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ABSTRACT: We propose a method for estimating the uncertainty of a result obtained through extrapolation to the complete basis
set limit. The method is based on an ensemble of random walks that simulate all possible extrapolation outcomes that could have
been obtained if results from larger basis sets had been available. The results assembled from a large collection of random walks can
then be analyzed statistically, providing a route for uncertainty prediction at the confidence level required in a particular application.
The method is free of empirical parameters and compatible with any extrapolation scheme. The proposed technique is tested in a
series of numerical trials by comparing the determined confidence intervals with reliable reference data. We demonstrate that the
predicted error bounds are reliable and tight yet conservative at the same time.

The demand for accurate quantum-chemical calculations
for many-electron atoms and molecules has been rapidly

increasing in recent years, fueled by developments in fields
such as ultracold chemistry and physics,1−5 quantum-based
metrology,6−11 spectroscopy,12−16 or search for effects beyond
the standard model.17−21 It is striking that in a vast majority of
these studies, it is necessary to provide not only accurate
theoretical results that account for all relevant physical effects
but also to estimate the uncertainty of the calculated data.
Simultaneously, most calculations of this type employ a basis
set for expansion of spin-orbitals/spinors, which naturally leads
to an error that must be controlled. It is well-known that due
to the electronic cusp condition,22,23 the results of correlated
calculations converge slowly with respect to the basis set size.
Consequently, the development of methods that reduce the
basis set incompleteness error remains an active field of
research. Explicitly correlated methods,24−26 transcorrelated
approaches,27 density-based corrections,28−31 and extrapola-
tion techniques32−35 are frequently applied for this purpose. In
this paper, we focus on the last family of methods.
Extrapolation to the complete basis set limit is an attractive

option of reducing the basis set incompleteness error due to its
conceptual simplicity, vanishingly small computational cost,
and broad applicability. Several extrapolation methods are

frequently used in the literature, and there is general consensus
that, when used with care, they considerably improve the
results (see, for example, ref 34 for a detailed analysis).
However, the estimation of the uncertainty of the extrapolated
results and determination of proper error bars are challenging
issues with no general guidelines available. Assignment of the
uncertainty is usually based on, for example, comparing
extrapolated results from a progression of basis sets,10,14

applying different extrapolation schemes and observing
variation between them,21,36 or comparing the extrapolated
result with the value obtained with the largest available basis
set.2,37 Alternatively, comparison with external reference data,
either theoretical or experimental, is an option for selecting the
proper extrapolation protocol, but such data may not be
available in many situations. In any case, the estimation of the
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residual extrapolation error frequently involves a degree of
arbitrariness or secondary assumptions.
Another problem related to this issue, which is particularly

important at the interface of theory and experiment, is the
different meaning of the uncertainties in these fields. In the
experiment, one typically repeats the same measurement
numerous times and assumes that the variation in the data is
represented by a certain probability distribution. The
uncertainties are then assigned based on confidence intervals
resulting from this distribution, leading to a clear statistical
meaning of the error bars. Such a procedure is usually
impossible in theory, and hence, the meaning of the error bars
assigned to a theoretical result is simply a statement that with a
sufficiently high probability, the exact result differs from the
calculation by less than a certain value. However, it is typically
not known what this probability really is, and there is no way of
tracing it back to any confidence interval based on statistical
analysis. Of course, it is also possible to compare various
extrapolation schemes by benchmarking against a set of
reference data,34 but there is no guarantee that the conclusions
can be transferred to a particular problem at hand that is
outside the training set. In other words, this approach is
inherently not system-specific.
In this work, we propose a method of assigning uncertainties

to theoretical results obtained by extrapolation. The method is
based on a series of random walks that simulate possible results
that could have been obtained if data calculated with larger
basis sets had been available. While a single random walk does
not carry any practical information, an ensemble of random
walks can be analyzed statistically to uncover the possible
variation in the extrapolated results. This provides a route for
uncertainty prediction without arbitrary assumptions in a
system-specific way.
In order to introduce the proposed method, let us consider

calculation of a certain quantity E using a progression of basis
sets38 and subsequent extrapolation of the results to the
complete basis set limit. The size of the basis set is denoted by
a single parameter X (for example, cardinality in the case of
correlation-consistent basis sets39). The value of E calculated
within basis set X is denoted by the symbol EX. For a
sufficiently large X, we can expand EX in the asymptotic series:

= +
=

E E
A
XX

n

n
n

3 (1)

It is well-known that in the case of electronic energy and many
other quantities, the dominant term of this expansion is
proportional to X−3 (see refs 40−43). Many extrapolation
procedures use this information either directly or implicitly. In
this work, we shall employ primarily the two-point
extrapolation scheme of Helgaker et al.,44,45 which is based
on truncating the above expression after the leading-order
term, i.e., = +E EX

A
X

3
3 . Next, the results obtained with two

consecutive basis sets, EX and EX−1, are combined to eliminate
the A3 coefficient. This gives the following explicit formula for
the estimate of the complete basis set limit:

E
E X E X

X X
( 1)

( 1)
X X

3
1

3

3 3 (2)

Let us denote the value extrapolated according to eq 2 from
the pair of basis sets (X, X − 1) by the symbol eX.

