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Abstract

Event-by-event flow harmonics are studied for PbPb collisions at
√

sNN = 5.02 TeV
using the CMS detector at the LHC. Flow harmonic probability distributions p (v2)
are obtained using particles of 0.3 ≤ pT ≤ 3.0 GeV/c and |η| ≤ 1.0 and are unfolded
to remove smearing effects from observed azimuthal particle distributions. Cumu-
lant flow harmonics are determined from the moments of p (v2) and used to estimate
the standardized elliptic flow skewness in 5% wide centrality bins up to 60%. Hy-
drodynamic models predict that flow fluctuations will lead to a non-Gaussian com-
ponent in the flow distributions with a negative skew with respect to the reaction
plane. A significant negative skewness is observed for all centrality bins as evidenced
by a splitting between v2 {4} and v2 {6} cumulants. In addition, elliptic power law
distribution fits are made to the p (v2) distributions to infer information on the na-
ture of initial-state eccentricity distributions. The elliptic power law parametrization
is found to provide a more accurate description of the fluctuations than the Bessel-
Gaussian parametrization.
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1 Introduction
Ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC) create a hot, dense state of matter that consists of strongly-
interacting quarks and gluons, the so-called Quark-Gluon Plasma (QGP) [1–6]. The QGP is
found to behave as a nearly perfect fluid with a shear viscosity to entropy density ratio η/s that
is on the order of the lowest possible value for a quantum fluid [7]. The fluid-like properties
of the QGP are inferred from studies of its collective phenomena, which are described well by
hydrodynamic models [8]. Large pressure gradients from strong interactions and subsequent
hydrodynamic evolution result in the transfer of asymmetries in the initial-state collision ge-
ometry to a final-state anisotropy in momentum space for the emitted particles [9, 10]. While
the presence of a non-zero viscosity will degrade the correspondence between initial- and final-
state anisotropies [7, 8], studies of the azimuthal anisotropy of outgoing particle densities make
it possible to infer properties of the initial state of the medium as well as its transport properties
during its time evolution.

Within the Glauber model [11], the initial geometry of the medium can be expressed by a cu-
mulant expansion of the density distribution [12], where amplitudes εn and phases Φn of the
leading terms are given by

ε1eiΦ1 ≡ −
{

r3eiϕ}
{r3} , ε2e2iΦ1 ≡ −

{
r2e2iϕ}
{r2} , and ε3e3iΦ1 ≡ −

{
r3e3iϕ}
{r3} , (1)

where the curly brackets denote averages over the transverse plane in a single event. While the
overlapping geometry of the two nucleons results in a dominant impact-parameter dependent
elliptic (n = 2) term for non-central collisions, quantum fluctuations of the transverse geometry
of the participant nucleons and their substructures cause eccentricity fluctuations on an event-
by-event basis [10, 13, 14].

Anisotropies in the initial-state density distribution can result in an azimuthally anisotropic
distribution of outgoing particles, with
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In the Fourier expansion, vobs
n and Ψobs

n denote the nth order observed flow harmonic and the
event plane angle, respectively. Viscous hydrodynamic calculations suggest that the vn coef-
ficients scale linearly with εn for n ≤ 3 with proportionality constants that are sensitive to
properties of the medium such as the equation of state and η/s [15–17].

For central to mid-central collisions, fluctuations in the participant eccentricity can be described
by a two-dimensional (2D) Gaussian function [13], with

p (~εn) =
1

2πδ2
εn

exp
[
−
(
~εn −~εRP

n

)
/
(
2δ2

εn

)]
. (3)

Here~εRP
n represents the underlying eccentricity vector that is associated with the average ge-

ometry of the collision in the reaction plane and δεn quantifies the fluctuation induced “width”
of the distribution. If the flow response depends linearly on the participant eccentricity, the
fluctuations of the flow vectors can be similarly described by a 2D Gaussian, with
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p (~vn) =
1

2πδ2
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n

)
/
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vn
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, (4)

where ~vRP
n and δvn are flow analogs to the geometry parametrization described in Eq. 3. The

probability distribution of the magnitude of flow is obtained by integrating out the φ-dependence
of Eq. 4 [13, 18], leading to
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I0

(
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δ2

vn

)
, (5)

where I0 is the modified Bessel function of the first kind. This functional form is known as a
Bessel-Gaussian.

