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Abstract

We present a comparative study about the flavor changing neutral Higgs (FCNH) interactions of top
quark, i.e., tgh (¢ = u, ¢), from two processes with the 4 — yy decay channel: top quark pair production
pp — tt with one top decaying to hq, and the anomalous single top plus Higgs production process pp —
th. We perform a full simulation for the signals and the relevant SM backgrounds based on two separate cut
selections at the future 14 TeV High Luminosity LHC (HL-LHC). The results show that the SM background
can be greatly reduced for both selection methods. The branching ratios of + — uh and t — ch can be,
respectively, probed to 1.4 x 10~% and 1.5 x 10~# at the 95% Confidence Level (CL), which is consistent
with the dedicated study performed by the ATLAS collaboration. The advantage of the pp — th process is
that the origin of the signal from tuh or tch couplings could be clarified by studying the diphoton pseudo-
rapidity and the charges of the charged lepton from the top decay. If we only consider the signal coming
from this process, the upper limit on the branching ratio of about Br(t — uh) =2.4 x 10~ at the 95%
CL is obtained. Altogether, these limits are one order of magnitude better than the current 13 TeV LHC
experimental results.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The discovery of the 125 GeV Higgs boson at the Large Hadron Collider (LHC) [1,2] opened
a new era of exploring the origin of the elementary particle masses. Following that, one can
expect to search new physics (NP) beyond the SM through exploring the coupling of the Higgs
boson with the other elementary particles. In the SM, the flavor changing neutral Higgs (FCNH)
interactions of top quark, i.e., the vertex tqgh (¢ = u, c), are absent at tree-level and suppressed
largely at loop-level due to the GIM mechanism [3,4]. However, the branching ratios for the r —
gh decays are predicted to be in the range of O(10~° — 1073) in several extensions of the SM, e.g.
supersymmetry models [5—10], two Higgs doublet models [11-15], and other NP models [16—
20]. One can expect that such contribution could be discovered or constrained at the current and
future LHC experiments. Thus any experimental signatures of such FCNH interactions of top
quark will serve as a clear signal for NP Beyond the SM [21-23].

In general, the effective FCNH interaction between the Higgs boson and the top quark, tgh,
which can be expressed as

L=kyptHu + kientHe + h.c., (D

where k5 and k., denote the flavor changing coupling constants. Recently, the constraint on
the thq interactions through direct measurements was reported by the CMS and ATLAS col-
laborations at /s = 13 TeV [24-27] by searching for ¢f production with one top decaying to
Wb and the other assumed to decay to hq. For example, the combination of these searches with
ATLAS searches in h — bb, 777, yy and multilepton final states yields observed limits for
Br(t — qH) at 95% Confidence Level (CL) [26]:

Br(t —>uh)<12x 1073, Br(t —ch)<1.1 x 107>, )

From a phenomenological viewpoint, the FCNH interactions between the Higgs boson and the
top quark have been studied extensively at LHC via different processes using model-independent
methods [28-34].

From previous studies we know that the FCNH interaction ¢gh could be probed at the LHC
by two channels: the top quark pair production process pp — tf with the anomalous decay from
one top quark ¢t — gh, and the single top plus Higgs process pp — th via the anomalous tgh
couplings, as shown in Fig. 1. The former process can give stronger constrains on the FCNC tgh
couplings due to its larger production rate, but the latter is more sensitive to the fuh coupling and
has large charge ratio for the final states [31]. Besides, the advantage of this search with respect
to other searches is an explicit reconstruction of the Higgs boson which would be very useful in
the case of a positive signal [32]. Because these two processes with different production mech-
anisms have similar final states, one needs to know which channel has the higher significance
and compare their respective advantages for an inclusive search. In this paper, we perform an
comparative study of FCNH interaction between the Higgs boson and the top quark at the High
Luminosity (HL-LHC) run of the 14 TeV CERN collider, by considering the Higgs diphoton
decay channel due to the relatively clean SM backgrounds.

This paper is arranged as follows. In Sec. 2, we perform a complete calculation of two top-
higgs associated production processes by considering the FCNH interactions tgh at tree level.
Besides, we discuss the observability for two dominant processes by the diphoton final state at
the HL-LHC. Finally, our conclusions are presented in Sec. 3.



