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I. Introduction

The fundamental property of squeezed light is the reduced
quantum fluctuations in the one-quadrature phase,

After the early works by Caves [1}) in which the potential
application of squeezed light for detection of gravitational
waves was shown, a large amount of theoretical [2-16] and ex-
perimental works [17-18] is concentrated on the generation
of squeezed light and its application to overcome the short-
-noise limit [19]. In recent works the radiative decay [21]
and speotroscopic properties [22] of an atom interacting with
a broad-band squeezed vacuum have been considered.

In this work we discuss the collective reaonance fluo-
rescence from N driven atoms which sre damped by white squeezed
noise. In the case of intense external field the staticnary so-~
lution for the density operator of the atomio system is given,
In the general case (without the oase of exact resonance) the
denasity matrix of the atomioc syetem is dependent on u phase
difference of the driving fleld and squeezed vacuum, The depen-~
dence of the spectrum of fluorescence and photon statistics of
spectrum components on the parametaers of the aqueezed vaouum

are analyzed.

II. Basis squations

let N two-level atoms be oonoenirated in a region small com-
parod to the wave-laength of all the relevant radimtion modes
(Dicke model ). The atoma are interacting with a olessiosl driv-

Ing rlald of frequency Q)L and with the guantjzed multimude re-



diation field. The Hamiltonian of the system in ths electric

dlpole, rotating-wave approximations and in the interaction pic-

ture onn be written in following form:
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foom b atomtc reponanes Progquoncy '43“; G e ‘,/uf, WhOI‘E/t
le the atomic dipolo woment and € ie the amplitude of the

driving fleld; J (t,)=4,2) are the collective (angular) ato-
Ly

mic operators which satisfy the commutation relations

03 0= 5,08, - 0.8, » (2)
Hrad i3 the free Hamiltonian for the quantized radiation field;
r and " are operators defined in terms of the positive and
negative frequenoy components of this field, respectively.

The normal treatment of the resonance fluoreacence is con-
sidered in many works [23-25] in which the quantized radiation
field is initielly taken in the usual vacuum state.

In this work we assume that all the quantized radiation
modes coupling to the atoms 1initially are aqueezed [20-22].
The band-width of the equeezing is assumed to be sufficiently
broad 80 that the squeezed vacuum appears as JQ-correllted
squeezed white noise to the atoms. Then, the correlation funo-~
tions for free parts [ ""dgéze““° nolase operatora) of

Sree
the operators I and I’ can be written as [20-22]
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where ¥ 18 the spontaneous emission rate of an atom in the
usual unsqueezed vacuum; P and Q= 1Q! e' ’are the parameters
characterizing the squeezing with IQI% P(P+1) , whers the equa-
1ity holds for a minimum-uncertainty squeezed state.

Using the relations (1) and (3) and after making the uni-

(G- T
tary transformation U = € , one finds the master
equation for the reduced density operator § of the atoms in
the following form [20]:
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where ¢ = 14"_—4’, is the phase difference of the driving field
and squeezed vacuum,

Pollowing previous workae [?3,26J we introduce the Sohwin-

ger representation for the collective atomic operators Jéj .

JF = a a (¢.0s 1.2) ’ %)

where the operators ﬂf.’. and a.._' obey the boaon commutation
realations
a’ ] =
[ a'" ’ fi - ‘,"
and cen be treated as the annihilation and oreation operators
for the etoms being populeted in the level | ¢,
After performing the canonioal (drewsing) tranaformation

a = C, cos C, sin g »

(et S (6)
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where tg(26) = 26 /& ;
one can split the Liouville operator L appearing in equation
(4) into the slowly varying part and the terms oscillating at
frequencies €1 apnd 441 , with J1 denoting one half of the
Rabi frequency. We assume here that the Rabi frequency is suf-
ficiently large and satisfies the relation .

n s (%Jﬁ ¢y » oy ' m
In thie case the mecular approximation [23-24] is justified
and we retain only the slowly varying part of the Liouville

operator. We have then the master equation

OF _ i [aca,-m),§) .
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+ ; X (R SR, -R R, §) +
+X1(R“§'Rn_ﬂ12R“5’)+ H,C.} . (8)
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where R“ = Ci Cj (¢,j=4,2) are the collective operatore of