Historically, properties of p (vn) have been inferred from studies using event-averaged values.
For example, m-particle correlations are commonly used in flow analyses to measure multi-
particle cumulants [19–21]. Flow harmonics based on cumulants are calculated by

vn {2}2 ≡ 〈v2
n〉,

vn {4}4 ≡ −〈v4
n〉+ 2〈v2

n〉2,

vn {6}6 ≡
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〈v6

n〉 − 9〈v4
n〉〈v2

n〉+ 12〈v2
n〉3
)

/4,

vn {8}8 ≡ −
(
〈v8

n〉 − 16〈v6
n〉〈v2

n〉 − 18〈v4
n〉2 + 144〈v4

n〉〈v2
n〉2 − 144〈v2

n〉4
)

/33

...

(6)

where 〈v2k
n 〉 denotes the cosine average of the azimuthal angle of all combinations of m = 2k

particles,

〈v2k
n 〉 =

〈
cos

k

∑
j=1

n
(
φ2j − φ2j−1

)〉
≡
∫

v2k
n p (vn) dvn. (7)

The measured cumulants each have varying sensitivity to “non-flow” correlations such as res-
onance decays and di-jet correlations. The cumulants are constructed such that higher-orders
(k > 1) suppress effects from non-flow as well as fluctuations [22]. In the absence of non-
flow, 〈v2k

n 〉 is equivalent to the corresponding moment of p (vn), for all k values. If p (vn) is a
Bessel-Gaussian, as shown in Eq. 4, then the cumulants have the form [23]:

vn {2k} =
{ √

(vRP
n )

2 + 2δ2
vn

k = 1
vRP

n k > 1
. (8)

Recently, the ATLAS collaboration introduced a new experimental method to extract p (vn) di-
rectly using an unfolding technique [24], allowing for detailed studies of the behavior of flow
(and ultimately geometry) fluctuations through precise extraction of the cumulants. The ob-
servation that vn {4} ≈ vn {6} ≈ vn {8} in PbPb collisions suggests that the flow fluctuations
are Gaussian in nature [13, 25–27]. However, there is great interest in the field to observe a
breakdown in the Gaussian model of fluctuations, as this is predicted by hydrodynamic mod-
els [28, 29]. A fine-structure splitting between vn {4} and vn {6} has been observed by ATLAS
based on direct m-particle cumulant measurements [27].
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In a recent publication [28], non-Gaussian fluctuations are found to lead to a negative skewness
of p (v2) that results from the conditions that εRP

2 < 1 and that the flow response is linear. The
standardized skewness used to express this deviation from a Gaussian behavior is a dimen-
sionless quantity and, for elliptic flow, can be expressed as

γ1 ≡

〈(
vRP

2 −
〈
vRP

2
〉)3
〉

(√〈(
vRP

2

)2
〉
−
〈
vRP

2

〉2
)3 , (9)

where the flow harmonics are determined with respect to the “true” reaction plane, which is
the angle defined by the shortest distance between the centers of the two colliding nuclei. Since
the actual reaction plane is not experimentally accessible, it was proposed in reference [28] to
estimate the standardized skewness of Eq. 9 in terms of the multi-particle cumulants, with

γ
exp
1 ≡ −6

√
2v2 {4}2 v2 {4} − v2 {6}(

v2 {2}2 − v2 {4}2
)3/2 . (10)

Precision measurements of cumulant flow harmonics and the corresponding standardized skew-
ness are presented based on the event-by-event unfolding technique in PbPb collisions at

√
sNN =

5.02 TeV. Distributions are determined for 5% wide centrality bins, each with an integrated η
(pT) range |η| ≤ 1.0 (0.3 ≤ pT ≤ 3.0 GeV/c) where η ≡ − ln tan θ/2.