Estimation of the extrapolation error is a difficult task
primarily because (i) little is known analytically about the
higher-order terms in eq 1 and coefficients An for many-
electron systems, (ii) the accessible range of X is typically too
narrow to determine them reliably, e.g., by fitting, and (iii)
secondary sources of error such as radial incompleteness may
play a role for any finite X. In this work, we adopt a minimalist
assumption about the behavior of eX as a function of X. We
assume only that the absolute differences between neighboring
extrapolated values, |eX − eX−1|, decrease monotonically for a
sufficiently large X, but eX themselves do not need to follow
any consistent pattern. For example, in the case of the
extrapolation of formula 2, one can show that these differences
behave for large values of X as

= +e e
X

...X X 1 5 (3)

where is a system-dependent numerical constant and the
higher-order terms (proportional to X−n with n ≥ 6) are not
written explicitly. From this formula, it is evident that the
quantities |eX − eX−1| decrease monotonically for a sufficiently
large X, even if eX themselves do not exhibit a monotonic
behavior, e.g., oscillate. Note that the value of could, in
principle, be obtained by using results from a progression of
basis sets, but we found that such an approach is not
trustworthy when applied within the range of X that is typically
available.
Let us assume that we carried out calculations within three

consecutive basis sets (X, X − 1, and X − 2), while results for
larger basis sets are not available. From these data, we can
assemble two extrapolated values, eX and eX−1. According to
our main assumption, if the next extrapolated value (eX+1) had
been available, it would have been bounded by

| | < < + | |+e e e e e e eX X X X X X X1 1 1 (4)

At face value, this inequality in itself is not very useful because
we do not know the actual value of eX+1. More importantly,
there is no guarantee that the exact result (E∞) also lies within
this interval. However, we can pessimistically assume that any
value of eX+1 within the bounding interval is equally probable
and randomize it from a uniform distribution. In this way, we
obtain a value of ẽX+1 that represents one possible scenario of
what the actual eX+1 may be. This procedure is then continued.
Assuming the randomized value of eX̃+1, we know that the next
extrapolated value (eX+2) is bounded by

| | < < + | |+ + + + +e e e e e e eX X X X X X X1 1 2 1 1 (5)

and again randomize ẽX+2 within this interval. This procedure
eventually converges in the sense that after a certain number of
steps, N, the length of the bounding interval becomes smaller
than a predefined threshold. At the same time, two successive
randomized values (ẽX+N and eX̃+N−1) obviously differ by less
than this threshold. In the following, we refer to the set of eX̃+1,
eX̃+2, ..., as a trajectory and denote converged value ẽX+N by e∞̃.
A single trajectory in the proposed method is essentially a

random walk, where the values of eX̃+1, eX̃+2, ..., are allowed to
randomly shift within the corresponding bounding intervals.
However, we stress that a single trajectory obtained in this way
is not useful for any practical purpose. It represents only one
possible scenario of what could have happened if results in
larger basis sets had been available (having access to the
subsequent extrapolated results eX+1, eX+2, ...). The proposed
method becomes useful only when a large number of
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trajectories is run independently. It provides insight into the
variability of e∞̃ without any assumptions about the particular
values of eX+1, eX+2, ... The only assumption used in this
procedure is the monotonic decrease in the absolute
differences between extrapolated values as a function of X.
Having a large number of e ̃∞ obtained from separate
trajectories, the results can be analyzed statistically. This
naturally leads to system-specific uncertainty estimates for the
average value of e∞̃, as demonstrated below.
Let us first illustrate the proposed method by applying it to

two model systems for which both reliable reference data and
results obtained within a progression of basis sets are available.
Our main goal here is a detailed discussion of the algorithm of
the proposed method, while the presentation of results for a
much larger set of systems is given later. The first example is
the electronic correlation energy of the H2 molecule
(internuclear distance of 1.4 au) calculated within aug-mcc-
pVXZ basis sets of Mielke et al.46 using the full configuration
interaction (FCI) method. The reference values for the total
and Hartree−Fock energies of H2 come from the work of
Pachucki47 and Mitin,48 respectively, giving the near-exact
value of the correlation energy equal to −40.846 348 mHa.
The second example is the correlation energy of the carbon
atom calculated at the FCI/aug-cc-pCVXZ49 level of theory.
Based on accurate results for the total energy obtained by
Strasburger50 and the Hartree−Fock energy by Bunge et al.,51

the reference value for the correlation energy is −156.287
mHa. In the first example, results within basis sets up to X = 6
are available, while for the second example, we are limited to X
= 4. The test cases were purposefully chosen to study the
performance of the proposed method in these two distinct
situations, both of which are frequently encountered in
practice. The raw results used in our analysis were calculated
in ref 52 and are reproduced in Table 1 for the sake of
convenience.

