

√
gΩgµ1ν1 . . . gµ4ν4F ν1...ν4 = − 1

4!
εµ1...µ4ν1...ν4ijk 1

6
εABCτi

Aτj
Bτk

CF ν1...ν4 ,

= − 1
4!
εµ1...µ4ν1...ν4ΩF ν1...ν4 .

(C.21)

When d = 4 only the first two are non-zero:

√
gΩ

6
5 gµ1ν1 . . . gµ4ν4F ν1...ν4 = − 1

3!
εµ1...µ4ν1...ν3lijk 1

6
εABCτi

Aτj
Bτk

CF ν1ν2ν3l ,

√
gΩ

4
5 gµ1ν1 . . . gµ3ν3H ijF ν1ν2ν3j = − 1

4!
εµ1...µ3iν1...ν4pqr 1

6
εABCτp

Aτq
Bτr

CF ν1...ν4 ,

(C.22)

or if we take 1
6
εijklεABCτi

Aτj
Bτk

Chl = Ω these are

√
gΩ

1
5 gµ1ν1 . . . gµ4ν4F ν1...ν4 = 1

3!
ηεµ1...µ4ν1...ν3hlF ν1ν2ν3l ,

√
ggµ1ν1 . . . gµ3ν3H ijF ν1ν2ν3j = 1

4!
ηεµ1...µ3ν1...ν4hiΩ

1
5F ν1...ν4 .

(C.23)

Here H ij = hihj (as it has rank 1), and so both of these are equivalent.

Result Putting everything together, the dimensional decomposition of the
finite action S(0) is:

S(0) =

∫
d11−dx ddy

√
g(Rext(g) + Lkin + Lint + LF̃ +

√
g−1LCS) . (C.24)

165



APPENDIX C. NON-RELATIVISTIC PARAMETRIZATIONS OF EXFT

Here, using gµν to raise (11− d)-dimensional indices, we have

Rext(g) =
1

4
gµνDµgρσDνg

ρσ − 1

2
gµνDµg

ρσDρgνσ

+
1

4
gµνDµ ln gDν ln g +

1

2
Dµ ln gDνg

µν ,
(C.25)

Lkin = 1
4
(DµH

ijDµHij +Dµτ
ijDµτij − 1

9−dDµ ln Ω2Dµ ln Ω2)

+ 1
2
H ijF µiklεABCD

µτj
Aτ kBτ lC − 1

4
H ijHklτ pqF µikpF

µ
jlq

+ 1
4
Ω

2
9−d
(
− FµνiF µνjHij + F µνklF

µνmεABCτ
A
mτ

kBτ lC −H ijτ klF µνikF
µν
jl

)
− 1

12
Ω

4
9−d τ ijF µνρiF

µνρ
j + 1

2
Dµτk

AτA
kDµτl

BτB
l

(C.26)

and

Ω
2

9−dLint = 1
4
H ij (∂ig

µν∂jgµν + ∂i ln g∂j ln g) + 1
2
Ω

2
9−d∂i(H

ijΩ
− 2

9−d )∂j ln g

+ 1
4
H ij∂iτkl∂jτ

kl + 1
4
τ ij∂iτkl∂jH

kl − 1
2
τ ij∂jH

kl∂kτil

− 1
2
H ij∂jτ

kl∂kτil + 1
4
H ij∂iHkl∂jH

kl − 1
2
H ij∂jH

kl∂kHil

+ 1
4

d−7
(9−d)2

H ij∂i ln Ω2 ∂j ln Ω2 − 1
9−d∂i ln Ω2 ∂jH

ij

− 1
4
H ijHklHmnτ pqF ikmpF jlnq + 1

4
H imHjnF ijklεABCTmn

Aτ kBτ lC

+ 1
2
H ijTik

Aτ kATjl
Bτ lB .

(C.27)

The term LF̃ consists of a sum of contractions of F̃ µνρσ, F̃ µνρi, etc. (fol-
lowing analogous redefinition of the components) with the constraints as
decomposed in (C.20). For instance, when d = 3,

LF̃ = − 1
4!
F̃ µ1...µ4(

√
gΩgµ1ν1 . . . gµ4ν4F ν1...ν4 + 1

4!
εµ1...µ4ν1...ν4ΩF ν1...ν4) , (C.28)

In this case the relationship between the dual seven-form field strength and
F̃ µνρσ gives

1
6
εijkF µ1...µ4ijk = Ω(F̃ µ1...µ4 + 1

4!

√
gεµ1...µ4ν1...ν4F̃

ν1...ν4
) . (C.29)

When d = 4,

LF̃ = − 1
3!