2 The CMS Detector
The key feature of the Compact Muon Solenoid (CMS) detector is its 6 m internal diameter
superconducting solenoid capable of producing magnetic fields up to 3.8 T. Located within the
solenoid is the silicon tracker that consists of 1440 silicon pixel and 15 148 silicon strip modules.
The tracker is used to measure charged particles with extreme precision in the eta range of
|η| ≤ 2.5. For non-isolated particles of 1 < pT < 10 GeV and |η| < 1.4, the track resolutions are
typically 1.5% in pT and 25–90 (45–150) µm in the transverse (longitudinal) impact parameter
[30]. Beyond the tracker is a lead tungstate crystal electromagnetic calorimeter (ECAL). that
consists of barrel and endcap regions that provide coverage up to |η| ≤ 3.0. Beyond ECAL
is a brass scintillator hadron calorimeter (HCAL) that consists of barrel and endcap regions
that provide the same η-coverage. CMS also has forward hadron calorimetry (HF) with quartz
fibers read out by photomultipliers included to extend the coverage of the barrel and endcap
calorimeters to |η| ≤ 5.2. Calorimeter cells are grouped in projective towers of granularity in
pseudorapidity and azimuthal angle given by ∆η × ∆φ = 0.087× 0.087. More information on
the technical aspects of the CMS detector and its coordinate system can be found in Ref. [31].

3 Event and Track Selection
The minimum-bias trigger used in this analysis is triggered by coincident signals from both
ends of the CMS detector using the HF detectors. In addition, the trigger is required to be in
coincidence with the presence of both colliding bunches at the interaction point. This require-
ment largely suppresses events due to noise (e.g cosmic rays, double-firing triggers, and beam
backgrounds). The minimum bias trigger is fully efficient for the centrality range 0-90%.
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Events are further selected offline by requiring at least three hits in both HF calorimeters with at
least 3 GeV of energy in each cluster. Events are also required to have a reconstructed primary
vertex, containing at least two tracks, located within 15 cm of the nominal collision point along
the beam axis. In addition, vertices are filtered on their pixel cluster compatibility. This filter
removes the bottom percent of vertices with poor compatibility and suppresses contamination
from pileup events.

Tracks are required to be compatible with the primary vertex, having a longitudinal association
significance (dz/σdz ) and impact parameter significance (d0/σd0) less than three. In addition,
the relative error for the pT of each track, σpT /pT, is required to be less than 10% and tracks
are required to have at least 11 hits along their trajectory in the pixel and strip trackers. To
reduce the number of misidentified tracks, the χ2 of the track’s fit divided by the total number
of degrees of freedom and the total number of layers with hits along the track’s trajectory must
be less that 0.15.

Tracking performance is evaluated in terms of tracking efficiency, fake reconstruction rates,
and multiple reconstruction rates in different centrality, pT, and η ranges. To determine the
tracking performance, a large sample of PYTHIA + HYDJET [32, 33] events were generated
and propagated through a GEANT4 simulation [34]. Primary track reconstruction has a com-
bined geometric acceptance and efficiency exceeding 60% for pT ≈ 1.0 GeV/c and |η| < 1.0.
When track pT is below 1 GeV/c, the acceptance and efficiency steadily drops, reaching ap-
proximately 40% at pT ≈ 0.3 GeV/c. The efficiency is not strongly dependent on centrality and
the rate of misidentified tracks is smaller than 8% for the most central events.

4 Analysis Technique
4.1 Event-by-Event Flow Observables

In any given collision, the number of particles emitted is finite and the vn coefficients can only
be estimated. These estimates are made by:

vraw
n,x = |~vraw

n | cos nΨraw
n = 〈cos nφ〉,

vraw
n,y = |~vraw

n | sin nΨraw
n = 〈sin nφ〉,

|~vraw
n | =

√(
vraw

n,x
)2

+
(

vraw
n,y

)2
,

(11)

where 〈. . . 〉 denotes an average over all particles in a given range of phase space. In the limit
of large particle multiplicities, and in absence of non-flow, the event-estimated flow values ap-
proach the true flow values for each event. Events are split into different centrality classes and
the estimated flow values are used to construct “observed” event-by-event p

(
vobs

n
)

distribu-
tions in each class.

Potential biases from non-uniform detector acceptance must be properly accounted for when
calculating event-by-event observed flow vectors. To recover first-order effects that arise with
non-uniform detector acceptances, tracks are weighted by their tracking efficiencies. In doing
so, Eq. 11 becomes:

vraw
n,x =

∑i wi cos nφ

∑i wi
,

vraw
n,y =

∑i wi sin nφ

∑i wi

(12)
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where wi = 1/ε (pT, η) are the inverse tracking efficiencies for each track. In addition to track
reweighting, a standard recentering procedure [35] is applied to each event class to further
suppress non-uniform detector acceptance biases. In the recentering technique, an average
flow vector~vdet

n is calculated over all events in a given centrality class and then subtracted from
the raw flow vectors (Eq. 12) on an event-by-event basis:

~vdet
n =

∑Events~vraw
n

NEvents
,

~vobs
n = ~vraw

n −~vdet
n .