The random walk procedure was initiated using the
extrapolated value from the pair of the two largest basis sets.
However, results from three consecutive basis sets are
necessary to establish the initial bounding interval (see eq
4). About 10 million trajectories were simulated in both test
examples; a further increase in this parameter leads to no
appreciable changes in the uncertainty predictions. The values

of ẽX were randomized from a uniform distribution. Each
random walk was stopped when the width of the bounding
interval (see eqs 4 and 5) falls below the threshold of 10−16.
The converged values of e∞̃ for each trajectory were recorded
and are the subject of the analysis that follows.
In Figure 1, we provide histograms illustrating the

distribution of e∞̃ obtained after about 107 random walks.

The distributions are nearly symmetric with respect to the
mean, which is not surprising considering that the end points
of the bounding intervals (see eqs 4 and 5) are always
equidistant from the previous extrapolated value. For the same
reason, as the sample size increases the average value of e∞̃
obtained from all walks should converge to extrapolated result
eX that was used to initiate the random walks (see eq 4 and the
accompanying discussion). This is confirmed in our calcu-
lations, with agreement of six significant digits in all cases.
Therefore, we reiterate that the method proposed in this work
enables us to estimate the uncertainty of an extrapolated result,

Table 1. Raw Data and a Summary of the Results for Two
Selected Test Casesa

test case 1 (H2 molecule) test case 2 (carbon atom)

X −EX −eX −EX −eX
2 − − 132.539 −
3 − − 145.934 151.574
4 40.6528 − 151.029 154.747
5 40.7374 40.8262 − −
6 40.7797 40.8378 − −

Best Estimates
1σ (68.27%) 40.8378 ± 0.0078 154.7 ± 2.2
2σ (95.45%) 40.838 ± 0.018 154.7 ± 4.8
3σ (99.73%) 40.838 ± 0.029 154.7 ± 7.9
true errorb 0.0085 1.540
reference 40.8463 156.287

aSee the text for computational details. All values are given in mHa
(with signs reversed for the sake of convenience). bAbsolute deviation
from the reference data given in the last row.

Figure 1. Histograms illustrating the results of about 107 random
walks for test case 1 (top) and test case 2 (bottom). The histograms
are centered such that the sample mean corresponds to zero at the
horizontal axis. The deviations from the mean are given in mHa. The
1σ, 2σ, and 3σ confidence intervals (see the text) are shown as
overlaying brackets. The reference (near-exact) values are represented
as red dotted lines.
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while the result itself is unchanged in comparison with the
value of eX used to initiate the random walks (see Table 1).
The probability distributions represented in Figure 1 enable

us to assign confidence intervals to the extrapolated results. We
consider three confidence intervals at confidence levels of
68.27%, 95.45%, and 99.73%. The choice of these percentages
is arbitrary and is motivated by analogy to the commonly used
values in the case of a normal distribution. However, we stress

that the probability distributions obtained in the present
context are clearly not normal, and hence, the lengths of the
confidence intervals are not simple multiples of the standard
deviation calculated from the sample, as in the case of the
Gaussian distribution. Instead, the confidence intervals are
defined as intervals centered at the sample mean that cover a
given percentage of the data points, as illustrated in Figure 1.
For brevity and by analogy with the normal distribution, we

Table 2. Estimated Extrapolation Errors for Correlation Energies of a Benchmark Set of Systemsa

confidence intervals

system method and basis Xmax eX dmax
1σ (68.27%) 2σ (95.45%) 3σ (99.73%) error reference value

He atom FCI 4 −41.907 ±0.17 ±0.37 ±0.62 0.137 −42.044 381b,56,57

dXZ55 5 −41.983 ±0.050 ±0.12 ±0.19 0.062
6 −42.013 ±0.020 ±0.045 ±0.074 0.032
7 −42.026 ±0.009 ±0.021 ±0.034 0.018

Be atom FCI 4 −94.099 ±0.20 ±0.46 ±0.76 0.233 −94.332 459c,58

Slater-type basis12 5 −94.253 ±0.11 ±0.23 ±0.39 0.079
6 −94.305 ±0.035 ±0.078 ±0.13 0.027