(
F̃ µ1µ2µ3ih

i − Ω1/5ελ1...λ4σ1...σ3 1
4!

1√
g
gσ1µ1 . . . gσ3µ3F̃ λ1...λ4

)
×

×
(
√
gΩ

4
5 gµ1ν1 . . . gµ3ν3hjF ν1ν2ν3j − Ω 1

4!
εµ1...µ3ν1...ν4F ν1...ν4

)
,

(C.30)
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Using (4.54) we can rewrite (C.30) in terms of the dual seven-form field
strength directly as

LF̃ = εijkl

3!4!
F µ1...µ3ijkl

(
√
gΩ−

1
5 gµ1ν1 . . . gµ3ν3hjF ν1ν2ν3j − εµ1...µ3ν1...ν4

4!
F ν1...ν4

)
.

(C.31)
Finally, the Chern-Simons term can be worked out by taking wedge products
of (4.137) and (4.136), we do not display this explicitly.

C.2 The SL(5) ExFT and its non-relativistic

parametrisation

In the d = 4 case, more of the degenerate Newton-Cartan structure is pre-
served.

Elements of SL(5) ExFT For d = 4, generalised vectors V M = (V i, Vij)
transform in the 10 of SL(5), with i, j, . . . now four-dimensional. This rep-
resentation is the antisymmetric representation, and we can see this more
clearly as follows. Let M,N , . . . denote fundamental five-dimensional in-
dices of SL(5). Then we can equivalently write a generalised vector as car-
rying an antisymmetric pair of such indices, V M ≡ VMN = −V NM, and
on writing M = (i, 5) we can identify V i5 ≡ V i, and V ij ≡ 1

2
εijklVkl. The

generalised Lie derivative acting on vectors of weight λV is explicitly

LΛV
MN = 1

2
ΛPQ∂PQV

MN + 2∂PQΛP[MV N ]Q+ 1
2
(1 + λV +ω)∂PQΛPQVMN .

(C.32)
The section condition is εMNPQK∂MN∂PQ = 0, and below we work with
the M-theory solution, where splitting M = (i, 5) the derivatives ∂ij are
viewed as identically zero, and the derivatives ∂i5 are identified with the
4-dimensional partial derivatives.

In this case, the generalised metric admits a factorisation

MMN ,PQ = −(mMPmQN −mMQmPN ) , (C.33)

where the ‘little metric’ mMN is symmetric and has unit determinant. The
overall sign in this expression needed for the ExFT action to reproduce
SUGRA correctly when we include timelike signatures in the generalised
metric, according to the conventions of [76].
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The gauge fields, AµM , BµνM, CµνρM and DµνρσM have weights 1/5, 2/5,
3/5 and 4/5 respectively, with field strengths denoted FµνM , HµνρM, JµνρσN
and KµνρσλM . Under generalised diffeomorphisms, FM transforms as a gen-
eralised vector of weight 1/5, while H and J transform via the generalised
Lie derivative acting as

LΛHM = 1
2
ΛPQ∂PQHM +HP∂MQΛPQ ,

LΛJM = ∂PQ(1
2
ΛPQJM)− ∂PQΛPMJ Q .

(C.34)

They obey Bianchi identities:

3D[µFνρ]
MN = 1

2
εMNPQK∂PQHµνρK , (C.35)

4D[µHνρσ]M + 3
4
εMNPKLF[µν

NPFρσ]
KL = ∂NMJµνρσN , (C.36)

5D[µJνρσλ]
M + 10F[µν

MNHρσλ]N = 1
2
εMNPQK∂NPKµνρσλQK . (C.37)

The dynamics follow from the variation of an action S =
∫

d7x d10yLExFT

where LExFT has the same form as (4.148), with Rext again as defined in
(4.149), and [117]

Lkin = 1
12
DµMMNDµMMN − 1

4
MMNFµνMFµνN − 1

12
mMNHµνρMHµνρ

N ,
(C.38)

Lint(m, g) = 1
12
MMN∂MMKL∂NMKL − 1

2
MMN∂MMKL∂KMLN

+ 1
2
∂MMMN∂N ln |g|+ 1

4
MMN (∂Mgµν∂Ng

µν + ∂M ln |g|∂N ln |g|) .
(C.39)

The topological term can be defined via its variation (again up to a choice of
sign equivalent to changing the sign of Ĉ3 in eleven-dimensional SUGRA):

δLtop = −εµ1...µ7
6·4!

(
2δAµ1MNHµ2µ3µ4MHµ5µ6µ7N + 6Fµ1µ2MN∆Bµ3µ4MHµ5µ6µ7N

∂NM∆Cµ1µ2µ3NJµ4...µ7M
)
.