J.-F. Shen, Y.-J. Zhang / Nuclear Physics B 959 (2020) 115157 3

Fig. 1. Representative Feynman diagrams for: the top pair production processes gg — tf with 7 — gh decay channel
(a-b), and the top-Higgs associated production processes gg — th (c-d). Here ¢ = u, c.

2. Process analysis and numerical result
2.1. Monte Carlo simulations and cuts selections

In the following we will perform the Monte Carlo simulations and look for the suitable cuts
through the processes

pp — t(— Wb — tTvb)h(— yy), 3)
pp — tF— t(—> Wb — £Yvb)h(— yy)j, @)

where ¢ = e, u. Note that the analysis also considers the charge-conjugate process. The final
state of signal process is thus characterised by two photons, exactly one lepton and one b-jet.
The main SM backgrounds include the resonant backgrounds and the nonresonant backgrounds,
such as tih, thj, tiyy, tjyy and yy WEjj.

The production cross sections for the signals are calculated at the leading order (LO) by using
MadGraph5-aMC@NLO [35] with NNPDF23L01 PDFs [36], considering the renormalisation
and factorisation scales to be ug = ur = wo/2 = (m; + my)/2. In our numerical calculations,
the SM input parameters are taken from Ref. [37]. The coupling parameter should satisfy the
direct constraint from the current ATLAS result and is taken as «;4;, < 0.04 [38]. All the gen-
erated parton level events are passed through PYTHIAS8.20 [39] and DELPHES3.4.2 [40] for
parton shower and detector simulations. Finally, event analysis is performed by using MadAnal-
ysisS [41]. When generating the parton level events, we assume pur = (r to be the default
event-by-event value. The anti-k; algorithm [42] with distance parameter R = 0.4 is used for jet
reconstruction.

Here it should be mentioned that we rescale the leading order cross sections to the corre-
sponding NLO QCD results with the K-factor, i.e., K = 1.5 for the pp — th process [43] and
K = 1.18 for the pp — tth process [44]. The dominant ¢7 produced process is normalized to
the NNLO total cross section as studied in [45]. For other SM background processes, we have
rescaled their cross sections by a K -factor of 1.5. This approximation does not have a significant
impact on our derived sensitivities.

In order to identify objects, we chose the basic cuts at parton level for the signals and SM
backgrounds as follows:
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AR;j>04, i,j=y, L borj

Pt >20GeV, |n,.l <25 (5)
ph>25GeV, |np| <2.5
Ph>25GeV, |nj| <25,

where AR = /A®2 + An? is the separation in the rapidity-azimuth plane, p?’z’b’/ are the trans-
verse momentum of photons, leptons, b-jets and jets.

Next we discuss the events selection by focusing on two cases: the pp — th (henceforth
referred to as ‘Case A’) process and the pp — tf — thj (henceforth referred to as ‘Case B’)
process, respectively. The main difference is whether there is a light jet in the final state. However,
it should be mentioned that the final signals for Case B could also be considered as a source of
Case A if the light quark is missed by the detector. Thus we combine these two cases when we
consider the above signal events. Firstly, let us focus on the final signal for the Case A where
only the events including at least two photons, exactly one b-tagged jet and one charged lepton
are considered.

In Fig. 2, we plot some differential distributions for signals and SM backgrounds at the 14
TeV LHC, such as the transverse momentum distributions of the two photons, the invariant mass
distributions of the two photons, M,,,,, the transverse mass distribution for the blET systems,
and the pseudorapidity of the higgs boson 5. Here the top quark transverse cluster mass is
defined as

M3 = (J(pe+ po)? + |Pre + Brol? + 1po? = Pr.c + bro+ prl. (©)

where pr ¢ and prp are the transverse momentums of the charged leptons and b-quark, respec-
tively, and ibT is the missing transverse momentum determined by the negative sum of visible
momenta in the transverse direction.

One can see that the two photons in the signal and the resonant backgrounds have the harder
pr spectrum than those in the non-resonant backgrounds. Furthermore, the signal and the res-
onant backgrounds have the diphoton invariant-mass peak at my,. Since the lepton and b-jet are
assumed to originate from the leptonically decaying top quark, the cut on the transverse mass of
the top candidate is needed. Besides, the Higgs boson from the ug — th process concentrates in
the forwards and backwards regions because the partonic center-of-mass frame is highly boosted
along the direction of the up quark. On the contrary, the main contribution of top pair production
comes from gluon initial-states, which are symmetric and have small boost effect.