Be atom MP2 4 −75.711 ±1.2 ±2.7 ±4.4 0.648 −76.358d,59

aug-cc-pwCVXZ52 5 −76.085 ±0.25 ±0.56 ±0.93 0.274
Be atom CCSD 4 −93.633 ±0.59 ±1.4 ±2.2 0.031 −93.665e,59

aug-cc-pwCVXZ52 5 −93.586 ±0.032 ±0.071 ±0.12 0.079
H3

+ cation FCI 4 −43.432 ±0.062 ±0.14 ±0.24 0.032 −43.464f,60,61

aug-mcc-pVXZ52 5 −43.441 ±0.007 ±0.014 ±0.024 0.023
LiH molecule MP2 4 −72.343 ±1.5 ±3.2 ±5.3 0.546 −72.890g,62

aug-cc-pwCVXZ52 5 −72.660 ±0.21 ±0.48 ±0.79 0.230
LiH molecule CCSD 4 −83.103 ±0.27 ±0.60 ±1.0 0.113 −82.990g,62

aug-cc-pwCVXZ52 5 −82.623 ±0.32 ±0.72 ±1.2 0.367
Ne atom frozen core (1s2) 4 −315.628 ±13 ±28 ±46 4.595 −320.223h,65,66

MP2/XZaP63,64 5 −319.003 ±2.3 ±5.1 ±8.4 1.220
6 −319.600 ±0.40 ±0.90 ±1.5 0.622
7 −319.881 ±0.19 ±0.42 ±0.70 0.342
8 −319.985 ±0.070 ±0.16 ±0.26 0.238
9 −320.073 ±0.059 ±0.14 ±0.22 0.150

Ne atom (T) correction 4 −6.535 ±0.60 ±1.4 ±2.3 0.038 −6.497i,64

XZaP basis64 5 −6.647 ±0.075 ±0.17 ±0.28 0.150
6 −6.554 ±0.062 ±0.14 ±0.24 0.057
7 −6.530 ±0.016 ±0.035 ±0.058 0.033
8 −6.518 ±0.008 ±0.018 ±0.030 0.021

H2O molecule MP2 4 −298.39 ±7.8 ±18 ±29 1.96 −300.35j,32

cc-pVXZ32 5 −300.67 ±1.6 ±3.4 ±5.7 0.32
6 −300.29 ±0.26 ±0.57 ±0.95 0.06

CH2 molecule MP2 4 −155.08 ±3.0 ±6.7 ±11 0.73 −155.81j,32

cc-pVXZ32 5 −155.62 ±0.36 ±0.81 ±1.4 0.19
6 −155.73 ±0.08 ±0.17 ±0.28 0.08

HF molecule CCSD (singlet pairs) 5 −213.72 ±0.61 ±1.4 ±2.3 0.58 −213.14j,32

cc-pVXZ32 6 −213.34 ±0.26 ±0.57 ±0.95 0.20
F2 molecule CCSD (singlet pairs) 5 −414.83 ±1.9 ±4.2 ±6.9 0.67 −414.16j,32

cc-pVXZ32 6 −414.44 ±0.26 ±0.58 ±0.97 0.28
aA brief description of the data and level of theory is given in the first and second columns, respectively. The maximum cardinal number, Xmax, used
in the procedure is given in the third column. In the fourth column, the result eXdmax

extrapolated using basis sets (Xmax, Xmax − 1) is shown. The
determined error bars at the 1σ, 2σ, and 3σ confidence levels (see the text for precise definitions) are given in the fifth, sixth, and seventh columns,
respectively. The reference result is given in the last column, while the absolute deviation of a given result from the corresponding reference data in
the second to last column. The most narrow confidence interval that correctly predicts the difference from the reference result is shown in bold. All
results are given in mHa. bHartree−Fock, numerical solution on a grid; FCI, iterative free-complement calculations within the generalized Hylleraas
basis. cExplicitly correlated Gaussian calculations with 3600 basis set functions. dExplicitly correlated MP2 with the Hylleraas basis for expansion of
pair functions. eExplicitly correlated FCCD with the Hylleraas basis for expansion of pair functions and two orbital-based corrections. fHartree−
Fock, polarization-consistent basis sets and extrapolation; FCI, explicitly correlated Gaussians with 900 functions. gExplicitly correlated Gaussian
basis with 350 functions for expansion of pair functions. hFinite element MP2 calculations and angular momentum extrapolation. iAverage of CBS-
extrapolated orbital calculations with cc-pVXZ and XZaP basis sets with X = 9 and 10. jMP2-R12/B and CCSD-R12/B calculations with
uncontracted basis sets 19s14p8d6f4g3h for C, O, and F and 9s6p4d3f for H.
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Table 3. Same as Table 2 but for Properties Other Than Atomic and Molecular Energiesa

confidence intervals

system and quantity method and basis Xmax eXdmax
1σ (68.27%) 2σ (95.45%) 3σ (99.73%) error reference value