"dresped" atoms satisfying the commutation relation
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(R, Ry it G R @
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?-T €T, where T

osnonical transformation (6)e

ls the unitary operator representing the

A

The master equation (8) gives the exact steady-state

golution

~ -1 ¥ LN
¢=1 I X |In><n) y (14)
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where
= X, /X . (15)
2= (x"Y1)/cx-1) a6
The state l‘n") is the eigenstate of the operators R“ and

R“ t RIL . The solution (14) allows one %o calculate all the

stationary expectation values of the atomic observables. Some

of the results that will be needed for our further considerations

are given in Appendix. In the case of exact resonance Cig‘g: 1
one shows from (11)-(12) and (15) that X = { and the solution

(14) reduces to N
~r _4
§F= (ve1) L

"o (17)
The solution (17) im independent of the parameters P, @ of the
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squeezed vacuum, consequently ell the cne-time expectation ve-
lues of the atomic obmervables are independent of that the
vaouum is squeezed or not. In the general off-resonsnce oase
; in (14) 1is phese-sensitive and all

the steady-state expeotation values of the atomio and field

the density operator

observables are dependent on the psrameters of squeesed vacuum.
In seotions III and IV ws investigate the influenoce of the

squeesed vaouum on the fluorescent speotrum and photon statis-

tios of speatrum ocomponents.

IIl. Steady-etete Liuorescence gpegtrum

Pollowing the work {22] the steady-state spectrum of the
fluorescent light has been caloulmtsd as Lhe Pourier transform
of the atomioc ocorrelation funoction

? )
(Ju(‘t).{l}’ » “:;’ <Ju”'t){¢“'> (10)



Thies scheme for calculating the spectrum assumes that there
exists a amall "window" of unsqueezed vacuum modes through which
we can view the fluorescence. For the case N> P the intensity
of the fluorescent field dominates over the squeezed noise thus
a "window" of unsqueezed vacuum modes is unnecessary, where

&< 2; denotes an expectation value over the steady-state

(14). According to the transformation €16) we have

. 2 .8
J,,(¢)= Sing. cosg Ry(t)+ Cos™g Ry (8)- Sen gR’ t) .

19)
The equations of motion for ¢ Rij (£)> can be derived by
using the master equation (8), and have the following form
2
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Equations (20)-(22) are so far exaot. They contain, however,
torms with the productism of operators which make them unsolvable
in the general cape.

Por the one-atom care one oan use the well-known operator

relation

R,, Ry = R“,,tS;,l_ (0,0 «4,2) (26)

[

and aqustions (20)-(22) reduce to the linear differential

equations
ﬁ<k3(t))=-5;<R5(t)>+-¢3; Y e
3‘: < R (2))= - 2R 4> - Y, <RL(0> , (1g)
d - 4 "
2 < R, (0)) = e < Ru(t)> . (29)

Linear differential equations (27)-(29) are exact solvable and

their solutions are in agreement with the previous work on the

resonance fluorescence of an atom in & squeezed vacuum [22_].
For the case of exact resonance, i.é., Cts‘f = 4 we have

)’c = 0 and all equations (20)~(22) reduce to exact solvable

linear differential equations.
In the general case, to deal with the produoct terms we apply

a decorrelation scheme similar to that umed by Compagno and
Persico [25]. The only difference consists in tha fact that

we decorrelate symmeiriged producis of operators (anticommmu=
tator). This allows us to preserve one-stom terma unohanged and
clearly separate them from the collective terma. The decorre-
lated operators that do not enter into the equations as "proper”
variables are replaced by their steady-state averages caloula-

ted with the density matrix (14).