According to the above analysis, we can impose a further set of cuts for the Case A.

Cut 1: There are exactly one b-jet and only one isolated lepton with positive charge.
Cut 2: The leading (sub-leading) photons with pr > 60 (30) GeV and AR, ,, <2.0.
Cut 3: [M,,,, —mp| <5 GeV.

Cut 4: 100 GeV < ML < 180 GeV.

Cut 5: |np| > 1.0.

However, these distributions will be slightly different if we focus on the signal for the Case
B, because there is a light jet which coming from one top decay t — hq — y y g or one anti-top
quark decay t — hg — yyq. Thus the invariant mass distribution of the diphoton and leading
light jet M,,,,; also has a peak around the top quark mass in the signal. In Fig. 3, we plot some
distributions for the Case B. It should be noted that other distributions are similar to the previous
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Fig. 2. Normalised distributions for the signals and SM backgrounds for the Case A. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

case, such as the transverse momentum distributions of the two photons, the invariant mass dis-
tributions of the two photons and the transverse mass distribution for the b€ £ systems. Thus
the following cuts can be imposed to further remove the backgrounds if we focus on the final
signals for the Case B.

e Cut 1: There are at least two jets and exactly one b-tagged jet among two, and only events
with one isolated lepton are considered.

e Cut 2: There at least two photons with pr > 60 GeV for leading photon and p7 > 30 GeV
for the subleading one, and AR, ; < 1.5.

o Cut3: My, —my| <5 GeV.

e Cut4: 100 GeV < M2* < 180 GeV.
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Fig. 3. Normalised distributions for the signals and SM backgrounds for the Case B.

Table 1
For the Case A, the cut flow of the cross sections (in x 103 fb) for the signals and SM backgrounds at the HL-LHC with
Kuh = 0.04.

Cuts Signal Backgrounds

ug — th tt — thj tth thj ttyy tiyy WEyyjj total
Basic cuts 44 118 67 9 435 823 953 2285
Cut 1 40 54 14.8 4.5 96 396 468 979
Cut2 17 11 44 1.3 11.8 35.8 553 109
Cut3 15.6 10.2 4.0 1.24 0.5 1.4 2.3 9.5
Cut 4 9.8 0.67 1.7 0.8 0.1 0.7 0.9 4.2
Cut5 6.4 3.0 0.68 0.45 0.05 0.43 0.21 1.8

e Cut5:150 GeV < My,,,; <190 GeV.

The effects of the suitable cuts on the signal and SM background processes are illustrated
in Tables 1-2. One can see that, at the end of the cut flow, the total SM backgrounds are only
about 0.002 fb for two cases, and there are only about 6 events with the integrated luminosity of
3000 fb~!. Besides, the r7h process can generate dominant contributions for the SM background.
For the signals in Case A, the cross section for the ug — th process is about twice that of the
pp — tt — thj process. For the case B, the final cross section for the pp — tf — thj process is
about 0.01 fb, and there will be more signal events than those for Case A with the same coupling
parameter k4. Furthermore, the final cross sections for the pp — th process are very small, i.e.,
0.72 x 1073 fb for ks = 0.04 and 0.15 x 1073 fb for k¢, = 0.04. Thus, we can safely neglected
these contributions when we evaluate the constraints on the #ch coupling for the Case B.

2.2. Exclusion significance

To estimate the exclusion significance for the small number of events, Zqx., we use the fol-
lowing expression [46]:

b+s—+x 1 b—s+x 1
Zexc]: 2|:S—b1n<T)—S—ZIH<T):|_(Z7+S_X)<1+%>, (7)
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Table 2
For the Case B, the cut flow of the cross sections (in x 103 fb) for the signals and SM backgrounds at the HL-LHC with
kuh = 0.04 or k;c;, = 0.04 (in the blanket) in the signal, while fixing the other to zero.