HF molecule CCSD(T) 5 187.54 ±0.94 ±2.1 ±3.5 0.23 187.32 ± 0.13b,67

atomization energy
(kJ/mol)

aug-cc-pCVXZ67 6 187.35 ±0.13 ±0.30 ±0.49 0.03

7 187.33 ±0.01 ±0.03 ±0.04 0.01
N2 molecule CCSD(T) 5 472.05 ±0.54 ±1.2 ±2.0 1.54 470.51 ± 0.10b,67

atomization energy
(kJ/mol)

aug-cc-pCVXZ67 6 471.26 ±0.53 ±1.2 ±2.0 0.75

7 470.99 ±0.19 ±0.41 ±0.68 0.48
AlH3 molecule CCSDT(Q) 4 214.699 ±0.813 ±1.829 ±3.047 0.774 213.925c,68

atomization energy
(kcal/mol)

cc-pVXZ68 5 214.209 ±0.325 ±0.730 ±1.216 0.284

CS molecule CCSDT(Q) 4 170.957 ±2.821 ±6.348 ±10.575 0.554 171.512c,68

atomization energy
(kcal/mol)

cc-pVXZ68 5 172.036 ±0.714 ±1.608 ±2.680 0.525

HCl molecule CCSDT(Q) 4 107.447 ±0.740 ±1.666 ±2.774 0.080 107.367c,68

atomization energy
(kcal/mol)

cc-pVXZ68 5 107.664 ±0.144 ±0.323 ±0.537 0.297

P2 molecule CCSDT(Q) 4 116.414 ±3.965 ±8.923 ±14.880 0.348 116.762c,68

atomization energy
(kcal/mol)

cc-pVXZ68 5 117.166 ±0.498 ±1.120 ±1.866 0.404

helium dimer FCI 5 11.097 ±0.20 ±0.45 ±0.75 0.096 11.001d,69

interaction energy (K) dXZ69 6 10.986 ±0.074 ±0.17 ±0.28 0.015
internuclear distance of
5.6 au

7 10.968 ±0.012 ±0.027 ±0.045 0.033

helium dimer FCI 5 3771.15 ±3.8 ±8.4 ±14 3.78 3767.73d,69

interaction energy (K) dXZ69 6 3766.72 ±3.2 ±7.2 ±12 1.01
internuclear distance of
3.0 au

7 3766.04 ±0.46 ±1.1 ±1.7 1.69

benzene dimer MP2 4 9.265 ±0.43 ±0.97 ±1.6 0.028 9.293e,70

interaction energy
(kcal/mol)

A′VXZ70 5 9.302 ±0.025 ±0.057 ±0.094 0.009

argon dimer CCSD(T) 5 97.294 ±0.76 ±1.7 ±2.8 0.151 97.445 ± 0.063f, 71

interaction energy
(cm−1)

d↑↓-disp-XZ +
midbond71

6 97.515 ±0.15 ±0.33 ±0.55 0.070

He atom FCI 4 1.383061 ±0.00022 ±0.00049 ±0.00082 0.000131 1.383 192g,72

dipole polarizability
(au)

dXZ52 5* 1.383096 ±0.000023 ±0.000052 ±0.000086 0.000097

6 1.383147 ±0.000035 ±0.000077 ±0.00013 0.000045
7 1.383170 ±0.000015 ±0.000034 ±0.000057 0.000022

H2 molecule FCI 3 6.38944 ±0.0068 ±0.016 ±0.026 0.00212 6.387 32h,73

dipole polarizability
(au)

aug-mcc-pVXZ52 4 6.38731 ±0.0015 ±0.0032 ±0.0053 0.00001

5 6.38772 ±0.00028 ±0.00062 ±0.0011 0.00041
Ne atom ΔCCSD(T) 7 −33.431 ±0.13 ±0.28 ±0.46 0.166 −33.265 ± 0.003i, 7

dipole polarizability
(103 au)

q-aug-nZP′7 8 −33.357 ±0.050 ±0.12 ±0.19 0.092

9 −33.315 ±0.028 ±0.063 ±0.11 0.050
10 −33.300 ±0.010 ±0.023 ±0.038 0.035
11 −33.289 ±0.008 ±0.017 ±0.027 0.024

