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Abstract

English version In this dissertation, a strongly interacting Electroweak Symmetry
Breaking Sector is considered. We use the framework of Effective Field Theories (EFT)
and unitarization procedures, successfully deployed to study resonances in low energy
QCD in the last decades. The EFT amplitudes are computed at the Next to Leading
order (NLO).

If new resonances were discovered at the LHC run-II, different theoretical approaches
could be used to study them. However, the framework that we follow here has several
advantages. For instance, it only contains a few parameters. Seven in the case of scat-
tering within the Electroweak Symmetry Breaking Sector (W±

L , ZL and h); a few more if
the γγ and tt̄ states are included. And, even more important, the masses and widths of
the resonances emerge as a consequence of the low-energy behaviour of the theory. They
are not free parameters of the model, we will derive them from the Lagrangian.

The EFTs for longitudinal gauge bosons plus Higgs are being actively investigated,
because of their direct application to the experimental program of the LHC run-II. How-
ever, they are frequently considered only as a useful parameterization of slight deviations
from the Standard Model behaviour. In other cases, they are extended to implement
new resonances in an explicit way. Our approach shares with these models the use of an
EFT in the very first steps, as well as the experimental bounds over the parameters of
the Effective Lagrangian.

If we used only the EFT, the perturbative expansion would break down because it is
derivative. But in our work below, the EFT is efficiently extended to cover the regime
of saturation of unitarity. This is achieved by dispersion relations, whose subtraction
constants and left cut contribution can be approximately obtained in different ways giving
rise to different unitarization procedures.

Several unitarization procedures have been considered. We have studied three of them
in finer detail, since they have the best properties. These chosen methods are the Inverse
Amplitude Method, one version of the N/D method and another improved version of the
K-matrix. An extended version of the first two is used for the coupling with γγ and tt̄. In
all the cases we get partial waves which are unitary, analytical with the proper left and
right cuts and in some cases poles in the second Riemann sheet that can be understood
as dynamically generated resonances. A new numerical method has been developed in
order to look for such poles.

We also point out that the unitarization formalisms are also extendable to coupled
channels. This is a novelty, and implies the possibility that an hypothetical resonance
comes from a strongly process like V V → hh → V V (V stands for a longitudinal gauge
boson). Such a resonance would be triggered by the coupling V V hh (parameter b of the
EFT), which is less constrained that the coupling V V h (parameter a).

Finally, all this work is given in a form that it could be implemented in a Monte Carlo
(MC) simulation program, in order to generate MC events for the LHC Run-II or future
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iv ABSTRACT

collider experiments.

Spanish vesion En esta disertación, consideramos un Sector de Ruptura de Simetŕıa
Electrodébil con interacciones fuertes, y utilizamos el marco teórico de las Teoŕıas Efec-
tivas (calculadas a primer orden en teoŕıa de perturbaciones, NLO) y los métodos de
unitarizaicón. Algunas décadas atrás, este marco explicó satisfactoriamente la aparición
de resonancias a baja enerǵıa en QCD.

Si apareciesen nuevas resonancias en el run-II del LHC, habŕıa varios modelos teóricos
en el mercado para estudiarlas. Sin embargo, el nuestro tiene varias ventajas. Por
ejemplo, sólo contiene unos pocos parámetros libres. Siete en el caso de procesos de
dispersión en el Sector de Ruptura de Simetŕıa Electrodébil (W±

L , ZL, y h). Unos pocos
más si se incluye el acoplamiento con los estados γγ y tt̄. E, incluso más importante, las
masas y anchuras de las resonancias aparecen como consecuencia del comportamiento a
baja enerǵıa de la teoŕıa. No son parámetros libres del modelo, se derivan del Lagrangiano.

Las teoŕıas efectivas para bosones gauge longitudinales y Higgs son objeto de inves-
tigación activa, debido a su aplicación directa al programa experimental del run-II de
LHC. Pero suelen considerarse únicamente como una parametrización útil de pequeñas
desviaciones del comportamiento del Modelo Estándar. En otros casos, son extendidas
para incluir expĺıcitamente nuevas resonancias. El v́ınculo entre todos estos modelos y el
nuestro es la utilización de una teoŕıa efectiva, aśı como las cotas experimentales sobre
los parámetros de dicha teoŕıa.

Si sólo utilizamos las teoŕıas efectivas, la expansión perturbativa se rompe. En este
trabajo, mostraremos que estas teoŕıas efectivas pueden extenderse para cubrir el régimen
de saturación de unitariedad. Esto se consigue mediante las relaciones de dispersión, cuyas
constantes de substracción y contribuciones al corte izquierdo pueden obtenerse de forma
aproximada de diferentes formas, dando lugar aśı a los diversos métodos de unitarización.

Se han considerado varios métodos de unitarización, y estudiado en detalle tres de
ellos. Estos últimos son el método de la matriz inversa (IAM), una versión del N/D
y una variación mejorada de la matriz-K (I-K). Para el estudio del acoplamiento a los
canales γγ y tt̄ se ha utilizado una modificación de los dos primeros métodos (IAM
y N/D). En todos los casos obtenemos ondas parciales que son unitarias, anaĺıticas,
presentan los cortes izquierdo y derecho requeridos por la teoŕıa relativista de procesos
de dispersión, y en algunos casos muestran polos en la segunda hoja de Reimann que
pueden interpretarse como resonancias generadas dinámicamente. Se ha desarrollado un
nuevo método numérico para buscar la posición de tales polos.

También hemos extendido los procedimientos de unitarizaicón al caso de canales
acoplados. Esto es una novedad, e implica la posibilidad de que una resonancia hipotética
proceda de un proceso de dispersión fuerte como V V → hh → hh (V denota un
bosón gauge longitudinal). Tal resonancia estaŕıa regulada por el acoplamiento V V hh
(parámetro b de la teoŕıa efectiva), que está menos acotado experimentalmente que el
acoplamiento V V h (parámetro a).

Por último, este trabajo está estructurado de una forma tal que podŕıa ser implemen-
tado en un programa de simulación Monte Carlo (MC), para generar eventos MC para
el run-II de LHC o futuros experimentos de colisionadores.
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Chapter 1

Introduction

In this dissertation, we revisit the prospects of a strongly interacting theory for the Elec-
troweak Symmetry Breaking Sector (EWSBS) of the Standard Model, after the discovery
at the LHC of a Higgs-like boson at ∼ 125 GeV (refs. [1–3]). The tools of Effective
Chiral Lagrangians and unitarization procedures will be used, and the old Higgsless Elec-
troweak Chiral Lagrangian [4–21](EChL) will be extended to accommodate a Higgs-like
boson at ∼ 125 GeV. Since the discovery of the Higgs-like boson at the LHC, this field
has received increasing attention [22–33]. I hope that this dissertation, besides our orig-
inal results [34–39]1 that will be described, can be a useful introduction to the field of
a strongly interacting EWSBS with a light Higgs but below the possible new-physics
scale. To this end, several appendices with detailed computations have been included.
And some of the sections, especially those containing the physical fundamentation of the
computational procedures (secs. 3.3 and 4), are very detailed.

First of all, let us introduce the theory that has worked very well until now, becoming
a standard in particle physics: the so–called Standard Model (SM)2. It became widely
accepted from the late 60’s on, and it describes all the known interactions but gravity,
under a Quantum Field Theory (QFT) formalism. This is achieved in a way that it is
compatible with all the experimental data until now. The SM describes three fundamental
interactions, which are gauge interactions3, mediated by spin–1 bosons4. The matter
particles are spin–1/2 fermions, to which Pauli’s exclusion principle applies, but for our
purposes let us concentrate on the gauge sector.

The relativistic electromagnetic interaction is mediated by one massless photon (γ),
and the corresponding gauge symmetry group is U(1)em. Indeed, the idea of gauge
interaction comes from the classical Maxwell equations, which are invariant under some
transformations of the electromagnetic four-potential vector. Note that Quantum Electro-
dynamics (QED), the theory which describes electromagnetic interaction, has produced
some of the most precise and successful predictions in physics. The fact that the photon
is massless, does not interact strongly with itself, and we live in 3 spatial dimensions +
1 temporal dimension, entails an interaction field strength decaying like r−1.

The second force, the strong one, is mediated by eight massless gluons (g), and the
corresponding gauge symmetry group is SU(3)C . Note that the interaction of gluons
among themselves is very strong. This leads to a theory that is strongly coupled at

1And unpublished work in sections 3 and 4 that will be made available in some form.
2Look up, for example, ref. [40–42], and ref. [43] for an updated review of the properties of the SM

particles, besides some BSM searches.
3The Lagrangian which describes them is invariant under a continuous group of local transformations.
4That is, by particles that can share a quantum state.

1
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low energies, but is weakly-coupled (or pertubative) at high energies. What does this
mean? That at high energies, the perturbative methods for working with QFTs (that
is, Feynman diagrams [40]) will work. But at low energies, the contributions of higher
orders (NLO, NNLO, N3LO,...) will be so high that the series expansion is meaningless,
so new methods will be needed: from the brute-force computing one, lattice-QCD [44],
to effective approaches like chiral perturbation theory (χPT, see refs. [45–49]). Indeed,
bound states appear, but no free coloured particle has been observed in the final state
(confinement). As an introduction to my PhD program, I have collaborated on a study
about the bound that the LHC sets over the presence of unconfined gluons [50].

Finally, we have the weak interaction, which is mediated by three massive gauge
bosons: the charged W± (MW = 80.385 ± 0.015 GeV), and the neutral Z (MW/MZ =
0.8819 ± 0.0012). At the EW scale, this interaction is unified with the electromagnetic
one, giving rise to an electroweak interaction, whose Lagrangian is invariant under a
local SU(2) × U(1)Y gauge group. However, having a gauge interaction mediated by
massive gauge bosons is problematic. Both from a fundamental point of view, because
the massive terms are not gauge invariant, and from a phenomenological one, since the
theory is non-renormalizable. That is, the procedure for taking into account higher
order corrections fails. Furthermore, the elastic scattering of longitudinal modes5 of
gauge bosons associated with the weak interactions would break unitarity bounds: the
interaction probability would be higher than unity at some energy scale6; at least at
leading order (LO) in perturbation theory. That means that the theory could not be
described with perturbative theory. Could it perhaps be a strongly interacting one, like
QCD at low energy? In that case, some kind of new physics would be necessary here,
which also solves the theoretical issue of having a gauge theory with massive gauge bosons.

Either way, the solution which was developed for the Standard Model (SM) is the ap-
plication of the so–called Higgs mechanism7 [52–56]. This mechanism keeps the required
SU(2)L × U(1)Y symmetry on the Electroweak Lagrangian. However, the lowest energy
state would be U(1)em symmetric only (see fig. 1.1 for an illustration of this concept).
Thus, the vacuum state of the theory, from which perturbation theory is obtained, is not
symmetric under a local SU(2)L × U(1)Y symmetry group, but only under U(1)em. In
this way it is possible to fulfill both the mathematical requirements of renormalizable
QFT and the experimental masses of gauge bosons. This Higgs mechanism gives rise to
a spin-0 boson (Higgs boson) as a byproduct of the process.

The Higgs mechanism requires the EW sector of the SM to be coupled with a Symme-
try Breaking Sector (SBS). In the standard model, the SBS contains a complex SU(2)L
doublet with hypercharge Y = +1/2. In the limit g = g′ = 0, the doublet poten-
tial is invariant under a global SU(2)L × SU(2)R symmetry group. However, due to
the Mexican-hat shape potential (see fig. 1.1), its lowest energy state is invariant only
under SU(2)L+R (custodial symmetry). The spontaneous symmetry breaking (SSB)
SU(2)L × SU(2)R → SU(2)L+R gives rise to 3 massless scalars (the would-be Gold-
stone bosons), and another massive scalar (the Higgs particle). This global SSB triggers
the breaking of the SU(2)L × U(1)Y gauge symmetry into the U(1)em gauge symmetry.
Three gauge bosons acquire masses by absorbing the degrees of freedom of the would-be

5Note that these longitudinal modes come from the fact that these gauge bosons are massive.
6This also happens with some beyond Standard Models (BSM) proposals. See ref. [51].
7The Higgs mechanism was, indeed, developed by several theoretical physicists, including P.W. An-

derson (for the non-relativistic case of superconductivity), F. Englert, R. Brout, P. Higgs, G.S. Guralnik,
C.R. Hagen and T.W.B. Kibble.
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Figure 1.1: Illustration of the Higgs mechanism. We represent the Mexican-hat potential,
V (φ) = −(1/2)µ2φ2 + (1/4)λφ4, where µ2 = 2, λ = 1 and φ2 is the radial squared
coordinate. Two stationary states are present: the unstable point φ = 0 (red ball) and the
ground state |phi| = µ/

√
λ (green ball). Note that such a ground state is degenerate, so it

no longer respects the cylindrical symmetry of the original potential. The quantization of
the excitations marked with green arrows will lead to the appearance of massless modes.
Those marked with red arrows will produce massive modes. Such a mass comes from the
curvature of the potential.
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Figure 1.2: Discovery of the spin 0 boson at the LHC with the properties of the SM
Higgs boson. Left: two photon decay channel with the ATLAS detector [1]. Right: four
lepton decay ZZ → 4l with the CMS detector [3]. Both pictures are reproduced from
the corresponding reference under the Creative Commons CC-BY-3.0 license.

Goldstone bosons (Higgs mechanism), letting a free massive boson (the Higgs one).
In 2003, the reanalysis of the LEP experiment at CERN [57, 58] found a lower bound

of 107.9 GeV (at 95% confidence level) for the Higgs mass and, more interesting, its
electroweak precision measurements allow to compute an upper bound for the SM Higgs
boson mass of 193 GeV (also at 95% confidence level). Thus, LEP constrained the value
of the SM Higgs mass inside a window of ≈ 85 GeV, provided that no new physics at the
electroweak scale was involved and, thus, the electroweak precision measurements could
be used in a reliable way.

After that, and more than 40 years after the proposal of the Higgs mechanism for
the SM, the ATLAS and CMS experiments at the Large Hadron Collider (LHC) report
a boson with a mass of nearly Mh ' 125 GeV, compatible with the properties of the SM
Higgs boson [1–3]. A machine like LHC, able to study particle physics at the TeV scale8,
was necessary. At this scale, the LHC gives two pieces of information. The first one was
the discovery of the new bosonic resonances. And the second one [59–61] is a mass gap
for the presence of new physics up to an energy of about 600-700 GeV, or even higher for
the presence of new vector resonances [59–61].

In fig. 1.3, the mass distribution of diphoton candidates of Higgs decay H → γγ on
the ATLAS detector can be seen [1, 2]. Both the

√
s = 7 TeV and the

√
s = 8 TeV

data samples of the LHC Run-I have been combined. In a mass windows around Mh =
126.5 GeV, which contains 90% of the expected signal events, the expected background
events is NB = 8284; the expected signal ones, NS = 223; and the observed ones, 8802.
The background computation is based on studies on MC samples of γ − γ, γ − jets and
jet − jet. They are modelled by polynomials and exponentials. The background line of
fig. 1.2 (inclusive data background) is described by a fourth-order Bernstein polynomial,
whose parameters come from a fit to data in the 100-160 GeV diphoton invariant mass
range.

The CMS analysis [3] for the four-lepton invariant mass for the ZZ → 4l is shown
in fig. 1.2 (right). This analysis looks for H → ZZ → 4l events, and uses 5.1 fb−1 at

8With
√
s ∼ 7− 8 TeV at LHC Run-I.

http://creativecommons.org/licenses/by/3.0/
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New physics?

W (80.4 GeV), Z (91.2 GeV)

H (125.7 GeV, PDG 2014)

600 GeV

GAP

Figure 1.3: Image of the EWSBS physics discovered at the LHC Run-I. Note the presence
of a mass gap until a scale of about 600-700 GeV, according to the ATLAS ancd CMS
results [59–61]. The top quark is not represented here (Mt ≈ 173 GeV).

7 TeV and 5.3 fb−1 at 8 TeV. The background sources have been computed by using
Monte Carlo tools: direct ZZ production via qq̄ and gluon-gluon, Z + bb̄, tt̄, Z + jets and
WZ + jets. Three channels have been considered (4e, 4µ and 2e2µ). Adding all these
channels, 7.54± 0.78 signal events and 3.8± 0.5 background ones were expected. And 9
events were observed.

So, is it all? The SM until the Planck scale? This, besides implying an extremely
technical challenge for going beyond on our knowledge of the laws of highest energy
physics, would present some problems. The first one, the explanation of the neutrino
masses. Furthermore, if we try to explain gravity, it raises the so-called naturalness
problem: where does the 16 orders of magnitude energy hierarchy come from? The
SM does not explain the astrophysical signatures of dark matter and dark energy [62–
65]nor the nature of neutrinos. And it appears that the model would be metastable, our
electroweak vacuum being a false vacuum [66–73]. The instability would be triggered by
the masses of the top quark and the Higgs-like boson found at the LHC, assuming the
SM is correct until the Planck scale [74, 75].

The aim of this thesis is the study of some of the theoretical proposals, beyond the
SM one (BSM). But, in any case, we look for signals which are detectable at the LHC
or, at least, next to the TeV scale. Our tools will be the Effective Theories: a subset of
the actual theory, developed with the tools of QFT, which is valid for a certain regime of
energies. It has the advantage of abstracting the details of whatever full theory may be
at work.

Let us first remember the Goldstone’s theorem. Developed in the early 60’s [76, 77], it
states that9, when a continuous symmetry is spontaneously broken, each broken degree of
freedom produces the appearance of a massless Goldstone boson. If the symmetry is ap-
proximate, that is, if it is explicitly (besides spontaneously) broken, the generated bosons
are massive (although usualy light). In the old Chiral Perturbation Theory (ChPT)
(refs. [45–49]), the (global and approximate) spontaneously broken chiral-flavor symme-
tries of QCD give rise to the pions as pseudo Goldstone-bosons..

Regarding the EWSBS, which will be the topic of this PhD thesis, several BSM
proposals have been put forward, like Supersymmetry (SUSY), different kinds of com-
posite Higgs models (technicolor, SO(5)/SO(4), dilatons,...) and more. Some of these

9Although it was inspired by the non-relativistic case of superconductivity, this formulation only
works for relativistic theories
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models consider that the EWSBS constituents are pseudo-Goldstone bosons coming
from a global symmetry (like SO(5) for the MCHM [78–81]) which breaks to a global
SO(4) ≈ SU(2)L × SU(2)R. This last global symmetry undergoes a second breaking to
SU(2)L+R. Examples of this kind of models are the (Minimal) Composite Higgs Model
(based on the coset SO(5)/SO(4) [78–81]), dilaton models [82, 83],.... This would explain,
in a natural way, the presence of a mass gap between the electroweak scale (light EWSBS
constituents) and the new physics scale which is shown in fig. 1.3. Note that composite
Higgs would imply the EWSBS dynamics being a strongly interacting one.

We propose the study of an Effective Lagrangian via unitarization procedures [34–39,
84–89], based on the old ChPT for QCD [46–49]. Letting the EWSBS couplings free, we
are able to study a wide range of theories. And, by using those unitarization procedures,
we can deal with the strongly interacting regime. Indeed, in ref. [90], it was shown that
the IAM works quite well for the strongly interacting regime of QCD (see the footnote
of figs. 1.4 and 1.5, reprinted from ref. [91]).

Our far goal would be producing Monte Carlo simulations for signals of new physics
coming from a strongly interacting EWSBS. This is still work in progress, as an extension
of the collaboration of ref. [36]. In this dissertation however we can already provide all
(chiral/EFT) scattering amplitudes. The channels studied are the most relevant ones in
the exploration of the EWSBS at the LHC,

ωω → ωω hh→ ωω hh→ hh (1.1a)

ωω → tt̄ hh→ tt̄ tt̄→ tt̄ (1.1b)

γγ → ωω γγ → hh. (1.1c)

Due to time reversal invariance (see sec. 4.7),

T (p1p2 → k1k2) = T (k1k2 → p1p2), (1.2)

several other channels are implied. We are mainly interested in processes with ωω as
initial state, and ωω, hh, γγ and tt̄ as final one. The reason is that γγ and tt̄ will turn
out to be perturbatively coupled (as αEM � 1 and M2

t /s� 1) to the strongly interacting
sector if there is one, and the initial state (quarks and gluons within the proton) have a
higher chance of emitting an ωω pair than a hh pair.

However, both in CMS and ATLAS, there are Forward Detector Facilities, which are
designed to detect the elastically scattered forward protons from events with γγ as initial
state at the TeV range. These are AFP in ATLAS [105] and TOTEM in CMS [106, 107].
This makes a study with a γγ initial state interesting as the Coulomb field of the charged
beam is very boosted. Note that, even before TOTEM starts operation, there is a study
from CMS (ref. [108], results quoted in fig. 1.6) where they look for scattering of γγ at
the TeV scale, although only 2 events have been detected so far.

Furthermore, studying an initial tt̄ state can be interesting since an important part
of the SM and BSM physics at the TeV is initiated through a top quark triangle (tt̄ in
the initial state), including some processes of production of Higgs bosons in the SM.

The near-term goal that we have achieved within this dissertation is to have at hand
amplitudes that can describe any resonances of the EWSBS discovered in the LHC in
the ½-3 TeV region. The EFT framework does not provide specific predictions of where
such resonances may be. But should they be found, it becomes a powerful method to
correlate observables, such as masses and widths, or line shapes in different channels.
In this direction we provide the couplings of the γγ and tt̄ channels to the EWSBS in
sections 2.2.2 and 2.2.3.
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Figure 1.4: Pion elastic scattering phase shifts δIJ obtained from the IAM fit imposing
the correct Mρ. The shaded areas cover the error bars of the fitted parameters with the

constraint l̂1 − l̂2 = −5.95± 0.02. The dotted straight lines stand at δ = 900. Remember
that the J = 2 partial waves have to be calculated in plain ChPT. Indeed, the dashed lines
in those channels correspond to plain ChPT with the parameters in the first row of Table
2. The data come from: [92] (4), [93] (♦,�), [94] (×),[95] (◦), [96] (C), [97] (?) and
[98] (•). The corresponding curves within SU(3) ChPT would almost superimpose.

Inverse Amplitude Method (IAM) applied to the ππ → ππ process, in the strongly
interacting regime of QCD. Note the excellent agreement with the experimental data,
excluding the δ00 channel above 800 MeV. In this dissertation, we will use a version of
this IAM method to study a hypothetical strongly interacting regime of the EWSBS.

Reprinted Fig. 2 with permission from ref. ([91], A. Dobado, J.R. Pelaez., Physical Review
D56, 3057-3073, 1997). Copyright 1997 by the American Physical Society.
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Figure 1.5: πK elastic scattering phase shifts δIJ obtained from the IAM fit imposing the
correct Mρ and MK∗. The shaded areas cover the error bars of the fitted parameters with

the constraint 2L̂r1 + L̂3 − L̂r2 = (−3.11 ± 0.01)10−3. The dotted straight line stands at
δ = 900. The experimental data come from: [99] (•), [100] (?), [101] (◦), [102] (♦),
[103] (�) and [104] (4).

Reprinted Fig. 4 with permission from ref. ([91], A. Dobado, J.R. Pelaez., Physical Review
D56, 3057-3073, 1997). Copyright 1997 by the American Physical Society.
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Figure 1.6: Only two events of inelastic scattering γγ → ωω have been found in CMS Run-
I, with

√
s = 7 TeV, and an integrated luminosity of 5.05 fb−1 (ref. [108]; reproduced under

the Creative Commons Attribution License). µ±e∓ invariant mass (top left), acoplanarity
(top right) and missing transverse energy (bottom) distributions.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Chiral EW Lagrangian

The ATLAS and CMS collaborations at LHC have found a new boson compatible with the
SM Higgs [1, 2], with a mass of nearly1 Mh ' 125 GeV. Furthermore, the most probable
JP quantum numbers are 0+, and couplings with other particles are in agreement with
the SM Higgs, although with moderate precision. Moreover, there is a mass gap for the
presence of new physics [59–61] until an energy of about 600-700 GeV, or even higher for
the presence of new vector resonances.

However, the data is still compatible with either an elementary or a composite Higgs:
this last possibility will be considered in this work. The mass gap between the MW ,
MZ and Mh masses, all of O(100 GeV), and the new physics scale (if there is one within
reach), suggests that the Higgs boson and the would-be Goldstone bosons ω± and z could
be (pseudo) Goldstone Boson [111–118], related with a global spontaneous symmetry
breaking extending the SU(2)L × SU(2)R → SU(2)L+R global symmetry breaking of
the SM. There are several models with specific implementations for the relevant global
symmetry breaking pattern: the (Minimal) Composite Higgs Model based on the coset
SO(5)/SO(4) [78–81], dilaton models [82, 83] and others [119].

The old electroweak chiral Lagrangian (ECL) [4–21], based on standard chiral per-
turbation theory (ChPT) of QCD [46–49], assumed a Higgsless model, but solved the
problems that the Higgs was intended for by supposing a strongly interacting regime for
the EWSBS instead. In view that the h has been found, it can be extended to include the
new Higgs-like particle found at the LHC (refs. [22–33]). One of the goals of this work
will be to expose this extension, considering non-linear Electroweak Chiral Lagrangians
as a low-energy (MW ,Mh �

√
s � 3 TeV) parameterization of the new physics at the

TeV scale.

2.1 Equivalence theorem

To simplify the computations, we will make use of the Equivalence Theorem (ET) [120–
123], which states that, in the regime s � M2

h ,M
2
W ,M

2
Z ' (100 GeV)2, we can identify

the longitudinal modes of gauge bosons with the would-be Goldstones2 (Rξ gauge). For
example,

T (W a
LW

b
L → W c

LW
d
L) = T (ωaωb → ωcωd) +O

(
MW√
s

)
, (2.1)

1MATLAS
h = 125.5±0.6 GeV and MCMS

h = 125.7±0.4 GeV, according to [109] and [110], respectively.
2See app. D.5 for a brief historical review about the discussion concerning the hypothesis of the ET.

11
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where T stands for the corresponding scattering amplitude. In fact, this theorem can be
interpreted as if, at sufficiently large energies, the symmetry SU(2)L × U(1)Y was not
spontaneously broken, so that the three would-be Goldstones coming from the broken
SU(2)L×U(1)Y were directly observable as scalar physical particles, which indeed would
correspond to the longitudinal modes of the gauge bosons. So, the non-gauged (but
with the broken symmetry SU(2)L×U(1)Y ) Lagrangian can be used directly to compute
the scattering amplitudes. At lower energies, these would-be Goldstones give rise to
the longitudinal modes of gauge bosons through a rotation in the coordinates (gauge),
according to the Higgs mechanism explained, for instance, in ref. [40] and section 1.

Let us illustrate the application of the ET. We will compare the (exact) tree level
computation and the Equivalence Theorem for WW and ZZ scattering on the SM, which
can be found in Refs. [124, 125]. The complete SM tree level matrix element forW+

LW
−
L →

HH is

A =
g2

4− (1− 4M2
W/s)

{
M2

h

M2
W

[
1 +

3M2
h

s−M2
h

+M2
h

(
1

t−M2
W

+
1

u−M2
W

)]
+ 2

[
1− 9M2

h

s−M2
h

+ 4
M2

W

s

(
1 +

3M2
h

s−M2
h

)]
+2

[
s− 2M2

h − 4M2
W + 8

M4
W

s

](
1

t−M2
W

+
1

u−M2
W

)}
, (2.2)

whereas, for the ET ω+ω− → HH,

Ã =
g2

4

{
M2

h

M2
W

[
1 +

3M2
h

s−M2
h

+M2
h

(
1

t−M2
W

+
1

u−M2
W

)]
+2

[
1 + (s−M2

h)

(
1

t−M2
W

+
1

u−M2
W

)]}
. (2.3)

Both eqs. 2.2 and 2.3, can be evaluated for certain values of the scattering angle θ and
s. According to the Equivalence Theorem, both results should converge in the limit
(M2

W/s)→ 0. In order to recover u = u(s, θ) and t = t(s, θ) as a function of the scattering
angle θ and the squared center of mass energy s, see the expressions of appendix A.

In collaboration with prof. Stefano Moretti (University of Southampton), we have
tested the equivalence theorem in this way (see fig. 2.1). The aim of this test was to cross-
check a modified version of the Monte Carlo (MC) program MadGraph [126]. According
to this experience, when dealing with expressions from other authors or Monte Carlo
(MC) programs, it is crucial that both the masses and the coupling are compatible.
Sometimes, the Monte Carlo program accepts masses and couplings separately, without
ensuring compatibility. Or you can develop a program for generating points in the phase
space that, of course, will take the masses of gauge bosons as an input. It can also happen
that the MC program uses the so–called Complex Mass Scheme, which would also require
to modify the couplings. The fact is that the cancellation between diagrams which leads
to a weakly interacting EWSBS on the SM can be very easily spoiled at TeV energies
because of using incompatible values for the constants. Thus, the set of numerical values
of the LO couplings should verify, with high precision, the well–known SM relations3.

3See, for instance, ref. [43] or [40].
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Figure 2.1: Comparison between the full LO scattering amplitude for ωω → hh (eq. 2.2
and green dashed line on the plot) and that computed though the equivalence theorem
(eq. 2.3 and red solid line on the plot). See ref. [124, 125] for the computation. x =
cos θ = 0.3

2.2 The chiral Lagrangian and its parameterizations

In ref. [34] we present the effective Lagrangian describing the low-energy dynamics of four
light modes: three would-be Goldstone Bosons ωa (WBGBs) and the Higgs-like particle4

h. This model is valid for the energy range Mh,MW ,MZ ' (100 GeV)2 � s � 4πv '
3 TeV. The effective Lagrangian is

L =
v2

4
g(h/f)Tr[(DµU)†DµU ] +

1

2
∂µh∂

µh− V (h), (2.4)

where v = 246 GeV is the SM Higgs-doublet vacuum expectation value; f , a new dynam-
ical energy scale; and g(x), an arbitrary analytical funtion of the scalar field,

g(h/f) = 1 +
∞∑
n=1

gn

(
h

f

)n
= 1 + 2α

h

f
+ β

(
h

f

)2

+ . . . (2.5)

Instead of using a power expansion over 1/f , we could also choose 1/v, v being the
vacuum expectation value,

g(h/v) = 1 + 2a
h

v
+ b

(
h

v

)2

+ . . . . (2.6)

V is an arbitrary analytical potential for the scalar field,

V (h) =
∞∑
n=0

Vnh
n ≡ V0 +

M2
h

2
h2 +

∞∑
n=3

λnh
n (2.7)

4Also called ϕ in some early works like [34].



14 CHAPTER 2. CHIRAL EW LAGRANGIAN

U is a field taking values in the SU(2) coset. In this work, unless otherwise stated, we
will use the so–called spherical parameterization,

U =

√
1− ω̃2

v2
+ i

ω̃

v
, (2.8)

ω̃ = ωaτ
a being the would-be Goldstone bosons (WBGB) field and τa, the Pauli matrices.

Note the presence of the non-linear term
√

1− (ω̃2/v2). This is the main difference from
linear approaches like [22–33].

The covariant derivative of the U field (eq. 2.8) is defined as

DµU = ∂µU + iŴµU − iUB̂µ, (2.9)

where

Ŵµ = gWµ,i
τ i

2
, B̂µ = g′Bµ

τ 3

2
(2.10a)

Ŵµν = ∂µŴν − ∂νŴµ + i[Ŵµ, Ŵν ], B̂µν = ∂µB̂ν − ∂νB̂µ. (2.10b)

We follow the chiral counting of refs. [19, 30, 46]. Alonso et al. [28] have also studied
the counting of Electroweak Chiral Lagrangians, but from a different point of view. Note
that the chiral counting which we use is explained in detail in our ref. [36], and is applied
only once the approximation M2

h ,M
2
W ,M

2
Z � s is taken into account.

Anyway, the ‘chiral counting’ involves organizing the invariant terms of the Effective
Lagrangian by means of their chiral dimension. That is, a term Ld with chiral dimen-
sion d will contribute to O(pd) in the corresponding power momentum expansion. The
derivatives and the masses of the dynamical particles (when they are not neglected) are
considered as soft scales of the Effective Theory, of order O(p). To sum up,

∂µ, MW , MZ , Mh ∼ O(p) (2.11a)

DµU, Vµ, g
′vT , Ŵµ, B̂µ ∼ O(p) (2.11b)

Ŵµν , B̂µν ∼ O(p2) (2.11c)

The parameters a and b can be adjusted to fit different theoretical models, and the
NLO parameters will depend on the renormalization of the underlying theory. For in-
stance,

• a2 = b = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Higgsless ECL (ruled out) [4, 6, 7],

• a2 = b = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SM,

• a2 = 1− v2

f2
, b = 1− 2v2

f2
. . . . . . . . . . . . . . . . . . . . . . . . . . . SO(5)/SO(4) MCHM [78–81],

• a2 = b = v2

f̂2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dilaton [82, 83].

There is no strong direct limit over the b parameter, because of the difficulty of measuring
a 2-Higgs state. However, an indirect limit arises because of the coupling between the hh
decay and the elastic ωω scattering, as we will show later (see ref. [39]). The direct limit
over the a parameter, at a confidence level of 2σ (≈ 95%), is

• CMS [128] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .a ∈ (0.87, 1.14)
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Figure 2.2: From top to bottom, bounds over the a = kV and kF coming from AT-
LAS ([127]; reproduced under the CC-BY-3.0 license) and CMS ([128]; reproduced under
the CC-BY-4.0 license).
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• ATLAS [127] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a ∈ (0.96, 1.34)

• Fit of Buchalla et. al. [129] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a ∈ (0.80, 1.16)

The actual experimental results are shown in fig. 2.2. Anyway, note that these limits are
continuously improving, because of the LHC data reanalysis. Ref. [129] uses the computer
code Lilith-1.1.3 [130] for constraining the Effective Lagrangian. P.P. Giardino, in his PhD
Thesis [131], studied in detail the LHC constraints over a huge range of SM extensions,
including the a parameter. We quote it though the situation is changing quickly.

Now, let us consider the U(ωa) coset. Since U(ωa) ∈ SU(2)L× SU(2)R/SU(2)L+R, it
must be of the form

U = 1 +
iωaτa

v
+O(ω2), (2.12)

whatever the non–linear term is. So, the covariant derivative can be expanded as [36]

DµU =
i∂µωaτ

a

v
+ i

g

2
Wµ,iτ

i − ig
′

2
Bµτ

3 + . . . (2.13)

However, specifying the parameterization of the U ∈ SU(2) coset is necessary, since the
non-linear terms will depend on it. One of the most usual elections is the exponential
parameterization,

U(x) = exp

(
i
τaπa(x)

v

)
, (2.14)

τa (a = 1, 2, 3) being the Pauli matrices5. Working with this expression,

U =

(
cos
(
π
v

)
+ iπ

3

π
sin
(
π
v

)
iπ1+π2

π
sin
(
π
v

)
iπ1−π2

π
sin
(
π
v

)
cos
(
π
v

)
− iπ3

π
sin
(
π
v

)) = 1 cos
(π
v

)
+ i

τaπa

π
sin
(π
v

)
,

(2.15)
where π2 ≡ πaπa. With this parameterization, it can be checked that, as expected,

U ∈ SU(2)⇒ U † · U = U · U † = 1 (2.16)

Only if we can neglect both the masses of Goldstone modes and couplings with longitu-
dinal modes (ET limit, M2

W � s), then Dµ = ∂µ in eq. 2.13. Otherwise, some of the
couplings with Ŵ and B̂ fields in eq. 2.13 must we kept. Anyway,

Tr
[
∂µU

† · ∂µU
]

=
A2

2v2π2
+

(4v2π2B − Av2)

2v2π4
sin

π

v
, (2.17)

where

π2 = πaπa (2.18a)

A = (∂µπ
2)2 = 4

(
πaπb∂µπ

a∂µπb
)

(2.18b)

B = ∂µπ
a∂µπa. (2.18c)

Thus, Tr(∂µU
† · ∂µU) can be expressed as

Tr
[
∂µU

† · ∂µU
]

=
2

v2

[
v2

π2
sin2 π

v

(
δab −

πaπb

π2

)
+
πaπb

π2

]
∂µπ

a∂µπb (2.19)

5Einstein’s sum convention will be used unless otherwise stated.