iR LR §> = £<R AL >=2 KRR - (30)
With such approximations equations (20)-(22) have simple ex-
ponential solutions with the one-atom (l.e. I;‘ (Y' ) and colleo-
tive (l,e.lfc (R’,}) damping ounstant cleoarly meparated. Upon
neglacting the collective part one immediately obteins the one-
atom results. By using the density matrix (14), one can show
that [23.2‘)] in the case of large N the decorrelation (30)
yields a small error (with an order of Nh“) in the osloula-
tion of the steady-state fluorescent apectrum. The explicit

expressions for the collective terma of the damping constants



can be obtained with the use of the steady-state averages
given in Appendix,

Using the relation (19), the solutions of equations (20)-(22)
end applying the guantum regression theorem [21_], one obtains

the following expressions for the correlat‘ivon function (18)

e ¥ -y t-2cnt
<J-H(t)‘];1,>s 's‘n§'<ﬂuﬂ:}1>s ¢

- t 20T
+oos'e <R R,y €%
) 2 z -XT
. +Sin f.w;f((ﬂa%-l'e)e t Sin'g.oos’g I,
where (1)
Te =% (N%2#) <R /7 C G
Yy, = % + ¥ <Ry » (33)
¥ = ¥, + % <R3>s . (34)
The expresaiona for the weighting factors of the parti-

oular exponents are given in Appendix.

The steady-state .speotrum of the fluorescent light 1s pro-
portional to the Pourier transform of the correlation function
(31) and haw the following forms:
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The fluoremcence speotrum (35) contalns three spsotral lines
oentersd al frequencies = W 121, In the off-resonance

t 1.
oune, l.e,., when ¢ g G* 1 the central llne at wa w._ vontalne

E 2
the elamstic component with the intensity proportionsl to ¥

~

and the Lorentzian shaped component with the linewidth B’, and

. 2 2
intensity Sb»"f cos'g ((R5 % I, ) . The two-eidebends are
Lorentzians of linewidth X+ centered et frequencies aJ:wL-:n.
and W= W, +22 , and having the intensities which are pro-
R R L/
portionsl to Sin'g (R, f“% and ca.s§<R” Ru% , T8~
pectively., In the case of exact resonance we have ’;: © and

the spsctrum (34) reduces to

4 Y
Stwd~ X N(N+2) { = +
“ (w-w)H% 5

’ |
+ = + = (36)
E L - Y
Y wew iyt T 4 (weows2a) §
where ¥, and Vf are the one-atom linewidths (see eqe. (23)-
(24)) veing taken for the case of exact reasonance
,0

Y, = I[3pe 2. 1a)coss] : (38)

It is clear from the relations (36)-(38) that in the case of

¥ [ Pe i +1@1 cose] ’ (31

exact resonance the elastio component vanieshes, the intensi-
ties of all three inelastio components are proportiomal to Nz
and are independent of the parameters of squeered vacuum while
the linewidths, and consequently the peek intensities, are
dependent on the parameters of the sgueezed vacuum and become the
phase-senaitive quantities, For an lllustration we assume the
squeeged vacuum being in & highly squeezed minimum-unoertainty

‘
state, l.0., P>> 1 and Qs (PyrPt) 2 we havel

X AP Y tr é= 0 )

i a:, ¥ (39)
Y o ._!— if ¢ = 1 )
. ir
Y =~ PY it - o )
V, = ¢ (40)
¥, v 2°7 i ¢ =1



thue, the sidebands are broadened while the central peak has
a supernatural or subnatural linewidth by changing the phase
dirference ¢ by 7 .

)
In enother case when P<<4 and @=(P+ P")/‘ we have
¥ 2wty > ¥ of $ =
3 b’o X(&-r P 2 1)
Fxy(s-7) < ¥ of $ =1

> ¥/, 3 3 X = ’
Ilb’,,z (3-5)4;” of 4 =0 (42)

2
2 L(2avpy> 2y 2 4 =a
thus the narrowing or expansion of the linewidths of the cent-
ral component and sidebande take place in the dependence on
the phase difference ¢ . We note that the narrowing or expan-
gslon of the linewidths are sufficiently large when squeezed va=-
cuum is in highly squeezed (P >> 1) minimum~uncertainty state
{mee relations (39)-(40)).