Ar atom ΔCCSD 4 −0.3794 ±0.14 ±0.31 ±0.51 0.0152 −0.3642 ± 0.0004j, 10

dipole polarizability
(au)

daXZ10 5 −0.3536 ±0.018 ±0.039 ±0.064 0.0106

6 −0.3620 ±0.0056 ±0.013 ±0.021 0.0022
7* −0.3622 ±0.0002 ±0.0003 ±0.0005 0.0020
8 −0.3633 ±0.0008 ±0.0016 ±0.0027 0.0009

aThe units are given in the first column in each case. bOrbital calculations with aug-cc-pCVXZ basis sets with X = 7 and 8 and extrapolation to the
complete basis set limit. cExtrapolated from the cc-pVXZ basis set pair with X = 5 and 6. dExplicitly correlated Gaussians calculations with up to
2400 basis set functions. eExtrapolated from the A′VXZ basis set pair with X = 5 and 6. fRecommended best estimate obtained as the average of
extrapolations from four different basis set sequences. gBasis of 900 correlated exponential functions with randomly generated complex exponents.
hBasis of 80 and 65 correlated exponential functions for the ground and response wave functions, respectively. iExtrapolated from q-aug-nZP′ with
n = 11 and 12 basis set pair. jExtrapolated from daXZ with n = 8 and 9 basis set pair.
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refer to the confidence intervals at confidence levels of 68.27%,
95.45%, and 99.73% as 1σ, 2σ, and 3σ, respectively. The
confidence intervals determined by the proposed procedure for
the H2 molecule (test case 1) and carbon atom (test case 2)
are shown in Table 1. In both cases, they successfully estimate
the extrapolation error. In the former case, the 2σ confidence
interval correctly predicts the deviation from the reference
value, while in the latter, even the 1σ confidence interval is
sufficient for this purpose.
As a side note, we mention that according to the numerical

tests, the probability distributions shown in Figure 1 do not
seem to be well represented by a simple analytic form such as
the Laplace (bivariate exponential) distribution. We were not
able to find the exact analytic form of this distribution in the
limit of the infinite number of independent trajectories.
Mathematically, this is a difficult task, because the random-
ization steps involved in a single trajectory are strongly
interdependent; i.e., the interval in which the subsequent
randomization is performed depends directly on the result of
two previous samplings. From a pragmatic standpoint, the lack
of this information is not problematic, because the computa-
tional cost of running a single trajectory is very low. Therefore,
assembling a sufficient number of samples for a credible
statistical analysis is not challenging. Calculations with 10
million random walks take mere seconds.
To illustrate the performance of the proposed method for a

larger set of examples, we gathered numerous results from the
literature in which results of the calculations from a
progression of basis sets are available and, simultaneously,
reliable reference data are found. The main sources of the
reference values are either explicitly correlated calculations
(explicitly correlated Gaussians53,54 or the F12 method-
ology24−26) or calculations with basis sets significantly larger
than those used in the error estimation procedure. The
benchmark set includes both correlation energies, given in
Table 2, and other quantities, such as atomization energies,
interaction energies, or polarizabilities, given in Table 3. In all
cases, around 10 million trajectories were run, which is
sufficient to make the confidence intervals stable to all digits
shown (as a rule, the last digit has always been rounded up).
For the purpose of further analysis, we call the uncertainty

prediction successful at a given confidence level if the true
error evaluated against the reference data falls within the
determined error bars. Gathering all atoms and/or molecules,
properties, and basis set combinations included in Tables 2
and 3, we have 79 distinct sets of data to which the proposed
uncertainty prediction procedure was applied. Of those,
uncertainty prediction at the 1σ level is found to be successful
in about 57% of cases and at the 2σ level in 84% of cases. We
have encountered only two cases in which the 3σ level is
unsuccessful (denoted by asterisks in Table 3), and we will
discuss these examples in detail further below. First, let us put
the obtained results into perspective by comparing these
percentages with two other popular schemes for attaching
uncertainty to the extrapolated results. The first is the
difference between two consecutive extrapolated results, i.e.,
|eX − eX−1|, while the second is the difference between the
extrapolated result and the corresponding result in the largest
basis set available, i.e., |eX − EX|. The first method is successful
only in about 26% of cases considered in Tables 2 and 3, so
clearly, it is not a reliable indicator of the residual basis set
incompleteness error. The second method is successful in most
cases considered in Tables 2 and 3, but the error bars

determined in this way are usually very broad. Therefore, the
use of this approach leads to gross overestimation of the actual
error, making it a much less attractive method in practice.
Returning to the examples in which error prediction at the