Cuts Signal Backgrounds

tt — thj pp —> th tth thj ttyy tjiyy WEyyjj total
Basic cuts 118 49 (10) 67 9 435 818 936 2264
Cut 1 109 45(9) 30 7 189 642 838 1705
Cut2 20 2.1(0.44) 3.7 0.52 12.3 25 40 82
Cut3 18.3 1.9 (0.4) 33 0.47 0.56 1.0 2.0 7.3
Cut 4 12.4 1.2 (0.3) 1.6 0.3 0.2 0.7 0.6 3.5
Cut5 11.2 0.72 (0.15) 0.91 0.17 0.13 043 0.43 2.1

Table 3

The upper limits on BR(r — gh) at 95% CL obtained at the HL-LHC. We consider systematic errors of 0%
and 20% on the SM background events. The numbers in the blanket denote the values only considering the
ug — th process in Case A, and only considering the pp — tf — thj + thj process in Case B.

Upper limits Case A Case B

§=0% 5=20% §=0% §=20%
BR(t — uh) 1.6 (2.3) x 1074 1.7 (2.4) x 1074 1.3(1.4) x 1074 1.4 (1.5) x 1074
BR(t — ch) \ \ 1.4x 1074 15%x 1074

with x = /(s + b)? — 482sb2 /(1 + 62b). Here, the values of s and b are the total signal and
SM background events, respectively. § is the percentage systematic error on the SM background
estimate. In this work we choose two cases: § = 0%, 20% for HL-LHC. In the limit of § — 0,
the above expression can be simplified as Zexc) = +/2[s — bIn(1 + s/b)]. We define the regions
with Zexc) < 1.645 as those that can be excluded at 95% CL [46].

In Table 3, we list the exclusion limits at 95% CL at the future HL-LHC with the afore-
mentioned two systematic error cases of § = 0% and § = 20%. Note that the branching ratio of
t — gh is approximately given by Br(t — gh) =~ 0.58Kl2q 5 311, thus these limits can be trans-
lated to the upper limits to the corresponding branching ratios. One can see that, the sensitivity to
the Br(t — qh) are at the 10~ level for both cases, i.e., even we only consider the signal from
the ug — th process in Case A, the 95% CL limits on the BR(# — uh)’s have been found to be
2.4 x 107 with 20% systematic uncertainty, and the corresponding upper limit on the coupling
is kryn < 0.02. The benefit of this process is that it has the large charged ratio for lepton, which
can be used to determine that the signal comes from the up initiated production channel. Due
to the small events number of the SM background, the effect of systematic error is also small.
For comparison, the recent 95% upper limits on BR(t — gh) obtained at the HL-LHC with an
integrated luminosity of 3 ab~! by the ATLAS Collaboration [47,48] are also presented, which
are obtained via the decay mode t — gh(— bb) and t — ch(— yy), respectively. For exam-
ple, an expected upper limit of BR(f — ch) < 1.5 x 10™* at 95% CL is obtained via the decays
t — ch(— yy) channel [48]. Thus our estimate is in a good agreement with the dedicated study
performed by the ATLAS collaboration. In general, such limits are one order of magnitude better
than the most recent direct limits reported by the ATLAS Collaboration at the 13 TeV.

Next, let us to review competing limits from other authors at the HL-LHC. For instance, the
author of Ref. [49] has studied the top-Higgs FCNC couplings via the & — W W* decay channels
at the HL-LHC and the upper limits of Br(t — uh) < 0.07% and Br(t — ch) < 0.14% were
obtained. Very recently, the authors of Ref. [50] have investigated the prospect for t — ch decay
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in top quark pair production in the context of the 2-Higgs Doublet Model (2HDM), and find that
the 95% CL upper limits on BR(r — ch) was found to be 1.17 x 1073 at the HL-LHC.

3. Conclusion

In this work, we have studied the FCNH interactions of top quark, i.e., tgh (¢ = u, c¢), at the
HL-LHC by performing a full simulation for two processes: pp — tt — thj and pp — th with
the h — yy decay channel. If we take the percentage systematic error on the SM background
estimate as 20% at the 14 TeV LHC with 3000 fb~! integrated luminosity, the branching ratio
Br(t — uh) (Br(t — ch)) can be probed to 1.4 (1.5) x 10~* at the 95% Confidence Level
(CL) by focusing on the former process, while if we only consider the signal coming from the
pp — th process, the upper limit on the branching ratio of about Br(t — uh) = 2.4 x 107#
at the 95% CL is obtained. Altogether, these limits are one order of magnitude better than the
current experimental results obtained from LHC runs at 13 TeV. Thus we expect to provide the
complementary information for detecting such anomalous couplings at the future HL-LHC.
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