2.2. THE CHIRAL LAGRANGIAN AND ITS PARAMETERIZATIONS 17

However, as explained in [36], this is a good option for QCD Chiral Perturbation Theory
(ChPT), where the SU(3) coset is studied [46–49]. But we are dealing with an SU(2)
coset, which is isomorphic to S3. Unless otherwise stated, the so–called spherical param-
eterization will be used (see eq. 2.8), since computations in this basis are much simpler
for the particular case of the SU(2) coset. Note the notation change between eqs. 2.8
and 2.14 (πa ↔ ωa) in order to distinguish these two parameterizations. According to
eq. 2.15, we can change the parameterization by using

U = 1 cos
π

v
+ i

τaπa

π
sin

π

v
= 1

√
1− ω2

v2
+ i

τaωa(x)

v
⇒ ωa

v
=
πa

π
sin

π

v
. (2.20)

By expanding this result,

ωa = πa
[
1− 1

6

(π
v

)2

+
1

120

(π
v

)4

− 1

5040

(π
v

)6

+ . . .

]
. (2.21)

Let us study the spherical basis. If eq. 2.8 is expanded,

U =


√

1− ω2

v2
+ iω3

v
iω1+ω2

v

iω1−ω2

v

√
1− ω2

v2
− iω3

v

. (2.22)

Eq. 2.16 can be also checked within the spherical parameterization (eq. 2.22). Now,
computations are much simpler than with the exponential parameterization. For instance,

Tr
[
∂µU

†
s · ∂µUs

]
=

2

v2

[
δab +

ωaωb

v2 − ω2

]
∂µω

a∂µωb (2.23)

For these fields (ωa, a = 1, 2, 3) the spherical (or charge) basis is introduced,

ω± =
ω1 ∓ iω2

√
2

, ω0 = ω3, (2.24)

which also implies
ω2 = 2ω+ω− + ω0ω0 (2.25)

The same definition can be carried over to π± and π0, which belongs to the exponential
parameterization. On our ref. [36], we studied these two parameterizations (spherical
and exponential), for γγ scattering. As expected, the physical S-matrix elements are
identical (in terms of ωa and πa, respectively). However, the intermediate results (i.e.,
the Feynman diagrams) are different.

According to the Equivalence Theorem (sec. 2.1), if they are part of the physical
initial or final states, and we have a high

√
s�MW (center of mass energy), the ω±, ω0

(or π±, π0) can be identified with the longitudinal polarizations of gauge bosons W± and
Z, up to an error O(MW/

√
s). The possible differences between parameterizations will

be suppressed by a factor O(MW/
√
s). In the particular case of our ref. [36], since we

consider MW ,Mh = 0, these differences cancel.

2.2.1 WBGB scattering

In ref. [35] we reported the one-loop computation for the ωω → ωω, ωω → hh and
hh → hh processes. Here we expand the discussion. Since we are working with an
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effective (non-renormalizable) theory, the following counterterms are needed in order to
renormalize the scattering amplitudes,

L4 = a4[Tr(VµVν)][Tr(V µV ν)] + a5[Tr(VµV
µ)][Tr(VνV

ν)] +
γ

f 4
(∂µϕ∂

µϕ)2

+
δ

f 2
(∂µϕ∂

µϕ) Tr[(DνU)†DνU ] +
η

f 2
(∂µϕ∂

νϕ) Tr[(DµU)†DνU ] + . . . , (2.26)

where Vµ = (DµU)U †. The ŴµU and UB̂µ terms of eq. 2.13 are neglected, so that
DµU ≡ ∂µU . This approximation is valid because we are in the Equivalence Theorem
regime (sec. 2.1) and we are dealing with couplings to neither photons nor transverse
modes of gauge bosons. The spherical parameterization (see eqs. 2.8 and 2.22) is used.

In subsequent work [38, 39] we changed the notation in eq. 2.26, in order to adopt a
recently agreed-upon standard. Thus, from now on, the next expressions will be used [36,
38]:

L0 =
v2

4
F(h) Tr[(DµU)†DµU ] +

1

2
∂µh∂

µh− V (h) (2.27)

L4 = a4[Tr(VµVν)][Tr(V µV ν)] + a5[Tr(VµV
µ)][Tr(VνV

ν)] +
g

v4
(∂µh∂

µh)2

+
d

v2
(∂µh∂

µh) Tr[(DνU)†DνU ] +
e

v2
(∂µh∂

νh) Tr[(DµU)†DνU ] + . . . (2.28)

F(h) = 1 + 2a
h

v
+ b

(
h

v

)2

+ . . . (2.29)

V (h) =
∞∑
n=0

Vnh
n = V0 +

1

2
M2

hh
2 + d3

M2
h

2v
h3 + d4

M2
h

8v2
h4 + . . . (2.30)

If we choose the spherical parameterization, according to [35, 38] and as follows from
eqs. 2.27 and 2.28, the NLO phenomenological Lagrangian for the WBGB scattering can
be written as

L =
1

2
F(h)∂µω

a∂µωb
(
δab +

ωaωb

v2

)
+

1

2
∂µh∂

µh

+
4a4

v4
∂µω

a∂νω
a∂µωb∂νωb +

4a5

v4
∂µω

a∂µωa∂νω
b∂νωb

+
g

v4
(∂µh∂

νh)2 +
2d

v4
∂µh∂

µh∂νω
a∂νωa +

2e

v4
∂µh∂

νh∂µωa∂νω
a. (2.31)

Note that we have neglected the Higgs mass and self-couplings which appear on the
potential V (h) that was defined in eq. 2.30. This is valid on the regime Mh �

√
s, and

provided that the strong dynamics is not triggered by unnaturally high di self-coupling
parameters.

2.2.2 Coupling with γγ

The effective Lagrangian (with the corresponding NLO counterterms) of eq. 2.31 is valid
provided that only interactions between WBGBs are taken into account. According to
the Equivalence Theorem (sec. 2.1), these WBGBs can be identified with the longitudinal
modes of gauge bosons (W± and Z) and the Higgs-like scalar (H), as long as the CM
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Figure 2.3: Direct constraint over the a4 and a5 parameters coming from ATLAS [132].
The constraint of CMS [133] are given in terms of the FS0/Λ

4 and FS1/Λ
4 parameters,

which have no direct translation to the a4 and a5 ones [134]. Figure reproduced from
ref. [132] under the CC-BY-3.0 license.

energy is
√
s � M2

h ,M
2
W ,M

2
Z ≈ (100 GeV)2. Thus, for the processes γγ → zz and

γγ → ω+ω−, aditional terms involving the photon field must be introduced.

First of all, we can now not turn eq. 2.13 into DµU = ∂µU as in earlier works on the
strong sector alone, because the couplings with the photon field A come from the couplings
with Ŵµν and B̂µν in eq. 2.13, once a rotation to the physical basis is performed,

−cW
h

v
ŴµνŴ

µν − cB
h

v
B̂µνB̂

µν = −cγ
2

h

v
e2AµνA

µν + . . . , (2.32)

where Ŵ and B̂ are defined in eqs. 2.10a and 2.10b. Thus, the O(p2) Lagrangian [36] is,
for the exponential parameterization,

L2(π, h, γ) =
1

2
∂µh∂

µh+
1

2
F(h)(2∂µπ

+∂µπ− + ∂µπ
0∂µπ0)

+
1

6v2
F(h)

[
(∂µπ

+π− + π+∂µπ
− + π0∂µπ

0)2 − π2(2∂µπ
+∂µπ− + ∂µπ

0∂µπ0)
]

+ ieF(h)Aµ(∂µπ
+π− − ∂µπ−π+)

(
1− π2

3v2

)
+ e2F(h)AµA

µπ+π−
(

1− π2

3v2

)
. (2.33)

http://http://creativecommons.org/licenses/by/3.0/


20 CHAPTER 2. CHIRAL EW LAGRANGIAN

And, for the spherical one,

L2(ω, h, γ) =
1

2
∂µh∂

µh+
1

2
F(h)(2∂µω

+∂µω− + ∂µω
0∂µω0)

+
1

2v2
F(h)(∂µω

+ω− + ω+∂µω
− + ω0∂µω

0)2

+ ieF(h)Aµ(∂µω
+ω− − ω+∂µω

−) + e2F(h)AµA
µω+ω−. (2.34)

In both cases, F(h) = 1 + 2a(h/v) + b(h/v)2, as defined in eq. 2.29. Furthermore, the
next NLO extra counterterms are needed,

L4′ = a1 Tr(UB̂µνU
†Ŵ µν) + ia2 Tr(UB̂µνU

†[V µ, V ν ])− ia3 Tr(Ŵµν [V
µ, V ν ]), (2.35)

besides those required for the WBGBs scattering: a4, a5, g, d and e (see eq. 2.28). As
for existing constraints on parameter values, ref. [130] quotes a constraint on the cγ
parameter, coming from LHC data. At a confidence level of 2σ, cγ ∈ (−0.98, 0.50)/16π2.
Note the 1/16π2 factor, which comes from the normalization of ref. [130]. On the a1,
a2 and a3 parameters, there are only weaker constraints based on electroweak precision
observables from LEP and purely SM one-loop calculations. See ref. [135] for a review
of such constraints. To sum up, a1 = (1.0 ± 0.7) × 10−3, a2 ∈ (−0.26, 0.26), a3 ∈
(−0.10, 0.04). However, these constraints are highly model dependent.

2.2.3 Coupling with tt̄

The effective Lagrangian of eq 2.31 models scattering processes between particles of the
Electroweak Symmetry Breaking Sector. Thus, if we want to consider scattering processes
between massive fermions, more terms (the so-called Yukawa sector) are required. Thus,
as exposed in our ref. [136], the considered effective Lagrangian is

L =
v2

4
F(h)Tr[(DµU)†DµU ]+

1

2
∂µh∂

µh−V (h)+iQ̄∂Q−vG(h)[Q̄′LUHQQ
′
R+h.c.]. (2.36)

In the Yukawa sector of eq. 2.36, the quark doublets are

Q′ =

(
U ′

D′

)
, (2.37)

where the two Q entries are made of the different up and down quark sectors

U ′ = (u, c, t)′ , D′ = (d, s, b)′ . (2.38)

and the Yukawa-coupling matrix has the following form

HQ =

(
HU 0

0 HD

)
. (2.39)

This matrix can be diagonalized by tranforming independently the right and left handed
up and down quarks as:

DL,R = V D
L,RD′L,R, UL,R = V U

L,RU ′L,R. (2.40)
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where V U,D
L,R are four 3 × 3 unitary matrices. Thus, the Yukawa part of the Lagrangian

can be written as

LY = − G(h)

{√
1− ω2

v2

(
ŪMUU + D̄MDD

)
+
iω0

v

(
UMUγ

5U − D̄MDγ
5D
)

+
i
√

2ω+

v

(
ŪLVCKMMDDR − ŪRMUVCKMDL

)
+
i
√

2ω−

v

(
D̄LV †CKMMUUR − D̄RMDV

†
CKMUL

)}
, (2.41)

where (eq. 2.24) ω± = (ω1 ∓ iω2)/
√

2, ω0 = ω3 and the new quark fields are mass
eigenstates, with MU and MD being the corresponding diagonal and real mass matrices.
VCKM = V U

L V
D†
L is the Cabibbo-Kobayashi-Maskawa matrix. For the case of the heaviest

quark generation (the only relevant one for this work), the matrix element Vtb has been
omitted since it is very close to unity. Hence, we have the effective Yukawa sector

LY = −G(h)

{√
1− ω2

v2

(
Mttt̄+Mbb̄b

)
+
iω0

v

(
Mtt̄γ

5t−Mbb̄γ
5b
)

+
i
√

2ω+

v
(Mbt̄LbR −Mtt̄RbL) +

i
√

2ω−

v

(
Mtb̄LtR −Mbb̄RtL

)}
. (2.42)

As can be seen, the different couplings of the left and right chiral parts of top and
bottom quarks are an effect of custodial symmetry breaking. The F and G appearing in
the Lagrangian (eq. 2.36) are arbitrary analytical functions on the Higgs field h. F(h) is
as defined in eq. 2.29 above, F(h) = 1 + 2a(h/v) + b(h/v)2, whereas the new G(h) is

G(h) = 1 + c1
h

v
+ c2

h2

v2
+ . . . (2.43)

For the computations presented in this work these functions are only needed up to the
quartic terms O(h4). Also we will consider the limit of massless botton quark (Mb = 0).
Then we get the Yukawa Lagrangian:

LY = −G(h)

[(
1− ω2

2v2

)
Mttt̄+

iω0

v
Mtt̄γ

5t− i
√

2ω+

v
Mtt̄RbL +

i
√

2ω−

v
Mtb̄LtR

]
,

(2.44)
where we have kept only the would-be Goldstone boson fields up to order ω2 = 2ω+ω−+
(ω0)2 (eq. 2.25). Finally, the relevant Lagrangian for ωω → tt̄ process in the regime6

M2
h/v

2 �M2
t /v

2 � s/v2 is given by

L = −G(h)

[(
1− ω2

2v2

)
Mttt̄+

i
√

2ω0

v
Mtt̄γ

5t− i
√

2ω+

v
Mtt̄RbL +

i
√

2ω−

v
Mtb̄LtR

]
+

1

2
F(h)∂µω

a∂µωb

(
δab +

ωaωb
v2

)
+

1

2
∂µh∂

µh. (2.45)

6This regime verifies the Equivalence Theorem. See section 2.1.
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Ref. [129] also gives a direct constraint c1 ∈ (1.15, 1.53), at 2σ-confidence level. The
one-loop divergences appearing in the ωω and hh scattering amplitudes can be absorbed
in the GB four-derivative and the following two-derivative top antitop couplings

L4 =
4a4

v4
∂µω

a∂νω
a∂µωb∂νωb +

4a5

v4
∂µω

a∂µωa∂νω
b∂νωb

+
2d

v4
∂µh∂

µh∂νω
a∂νωa +

2e

v4
∂µh∂

νh∂µωa∂νω
a +

g

v4
(∂µh∂

µh)2

+ gt
Mt

v4
∂µω

a∂µωbtt̄+ g′t
Mt

v4
∂µh∂

µhtt̄. (2.46)



Chapter 3

Scattering amplitudes

3.1 Generic form of the WBGB scattering amplitude

and the isospin basis

The chiral Lagrangian in eq. 2.31 is invariant under custodial symmetry SU(2)L+R.
Hence, for the process ωaωb → ωcωd, the scattering amplitude can be written as [137]

Aabcd = A(s, t, u)δabδcd + A(t, s, u)δacδbd + A(u, t, s)δadδbc (3.1)

Only one function, though with arguments exchanged A(s, t, u), A(t, s, u) and A(u, t, s),
and in no other combinations, appears. This is because of Bose symmetry, which makes
A satisfy the relation

A(x, y, z) = A(x, z, y)∀x, y, z. (3.2)

This relation can also be checked on the actual computation of the scattering amplitude
A. See eqs. 3.31-3.34.

According to eq. 2.24, ω± = (ω1 ∓ iω2)/
√

2 and z = ω3. Note that these relations
apply for fields. In order to be consistent, the states should be∣∣ω±〉 =

1√
2

(∣∣ω1
〉
± i
∣∣ω2
〉)
, |z〉 =

∣∣ω3
〉

(3.3)

This is easily proven if we take into account that 〈∅ | ai(x) | aj,p〉 = ei~p·~xδi,j, where |aj,p〉
is any quantum state; ai(x), its associated field; and |∅〉, the vacuum quantum state. If
we applied ai over an orthonormal quantum state1 |aj〉 , |ai〉 ⊥ |aj〉, then 〈∅ | ai | aj〉 = 0.
Thus, applying the fields 2.24 over the states 3.3,〈
∅
∣∣∣ω±(x)

∣∣∣ω±~p 〉 =
1

2

〈
∅
∣∣ω1(x)∓ iω2(x)

∣∣ω1
~p ± iω2

~p

〉
=

1

2

(〈
∅
∣∣ω1(x)

∣∣ω1
~p

〉
+
〈
∅
∣∣ω2(x)

∣∣ω2
~p

〉)
= ei~p·~x, (3.4)

and 〈∅ | z(x) | z~p〉 =
〈
∅
∣∣ω3(x)

∣∣ω3
~p

〉
= ei~p·~x. For simplicity, we will take the notation

|a+ b〉 = |a〉+ |b〉 and |ab〉 ≡ |a〉⊗ |b〉. Hence, the physical amplitudes (provided that the

1i and j are indices which describe an internal degree of freedom of the particle. This fact will allow
us to decompose composite states by using tensor products. Otherwise, the full definition of a quantum

field, φ(x) =
∫

d3p
(2π)3

1√
2ω~p

(
a~p + a†−~p

)
ei~p·~x , should be taken into account. Note that a~p and a†−~p are,

respectively, annihilation and creation operators. See ref. [40] for an introduction to the QFT formalism.

23
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ET is applicable) can be computed in the following way. For the ω+ω− → zz process,

A+−zz =
〈
zz
∣∣A ∣∣ω+ω−

〉
=

〈
ω3ω3

∣∣∣∣A ∣∣∣∣ ω1 + iω2

√
2

ω1 − iω2

√
2

〉
=

1

2

[〈
ω3ω3

∣∣A ∣∣ω1ω1
〉

+
〈
ω3ω3

∣∣A ∣∣ω2ω2
〉

+ i(((((((((〈
ω3ω3

∣∣A ∣∣ω2ω1
〉
− i(((((((((〈

ω3ω3
∣∣A ∣∣ω1ω2

〉]
=

1

2
{2 [A(s, t, u)]} = A(s, t, u). (3.5)

First of all, because of eq. 3.2, A+−zz is symmetric under interchange of t and u. That
is, under the change of the scattering angle θ → π − θ.

Besides, note the usage of the sesquilinear form, since we are dealing with a relativistic
version of Quantum Mechanics2. For the zz → zz process,

Azzzz = 〈zz |A | zz〉 =
〈
ω3ω3

∣∣A ∣∣ω3ω3
〉

= A(s, t, u) + A(t, s, u) + A(u, t, s), (3.6)

which is also invariant under t and u interchange, according to eq. 3.2. For the ω+ω− →
ω+ω− process,

A+−+− =
〈
ω+ω−

∣∣A ∣∣ω+ω−
〉

=

〈
ω1 + iω2

√
2

ω1 − iω2

√
2

∣∣∣∣A ∣∣∣∣ ω1 + iω2

√
2

ω1 − iω2

√
2

〉
=

1

4

[〈
ω1ω1

∣∣A ∣∣ω1ω1
〉

+
〈
ω1ω1

∣∣A ∣∣ω2ω2
〉

+ i(((((((((〈
ω1ω1

∣∣A ∣∣ω2ω1
〉
− i(((((((((〈

ω1ω1
∣∣A ∣∣ω1ω2

〉
+
〈
ω2ω2

∣∣A ∣∣ω1ω1
〉

+
〈
ω2ω2

∣∣A ∣∣ω2ω2
〉

+ i(((((((((〈
ω2ω2

∣∣A ∣∣ω2ω1
〉
− i(((((((((〈

ω2ω2
∣∣A ∣∣ω1ω2

〉
− i(((((((((〈

ω2ω1
∣∣A ∣∣ω1ω1

〉
− i(((((((((〈

ω2ω1
∣∣A ∣∣ω2ω2

〉
+
〈
ω2ω1

∣∣A ∣∣ω2ω1
〉
−
〈
ω2ω1

∣∣A ∣∣ω1ω2
〉

+i(((((((((〈
ω1ω2

∣∣A ∣∣ω1ω1
〉

+ i(((((((((〈
ω1ω2

∣∣A ∣∣ω1ω1
〉
−
〈
ω1ω2

∣∣A ∣∣ω2ω1
〉

+
〈
ω1ω2

∣∣A ∣∣ω1ω2
〉]

=
1

4
{2 [A(s, t, u) +A(t, s, u) +A(u, t, s)] + 2A(s, t, u) + 2A(t, s, u)− 2A(u, t, s)]}

= A(s, t, u) +A(t, s, u) (3.7)

You could also consider the clasically non-equivalent process

A+−−+ =
〈
ω−ω+

∣∣A ∣∣ω+ω−
〉

=

〈
ω1 − iω2

√
2

ω1 + iω2

√
2

∣∣∣∣A ∣∣∣∣ ω1 + iω2

√
2

ω1 − iω2

√
2

〉
=

1

4

[〈
ω1ω1

∣∣A ∣∣ω1ω1
〉

+
〈
ω1ω1

∣∣A ∣∣ω2ω2
〉
− i(((((((((〈

ω1ω1
∣∣A ∣∣ω1ω2

〉
+ i(((((((((〈

ω1ω1
∣∣A ∣∣ω2ω1

〉
+
〈
ω2ω2

∣∣A ∣∣ω1ω1
〉

+
〈
ω2ω2

∣∣A ∣∣ω2ω2
〉
− i(((((((((〈

ω2ω2
∣∣A ∣∣ω1ω2

〉
+ i(((((((((〈

ω2ω2
∣∣A ∣∣ω2ω1

〉
− i(((((((((〈

ω1ω2
∣∣A ∣∣ω1ω1

〉
− i(((((((((〈

ω1ω2
∣∣A ∣∣ω2ω2

〉
−
〈
ω1ω2

∣∣A ∣∣ω1ω2
〉

+
〈
ω1ω2

∣∣A ∣∣ω2ω1
〉

+i(((((((((〈
ω2ω1

∣∣A ∣∣ω1ω1
〉

+ i(((((((((〈
ω2ω1

∣∣A ∣∣ω2ω2
〉

+
〈
ω2ω1

∣∣A ∣∣ω1ω2
〉
−
〈
ω2ω1

∣∣A ∣∣ω2ω1
〉]

=
1

4
{2 [A(s, t, u) +A(t, s, u) +A(u, t, s)] + 2A(s, t, u)− 2A(t, s, u) + 2A(u, t, s)]}

= A(s, t, u) +A(u, t, s). (3.8)

But Bose symmetry, eq. 3.2, yields A+−−+(s, t, u) = A(s, t, u) + A(u, t, s) = A(s, u, t) +
A(u, s, t) = A+−+−(s, u, t). Thus, A+−+− is recovered through an interchange of t and u,
as expected.

2This sesquilinear form verifies the properties 〈aA | bB〉 = a∗b 〈A |B〉 and 〈A+B |C +D〉 = 〈A |C〉+
〈A |D〉+ 〈B |C〉+ 〈B |D〉.
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The coupled channels ωaωb → hh and hh → ωaωb have the same amplitude due to
time reversal invariance. Because h is an isospin singlet (I = 0), the amplitude can be
written as

Mab(s, t, u) = M(s, t, u)δab (3.9)

We also compute the amplitude hh→ hh,

A(hh→ hh) ≡ T (s, t, u) (3.10)

For studying unitarity, using the isospin and spin-projected partial waves is easier.
For the state of a single particle ωa, we use the following correspondence, where the
notation |I,MI〉 (I being the isospin and MI its projection) has been used3:

|1, 1〉 ≡ |+〉 ≡ −ω+ = −|ω
1〉+ i |ω2〉√

2
(3.11a)

|1, 0〉 ≡ |0〉 ≡ ω0 =
∣∣ω3
〉

(3.11b)

|1,−1〉 ≡ |−〉 ≡ ω− =
|ω1〉 − i |ω2〉√

2
(3.11c)

Anyway, we are dealing with 2-particle states. Since we assume that the Lagrangian
has custodial symmetry, states with different isospin do not mix. Thus, we have to
compute eigenvectors of the isospin operator I2. We will employ the usual definition of
the Clebsch-Gordan coefficients4, so that, using the notation |I,MI〉 for the 2-particles
states, the correspondence between the one-particle state basis and the isospin basis can
be found on table 3.1.

In either case, every choice which satisfied Î2 |I,MI〉 = I(I+1) |I,MI〉 and Îz |I,MI〉 =
MI |I,MI〉 would have been valid. In particular, multiplying the states by any complex
phase factor does not change even the orthonormality of the basis. As well known in
quantum mechanics [43], the Î2 and Îz operators, for the 2–particle state, are given by

Î2 = Î2
x + Î2

y + Î2
z , Îx,y,z = 13×3 ⊗ J1,2,3 + J1,2,3 ⊗ 13×3, (3.12)

where the representation of SU(2) is

J1 =
1√
2

 0 1 0

1 0 1

0 1 0

, J2 =
i√
2

 0 −1 0

1 0 −1

0 1 0

, J3 =

 1 0 0

0 0 0

0 0 −1

, (3.13)

the basis being |+〉 = e1, |0〉 = e2, |−〉 = e3. On the one-particle state basis, the 2-particle
states are written as

|ab〉 = |a〉 ⊗ |b〉 , where a, b ∈ {+, 0,−}. (3.14)

These relations allow to check the validity of the Clebsch-Gordan coefficients from ta-
ble 3.1.

3These definitions are the usual ones in the literature. For instance, see refs. [90, 137–140]. Eq. 2.24
(page 17) shows the relation between ω± and ω1, ω2.

4See ref. [43] and the contained references. Only exception: we have taken a sign change for the |0, 0〉
isospin singlet state.
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3.1.1 Decomposition of elastic scattering ωω → ωω

Let us express the scattering amplitude A(s, t, u) in term of the |I,MI〉 basis. Because
of the isospin symmetry,

AI(s, t, u) = 〈I,MJ |A | I,MJ〉 , ∀MJ = −I,−I + 1, . . . , I − 1, I, (3.15)

〈I −MJ |A | I ′,M ′
J〉 = 0, ∀(I,MI) 6= (I ′,M ′

I) (3.16)

These relations are guaranteed even under a change of the phases of the vectors, because
of the sesquilinear product. So, computing only the elastic matrix element for one state
for each I will be enough.

For the unique ωω isovector with I = 0,

A0(s, t, u) = 〈I = 0 |A | I = 0〉 =
1

3

〈
ω1ω1 + ω2ω2 + ω3ω3

∣∣A ∣∣ω1ω1 + ω2ω2 + ω3ω3
〉

=
1

3
{3[A(s, t, u) + A(t, s, u) + A(u, t, s)] + 6[A(s, t, u)]}

= 3A(s, t, u) + A(t, s, u) + A(u, t, s) (3.17)

For the A1(s, t, u), we will take the |1, 0〉 state,

A1(s, t, u) = 〈1, 0 |A | 1, 0〉 =

〈
i√
2

(ω1ω2 − ω2ω1)

∣∣∣∣A ∣∣∣∣ i√
2

(ω1ω2 − ω2ω1)

〉
=

1

2

〈
ω1ω2 − ω2ω1

∣∣A ∣∣ω1ω2 − ω2ω1
〉

=
1

2
[2A(t, s, u)− 2A(u, t, s)]

= A(t, s, u)− A(u, t, s) (3.18)

And, for the A2(s, t, u), the |2, 0〉 one gives

A2(s, t, u) = 〈2, 0 |A | 2, 0〉

=

〈
− 1√

6
(ω1ω1 + ω2ω2 − 2ω3ω3)

∣∣∣∣A ∣∣∣∣− 1√
6

(ω1ω1 + ω2ω2 − 2ω3ω3)

〉
=

1

6
{6[A(s, t, u) + A(t, s, u) + A(u, t, s)]− 6[A(s, t, u)]}

= A(t, s, u) + A(u, t, s) (3.19)

We can also obtain A(s, t, u), A(t, s, u) and A(u, t, s) as a function of A0, A1 and A2. This
will be useful for recovering the physical amplitudes from the unitarized partial waves, in
order to perform phenomenological studies. So, rearranging eqs. 3.17, 3.18 and 3.19,

A(s, t, u) =
1

3
[A0(s, t, u)− A2(s, t, u)] (3.20a)

A(t, s, u) =
1

2
[A2(s, t, u) + A1(s, t, u)] (3.20b)

A(u, t, s) =
1

2
[A2(s, t, u)− A1(s, t, u)] (3.20c)

Of course, eqs. 3.20 are not independent, due to the crossing symmetry for four identical
particles (i.e., the values of A can be permuted). Substituting these eqs. 3.20 in eqs. 3.5,
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Figure 3.1: Typical Feynman diagram mixing the ωω (wiggled lines) and the hh (dashed
lines) channels. Taken from Ref. [39].

3.6 and 3.7 we can compute the scattering amplitudes for physical states ω± and z,

A(ω+ω− → ω+ω−) = A(s, t, u) + A(t, s, u)

=
1

3
A0(s, t, u) +

1

2
A1(s, t, u) +

1

6
A2(s, t, u) (3.21a)

A(ω+ω− → ω−ω+) = A(s, t, u) + A(u, t, s)

=
1

3
A0(s, t, u)− 1

2
A1(s, t, u) +

1

6
A2(s, t, u) (3.21b)

A(ω+ω− → zz) = A(zz → ω+ω−) = A(s, t, u)

=
1

3
[A0(s, t, u)− A2(s, t, u)] (3.21c)

A(zz → zz) = A(s, t, u) + A(t, s, u) + A(u, t, s)

=
1

3
[A0(s, t, u) + 2A2(s, t, u)] (3.21d)

3.1.2 Higgs-Higgs cross-channel: ωω → hh and hh → hh am-
plitudes

Due to the fact that hh is an isospin singlet, it only couples to |I,Mi〉 = |0, 0〉. The
coupling is

M0(s, t, u) =

〈
hh

∣∣∣∣M ∣∣∣∣− 1√
3

(
ω1ω1 + ω2ω2 + ω3ω3

)〉
= −
√

3M(s, t, u) (3.22)

Note that when we deal with ωω scattering, without couplings to photons, in our refs. [34,
35, 38, 39, 84, 85, 87–89], the signs of |0, 0〉 and M0(s, t, u) are changed. However, this fact
does not modify the cross sections, even when using unitarization procedures with crossed
channels, since the election of a complex phase for |0, 0〉 is arbitrary. We changed this sign
in order to be consequent with the usual election of the Clebsch-Gordan coefficients (see
ref. [43]), which was also followed by our collaborators M.J. Herrero and J.J. Sanz-Cillero,
with whom we computed the γγ scattering (sec. 3.2.2).

The hh → hh is an elastic scattering process between isospin singlet states, so that
computation of isospin projections is trivial. However, it is necessary when studying the
unitarity of elastic ωω scattering taking into account coupling with hh states. In fig. 3.1
you can see the kind of processes that is necessary to consider, and which could eventually
involve a hhhh vertex.
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3.1.3 Other channels: ω±z → ω±z

For this kind of process, taking into account eq. 2.24 and 3.1,

A(ω±z → ω±z) =

〈
1√
2

[(ω1 ± iω2)ω3]

∣∣∣∣A ∣∣∣∣ 1√
2

[(ω1 ± iω2)ω3]

〉
=

1

2

[〈
ω1ω3

∣∣A ∣∣ω1ω3
〉

+
〈
ω2ω3

∣∣A ∣∣ω2ω3
〉

±i(((((((((〈
ω1ω3

∣∣A ∣∣ω2ω3
〉
∓ i(((((((((〈

ω2ω3
∣∣A ∣∣ω1ω3

〉]
= A(t, s, u) (3.23)

If we exchange the particles in the final state,

A(ω±z → zω±) =

〈
1√
2

[ω3(ω1 ± iω2)]

∣∣∣∣A ∣∣∣∣ 1√
2

[(ω1 ± iω2)ω3]

〉
=

1

2

[〈
ω3ω1

∣∣A ∣∣ω1ω3
〉

+
〈
ω3ω2

∣∣A ∣∣ω2ω3
〉

±i(((((((((〈
ω3ω1

∣∣A ∣∣ω2ω3
〉
∓ i(((((((((〈

ω3ω2
∣∣A ∣∣ω1ω3

〉]
= A(u, t, s). (3.24)

Note that, taking into account eq. 3.2, A(ω±z → zω±) = A(u, t, s) = A(u, s, t), thus
A(ω±z → ω±z) is recovered through an interchange of u and t, as expected. Also, from
eqs. 3.20b and 3.20c,

A(ω±z → ω±z) =
1

2
[A2(s, t, u) + A1(s, t, u)] (3.25a)

A(ω±z → zω±) =
1

2
[A2(s, t, u)− A1(s, t, u)] (3.25b)

3.2 LO and NLO computation of invariant scattering

amplitudes

The computations with the Chiral Lagrangian at tree level was reported for the channels
ωω → ωω, ωω → hh and hh → hh, in Ref. [34]. Soon thereafter, in Ref. [35] we
provided the Next to Leading Order (NLO) computation. The masses Mh and MW were
neglected. Actually, the error introduced by doing so is of the same order as that of using
the Equivalence Theorem5,

T (W a
LW

b
L → W c

LW
d
L) = T (ωaωb → ωcωd) +O

(
MW√
s

)
,

since this requires Mh,MW �
√
s. Independently, Ref. [141] also performed some of the

computations with a slightly different formulation, keeping finite masses Mh and MW .
The good agreement with their results is a reassuring test for this approach.

3.2.1 ωω scattering

In ref. [34], we reported the LO scattering amplitudes for ωω, hh at tree-level, keeping
a finite value for the mass Mh of the Higgs-like scalar. See fig. 3.2 for the Feynman

5See chapter 2.1 and eq. 2.1.
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Figure 3.2: LO diagrams for the ωω → ωω, ωω → hh and hh → hh processes. ω in
solid lines and h in dashed ones. Fig. taken from Ref. [34]. The NLO diagrams for ωω
scattering can be found in Appendix F.

diagrams considered. The scattering amplitudes are

A2ω2ω(s, t, u) =
s

v2

(
1 +

a2s

M2
h − s

)
(3.26a)

M2ω2h(s, t, u) = − 1

v2

[
bs+ a2 (t−M2

h)2

t
+ a2 (u−M2

h)2

u
+

6aλ3vs

s−M2
h

]
(3.26b)

T 2h2h(s, t, u) = −24λ4 − 36λ2
3

[
1

s−M2
h

+
1

t−M2
h

+
1

u−M2
h

]
(3.26c)

Here, λ3 and λ4 stand for the Higgs self-coupling constants, which come from the analytic
potential of the scalar field h in eq. 2.7,

V (ϕ) =
∞∑
n=0

Vnh
n ≡ V0 +

M2
h

2
h2 +

∞∑
n=3

λnh
n

In the SM, they would be M2
h = 2λv2, λ3 = λv = M2

h/2v, λ4 = λ/4 = M2
h/8v

2. Taking
into account that the SM also implies a2 = b = 1, eqs. 3.26 turn into

A2ω2ω(s, t, u) =
M2

h

v2

s

M2
h − s

(3.27a)

M2ω2h(s, t, u) =
M2

h

v2

[
2 +

3s

M2
h − s

−M2
h

(
1

t
+

1

u

)]
(3.27b)

T 2h2h(s, t, u) =
M2

h

v2

[
9M2

h

(
1

M2
h − s

+
1

M2
h − t

+
1

M2
h − u

)
− 3

]
(3.27c)

These amplitudes do not grow as O(s) at the TeV scale. Even worse, if we compare with
eqs. 2.2 and 2.3 we will see a different. At high energy (s ∼ 1 TeV2), the difference is a
constant. This is due to the fact that we have neglected the couplings with the transverse
modes of W± and Z, which should appear even when using the Equivalence Theorem.
They give additional Feynman diagrams which account for the interchange of these virtual
transverse modes. We have omitted them because their contribution at high energy is
negligible, since it does not grow with O(s). Anyway, the scattering amplitudes 3.27
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give a sensible order of magnitude of the effects that we have neglected, so that they will
be used in sec. 3.3.4 for constraining the validity of our simplified effective Lagrangians
(eqs. 2.31, 2.33, 2.34, 2.45 and 2.46).