(C.40)

We refer to the original paper [117] or the review [118] for explicit details.
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Review of 11-dimensional SUGRA embedding We start with the
little metric, mMN . The parametrisation reproducing (4.138) is

mMN = |φ|1/10

(
|φ|−1/2φij −|φ|−1/2φikĈ

k

−|φ|−1/2φjkĈ
k
|φ|1/2(−1)t + |φ|−1/2φklĈ

k
Ĉ
l

)
,

Ĉ
i
≡ 1

3!
εijklĈjkl .

(C.41)

For the gauge fields, we can again identify AMµ = (Aµ
i, Ĉµij). However, we

already require dualisations when treating the two-forms. We get four 7-
dimensional two-forms, Ĉµνi and a single three-form Ĉµνρ. The latter can

be dualised into an extra two-form, C̃µν (identifiable with the components

Ĉµνijkl of the six-form in eleven-dimensions) such that BµνM ∼ (Ĉµνi, C̃µν)
gives a five-dimensional representation of SL(5). Meanwhile, we can view
Ĉµνρ together with the four four-forms Ĉµνρijk as comprising the conjugate
five-dimensional representation. The equations of motion of the SL(5) ExFT
then imply that the field strengths of these two- and three-forms are related
by duality. This involves the seven-dimensional Hodge star acting on the
seven-dimensional indices and the generalised metric acting on the SL(5)
indices: √

|g|mMPHµνρ
P = − 1

4!
εµνρσ1...σ4Jσ1...σ4M . (C.42)

Again, the field strengths are all tensors under generalised diffeomorphisms,
we may make the (usual) identifications consistent with the Bianchi identities
[118]

Fµνi5 = Fµν
i , Fµνij = 1

2
εijkl(F̂ µνkl − ĈklmF̂ µν

m) ,

Hµνρi = −F̂ µνρi , Hµνρ5 = − 1
4!
εijkl(F̂ µνρijkl − 4F̂ µνρiĈjkl) ,

Jµνρσ5 = −F̂ µνρσ , Jµνρσi = + 1
3!
εijkl(F̂ µνρσjkl − ĈjklF̂ µνρσ) .

(C.43)

Generalised metric The distinction between Riemannian and non-Riemannian
parametrisations can be seen at the level of the unit-determinant five-by-five
little generalised metric. For an M-theory parametrisation, this can be writ-
ten as:

mMN =

(
mij mi5

mj5 m55

)
, m55 det(mij)− 1

6
mi5mj5ε

iklmεjpqrmkpmlqmmr = 1 .

(C.44)
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If det(mij) 6= 0 this leads to the Riemannian parametrisation (C.41) en-

coding a four-dimensional metric, gij, and a three-form, Ĉijk. However, we
can also have det(mij) = 0 with mij of rank 3 and this leads to a non-
Riemannian parametrisation which was worked out in [76]. We can redis-
cover this parametrisation by taking the non-relativistic limit of (C.41) using
(4.160). The resulting expression for mMN is

mMN = Ω−4/5×(
τij

εklmnεABC
6

Hikτl
Aτm

Bτn
C − τikCk

εklmnεABC
6

Hjkτl
Aτm

Bτn
C − τjkCk τijC

iCj − εjklmεABC
3

Hijτk
Aτl

Bτm
CCi

)
,

(C.45)

in terms of four-dimensional Newton-Cartan variables and Ci ≡ 1
3!
εijklCjkl.

The unit determinant constraint implies that

− 1
3!
εi1...i4εj1...j4τi1j1τi2j2τi3j3Hi4j4 = Ω2 , (C.46)

which is the definition of Ω2 in this case. As Hij has rank 1, we can introduce
a projective vielbein hi such that Hij = hihj and we take

1
6
εijklεABCτi

Aτj
Bτk

Chl = Ω , (C.47)

choosing to fix an arbitrary sign (by sending τi
A → −τiA if necessary) which

could appear here (Ω is assumed positive). Then (C.45) can be written as

mMN = Ω−4/5

(
τij −Ωhi − τikCk

−Ωhj − τjkCk τijC
iCj + 2ΩhiC

i

)
, (C.48)

which in this form can be checked to correspond to the parametrisation writ-
ten down in [76] from first principles. Note that the boost invariance, acting
as