3σ level is not successful, the origin of the problem is traced
back to the violation of the fundamental assumption of our
method, namely the monotonic decrease in the absolute
differences between extrapolated results. Taking the polar-
izability of the argon atom as an example, the extrapolated
results in this case are −0.3620, −0.3622, and −0.3633 for X =
6, 7, and 8. Clearly, the difference between e6 and e7 is smaller
here than that between e7 and e8, violating the assumptions
from eqs 4 and 5. One could argue that in such situations the
proposed method should not be used at all or a different
extrapolation scheme should be applied to eliminate this
pathological behavior. However, we propose a simple
modification of the procedure in such situations: use the
difference |eX − eX−2| rather than |eX − eX−1| to initiate the
random walk starting with eX. After this straightforward
modification, the result at the 1σ uncertainty level becomes
−0.3622 ± 0.0057, and the true error (0.0020) is well within
the determined error bars. Using the aforementioned
procedure with the second problematic case (helium polar-
izability), we obtain the value of 1.38310 ± 0.00020 at the 1σ
uncertainty level with the true error being equal to 0.00010.
However, the success of the modified procedure in this

single case is not sufficient to claim that it performs equally
well in general. To address this, we looked for other examples
in which the fundamental assumption is violated. A handful of
them are found in Tables 2 and 3; however, deviations from
monotonicity of eX are small, and the unmodified procedure
predicts the error successfully. However, we encountered
significant violations of the fundamental assumption in the
interaction energies of the helium dimer taken from refs 55 and
69. For example, for the internuclear distance R = 4.17 au, the
extrapolated results for eX are 176.59, 178.60, 178.59, and
178.30 K for X = 4, 5, 6, and 7, respectively. Clearly, the
middle two numbers are accidentally close to each other, and
the differences between the extrapolations do not behave
monotonically. As illustrated in Figure 2, this leads to
significant underestimation of the uncertainties at R = 4.17
au (and, for the same reason, at a handful of neighboring
points on the interaction energy curve). When the proposed
modification was applied to all points for which nonmonotonic
behavior was observed, the problem of underestimated
uncertainty was solved (see Figure 2). In the same spirit, the
difference |eX − EX| can be used as an even more conservative
initial bound for the next extrapolation in situations in which
the value of eX−2 is not available.
Finally, we observe that the 1σ confidence interval performs

particularly well when applied to results obtained from three
smallest basis sets (X = 2, 3, and 4). Indeed, in Tables 2 and 3,
we find 19 separate cases to which the proposed method was
applied employing the X = 2, 3, and 4 basis set progression. Of
them, the error estimate obtained at the 1σ confidence level is
successful in 18 (or ≈95%) of cases, a significantly larger
success rate than one would expect from the stated probability
(68.27%). This may be a consequence of the fact that in
smaller basis sets, X = 2 in particular, the sources of error other
than the lack of higher angular momentum functions remain
significant. Insufficient radial saturation, i.e., small number of
functions for angular momenta included in the basis, may be
the major contributing factor here. While these secondary
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sources of error typically converge faster as a function of the
basis set size, they are effectively extrapolated according to the
X−3 rule, leading to their slight overestimation.
An important point related to the proposed procedure is

how to estimate the total error of theoretical calculations in a
situation in which the final result is assembled as a sum of
several corrections calculated at different levels of theory. A
typical example of such a procedure is the determination of
post-CCSD(T)74,75 contributions to some quantity such as
atomization energy or bond dissociation energy. In this case,
the final theoretical result would be obtained by summing a set
of post-CCSD(T) corrections calculated as a difference
between CCSDT76,77 and CCSD(T) calculations, between
CCSDT(Q)78 and CCSDT calculations, and so on. The
practical reason for splitting the post-CCSD(T) effects in this
way is the observation that higher-order terms usually quickly
decrease in magnitude, and it is sufficient to compute them
using a smaller basis set. However, as the various post-
CCSD(T) corrections may exhibit different convergence
rates,68 extrapolating them separately to the complete basis
set limit may significantly improve the results. While the
procedure proposed in this work can be straightforwardly
applied to each post-CCSD(T) component separately, it is not
clear how to determine the error bars of their sum, which is the
main quantity of interest. The simplest solution to this
problem is to adopt the commonly used assumption that all
post-CCSD(T) components are uncorrelated variables in a
statistical sense. The total error is then obtained by calculating
the sum of squares of individual uncertainties (obtained at the
same uncertainty level) and taking the square root, which
follows from the conventional error propagation techniques.
We illustrate this in Table 4, where we consider post-
CCSD(T) contributions to the bond dissociation energy of the