Hence, at very high energies (Mh �
√
s), and when the amplitudes do grow with

O(s) or O(s2), the λ3 and λ4 couplings are weak, and the mass Mh is negligible. We will
neglect them in this work. Thus, in the massless limit, and taking λ3, λ4 → 0, eqs. 3.26
reduce to

A(s, t, u) =
1− a2

v2
s (3.28)

M(s, t, u) =
a2 − b
v2

s (3.29)

T (s, t, u) = 0 (3.30)

The complete NLO amplitude for the elastic scattering ωω → ωω has been reported
by us in Ref. [35], with the LO plus tree-level NLO counterterms yielding

A(0)(s, t, u) + A
(1)
tree(s, t, u) = (1− a2)

s

v2
+

4

v4

[
2a5s

2 + a4(t2 + u2)
]
. (3.31)

The one-loop computation, rather lengthy because of the number of Feynman diagrams,
was automated with the Mathematica programs FeynRules [142], FeynArts [143] and
FormCalc [144, 145], which take a Lagrangian as input and give as output an analyti-
cal expression for the one-loop scattering amplitudes in terms of the Passarino-Veltman
functions. For a proper definition of these functions, please see Appendix C. The NLO
Feynman Diagrams for all the studied processes are in Appendix F. The value of the
NLO scattering amplitude ωω → ωω is

A
(1)
loop(s, t, u) =

1

36(4π)2v4
[f(s, t, u)s2 + (1− a2)2(g(s, t, u)t2 + g(s, u, t)u2)] (3.32)

with auxiliary functions

f(s, t, u) := 4[9(a2 − b)2 + 5(1− a2)2] + 6[3(a2 − b)2 + 2(1− a2)2]Nε

− 18[(a2 − b)2 + (1− a2)2] log

(
−s
µ2

)
+ 3(a2 − 1)2

[
log

(
−t
µ2

)
+ log

(
−u
µ2

)]
(3.33)

g(s, t, u) := 26 + 12Nε − 9 log

(
− t

µ2

)
− 3 log

(
− u

µ2

)
(3.34)

where in dimensional regularization the 1/ε = 1/(4−D) pole is contained in6

Nε =
2

ε
+ log 4π − γ . (3.35)

For the ωω → hh scattering amplitude we find,

M
(0)
tree(s, t, u) +M

(1)
tree(s, t, u) = (a2 − b) s

v2
+

2d

v4
s2 +

e

v4
(t2 + u2) (3.36)

6See Appendix C for an explanation.
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that takes a one-loop correction:

M
(1)
loop(s, t, u) =

a2 − b
576π2v2

[
f ′(s, t, u)

s2

v2
+
a2 − b
v2

[g(s, t, u)t2 + g(s, u, t)u2]

]
(3.37)

where

f ′(s, t, u) = −8[2(a2 − b)− 9(1− a2)]− 6Nε[(a
2 − b)− 6(1− a2)]

+ 36(a2 − 1) log

(
− s

µ2

)
+ 3(a2 − b)

[
log

(
− t

µ2

)
+ log

(
− u

µ2

)]
, (3.38)

and the function g is as defined in Eq. (3.34).

Finally, the hh→ hh elastic amplitude is, at tree-level and keeping only the operator
necessary to renormalize the one-loop part,

T (0)(s, t, u) + T
(1)
tree(s, t, u) =

2g

v4
(s2 + t2 + u2) , (3.39)

while the one-loop piece may be written in terms of only one function

T (s) = 2 +Nε − log

(
− s

µ2

)
(3.40)

as

T
(1)
loop(s, t, u) =

3(a2 − b)2

2(4π)2v4

[
T (s)s2 + T (t)t2 + T (u)u2

]
. (3.41)

The divergences Nε from the one-loop amplitudes are unphysical and appear while we
employ the unrenormalized parameters. We use the MS scheme to eliminate them and
introduce the renormalized couplings as

ar4 = a4 +
Nε

192π2
(1− a2)2 (3.42a)

ar5 = a5 +
Nε

768π2
[3(a2 − b)2 + 2(1− a2)2] (3.42b)

gr = g +
3Nε

64π2
(a2 − b)2 (3.42c)

dr = d− Nε

192π2
(a2 − b)[(a2 − b)− 6(1− a2)] (3.42d)

er = e+
Nε

48π2
(a2 − b)2 (3.42e)

Since the physical amplitudes cannot depend on the arbitrary scale µ,

dAi
d µ

= 0 ∀ channel i, (3.43)

which is a renormalization-group evolution equation that determines the running of the
NLO parameters with the scale. Interestingly, these evolution equations are decoupled
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Figure 3.3: Dependence of the isoscalar elastic scattering amplitude on the renormaliza-
tion parameter µ. Process ωω → ωω, I = J = 0. Parameters a2 = 1, b = 2 and all the
other parameters set to zero. For

√
s . 1.5 TeV, the amplitude is independent of µ. For

higher energies, there is a slight dependence on µ.

(at NLO), and give the relations

ar4(µ) = ar4(µ0)− 1

192π2
(1− a2)2 log

µ2

µ2
0

(3.44a)

ar5(µ) = ar5(µ0)− 1

768π2
[3(a2 − b)2 + 2(1− a2)2] log

µ2

µ2
0

(3.44b)

gr(µ) = gr(µ0)− 3

64π2
(a2 − b)2 log

µ2

µ2
0

(3.44c)

dr(µ) = dr(µ0) +
1

192π2
(a2 − b)[(a2 − b)− 6(1− a2)] log

µ2

µ2
0

(3.44d)

er(µ) = er(µ0)− 1

48π2
(a2 − b)2 log

µ2

µ2
0

(3.44e)

In this work, unless otherwise stated, we have taken all the NLO parameters to the
value at a scale µ = 3 TeV. This is motivated by the

√
s/(4πv) expansion factor of the

effective theory, which gives the maximum energy at which the predictions of the effective
theory are reliable. v is the vacuum expectation value (v ≈ 246 GeV). See fig. 3.3 for a
comparison of three different renormalization scales µ fixing all NLO couplings to zero.
Putting all the parts together, the final NLO amplitudes for ωω → ωω scattering are

A(s, t, u) =
1

v2
(1− a2)s+

4

v4

[
2ar5(µ)s2 + ar4(µ)(t2 + u2)

]
+

1

864π2v4

{
6[9(a2 − b)2 + 5(1− a2)2]s2 + 39(1− a2)2(t2 + u2)

− 27[(a2 − b)2 + (1− a2)2]s2 log
−s
µ2

+ 4(1− a2)2(s2 − 3t2 − u2) log
−t
µ2

+ 4(1− a2)2(s2 − t2 − 3u2) log
−u
µ2

}
(3.45)
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For ωω → hh,

M(s, t, u) =
1

v2
(a2 − b)s+

2

v4
dr(µ)s2 +

1

v4
er(µ)(t2 + u2)

+
1

576π2v4

{
8[−2(a2 − b) + 9(1− a2)](a2 − b)s2 + 26(a2 − b)2(t2 + u2)

− 36(a2 − b)(1− a2)s2 log
−s
µ2

+ 3(a2 − b)2(s2 − 3t2 − u2) log
−t
µ2

+ 3(a2 − b)2(s2 − t2 − 3u2) log
−u
µ2

}
(3.46)

And, for the hh→ hh amplitude,

T (s, t, u) =
2

v4
gr(µ)(s2 + t2 + u2) +

3

32π2v4
(a2 − b)2

[
2(s2 + t2 + u2)

−s2 log
−s
µ2
− t2 log

−t
µ2
− u2 log

−u
µ2

]
. (3.47)

Finally, by crossing in eq. 3.46, we can also quote the ωh→ ωh amplitude,

[T (ωah→ ωbh)](s, t, u) = [T (ωaωb → hh)](t, s, u) = M(t, s, u)δa,b ≡M ′(s, t, u)δa,b,
(3.48)

where we have used that the would-be Goldstones ωa,b are in the isospin basis (so that
they are their own antiparticle). M ′(s, t, u) is the crossed M(s, t, u) in eq. 3.46,

M ′(s, t, u) =
1

v2
(a2 − b)t+

2

v4
dr(µ)t2 +

1

v4
er(µ)(s2 + u2)

+
1

576π2v4

{
8[−2(a2 − b) + 9(1− a2)](a2 − b)t2 + 26(a2 − b)2(s2 + u2)

− 36(a2 − b)(1− a2)t2 log
−t
µ2

+ 3(a2 − b)2(t2 − 3s2 − u2) log
−s
µ2

+ 3(a2 − b)2(t2 − s2 − 3u2) log
−u
µ2

}
. (3.49)

Thus,
T (ωah→ ωbh) = M ′(s, t, u)δa,b, (3.50)

where M ′(s, t, u) is defined in eq. 3.49.

3.2.2 γγ scattering

The amplitudes for γγ scattering, computed by us in ref. [36], provide a good example
of the equivalence between the two parameterizations considered for the SU(2) coset
(spherical and exponential) as they are equal. In both γγ → zz and γγ → ω+ω− cases,
the amplitudes can be decomposed as

M = iT = ie2
(
εµ1ε

ν
2T

(1)
µν

)
A+ ie2

(
εµ1ε

ν
2T

(2)
µν

)
B, (3.51)
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Figure 3.4: Up and middle left, three LO diagrams for γγ → ω+ω− at order O(e2).
On the right, diagrams for the same process at order O(e2p2). Lowest left, unique LO
diagram for process γγ → zz, order O(e2p2). Figures taken from Ref. [36]. The NLO
diagrams for γγ scattering can be found in Appendix F.

the two Lorentz structures being(
εµ1ε

ν
2T

(1)
µν

)
=
s

2
(ε1ε2)− (ε1k2)(ε2k1) (3.52)(

εµ1ε
ν
2T

(2)
µν

)
= 2s(ε1∆)(ε2∆)− (t− u)2(ε1ε2)

− 2(t− u)[(ε1∆)(ε2k1)− (ε1k2)(ε2∆)]. (3.53)

Here, e =
√
α/4π ≈ 0.303 is the electric charge; εi and ki, the polarization state and the

4-momentum of each photon i = 1, 2; pi, the 4-momenta of the Gauge boson i = 1, 2;
and ∆µ = pµ1 − p

µ
2 .

For the γγ → zz process, at order O(e2) in the chiral expansion, we have a vanishing
leading order amplitude,

M(γγ → zz)LO = 0. (3.54)

The NLO contribution [order O(p2e2)] is

A(γγ → zz)NLO =
2acrγ
v2

+
a2 − 1

4π2v2
(3.55a)

B(γγ → zz)NLO = 0. (3.55b)

For γγ → ω+ω− (the other process allowed by charge conservation), at order O(e2),

A(γγ → ω+ω−)LO = 2sB(γγ → ω+ω−) = −1

t
− 1

u
, (3.56)

whereas, at order O(p2e2) (NLO),

A(γγ → ω+ω−)NLO =
8(ar1 − ar2 + ar3)

v2
+

2acrγ
v2

+
a2 − 1

8π2v2
(3.57a)

B(γγ → ω+ω−)NLO = 0. (3.57b)
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It is very interesting that for both channels and in dimensional regularization, the UV
divergences cancel in the end, so that no renormalization is required at all. Although this
is a feature of the NLO computation, in ref. [146] an explanation in terms of a projection
of Effective Field Theories (EFTs) to SUSY formalism can be found. Thus,

crγ = cγ (3.58a)

ari = ai ∀i = 1, 2, 3 (3.58b)

As for ωω scattering, the NLO diagrams for the γγ scattering can be found on app. F.
We will use the following notation for the parameterization of the initial and final states,

[γ(ε±1 , k1), γ(ε±2 , k2)]→ [ω/h(p1), ω/h(p2)], (3.59)

where ε±i (i = 1, 2) are the polarization vectors; ki, the 4-momenta of the incoming
photons; and pi the 4-momenta of the outgoing WBGBs. Without loss of generality, we
can choose the next parameterization for the momenta,

k1 = (E, 0, 0, E) k2 = (E, 0, 0,−E) (3.60a)

p1 = (E, ~p) p2 = (E,−~p) ∆ = p1 − p2 (3.60b)

~p = (px, py, pz) = (sin θ cosϕ, sin θ sinϕ, cos θ). (3.60c)

The 4-dimensional polarization states ε±i are transverse, that is,

ε±i · ki = 0, i = 1, 2. (3.61)

Note also that, because we are taking ~k1 ‖ ~k2,

ε±1 · k2 = ε±2 · k1 = 0. (3.62)

With these conditions, the Lorentz structure of eq. 3.52 becomes(
εµ1 · εν2T (1)

µν

)
=
s

2
ε1 · ε2. (3.63)

And the one of eq. 3.53,(
εµ1 · εν2T (2)

µν

)
= 2s(ε1 ·∆)(ε2 ·∆)− (t− u)2ε1 · ε2. (3.64)

Provided that the WBGBs can be considered to be massless, taking into account eqs. A.16
and A.17,

(t− u)2 =
[
−s

2
(1− cos θ) +

s

2
(1 + cos θ)

]2

= s2 cos2 θ, (3.65)

so that eq. 3.64 becomes(
εµ1 · εν2T (2)

µν

)
= 2s(ε1 ·∆)(ε2 ·∆)− s2(cos θ)2(ε1 · ε2). (3.66)

The final election for the polarization states ε±i , following ref. [138], is

ε±1 =
1√
2

(0,∓1,−i, 0) (3.67a)

ε±2 =
1√
2

(0,∓1, i, 0) . (3.67b)
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By using eqs. 3.67, the following orthogonality relations are obtained,

ε+1 · ε+2 =
1

2
(0− 1− 1 + 0) = −1 (3.68a)

ε−1 · ε−2 =
1

2
(0− 1− 1 + 0) = −1 (3.68b)

ε+1 · ε−2 =
1

2
(0 + 1− 1 + 0) = 0 (3.68c)

ε−1 · ε+2 =
1

2
(0 + 1− 1 + 0) = 0 . (3.68d)

If eqs. 3.60 are also considered,

ε+1 ·∆ =
√

2(px + ipy) =
√

2E sin θeiϕ (3.69a)

ε−1 ·∆ =
√

2(−px + ipy) = −
√

2E sin θe−iϕ (3.69b)

ε+2 ·∆ =
√

2(px − ipy) =
√

2E sin θe−iϕ (3.69c)

ε−2 ·∆ =
√

2(−px − ipy) = −
√

2E sin θeiϕ . (3.69d)

Thus, taking into account that s = 4E2 (app. A.3), the Lorentz structures (eqs. 3.63
and 3.66) become those shown on table 3.2.

(λ1λ2) (++) (+−) (−+) (−−)

εµ1 · εν2T
(1)
µν −s/2 0 0 −s/2

εµ1 · εν2T
(2)
µν s2 −s2(sin θ)2e2iϕ −s2(sin θ)2e−2iϕ s2

Table 3.2: Lorentz structures εµ1 · εν2T
(1)
µν and εµ1 · εν2T

(2)
µν (eqs. 3.63 and 3.66).

For simplicity, we introduce the notation

T λ1λ2N,C = e2ei(λ1−λ2)ϕHN,C
λ1λ2

(s, t), (3.70)

where N and C indicate, respectively, zz (neutral) and ω+ω− (charged) final states. Note

that both Lorentz structures εµ1 · εν2T
(1)
µν and εµ1 · εν2T

(2)
µν (table 3.2) and the LO and NLO

coefficients A(s, t, u), B(s, t, u), which correspond to γγ → ω+ω− (eqs. 3.56 and 3.57) are
invariant under the permutation of t and u. That is, under the transformation θ → π−θ.
Thus, M(γγ → ω+ω−)LO,NLO =M(γγ → ω−ω+)LO,NLO.

With this notation, and considering both eq. 3.51 and table 3.2,

H++
N,C = H−−N,C = −s

2
ALO+NLO,N,C(s, t, u) + s2BLO+NLO,N,C(s, t, u) (3.71)

H+−
N,C = H−+

N,C = −s2(sin θ)2BLO+NLO,N,C(s, t, u), (3.72)

where LO + NLO has been used to denote the sum of both the LO and the NLO terms.
For the zz state (N), ALO,N = BLO,N = 0 (eq. 3.54). Thus, if we define (eq. 3.55a)

AN ≡ ANLO,N(s, t, u) =
2acrγ
v2

+
a2 − 1

4π2v2
, (3.73)

and take into account that BNLO,N(s, t, u) = 0 (eq. 3.55b), then

H++
N = H−−N = −s

2
AN , H+−

N = H−+
N = 0 (3.74)



38 CHAPTER 3. SCATTERING AMPLITUDES

Now, let us take eq. 3.56 and compute the LO contribution to H++
C = H−−C (eq. 3.71)

with the Lorentz structures of table 3.2,

H++
LO,C = H−−LO,C = −s

2
ALO,C(s, t, u) + s2BLO,C(s, t, u)

= −s
2

(
−1

t
− 1

u

)
+ s2 1

2s

(
−1

t
− 1

u

)
= 0. (3.75)

Thus, taking into account that BNLO,C(s, t, u) = 0 (eq. 3.57b, and defining (eq. 3.55a)

AC ≡ ANLO,C(s, t, u) =
8(ar1 − ar2 + ar3)

v2
+

2acrγ
v2

+
a2 − 1

8π2v2
, (3.76)

we have that

H++
C = H−−C = −s

2
AC . (3.77)

Finally, let us compute H+−
C = H−+

C . Considering eqs. 3.72, 3.56 and 3.57b, and table 3.2,
it can be seen that only the LO contribution survives. Thus,

H+−
C = H−+

C = −s2(sin θ)2 1

2s

(
−1

t
− 1

u

)
=
s

2

t+ u

tu
sin2 θ (3.78)

Now, because the initial state particles (photons) are massless (eqs. A.16 and A.17),

t+ u

tu
=

−s
s2

4
(1− cos2 θ)

= −4

s

1

sin2 θ
. (3.79)

Substituting in eq. 3.78,

H+−
C = H−+

C = −2. (3.80)

Now, let us take the isospin basis |I,MI〉 of table 3.1 for the final ωω state. Because
of both charge conservation (only ω+ω−, ω−ω+ and zz are possible in the final state) and
the invariance of the matrix element under permutation of the final state particles (Bose
symmetry), only 2 states give a non-vanishing contribution,

|0, 0〉 = − 1√
3

(∣∣ω+ω−
〉

+
∣∣ω−ω+

〉
+ |zz〉

)
(3.81)

|2, 0〉 =
1√
6

(
2 |zz〉 −

∣∣ω+ω−
〉
−
∣∣ω−ω+

〉)
. (3.82)

If we take the definition

T λ1λ2I ≡ 〈I, 0 |T |λ1λ2〉 , (3.83)

then

T λ1λ20 = − 1√
3

(
2T λ1λ2C + T λ1λ2N

)
(3.84)

T λ1λ22 =
2√
6

(
T λ1λ2N − T λ1λ2C

)
. (3.85)
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Taking into account ecs. 3.70, 3.74, 3.77 and 3.80,

T++
0 = T−−0 =

e2s

2
√

3
(2AC + AN) (3.86a)

T+−
0 = (T−+

0 )∗ =
4e2

√
3
e2iϕ (3.86b)

T++
2 = T−−2 =

e2s√
6

(AC − AN) (3.86c)

T+−
2 = (T−+

2 )∗ =
4e2

√
6
e2iϕ (3.86d)

And, for the crossed-channel γγ → hh scattering amplitude R(γγ → hh), also re-
quired for the unitarization below in subsec. 4.4,

R(γγ → hh) = − e2

8π2v2
(a2 − b)(ε1 · ε2). (3.87)

This is an NLO scattering amplitude. The LO one vanishes. According to eqs. 3.68, for
the polarization states of eq. 3.67, this scattering amplitude turns into

R(γγ → hh) =
e2

8π2v2
(a2 − b)δλ1,λ2 . (3.88)

Thus, the final state is |hh〉, which is an isospin singlet state,

R++
0 = R−−0 = 〈hh |R(γγ → hh) |++〉 =

e2

8π2v2
(a2 − b) (3.89)

Lastly, it is also worth to remark that the one-loop contributions in our final results
show up in the form (1− a2)E2/(16π2v2). Since the present fits to LHC data [127, 128]
suggest a value of a close to one, these corrections are surprisingly suppressed with respect
to the naively expected E2/(16π2v2) contributions, typically occurring from chiral loops
of chiral effective field theories. We believe that the origin of the simplicity of our results
in eqs. 3.86 and 3.89 could be relying on the custodially symmetric structure of the theory
and an enlarged symmetry of the dynamical boson sector (h, w± z) that arises in the
relevant Lagrangian for γγ → wawb in the massless Higgs limit. This simplicity may also
be related to the fact that, when using dimensional regularization, the UV divergences
cancel for all the channels, γγ → zz, ωω, hh.

3.2.3 tt̄ in the final state

In this section, which expands our ref. [136], we are interested in the processes VLVL → tt̄
(V = W,Z) and hh → tt̄, at high energies compared with MZ , MW and Mh. In this
case, we can use the ET and concentrate only in the GB, h and the b and t quarks.
At TeV energies the top quark mass is small. More specifically, we will consider the
regime M2

t /v
2 �
√
sMt/v

2 � s/v2. Then, it is not difficult to see that this is equivalent
to neglecting diagrams with internal top lines at the one-loop level. At tree level (see
fig. 3.5), the scattering amplitude is given by:

QLO

(
ωaωb → tλ1 t̄λ2

)
=
√

3
(

1− ac1 +
gt
2

s

v2

)Mt

v2
ūλ1(p1)vλ2(p2)δab (3.90)
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Figure 3.5: LO contributions to the process ωω → tt̄

where a and b are the custodial isospin indices of the incoming GB p1 and p2 and λ1 and
λ2 are top and antitop momenta and helicities respectively.

Note that the
√

3 factor included in eq. 3.90 is a color factor. Taking into account
that the initial state is a color singlet, the tt̄ final state must be also a color singlet,

|tt̄〉 =
1√
3

3∑
c=1

|tct̄c〉 . (3.91)

This
√

3 color factor can be exposed with a redefinition of T ,

T |tt̄〉 ≡
√

3T ′ |t1t̄1〉 , (3.92)

and it will be explicit in all of the next equations.
Next, we consider the one-loop contributions. The Feynmann diagrams contributing

to this order can be found in appendix F.3.1. By using dimensional regularization (see
appendix C) the result is:

QNLO
(
ωaωb → tλ1 t̄λ2

)
=
√

3
s

(4π)2v2

[
(1− ac1)(1− a2) + c2(b− a2)

]
·

·
(
Nε + 2− log

−s
µ2

)
Mt

v2
ūλ1vλ2δab, (3.93)

where, as usual,

Nε =
2

ε
+ log 4π − γ, (3.94)

and µ is an arbitrary renormalization scale. Hence, the sum of the two contributions is

Q
[
ωaωb → tλ1 t̄λ2

]
=
√

3 [QLO(s) +QNLO(s)]
Mt

v2
ūλ1vλ2δab, (3.95)

where

QLO(s) = 1− ac1 +
gt
2

s

v2
(3.96)

QNLO(s) =
s

(4π)2v2
Ct

(
Nε + 2− log

−s
µ2

)
, (3.97)

and
Ct = (1− ac1)(1− a2) + c2(b− a2). (3.98)
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The divergence in this amplitude can be absorbed by renormalizing the gt coupling.
Using the MS renormalization scheme, we define

grt = gt +
Ct
8π2

Nε (3.99)

and consequently

QLO(s) +QNLO(s) = 1− ac1 +
s

v2

[
grt
2

+
Ct

(4π)2

(
2− log

−s
µ2

)]
. (3.100)

Moreover, in the absence of wave or mass renormalization, amplitudes must be ob-
servable, and hence µ-independent; so we require that total derivatives of the amplitude
with respect to log µ2 vanish,

d [QLO(s) +QNLO(s)]

d log µ2
=

s

v2

[
1

2

dgrt
d log µ2

+
Ct

(4π)2

]
= 0. (3.101)

Then, the renormalization equation for grt reads

dgrt
d log µ2

= − Ct
8π2

, (3.102)

which can be integrated to give

grt (µ) = grt (µ0)− Ct
8π2

log

(
µ2

µ2
0

)
. (3.103)

On the other hand, the different spinor helicity combinations appearing in the ampli-
tudes in eq. 3.95 are7

ū+ (p1) v+ (p2) = +
√
s− 4M2

t = +
√
s+O

(
M2

t

s

)
. (3.104a)

ū+ (p1) v− (p1) = 0. (3.104b)

ū− (p1) v+ (p2) = 0. (3.104c)

ū− (p1) v− (p2) = −
√
s− 4M2

t = −
√
s+O

(
M2

t

s

)
. (3.104d)

Therefore, the tree level amplitude is of order of
√
sMt/v

2, and the one-loop is of order
s
√
sMt/v

4, where we have neglected higher order powers on M2
t /s. Thus, the amplitude

ωaωb → tt̄ is given by

Q
(
ωaωb → t+t̄+

)
=
√

3 [QLO(s) +QNLO(s)]
Mt

√
s

v2
δab (3.105a)

Q
(
ωaωb → t−t̄−

)
= −Q

(
ωaωb → t+t̄+

)
(3.105b)

Q
(
ωaωb → t−t̄+

)
= Q

(
ωaωb → t+t̄−

)
= 0, (3.105c)

where

Q
(
ωaωb → t+t̄+

)
=
√

3 [QLO(s) +QNLO(s)]
Mt

√
s

v2
δab

=
√

3
Mt

√
s

v2
(1− ac1)δab

+
√

3
s
√
sMt

v4

[
grt (µ)

2
+

Ct
16π2

(
2− log

−s
µ2

)]
δab

(3.106)

7See appendix B.1 for a proof of these relations.
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Figure 3.6: Contribution at LO to hh→ tt̄ annihilation

In a similar way the hh→ tt̄ annihilation can be considered. Note also the introduc-
tion of a

√
3 color factor and, since our final state is also tt̄, the validity of eqs. 3.104

applied to hh→ tt̄ scattering.
The diagramatic contribution (direct vertex) to the LO hh→ tt̄ amplitude is depicted

in fig. 3.6. Then, it is easy to verify that the tree level amplitude hh→ tt̄, NLO, is

NLO

(
hh→ tλ1 t̄λ2

)
=
√

3

(
−2c2Mt

v2
+
g′tsMt

2v4

)
ūλ1 (p1) vλ2 (p2) (3.107)

At the one loop level the scattering amplitude, NNLO, is given by the diagrams in
appendix F.3.2, which amount to

NNLO

(
hh→ tλ1 t̄λ2

)
=

−
√

3
3sMt

32π2v4
(b− a2)(1− ac1)

(
Nε + 2− log

−s
µ2

)
ūλ1 (p1) vλ2 (p2) (3.108)

Then the tree plus the one-loop amplitude is

N
(
hh→ tλ1 t̄λ2

)
=
√

3

{
−2c2 +

s

v2

[
g′t
2
− 3

32π2
(b− a2)(1− ac1)

(
Nε + 2− log

−s
µ2

)]}
·

· ūλ1 (p1) vλ2 (p2)

=
√

3

{
−2c2 +

s

v2

[
g′rt
2
− 3

32π2
(b− a2)(1− ac1)

(
2− log

−s
µ2

)]}
·

· ūλ1 (p1) vλ2 (p2)
(3.109)

The renormalized coupling g′rt is obviously defined as:

g′rt = g′t −
3C ′t

(4π)2
Nε (3.110)

where
C ′t = (b− a2)(1− ac1). (3.111)

Again, the lack of wave function renormalization at this level requires this amplitude
to be scale independent. Thus the coupling dependence on µ is given by:

dg′rt
d log µ2

=
3C ′t

(4π)2
. (3.112)
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Figure 3.7: LO contribution to tt̄→ tt̄ elastic scattering.

By integrating (3.112), the renormalized coupling evolves with the scale as

g′rt (µ) = g′rt (µ0) +
3C ′t

(4π)2
log

(
µ2

µ2
0

)
. (3.113)

In a way similar to that in the would-be GB case (eq. 3.105b), we get for the amplitudes
in eq. 3.109,

N
(
hh→ t−t̄−

)
= −N

(
hh→ t+t̄+

)
(3.114)

N
(
hh→ t−t̄+

)
= N

(
hh→ t+t̄−

)
= 0, (3.115)

where

N
(
hh→ t+t̄+

)
= −2

√
3c2

Mt

√
s

v2
+
√

3
s

v2

[
g′rt (µ)

2
− 3C ′t

32π2

(
2− log

−s
µ2

)]
Mt

√
s

v2
.

(3.116)
The final state tt̄ will be in a helicity state

|S = 1, Sz = 0〉 =
1√
2

(∣∣t+t̄+〉− ∣∣t−t̄−〉) , (3.117)

having taken into account that the only non-vanishing contributions to the scattering
amplitude come from the polarizations λ1λ2 = ++ and −−, and that the substitution
++ → −− produces a change of sign in the scattering amplitude, just as in eqs. 3.105b
and 3.114. Note that we have no tb̄ or t̄b on the final state, according to the LO and NLO
computations. Actually, these vertices are supressed by a factor which is proportional to
the mass of the bottom quark, Mb ≈ 4.18 GeV�Mt,Mh, v ∼ 102 GeV.

3.2.4 tt̄→ tt̄ scattering amplitude

For completeness, though not strictly needed to order O(Mt/v) in the (Mt,
√
s) counting,

we compute the elastic tt̄ process, at least at the LO (see fig. 3.7 for the Feynman
diagrams). By using the obvious notation uλi(pi) = ui and vλi(pi) = ui with i = 1, 2, 3, 4
the amplitude 1, 2→ 3, 4 is given by

S(tt̄→ tt̄) = −3c2
1

M2
t

v2s
ū3v4v̄2u1−3c2

1

M2
t

v2t
ū3u1v̄2v4+3

M2
t

v2s
ū3γ

5v4v̄2γ
5u1+3

M2
t

v2t
ū3γ

5u1v̄2γ
5v4.

(3.118)
Note the color factor 3 introduced on eq. 3.118; it is easily computed considering that
both the initial and final tt̄ states are color singlets. The spinor chains which appear
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in eq. 3.118 are in turn computed on appendix B.2. Once substituted in eq. 3.118, and
taking into account the limit s�M2

t , eq. 3.118 turns into

S(t+t̄+ → t+t̄+) = −3M2
t (1 + c2

1)

v2
(3.119a)

S(t−t̄− → t−t̄−) = S(t+t̄+ → t+t̄+) (3.119b)

S(t+t̄− → t−t̄+) =
3M2

t (1 + c2
1)

v2
e2iφ (3.119c)

S(t−t̄+ → t+t̄−) =
[
S(t+t̄− → t−t̄+)

]∗
. (3.119d)

All the other helicity combinations give a vanishing scattering amplitude. Note the
subleading order of this amplitude [S ∼ O(M2

t /v
2)]; thus this is confirmed by explicit

calculation. Even more, because of eq. 3.119b, if we consider the |S = 1, Sz = 0〉 helicity
state (eq. 3.117), the scattering amplitude vanishes.

3.3 Partial wave decomposition

We will study the partial wave decomposition of the matrix elements described in sec-
tions 3.1 and 3.2, with normalization

F λ1λ2
IJ (s) =

1

64π2K

√
4π

2J + 1

∫
dΩAλ1λ2I (s,Ω)Y ∗J,Λ(Ω), (3.120)

where Λ = λ1−λ2 is the difference between the polarizations of the initial (or final) state
particles, and K = 1, 2 for distinguishable and indistinguishable particles in the initial
state, respectively. YJ,Jz(Ω) is a spherical-harmonic function8. The inverse of eq. 3.120
reconstructs the amplitude,

Aλ1λ2I (s,Ω) = 64π2K
∑
J,Λ

√
2J + 1

4π
YJ,Λ(Ω)F λ1λ2

IJ (s). (3.121)

If we were in the general case where both the initial and final state particles have polariza-
tion, then the Wigner D-functions should be used (see ref. [149]). But, in this particular
case, where one of the two particles states has no polarization, the Wigner D-function
reduces to eq. 3.120.

In the case of particles without polarization, as in the case of the WBGBs scattering
processes without coupling with γ and fermions, then Λ = 0. Taking into account the
definition of spherical harmonics,

YJ,Jz(θ, ϕ) =

√
2J + 1

4π

√
(J − Jz)!
(J + Jz)!

P Jz
J (cos θ)eiJzϕ, (3.122)

where Pm
l (x) is the associated Legendre Polynomial, if azimuthal symmetry is present,

then eq. 3.120 reduces to

FIJ,0(s) ≡ AIJ(s) =
1

32πK

∫ 1

−1

d xPJ(x)AI [s, t(s, x), u(s, x)], (3.123)

8See, for example, ref. [138, 147, 148].



3.3. PARTIAL WAVE DECOMPOSITION 45

PJ(x) being the Legendre polynomials [note that P 0
l (x) = Pl(x)] and x = cos θ, the cosine

of the scattering angle θ, that can be computed from (s, t, u) by using the relations from
app. A. In particular, eqs. A.12 for the most general case (all the four particles have
different masses); eq. A.15, if m1 = m2 (initial state particles) and m3 = m4 (final state
particles); and eq. A.18, for the massless case. Now, the inverse of eq. 3.123 reconstructs
the amplitude,

AI(s, t, u) = 16πK
∞∑
J=0

(2J + 1)PJ [x(s, t)]AIJ(s), (3.124)

which is the spinless version of eq. 3.121. Integrating the modulus of eq. 3.124 over x,

1

32π

∫ 1

−1

d x|AI [s, t(s, x), u(s, x)]|2 = 64π
∞∑
J=0

(2J + 1)|AIJ(s)|2. (3.125)

Provided that the initial states can be considered massless, because they are photons or
we are taking the WBGBs as massless9, then

x = 1− 2t

s
, u = −(s+ t). (3.126)

Our final goal would be computing differential and total cross sections. According
to [40], considering a 2→ 2 scattering processes(

d σ

dΩ

)
CM

=
1

2EA2EB|vA − vB|
|~p1|

(2π)24ECM

|M(pA, pB → p1, p2)|2, (3.127)

with |vA − vB| the Galilean relative velocity of the beams as viewed in the laboratory
frame. However, if we deal with massless particles (or we can use MW ,Mh �

√
s), then

this last formula simplifies to (
d σ

dΩ

)
CM

=
|M|2

64π2s
, (3.128)

where we have used that s = E2
CM. To obtain the total cross section, because of the

definition of spherical angle10,

σ =
1

32πs

∫ 1

−1

d x|M[s, t(s, x), u(s, x)]|2 (3.129)

3.3.1 ωω scattering

For the ωω scattering, we take the particles as massless (and without polarization), and
K = 2 in eq. 3.123 (indistinguishable particles). First of all, let us compute the partial
waves corresponding to the matrix elements without neglecting the couplings λ3, λ4 and

9MW ,Mh �
√
s, limit of applicability of the ET.