δhi = hjΛj
AτiA , δCi = −ΩΛj

Ahjτ iA , τ iAΛi
B = 0 , (C.49)

corresponds to a shift symmetry of the parametrisation (C.48) pointed out in
[76]. This generalises the Milne shift redundancy of the DFT non-Riemannian
parametrisation [66]. Here we introduced the inverse vielbeins hi and τ iA
obeying the obvious relations

hih
i = 1 , τ iAτj

A + hihj = δij , τ iAhi = 0 τi
Ahi = 0 , τ iAτi

B = δBA .
(C.50)
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The generalised metric in the 10× 10 representation followng from the little
metric (C.45) can be seen to take the form (4.161), after rewriting in the
basis where generalised indices run over vector and two-form indices, and
using the identities

εi1...i3kεj1...j3lτkl = −3!Ω2
(
τ j1[i1τ i2|j2|H i3]j3 + τ j2[i1τ i2|j3|H i3]j1

+ τ j3[i1τ i2|j1|H i3]j2
)
,

εi1...i3kεj1...j3lHkl = −3!Ω2τ i1[j1|τ i2|j2|τ i3|j3] .

(C.51)

It is useful to record the explicit expression for the inverse little metric:

mMN = Ω4/5

(
τ ij − 2Ω−1h(iCj) −Ω−1hi

−Ω−1hj 0

)
. (C.52)

Clearly, variations δmMN with δm55 6= 0 do not preserve this parametrisa-
tion. This means that if we look at the equations of motion RMN = 0 of the
generalised metric, we expect that R55 = 0 provides an additional equation
of motion that we would not find by varying the action evaluated on the
non-relativistic parametrisation.

Field strengths and self-duality in SL(5) ExFT Our field strengths
(C.43) are now

Fµνi5 = Fµν
i , Fµνij = 1

2
εijkl(F µνkl −CklmF µν

m) ,

Hµνρi = −F µνρi , Hµνρ5 = − 1
4!
εijkl(F µνρijkl − 4F µνρiCjkl) ,

Jµνρσ5 = −F µνρσ , Jµνρσi = + 1
3!
εijkl(F µνρσjkl −CjklF µνρσ) .

(C.53)

The kinetic terms (C.38) in the SL(5) ExFT action are:

− 1
4
MMNFµνMFµνN − 1

12
mMNHµνρ

MHµνρN

= −1
4
Ω2/5

(
HijF

µνiFµν
j − εABCτiAτBjτCkF µνiF µνjk + τ iCτ

jCHklF µν
ikF µνjl

)
− 1

12
Ω4/5τ ijF µνρ

iF µνρj + 1
6
Ω−1/5hiF µνρ

i
1
4!
εjklmF µνρjklm ,

(C.54)

which match exactly the corresponding terms in (C.26) and (C.30), including
the appearance of components of the dual seven-form field strength.

We see again that the ExFT description automatically contains the cor-
rect dual fields to reproduce the non-relativistic action immediately. It’s
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worthwhile to go into some detail about the appearance of dual fields in
the relativistic case. As mentioned above, the decomposition of the 11-
dimensional three-form in the (7 + 4)-dimensional split produces four two-
forms, Ĉµνi and a single three-form, Ĉµνρ. We exchange the latter for an

additional two-form, Ĉµν , in order to obtain the five-dimensional SL(5) multi-

plet BµνM = (Ĉµνi, Ĉµν). This is normally done by introducing the two-form
into the action as a Lagrange multiplier enforcing the Bianchi identity for
F̂ µνρσ. When this is done, the terms involving F̂ 4 in the action are schemat-

ically F̂ 4 ∧ ?7F̂ 4 − Ĉ2 ∧ (dF̂ 4 + . . . ) + F̂ 4 ∧X3, where X3 denotes whatever
appears alongside F̂ 4 in the decomposition of the Chern-Simons term. In-
tegrating by parts one defines a field strength H3 ∼ dĈ2 + X3 and treating
F̂ 4 then as an independent field, one can integrate that out of the action to
produce a kinetic term for H3. The latter is then the M = 5 component of
the ExFT field strength HµνρM, and in this way the ExFT action matches
the partially dualised SUGRA action.

In the non-relativistic theory, there is already no kinetic term for F 4 in
the decomposed action, as seen from (C.26). It only appears (linearly) in the

constraint term (C.30), schematically in the form F 4∧(?7F̃ 4 + F̃ 3ih
i). So in-

stead if we carry out the same procedure, we find that F 4 equation of motion
sets H3 = ?7F̃ 4 + F̃ 3ih

i, which in this case exactly corresponds to the rela-
tionship between the dual seven-form and F̃4 as expressed by (4.54). Hence
now it is this H3 that we identify with Hµνρijkl via the above arguments. All
this exactly mirrors what happened for the SL(3)× SL(2) case.