C2 molecule (1Σg
+ ground state) using the results reported by

Karton in a recent paper.79

The results presented above were based on the extrapolation
scheme of Helgaker et al.44,45 However, other extrapolation
techniques are also frequently used in the literature, and it is
interesting to compare their respective uncertainties predicted
by the proposed method. To this end, we selected four distinct
two-point extrapolation schemes: (1) X−3 method of Helgaker
et al.44,45 (same as above), (2) (X + 1/2)−4 scheme of
Martin,80 (3) method based on the Riemann ζ function,52 and
(4) scheme proposed by Varandas in which parameter X
characterizing the basis set size is a non-integer.33,35,81 For the
purpose of this test, we return to the same systems and basis
set combinations as in Table 1 and perform analogous
calculations using the four extrapolation methods. In
extrapolation scheme 4, the hierarchical numbers for the
VXZ and AVXZ basis sets81 were used in test case 1 and test
case 2, respectively. The results are included in Table 5 at the
1σ, 2σ, and 3σ confidence levels.
The data reported in Table 5 lead to the conclusion that all

extrapolation schemes give consistent results, if their respective
uncertainties are taken into account. Even if we consider a pair

Figure 2. Performance of the original vs modified uncertainty
prediction procedure for the interaction energy of the helium dimer
(FCI method) as a function of the internuclear distance. The
progression of basis sets dXZ with X = 5, 6, and 7 is used to initiate
the random walks. On the vertical axis we show the ratio of the true
error of the extrapolation (with respect to the reference55,69) and the
uncertainty predicted at the 3σ confidence level. The region in which
the uncertainty prediction is considered successful (corresponding to
the ratio within the interval [−1, 1]) is shaded gray. The uncertainties
were determined using the original (red circles) and modified
procedures (blue circles) (see text).

Table 4. Estimation of the Extrapolation Error of Post-
CCSD(T) Contributions to the Bond Dissociation of C2
Using the Procedure Described in This Worka

post-CCSD(T) contribution recommended value uncertainty

CCSDT-CCSD(T) −2.268 ±0.028
CCSDT(Q)-CCSDT 3.420 ±0.008
CCSDTQ-CCSDT(Q) −1.151 ±0.003
CCSDTQ(P)-CCSDTQ 0.412 ±0.020
total 0.413 ±0.036

aThe total uncertainty (in the last row) was calculated as the square
root of the sum of squared uncertainties of each post-CCSD(T)
contribution. The extrapolated values were taken from ref 79. All
results are given in kcal/mol.

Table 5. Comparison of Uncertainties Assigned to the
Extrapolated Results Based on Four Different Extrapolation
Methodsa

extrapolation
method test case 1 (H2 molecule) test case 2 (carbon atom)

1σ (68.27%)
X−3 40.8378 ± 0.0078 154.7 ± 2.2
(X + 1/2)−4 40.824 ± 0.012 154.0 ± 2.2
Riemann ζ 40.8455 ± 0.0026 155.7 ± 1.1
non-integer X 40.828 ± 0.013 154.2 ± 1.1

2σ (95.45%)
X−3 40.838 ± 0.018 154.7 ± 4.8
(X + 1/2)−4 40.824 ± 0.027 154.0 ± 5.0
Riemann ζ 40.8455 ± 0.0058 155.7 ± 2.5
non-integer X 40.828 ± 0.028 154.2 ± 2.4

3σ (99.73%)
X−3 40.838 ± 0.029 154.7 ± 7.9
(X + 1/2)−4 40.824 ± 0.045 154.0 ± 8.3
Riemann ζ 40.8455 ± 0.0096 155.7 ± 4.1
non-integer X 40.828 ± 0.047 154.2 ± 3.9
reference 40.8463 156.287

aSee the text for more details. All values are given in mHa (with signs
reversed for the sake of convenience).
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of extrapolation schemes that differ the most from each other
(40.824 vs 40.846 for test case 1; 154.0 vs 155.7 for test case
2), the differences are smaller than the sum of their
uncertainties at the 2σ level, 0.033 and 7.5, respectively.
Simultaneously, for all data points in Table 5, the differences
between the extrapolated results and the corresponding
reference values are smaller than the uncertainty at the 2σ
level.
In summary, we have introduced a method of estimating the

uncertainty of a result obtained through extrapolation to the
complete basis set limit. The method is based on an ensemble
of random walks that simulate possible extrapolation outcomes
that could have been obtained if results from larger basis sets
had been available. The ensemble of independent random
walks is then analyzed statistically, enabling an uncertainty
prediction at a given confidence level. The method is free of
empiricism and can be used in conjunction with any
extrapolation scheme. Numerical tests performed in this
work show that the proposed method is successful in
predicting the extrapolation error, leading to error bars that
are tight yet conservative at the same time. While the
extrapolation error is the natural target for the proposed
procedure, it is possible that similar ideas can be used to
determine uncertainties due to other sources of error in
quantum-chemical calculations and beyond.
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