10This holds when the ϕ variable is trivial and, if spin is present, for averaged cross sections.
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Mh (see our ref. [34]). Some of the corresponding amplitudes tIJ for eqs. 3.26 are

t2ω2ω
00 (s) =

s

32πv2

[
2− a2

(
3s

s−M2
h

− 1

)
− 2

M2
ha

2

s
+

2M4
ha

2

s2
log

(
1 +

s

M2
h

)]
(3.130a)

t2ω2h
00 (s) = −

√
3s

32πv2

[
(a2 − b) +

6aλ3v

M2
h − s

+
2M2

ha
2

s
− 2M4

ha
2

s2σ
log

(
2M2

h − s(1− σ)

2M2
h − s(1 + σ)

)]
(3.130b)

t2h2h
00 (s) = − 1

16π

(
12λ4 −

18λ2
3

M2
h − s

)
− 9λ2

3

4πsσ2
log

(
M2

h

s− 3M2
h

)
(3.130c)

t2ω2ω
11 (s) =

s

32πv2

[
1

3
(1− a2)− 4M4

ha
2

s2
+

2M4
ha

2

s3
(2M2

h + s) log

(
1 +

s

M2
h

)]
, (3.130d)

where σ =
√

1− 4M2
h/s. Thus, for the SM (a2 = b = 1, λ3 = M2

h/2v, λ4 = M2
h/8v

2),
eqs. 3.130 turn into

t2ω2ω
00 =

s

32πv2

[
3− 3s

s−M2
h

− 2
M2

h

s
+

2M4
h

s2
log

(
1 +

s

M2
h

)]
(3.131a)

t2ω2h
00 =

√
3s

32πv2

[
−2M2

h

s
+

3M2
h

s−M2
h

+
2M4

h

s2σ
log

(
2M2

h − s(1− σ)

2M2
h − s(1 + σ)

)]
(3.131b)

t2h2h
00 = − 3M2

h

32πv2

[
1 +

3M2
h

s−M2
h

+
6M2

h

s− 4M2
h

log

(
M2

h

s− 3M2
h

)]
(3.131c)

t2ω2ω
11 =

1

32πv2

[
−4M4

h

s
+

2M4
h

s2
(2M2

h + s) log

(
1 +

s

M2
h

)]
. (3.131d)

However, as explained on sec. 3.2.1, we have kept λ3, λ4 and M2
h only for testing

purposes11, and we will neglect them in all our work except in sec. 3.3.4. Thus, once λ3,
λ4 and Mh are neglected, for the elastic channels ωω → ωω, these partial waves accept a
chiral expansion just as the full amplitude in subsec. 3.2,

A
(0)
IJ (s) = Ks (3.132a)

A
(1)
IJ (s) =

(
B(µ) +D log

s

µ2
+ E log

−s
µ2

)
s2. (3.132b)

These constants will depend on the IJ parameters of the considered channel. For the
coupled channels ωω → hh, the inelastic amplitude expanded in partial waves is

MJ(s) = K ′s+

(
B′(µ) +D′ log

s

µ2
+ E ′ log

−s
µ2

)
s2 + · · · (3.133)

and, for the elastic hh→ hh, a similar expression holds,

TJ(s) = K ′′s+

(
B′′(µ) +D′′ log

s

µ2
+ E ′′ log

−s
µ2

)
s2 + · · · (3.134)

In all three cases, and in general in all the partial waves of the form of eq. 3.132, because
the final result must be independent of the scale µ, the dependence with µ of B (or,
equivalently, B′ and B′′) follows

B(µ) = B(µ0) + (D + E) log
µ2

µ2
0

. (3.135)

11Actually, eqs. 3.131 are not the result of applying the equivalence theorem to the full SM, because
the couplings with the transverse modes of gauge bosons have been neglected.
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Thus, from the partial-wave definition of eq. 3.123, the isospin projection relations
of eqs. 3.20 and the results of sec. 3.2.1, we can compute the partial waves associated
with ωω scattering, which take the form of eq. 3.132. We take K = 2 in eq. 3.123, since
the ωω states are made of indistinguishable particles. So, for the scalar-isoscalar channel
I = J = 0,

K00 =
1

16πv2
(1− a2)

B00(µ) =
1

9216π3v4

[
101(1− a2)2 + 68(a2 − b)2 + 768{7a4(µ) + 11a5(µ)}π2

]
D00 = − 1

4608π3v4

[
7(1− a2)2 + 3(a2 − b)2

]
E00 = − 1

1024π3v4

[
4(1− a2)2 + 3(a2 − b)2

]
. (3.136)

For the vector-isovector IJ = 11 amplitude,

K11 =
1

96πv2
(1− a2)

B11(µ) =
1

110592π3v4

[
8(1− a2)2 − 75(a2 − b)2 + 4608{a4(µ)− 2a5(µ)}π2

]
D11 =

1

9216π3v4

[
(1− a2)2 + 3(a2 − b)2

]
E11 = − 1

9216π3v4
(1− a2)2. (3.137)

For the scalar-isotensor IJ = 20:

K20 = − 1

32πv2
(1− a2)

B20(µ) =
1

18432π3v4

[
91(1− a2)2 + 28(a2 − b)2 + 3072{2a4(µ) + a5(µ)}π2

]
D20 = − 1

9216π3v4

[
11(1− a2)2 + 6(a2 − b)2

]
E20 = − 1

1024π3v4
(1− a2)2 (3.138)

and for the tensor-isoscalar IJ = 02,

K02 = 0

B02(µ) =
1

921600π3v4

[
320(1− a2)2 + 77(a2 − b)2 + 15360{2a4(µ) + a5(µ)}π2

]
D02 = − 1

46080π3v4

[
10(1− a2)2 + 3(a2 − b)2

]
E02 = 0. (3.139)

Next we quote a calculation of the tensor-isotensor I = J = 2 partial wave which is not



48 CHAPTER 3. SCATTERING AMPLITUDES

usually considered in the literature12,

K22 = 0

B22(µ) =
1

921600π3v4

[
71(1− a2)2 + 77(a2 − b)2 + 7680{a4(µ) + 2a5(µ)}π2

]
D22 = − 1

46080π3v4

[
4(1− a2)2 + 3(a2 − b)2

]
E22 = 0. (3.140)

The tensor-isotensor channel (eq. 3.140) exhausts the list of elastic partial waves that are
non-vanishing at NLO in perturbation theory, since those with angular momentum J = 3
and higher start at O(s3) and are NNLO in the derivative counting [19, 30, 46]. Needless
to say, they would be tiny at LHC energies.

The results for the inelastic coupled channel ωω → hh, can be computed taking into
account the results of eq. 3.46 and the factor13 −

√
3 shown in eq. 3.22. Starting by the

scalar channel J = 0,

K ′0 = −
√

3

32πv2
(a2 − b)

B′0(µ) = −
√

3

16πv4

[
d(µ) +

e(µ)

3

]
+

√
3

18432π3v4
(a2 − b)

[
72(1− a2) + (a2 − b)

]
D′0 =

√
3(a2 − b)2

9216π3v4

E ′0 =

√
3(a2 − b)(1− a2)

512π3v4
. (3.141)

I, J = 1 is forbidden by Bose symmetry for two identical spinless particles. The tensor
J = 2 channel will be

K ′2 = 0

B′2(µ) =
e(µ)

160
√

3πv4
+

83(a2 − b)2

307200
√

3π3v4

D′2 = − (a2 − b)2

7680
√

3π3v4

E ′2 = 0. (3.142)

Finally, the scalar partial wave of the elastic channel hh→ hh amplitude, is given by
the constants

K ′′0 = 0

B′′0 (µ) =
10g(µ)

96πv4
+

(a2 − b)2

96π3v4

D′′0 = − (a2 − b)2

512π3v4

E ′′0 = − 3(a2 − b)2

1024π3v4
, (3.143)

12We have found only one computation of the tensor-isotensor partial wave, in ref. [150], but within the
framework of a (ruled out) Higgsless ECL model. See appendix D.4 for more details and for a comparison
with our eq. 3.139.

13When comparing with our refs. [34, 35, 38, 39], note the change of sign in M (0) (I = J = 0) pointed
out on page 28.
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while the tensor T2 requires

K ′′2 = 0

B′′2 (µ) =
g(µ)

240πv4
+

77(a2 − b)2

307200π3v4

D′′2 = − (a2 − b)2

5120π3v4

E ′′2 = 0. (3.144)

By using the evolution equations it is possible to check that all these partial waves are
µ-independent.

Finally, note that, in the elastic ωω → ωω channels, the dependence of B on µ
(eq. 3.135) can be explicitly written as

B(µ) = B0 + p4a4(µ) + p5a5(µ), (3.145)

where B0 depends on a and b, and the p4 and p5 coefficients can be read on the explicit
computations of the partial waves (eqs. from 3.136 to 3.144). On the crossed-channels
ωω → hh and hh → hh, we will have a dependence on µ which comes from the NLO
parameters d(µ), e(µ) and g(µ).

3.3.2 γγ scattering into and out of the EWSBS

Since we deal with the polarization of photons, eq. 3.120 is needed for computing the
partial waves associated to γγ scattering amplitudes (see our work [151]). Notice also
that K = 2 in eq. 3.120 because photons are indistinguishable particles.

The scattering amplitudes are given in eqs. 3.86 and 3.89 in the required form T λ1λ2I .
However, the γγ state only couples with the WBGBs (as h is chargeless), and when they
are in a positive parity state. Let us remember14 that our |λ1λ2〉 state is, indeed, defined
as

|λ1λ2〉 =
1

N
(|+kêz, λ1;−kêz, λ2〉+ |−kêz, λ2; +kêz, λ1〉) (3.146)

Hence, the parity operator P acts over |λ1λ2〉 according to

P |±±〉 = |∓∓〉 , P |±∓〉 = |±∓〉 . (3.147)

Thus, we have three 2-photon states with positive parity,

|p = +〉0,Λ=0 =
1√
2

(|++〉+ |−−〉) , |p = +〉2,Λ=+2 = |+−〉 , |p = +〉2,Λ=−2 = |−+〉 .

(3.148)
Now, let us introduce the definition

P i
IJ = F [〈I |T | (|p = +〉i)〉 , IJ ] (3.149a)

R1
00 = F [〈hh |R | (|p = +〉1)〉 , IJ ] , (3.149b)

where T is the reaction matrix γγ → ωω (whose elements are defined in eqs. 3.86)
and R, the reaction matrix γγ → hh (eq. 3.89). The operator F [. . . , IJ ] stands for
the computation of the corresponding partial waves (defined in eq. 3.120). It is linear

14See section 3.2.2 and eqs. 3.59, 3.60 and 3.67.
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because, indeed, it is an integral. Thus, we can define the partial waves associated with
the positive parity states (eq. 3.148),

P 0
IJ =

1√
2

(
T++
IJ + T−−IJ

)
(3.150a)

P 2
IJ =

1√
2

(
T+−
IJ + T−+

IJ

)
(3.150b)

R0
00 =

1√
2

(
R++

00 +R−−00

)
. (3.150c)

Actually, the only non-vanishing partial waves are

P 0
00 =

e2s

32
√

6π
(2AC + AN) P 0

20 =
e2s

32
√

3π
(AC − AN) (3.151a)

P 2
02 =

e2

24π
√

2
P 2

22 =
e2

48π
, (3.151b)

where AC and AN are defined in eqs. 3.73 and 3.76, respectively15. If the fine structure
constant α = e2/4π is used, eqs. 3.151 turn into

P00 =
αs

8
√

6
(2AC + AN) P20 =

αs

8
√

3
(AC − AN) (3.152a)

P02 =
α

6
√

2
P22 =

α

12
, (3.152b)

where be have omitted the superindices because ωω states with J = 0 only couple with
|p = +〉1 γγ ones; and J = 2, with |p = +〉2.

Finally, for the crossed-channel γγ → hh (eq. 3.89), there is only one partial wave,
which corresponds to I = J = Jz = 0,

R0 =
e2

128
√

2π3v2
(a2 − b) =

α

32
√

2π2v2
(a2 − b). (3.153)

3.3.3 tt̄ in the final state

In this case, if we exclude the elastic channel tt̄ → tt̄, the only non-vanishing final
state is |S = 1, Sz = 0〉 = (|t+t̄+〉 − |t−t̄−〉)/

√
2 (eq. 3.117 and our ref. [136]), so that the

polarized particles in the final state tt̄ will be in the λ1 = λ2 = ± polarization state. That
is, Λ = λ1− λ2 = 0. Hence, eqs. 3.123 and its inverse 3.124 apply for the computation of
the partial waves. Note that we take K = 2 in eq. 3.123, since the inital states ωω and
hh are composed by indistinguishable particles.

Because of the dependence on the quark top mass, the general form of the partial
waves of eq. 3.132, which was valid on the WBGBs scattering case, turns into

Q(0)(s) = KQ
√
sMt (3.154a)

Q(1)(s) =

(
BQ(µ) + EQ log

−s
µ2

)
s
√
sMt (3.154b)

for the
Q = Q(0) +Q(1) + . . . (3.155)

15See page 37.
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expansion of the Q partial wave associated to the ωω → tt̄ matrix element. The coeffi-
cients of eq. 3.154 are defined as

KQ =

√
6

32πv2
(1− ac1) (3.156a)

BQ(µ) =

√
6

32πv4

[
gt(µ)

2
+

Ct
8π2

]
(3.156b)

EQ = −
√

6

32πv4

Ct
16π2

(3.156c)

For the expansion
N = N (0) +N (1) + . . . (3.157)

of the N partial wave associated to the hh → tt̄ crossed-channel matrix element, the
general form of the partial wave will be similar to eq. 3.154, that is

N (0)(s) = KN
√
sMt (3.158a)

N (1)(s) =

(
BN(µ) + EN log

−s
µ2

)
s
√
sMt, (3.158b)

where the constants are given by

KN = −
√

6c2

16πv2
(3.159a)

BN(µ) =

√
6

32πv4

[
g′t(µ)

2
− 3C ′t

16π2

]
(3.159b)

EN = − 3
√

6

32πv4

C ′t
32π2

. (3.159c)

Finally, the last term in the reaction matrix FJ=0 (Λ = λ1 − λ2 = 0), which is the LO
tt̄ → tt̄ process with J = 0, is vanishing. Take into account that, for initial and final
states of the form t±t̄±, the only allowed processes are tat̄a → tat̄a, a = ± (eqs. 3.119).
But, in this channel, S(t−t̄− → t−t̄−) = S(t+t̄+ → t+t̄+). Thus, when we consider the
elastic scattering between states |S = 1, Sz = 0〉 = (|t+t̄+〉 − |t−t̄−〉)/

√
2 (eq. 3.117), the

amplitude vanishes.
To summarize, the full LO amplitude matrix which should enter the unitarization

methods of sec. 4, for IJ = 00, is

FJ=0 =

A00 M0 Q

M0 T0 N

Q N 0

. (3.160)

3.3.4 Validity range of the approximations

According to sec. 2.2 (page 14), if we chose a = b = 1 in our effective Lagrangians, and
computed the LO scattering matrix elements, we should recover the SM cross sections.
However, such an election of parameters leads to vanishing values for all the LO partial
waves of sec. 3.3.1. The SM amplitudes are non-vanishing, leading to possible confusion.

The SM limit of our amplitudes (a = b = 1) undergoes a cancellation between the
LO Feynman diagrams16 which are computed for the scattering between the WBGBs, so

16For the elastic ωω → ωω, the LO Feynman diagrams can be seen in fig. 3.2).
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that, at the EW scale, the LO matrix element does not grow as O(s). This is exactly how
the introduction of the SM Higgs leads to a weakly interacting theory, where unitarity
is not broken at the leading order. This cancellation is critical, since each of the LO
Feynman diagrams still grows as O(s), although their sum stabilizes.

This cancellation between LO diagrams is also a big deal in the SM when comput-
ing WBGBs scattering matrix elements numerically, since any numerical inaccuracy (for
instance, in the definition of the model constants) will become dominant. In collabora-
tion with prof. Stefano Moretti (University of Southampton), we had the opportunity to
study such a problem (see page 2.1), in the scope of a numerical test of the Equivalence
Theorem17 when applied to the SM.

The reason that we obtain zero and not a finite constant is the following. On the
effective Lagrangians of eqs. 2.31, 2.33, 2.34, 2.45 and 2.46, we neglect some contributions
which are small well above the EW scale. For instance, the masses Mh and MW . This is
valid because s�M2

W ,M
2
h . But it is no longer true if there is a cancellation which makes

these terms dominant. That is, if there are no strong interactions. In this regime, we
cannot neglect the masses Mh and MW , for instance, even if s�M2

h ,M
2
W . However, note

that the Equivalence Theorem (sec. 2.1) would still be valid provided that s�M2
h ,M

2
W .

The range of parameters over which this phenomenon of cancellation which breaks our
approximations takes place has been studied on our refs. [34, 35]. We focuse on hh→ hh
elastic scattering, because it is the elastic channel where K = 0 (see eq. 3.143), so that
the chiral amplitude vanishes at O(s) and the series starts at O(s2). Thus, maximum
sensitivity to the correction is expected. From eqs. 3.134 and 3.143, at a simple reference
point µ2 = s = 1 TeV2, the J = 0 partial wave can be written as

T0(s = 1 TeV2) =
1 TeV4

96πv4

(
10g(1 TeV) +

(a2 − b)2

π2

)
≈ 0.905

(
10g +

(a2 − b)2

π2

)
.

(3.161)
The Higgs self-coupling potential in the SM would be

V self =
M2

h

2
h2 +

M2
h

8v2
h4, (3.162)

which produces a hh→ hh matrix element whose scalar-isoscalar partial wave is given in
eq. 3.131c,

T self
0 = − 3M2

h

32πv2

[
1 +

3M2
h

s−M2
h

+
6M2

h

s− 4M2
h

log

(
M2

h

s− 3M2
h

)]
For s = 1 TeV2, T self

0 ≈ −4.9 × 10−3. If we require T0(s = 1 TeV2) � T self
0 , so that the

self-interaction is negligible at the TeV scale, then

|a2 − b| � 0.23, (3.163)

or, alternatively,
|g| � 5.9× 10−4. (3.164)

Thus, the analysis is safe provided that either eq. 3.163 or eq. 3.164 is satisfied.
Now, let us take a2 = b (elastic channels). We will see that this channel is also

possible even if g = 0, that is, if both conditions 3.163 and 3.164 are violated. In this
case, of course, the hh→ hh amplitude will vanish in our approximations, as follows from

17See sec. 2.1 and eq. 2.1.
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eq. 3.143. But channels ωω → hh and ωω → ωω could still present strong interactions
because of, for instance, the a4 and a5 NLO coefficients. In this last case, the only non-
vanishing amplitudes would be the elastic ωω → ωω, since all the contributions to the
scattering amplitudes come either from the Higgs self-couplings of eq. 3.162 (neglected
here) or from the 4-ω vertices. Let us analyze this case for the different channels, at a
point µ2 = s = 1 TeV2 and in the case a2 = b = 1.

For the scalar-isoscalar elastic channel (IJ = 00, eq. 3.131b), the contribution coming
from the self-interacting potential of eq. 3.162 will be Aself

0 ≈ −1.2×10−2. From eqs. 3.134
and 3.136, the vector-isovector partial wave without the contribution from the Higgs self-
couplings is

A00(s = 1 TeV2) =
768

9216πv4
(1 TeV)2 [7a4(1 TeV) + 11a5(1 TeV)] ≈ 7.2(7a4 + 11a5),

(3.165)
so that the Higgs self-interaction is negligible at the TeV scale when

|7a4 + 11a5| � 1.7× 10−3. (3.166)

On the contrary, for the vector-isovector elastic channel (IJ = 11, eq. 3.131d), the con-
tribution coming from the self-interacting potential of eq. 3.162 will be Aself

1 ≈ 1.85×10−4.
From eqs. 3.134 and 3.137, the vector-isovector partial wave without the contribution from
the Higgs self-couplings will be

A11(s = 1 TeV2) =
4608

110592πv4
(1 TeV)2 [a4(1 TeV)− 2a5(1 TeV))] ≈ 3.62(a4 − 2a5).

(3.167)
Thus, for IJ = 11, the Higgs self-interaction is negligible at the TeV scale when

|a4 − 2a5| � 5.1× 10−5. (3.168)
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Chapter 4

Analytical properties and
unitarization

4.1 Unitarity condition for partial waves

The unitarity condition for the S-matrix reads

SS† = 1 (4.1)

Its analytical properties and this unitarity condition applied to partial waves can be
studied in detail in Refs. [90, 137, 139, 140, 152, 153]. The transition amplitude matrix
T̃ is defined as

S = 1 + iT̃ . (4.2)

Along with eq. 4.1, such a definition implies that

T̃ − T̃ † = iT̃ T̃ † (4.3)

Now, we factorize momentum conservation from the on-shell transition amplitude between
states |i〉 and |f〉,

〈
f
∣∣∣ T̃ ∣∣∣ I〉 = (2π)4δ(4)

(∑
k

pi,k −
∑
l

pf,l

)
T (i→ f), (4.4)

pf,k and pi,l being the 4–momenta of the final and initial state particles, respectively. If
we restrict eq. 4.4 to 2-particle states,〈

k1k2

∣∣∣ T̃ ∣∣∣ p1p2

〉
= (2π)4δ(4) (p1 + p2 − k1 − k2)T (p1p2 → k1k2), (4.5)

where pi and ki are 4-momenta of the particles of the initial and final state, respectively.
Setting this definition into eq. 4.3, its left hand side (LHS) becomes

T̃ − T̃ † = (2π)4 [T (p1p2 → k1k2)− T (k1k2 → p1p2)∗] δ(4) (p1 + p2 − k1 − k2) (4.6)

From time reversal invariance,

T (p1p2 → k1k2) = T (k1k2 → p1p2), (4.7)

55
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so that eq. 4.6 reduces to

T̃ − T̃ † = 2i(2π)4 Im [T (p1p2 → k1k2)] δ(4)(p1 + p2 − k1 − k2) (4.8)

The right hand side (RHS) of eq. 4.3 would be

iT̃ T̃ † = i
∑
{a,b}

∫
d3 q1a

2q0
1a(2π)3

∫
d3 q2b

2q0
2b(2π)3

(2π)8δ(4)(p1 +p2− q1a− q2b)δ(k1 +k2− q1a− q2b)·

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1k2)]∗, (4.9)

taking into account that all the possible transition states {a, b} coming from S are states
of two particles, so far taken as distinguishable. If they are indistinguishable, the RHS
should be multiplied by a factor 1/2, in order not to count the 2-particle states twice.
Hence, we need to recover the K constant which was used in eq. 3.123 in order to account
for this. For a 2-particle state {a, b}, we will use the notation Kab for this, with value 1
for distinguishable particles and 2 for indistinguisable ones.

Thus, the unitarity relation of eq. 4.3 turns into

Im [T (p1p2 → k1k2)] =
1

2(2π)2Kab

∑
{a,b}

∫
d3 q1a

2q0
1a

∫
d3 q2b

2q0
2b

δ(4)(p1 + p2 − q1a − q2b)·

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗. (4.10)

Now, let us go to the center of mass frame, so that the relations ~p1 + ~p2 = ~k1 + ~k2 = 0
(~pi, ~ki being the 3-momenta) hold. Thus, taking into account that the masses of the two
particles both in the initial and final states are the same, and that the process is on-shell,
the 4-momenta are

p1 = (p0
1, ~p1), p2 = (p0

1,−~p1), k1 = (k0
1,
~k1), k2 = (k0

1,−~k1). (4.11)

That is, in particular, the first components satisfy the relation p0
1 = p0

2, k0
1 = k0

2. Now,
consider a change of variables in the δ distribution,∫ ∞

−∞
d xδ[f(x)]g(x) =

∫ ∞
−∞

d y
δ[f−1(y)]

f ′(f−1(y))
g[f−1(y)], (4.12)

where f(x) is a monotonically increasing function, with limits limx→±∞ f(x) = ±∞.
Provided all the intermediate states are two on-shell particles with the same mass mq,

and taking into account the appearance of the 4-vector delta-function δ(p1 + p2− q1− q2)
in eq. 4.10,

~q1 = − ~q2 ≡ ~q, q0
1 = q0

2 =
√
q2 +m2

q (4.13)

q0
1 + q0

2 = 2
√
q2 +m2

q = p0
1 + p0

2 = 2p0
1 = 2

√
p2 +m2

p, (4.14)

eq. 4.10 is simplified to

ImT =
∑
{a,b}

1

8π2Kab

∫
d3 ~q

4
√
q2 +m2

q,ab

2 δ
(4)
(

2
√
q2 +m2

q,ab − 2
√
p2 +m2

p

)
·

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗. (4.15)
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Or equivalently, using spherical coordinates,

ImT =
∑
{a,b}

1

8π2Kab

∫
dΩ~q

∫
d q · q2

4(q2 +m2
q,ab)

δ(4)
(

2
√
q2 +m2

q,ab − 2
√
p2 +m2

p

)
·

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗. (4.16)

Now, let us identify the f of eq. 4.12 with

f(q) = 2
√
q2 +m2

q − 2
√
p2 +m2

p, (4.17)

so that

f ′(q) =
2q√

q2 +m2
q

, f(q) = 0→ q = p

√
1 +

m2
p −m2

q

p2
, (4.18)

with eq. 4.16 being equal to

ImT =
∑
{a,b}

1

8π2Kab

∫
dΩ~q

q2

8(q2 +m2
q,ab)

√
q2 +m2

q,ab

q
·

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗

=
∑
{a,b}

1

64π2Kab

∫
dΩ~q

√
p2 +m2

p −m2
q,ab

p2 +m2
p

· [T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗. (4.19)

Now, considering that s = (p1 + p2)2 = (2p0)2, p0 =
√
p2 +m2

p, then√
p2 +m2

p −m2
q

p2 +m2
p

=

√
1−

m2
q

p2 +m2
p

=

√
1−

4m2
q

s
, (4.20)

so that

Im [T (p1p2 → k1k2)] =∑
{a,b}

1

64π2Kab

√
1−

4m2
q,ab

s

∫
dΩ~q[T (p1p2 → q1aq2b)][T (q1aq2b → k1kw)]∗. (4.21)

Note that initial, intermediate and final states are not necessarily all different. Indeed,
for the so-called elastic channels, all of them will be the same state. Now, take eq. 3.124
relating the amplitude (in the isospin basis) with the partial waves,

AI(s, x) = 16πK
∞∑
J=0

(2J + 1)PJ(x)AIJ(s),

x = cos θ being the cosine of the angle between 3-momenta in the initial and final states,
~p1 and ~k1. Let us choose, in the center of mass frame (see fig. 4.1),

p̂1 = ~ez (4.22)

q̂1a = sin θ̃ sin ϕ̃~ex + sin θ̃ cos ϕ̃~ey + cos̃~ez (4.23)

k̂1 = sin θ~ey + cos θ~ez. (4.24)
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e⃗ y

e⃗x

p̂1

p̂2

e⃗z

k̂1

k̂2

q̂1a

q̂2b

θ
θ̃

ϕ̃

Figure 4.1: Scattering process {p1, p2} → {q1a, q2b} → {k1, k2} in the center of mass
frame. The intermediate particles {q1a, q2b} are printed on dark yellow colour and the
final state {k1, k2} is in dark red colour. Only these last ones come out of the plane of
the paper, as does ~ex.

Here, â stands for the unitarized vector â ≡ ~a/‖~a‖; θ is the angle between p̂1 and k̂1; and
(θ̃, φ̃), the unitarized vector q̂1a in spherical coordinates, ZY being the plane defined by
vectors p̂1 and k̂1. With these definitions, the cosine of the angle θ′ between q̂1a and k̂1

can be computed as

cos θ′ = q̂1a · k̂1 = cos θ cos θ̃ + sin θ sin θ̃ cos ϕ̃, (4.25)

and the transition matrix elements can be written down as

T (p1p2 → k1k2) = 16πKp

∞∑
J=0

(2J + 1)PJ(cos θ)AIJ,pi→ki(s) (4.26)

T (p1p2 → q1aq2b) = 16πKp

∞∑
J=0

(2J + 1)PJ(cos θ̃)AIJ,pi→qi,ab(s) (4.27)

T (q1aq2b → k1k2) = 16πKq,ab

∞∑
J=0

(2J + 1)PJ(cos θ̃ cos θ + cos ϕ̃ sin θ̃ sin θ) · AIJ,qi,ab→ki(s).

(4.28)

Now, consider the property1 of Legendre polynomials,∫ 2π

0

d ϕ̃

∫ π

0

d θ̃ · sin θ̃ · PJ [cos θ̃] · PJ ′ [cos θ cos θ̃ + (−1)n sin θ sin θ̃ cos ϕ̃] =

=
4π

2J + 1
δJ,J ′PJ [cos θ], (4.29)

1See appendix D.2 for the proof.
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where n is an arbitrary integer. Substituting eq. 4.29 in eq. 4.21, with definitions 4.26,
4.27 and 4.28, and taking into account that transitions only happen between states with
the same isospin I,

Im

[
16πKp

∞∑
J=0

(2J + 1)PJ(x)AIJ,pi→ki(s)

]
=
∑
{a,b}

(16π)2KpKq,ab

64π2Kq,ab

√
1−

4m2
q

s

4π

2J + 1
·

·
∞∑
J=0

(2J + 1)2[AIJ,pi→qi,ab(s)][AIJ,qi,ab→ki(s)]
∗PJ(cos θ), (4.30)

so that, because of the orthonormality of Legendre polynomials,

Im [AIJ,pi→ki(s)] =
∑
{a,b}

√
1−

4m2
q

s
[AIJ,pi→qi,ab(s)][AIJ,qi,ab→ki(s)]

∗. (4.31)

Note that the right hand side (RHS) of eq. 4.31 is real. This is non-trivial, but it is the
same difficulty which was present in eq. 4.8, whose matricial LHS has no real part. The
explanation of this fact is both the unitarity relation applied to the transition amplitude
matrix, T̃ − T̃ † = iT̃ T̃ † (eq. 4.3), and time reversal invariance (eq. 4.7), which implies
that T̃ t = T̃ .

Finally, only if the process is elastic, without crossed channels, does eq. 4.31 reduce
to

Im [AIJ(s)] =

√
1− 4m2

s
[AIJ(s)][AIJ(s)]∗, (4.32)

where AIJ(s) is the partial wave of the elastic scattering process and m, the invariant
mass of the particle.

4.2 Poles on the analytical continuation

The result from the unitarization procedures is an analytical matrix element which will
give physical values just above the real axis. That is, for s′ = s + iε, ε → 0+, s > 0.
As shown in previous chapters, the scattering amplitude will comply with the reflection
principle, that is, A(s∗) = [A(s)]∗. Thus, the analytical structure above the real axis will
be reflected below it. And there can be (or not) a right cut (RC) and a left cut (LC).
That is, discontinuities over the real axis.

However, as shown in fig. 4.2, an analytical continuation around a physical point
s′ = s + iε could be done, so that we could cross the real part. This will lead to the
existence of the second Riemann sheet. In this case, of course the reflection principle will
no longer we applicable, and new singularities can appear under the real axis.

As can be seen in the literature [40], the Breit-Wigner formula for the cross section
in the region of a resonance of mass m and width Γ is

σ ∝ |M |2 ∝
∣∣∣∣ 1

p2 − (m2 − imΓ)

∣∣∣∣2 , (4.33)

the matrix element having a pole in m2 − imΓ when taking the analytical continuation
to the fourth quadrant crossing the real axis s > 0, as shown in fig. 4.2, that is, to the
second Riemann sheet. This can be generalized, so that any pole appearing on the second
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x

x

I Riemann sheet,
A(s-iy)=[A(s+iy)]*

I Riemann sheet,
A(s+iy)

II Riemann sheet,
A(s-iy)≠[A(s+iy)]*

LC RC

Figure 4.2: Analytical continuation to the so–called second Riemann sheet. Note that
the trajectory of the analytical continuation has to cross the right cut (RC), and the
reflection principle (eqs. 4.63 and 4.64) no longer applies. Since we are neglecting the
masses of the WBGBs, the analytical segment over the real axis collapses to a point,
although the analytical extension to the I Riemann sheet is still possible. See sec. 4.3.1
and fig. 4.4.

Riemann sheet at a position sR may be equivalent to a resonance with mass m and width
Γ, so that

sR = Re sR + i Im sR ≡ m2 − imΓ (4.34)

When Γ� m, that is, when the pole is very close to the real axis, the cross section will
look like a Breit-Wigner one. Otherwise, the shape of the resonance will become broader
and broader, deviating from the Breit-Wigner shape due to the non-pole dependences
in s. Anyway, the so–called pole mass (m) and width (Γ) will be defined according to
eq. 4.34,

m ≡
√

Re sR Γ ≡ − 1

m
Im sR, (4.35)

where sR is the position of the pole (on the II Riemann sheet) associated with the reso-
nance.

Note that, if we took the first Riemann sheet, because of the reflection principle,
A(s∗) = [A(s)]∗, so that no pole could appear since causality allows none on the upper
half plane (see next section 4.2.1). Thus, our task will be performing an analytical
continuation to the second Riemann sheet, as shown in fig. 4.2, and looking for poles in
the fourth quadrant.

4.2.1 Spurious resonances

If we had a pole in the I Riemann sheet, that is, above the real axis, we would actually
have a ghost, according to eq. 4.35. As explained in ref. [153], this would break causality,
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so poles on the I Riemann sheet are not acceptable. Therefore, their appearance is
interpreted as a failure of either the unitarization procedure or even the parameter set
itself, in the sense that there is no underlying theory whose low energy regime is described
by such a set of parameters. Sometimes, these poles on the I Riemann sheet lead to the
appearance of repulsive phase shifts that vary quickly and break Wigner’s bound.

However, there are authors who do speak about negative width resonances and scat-
tering amplitudes with poles in the I Riemann sheet (see refs. [154–157]), although they
use a different prescription for the Wick rotation (the so-called Lee-Wick model). These
resonances simply mean that the vacuum of the theory (on which matrix elements are
calculated) has not been well chosen and is unstable, decaying to another state.

Either way, we will work in the standard framework where ghosts are not allowed. But
one should be aware that the parameter space which is neglected due to the presence of
poles in the I Riemann sheet could be, indeed, the low energy description of an underlying
theory like that of ref. [154] with a lower-energy ground state.

4.2.2 Numerical search for poles on the s-plane

Thus, our problem is picking the presence and position of a pole (or a set of poles) on
certain region of the complex plane. To do this, first of all, we need to compute the
analytical continuations to the first and second Riemann sheets which are explained in
fig. 4.2. The only non-trivial functions which appear on typical partial waves such as
eqs. 3.132 to 3.134 are the logarithms, log(s/µ2) and log(−s/µ2) (µ2 > 0). On the first
Riemann sheet, the logarithm is written as

logI(z) = log|z|+ i arg(z), (4.36)

where the arg(z) cut lies along the negative real axis. Thus, the extension of log(s/µ2) to
the second Riemann sheet is trivial [the same function as in eq. 4.36, logII(z) = logI(z)],
since logI(z) is continuous over the positive real axis. What needs examination is the
extension of log(−s/µ2). Since the physical region where the scattering amplitudes are
defined is s′ = s+ iε, ε→ 0+, the first Riemann sheet is defined as in eq. 4.37,

logI(−z) = log|z|+ i arg(−z). (4.37)

This verifies the reflection principle of eq. 4.63, A(s+iε)−A(s−iε) = 2i ImA(s+iε), ε→
0+, since, provided that x > 0, ε→ 0+,

logI(−x− iε)− logI(−x+ iε)
x>0, ε→0+−−−−−−→

eq. 4.37
i arg(−x+ iε)− i arg(−x− iε) = 2iπ, (4.38)

and

2i Im logI(−x− iε) = 2iπ, (4.39)

thus proving that the definition of eq. 4.37 is, indeed, the first Riemann sheet of logI(−z).
Eq. 4.3 also verifies the strong version of the reflection principle logI(−z∗) = [logI(−z)]∗

(eq. 4.64), because

logI [−(x+ iy)∗] = logI [−(x− iy)] = log(|x− iy|) + i arg[−(x− iy)]

= log(|x− iy|)− i arg[−(x+ iy)] =
{

logI [−(x+ iy)]
}∗
. (4.40)
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Figure 4.3: Extension to the second Riemann sheet of the function f(z) = log(−z).
Only its imaginary part is shown. Note that the first Riemann sheet verifies the strong
reflection principle, f(z∗) = [f(z)]∗ (eq. 4.64). For Im z > 0, both first and second
Riemann sheets coincide, as expected.