In the off-resonance case, as is clear from eqs. (32)-(33)
the linewidths contain the one-stom ( B‘; A ) end collective
partas (b; < Ra >s ) and they are, in the general case, dependent
on the parameters of squeezed vacuum, For large numbere of
atoms N» {1 from relation for {R, % given in Appendix one
finds
K(ayy = Iu fsnte o st) o ctg'iai

(43)
thus, for the case of N >> { the collective part of the spectrum

linewidths is independent ot tlie persmeters of syusezed vacuum

and dominates over the one-atom partie ’o, 1'1 . Consequently the
speotrum linewidths are approximately independent of that the

veouum is squeered or not.
Uontrary to the exmci-resonance ossa the intensities of
the epesctrum components urs strongly depend on the parame texrs

of the squeened vaouum, In fig. 1 a-d the relative intenmities
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of the two sidebanc_la, i.e., the quantities I—f/N= 5"714? < kﬂ‘g%
(dashed curves) and I /¥ =Cas’§.(5'k’;% /¥ (solid curves)
are plotted as functions of the parameter Cfg"q for vari- .
ous values of P , {Q) and ¢ . In fig. 2a-b the relative
intensity of the central line (the sum of elastic and melaat:l.c
components), i.e., the quantity I /N"° Sin § cos f(ﬂ P /”g
is plotted a8 a function of the parameter cfg G for the same
values of P, |@) and ¢ . It is clear from figs. (1)-(2),
except for the point of exact resonance, that the intensities
of gpectrum componenis are strongly dependent on the parameters
of squeeged vacuum and become phase-sensitive values. In un-
squeezed vaouum (gee curves 1 in fig. 1, 2 the intensities of
the two sidebandes are equal and spectrum is symmetric. In the
gqueezed vacuum (pee curves 2 and 3 in figs.1 a-d) the inten-

sitiea of two sidebands are quite different for the off-reso-
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The rélative intensity I, /yt as a function of the parameter
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pond tos PxlQlz0; P=2,|Q) « (Pv P) é«0 and p-s3 .l@l-(’#’)"
b, raspeotively.
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nance case clg"’g# { and spectrum becomes asymmetric. For a

large number of atoms N>>4 from the relations for <K » a}
<R’4 5" % and (Rﬂg given in Appendix, one finds
I = cos?s . N/Ix-4) 'f et 44,
I, x sin'g. ¥x/ix-4) if ctgis 44
s;'n‘g.cos‘g(/v’. x% ) F cfg’g >1
I, = s&n"é-“szf (N"- _3_”_: y &% dﬂ‘? <1

thus in the off-resonance case the intensities of spectrum
ocomponenis are strongly dependent on squeezed vacuum even for s
large number of atoms N>» 4/ when ths spectrum linewidihs are
independent of one.

IV, Photon statistics_of the spectrum components

In this section we discuss the influence of the squeegzed
vacuum on the photon statistics of the spectrum components,

As is olear from the previous mection and eq.(19), the
operstors Cos' £ 4y Sin§0sg Ry and- Simg R, can be considered
as operator-sources of the spectral lines centered at frequ-
encies Wx W 4111;“:' and wL_t.(l and for later use these ope-
rators will be denoted by .S": , 6°'|$olnd -3:: , respectively.
Pollowing refs. [23.26] we introduce the degree of second-order
ocherence for the spectrum component 3{ ( €z 914} in the fol-

lowing form

+ A 4
S S5 D
wr <““/ (£=0,t4) . (44)
e (<805 )"
The quantity G duorlbu the phioton statistios of the

speotrum oomponcnt J .

Using eqm. (14) llld (19) one finds
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0
G = < Ru Rn Ru R.u >s /(< Ru. R“ % )

2 )
-4, -1 -

G , (46)
"J 4

where the expectation values < R;?,, < R;% ,
< Rﬂ Ru >5 > < Rm Ru‘Ru Ru >S

are given in the Appendix.
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Por the one~atom case, by using the operator relation (26)

one finds
@) @) )
= 4 J G = G = )
9,0 i1 ~-4,-4

thus the photon statistiocs of the central component remainas
Poissonian and the sidebanda have subpoissonian statistics as
for the case in the unsqueezed vacuum,

Por the colleotive case, the dagrees of second-order cohe-
rence for the spectral lines given in (45)-(46) are dependent
on the parameters of squeezed vacuum and become phase-pensi-