(13)

Finite particle multiplicities result in a statistical smearing of ~vobs
n about the true underlying ~vn

on an event-by-event basis. This, in turn, results in a p
(
~vobs

n
)

that is statistically smeared about
a true underlying p (~vn). It is of interest to remove the smearing effects from the observed
distributions to allow for detailed studies of event-by-event fluctuations in the vn coefficients.
This analysis uses unfolding to remove the smearing effects from p

(
vobs

n
)

and obtain p (vn)
directly. Details of this unfolding technique are discussed in Sec. 4.3.

4.2 The Response Function

The event-by-event observed flow vectors are statistically smeared about the true underlying
event flow vectors by a 2D response function p

(
~vobs

n |~vn
)
. The response function is a conditional

probability measuring the probability that, for a given event, one observes a flow vector ~vobs
n

when the underlying flow vector is ~vn. The distribution of event-by-event observed flow vec-
tors can be expressed as a convolution of the true underlying distribution of flow vectors and
the response function:

p
(
~vobs

n

)
= p

(
~vobs

n |~vn

)
× p (~vn) . (14)

In heavy-ion experiments it is typical to work with flow vector magnitudes and binned data
and the convolution can be rewritten as:

p
(

vobs
n,i |vn,j

)
× p

(
vn,j
)
= p

(
vobs

n,i

)
, (15)

where p
(

vobs
n,i |vn,j

)
corresponds to the response matrix. The response matrix can be used to

remove the smearing effects from p
(

vobs
n,i

)
using D’Agostini iteration unfolding [36–38].

A critical step in this analysis is determining the correct response matrix to unfold the smearing
effects from the observed p

(
vobs

n
)

distribution. A data-driven technique to build the response
matrix was introduced by the ATLAS collaboration in Ref. [24] which is utilized in this analysis.
This technique works for symmetric collisions such as the PbPb collisions studied at the LHC.

For a given class of events, tracks are split into two symmetric subevents. Tracks are measured
by the silicon tracker and subevents are chosen based on track η. All tracks with η > 0 fall
in subevent a while all tracks with η < 0 fall in subevent b. For each subevent, flow vectors
are calculated using Eqs. 12 and 13 and p

(
~vobs

n
)

distributions are built. On average, vn (η) is
symmetric about η = 0, and the physical flow signal cancels in the distribution of the flow vec-
tor difference between the two subevents p

(
~vobs,a

n −~vobs,b
n

)
. Therefore, the resulting subevent

difference distribution contains only the effects from statistical smearing and non-flow [39].
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With the assumption that the subevent difference distribution is an accurate description of
the smearing effects present in data, it can then be used to build the response matrix. For
centrality intervals up to 50%, the subevent difference distribution is described well by a 2D
Gaussian centered at zero and for more peripheral events, it is better described by a 2D non-
standardized Student’s t-distribution centered at zero. This fit performance is illustrated in
Fig. 1. The Gaussian nature coupled to a mean of zero in the subevent difference distributions
suggests that the smearing is statistical in nature.