Its extension to the second Riemann sheet (see fig. 4.3) requires continuity over the
positive real axis,

logII(−z) = log(|z|) + i [arg(z)− π] (4.41)

Now we are able to extend the partial waves to the second Riemann sheet in order to
look for any poles. A first approach could be looking for zeroes in the denominators,
once extended to the II Riemann sheet the problematic expressions log(−s/µ2) by using
eq. 4.41. This was the strategy that we followed in ref. [34].

Another possibility, only valid for elastic partial waves2, would be using the fact that

AII(s) =
A(s)

1− 2iA(s)
, (4.42)

where A(s) = AI(s) is the partial wave in the first Riemann sheet. This expression comes
from the reflection principle (eq. 4.63) and the elastic version of the unitarity condition
for massless particles (eq. 4.32 with m = 0, limit ε→ 0+),

A(s+ iε)− A(s− iε) = 2i ImA(s+ iε) = 2i[A(s+ iε)] · [A(s+ iε)]∗

= 2i[A(s+ iε)] · [A(s− iε)] =⇒ A(s+ iε) =
A(s− iε)

1− 2iA(s− iε)
. (4.43)

Because of the definition of II Riemann sheet, which requires continuity along the positive
real axis, limε→0+ A

II(s− iε) = limε→0+ A
II(s + iε) = limε→0+ A(s + iε), so that eq. 4.43

indeed gives AII(s−iε), under the positive real axis, in terms of the values of AI(s−iε) on
the I Riemann sheet under the positive real axis. The full eq. 4.42 is proven by analytical
continuation of AII(s− iε) computed via eq. 4.43.

2Note that the elastic version of unitarity, eq. 4.32, is required. See ref. [153], for instance.
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Note that eq. 4.42 introduces the presence of poles on the II Riemann sheet because
of the annihilation of the denominator 1−2iA(s), so that these poles sR can be computed
by solving the resonance equation

A(sR) +
i

2
= 0, (4.44)

where A(s) is evaluated on the I Riemann sheet. However, remember that this approach
is valid provided that the scattering is elastic. That is, there is no contribution coming
from crossed-channels.

Another approach is that used by D. Espriu et al. [158], who look for jumps on the
phase shift. As in the case of eq. 4.44, this approach is no longer valid for crossed-channels,
since each individual channel does not satisfy unitarity by itself, see eq. 4.32.

Finally, a third approach, which was used by us in refs. [38, 39], is using a Cauchy
line integral around a closed path in the complex s-plane. This approach is the only one
which is still valid for crossed-channels, along with a brute-force search for annihilations
of the denominator of the partial wave extended to the II-Riemann sheet, AII(s).

Due to the reflection principle of eq. 4.63, every pole on the First Riemann sheet
belonging to Im s′ > 0 will have a counterpart on Im s′ < 0. So that, we will consider
a complex amplitude function A(s) which will be defined as its II Riemann Sheet for
Im s < 0, that is, its analytical continuation through the real axis s > 0 (see Fig. 4.2). If
there is any pole on the I Riemann sheet, it will apear for Im s > 0. And we will be able
to pick up the poles on the II Riemann Sheet.

The low-energy perturbative interactions are weak. That is, the EFT treated in
perturbation theory is valid for the low-energy regime. So, we do not look for bound
states and restrict ourselves to Re s ≥ 0. As explained before, for Im s > 0 the logarithms
in A(s) are evaluated on the first Riemann sheet and, for Im s < 0, on the second one.

Our integration contour will be a semicircle in the s-plane with radius R = (3 TeV)2,
which is the approximate range of validity of the unitarization procedures considered,
closed by a segment of the imaginary axis. This contour will be parametrized by

γ(t) =

{
R exp

[
iπ
2

(2t− 1)
]

for t ∈ [0, 1]

iR(3− 2t) for t ∈ (1, 2]
(4.45)

According to Cauchy’s theorem [159–161], if A(s) has N poles on points si (i = 1, . . . , N)
within the region enclosed by γ(t) (t ∈ [0, 2]), then

Ik ≡
∫
γ(t)

dtA(t)tk = 2πi
N∑
i=1

skiA0(si). (4.46)

Here, A0(si) is the pole residue corresponding to the i-th pole. Note that there is no reason
to expect double poles in our NLO-based computation, although this kind of approach
could deal with a number of poles as high as required at the cost of an increasing number
of complex integrals to compute.

For each parameter set, the integrals I0, I1 and I2 (see eq. 4.46) are evaluated. If there
is no pole inside the integration contour parametrized by the function γ(t) (eq. 4.45),
then the values of all the integrals are zero. If there is only one pole at position s̃ then,
according to eq. 4.46,

I0 = A0(s̃), I1 = s̃A0(s̃), I2 = s̃2A0(s̃) (4.47)
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So, the pole residue is A0(s̃) = I0; the pole position s̃,

s̃ =
I1

I0

; (4.48)

and we have the relation
I2

1 = I0I2 (4.49)

that can be used as a check of the presence of a second pole. It should be exact if there is
only one pole. If we had N = 2 poles, which is beyond the scope of this study, we could
still compute both poles applying the equation

s1,2 =
(I1I2 − I0I3)±

√
(I1I2 − I0I3)2 − 4(I2

1 − I0I2)(I2
2 − I1I3)

2(I2
1 − I0I2)

. (4.50)

Even for N = 3 poles, the solution is still analytic. In this case, k = 0, . . . , 5 integrals
are needed. It is best quoted in terms of several auxiliary quantities, namely

∆ = −I3
3 + 2I2I3I4 − I1I

2
4 − I2

2I5 + I1I3I5 (4.51a)

∆ · Â = −I2
3I4 + I2I

2
4 + I2I3I5 − I1I4I5 − I2

2I6 + I1I3I6 (4.51b)

∆ · B̂ = −I3I
2
4 + I2

3I5 + I2I4I5 − I1I
2
5 − I2I3I6 + I1I4I6 (4.51c)

∆ · Ĉ = −I3
4 + 2I3I4I5 − I2I

2
5 − I2

3I6 + I2I4I6 (4.51d)

Λ = −Â2B̂2 + 4B̂3 + 4Â3Ĉ − 18ÂB̂Ĉ + 27Ĉ2 (4.51e)

Γ =
(
−2Â3 + 9ÂB̂ − 27Ĉ + 3

√
3Λ
)1/3

. (4.51f)

Then the pole locations become

s1 =
Â

3
+

21/3(3B̂ − Â2)

3Γ
− Γ

3 · 21/3
(4.52a)

s2 =
Â

3
− 3(1 + i

√
3)(B̂ + Â2)

3 · 22/3Γ
− (1− i

√
3)Γ

6 · 21/3
(4.52b)

s3 =
Â

3
− 3(1− i

√
3)(B̂ + Â2)

3 · 22/3Γ
− (1 + i

√
3)Γ

6 · 21/3
. (4.52c)

4.3 Unitarization procedures for ωω scattering

In this section we deal with the unitarization of ωω scattering, which we published in
refs. [38, 39]. The channels ωω and hh are considered,

AIJ =MIJ(ωω → ωω) (4.53a)

MJ =M0J(ωω → hh) =M0J(hh→ ωω) (4.53b)

TJ =M0J(hh→ hh), (4.53c)

where the partial wave decomposition from sec. 3.3.1 has been used. According to eq. 4.31
(in the massless limit s�M2

W , M
2
Z , M

2
h), the unitarity condition can be written, in terms

of the partial-wave decomposition F of the reaction matrix, as

ImF (s) = F (s)F (s)†. (4.54)
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Note that, because of T-invariance (see eq. 4.7), the matrix F is symmetric, F (s)t = F (s).
Thus, the unitarity relation (eq. 4.54) implies that ImF (s) = F (s)F (s)† = F (s)F (s)∗ ∈
R. Hence, ImF (s) = F (s)F (s)† = F (s)F (s)∗ = [F (s)F (s)∗]∗ = F (s)∗F (s) = F (s)†F (s).
Thus, eq. 4.54 can also we written as

ImF (s) = F (s)F (s)† = F (s)†F (s). (4.55)

Now, the reaction matrix F , in partial-wave decomposition, will be

F (s) =


F00(s) 0 0 0 0

0 F11(s) 0 0 0

0 0 F20(s) 0 0

0 0 0 F02(s) 0

0 0 0 0 F22(s)

, (4.56)

where we have used isospin symmetry. No matrix element links states with different I.
Also, because of the properties of partial waves, states with different J are not connected
either. However, ωω and hh states with the same IJ numbers can be linked by a scattering
matrix element. Because of this, the channel ωω → hh amplitude is zero for I 6= 0.
Actually, the isospin of hh state is zero (h is a scalar). So,

F0J(s) =

(
A0J(s) MJ(s)

MJ(s) TJ(s),

)
, J = 0, 2 (4.57)

For I 6= 0, the FIJ(s) elements are the scalars

FIJ(s) = AIJ(s) ∀I 6= 0. (4.58)

To sum up, the unitarity condition 4.31, in terms of partial-waves, is written down as

ImA0J = |A0J |2 + |MJ |2 (4.59a)

ImAIJ = |AIJ |2 ∀I 6= 0 (4.59b)

ImMJ = A0JM
∗
J +MJT

∗
J (4.59c)

ImTJ = |MJ |2 + |TJ |2 (4.59d)

Now, take into account the partial-wave decomposition in eq. 3.132 for NLO partial
waves, valid for massless particles,

F
(0)
IJ (s) = KIJs (4.60a)

F
(1)
IJ (s) =

(
BIJ(µ) +DIJ log

s

µ2
+ EIJ log

−s
µ2

)
s2 (4.60b)

Applying Eqs. 4.59 in a perturbative way (expanding over s), and taking into account
that the KIJ are real numbers,

ImF
(1)
IJ = F

(0)
IJ F

(0)
IJ (4.61)

This relation is satisfied by any scattering partial-wave of the form of eq. 4.58. The exact
form 4.58 would be satisfied by the full computation. But this sets an upper limit on the
value of |M |2. Consider a single-channel scattering matrix M = Meiδ, M ≥ 0. Then,
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according to elastic unitarity in eq. 4.59a, M2 = M sin δ ≤ M , so that M ≤ 1. This
limit, if exceeded, will inform us about the validity range of the perturbative expansion.

Also, when entering an expression as eq. 4.60 on the perturbative unitary condi-
tion 4.61, which is valid on the physical region (s′ = s+ iε, ε→ 0+, s > 0), we have the
additional restriction over KIJ and EIJ ,

E = − 1

π
K2, (4.62)

where we have used the matricial form of E and K. This expression is very useful to
check the full NLO computation, and it can be seen that it is verified by the constants
given on Sec. 3.3.1. Note also that eq. 3.135,

B(µ) = B(µ0) + (D + E) log
µ2

µ2
0

,

is also valid for the matricial B, D and E.

4.3.1 Dispersion relations

Now, we will need the so–called dispersion relations. To see the full proofs, including
those of the analytical properties of the S-matrix elements, see Refs. [139, 140]. Note that,
because of the presence of a left cut due to the terms E log(−s/µ2) on the amplitudes3,
the so–called forward dispersion relations cannot be used. Fixed-t dispersion relations
remain integral equations. This is the partial-wave dispersion relations that will lead to
simple formulas.

The key property that we need to prove is that, on both the left and right cuts (LC
and RC) of fig. 4.5,

A(s+ iε)− A(s− iε) = 2i ImA(s+ iε), ε→ 0+, (4.63)

or, even stronger, that

A (s∗) = [A(s)]∗ , s ∈ C \ R , (4.64)

the physical amplitude being

A(s)phys = lim
ε→0+

A(s+ iε), s > 0. (4.65)

This last equation can be regarded as conventional, because we could take the other
prescription [A(s)phys = A(s−iε)]. But, once this chosen, let us prove eq. 4.64. First, let us
suppose that there is a minimum energy threshold

√
smin required for the process. Then,

according to eq. 4.59, the imaginary part of the amplitude will be zero for 0 < s < smin.
But, according to the properties of analytical functions [159–161], provided that the
function is analytic around a segment over the real axis, this implies that, as shown in
fig. 4.4, it is possible to perform a power expansion of the form

A(s) =
∞∑
k=0

1

k!

dk A(s)

d sk

∣∣∣∣
s=smin/2

(
s− smin

2

)k
≡

∞∑
k=0

ak

(
s− smin

2

)k
, (4.66)

3See eq. 3.132 for the appearance of such a term in the ωω scattering amplitudes.
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Figure 4.4: Analytic extension of a function which is real on a segment of the real axis.
In general, this kind of analytical extension is also valid for every function provided that
is analytic on C\ [(−∞, a)∪ (b,∞)], where a < b. Note that the real axis must be crossed
through the analytic segment. In our work, we neglect the masses of the initial and
final state particles, which makes this segment to collapse to a single point (the origin).
However, the analytical extension is still valid. See the explanation under eq. 4.70.

being convergent on s ∈ C | |s−(smin/2)| < smin/2. Now, because A(s) ∈ R ∀s ∈ (0, smin),
then ak ∈ R, so that

[A(s)]∗ =

[
∞∑
k=0

ak

(
s− smin

2

)k]∗
=
∞∑
k=0

ak

(
s∗ − smin

2

)k
= A (s∗)

∀
∣∣∣s− smin

2

∣∣∣ < smin

2
, s ∈ C (4.67)

This truly defines an analytical function in the region |s − (smin/2)| < smin/2 of the
complex plane. In any point of such a region, another analytical expansion can be carried
out in the same way, the convergence area of the power expansion being a circle centered
on the considered point and ending in the real axis outside the segment 0 < s < smin,
beyond where the function may have the so–called cuts (discontinuities when crossing
the real axis).

If now we perform another expansion, such as suggested in fig. 4.4. In this case,

A(s) =
∞∑
l=0

1

l!

dlA(s)

d sl

∣∣∣∣
s=s1

(s− s1)2 (4.68)

But, because A(s∗1) = A(s1)∗, and (s− s1)∗ = (s∗ − s∗1), then, again,

A(s∗) =
∞∑
l=0

1

l!

dlA(s)

d sl

∣∣∣∣
s=s∗1

(s∗ − s∗1)2 =

[
∞∑
l=0

1

l!

dlA(s)

d sl

∣∣∣∣
s=s1

(s− s1)2

]∗
= [A(s)]∗ (4.69)

Repeating this process to reach any point in the space C \ R, we can prove eq. 4.64,
[A(s)]∗ = A(s∗). Now, proving eq. 4.63 is trivial,

A(s+ iε)− A(s− iε) = A(s+ iε)− [A(s+ iε)]∗ = 2i ImA(s+ iε), ε→ 0+. (4.70)
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Note that, in our work, due to the fact that we are considering all the particles as
massless, the minimum squared energy threshold smin is zero. Thus, the finite segment
0 < s < smin, which allows us to do the analytical continuation (see fig. 4.4), collapses to
a point (the origin), where there is a so–called Adler zero. In principle, this would break
the power expansion of eq. 4.66. However, we can work in the limit where smin → 0+.
This is equivalent to keeping finite masses and taking the limit MW ,Mh → 0+ at the
end. Since the analytical extension procedure (eqs. from 4.66 to 4.70) does not depend
on a minimum value of smin, working in the limit smin → 0+ is enough to comply with
the hypothesis smin > 0.

For the derivation of the unitarization procedures, it will be also very useful to take
the next relations into account4, which can be proven from eqs. 4.60:

1

π

∫ Λ2

0

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
= EIJ log

−s
Λ2

(4.71a)

1

π

∫ 0

−Λ2

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
= DIJ log

s

Λ2
(4.71b)

1

2πi

∫
|s′|=Λ2

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
= BIJ(µ) +DIJ log

Λ2

µ2
+ EIJ log

Λ2

µ2
(4.71c)

To prove eq. 4.71a (eq. 4.71b is proven in a similar way), let us recall that, for ε > 0,
s > 0, Im[log(−(s+ iε)/µ2)] = −π, so that∫ Λ2

0

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
=

∫ Λ2

0

ds′(−πEIJ)

s′ − s− iε
ε→0+

= −πEIJ log(s′ − s)|Λ
2

s=0

Λ2�s
≈ πEIJ log

−s
Λ2

(4.72)

For eq. 4.71c, let us use polar variables z = Λ2 exp(iφ),∫
|s′|=Λ2

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)

=

∫ 2π

0

dφ · iΛ2eiφ
BIJ(µ) +DIJ log(Λ2eiφ/µ2) + EIJ log(−Λ2eiφ/µ2)

Λ2eiφ − s− iε
(4.73)

Now, because Λ2 � s, we can approximate this integral by∫
|s′|=Λ2

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
≈ i

∫ 2π

0

dφ ·
[
BIJ(µ) +DIJ log(Λ2/µ2) + EIJ log(Λ2/µ2)

]
+

∫ π

−π
dφ i[iDIJφ] +

∫ π

0

i[iEIJφ− iπ] +

∫ 0

−π
i[iEIJφ+ iπ], (4.74)

where the standard determination for the logarithm in the I Riemann sheet, log(Aeiφ) =
A+ iφ, ∀φ ∈ (−π, π), has been used. Now, making the final integration, we have∫

|s′|=Λ2

ds′ ImF
(1)
IJ (s′)

(s′)2(s′ − s− iε)
≈ 2iπ

[
BIJ(µ) +DIJ log(Λ2/µ2) + EIJ log(Λ2/µ2)

]
. (4.75)

4Here, ε→ 0+.
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Finally, taking into account that Λ2 � s,∫
|s|=Λ2

ds′ F (0)(s′)

(s′)2(s′ − s)
≈
∫ 2π

0

dφ · iΛ2eiφ
KIJΛ2eiφ

(Λ2eiφ)3
=
iKIJ

Λ2

∫ π

−π
dφ · e−iφ = 0, (4.76)

Note that the approximations of eqs. 4.75 and 4.76 are exact in the limit Λ2 →∞.
In the next sections, we will show the derivation of the unitarization procedures that

will be used here: the Inverse Amplitude Method (IAM), the N/D, the improved K-matrix
and the large-N methods.

4.3.2 Inverse Amplitude Method

An introduction to this method can be found in refs. [11, 162, 163]. This method was
developed for low-energy QCD, where it was applied for ordinary ChPT for mesons
(see refs. [91, 164–166]). Later, it was applied to the unitarization of the divergent NLO
WBGBs scattering amplitudes of higgsless models (refs. [9–11, 167]), and has been shown
(ref. [168]) that it is able to properly reproduce the channel and mass of an electroweak
resonance from the footprint it leaves on the chiral parameters alone; only its width is
not adequately reproduced if such resonance is very weakly coupled.

For an elastic process, unitarity implies that5, when using partial waves,

ImA(s) = |A(s)|2 =⇒ Im

(
1

A(s)

)
= −ImA(s)

|A(s)|2
= −1 (4.77)

is exactly known, provided that ImA(s) 6= 0. This is a remarkable result. There is an
analogous expression for the matricial form of two-body partial wave amplitudes, which
corresponds to non-elastic processes,

ImF−1 = −1. (4.78)

Let us prove eq. 4.78. Because of T-invariance, the reaction matrix F is symmetric
(F = F t, F † = F ∗). Taking also into account that

ImF =
1

2i
[F − F ∗] (4.79a)

ImF−1 =
1

2i
[F−1 − (F−1)∗] (4.79b)

(F ∗)−1 = (F−1)∗, (4.79c)

we can compute

0 = 1− [F−1]∗F + (F ∗)−1F − 1 = [F−1 − (F−1)∗]F + (F ∗)−1(F − F ∗)
= [Im(F−1)]F + (F ∗)−1 ImF = [Im(F−1)]F + (F †)−1 ImF, (4.80)

so that
Im(F−1) = −(F †)−1(ImF )(F−1). (4.81)

Because of the unitarity condition ImF = FF † = F †F (eq. 4.55), we can rewrite eq. 4.81
as

ImF−1 = −(F †)−1(ImF )(F−1) = −(F †)−1(F †F )(F−1) = −1, (4.82)

5See eq. 4.59 for the unitarity expressions and, for the complex variable properties, Refs. [159–161].
And take into account that z = a exp(iα) =⇒ Im[1/z] = Im[exp(−iα)/a] = − Im(z)/|z|2.
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thus recovering eq. 4.78.
Now, consider the generic form of our NLO processes (eq. 4.60),

F
(0)
IJ (s) = KIJs

F
(1)
IJ (s) =

(
BIJ(µ) +DIJ log

s

µ2
+ EIJ log

−s
µ2

)
s2.

The perturbative expansion to NLO of the partial wave, valid for small s, would be

FIJ(s) = F
(0)
IJ (s) + F

(1)
IJ (s) +O(s3). (4.83)

Let us introduce the so–called inverse amplitude matrix,

W = F (0)F−1F (0). (4.84)

Over the physical s (RC), where the unitarity condition of eq. 4.55 holds, we can apply
eq. 4.78. Thus, using also that ImF (0) = 0 over the physical s (eq. 4.60),

ImW = Im(F (0)F−1F (0)) = F (0) Im(F−1)F (0) = −F (0)(−1)F (0) = −F (0)F (0). (4.85)

Now, applying the perturbative version of unitarity (eq. 4.61),

ImW = − ImF (1) (4.86)

This expression is exact over the RC. At other locations of the complex plane, it is only
perturbatively correct. in particular, over the left cut (LC), it is approximate to order
O(s3),

ImW = − ImF (1) +O(s3). (4.87)

Let us see why. Taking into account (eq. 4.60) that F (0) ∼ O(s) and F (1) ∼ O(s2),

F−1 = [F (0) + F (1) +O(s3)]−1 =
[(

1 + F (1)(F (0))−1 +O(s2)
)
F (0)

]−1

= [F (0)]−1[1− F (1) · (F (0))−1 +O(s2)]. (4.88)

Thus, introducing eq. 4.88 inside the definition of eq. 4.84, we obtain

W = F (0)F−1F (0) = [F (0)F (0)]−1[1− F (1) · (F (0))−1 +O(s2)][F (0)]

= F (0) − F (1) +O(s3). (4.89)

Now, we need to take into account that we are evaluating s over the LC. That is, s = s′+iε,
where s′ < 0 and ε→ 0+. Thus, the imaginary part of F (0) (eq. 4.60) turns into

ImF (0) = Im(Ks) = ε→ 0+. (4.90)

Thus, over the LC, eq. 4.89 can we written as ImW = − ImF (1) +O(s3), which indeed
is eq. 4.87.

At this point, we will make use of the so–called twice-subtracted DR. Taking into
account the Cauchy’s Residue Theorem [159–161],∫

γ

ds′
WIJ(s′)

s′2(s′ − s− iε)
= 2πi

∑
j

Res

[
WIJ(s′)

s′2(s′ − s− iε)
, s′j

]
, (4.91)
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Λ

RCLC

Physical s

2

Figure 4.5: Contour for the application of Cauchy’s theorem in eq. 4.91 to derive the
dispersion relation in eq. 4.93. Note the presence of two cuts on the real axis (LC and
RC). The physical values of the scattering amplitude are recovered over the right cut
(s′ = s+ iε, ε→ 0+).

The integration contour chosen is shown in fig. 4.5, and we are using the fact that W (s) ≡
F (0)F−1F (0) (eq. 4.84) has the same analytic structure than F (s) up to possible poles
coming from zeros of A(s). This is due to the fact that F (0) ≡ Ks (eq. 4.60) is analytical
on C and only vanishes for s = 0. The Adler zero (on sAdler = 0) is a particular case,
since the zero on F (0) cancels the single pole on F−1. This analysis supposes that we are
working in the limit where the masses of all the particles are negligible. Ref. [169] studies
in more detail scattering processes with massive particles and subthreshold poles, both
being a very small effect.

Now, let us evaluate the residues of WIJ(s′)/s′2(s′−s− iε). At lowest order, WIJ(s) ≈
KIJs + O(s2), so that, neglecting other poles [zeroes of F (s)] inside the integration
contour, the Cauchy integral of eq. 4.91 turns into∫

γ

ds′
WIJ(s′)

s′2(s′ − s− iε)
= 2πi

∑
j

Res

[
WIJ(s′)

s′2(s′ − s− iε)
, s′j

]
= − KIJ

s+ iε
+
WIJ(s+ iε)

(s+ iε)2
.

(4.92)
In order to carry out the actual integration over the contour of fig. 4.5, we will take
different ε → 0+ and ε′ → 0+, the first one being the distance between the evaluating
point s + iε and the RC (in order for the point to be in the physical region); and the
second one, the distance between the integration contour and the cuts. In order for this
integration to work, it should be that ε > ε′. That is, s+ iε should be over and very close
to the real axis (physical s), but still inside the region defined by the integration contour,
so Cauchy’s theorem can be applied. At the end, both ε and ε′ will be taken in the limit
→ 0+. Thus, the integration of the LHS of eq. 4.92 is∫

γ

ds′
WIJ(s′)

s′2(s′ − s− iε)
=

∫
|s′|=Λ2

ds′WIJ(s′)

(s′)2(s′ − s− iε)
+

∫ Λ

0

ds′WIJ(s′ + iε′)

(s′ + iε′)2(s′ − s− iε)

+

∫ 0

−Λ

ds′WIJ(s′ + iε′)

(s′ + iε′)2(s′ − s− iε)
+

∫ −Λ

0

ds′WIJ(s′ − iε′)
(s′ − iε′)2(s′ − s− iε)

+

∫ 0

Λ

ds′WIJ(s′ − iε′)
(s′ − iε′)2(s′ − s− iε)

(4.93)

Now, take into account eq. 4.63, FIJ(s + iε′) − FIJ(s − iε′) = 2i ImFIJ(s + iε′). Since
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WIJ(s) has the same analytical structure, the derivation of this equation is still valid for
WIJ(s), so that

WIJ(s+ iε) = KIJs+
s2

2πi

∫
|s′|=Λ2

ds′WIJ(s′)

(s′)2(s′ − s− iε)

+
s2

π

∫ Λ

0

ds′ ImWIJ(s′ + iε′)

(s′)2(s′ − s− iε)
+
s2

π

∫ 0

−Λ

ds′ ImWIJ(s′ + iε′)

(s′)2(s′ − s− iε)
, (4.94)

and using eq. 4.86 both in the RC (exact) and the LC (approximate),

WIJ(s+ iε) ≈ KIJs+
s2

2πi

∫
|s′|=Λ2

ds′WIJ(s′)

(s′)2(s′ − s− iε)

− s2

π

∫ Λ

0

ds′ ImF
(1)
IJ (s′ + iε′)

(s′)2(s′ − s− iε)
− s2

π

∫ 0

−Λ

ds′ ImF
(1)
IJ (s′ + iε′)

(s′)2(s′ − s− iε)
, (4.95)

Now, taking into account eqs. 4.71,

WIJ(s+iε) ≈ KIJs−DIJs
2 log

s

Λ2
−EIJs2 log

−s
Λ2

+
s2

2πi

∫
|s′|=Λ2

ds′WIJ(s′)

(s′)2(s′ − s− iε)
. (4.96)

And, using again eqs. 4.71 and 4.76, it is easily proven that this integral equation is solved
by

WIJ(s) = F
(0)
IJ (s)− F (1)

IJ (s). (4.97)

Now, considering the definition of the Inverse Amplitude Matrix, W (s) = F (0)F−1F (0)

(eq. 4.84),

W (s) ≈ F (0)(s)− F (1)(s) = F (0)(s)F−1
IAM(s)F (0)(s)

=⇒ F−1
IAM(s) = [F (0)(s)]−1[F (0)(s)− F (1)(s)][F (0)(s)]−1, (4.98)

FIAM being the scattering partial wave resulting from the application of the Inverse Am-
plitude Method. Thus, at the end, we arrive to the formula

FIAM(s) = [F (0)(s)][F (0)(s)− F (1)(s)]−1[F (0)(s)], (4.99)

taht reduces, for elastic scattering, to

AIAM(s) =
[A(0)(s)]2

A(0)(s)− A(1)(s)
. (4.100)

4.3.3 N/D method

An introduction to this method can be found, for instance, in ref. [170]. The starting
point is to consider an ansatz for the partial wave numerator and denominator,

A(s) =
N(s)

D(s)
, (4.101)

N(s) having only a left cut (LC) and D(s) only a right cut (RC). Because of the reflection
principle (eq. 4.63), this implies that

N(s), only LC⇒ N(s), continuous over the RC⇒ ImN(s) = 0∀s ∈ RC
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D(s), only RC⇒ D(s), continuous over the LC⇒ ImD(s) = 0 ∀s ∈ LC

Now, using unitarity for elastic channels6, the method should satisfy

ImA(s) = |A(s)|2 ⇒ Im
N(s)

D(s)
=
|N(s)|2

|D(s)|2
(4.102)

to be unitary. Let us study the consequences of eq. 4.102. Since, on the RC, ImN(s) = 0,
then

s ∈ RC
ImN(s)=0

=⇒ Im
N(s)

D(s)
= N(s) Im

1

ReD(s) + i ImD(s)
=
−N(s) ImD(s)

|D(s)|2
=

[N(s)]2

|D(s)|2

⇒ ImD(s) = −N(s) (4.103)

And, on the LC, ImD(s) = 0, then

s ∈ LC
ImD(s)=0

=⇒ ImA(s) = Im
N(s)

D(s)
=

ImN(s)

D(s)
⇒ ImN(s) = D(s) ImA(s) (4.104)

There is a similar (matrix) expression for coupled channels7. In this case, the F (s) matrix
is written as

F (s) = [D(s)]−1N(s). (4.105)

As in the elastic (non-matricial) case (see eqs. 4.102 to 4.104), we have ImN(s) =
0 [N(s) continuous ] ∀s ∈ RC; and ImD(s) = 0 [D(s) continuous ] ∀s ∈ LC. This al-
lows us to recover the expressions equivalent to eqs. 4.103 and 4.104. First of all, over
the right cut, ImN(s) = 0, and taking into account the unitarity condition for coupled
channels (eq. 4.55),

ImF = Im{[D(s)]−1N(s)} = Im{[D(s)]−1}N(s) =
1

2i
{D−1(s)− [D−1(s)]∗}N(s)

= F (s)F (s)† = FF ∗ = [D−1(s)N(s)][D−1(s)N(s)]∗ = D−1(s)N(s)[D−1(s)]∗N(s),
(4.106)

where we have used the fact that F (s)t = F (s), because of the T symmetry. Now,
provided that N(s) is non-singular,

1

2i
{D−1(s)− [D−1(s)]∗} = D−1(s)N(s)[D−1(s)]∗

⇒ N(s) =
1

2i
D(s){D−1(s)− [D−1(s)]∗}D∗(s) =

1

2i
{D(s)∗(s)−D(s)} = − ImD(s),

(4.107)

so that we recover eq. 4.103,

ImD(s) = −N(s),

but for the matrix formalism of coupled channels. The matrix form of eq. 4.104 is easier.
Just consider that, on the left cut, ImD(s) = 0, so

ImF (s) = Im[D−1(s)N(s)] = D−1(s) ImN(s)⇒ ImN(s) = D(s) ImF (s) (4.108)
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N(s) D(s)

LC RC

Im N(s) = 0

Im D(s) = 0

x x

Figure 4.6: Contours for the application of Cauchy’s theorem to the dispersion relations
yielding the N(s) and D(s) functions of the N/D method. The N(s) function has an
Adler zero in s = 0 (eq. 4.110). Both N(s) and D(s) are analytic around s = 0 although,
since we are neglecting the masses, this analytical region will collapse to the point s = 0
when the RC and LC are extended to s = 0. However, Cauchy’s theorem can still be
applied by taking the limit where this region collapses but still remains finite.

Now, the zeroth-order behaviour can be recovered by setting the normalization

D(0) = 1⇒ N(0) = A(0), F (0) (4.109)

for the elastic [A(0)] and cross-channel [F (0)] formalisms, respectively. Because of the
presence of the Adler zero in our expressions,

A(0), F (0) = 0 =⇒ N(0) = 0. (4.110)

Eqs. 4.103 for ImD(s) [and 4.104 for ImN(s)] will be used to compute dispersion rela-
tions. In both cases, because of their imaginary parts being zero over the LC [RC], the
reflection principle 4.63 works,

N(s+ iε)−N(s− iε) = 2i ImN(s+ iε), s > 0 (4.111a)

D(s+ iε)−D(s− iε) = 2i ImD(s+ iε), s < 0. (4.111b)

Let us extract the n-subtracted dispersion relation for N(s). See the left graph in
fig. 4.6 for the integration contour. We will apply the Cauchy’s theorem to the function

f(s′) =
N(s′)

(s′)n(s′ − s− iε)
. (4.112)

The two residues within the integration contour shown in fig. 4.6 (left plot) are{
N(s+ iε)

(s+ iε)n
, Res

[
N(s′)

(s′)n(s′ − s− iε)
, s′ = 0

]}
. (4.113)

6ImA(s) = |A(s)|2, see sec. 4.1.
7We used time reversal invariance to extract the analytical structure of the partial waves (sec. 4.1).

This property is exact in the perturbative expansion. However, it is not necessarily respected by the
unitarization procedures. Note that the coupled channel version of N/D in this section is an example
of a unitarity procedure where time reversal invariance is only approximate. Another one will be the
I-K method (sec. 4.3.4). In contrast, the IAM method (sec. 4.3.2) does respect time reversal invariance
exactly. Anyway, if the unitarization procedure is applied within its validity range, the violation of time
reversal invariant, if there is any, should be negligible.
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Now, consider that N(s) is analytic around s = 0, and N(0) = 0 (Adler zero, eq. 4.110).
Thus, if n = 1 (once-subtracted DR), we would have no pole. Otherwise, if n > 1,

N(s′) = h0 + h1s
′ + h2s

′2 + · · ·+ hjs
′j + . . . . (4.114)

We have kept h0 because we will reuse these equations for D(s) (D(0) 6= 0). However,
h0 = 0 for N(s). Now, f(s′) (in eq. 4.112) has a Laurent expansion

f(s′) = − N(s′)

(s′)ns[1− (s′/s)]

= − 1

(s′)ns
(h0 + h1s

′ + h2s
′2 + . . . )

[
1 +

s′

s
+

(
s′

s

)2

+

(
s′

s

)3

+ . . .