We finish with a brief look at the equations of motion. The field strength
Jµνρσ of the gauge field Cµνρ only appears in the topological term. This gauge
field also appears in the field strength Hµνρ. Its equation of motion has the
form ∂MN θ

µνρN = 0 where

θµνρM ≡ √gmMPHµνρ
P + 1

4!
εµνρσ1...σ4Jσ1...σ4M . (C.55)

Meanwhile the equation of motion of BµνM is

0 = Dρ(
√
gmMNHµνρ

N ) + 1
8
εMPQKL∂PQ(

√
gMKL,K′L′FµνK

′L′)

− 2
4!
εµνλ1...λ5Fλ1λ2MNHλ3...λ5N .

(C.56)

TheM = 5 component combines with theM = 5 component of the Bianchi
identity (C.37) to give Dρθµνρ5 = 0. Hence we integrate and set θµνρM = 0.
Let’s examine the content of this constraint. Firstly, the θµνρ5 component
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implies
Ω−1/5√ghjF µνρ

j − 1
4!
εµνρσ1...σ4F σ1...σ4 = 0 . (C.57)

This is the 11-dimensional self-duality constraint (4.33) on the transverse
part of the four-form field strength, here decomposed as in (C.22). Secondly,
setting θµνρi − Ciθµνρ5 = 0 and projecting gives

√
gΩ−1/5F µνρ

ijkl + 1
4!
εµνρσ1...σ44h[i|F σ1...σ4|jkl] = 0 ,

√
gΩ4/5τ iAF µνρ

i − 1
4!
εµνρσ1...σ4τAi

1
3!
εijklF σ1...σ4jkl = 0 .

(C.58)

The first of these is part of the self-duality condition (4.55) obeyed by the
totally longitudinal part of the dual-seven form. The second is part of the
duality between the partly longitudinal four-form and the rest of the seven-
form. We see again that the ExFT rearrangement of degrees of freedom
exactly captures the novel features of the eleven-dimensional non-relativistic
limit.
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pedagogical review, Classical and Quantum Gravity 30 (2013) 163001.

[81] J.-H. Park and S. Sugimoto, String Theory and non-Riemannian
Geometry, Phys. Rev. Lett. 125 (2020) 211601 [2008.03084].

[82] J.-H. Park, O(D,D) completion of the Einstein Field Equations, PoS
CORFU2018 (2019) 145 [1904.04705].

[83] K. Cho and J.-H. Park, Remarks on the non-Riemannian sector in
Double Field Theory, Eur. Phys. J. C 80 (2020) 101 [1909.10711].

[84] J.-H. Park, Stringy differential geometry for double field theory,
beyond Riemann, Phys. Part. Nucl. 43 (2012) 635.

181

https://doi.org/10.1103/PhysRevD.48.2826
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://doi.org/10.1007/JHEP11(2015)131
https://doi.org/10.1007/JHEP11(2015)131
https://arxiv.org/abs/1507.07545
https://doi.org/10.1140/epjc/s10052-018-5982-y
https://arxiv.org/abs/1804.00964
https://doi.org/10.1007/JHEP12(2015)144
https://arxiv.org/abs/1508.01121
https://doi.org/10.1007/JHEP07(2019)175
https://arxiv.org/abs/1902.01867
https://doi.org/10.1007/JHEP03(2020)181
https://arxiv.org/abs/1912.03181
https://doi.org/10.1007/JHEP05(2012)126
https://arxiv.org/abs/1112.5296
https://doi.org/10.1103/PhysRevD.84.044022
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1103/PhysRevLett.125.211601
https://arxiv.org/abs/2008.03084
https://doi.org/10.22323/1.347.0145
https://doi.org/10.22323/1.347.0145
https://arxiv.org/abs/1904.04705
https://doi.org/10.1140/epjc/s10052-020-7648-9
https://arxiv.org/abs/1909.10711
https://doi.org/10.1134/S1063779612050309


BIBLIOGRAPHY

[85] C. D. A. Blair, G. Oling and J.-H. Park, Non-Riemannian isometries
from double field theory, JHEP 04 (2021) 072 [2012.07766].

[86] A. N. Bernal and M. Sanchez, Leibnizian, Galilean and Newtonian
structures of space-time, J. Math. Phys. 44 (2003) 1129
[gr-qc/0211030].

[87] X. Bekaert and K. Morand, Connections and dynamical trajectories
in generalised Newton-Cartan gravity I. An intrinsic view, J. Math.
Phys. 57 (2016) 022507 [1412.8212].

[88] J.-M. Levy-Leblond, Une nouvelle limite non-relativiste du groupe de
poincare, Annales de l’I.H.P. Physique théorique 3 (1965) 1.
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