L)
tive quantititea. The behaviour of the degrees of coherence G(

’

and G;:';4 "as a function of the parameter Cfgzé for fixed N=25
and for ’vnrioua values of P, IQ) and ¢ 1ie plotted in fige. 3
and 4, respectively, As is clear from figs. 3-4, except for the
point of the exact resonance Ctg"f = 4 , the parameters
of the aqueezed vacuum including the phase difference ¢ play
an important role in determining photon statiatica of the Mol-

low triplet.

v. Conglusiona

We have oonaidered the problem of collective resonance fluo-
resocence in the squeezed vacuum. Por the intense sxternal fleld
the analytical aolution for the steady-state densmity operator
for the atomic syaetem 1s found. Analytical formulas have been
derived for the spectrum of the resonance fluorescence and for
the degrees of the second-orderasd coherence for the spectrum
companents.

1t has been shown that {n the came of oxacl resonance Lhe
intensities of the spectrum component ars independent of mqueezed
vaguum while the linewidths are subnatural or supernatural in

the dependence on the parameters P, /@ ! and phase difference



¢ of the driving field and squeezed vacuum. Contrary to the

< Rb > = N-2 < R“ % ;
exact resonance case, in the off-resonsnce oase the intensities (A.5)
of the spectrum components are dependent on the squeezed vacuum 2 - & - E
(Ry % = AR % ~4N<RZ+ Y v we
and the spectrum become , in the general case, asymaetric while
‘ (N+4) <R >
the linewidths are approximately independent of the squeezed { Rﬂ R“ >8 = =< R" % + + 'y ‘s ) (A.7)
vacuum for a large number of atoms N>> 4 , 2
= - <R + (N-1)<R_> + N .
We have also shown that in the collective and off-resonance < Ru Ru ?s 11 >’ " » (A.8)
case the photon statistics of spectrum components are dependent ¢ R" > = 16 < R 4 > - 3INL Rﬂ’ D> + 24 N'(R "’)
= 1 S H S
on the parameters of the squeezed vacuum and become phase-sen- LI s 4
gitive quantities. ) "7s
RY 2en2)< RS>
= - + +
Appendix . < Ru Ru R.u Rz., >s = < 4 >s L

)
In this Appendix we give the explicit expressiona for the + (~z+ SN+5) <R“ 73 _ (Nz‘ IN+2 ) <R

> .
steady-state averages of the atomic operators that cem be calcu- "5 (a.10)

lated with the use of the density matrix (14)
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CrnekTpallbHHe H CcTAaTHCTHUECKHe cBojicTBa
KOJUIeKTHBHOHA pesoHaHCHON ¢unyopecueliun
B CKATOM BaKyyme

O6cyxpmaeTca npolbieMa KoaneKTHBHON pesonalicHoit pmayopec-
lelHHH aTOMOB B GelloM cxarToM wyMe. [lonyueusl aHAIHTHUeCKHe
dbopMynu ONA CriekTpa pesoMaHCHON ¢uyopecueHUHM H IONA cTe=
MeHK KOI'epeHTHOCTH BTOPOIO NOPA/IKa CHEKTPAaJIbHbIX KOMIIOHEHT
llokasaHp Cy®eHHe, yuMpeHue CrneKTPAanblbX JIHHHA B acHM-
MeTPHA CNeKTpa, KOTOphle BOSIHMKIM M3-3A CXATOrO wWyMma,

Patora bunomielia b JlaBopaTopit TeopeTiueckofl $pusuku
OUfH,

MNpenpunr OOwenmionHOro HUCTHTYTA AROpiLIX Heenonobaunil. HyGua 1988

Shumovsky A.S., Tran Quang E17-88-325
Spectral and Statistical Properties of
Collective Resonance Fluorescence in
a Squeezed Vacuum

The problem of collective resonance fluorescence of N
driven atoms which are damped by a white squeezed noise
is discussed. Analytical formulas for the spectrum of re-
sonance fluorescence and for the degree of second-order
coherence for spectral lines are calculated. The narrow-
ing, expansion of linewidths and asymmetry of spectrum
caused by squeezed vacuum are shown.

The investigation has been performed at the Labora-
tory of Theoretical Physics, .JTNR.
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