]
. (4.115)

Hence, the residue on s′ = 0 is

Res [f(s′), s′ = 0] = − hn−1

s+ iε
− hn−2

(s+ iε)2
− · · · − h1

(s+ iε)n−1
− h0

(s+ iε)n
. (4.116)

Thus, according to the Cauchy’s theorem, and taking into account that h0 = 0 (Adler
zero, eq. 4.110),

2πi
N(s+ iε)

(s+ iε)n
= 2πi

n−1∑
j=1

hj
(s+ iε)n−j

+

∫
Λ2

ds′N(s′)

(s′)n(s′ − s− iε)

+

∫ 0

−∞

ds′N(s′ + iε′)

(s′)n(s′ − s− iε)
+

∫ −∞
0

ds′N(s′ − iε′)
(s′)n(s′ − s− iε)

(4.117)

Here, Λ2 stands for the outer loop of the integrand contour (→ ∞). The inner arc with
radius ε, which closes the integration region around the LC, gives no contribution to the
integral because it is defined in a region where the integral is analytic, and its length can
be taken to zero (ε → 0+), still being in a zone (between the LC and the Adler zero)
where the function is continuous and bounded. Note that, provided that N(s)/sn → 0
for s→∞, the outer loop also cancels. This works when N(s) ∼ O(sd), d < n.

Now, using the reflection principle of eq. 4.111a, the relation of eq. 4.104, and taking
ε→ 0+, ε′ → 0+, ε′ > ε, eq. 4.117 turns into

N(s) =
n∑
j=1

hjs
j +

sn

π

∫ 0

−∞

ds′ ImN(s)

(s′)n(s′ − s− iε)

=
n∑
j=1

hjs
j +

sn

π

∫ 0

−∞

ds′D(s) ImA(s)

(s′)n(s′ − s− iε)
. (4.118)

For D(s), the integration contour will be the second plot of fig. 4.6. Now, we will
apply the Cauchy’s theorem to a function

g(s′) =
D(s′)

(s′)n(s′ − s− iε)
, (4.119)

as we did for N(s) in eq. 4.112. Now, following the same procedure that in eqs. 4.113
to 4.116, the two residues within the integration contour will be

D(s+ iε)

(s+ iε)n
(4.120)
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on s′ = s+ iε, and

Res [g(s′), s′ = 0] = − hn−1

s+ iε
− hn−2

(s+ iε)2
− · · · − h1

(s+ iε)n−1
− h0

(s+ iε)n
. (4.121)

on s′ = 0. Note that, because of the normalization D(0) = 1 (see eq. 4.109), h0 = 1.
Now, applying the Cauchy’s theorem in the same way that we did for f(s′) in eq. 4.117,
but for g(s′) and using the integration contour of the right picture of fig. 4.6,

2πi
D(s+ iε)

(s+ iε)n
= 1 + 2πi

n−1∑
j=1

hj
(s+ iε)n−j

+

∫
Λ2

ds′D(s′)

(s′)n(s′ − s− iε)

+

∫ 0

∞

ds′D(s′ + iε′)

(s′)n(s′ − s− iε)
+

∫ ∞
0

ds′D(s′ − iε′)
(s′)n(s′ − s− iε)

. (4.122)

Therefore, using the reflection principle (eq. 4.111b) and the relation of eq. 4.103, we get
the n-subtracted DR for the D(s),

D(s) = 1 +
n∑
j=1

hjs
j +

sn

π

∫ ∞
0

ds′ ImD(s′)

(s′)n(s′ − s− iε)
= 1 +

n∑
j=1

hjs
j− s

n

π

∫ ∞
0

ds′N(s′)

(s′)n(s′ − s− iε)
,

(4.123)
where we need that D(s)/sn → 0 for s→∞ in order the outer loop to cancel. This fits
when D(s) ∼ O(sd), d < n.

For the one-loop Lagrangian [38, 39], a three-times subtracted version (n = 3) of the
DR of eq. 4.123 has been used,

D(s) = 1 + h1s+ h2s
2 − s3

π

∫ ∞
0

ds′N(s′)

(s′)3(s′ − s− iε)
. (4.124)

In order to give a first estimate of N(s) and D(s), we would need to split our one loop
computation in two parts having one of them only a RC and the other, the LC. For the
coupled channels (trivial generalization to elastic channels),

G(s) =
1

π

[
B(µ)(D + E)−1 + log

−s
µ2

]
(4.125a)

FL(s) =

[
B(µ)(D + E)−1 + log

s

µ2

]
Ds2 = πG(−s)Ds2 (4.125b)

FR(s) =

[
B(µ)(D + E)−1 + log

−s
µ2

]
Es2 = πG(s)Es2 (4.125c)

It can be easily proven that F (1) = FL(s) + FR(s), FL(s) having a LC and FR(s), a RC.
Note that when D+E = 0 this will no longer work8. Furthermore, note that, because of
eq. 4.62, eq. 4.125c turns into

FR(s) = −G(s)K2s2 = −G(s)[F (0)(s)]2 (4.126)

Our estimate for N(s) will be

N0(s) = F (0)(s) + FL(s). (4.127)

8For example, take I = J = 1 and a2 = b.
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Note that N0(s) ∼ O(s2), so that using the three-times subtracted expression ensures
that the outer loop integral cancels9. In turn, we can estimate D0(s) using eq. 4.124,

D0(s) = 1 + h1s+ h2s
2 − s3

π

∫ ∞
0

ds′N0(s′)

(s′)3(s′ − s− iε)

= 1 + h1s+ h2s
2 − s3

π

∫ ∞
0

ds′

s′ − s− iε

{
K

s′2
+

[
B(µ)(D + E)−1 + log

s′

µ2

]
D

s′

}
(4.128)

Thus, we will need to compute several integrals. Let us dimensionally reduce variables
to y = (s + iε)/µ2, x = s′/µ2, and redefine the integration limits to be from m2 to ∞.
Later, we will take m→ 0+. Thus, we have (see appendix D.3):

I1 ≡
∫ ∞
m2

ds′

(s′)(s′ − s− iε)
= −1

s
log
(

1− s

m2

)
(4.129a)

I2 ≡
∫ ∞
m2

ds′

(s′)2(s′ − s− iε)
= − 1

s2

[ s
m2

+ log
(

1− s

m2

)]
(4.129b)

I ′1 ≡
∫ ∞
m2

ds′ log(s′/µ2)

(s′)(s′ − s− iε)

= −1

s

[
1

2
log2

(
−s
µ2

)
+ Li2

m2

s
− 1

2
log2

(
m2

µ2

)
+ log

m2

µ2
log

(
1− m2

s

)
+
π2

6

]
.

(4.129c)

With these definitions, we can re write eq. 4.128 as

D0(s) = 1 + h1s+ h2s
2 − s3

π

[
KI2 +B(µ)(D + E)−1DI1 +DI ′1

]
. (4.130)

Taking into account the integrals of eqs. 4.129, and eqs. 4.127 and 4.130, and supposing
that h1 and h2 have no imaginary part10, we can compute, on the RC,

ImD0(s) = −F (0)(s)− FL(s) = −N0(s), (4.131)

thus complying with eq. 4.103, which is the condition of unitarity if we suppose ImN(s) =
0 on the RC, as defined by the N/D method. Note that eq. 4.103 is also valid for crossed-
channels, as explained after eq. 4.105.

Now, taking into account eqs. 4.60, 4.125, 4.105, 4.127 and 4.130,

F (s) = [D(s)]−1N(s) ≈ [D0(s)]−1N0(s) =[
1 + h1s+ h2s

2 − s3

π
T (s)

]−1

·
[
F (0)(s) + FL(s)

]
, (4.132)

where F (0)(s) and FL(s) are defined in eqs. 4.60, 4.125, respectively; and

T (s) = KI2 +B(µ)(D + E)−1DI1 +DI ′1. (4.133)

For small m, eq. 4.130 turns into

D0(s) = 1 + h1s+
F (0)(s)

π
log

(
−s
m2

)
+O(s2). (4.134)

9See the discussions under eqs. 4.117 and 4.123.
10As appropriate in EFT, where the tree-level coefficients come from a real Lagrangian density.
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All that remains is to fix h1. For this, we match the N/D method to the NLO calculation.
Let us write down F (s) (eq. 4.132) as

F (s) ≈
[
1 + h1s+

F (0)(s)

π
log

(
−s
m2

)
+O(s2)

]−1

·
[
F (0)(s) + FL(s)

]
≈
[
1− h1s−

F (0)(s)

π
log

(
−s
m2

)
+ . . .

] [
F (0)(s) + FL(s)

]
+O(s3). (4.135)

Note that we have used F (0)(s) = Ks (eq. 4.60) and FL(s) ∝ s2 (eqs. 4.125) to compute
the order O(s3). In order to match N/D dispersion relation (eq. 4.132) to perturbation
theory, eq. 4.132, when expanded at low s, should become

F (s) ≈ F (0)(s) + FL(s) + FR(s) +O(s3). (4.136)

Let us expand eq. 4.135,

F (s) ≈ F (0)(s) + FL(s)−
[
h1 +

F (0)(s)

π
log

(
−s
m2

)]
F (0)(s)s+O(s3) (4.137)

Thus, if we match eqs. 4.136 and 4.137,

FR(s) = −
[
h1 +

F (0)(s)

π
log

(
−s
m2

)]
F (0)(s)s (4.138)

Taking into account eq. 4.125,

FR(s) = πG(s)Es2 =

[
B(µ)(D + E)−1 + log

−s
µ2

]
Es2, (4.139)

If we also consider eqs. 4.62 and 4.60, the compatibility condition between eqs. 4.138
and 4.139 is written down as[

B(µ)(D + E)−1 + log
−s
µ2

]
−K2

π
s2 = −h1Ks

2 +
−K2

π
s2 log

(
−s
m2

)
, (4.140)

so that, finally,

h1 =
1

π
[B(µ)](D + E)−1K +

1

π
K log

m2

µ2
, (4.141)

which can be written down as

h1(m,µ) =
1

π
[B(m,µ)](D + E)−1K. (4.142)

Thus, according to eqs. 4.62, 4.134, 4.139 and 4.141,

D0(s) = 1 +
s

π

[
B(µ)(D + E)−1K +K log

(
m2

µ2

)
+K log

(
−s
m2

)]
= 1 +

s

π

[
B(µ)(D + E)−1 + log

(
−s
µ2

)]
K2 +O(s2)

= 1− [FR(s)] · [F (0)]−1(s) +O(s2). (4.143)
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Now, let us extend eq. 4.143 with the coefficient of order O(s2). For this, we need to
define

H(m) ≡ h2(m)π +
1

m2
K +

π2

6
D, (4.144)

so that eq. 4.130 turns into

D0(s) = 1− [FR(s)] · [F (0)(s)]−1

+
s2

π

[
H(m) +B(µ)(D + E)−1D log

−s
m2

+
1

2
D

(
log2 −s

µ2
− log2 m

2

µ2

)]
(4.145)

H(m) is a renormalized parameter at the scale m. If we demand D0(s) to be independent
of this scale, we find the renormalization equation

m2dH(m)

dm2
= B(µ)(D + E)−1D +D log

m2

µ2
, (4.146)

which leads to an evolution equation that is characteristic of an NNLO parameter in
perturbation theory,

H(µ) = H(µ0) +B(µ0)(D + E)−1D log
µ2

µ2
0

+
1

2
D log2 µ

2

µ2
0

(4.147)

This renormalized constant, H(µ), can contain contributions coming from the NNLO
chiral couplings, generated by the unitarization procedure. However, we could choose

H(µ) =
1

2
[B(µ)(D + E)−1]2D, (4.148)

which, once we take into account eq. 3.135, B(µ) = B(µ0) + (D +E) log(µ2/µ2
0), verifies

eq. 4.147. With this choice, eq. 4.145 turns into

D0(s) = 1− FR(s)[F (0)(s)]−1 +
π

2
[G(s)]2Ds2, (4.149)

where FR(s) and G(s) are defined in eqs. 4.125. Finally, taking again into account the
definitions of eqs. 4.125,

D0(s) = 1− FR(s)[F (0)(s)]−1 +
1

2
G(s)FL(−s), (4.150)

and

FN/D(s) =

[
1− FR(s)[F (0)(s)]−1 +

1

2
G(s)FL(−s)

]−1

·
[
F (0)(s) + FL(s)

]
. (4.151)

Note that this method is valid even for K = E = 0, although it would fail in the case that
the matrix D+E would not have an inverse (or D+E = 0 for the elastic, non-matricial
case), because of the appearance of a factor (D + E)−1 in eqs. 4.125.
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4.3.4 K-matrix and Improved K-matrix

The so-called K-matrix method is one of the most popular unitarization procedures. See,
for instance, refs. [171–173], which develop the K-matrix theory for the low energy QCD
(ChPT formalism). On the contrary, ref. [174] and the recent review [175] study the K-
matrix method in the context of the EWSBS. In the single channel case, the K-matrix11

is defined in terms of the S matrix,

S =
1− iK/2
1 + iK/2

, (4.152)

so that S is unitary if and only if K is Hermitian. In a perturbative computation, the
(approximate) S matrix will be written as

S = 1 + S(1) + S(2) + . . . , (4.153)

the approximate S matrix not being unitary. However, the corresponding truncated
expansion of K,

K = K(1) +K(2) + . . . , (4.154)

introduced in eq. 4.152, produces a new series of S which is exactly unitary at any
order [38].

Thus, let A0(s) be a real 12 non-unitary estimation of the scattering amplitude. The
K-matrix unitarized partial wave is defined as

AK0 (s) =
A0(s)

1− iA0(s)
, (4.155)

which satisfies unitarity in the physical region, since, because of the fact that ImA0 = 0,

ImAK0 =
Im[A0(1 + iA0)]

1 + A2
0

=
A2

0

1 + A2
0

= |AK0 |2. (4.156)

But this unitarization procedure has a problem: the unitarized partial wave has not
the required analytical structure. For instance, AK(s) has no right cut (RC), so it is
impossible to define a II Riemann sheet as was shown on fig. 4.2 (page 60). This definition
of second Riemann sheet is crucial to recover resonances, as was exposed on sec. 4.2.

Thus, it would be expectable that the K-matrix method omits the presence of reso-
nances which are predicted by other methods (like the N/D and the IAM). In practice,
this is what happens, and most of the criticisms on the unitarization methods which
appear in the literature are based on the fact that some of them can produce resonances
(actually, poles on the second Riemann sheet) which are not predicted by others (tipically
the K-matrix). However, this is due to the limitations of the K-matrix and, in particular,
to the lack of a proper analytic structure on the K-matrix unitarized partial waves. Ac-
cording to the experience in unitarization methods applied to hadron physics [164–166],
these resonances do appear and are well described by unitarization procedures other than
the simplest K-matrix method. Actually, the AK0 (s) partial wave is defined only in the
physical region, it cannot be analytically extended to the whole complex plane by follow-
ing the complex integration trajectories of fig. 4.2. This is why we consider the K-matrix
method less appropriate than others.

11See ref. [174]. Ref. [175] uses a slightly different definition (a change in the sign of K).
12Im[A0(s)] = 0 on the physical zone s′ = s+ iε, ε→ 0+, s > 0.
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Hence, except otherwise indicated, we only consider an improved version of the K-
matrix, which has the proper analytic structure (with a RC). Let us introduce the ana-
lytical function

g(s) =
1

π

(
C + log

−s
µ2

)
, (4.157)

C being an arbitrary constant and µ, an arbitrary scale. At the end, we will define this
g(s) as in the N/D method (eq. 4.125a), taking C = B(µ)(D + E)−1. Anyway, in the
physical region (s′ = s+ iε), log(−s/µ2) = log(s/µ2)− iπ, so that

Im g(s) = −1. (4.158)

Our heuristic way of modifying the K-matrix method is substituting −i → g(s) in the
K-matrix expression (eq. 4.155), so that

AIK(s) =
A0(s)

1 + g(s)A0(s)
, g(s) =

1

π

(
B(µ)

D + E
+ log

−s
µ2

)
, (4.159)

this AIK(s) being the unitarized partial wave according to the improved K-matrix method.
Note that this is equivalent to defining

h1 = h1(µ) =
K

π

B(µ)

D + E
(4.160)

in eq. 4.130. When crossed-channels are included, the improved K-matrix method is
defined as

F IK(s) = (1 +GN0)−1N0 (4.161a)

G =
1

π

(
B(µ)(D + E)−1 + log

−s
µ2

)
(4.161b)

N0(s) = F (0)(s) + FL(s). (4.161c)

Note that G and N0(s) are defined as in the N/D method (eqs. 4.125a and 4.127, respec-
tively).

4.3.5 Summary of the unitarization methods and their range of
applicability

The detailed description of the unitarization procedures IAM, N/D and IK (improved-
K matrix) is contained in secs. 4.3.2, 4.3.3 and 4.3.4, respectively. Anyway, for easy
comparison, and in presence of crossed-channels, these three procedures reduce to the
application of the matrix formulas

F IAM(s) = [F (0)(s)]−1 · [F (0)(s)− F (1)(s)] · [F (0)(s)]−1 (4.162a)

FN/D(s) =

[
1− FR(s)[F (0)(s)]−1 +

1

2
G(s)FL(−s)

]−1

·N0(s) (4.162b)

F IK(s) = [1 +G(s)N0(s)]−1 ·N0(s), (4.162c)

where F (0)(s) and F (1)(s) are the direct result of the computation of the partial waves
(see eqs. 4.60) and FL(s), FR(s), G(s) and N0(s) are defined in eqs. 4.125 and 4.127,
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respectively. These equations, when dealing with an elastic (single channel) process,
reduce to

AIAM(s) =
A(0)(s) + AL(s)

1− AR(s)

A(0)(s)
−
(
AL(s)

A(0)(s)

)2

+ g(s)AL(s)
=

[A(0)(s)]2

A(0)(s)− A(1)(s)
(4.163a)

AN/D(s) =
A(0)(s) + AL(s)

1− AR(s)

A(0)(s)
+ 1

2
g(s)AL(−s)

(4.163b)

AIK(s) =
A(0)(s) + AL(s)

1− AR(s)

A(0)(s)
+ g(s)AL(s)

, (4.163c)

where AL(s), AR(s), g(s) and N0(s) are defined as the scalar versions of the matricial
FL(s), FR(s), G(s) and N0(s). All the three methods satisfy the low energy expansion

AIAM, AN/D, AIK = A(0)(s) + A(1)(s) +O(s3), (4.164)

and the different unitarization procedures only start differing in terms of order O(s3).
Anyway, from eqs. 4.163, it is clear that the conditions for the equivalence of the uni-
tarization procedures is a small AL (AL � A(0)), since for AL → 0 the three eqs. 4.163
collapse to a single expression A(0)(s)/[1− (AR(s)/A(0)(s))].

Now, notice that the IAM method is the only one that does not require an explicit
splitting of the NLO term A(1)(s) between two functions with a right cut (AR) and a left
cut (AL), so that it is the only applicable method when such a splitting fails. According
to eq. 4.125, such failure takes place when (D+E)−1 is singular (D+E can be vanishing
for same elastic processes and consequently not invertible for coupled-channels). For
D + E � B (small D + E), FL ∼ FR. Note that this splitting is in some way arbitrary,
since we could add (and substract) terms to AR and AL without changing their sum,
provided that such terms (actually, of the form Cs2) are analytic. Thus, in the small
D +E regime, the three methods are expected to produce different results and, because
of the arbitrary choice of the splitting, the IAM is preferable. This happens for the
vector-isovector channel (I = J = 1). In this channel, for a2 = b, D + E is exactly zero.

On the other hand, the applicability of the IAM requires K2 = E 6= 0 (which implies
A(0) 6= 0). Otherwise, the IAM gives a vanishing result: this happens for J = 2 channels,
because they start at NLO in the effective theory. Then, the IK or N/D methods are
profitably employed.

Note also that, only for elastic scattering, eq. 4.44 can be applied, so that the position
sR of the poles on the II Riemann sheet can be computed just by solving the equation
A(sR) + (i/2) = 0. Let us apply this method in eqs. 4.163. For the elastic version of the
IAM method,

A(0)(sR)− A(1)(sR)− 2i[A(0)(sR)]2 = 0. (4.165)

For the N/D,

A(0)(sR)−AR(sR)+
1

2
g(sR)A(0)(sR)AL(−sR)−2iA(0)(sR)[A(0)(sR)+AL(sR)] = 0. (4.166)

And, for the IK,

A(0)(sR)−AR(sR) + g(sR)A(0)(sR)AL(sR)− 2iA(0)(sR)[A(0)(sR) +AL(sR)] = 0. (4.167)

These are simple equations that give the resonance position and can be solved by iteration
(e.g., Newton’s method).
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4.4 Extensions of the ωω unitarization

In this section, based on our works [136, 151], we will consider two possible extensions to
the pure WBGBs scattering. The first one is the scattering of a 2-γ state,

γγ → {ωω, hh}. (4.168)

The partial waves which correspond to this process can be found in sec. 3.3.2. Since
the photon is a spin-1 particle, the possible values for the total angular momentum are
J = 0, 2 (the Landau-Yang theorem forbids J = 1). In each J-channel, we can have
either a2 = b, which implies that the γγ → hh channel decouples (see eq. 3.87), or a2 6= b,
which implies that the γγ → hh channel contributes to the reaction matrix. These four
cases will be studied from sec. 4.4.1 to sec. 4.4.4.

The second extension which we consider is a WBGBs scattering which gives a final
state tt̄,

{ωω, hh} → tt̄. (4.169)

The corresponding partial waves can be found in sec. 3.3.3. The only considered channel
will be IJ = 00, since it is the only one which couples with the WBGBs channels at order
O(M2

t /v
2). Note also that, although the tt̄ → tt̄ partial wave appears in the reaction

matrix, its order in Mt/v is too high, so that it does not contribute to the final unitarized
partial waves ωω → tt̄ and hh → tt̄. However, we have computed the matrix element
tt̄ → tt̄ in sec. 3.2.4 and appendix B.2 for completeness, and because it is useful to
introduce the spinor formalism in a general case.

J 0 0 2 2
Coupling with hh (a2 6= b) no yes no yes
γγ scattering eq. 4.176 eqs. 4.190 eq. 4.194 eq. 4.197
tt̄ in the final state eq. 4.201 eqs. 4.215 no no

Table 4.1: Summary of the extensions to the pure WBGBs scattering considered. In each
case, the equation numbers of the final unitarization expressions are given.

4.4.1 γγ scattering without hh channel (a2 = b), J = 0

Let us take J = 0 and a2 = b; this implies that the γγ → hh channel decouples (see
eq. 3.87), so we omit it. In this regime, the expression for the amplitude matrix 4.57 is
extended to

F (s) =

A00(s) 0 P00(s)

0 A20(s) P20(s)

P00(s) P20(s) 0

+O(α2), (4.170)

where AIJ(s) are the (isospin conserving) elastic partial waves ωω → ωω (eqs. 3.136
and 3.138) and PIJ(s), the partial wave γγ → ωω (eqs. 3.152). Note that we consider
only the leading order in electromagnetic α.

Partial wave unitarity ImF (s) = F (s)F (s)† (eq. 4.55) is applied, on the RC, to
def. 4.170. We have to take into account that α is considered at leading order. With
this condition, and without coupling the hh state (because we have a2 = b), we recover
eqs. 4.59a, 4.59c,

ImAI0 = |AI0|2, I = 0, 2. (4.171)
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We also obtain the new relations

ImPI0 = PI0A
∗
I0, I = 0, 2 (4.172)

Note how crucial it is that α is taken at LO for checking unitarity. Namely, if we took a
higher order in α, we would need to introduce corrections to the elastic AI0 in order to
account for the rescattering ωω → (γγ)→ ωω.

Now, let us use the elastic IAM method (eq. 4.163a) for the unitarization of AIJ(s),

Ã(s) =
A(0)(s)

1− A(0)(s)

A(1)(s)

. (4.173)

As usual, A = A(0) + A(1) + . . . is a chiral expansion on s and Ã, the unitarized partial
wave. This applies for both isospin channels, I = 0, 2.

For the P amplitudes, the unitarization is controled by ωω rescattering (Watson’s
Theorem). At low energies, P ≈ P (0). Therefore, the simplest solution to the unitarity
equation 4.172 with the proper analytical structure is

P̃ =
P (0)

1− A(1)

A(0)

=
P (0)

A(0)
Ã. (4.174)

Then, on the RC,

Im P̃ =
P (0)

A(0)
Im Ã =

P (0)

A(0)
|Ã|2 = P̃ Ã∗, (4.175)

which applies to the I = J = 0 and I = 2, J = 0 channels. Thus, our unitarized γγ → ωω
matrix element, with the same phase as the elastic IAM amplitude, will be

P̃I0 =
P

(0)
I0

1− A
(1)
I0

A
(0)
I0

, I = 0, 2. (4.176)

4.4.2 γγ scattering with hh channel, J = 0

Let us assume weak isospin conservation by the Goldstone dynamics, so that the reaction
matrix is written as

F =


A00 M0 0 P00

M0 T0 0 R0

0 0 A20 P20

P00 R0 P20 0

+O(α2), (4.177)

where all the elements depend on s. Here, AI0 are the partial waves ωω → ωω (eqs. 3.136
and 3.138); M0, the ωω → hh one (eq. 3.141); T0, the hh → hh one (eq. 3.143); PI0(s),
the γγ → ωω ones (eqs. 3.152); and R0(s), the γγ → hh (eq. 3.153).

On the RC, perturbative unitarity (eq. 4.55) implies the same results as for WBGBs
scattering (eqs. 4.59), plus the following new relations for the γγ couplings:

ImP00 = P00A
∗
00 +R0M

∗
0 (4.178a)

ImP20 = P20A
∗
20 (4.178b)

ImR0 = P00M
∗
0 +R0T

∗
0 . (4.178c)
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Because of considering only leading order in α, the WBGBs matrix elements (A00, M0

and T0) can be unitarized without taking into account the γγ couplings. The IJ = 20
channel (in eq. 4.178b) can be unitarized by following eq. 4.176 (with I = 2) of sec. 4.4.1,
since it does not couple with IJ = 00 channel at this order. Regarding the I = 0 channel,
the previous discussion of sec. 4.4.1 can be generalized by taking a matricial definition
for F (ωω, hh→ ωω, hh) (and considering only I = 0),

F = F00 =

(
A00 M0

M0 T0

)
=

(
A M

M T

)
, (4.179)

and similar definitions for F (0) and F (1),

F (i) =

(
A(i) M (i)

M (i) T (i)

)
, i = 0, 1. (4.180)

Following the IAM method (eq. 4.162a) for the unitarization of F̃ , on the RC, F̃ =
F (0)(F (0) − F (1))−1F (0). Thus, if we define (P,R) ≡ (P00, R0), then from eqs. 4.178,

Im

(
P

R

)
= F ∗ ·

(
P

R

)
, (4.181)

so that the following unitarized amplitude can be introduced,(
P̃

R̃

)
≡ F̃ (F (0))−1

(
P (0)

R(0)

)
, (4.182)

where (
Ã M̃

M̃ T̃

)
= F̃ (4.183)

is the unitarized WBGBs reaction matrix F (eq. 4.179). The IAM method will be used
for the computation of this F̃ (see sec. 4.3.2 and eq. 4.162a). Note that, by definition, F̃
satisfies the unitarity relation Im F̃ = F̃ · F̃ † = F̃ † · F̃ (eq. 4.55).

Now, following the procedure which was used in eq. 4.175, eq. 4.182 turns into

Im

(
P

R

)
= (Im F̃ ) · (F (0))−1 ·

(
P (0)

R(0)

)
= F̃ †F̃ (F (0))−1

(
P (0)

R(0)

)
= F̃ ∗F̃ (F (0))−1

(
P (0)

R(0)

)
= F̃ ∗

(
P

R

)
, (4.184)

so that we recover unitarity (eqs. 4.178). Note that we have used that ImF (0) = ImP (0) =
ImR(0) = 0. Now, let us check the low-energy behaviour. Using the chiral expansion,
F̃ = F (0) + F (1) + . . . , eq. 4.182 turns into(

P̃

R̃

)
≡ F̃ (F (0))−1

(
P (0)

R(0)

)
= (F (0) + F (1) + . . . )(F (0))−1

(
P (0)

R(0)

)
=

(
P (0)

R(0)

)
+ F (1)(F (0))−1

(
P (0)

R(0)

)
+ . . . , (4.185)

so that the required low-energy behaviour is recovered. Note that(
P (0)

R(0)

)
∼
(
O
(
s
v2

)
+O(α)

O(α)

)
, (4.186)
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as can be checked in eqs. 3.152 and 3.153. The next order of the perturbative expansion
of eq. 4.185 would be

F (1)(F (0))−1

(
P (0)

R(0)

)
∼

(
O
(
s2

v4

)
+O(α)

O
(
s
v2

)
+O(α)

)
, (4.187)

as required. Note that P and R are computed only at lowest order in electromagnetic α at
LO, O(α), and we do not need intermediate 2-photon states. Higher order contributions
come only from the WBGBs rescattering. Taking into account that the inverse of the
F (0) amplitude matrix (eq. 4.180) is

(F (0))−1 =
1

A(0)T (0) − (M (0))2

(
T (0) −M (0)

−M (0) A(0),

)
(4.188)

the unitarized amplitude matrix of eq. 4.182 turns into(
P̃

R̃

)
≡ 1

A(0)T (0) − (M (0))2

(
Ã M̃

M̃ T̃

)(
T (0) −M (0)

−M (0) A(0),

)(
P (0)

R(0)

)
. (4.189)

Hence, eq. 4.182 is written as

P̃ = P (0) ÃT (0) − M̃M (0)

A(0)T (0) − (M (0))2
+R(0) −ÃM (0) + M̃A(0)

A(0)T (0) − (M (0))2
(4.190a)

R̃ = P (0) M̃T (0) − T̃M (0)

A(0)T (0) − (M (0))2
+R(0) T̃A(0) − M̃M (0)

A(0)T (0) − (M (0))2
, (4.190b)

where Ã, M̃ and T̃ are the unitarized IJ = 00 partial amplitudes, computed with the
IAM unitarization procedure (see sec. 4.3.2 and eq. 4.162a).

4.4.3 γγ scattering without hh channel (a2 = b), J = 2

In this case, the hh channel decouples again because a2 = b and R = 0. The amplitude
matrix becomes

F =

A02 0 P02

0 A22 P22

P02 P22 0

+O(α2), (4.191)

where AI2 are the elastic ωω partial waves (eqs. 3.138 and 3.140) and PI2, the γγ →
ωω ones (eqs. 3.152). Note that the PI2 are constant. Applying the unitarity relation
(eq. 4.55) to the amplitude matrix (eq. 4.191), we recover ImAI2 = |AI2|2 (eqs. 4.59a and
4.59c), and the new relations

ImPI2 = PI2A
∗
I2, I = 0, 2. (4.192)

Note that, in this case, since K = 0, we cannot use the IAM unitarization method for
the WBGBs scattering. Hence, the N/D will be used here (see eq. 4.163b with A(0) = 0),

Ã = AN/D =
AL(s)

1 + π
2
g2(s)Ds2

. (4.193)

See the discussions of sec. 4.3.3 and the summary of sec. 4.3.5 for a definition of the
functions which appear in this equation.

Eqs. 4.192 are satisfied by the unitarization method

P̃I2 =
P

(0)
I2

AL,I2

A
N/D
I2 , I = 0, 2. (4.194)
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4.4.4 γγ scattering with hh channel, J = 2

Now, the reaction matrix is

F =


A02 M2 0 P02

M2 T2 0 0

0 0 A22 P22

P02 0 P22 0

+O(α2), (4.195)

where AI2 are the partial waves ωω → ωω (eqs. 3.139 and 3.140); M2, the ωω → hh one
(eq. 3.142); T0, the hh→ hh one (eq. 3.144); and PI2(s), the γγ → ωω ones (eqs. 3.152).
Note also that the partial wave associated with the process γγ → hh is zero for J = 2
(R2 = 0), as explained around eq. 3.153.

The application of the unitarity relation (eq. 4.55) to the reaction matrix 4.195, taking
into account that α is kept to leading order, gives the WBGBs scattering relations of
eqs. 4.59 and the new ones

ImPI2 = PI2A
∗
I2, I = 0, 2. (4.196)

Since K = 0, the N/D coupled channel method is used for the unitarization of the
WBGBs scattering matrix elements (A02, M2 and T2). This is summarized by eq. 4.163b,
the discussions of sec. 4.3.3 and the summary of sec. 4.3.5. For the IJ = 22 channel,
there is no coupling with hh, so that the single-channel N/D applies (as in the previous
sec. 4.4.1). The unitarization of the PI2 matrix elements will be accomplished by

P̃I2 = P
(0)
I2

ÃI2
AL,I2

, I = 0, 2. (4.197)

This completes all the cases for γγ → ωω, γγ → hh, ωω → ωω, ωω → hh and hh→ hh
scattering. We then turn to the top-antitop channel.

4.4.5 tt̄ in the final state without hh channel (a2 = b), J = 0

Since we are taking a2 = b and J = 0, the ωω → hh crossed-channels decouple (see
eq. 3.87). Thus, the reaction matrix can be written as

F =

(
A00 Q0

Q0 S0

)
≡
(
A Q

Q S

)
, (4.198)

where A00 (taken as A00 ≡ A in this subsection) is the elastic partial wave ωω → ωω
(IJ = 00, see eqs. 3.136); Q0, the partial wave ωω → tt̄ (see eq. 3.154); and S0, the
partial wave tt̄ → tt̄ (which will not be required by the unitarization procedure, since
{ωω, hh} → tt̄→ tt̄ is a higher order correction in the Mt counting). Note that A, Q and
S follow a chiral expansion

A = A(0) + A(1) + . . . ∼ O

[(
Mt

v

)0
]

(4.199a)

Q = Q(0) +Q(1) + . . . ∼ O
[
Mt

v

]
(4.199b)

S = S(0) + . . . ∼ O

[(
Mt

v

)2
]
. (4.199c)
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On the RC, the unitarity relation ImF = FF † (see eq. 4.55) applies, so that

ImA = |A|2 +O
(
M2

t

v2

)
(4.200a)

ImQ = AQ∗ +O
(
M3

t

v3

)
(4.200b)

ImS = 0 +O
(
M2

t

v2

)
. (4.200c)

It is not necessary to satisfy unitarity exactly here; unlike the s-expansion of the EFT
that deteriorates with increasing energy, Mt is fixed and the uncertainty due to neglecting
higher order terms in the unitarity relation remains controlled. Mt/v may not appear
as a very good expansion parameter, but as was understood around eq. 3.154, in the
unitarized regime at E ∼ 1-3 TeV, it is Mt/

√
s that ends up controlling the size of the

subleading terms, and this is small. Let us solve the unitarity eq. 4.199b by the expression

Q̃ = Q(0) +Q(1) Ã

A(0)
, (4.201)

where the unitarized partial wave Ã will be computed with the IAM procedure (eq. 4.163a),
Ã = (A(0))2/(A(0) − A(1))]. This ensures elastic unitarity, Im Ã = ÃÃ∗.

Eq. 4.201 has the required low-energy behaviour (eq. 4.199b). Now, take into account
that, because of unitarity and the definition of Q(0) and A(0) as real functions, Im Ã =
ÃÃ∗, ImA(1) = (A(0))2, ImQ(1) = Q(0)A(0), ImQ(0) = ImA(0) = 0. Thus, eq. 4.201,
evaluated on the RC, turns into

Q̃
∣∣∣
RC

= Q(0) +Q(1) Ã

A(0)
=

[
Q(0)

(
1− A(1)

A(0)

)
+Q(1)

]
A(0)

A(0) − A(1)

=

[
Q(0) − Q(0)

A(0)
ReA(1) + ReQ(1)

]
Ã

A(0)
(4.202)

Thus, we have that

Im Q̃
∣∣∣
RC

=

[
Q(0) − Q(0)

A(0)
ReA(1) + ReQ(1)

]
Im Ã

A(0)

=

[
Q(0) − Q(0)

A(0)
ReA(1) + ReQ(1)

]
ÃÃ∗

A(0)
= Q̃Ã∗, (4.203)

so that we recover eq. 4.200b, proving that eq. 4.201 is a valid unitarization procedure,
which we adopt for J = 0 and a2 = b.