)/2obs,b
2,x - vobs,a

2,x
(v

0.4− 0.2− 0 0.2 0.4

)/
2

ob
s,

b
2,

y
 -

 v
ob

s,
a

2,
y

(v

0.4−

0.2−

0

0.2

0.4

1

10

210

310

410

Preliminary CMS PbPb 5.02 TeV

 < 3.0 GeV/c
T

0.3 < p

| < 1.0η|

Cent. 5 - 10%

)/2obs,b
2,x - vobs,a

2,x
(v

0.4− 0.2− 0 0.2 0.4

E
ve

nt
s

1

10

210

310

410

510

610
Gaussian

Student's T
Cent. 5 - 10%

)/2obs,b
2,y - vobs,a

2,y
(v

0.4− 0.2− 0 0.2 0.4

E
ve

nt
s

1

10

210

310

410

510

610 Cent. 5 - 10%

)/2obs,b
2,x - vobs,a

2,x
(v

0.4− 0.2− 0 0.2 0.4

)/
2

ob
s,

b
2,

y
 -

 v
ob

s,
a

2,
y

(v

0.4−

0.2−

0

0.2

0.4

1

10

210

310

Preliminary CMS PbPb 5.02 TeV

 < 3.0 GeV/c
T

0.3 < p

| < 1.0η|

Cent. 55 - 60%

)/2obs,b
2,x - vobs,a

2,x
(v

0.4− 0.2− 0 0.2 0.4

E
ve

nt
s

1

10

210

310

410

510

610 Gaussian

Student's T
Cent. 55 - 60%

)/2obs,b
2,y - vobs,a

2,y
(v

0.4− 0.2− 0 0.2 0.4

E
ve

nt
s

1

10

210

310

410

510

610 Cent. 55 - 60%

Figure 1: Fit performance of a Gaussian and Student’s t-distribution to the rescaled subevent
difference distributions for events in the 5–10% (top row) and 55–60% centrality classes (bottom
row). Central events have a large number of tracks in each subevent, thus the Gaussian and
Student’s t-functions both describe the data well. The difference in fit performance is more
pronounced in peripheral events where the small number of tracks per event is in the regime
where the Student’s t-function is relevant.

Before the subevent difference distribution can be used to build the response function, it must
first be rescaled to properly account for the sample sizes used. Because there are half as many
tracks in each subevent compared to the full event, the smearing effects are different. For
Gaussian random variables, the standard deviation of a population is inversely proportional
to the square root of the sample size. In addition, the variance of a distribution obtained from
the difference between two Gaussian random variables can be expressed as σ2

a−b = σ2
a + σ2

b .
Since, on average, the number of tracks in each subevent is half that of the full event and the
variances of the subevent difference distributions are equal, the smearing width obtained from
the subevent difference distribution will be a factor of two larger than that of the full event. The
mean is not affected from the sample size difference. Therefore, scaling the subevent difference
distribution down by a factor of two p

(
~vobs,a

n −~vobs,b
n

)
→ p

([
~vobs,a

n −~vobs,b
n

]
/2
)

will provide
the correct description of the smearing present in the full event.
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A purely data-driven response function can be built from the rescaled subevent difference dis-
tribution. As previously mentioned, the rescaled subevent difference distribution is a measure
of the smearing effects for the full event and can be rewritten as

p
([
~vobs,a

n −~vobs,b
n

]
/2
)
= p (~s) = p

(
~vobs

n −~vn

)
. (16)

Therefore, with an assumed form of the true underlying event-by-event flow distribution (prior),
the response matrix can be built on an event-by-event basis. This is achieved by throwing a
random flow vector based on the prior and throwing a random smearing vector from Eq. 16.
Adding these two vectors together provides an estimator of ~vobs

n for the event. This procedure
can be repeated up to the number of events used to build the subevent difference distribution.
By keeping the magnitudes of the vectors, each iteration will provide one entry of vobs

n and vn
to the response matrix in Eq. 15.

4.3 Unfolding

The default method for unfolding in this analysis is D’Agostini iteration with early stopping,
as outlined in Refs. [36–38]. The RooUnfold [40] package for the ROOT data analysis frame-
work [41] contains software for this unfolding technique and is utilized in this analysis. The
goal of this technique is to determine a maximum-likelihood estimate (MLE) of the true under-
lying event-by-event flow distribution. The unfolding workflow can be summarized by:

p̂ (vn,i)
iter+1 = ∑

j
M̂iter

ij p
(

vobs
n,j

)
(17)

where p̂ (vn,i)
iter+1 is a vector that represents an estimator for the true underlying distribution,

p
(

vobs
n,j

)
is a vector that represents the observed distribution, and M̂iter

ij is the unfolding matrix.
In this case, binned data are represented by vectors and matrices. The unfolding matrix is
constructed using the prior and response matrix determined in Sec. 4.2. The unfolding matrix
has the form

M̂iter
ij =

p
(

vobs
n,j |vn,i

)
p̂ (vn,i)

iter[
∑l p

(
vobs

n,j |vn,l

)
p̂ (vn,l)

iter
] [

∑m p
(
vobs

n,m|vn,i
)] (18)

where p̂ (vn,i)
0 corresponds to the prior and p

(
vobs

n,j |vn,i

)
is the response matrix. Each itera-

tion will then produce an estimator of the true distribution. If the prior is close to the true
distribution, the procedure will converge after a few iterations. If run until convergence, the
procedure will output a MLE of the true underlying distribution. The correct choice in prior is
not necessary for this response matrix to be successful. In cases of complete physical ignorance
it is recommended to use a uniform distribution and then update when more information is
available. In this analysis, an acceptable prior is the distribution of observed flow vectors. For
example, in event classes with large particle multiplicities, the smearing effects are small and
the observed flow vector distribution is very similar to the true underlying distribution.

Given the mathematically ill-posed nature of the unfolding procedure, when the number of it-
erations is allowed to run to large values, the result becomes increasingly sensitive to statistical
fluctuations. This will give rise to unphysical oscillations in the unfolded distribution. These
features can be suppressed by stopping iterations at some predefined point and by choosing a
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prior that is close to the true distribution. The iteration cutoff is entirely problem dependent
and a clear criterion for the cutoff point must be defined.

The criteria for iteration cutoff in this analysis is defined by applying the response matrix to
each unfolding iteration (“refolding”) and comparing to the observed distribution. The moti-
vation for this is shown in Eq. 15 by replacing p

(
vn,j
)

with a distribution obtained from un-
folding. If the unfolding procedure has converged on the MLE of p

(
vn,j
)
, then refolding will

reproduce p
(

vobs
n,i

)
. Therefore, iterations are stopped when the χ2/NDF goodness of fit be-

tween the refolded and observed distributions is near 1.0. After a final unfolding iteration is
selected the resulting distribution is truncated above 〈vn〉+ 4σvn to suppress residual biases in
the tail from the unfolding procedure.

4.4 Extracting Eccentricity Distributions from Flow Distributions

Elliptic flow is a direct reflection of the medium’s response to the initial collision geome-
try [10] and provides insight into its fundamental transport properties [42–44]. In several stud-
ies [14, 44–46] the proportionality between eccentricity and flow harmonics is assumed to be
linear. In this analysis, the unfolded p (v2) distributions are used to infer the nature of p (ε2)
distributions. To achieve this aim, p (ε2) distributions are assumed to have a universal elliptic
power law parametrization [46]:

p(ε2) =
2αε2

π
(1− ε2

0)
α+1/2

∫ π

0

(1− ε2
2)

α−1dϕ

(1− ε0ε2 cos ϕ)2α+1 , (19)

where ε0 is approximately equal to the mean eccentricity in the reaction plane (strict equality is
expected in PbPb collisions) and α describes the eccentricity fluctuations. This parametrization
was shown to describe the eccentricity distributions in pp, pPb, and PbPb collisions well using
the MC-Glauber and MC-KLN initial-state models [14]. In cases where α � 1 and ε0 � 1
the universal elliptic power law distribution reduces to Bessel-Gaussian. By assuming a linear
response between eccentricity and flow, v2 = k2 ε2, eccentricity distributions can be inferred
from flow distributions without any assumption on an initial-state model:

p (v2) = dε2
dv2

p (ε2) (20)

p
(

v2

k2

)
= k2 p (v2) (21)

In contrast to the scale invariant Bessel-Gaussian, k2 factorizes when fluctuations are non-
Gaussian. Therefore, an elliptic power law fit to p(v2) is able to return all three parameters:
k2, ε0, and α.

4.5 Systematic Uncertainties

Systematic uncertainties are determined for two cases in this analysis. The first case deals
with the systematic uncertainty on the scale of v2, where studies are performed to assess the
bias on the quantities extracted from p(v2), such as the cumulant flow harmonics. There are
five primary contributions to the systematic bias on the scale of v2: 1) vertex position cut, 2)
response matrix uncertainty, 3) pileup contamination, 4) unfolding regularization, and 5) track
quality cuts. The most stable observables in all tests are the higher-order cumulant ratios while
the least stable observable is the skewness.