4.4.6 tt̄ in the final state with hh channel, J = 0

If we allow a2 6= b, so that the cross-channel ωω → hh is now coupled, then the reaction
matrix will be

F =

A00 M0 Q

M0 T0 N

Q N S

 ≡
 A M Q

M T N

Q N S

. (4.204)
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As in sec. 4.4.5, A00 (note that A00 ≡ A in this section) is the elastic partial wave
ωω → ωω (IJ = 00, see eqs. 3.136); Q0, the partial wave ωω → tt̄ (see eq. 3.154); and
S0, the partial wave tt̄ → tt̄ (which, as in the previous a2 = b case of sec. 4.4.5, will not
be required by the unitarization procedure, since {ωω, hh} → tt̄ → tt̄ is a higher order
correction). Furthermore, since the cross-channel ωω → hh is present, we need to take
into account the ωω → hh partial wave (J = 0, see eqs. 3.141), the hh→ hh (J = 0, see
eqs. 3.143), and the hh→ tt̄ (J = 0, see eqs. 3.158). All the partial waves accept a chiral
expansion of the form

F = F (0) + F (1) + . . . , ImF (0) ≡ 0, (4.205)

where F (n) = O(sn), n = 0, 1, . . . . Furthermore, the chiral expansions of Q, N and S are
suppressed by Mt/v factors. In particular,

X = X(0) +X(1) + . . . ∼ 1, X = A,M, T (4.206a)

Q = Q(0) +Q(1) + . . . ∼ O
(
Mt

v

)
(4.206b)

N = N (0) +N (1) + . . . ∼ O
(
Mt

v

)
(4.206c)

S = S(0) + . . . ∼ O
(
M2

t

v2

)
. (4.206d)

On the RC, unitarity relation ImF = FF † (see eq. 4.55) is applied so that, up to order
O(M2

t /v
2),

ImA = |A|2 + |M |2 + . . . (4.207a)

ImM = AM∗ +MT ∗ + . . . (4.207b)

ImT = |M |2 + |T |2 + . . . (4.207c)

ImQ = AQ∗ +MN∗ + . . . (4.207d)

ImN = MQ∗ +MN∗ + . . . (4.207e)

ImS = 0 + . . . . (4.207f)

This is essential in order to be able to decouple the unitarization of the WBGBs sector
(partial waves A, M and T ) from the tt̄ vertices. For the unitarization of this WBGBs
sector the IAM method will be used (eq. 4.162a), so that eq. 4.206a holds. Let us reuse
the definition of eq. 4.179,

F ≡
(
A M

M T

)
, (4.208)

and the corresponding definitions for the chiral expansion F = F (0) + F (1) + . . . . The
IAM unitarization (eq. 4.162a) is F̃ = F (0)(F (0)−F (1))−1F (0), which ensures the unitarity
relation Im F̃ = F̃ F̃ ∗ (eq. 4.206a). Now, the rest of the unitarity condition (eqs. 4.206b,
4.206c and 4.206d) can be written as

Im

(
Q

N

)
= F

(
Q

N

)∗
, (4.209)

or, perturbatively,

Im

(
Q(1)

N (1)

)
= F (0)

(
Q(0)

N (0)

)
. (4.210)
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Let us introduce the unitarized amplitudes(
Q̃

Ñ

)
=

(
Q(0)

N (0)

)
+ F̃ (F (0))−1

(
Q(1)

N (1)

)
. (4.211)

Observe that eq. 4.211 is a matricial generalization of eq. 4.201. Now, let us prove
that the definition of eq. 4.211 satisfies the unitarity relations of eqs. 4.206b and 4.206c
(summarized in eq. 4.209).

Im

(
Q̃

Ñ

)
= Im F̃ (F (0))−1 Re

(
Q(1)

N (1)

)
+ Re F̃ (F (0))−1 Im

(
Q(1)

N (1)

)
(4.212)

Because of eq. 4.210, eq. 4.212 turns into

Im

(
Q̃

Ñ

)
= Im F̃ (F (0))−1 Re

(
Q(1)

N (1)

)
+ Re F̃

(
Q(0)

N (0)

)
= F̃

(
Q(0)

N (0)

)
− i Im F̃

(
Q(0)

N (0)

)
+ Im F̃ (F (0))−1 Re

(
Q(1)

N (1)

)
= F̃

(
Q(0)

N (0)

)
+ Im F̃ (F (0))−1 Re

(
Q(1)

N (1)

)
− Im F̃ (F (0))−1 Im

(
Q(1)

N (1)

)
= F̃

(
Q(0)

N (0)

)
+ F̃ F̃ ∗(F (0))−1

(
Q(1)

N (1)

)∗
= F̃

(
Q̃

Ñ

)∗
, (4.213)

so that we recover eq. 4.209, as wanted. Note also that the unitarization of eq. 4.211 also
recovers the correct low-energy behaviour,(

Q̃

Ñ

)
=

(
Q(0)

N (0)

)
+ (F (0) + F (1) + . . . )(F (0))−1

(
Q(1)

N (1)

)
=

(
Q(0)

N (0)

)
+

(
Q(1)

N (1)

)
+ F (1)(F (0))−1

(
Q(1)

N (1)

)
+ . . . (4.214)

Finally, eq. 4.211 can be written as

Q̃ = Q(0) +Q(1) ÃT (0) − M̃M (0)

A(0)T (0) − (M (0))2
+N (1) M̃A(0) − ÃM (0)

A(0)T (0) − (M (0))2
(4.215a)

Ñ = N (0) +Q(1) M̃T (0) − T̃M (0)

A(0)T (0) − (M (0))2
+N (1) T̃A(0) − M̃M (0)

A(0)T (0) − (M (0))2
. (4.215b)

Note that the unitarized partial waves Ã, M̃ and T̃ , which correspond to the WBGBs
sector, will be computed with the IAM procedure (eq. 4.162a).



Chapter 5

Study of the parameter space for the
ωω scattering

The goal of this section is to study the behaviour of the three unitarization methods
(IAM, N/D and improved K-matrix) when they are applied to the different channels of
ωω → ωω, ωω → hh and hh → hh processes. These methods were studied on sec. 4.3.
Note that the old K-matrix method is not considered here because of its bad analytic
behaviour (lack of a RC), as was explained on sec. 4.3.4.

Some of the considered unitarization procedures cannot be applied to all the possible
channels for all the possible parameters, due to the vanishing of some of the coefficients of
the partial waves (see sec. 3.3.1). Here we will perform a detailed study of these validity
conditions, although a brief summary can be found in table 5.1.

When the unitarization methods can be applied, we provide numerical results for the
various situations to illustrate how the three unitarization methods work in the different
channels, and whether they make predictions which are experimentally ruled out.

Finally, according to sec. 4.2.1, if poles on the first Riemann sheet appear, we will
exclude the region of the parameter space where this happens. Some examples can be
found in figs. 5.18, 5.23, 5.16, 5.28 and 5.30 below.

5.1 Numeric comparison of the three methods

5.1.1 Scalar-isoscalar channel, I = J = 0

The scalar-isoscalar channel (I = J = 0) is a coupled-channel with the ωω and hh elastic
and crossed reactions forming a symmetric 2× 2 matrix. We represent the two diagonal
and the off-diagonal matrix elements as functions of s in fig. 5.1 for four different methods,
all of which satisfy exact unitarity.

IJ 00 02 11 20 22

Method
of

choice

Any N/D
IK

IAM Any N/D
IK

Table 5.1: Unitarization methods usable in each IJ channel. See section 5.1.
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Figure 5.1: Scalar-isoscalar amplitudes, for a = 0.88, b = 3, and all NLO parameters set
to 0 at a scale µ = 3 TeV. From left to right and top to bottom, elastic ωω, elastic hh,
and crossed-channels ωω → hh. Note that, as explained on sec. 5.1.1, the old K-matrix
method gives different results because its complex-s plane analytic structure is not the
correct one. It will be discarded from now on.

The three considered methods (IAM, N/D and IK) agree in predicting a scalar res-
onance that is visible in all the three amplitudes (ωω → ωω, ωω → hh and hh → hh)
between 0.8 and 0.9 TeV. As an exception, we represent in fig. 5.1 the results coming
from the old K-matrix method (eq. 4.155). As explained in sec. 4.3.4, due to the fact
that the analytic structure is not the correct one (there is no RC coming from eq. 4.155),
it gives a different result. Thus, we discard the old K-matrix method from now on.

The other three methods are practically in perfect agreement up to the first elastic
resonance and they start deviating quantitatively only for higher energies. The reason
that there is good agreement between the various methods was discussed on sec. 4.3.5.
Because we have set the NLO terms to 0, AL is small, so that the three resonance equations
become dominated by the tree-level and right-cut parts of the amplitude, which suggests
similar resonance masses for all the methods.

Note that in ref. [39] we show that the resonance found in fig. 5.1 appears even if
we set a = 1 (its SM value with one Higgs): it is sufficient that the coupled-channel
dynamics is strong through a2− b 6= 0 for it to appear. Moreover, with the values chosen
to prepare the figure this a2− b is negative, so the crossed-channels amplitude MJ shown
in the bottom plot is also negative as dictated by eq. 3.141. At last, observe that the
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Figure 5.2: Vector-isovector partial wave. We have taken a = 0.88 and b = 1.5, but
while for the left plot all the NLO parameters vanish, for the right plot we have taken
a4 = 0.003, known to yield an IAM resonance from the work of the Barcelona group [141].
Note that the N/D and K-improved methods are not reliable in this channel, as explained
below on section 5.1.2. They are included to show the lack of agreement with the IAM.

resonance appears in all three elastic or inelastic amplitudes in the same position (though
of course, with different shapes due to different backgrounds).

5.1.2 Vector-isovector channel, I = J = 1

The comparison between the three methods IAM, N/D and IK for the vector-isovector
channel is shown in fig. 5.2. First we set all the NLO parameters to 0 (left plot). Clearly,
there is no good agreement between the three methods. Moreover, if we introduce one
NLO counterterm with an appropriate value to generate a resonance in the IAM, here
a4 = 0.003 as an example (right plot), the N/D and IK methods do not react in the same
way as the former, and fail to yield a vector resonance.

In order to understand this discrepancy, which comes from an elastic channel, consider
that, according to sec. 4.3.5, the definition of both the N/D and the IK methods depend
on having D + E 6= 0. This is due to the fact that a term (D + E)−1 appears on the
definitions of AL(s), AR(s) and g(s) (scalar versions of defs. 4.125). But, in the I = J = 1
channel,

D11 + E11 =
3

(96)2π3v4
(a2 − b)2, (5.1)

which vanishes for a2 = b. This is, in particular, the case of the SM, where a = b = 1.
The SM is not very important for our discussion because it breaks the approximations
used in our effective Lagrangians (see sec. 3.3.4) and, more importantly, it is a region on
the parameter space where there are no strong interactions.

The condition a2 = b also applies to the Higgsless electroweak chiral perturbation
theory, characterized by a = b = 0. This situation is already ruled out by the discovery
of the light Higgs-like particle, but it is still interesting because it is equivalent to two-
flavor low-energy QCD in the chiral limit with v playing the role of fπ and the WBGB
being the pions.

Within a = 0 = b, we know that a vector resonance (the ρ) appears in the spectrum
(because we can look up the answer in QCD), and know what the low-energy parameters
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Figure 5.3: We show the vector-isovector resonance with NLO a4, a5 parameters taken
from large-Nc QCD, b = a2 and a as shown in the legend. The right-most solid line is
the rescaled QCD case, towards the left we approach the EWSBS with a Higgs, where
the resonance is narrow and relatively light for these a4, a5.

are, with good approximation. Fig. 5.3 shows the result of the calculation with the IAM
(solid line). We have taken a2 = b = 0 and a4 = −2a5 = 3/192π2, the large-Nc prediction
for these NLO constants (the other ones are set to 0). The ρ vector-isovector resonance
then comes with reasonable parameters (to see it, substitute v = 246 GeV by f = 92 MeV
in the scale; this amounts to mρ ' 2.1 TeV → 0.79 GeV, just slightly above the actual
0.775 GeV in the hadron spectrum).

The other lines in fig. 5.3 have been computed by increasing a towards 0.88, the
value taken for fig. 5.2. One sees without doubt how the QCD-like resonance becomes
narrower and lighter (this depends on the interplay of a with the NLO parameters a4,
a5), matching the calculation of fig. 5.2. We find that the IK and N/D methods fail to
provide a resonance. Therefore, the IAM is the method of choice for the vector-isovector
channel, given that the other two fail at least for the a2 = b parameter election, while the
IAM yields a resonance that can be continuously matched to the one we know is there
for that parameter set.

The resonance may be exactly fit to data with an adequate choice of the a4 and
a5 chiral parameters to adjust its mass and width. Beyond trial and error, an elegant
method is to couple the resonance to the Chiral Lagrangian in a chiral invariant way and
then integrate the resonance at tree level as done for example in ref. [176] (see also the
early treatment by ref. [177] and the more formal one in ref. [178], as well as that in the
context of Composite Higgs Models in ref. [80]). The tree-level chiral couplings obtained
take the general form

atree
i = ηiγ

tree
( v

M tree

)4

, (5.2)

where i = 4, 5, η4 = −η5 = 12π and γtree = Γtree/M tree with M tree, Γtree being the tree-
level vector-resonance parameters. Thus the tree-level s2 term induced by the resonance
is

Atree
11 (s) = s2

(
p4a

tree
4 + p5a

tree
5

)
, (5.3)
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where the p4 and p5 constants are obtained from eq. 3.145, B11(µ) = B0+p4a4(µ)+p5a5(µ),
and are given by p4 = 1/(24πv4) and p5 = −2p4. Following ref. [176], we can now
obtain the contribution to the renormalized chiral couplings induced by the resonance by
matching the O(s2) tree level amplitude with the NLO result at the point s = M tree 2, i.
e.

Atree
11 (M tree 2) = ReA

(1)
11 (M tree 2). (5.4)

This identification leads us to

ai(M
tree) = ηiγ

tree
( v

M tree

)4

− B0

p4 + p5

(5.5)

for i = 4, 5. Therefore we get

A
(1)
11 (s) = s2

(
3γtree

2M tree 4
+D11 log

s

M tree 2
+ E11 log

−s
M tree 2

)
. (5.6)

Then, the IAM resonance eq. 4.165 leads us to the II Riemann sheet resonance parameters
in the narrow-resonance limit γ = Γ/M � 1:(

M IAM
)2

=
K11

B11(M tree)
(5.7a)

ΓIAM =
K2

11M
IAM

B11(M tree)
, (5.7b)

which implies the M tree-independent result γIAM = K11

(
M IAM

)2
, or

ΓIAM =

(
M IAM

)3

96πv2
(1− a2), (5.8)

which is recognizable as a version of the so-called KSFR relation (slightly generalized to
a 6= 0, see refs. [179, 180]). This is here a restriction arising from the constraint of exact
unitarity, that has been discussed in ref. [162] and references therein and is a non-trivial
relation between three observable quantities.

We also have the equation

M IAM = M tree

(
2ΓIAM

3Γtree

)1/4

, (5.9)

which relates the resonance parameters with the tree level ones. This is a very consistent
result showing that the IAM method properly predicts a vector resonance whenever
M tree,Γtree > 0, in which case the chiral parameters receive a contribution and may be
dominated by a vector resonance. For example M IAM = M tree implies ΓIAM = (3/2)Γtree

which is a quite reasonable result taken into account the tree-level nature of the vector
field integration performed to estimate the chiral parameters.

However, the N/D and IK unitarization methods fail to predict this resonance for the
appropriate values of the chiral parameters. First of all, they are not even defined for
a = b. For a 6= b, but still in the parameter region close to the SM (where a ∼ b ∼ 1), we
have D11 +E11 ∼ 0. As discussed on sec. 4.3.5, the methods are well defined in this case,
but we have AL ∼ AR, which means that the IAM method is very different from the N/D
and IK methods. Thus, as the IAM method works pretty well in this channel according
to the previous discussion, we have to give it preference over the other two methods, not
appropriate to describe the vector channel.
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Figure 5.4: Scalar-isotensor amplitudes for a = 0.88, b = a2, and the NLO parameters
set to 0. All three unitarization methods agree qualitatively and with the perturbative
amplitude too, as loop corrections are small. Here we plot both the imaginary part (top
set of lines) and the real part (bottom set). That the real part is negative reflects the
repulsive interaction in this channel given by −(1− a2) < 0 in eq. 3.138.

5.1.3 Scalar-isotensor channel, J = 0, I = 2

We now consider the isotensor channel, where a resonance, if there ever was one, would
distinctly appear, for instance, in equal-charge ω+ω+ spectra. Fig. 5.4 shows the resulting
amplitude for a = 0.88, b = a2 and all NLO parameters set to 0.

We plot both the real and the imaginary parts of the three unitarized amplitudes and
obtain a moderately weak, repulsive partial wave that does not bind a resonance (as seen
from the negative real part). All three unitarization methods give a consistent picture:
the unitarized interaction has a slightly larger real part and slightly smaller imaginary
part than the (unitarity-violating) perturbative one.

In fig. 5.5 in turn we plot the same isotensor amplitude for a = 1.15. Now the
real part has opposite sign (attractive interaction) and grows more rapidly, with all the
unitarization methods agreeing and once more tracking perturbation theory until about
the end of our energy interval at 3 TeV.

5.1.4 Tensor-isoscalar channel, J = 2, I = 0

In hadron physics there is a well known f2(1270) resonance that is broad and visible in
π+π− spectra. Its mass is well above the 775 MeV of the vector ρ, which is natural because
the d-wave is smaller than the p-wave due to the pl suppression factor near threshold.

In fig. 5.6 we show the tensor-isoscalar channel in perturbation theory, which is indeed
small, with all the NLO parameters set to 0, and a = 0.88. As shown in the figure legend,
b is successively taken equal to a2 to show the elastic amplitude, and equal to a2/2 to
expose the other, inelastic and hh amplitudes. All are of course real and quadratic in s
(because K02 = 0, the LO O(s) vanishes).

Next we show, in fig. 5.7, the comparison between the N/D and IK method in uni-
tarizing the partial wave with I = 0, J = 2. The IAM method vanishes and cannot be
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Figure 5.5: Scalar-isotensor amplitudes for a = 1.15, b = a2, and the NLO parameters
set to 0. All three unitarization methods agree qualitatively once again, even though
now the amplitudes are strong. The real part (corresponding to the set of lines larger at
low-E, since it receives a tree-level contribution unlike the imaginary part) is now positive
because of the sign reversal of (1− a2) respect to figure 5.4.

Figure 5.6: Tensor-isoscalar amplitude for a = 0.88, b as shown, and the NLO parameters
set to 0. The amplitude is real.
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Figure 5.7: Comparison of the two available methods of unitarization for the isoscalar-
tensor channel I = 0, J = 2 with b = a2 (only one channel). The a4, a5 constants have
been fixed to their values in large-Nc gauge theory, so the left plot with a=0 reproduces
the QCD situation with a broad, heavy f2-like resonance. The right plot shows how this
becomes narrow for a = 0.88. Both N/D and IK methods agree well.

used without information from NNLO, because here the LO in perturbation theory is
zero (K02 = 0).

In the left plot we have set a = b = 0 and a4 = −2a5 = 3/192π2 as in fig. 5.3.
The IK method clearly shows, and the N/D method is suggestive of, a QCD-like f2

resonance (rescaling again v = 246 GeV to fπ = 92 MeV, the 3.5 TeV resonance mass
becomes 1.3 GeV, in very good agreement with the experimental 1.27 GeV f2 resonance
in the hadron spectrum; and this with no free NLO parameters, since they are taken from
large-Nc).

In the right plot we have now increased a = 0.88, with b = a2 still fixed to avoid the
coupled-channel situation. The resonance is seen to become lighter and narrower, and
both unitarization methods qualitatively agree in predicting the resonance though the
mass is slightly different.

If we now lift the b = a2 requirement, because this is an isoscalar channel, the hh
system becomes coupled to ωω. Then the resonance should be visible in both particle
spectra, and also in the channel-coupling amplitude; all three are shown in fig. 5.8 where
the now inelastic resonance is clearly visible. Its mass is very similar to the purely elastic
case, and both unitarization methods continue being in qualitative agreement.

We use the opportunity to show the appearance of this resonance also as a consequence
of the channel coupling induced by the parameter e of the effective Lagrangian. The IAM
below does not capture the tensor channel, and the scalar one that the IAM does capture
is only sensitive to the combination d+ e/3 which does not allow to disentangle the two
parameters. To see the separate effect of e we need to examine the tensor channel1, as
seen in eq. 3.142, and this can be carried out with the N/D or IK methods. The result of
this analysis is shown in fig. 5.9. To prepare it, we have taken a = 0.95 and b = a2/2. If
all the NLO parameters vanish, there is no low-energy resonance in this tensor-isoscalar
channel. Adding e at the level of 3 − 4 × 10−3 or more causes a resonance to enter the
low-energy region.

1This arises naturally because the ∂µh∂
µh contraction that multiplies d in eq. 2.31 is a scalar, while

the ∂µh∂
νh one that accompanies e has both scalar and tensor components.
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Figure 5.8: Isoscalar-tensor amplitudes (imaginary parts) for a = 0.88, b = a2/2, and the
NLO parameters set to 0. From left to right and up to down: elastic ωω, elastic hh and
crossed-channels amplitudes.

Figure 5.9: The tensor-isoscalar J = 2, I = 0 coupled channels analyzed with both
IK (dashed lines) and N/D (solid line) methods can show a resonance induced by the
parameter e. The line thicknesses correspond to different values of the NLO E.
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Figure 5.10: The real tensor, isotensor I = J = 2 amplitude in NLO perturbation theory
for a = 0.88 and two values of b.

5.1.5 Tensor-isotensor channel, J = 2, I = 2

The last partial wave that does not vanish at NLO in perturbation theory, and that to our
knowledge has not been considered in the literature except in ref. [150] in the context of
the Higgsless ECL model2, is the tensor-isotensor channel. Here again K22 = E22 = 0, so
that the amplitude in perturbation theory is real for physical energy. The non-vanishing
constants, B22 and D22 are given in eq. 3.140 below and the amplitude is drawn in fig. 5.10
in perturbation theory.

Moreover, fig. 5.11 shows this computation in perturbation theory for the case b = a2

together with the isotensor-scalar one and also the two isoscalar amplitudes. Comparing
those of equal I we see that larger J is suppressed below 4πv ∼ 3 TeV (more so for the
scalar channel, since the scalar-isoscalar amplitude is strongly interacting). Curiously,
for J = 2 the isotensor wave is stronger than the isoscalar one.

The unitarization of the J = I = 2 channel is not possible in the IAM method because
K22 = 0, but both IK and N/D methods concur in the presence of a resonance, as seen
in fig. 5.12, when the a4 NLO parameter is large enough. It is worth remarking that, for
a given a4, m11 < m22, so that having this resonance in the 2-3 TeV region entails the
presence of the vector-isovector (ρ-like one) in the 1-2 TeV energy interval.

As we have established that the convergence of the partial wave expansion is very
good by comparing the J = 2 and J = 0 amplitudes, and that the order of the spectrum
of resonances is the natural one, with those of lower angular momentum appearing at
lower energy, we concentrate in the following on the three cases that are accessible to the
NLO-IAM, the 00, 11 and 20 channels; only the first one requires the coupled-channel
treatment.

2See appendix D.4.
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Figure 5.11: Moduli of the isoscalar and isotensor NLO perturbative amplitudes theory
for a = 0.88 and b = a2, showing good convergence of the partial wave expansion in the
low energy region (the J = 2 waves are much smaller than the two J = 0 waves).

Figure 5.12: Tensor-isotensor resonance as function of the NLO a4 parameter for the
IK-matrix (left plot) and the N/D method (right plot).
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5.2 Systematic numerical study of the IAM

In this section we undertake the systematic study of the IAM with the help of a com-
puter. The calculations are very straightforward and involve simple algebraic formula (no
integrations, as the dispersion relation has been analytically solved) and the inversion, at
most, of dimension-two matrices. The IAM cannot handle, without NNLO information,
the higher partial waves with J = 2 or beyond, but we have seen in fig. 5.11 that, under
natural conditions, these are quite smaller in the low-energy region. For the three domi-
nant low-energy amplitudes, the IAM based on NLO perturbation theory is reliable and
powerful, so we proceed with it alone.

First, in sec. 5.2.1 we address the one-channel IAM in eq. 4.163a for the ωω elastic
scattering. This involves setting b = a2 and studying the behavior of the amplitudes upon
varying each of the active parameters a, a4 and a5. These results are just reassuring as
they are known to a large extent. Then, sec 5.2.2 addresses the coupled channels, by
means of eq. 4.162a, and it is here that we make a totally new contribution.

One of our findings is a coupled-channel resonance akin to the low-energy σ meson
but that can be generated by purely ww − hh interactions independently of the elastic
potential strength between two ωs or two hs. We have highlighted this curious object in
a letter (our ref. [39]).

5.2.1 Purely elastic scattering with b = a2

The current 2σ bounds on the a parameter are, from CMS (ref. [128]), a ∈ (0.87, 1.14);
and, from ATLAS (ref. [127]), a ∈ (0.96−1.34). The discussion in page 14 compiles these
bounds. We will take as reference a fixed value of a = 0.95 with NLO parameters set
to 0, and later exemplify the sensitivity to each parameter (a is better chosen different
from 1 because of the factor (1 − a2) that enters the leading order amplitudes). In any
case, the sensitivity to a is displayed in fig. 5.13. Generally speaking, for a < 1 (left plot)
there is a broad scalar resonance akin to the σ in hadron physics, and the other channels
are nonresonant. For a > 1 we can see a different situation in which the scalar strength
significantly diminishes, but instead the isotensor wave becomes strong and possibly
resonant (because the factor 1 − a2 changes sign, so its normally repulsive amplitude
becomes attractive). As observed by Espriu et al., in a large swath of parameter space
with a > 1 there are violations of causality, see fig. 5.23.

We now take the top right plot in fig. 5.13 and add an NLO term proportional to
either a4 or a5, with the outcome plotted in fig. 5.14. The effect of a4 of order 10−3

(left plot) is to produce a very narrow vector-isovector resonance, and narrowing plus
making the scalar-isoscalar one lighter. The effect of a5 (right plot) at this same level of
intensity is only dramatic in the scalar-isoscalar channel, while the vector one remains of
moderate intensity and hardly resonant at all. This is in agreement with the independent
observation in ref. [141]. The vector resonance induced by positive a4 can also be seen in
the scattering phase shift in fig. 5.15. The left plot shows the phase motion in the three
lowest-E channels with all NLO parameters set to 0. No resonance is seen, in agreement
with the top right plot of fig. 5.13 (a = 0.95). The right plot in fig. 5.15 shows clear
resonant phase motion corresponding to the resonances in fig. 5.14, where we study the
effect of both a4 and a5. The good agreement with ref. [141] is remarkable, both works
agreeing on the appearance of a pole on the first Riemann sheet in the isotensor channel
for negative enough values of either a4 or a5.
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Figure 5.13: Moduli of the lowest elastic ωω → ωω partial waves in the IAM for b = a2

(no coupled channels) as function of a. From left to right and up to down, a = 0.75, 0.95,
1.25. We will take the top right plot (a = 0.95) as reference for the parameter exploration
in the next graphs.
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Figure 5.14: Moduli of the lowest elastic ωω → ωω partial waves in the IAM for b = a2

(no coupled channels) showing the effect of a4 (left) and a5 (right) both positive and
alternatively equal to 0.002. Here a = 0.95. We see a light scalar-isoscalar resonance,
a vector-isovector resonance around a TeV in the left plot (that moves to higher masses
for smaller values of the positive a4 that induces it), and an inconspicuous isotensor
amplitude.
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Figure 5.15: Scattering phase shift of the lowest elastic ωω → ωω partial waves in the
IAM for b = a2 = 0.952 (no coupled channels), a4 = 0 (left plot) and a4 = 0.002 (right
plot). We can see how indeed the addition of an a4 at the level of 10−3 generates phase
motion crossing π/2 in the right plot corresponding to a resonance in both the scalar and
vector channels.

This feature is shown in fig. 5.16, is in full agreement with the results of ref. [141]
and, as discussed in sec. 4.2.1, excludes this parameter space within the IAM. In order to
produce this and the following maps in parameter space, we use the numerical method,
described in sec. 4.2.2, which involves the computation of numerical Cauchy integrals.

In fig. 5.16 we call the experimentally disfavored regions so because poles appear
with |s| ≤ (837 GeV)2 (scalar-isoscalar and isotensor channels) and (1.22 TeV)2 (vector-
isovector channel), and this is at odds with absence of LHC signals.

The vector-isovector channel is here exceptional in that the two variables enter with
opposite signs, in the combination a4−2a5, [see eq. 3.137], whereas in all other four NLO
amplitudes they come with equal sign. Thus, the slant in the middle plot is opposite to
the other two.

For broad swipes of a4–a5 parameter space the IAM predicts either isoscalar or isovec-
tor resonances or both. In fig. 5.17 we show an example of a pole in the second Riemann
sheet of elastic ωω scattering in l = 0, the A00 partial wave for one channel only (b = a2).

Therein, the continuation to the II Riemann sheet has been obtained with eq. 4.42 and
the resonance appears as appropriate below the real, physical s-axis (bright yellow line).
This pole corresponds to the scalar IAM resonance shown for physical s in fig. 5.14 (blue
solid line there) though a4 is somewhat smaller here. This serves as illustration of the
pole structures in the complex plane (unstable particles or resonances) that accompany
our resonant shapes for physical s.

A lot of the a4–a5 parameter space represented in ref. [141] is experimentally disfavored
because the mass-range where the resonances appear is being covered by LHC data (see
refs. [59–61]), with none found yet, though such experimental bounds are not very strong
because the couplings between the new resonances and the detected SM leptons are quite
arbitrary (from the effective theory point of view), so it is difficult to interpret the bounds
beyond particular models.

In fig. 5.18 the simultaneous effect of a (with a2 = b) and a4 is shown, again swiping
the parameter space looking for resonances. Note the presence of a resonance on the first
Riemann sheet in the isotensor channel even for a < 1 and sufficiently negative values
of a4. For a > 1 (and b = a2), there is no resonance on the first Riemann sheet. For
a < 1, we can find a pole in both the isoscalar and isovector channels. For a > 1, only
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Figure 5.16: From left to right and top to middle, isoscalar (IJ = 00), isovector (IJ = 11)
and isotensor (IJ = 20) channels in elastic ωω → ωω scattering. For a = 0.90 (different
from our base scenario so we may compare with Espriu et al. [141]), b = a2, we show the
a4-a5 parameter map, setting the other NLO parameters to zero. Note the appearance
of a pole on the first Riemann sheet for IJ = 20 and negative enough values of both a4

and a5.

Bottom: same parameter space, reprinted Fig. 6 with permission from ref. ([158],
Domenec Espriu, Federico Mescia, Physical Review D, 90, 015035, 2014). Copyright
2014 by the American Physical Society.

The bottom left plot shows the presence of resonances. Note that the comparison with our
plots is very satisfactory. The botom right plot only shows isoscalar/isovector resonances
with MS,V < 600 GeV, which are experimentally disfavoured [158].
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Figure 5.17: Example pole of the isoscalar elastic amplitude with b = a2 (only the
ωω → ωω channel is active), a = 0.95, a4 = 10−4, and all other NLO parameters set
to 0. Pole in the second Riemann sheet (below the physical, real-s axis highlighted in
bright yellow online). The lower (salmon online) and upper (blue online) surfaces are,
respectively, the first and second Riemann sheets.
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Figure 5.18: From top to bottom, isoscalar (IJ = 00), isovector (IJ = 11) and isotensor
(IJ = 20) channels. a2 = b vs. a4. Note the presence of poles on the I Riemann sheet
for certain region of the a > 1, a4 < 0 parameter space.
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an isotensor resonance is to be found.
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Figure 5.19: Moduli of the lowest (I = J = 0) partial waves in the IAM for b 6= a2 = 1
(all the strong dynamics comes from the coupled channels). From left to right and top
to bottom, b = −1, b = 2, b = 3 (the first and third are almost equal since they are
symmetric respect to b = 1). A scalar resonant structure is apparent for s = 1 TeV2;
because more extreme values of b lower its mass, we are able to give a bound on the value
of b, that must be roughly contained in (−1, 3), as explained in our ref. [39]. We will
take the middle plot as reference for the parameter exploration in several of the following
graphs.

5.2.2 Scattering ωω in the presence of b 6= a2

Setting b 6= a2 = 1 opens the inelastic scattering ωω → hh channel in the absence
of elastic strength. Figs. 5.19 and 5.20 show the dependence on b. Almost all our
computed perturbative amplitudes are symmetric around b = a2 = 1, as can be seen
on sec. 3.3.1. The only exception is the scalar-isoscalar ωω → hh channel-mixing M0

partial wave in eq. 3.141. Note that this asymmetry then appears in other channels due
to the unitarization (which can be thought of as resumming perturbation theory), but
the effect is small, so that the left and right plots are quite similar. The scalar-isoscalar
resonance shown is very interesting and the object of focuse of our letter [39].

Fig. 5.21 shows a comparison between the three unitarization procedures (IAM, N/D
and Improved K-matrix) which are valid in the scalar-isoscalar IJ = 00 channel. The
IAM is within 2% on the Improved K-matrix and within 10% of the N/D3. Anyway, the

3For a short review of these unitarization procedures, and more information about the validity ranges
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Figure 5.20: Squared moduli of the lowest (I = J = 0) partial waves in the IAM for
b 6= a2 = 1. Left: |A|2 (elastic channel ωω → ωω). Right: |M |2 (crossed-channels
ωω → hh). We show b = 1.1 (lowest, solid black line), b = 1.5 (dot-dashed, red online)
and b = 3 (dotted, blue online).

Figure 5.21: Comparison of the three unitarization methods that we consider (IAM, N/D
and K-improved) in the presence of coupled ωω, hh channels, for IJ = 00. ImA =
|A|2 + |M |2 is shown.
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Figure 5.22: Top: moduli of the lowest elastic ωω → ωω partial waves in the IAM for
b 6= a2 6= 1 (strength from both elastic and coupled-channel dynamics). Top left plot:
a = 0.75, b = 0.9, showing much strength in the scalar channel, presumably due to a σ
resonance. Top right plot: a = 1.25, b = 1.1, showing a pole on the second Riemann
sheet in the isotensor channel, clearly seen also on the bottom plot imaginary part of the
amplitude in the complex s-plane.

three methods are valid because, for a2 6= 1, we have that the LO term does not vanish
(K 6= 0) for all the three channels (ωω → ωω, ωω → hh and hh → hh), thus ensuring
the validity of the IAM. And D + E 6= 0, so that the decomposition of the NLO part of
the partial waves between a sum of two functions, one with a right cut (RC) and another
with a left cut (LC), does work.

Figs. 5.22 shows the lowest elastic ωω → ωω partial waves in the presence of a 6= 1
(as well as b 6= a2), so there is both elastic and inelastic potential strength. The scalar
resonance is then more similar to the standard QCD σ resonance.