The scale systematic uncertainties that arise from the cut on the vertex z-position are investi-
gated by splitting the default vertex cut into two scenarios. In the first scenario, the vertex posi-
tion window is restricted to |vz| ≤ 3.0 cm, while the second window will contain the remainder
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of possible vertex positions, 3.0 ≤ |vz| ≤ 15.0 cm. The maximum variation between the two
scenarios relative to the default window is recorded as a systematic uncertainty. The vertex cut
systematic uncertainty is the most dominant, having a ≈ 1% effect on the higher-order cumu-
lant ratios. To estimate the systematic uncertainty on the choice of response matrix, unfolding
is repeated using an analytic Gaussian response matrix built from the subevent difference dis-
tributions. The full variations between the two approaches are used as a systematic uncertainty.
The response matrix systematic uncertainty is the second-most dominant, having a ≈ 0.5% ef-
fect on the higher-order cumulant ratios. To assess the potential bias from pileup events, the
vertex-cluster compatibility event selection is strengthened to further filter out potential pileup
events. Variations in observables from the two pileup scenarios are recorded as a systematic
uncertainty. The pileup systematic uncertainty is less dominant, having a ≈ 0.1% effect on
the higher-order cumulant ratios. The scale bias from unfolding regularization is studied in
detail by modifying the χ2/NDF goodness-of-fit criteria between the observed and refolded
distributions. If the χ2/NDF criteria is too loose, then the analysis will select unfolding distri-
butions using fewer iterations. The loose scenario tends to bias unfolding distributions toward
the prior. On the other hand, if the χ2/NDF criteria is too tight, then more iterations will be
required for the procedure to converge. The tight scenario runs the risk of unphysical oscilla-
tions arising in the unfolded distributions. An estimation of the regularization bias determined
from the maximum variation in observables when the refold χ2/NDF cutoff is 2.0 relative to
when it is 1.0. The track quality systematic uncertainty is less dominant, having a≈ 0.1% effect
on the higher-order cumulant ratios. To estimate the effect that misidentified tracks have on
event-by-event unfolded distributions, track quality cuts are split into “loose” and “tight” sce-
narios. The maximum variation between the two scenarios relative to the default track selection
is recorded as a systematic uncertainty. The track quality systematic uncertainty is negligible,
having a < 0.1% effect on the higher-order cumulant ratios.

An additional conservative systematic uncertainty of 7% was placed on γ
exp
1 as it was the only

observable found to be sensitive to the pT resolution of the tracker. Total systematic uncertain-
ties are determined by adding the contribution from each study in quadrature.

The second case deals with the systematic uncertainty on the shape of p(v2), namely the bin-
to-bin uncertainties in the selected unfolded distributions. There are six studies performed
to assess the shape bias: the same five from the scale studies and an additional study on the
response matrix element uncertainties.

Shape systematic uncertainties from the finite number of events used to make the response
functions used for unfolding are determined by propagating the uncertainties on the unfolding
matrix elements through the unfolding procedure as outlined in Ref. [40]. In addition, unfolded
distributions from the remaining five systematic studies are rescaled to have the same mean as
the default unfolded distributions. Bin-to-bin variations relative to the default case are taken as
systematic uncertainties. To suppress effects from statistical fluctuations, bin-to-bin variations
are first smoothed to the general trend. The final systematic shape uncertainties are obtained
by adding the contributions from each study in quadrature. The shape uncertainties can be
seen in Fig. 6 where the unfolded distributions are presented.
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5 Results
Primary results for this analysis are obtained by performing event-by-event unfolding on events
in 5% wide centrality bins up to 60% using the standard track selection described in Sec. 3.
Figure 2 shows the cumulant values extracted from the unfolded p (v2) distributions. The cu-
mulants show the expected behavior of v2{2} > v2{4} ≈ v2{6} ≈ v2{8}, however a splitting
between the higher order cumulants can already be seen in the peripheral bins. We further
quantify this splitting by looking at the ratio of higher-order cumulants in Fig. 3. As stated ear-
lier, the observation that v2 {4} ≈ v2 {6} ≈ v2 {8} is consistent with the Gaussian fluctuation
model for flow harmonics. A statistically significant fine structure splitting between v2 {4},
v2 {6}, and v2 {8} is observed on the percent level for most centrality bins. The results of Fig. 3
are further supported by Fig. 4 where the first measurement of the estimate skewness with
respect to the reaction plane (γexp

1 ) is presented. If the model of flow harmonic fluctuations
is Gaussian, then the skewness of p (v2) would be consistent with zero. The estimate skew-
ness parameter is non-zero for the same centrality bins that present a significant fine structure
splitting in the higher-order cumulants. Theoretical predictions from Ref. [28] are available to
compare to the measured v2{6}/v2{4} and γ

exp
1 and are shown in the respective figures as col-

ored bands. It should be noted that these predictions were made for
√

sNN = 2.76 TeV, but the
measured quantities are not expected to change dramatically between 2.76 and 5.02 TeV.

Cumulant ratios are also compared to those measured by the ATLAS collaboration at
√

sNN =
2.76 TeV [27] in Fig. 5. It should be noted that the track selection for ATLAS differs from CMS
in this comparison. CMS selects tracks with 0.3 < pT < 3.0 GeV and |η| < 1.0, whereas ATLAS
selects tracks with 0.5 < pT < 20.0 GeV and |η| < 2.5. The results from CMS and ATLAS are
consistent within uncertainties.
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Figure 2: Cumulant values extracted from the unfolded p (v2) distributions exhibiting the ex-
pected v2{2} > v2{4} ≈ v2{6} ≈ v2{8} behavior. Both statistical and systematic uncertainties
are shown. A fine-level splitting of the higher-order cumulants becomes more pronounced in
peripheral bins.

In addition, unfolded p(v2) distributions were fitted using the transformed elliptic power law
parametrization (Eq. 20) and the Bessel-Gaussian parametrization (Eq. 5) to gain further insight
as to the nature of the initial-state fluctuations. Fig. 6 demonstrates the p(v2) fit performance for
5% centrality classes for both the elliptic power and Bessel-Gaussian parametrizations. Fit qual-
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Figure 3: Ratios of higher-order cumulants with values obtained from the moments of the
unfolded p (v2) distributions. Both statistical and systematic uncertainties are shown. Hy-
drodynamic predictions for 2.76 TeV from Ref. [28] are presented as a colored band and are
compared to the measured ratio v2{6}/v2{4}. Theory predictions are consistent to the mea-
surement within uncertainties.
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Figure 4: The estimated skewness for the unfolded p (v2) as determined from its cumulant flow
harmonics with Eq. 10. Both statistical and systematic uncertainties are shown. Hydrodynamic
predictions for 2.76 TeV from Ref. [28] are presented as a colored band and are compared to the
measured skewness. Theory predictions are consistent to the measurement within uncertain-
ties.

ities are assessed by refolding the fits using the response function and determining a χ2/NDF
goodness-of-fit with respect to the observed distribution. In all cases the elliptic power law
parametrization better describes the fluctuations, yielding a χ2/NDF goodness-of-fit closer to
one than for the Bessel-Gaussian.
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Figure 5: Ratios of higher-order cumulants with values obtained from the moments of the
unfolded p (v2) distributions measured by CMS compared to those measured by ATLAS in
Ref. [27]. Both statistical and systematic uncertainties are shown for CMS as error bars and
bands respectively. ATLAS uncertainties are presented as statistical and systematic added in
quadrature.
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Figure 6: Elliptic power law (Eq. 19) and Bessel-Gaussian (Eq. 5) parametrizations fitted to
unfolded p(v2) distributions. Parameters extracted from each fit are provided in each panel
with respective statistical uncertainties. All parameters except α are reported as percentages.
Fit performance, as measured by the smeared-space χ2/NDF goodness-of-fit, is presented as a
function of centrality for each parametrization.
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6 Summary
In summary, non-Gaussian behavior in the fluctuations of v2 coefficients has been observed in
PbPb collisions at

√
sNN = 5.02 TeV. This observation was made by unfolding the statistical

smearing effects in observed flow harmonic distributions to obtain the underlying event-by-
event flow distributions for 5% wide centrality bins up to 60%. Cumulant flow harmonics
were calculated from the moments of the underlying distributions and a fine-structure splitting
was observed between v2 {4}, v2 {6}, and v2 {8}. In addition, the standardized skewness with
respect to the reaction plane was estimated using the cumulants and was found to have a non-
zero value, whose magnitude increases with centrality. Both measurements are consistent with
a breakdown in the Gaussian model of elliptic flow fluctuations.

In addition, Bessel-Gaussian and elliptic power law parametrizations were fitted to the un-
folded p(v2) distributions to gain further insight as to the nature of the initial-state fluctua-
tions. Both parametrizations assume a linear response between eccentricity and flow, but only
the elliptic power law contains the physical constraint ε2 < 1. This constraint naturally incor-
porates skewness and allows the elliptic power law parametrization to provide a more accurate
description of p(v2) (and ultimately p(ε2)) than the Bessel-Gaussian parametrization.
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