A novelty is the appearance of a pole on the second Riemann sheet of the isotensor
channel for a = 1.25, b = 1.1. This is very much unlike QCD, where the isotensor channel
is weak and repulsive; while there is no π+π+ resonance in the hadron spectrum, this is
still allowed by current constraints on the W+W+ one.

and the differences between the methods, see sec. 4.3.5.
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Figure 5.23: From top to bottom, isoscalar (IJ = 00, isovector (IJ = 11) and isotensor
(IJ = 20) channels. Note the presence of a pole in the first Riemann sheet of the isovector
channel in quite some of the parameter space with a > 1. All the NLO parameters are
set to zero.
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Figure 5.24: Dependence of the pole position for a2 = 1 (lower curve) and a =
√

1− ξ,
b = 1 − ξ, ξ = v2/f 2 (upper curve, blue online). The IAM is used here. Left: resonant
mass and width (defined as in eq. 4.35). Right: real and imaginary part of the pole
position in terms of the Mandelstam variable s.

However, as we show in fig. 5.23, this case with a > 1 is quite critical, because most of
the parameter space features an isovector pole on the first Riemann sheet, so that much
of this parameter region must be ruled out or declared beyond our validity range. Only a
small part of the a > 1 parameter space shows an isotensor pole on the second Riemann
sheet while excluding an isovector pole on the first one, and simultaneously remains out
of experimentally disfavored values of a.

On the other hand, the behaviour for a < 1 is more standard, showing a resonance on
the second Riemann sheet only in the isoscalar channel. This resonance is quite broad,
and only becomes experimentally disfavored for relatively large values of a2 − b.

In fig. 5.24 we study the position of a resonance in the scalar-isoscalar channel (IJ =
00) for both a2 = 1 and a =

√
1− ξ (b = 1 − ξ, ξ = v2/f 2). In the first case, a2 = 1,

the strong interaction comes from the ωωhh vertex, that is, from the crossed-channels
ωω → hh. However, a resonance which appears in this crossed-channels also re-enters in
the elastic one because of a rescattering process ωω → hh → ωω. But it enters in the
same position of the II Riemann sheet in both channels (elastic and cross-coupled), as
shown in fig. 5.25. The a =

√
1− ξ, b = 1 − ξ, ξ = v2/f 2 corresponds to the Minimal

Composite Higgs Models, which introduce a symmetry breaking SO(5) → SO(4). See
refs. [78–81]) for further detail.
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Figure 5.25: Imaginary part of the unitarized partial waves in the II Riemann sheet.
a = 1, b = 2 and all the NLO parameters set to zero. The IAM is used here. Top:
elastic channel ωω → ωω (ImA). Bottom: crossed-channels ωω → hh (ImM). Note
that, although the amplitudes are different, the pole appear at the same point of the
II Riemann sheet.
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Figure 5.26: Sensitivity to d. We depict the lowest (I = J = 0) partial wave in the
IAM for b = 2 6= a2 = 1. Left: moduli of the amplitudes with d = 0.01 (top) and
d = −0.01 (bottom). Right: real (top) and imaginary (bottom) value of that partial
wave for d = −0.01, where we see that the channel-coupling partial wave is analytic but
has a zero.
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Figure 5.27: Moduli of the lowest (I = J = 0) partial waves in the IAM for b = 2 6= a2 = 1.
Left plot: e = 0.01. Right plot: e = −0.01. The result is similar to fig. 5.26. because, of
course, this channel depends only on the parameter combination d+ (e/3), which serves
as a check.



116 CHAPTER 5. STUDY OF THE PARAMETER SPACE

The d and e parameters are studied in figures 5.26 and 5.27, respectively. However,
note that they appear in the combination d+ (e/3) on the lowest partial wave (IJ = 00),
so the IAM applied to any future strongly coupled resonance would be insufficient to
separate them and one would need to resort to the J = 2, I = 0 resonance in fig. 5.9
above to obtain e independently of d.

We concentrate now on the I = J = 0, a = 1, b = 2 case, which has an isoscalar pole
on the second Riemann sheet. A peak on ωω → hh is shown in figs. 5.26 (right) and 5.27.
This is expected, since d and e accompany four-particle operators ωωhh.

In fig. 5.28 we see that for positive values of d or e, the isoscalar pole weakens and then
disappears. But for negative values, a pole on the first Riemann sheet emerges. The case
of d = −0.01 shown in fig. 5.26 is curious because there is no pole on the first Riemann
sheet below 3 TeV so we should not a priori reject all that structure in the corresponding
plots of fig. 5.26, including a zero of the amplitude at high energies. Of course, we should
be cautious: perhaps, for these small negative values of d the pole simply moves to higher
energies and we should not trust the computation (or discard negative d altogether).

Finally, we study the dependence of all amplitudes on the g parameter (the only one
that we have kept from the pure Higgs scattering sector, as needed to renormalize our
amplitudes). It most directly produces an enhancement of hh→ hh scattering that starts
at NLO, as can be seen in fig. 5.29, since it comes from a (∂µh∂

µh)2 term in the effective
Lagrangian.

In fig. 5.30 we study the parameter combination a = 1 and b > 1.5 together with a
varying g, so we see the interplay of the channel coupling with the Higgs-sector dynamics.
We find a proper isoscalar pole on the II Riemann sheet for positive g. If either g or b are
somewhat large, the isoscalar resonance enters the experimentally disfavored zone where
LHC data are having an impact. On the contrary, negative values of g introduce a pole
on the first Riemann sheet, so we must exclude those.
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Figure 5.28: Scalar-isoscalar channel (IJ = 00), with a = 1, b = 2. Top: d-e parameter
map looking for poles. Bottom: imaginary part of the elastic ωω scattering (d = e =
−0.005). The isovector and isotensor channels, not shown, have no poles in the region
of interest [|s| < (3 TeV)2]. As discussed above in sec. 4.2.1, the black region contains a
pole on the first Riemann sheet (and a conjugate pole that is outside our circuit).



118 CHAPTER 5. STUDY OF THE PARAMETER SPACE

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ww->ww ww->hh hh->hh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 5.29: Dependence on g, that we find weak for natural values thereof. Displayed
are the moduli of the lowest (I = J = 0) IAM partial waves for b = 2 6= a2 = 1. Left
panel: from top to bottom, g = 0.002, g = 0.005, g = 0.01. Right panel: negative g
values of equal magnitude.
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Figure 5.30: Top: map of the b–g parameter space, seeking poles in the isoscalar channel
(IJ = 00), with a = 1 fixed and the remaining NLO parameters set to zero. The isovector
and isotensor channels have no poles in the region of interest, |s| < (3 TeV)2. In the black
regions there are two poles above and below the real axis on the I Riemann sheet, and
we capture at least one with Cauchy’s theorem, excluding the corresponding parameter
swath. Bottom: explicit plot of these two poles for fixed parameter values b = 2.4,
g = −0.08 (plotting again the imaginary part of the elastic ωω scattering).
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Chapter 6

Conclusions

In this work we have performed a comprehensive study of the unitarized amplitudes
obtained from the the Effective Chiral Lagrangian which describes the Electroweak Sym-
metry Breaking Sector (EWSBS) in the TeV region. A next-to-leading order (NLO)
computation has been performed within a (massless) Effective Field Theory (EFT) to
obtain the one-loop scattering amplitudes. The (weak) coupling with γγ and tt̄ states
has also been considered. Table 6.1 summarizes the applicability range of each unitariza-
tion procedure, and could be used as a guide for developers of Monte Carlo simulation
programs. The Inverse Amplitude Method (IAM), N/D and improved K-matrix (I-K)
methods are considered. The couplings with γγ and tt̄ use extended versions of the IAM
and the N/D.

The first kind of process which has been studied is the scattering between the EWSBS
constituents themselves. Under the assumptions of the Equivalence Theorem, they are
the 3 would-be Goldstone bosons, whose scattering cross sections are equivalent to those
of the longitudinal modes of W± and Z gauge bosons1, and the Higgs-like particle h. The
processes considered are the elastic channel ωω → ωω, and the cross-channels ωω → hh
and hh→ hh.

The Effective Lagrangian in the massless limit (eq. 2.31) has seven free parameters if
one considers only those needed for absorbing the one-loop divergencies. Those named
a and b, respectively provide elastic ωω → ωω and cross-channel ωω → hh strength at
LO. The other 5 parameters are the NLO counterterms: the elastic a4 and a5 (inherited
from the old Electroweak Chiral Lagrangian), d and e (that couple the two channels at
NLO) and g (in the pure hh → hh sector). This is the minimum number of parameters
necessary to obtain a renormalized theory at NLO for massless ω and h bosons. The
parameter set, the combinations in which they appear2, and the experimental reactions
useful to extract them, are all summarized in table 6.2.

Some parts of the computation have been succesfully cross-checked with the literature.
For instance, in appendix D.4, we have compared the elastic NLO partial waves with the
ECL (Higgs-less) model of ref. [150], when a = b = 0. And the work of Espriu et al. [158]
is also a good check of the unitarized parameter space of the a4 and a5 NLO coefficients
(see fig. 5.16 above).

Five unitarization methods have been described, aiming at classifying their respective
strengths and weaknesses. From them, we argued that the three mentioned in the pre-
vious page satisfy all desirable properties (describe several IJ channels, produce unitary

1See sec. 2.1.
2At the level of NLO partial waves without unitarization.
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IJ 00 02 11 20 22

Only
EWSBS

Any N/D
IK

IAM Any N/D
IK

Coupling
with
γγ

(a2 = b)

IAM
+

eq. 4.176

N/D
+

eq. 4.194
–

IAM
+

eq. 4.176

N/D
+

eq. 4.194

Coupling
with
γγ

(a2 6= b)

crs. IAM
+

eqs. 4.190

crs. N/D
+

eq. 4.197
–

IAM
+

eqs. 4.176

N/D
+

eq. 4.197

Coupling
with
tt̄

(a2 = b)

IAM
+

eq. 4.201
– – – –

Coupling
with
tt̄

(a2 6= b)

crs. IAM
+

eqs. 4.215
– – – –

Table 6.1: Unitarization methods usable in each IJ channel, both for the EWSBS itself
and the couplings to γγ and tt̄ states. “crs.” refers to the usage of the matricial version
of the corresponding unitarization procedure in the presence of crossed channels, and it
is shown only for the couplings with γγ and tt̄. Data taken from tables 5.1 and 4.1.
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and analytic amplitudes, are independent of the renormalization scale, and agree with
perturbation theory at low energy) and provided explicit constructions for them based on
exact (elastic) dispersion relations. These are the IAM, that we have studied at length,
the N/D and the I-K (those appearing in table 6.2). All three have been compared.

The inclusion of the cross-channels ωω → hh and hh → hh in the unitarization is
a novelty of this work. Because of this, we made the case for an interesting potential
phenomenon to be sought at the LHC run II and beyond3 (see our ref. [39]): a possible
new f0-like scalar-isoscalar resonance in the WLWL−hh coupled channels, caused by the
channel-mixing interaction even when direct elastic interactions in both channels are weak
(a ' 1), as long as b is large enough (to provide coupled-channel strength). Note that,
though the LHC starts imposing relatively significant constraints on the a parameter,
it has not made much progress of substance in constraining b, so this coupled-channel
resonance is one of the most interesting strongly interacting objects that can be sought
for at the LHC run-II and beyond, because it may appear at relatively low-energies of
1 TeV or less (because of its somewhat large width, it can easily have escaped detection
so far).

The alternative, weakly coupled resonances that do not saturate unitarity, imply
parameters fine-tuned to be very close to a = b = 1, those of the Standard Model (that
also remains a viable theory with current data). We do not have a strong reason to predict
this f0-like resonance, rather observe that it features in the largest part of parameter space
of the Effective Lagrangian with the known particle content, that supports strong channel
coupling. The alternative, weakly coupled resonances that do not saturate unitarity,
imply parameters fine-tuned to be very close to those of the SM, a = b = 1.

The three best methods (IAM, N/D and I-K) are all applicable to the I = J = 0
coupled-channel partial wave, and to the exotic I = 2, J = 0 ωω channel. For any given
set of parameters in the Lagrangian, the three methods are in qualitative agreement. In
particular, they all produce a σ-like resonance when the interactions become strong, and
the mass values obtained agree to within a few percent, which is quite remarkable and
means that the model dependence is well controlled by imposing all the necessary theory
constraints.

In the I = 1 = J channel (covering for example the W ′ and Z ′ bosons associated to
Composite Higgs Models, as long as they are strongly coupled to ωω) the IAM is the
method of choice because the other two cannot be constructed in a renormalization-scale
invariant way. Provided that there is no coupling with hh states, the KFSR relation in
eq. 5.8 holds. If we require a ≈ 1, as suggested by the LHC bounds, this leads to small
widths for the resonances appearing in this channel (always for a2 = b), like in the study
of the a4 and a5 parameter space by Espriu et al. [158].

Finally, for the two channels with J = 2 (where in particular f2-like resonances might
appear, as well as exotic ones in W+W+ same-charge combinations) the IAM cannot be
constructed with NLO amplitudes (because the lowest order is s2 for these), but the other
two methods do work and are in qualitative agreement.

In fig. 6.1, we have compared, in the Standard Model, the total production of W+W−

versus those produced with longitudinal polarization. We conclude from it that, within

3Even more, outside particle physics one can find strongly coupled channels with small elastic inter-
action (see also ref. [39]). For instance, C2 +O2 → C2 +O2 or CO +CO→ CO+CO elastic scattering is
negligible against the coupled-channel C2 + O2 → 2CO, a strong exothermic oxidation reaction, freeing
almost 11 eV, driven by the large phase space. What is perhaps distinctive in our mechanism is that the
coupled-channel is large, with no phase space advantage (all particles being approximately massless).
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Figure 6.1: Production of W+W− (dark gray, blue online) versus longitudinal modes
W+
LW

−
L (light gray, red online) in the SM. x–axis in GeV and y–axis in events / 33.3 GeV.√

s = 13 TeV, L = 10 fb−1. MadGraph v5 [126] has been used.

the SM, ωLωL is a rare process at energies above a TeV. The developing of a Monte
Carlo simulation for the unitarized partial waves with strong interactions is still work in
progress.

Once the presumed strongly interacting sector has been studied, we have coupled it
to two other channels to identify promising final states as well as interesting production
mechanisms. One of them is the coupling of the EWSBS with the two photon state; we
have studied, in our ref. [36] and here in sec. 3.2.2, the scattering amplitudes

γγ → ωω, γγ → hh. (6.1)

The corresponding partial waves for ωω → γγ scattering can be found on sec. 3.3.2,
and we have developed a new perturbative (in electromagnetic α) unitarization procedure
on sec. 4.4. Basically, such a procedure supposes that the WBGBs follow a strongly
coupled dynamics and the photons are weakly coupled to the WBGB sector. As an
additional product we are preparing a study of the processes

γγ → {W+W−, ZZ, hh} (6.2)

as an optimal tool to discern possible new physics related to the EWSB in future collider
data. The hh in the final state is necessary for unitarization, since it could enter the other
channels via rescattering processes like γγ → hh → W+W−. Both in CMS and ATLAS
there are Forward Detector Facilities for detecting events with γγ as initial state at the
TeV range: AFP in ATLAS [105] and TOTEM in CMS [106, 107]. Even without such
forward detectors, there is a study from CMS (ref. [108]) reporting a search for (deep
inelastic) γγ → ωω scattering processes. Although only 2 events are found, since they
consider the

√
s = 7 TeV series of data (with an integrated luminosity of 5.05 fb−1), this

study shows that there is interest in γγ scattering at the LHC.
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Moreover, independently of the data coming from the γγ scattering at the LHC, the
matrix elements of the scattering processes of eq. 6.2 are interesting because they can be
inverted, by applying T-invariance, in order to recover a two photon state as a final one
coming from a strongly interacting EWSBS.

Thus, we have presented a full one-loop computation of the related amplitudes, by
means of the Equivalence Theorem, for the scattering processes γγ → w+w− and γγ →
zz, which should provide a good description of the physical processes of interest if the
EWSBS is strongly interacting, in the kinematic regime mW,Z,h � E � 4πv.

The computation has been performed up to NLO, which in this chiral Lagrangian
context means taking into account all contributing one-loop diagrams generated from L2

in addition to the tree level contributions from both L2 and L4. That means that we have
computed for the first time the quantum effects introduced by the light Higgs-like scalar
and the would-be-Goldstone bosons w± and z altogether as dynamical fields in the loops
of these radiative processes. As part of this computation we have also set clearly here
the proper ‘chiral counting rules’ that are needed to reach a complete NLO result in the
massless limit4 and we have also illustrated the details of the renormalization procedure
involved.

For a further check (this, highly non trivial) of our computation we have done the
same exercise with two different parametrizations of the SU(2)L × SU(2)R/SU(2)L+R

coset, the exponential and the spherical ones5, and we have found the same results, as
expected.

Our final matrix elements for the γγ scattering, summarized in sec. 3.2.2, are surpris-
ingly very short and extremely simple. The case γγ → zz depends just on a and cγ, and
these ECLh parameters appear in the simple form given in eq. 3.55. The case γγ → w+w−

depends on a, cγ, a1, a2 and a3, and they also enter in a very simple way given in eq. 3.57.
In our opinion, one of the most relevant features in these simple results, is the fact that
these two amplitudes are found to be given by ECLh parameters or combinations of them
that are renormalization-group invariant. This is very interesting and a consequence of
our findings in the computation of all the one-loop diagrams from the ECLh that when
added together yield a total contribution that is ultraviolet finite, in both γγ → zz and
γγ → w+w− cases. Specifically, we have found our results are expressable in terms of a,
cγ and the combination (a1 − a2 + a3), none of which is renormalized, as it happens in
the Higgsless ECL case.

Finally, our last study concerns the presence of tt̄ in the final state6. The channels
considered are

{ωω, hh, tt̄} → tt̄. (6.3)

In secs. 3.2.3 and 3.2.4, we give the matrix elements. In appendix B, the spinor chain
computations are given in detail. The partial waves are given in sec. 3.3.3 and the
unitarization procedure, on sec. 4.4.

The unitarization is perturbative in Mt/
√
s. That is, we suppose that the WBGB

dynamics is strongly interacting, while considering the couplings with the top quark as
weak. Note that, in the end, the elastic tt̄→ tt̄ amplitude does not enter the unitarization
procedure. As in the case of the γγ scattering, the study of the parameter space is work
in progress.

4See sec. 2.2 and refs. [19, 30, 46].
5See sec. 2.2 for an definition of the different parameterizations.
6This work has been carried out in collaboration with our visitor from the Universidad Nacional de

Colombia, Andrés Fernando Castillo.



127

To conclude, we believe that we have made a substantive contribution to the discussion
of possible strongly-interacting extensions of the Standard Model, which are currently the
most natural scenario with the particles W , Z and h in the Electroweak Symmetry Break-
ing sector. Thus we have extended previous works prepared long before the discovery of
the 125 GeV Higgs like boson, that did not include it, as for example those in [12].

Furthermore, to consider as many experimental channels as possible, we are introduc-
ing couplings with γγ and tt̄ states.

We hope that the results of table 6.2 will be useful for the developers of Monte Carlo
simulation programs, since it is a comprehensive study of the validity of each unitarization
procedure depending on the channel.

Of course, it can still be that the SM exhausts TeV-scale physics, in which case the
parameters of the effective Lagrangian become a = b = 1 (all the NLO ones vanishing).
Or it can also be that some of them only slightly deviate from the SM values; this could
be suggestive of weakly coupled resonances, and the theory would be unitary far from
saturation. But the strongly interacting regime remains the bulk of the parameter space
to be explored by the LHC run-II.



128 CHAPTER 6. CONCLUSIONS



Appendix A

Mandelstam variables

Take a (p1, p2) → (p3, p4) scattering processes, where p1,2 and p3,4 are, respectively, the
4–momentum of the incoming and outcoming particles. Because of 4–momentum conser-
vation,

p1 + p2 = p3 + p4 (A.1)

If the invariant mass of i particle is mi, then

p2
i = (pi0, pi1, pi2, pi3)2 = p2

i0 − p2
i1 − p2

i2 − p2
i3 = m2

i (A.2)

So, we have, for the four cases (Ei, i = 1, 2, 3, 4),

E2
i = p′2i +m2

i (A.3)

Without loss of generality, for a scattering process in the center of mass (CM) frame, we
can take

p1 = (E1, 0, 0, p
′
1) (A.4)

p2 = (E2, 0, 0,−p′1) (A.5)

p3 = (E3, 0, p
′
3 sin θ, p′3 cos θ) (A.6)

P4 = (E4, 0,−p′3 sin θ,−p′3 cos θ) (A.7)

where θ is the angle between particles 1 and 3 in the CM. The Mandelstam variables1 s,
t and u are defined as

s = (p1 + p2)2 = (p3 + p4)2 (A.8)

t = (p1 − p3)2 = (p2 − p4)2 (A.9)

u = (p1 − p4)2 = (p2 − p3)2 (A.10)

So, using momentum conservation (A.1) and rel. (A.2),

s+ t+ u = p2
1 + p2

2 + p2
3 + p2

4 = m2
1 +m2

2 +m2
3 +m2

4 (A.11)

With eq. (A.3) and defs. (A.4) to (A.10),

p′21,3 =

(
s−m2

1,3 −m2
2,4

)2 − 4m2
1,3m

2
2,4

4s
(A.12a)

t = (p1 − p3)2 = (E1 − E3)2 − p′23 − p′21 + 2p′1p
′
2 cos θ

= m2
1 +m2

3 − 2
√
m2

1 + p′21

√
m2

3 + p′23 + 2p′1p
′
3 cos θ (A.12b)

u = m2
1 +m2

2 +m2
3 +m2

4 − s− t (A.12c)

1See, for example, ref. [40].

129



130 APPENDIX A. MANDELSTAM VARIABLES

Now, if we take the particular case m1 = m2 and m3 = m4 (both incoming and
outgoing particle pairs have the same mass), these last expressions simplify to

p′21,3 =
s

4
−m2

1,3 → p′1,3 =

√
s

2

√
1−

4m2
1,3

s
(A.13)

t = m2
1 +m2

3 −
s

2

(
1−

√
1− 4m2

1

s

√
1− 4m2

3

s
cos θ

)
(A.14)

The scattering angle θ can be expressed as

cos θ =
1√

1− 4m2
1

s

√
1− 4m2

3

s

(
1 +

2(t−m2
1 −m2

2)

s

)
(A.15)

Finally, if all the masses are zero,

t = −s
2

(1− cos θ) (A.16)

u = −s
2

(1 + cos θ) (A.17)

cos θ = 1 +
2t

s
(A.18)



Appendix B

Spinor computation

B.1 tt̄ in the final state

The goal of this appendix is to prove eqs. 3.104,

ū+ (p1) v+ (p2) = +
√
s− 4M2

t = +
√
s+O

(
M2

t

s

)
. (B.1a)

ū+ (p1) v− (p1) = 0. (B.1b)

ū− (p1) v+ (p2) = 0. (B.1c)

ū− (p1) v− (p2) = −
√
s− 4M2

t = −
√
s+O

(
M2

t

s

)
, (B.1d)

where u and v are the spinors associated with the tt̄ final state in ωω → tt̄ and hh→ tt̄
processes. These spinors are defined as1

u(p1, ξ, λ1) =

(√
(p1 · σ)ξ√
(p1 · σ̄)ξ

)
, v(p2, η, λ2) =

( √
(p2 · σ)η

−
√

(p2 · σ̄)η,

)
(B.2a)

where u and v are, respectively, a particle (the top quark, t) and antiparticle (the anti-top
quark, t̄); p, the 4-momentum of the final state particles referred to the center of mass
frame; and ξ, η, the corresponding 2-component spinors. These spinors are normalized
(see refs. [40–42]) by

ξ†ξ = η†η = 1. (B.3)

Note that the square roots of eqs. B.2 are defined for complex 2×2 matrices. The square
root of a matricial operator, in its diagonal form, is defined as the diagonal matrix of
the square root of its eigenvalues. Note that the positive determination is used here (at
the end, the eigenvalues will be real and positive). If the operator is not in a diagonal
form, then it will be rotated in order to compute the square root matrix. Note that, in
general, this definition of a square root does not verify the property

√
AB =

√
A
√
B,

only applicable when A and B have a common eigenbasis.

1See, for instance, refs. [40–42].
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Now, let us use the Weyl basis (see refs. [40–42]), where

γ0 =

(
0 12×2

12×2 0

)
(B.4a)

σ ≡ (12×2, σ̂) (B.4b)

σ̄ ≡ (12×2,−σ̂) (B.4c)

σ̂ ≡ (σ1, σ2, σ3), (B.4d)

σi (i = 1, 2, 3) being the Pauli matrices. Furthermore, since we are in the center of mass
frame,

p1 = (E, ~p), p2 = (E,−~p) (B.5a)

~p = p(sin θ cosφ, sin θ sinφ, cos θ). (B.5b)

We could have taken θ = φ = 0, without loss of generality. However, let us keep the
complete computation, which will be illustrative for the more general case of sec. B.2.
Note that, because of eq. B.4 and B.5,

(p1 · σ) =

(
E − p cos θ −pe−iφ sin θ

−peiφ sin θ E + p cos θ

)
, (p1 · σ̄) =

(
E + p cos θ −pe−iφ sin θ

−peiφ sin θ E − p cos θ

)
. (B.6)

Note that both (p1 · σ) and (p1 · σ̄) are 2 × 2 hermitian matrices, so that they are
diagonalizable by an orthonormal basis of eigenvectors with real eigenvalues. Indeed, the
eigenvalues of (p1 · σ) are E − p and E + p, with the corresponding eigenvectors vλ,

vE−p =

(
cos θ

2

eiφ sin θ
2

)
, vE+p =

(
e−iφ sin θ

2

− cos θ
2

)
. (B.7)

For (p1 · σ̄), the eigenvalues and eigenvectors (v′λ) are obtained by swapping p → −p on
those for (p1 · σ),

v′E+p = vE−p =

(
cos θ

2

eiφ sin θ
2

)
, v′E−p = vE+p =

(
e−iφ sin θ

2

− cos θ
2

)
. (B.8)

And, finally, the definition of k̄ is k̄ ≡ k†γ0 for any 4-vector k, where the matrix γ0

is defined in eq. B.4a. Hence, the expression we are trying to compute, ūλ1v
λ
2 (eq. B.1),

turns into

ūλ1v
λ
2 ≡ (uλ1)†γ0vλ2 =

(
ξ†
√

(p1 · σ)
†
, ξ†
√

(p1 · σ̄)
†)
· γ0 ·

( √
(p2 · σ)η

−
√

(p2 · σ̄)η,

)
(B.9)

Now, taking into account the definitions of eqs. B.4 and B.5, eq. B.9 becomes

ūλ1v
λ
2 = ξ†

[
−
√

(p1 · σ)
†√

(p1 · σ) +
√

(p1 · σ̄)
†√

(p1 · σ̄)
]
η. (B.10)

Now, consider that both (p1·σ) and (p1·σ̄) are hermitian matrices with positive eigenvalues
(
√
E − p and

√
E + p). Then, the matricial square roots will also be hermitian, so that

eq. B.10 reduces to

ūλ1vλ2 = ξ†[−(p1 · σ) + (p1 · σ̄)]η = 2p[ξ†(p̂ · σ̂)η], (B.11)
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where ~p ≡ pp̂ is a 3-vector. Now, because the helicity operator Σ for a particle with
3-momenta ~p is

ĥ = p̂ · σ̂. (B.12)

Let us introduce the notation ηλi and ξλi for the spinors (i = 1, 2), where the λi = ±
superindex stands for the helicity state h = ±1 of the particle i. Because changing
particle by anti-particle changes the helicity sign, as does changing ~p by −~p, eq. B.11
turns into

ūλ1vλ2 = 2phλ2(ξλ1)†ξλ2 . (B.13)

Finally, according to the orthonormality of helicity states (eq. B.3 and η± ·η∓ = ξ± ·ξ∓ =
0), and to the definition of s Mandelstam variable (eq. A.8), we recover eqs. 3.104 (quoted
in eqs. B.1),

ūλ1vλ2 = 2phλ1δλ1,λ2 = 2hλ1
√
E2 −M2

t δλ1,λ2 = hλ1
√
s− 4M2

t δλ1,λ2 , (B.14)

where h± = ±1.

B.2 Analysis of the spinors of the tt̄→ tt̄ process

The goal of this appendix is the computation of the spinor chains which appear on the
tt̄→ tt̄ scattering amplitude in eq. 3.118. First of us, let us define the notation

[t(p1, u1, ξ1, λ1), t̄(p2, v2, η2, λ2)]→ [t(p3, u3, ξ3, λ3), t̄(p4, v4, η4, λ4)]. (B.15)

Here, pi (i = 1, 2, 3, 4) stands for the 4-momentum of the initial and final state particles; ui
(i = 1, 3) and vi (i = 2, 4), for the spinors of the top quarks and antiquarks, respectively;
ξi (i = 1, 3) and ηi (i = 2, 4), for the polarization vectors of the quarks and antiquarks;
and λi (i = 1, 2, 3, 4), for the helicities of the particles.

Now, in the center of mass frame, and taking into account that all the particles and
antiparticles have the same mass (the top quark one, Mt) and the 4-momenta conservation
(p1 + p2 = p3 + p4), the 4-momenta may be chosen as

p1 = (E, 0, 0, p) p2 = (E, 0, 0,−p) (B.16a)

p3 = (E, ~p) p4 = (E,−~p), (B.16b)

where ~p is defined in spherical coordinates,

~p = p(sin θ cosφ, sin θ sinφ, cos θ). (B.16c)

As in the case of the previous appendix B.1, we will work in the Weyl basis. See refs. [40–
42] for an introduction to Dirac spinors in such a basis. The spinors are defined as

u(pi, ξ, λ) =

(√
(pi · σ)ξ√
(pi · σ̄)ξ

)
, v(pi, η, λ) =

( √
(pi · σ)η

−
√

(pi · σ̄)η,

)
(B.17a)

γ0 =

(
0 12×2

12×2 0

)
, γ5 =

(
−12×2 0

0 12×2

)
(B.17b)

uλii =

(√
pi · σξλi√
pi · σ̄ξλi

)
, v

λj
j =

( √
pj · σηλj

−√pj · σ̄ηλj

)
, i = 1, 3, j = 2, 4 (B.17c)

σ = (12×2, σ̂), σ̄ = (12×2,−σ̂), σ̂ = (σ1, σ2, σ3), (B.17d)
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and k̄ ≡ k†γ0 for any 4-vector k. Note that σi (i = 1, 2, 3) are the Pauli matrices2, and
that we are making the same definitions in eqs. B.17d that in eqs. B.4 in the previous
appendix B.1.

Now, eq. B.12 defines the helicity operator for particles,

ĥi = p̂i · σ̂ =

(
cos θi e−iφi sin θi

eiφi sin θi − cos θi

)
, i = 1, 3 (B.18)

where ~p = pp̂. Note that, by definition (eqs. B.16), θ1 = φ1 = 0 for the p1 initial state
4-momentum. For antiparticles, there is a change of sign,

ĥ′i = −p̂i · σ̂, i = 2, 4. (B.19)

The polarization vectors will be the corresponding eigenvectors of operators B.18
and B.19, so that

ξ+
i = [cos(θ/2), eiφ sin(θ/2)] ξ−i = [e−iφ sin(θ/2),− cos(θ/2)] (B.20a)

η+
i = [sin(θ/2),−eiφ cos(θ/2)] η−i = [e−iφ cos(θ/2), sin(θ/2)] (B.20b)

These definitions verify the closure relations

(ξλ1i )† · ξλ2i = δλ1,λ2 (B.21a)

(ηλ1i )† · ηλ2i = δλ1,λ2 (B.21b)

(ξλ1i )† · ηλ1i = 0 ∀λ1 = ± (B.21c)

Indeed, η±i = ξ±i |~p→−~p. Note also that ξ±i and η±i are eigenvectors of the corresponding

helicity operator, ĥ±i ξ
±
i = (±1)ξ±i (i = 1, 3), ĥ′iη

±
i = (±1)η±i (i = 2, 4). Note that the

correct 3-momentum ~p should enter the definitions of ĥ, ĥ′ (eqs. B.18 and B.19).
Now, consider that, according to eq. B.8 a generic (pi · σ) operator will be hermitian

and diagonalizable by

(pi · σ) =

(
cos θi

2
e−iφi sin θi

2

eiφi sin θi
2
− cos θi

2

)
·
(
Ei − pi 0

0 Ei + pi

)
·
(

cos θ
2

e−iφi sin θi
2

eiφi sin θi
2
− cos θi

2

)†
.

(B.22)
The corresponding square root will be defined by√

(pi · σ) =

=

(
cos θ

2
e−iφi sin θi

2

eiφi sin θi
2
− cos θi

2

)
·
(√

Ei − pi 0

0
√
Ei + pi

)
·
(

cos θ
2

e−iφi sin θi
2

eiφi sin θi
2
− cos θi

2

)†
.

(B.23)

If, on the other hand, we considered (pi · σ̄) and
√

(pi · σ̄), then we would recover the
diagonalization just by swapping [(Ei − pi) ↔ (Ei + pi)] on the diagonal matrices of
eqs. B.22 and B.23 (see the discussion after eq. B.7).

Note also that, if i = 1 in eqs. B.22 and B.23, that is, if we had θ1 = 0 and φ1 = 0,
then the change of basis matrix which diagonalized (p1 · σ) and (p1 · σ̄) would be the
identity. That is, (p1 · σ) and (p1 · σ̄) would be diagonal matrices. Furthermore, note

2Defined, for instance, in refs. [40–42].
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that, because of the definitions of the 4-momenta (eqs. B.16) and the (σ, σ̄) matrices
(eqs. B.17), we have that

(pi · σ) = (pi+1 · σ̄), (pi · σ̄) = (pi+1 · σ), i = 1, 3 (B.24)

Now, taking into account all the definitions introduced in this section until now, we
can evaluate the fermion chains of eq. 3.118 for the S(tt̄→ tt̄). This, indeed, is the goal
of the present section.

To sum up, our definitions are: eqs. B.16, for the momenta; eqs. B.17, for the spinors
and γ-matrices3; eq. B.20, for the helicity vectors, which correspond to the different
polarizations; and eq. B.23 for the definition of the square roots of matrices which appear
in eqs. B.17. The results can be found on table B.1

λλ′ ++ +− −+ −−
ū1

λ(p1)vλ
′

2 (p2) 2p 0 0 −2p
ū3

λ(p3)vλ
′

4 (p4) 2p 0 0 −2p
v̄2
λ(p2)uλ

′
1 (p1) 2p 0 0 −2p

ū3
λ(p3)uλ

′
1 (p1) 2m cos θ

2
2e−iφE sin θ

2
−2eiφE sin θ

2
2m cos θ

2

v̄2
λ(p2)vλ

′
4 (p4) −2m cos θ

2
2e−iφE sin θ

2
−2eiφE sin θ

2
−2m cos θ

2

ū3
λ(p3)γ5vλ

′
4 (p4) −2E 0 0 −2E

v̄2
λ(p2)γ5uλ

′
1 (p1) 2E 0 0 2E

ū3
λ(p3)γ5uλ

′
1 (p1) 0 −2e−iφp sin θ

2
−2eiφp sin θ

2
0

v̄2
λ(p2)γ5vλ

′
4 (p4) 0 2e−iφp sin θ

2
2eiφp sin θ

2
0

Table B.1: Fermion bilinears which appear in eq. 3.118, and whose computation is
the goal of this appendix B.2. Note that, as expected in the previous appendix B.1,
ū1

λ(p1)vλ
′

2 (p2) = ū3
λ(p3)vλ

′
4 (p4) = 2phλδλ,λ′ .

3Remember that k̄ ≡ k†γ0 for any 4-vector k.
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Appendix C

Dimensional regularization and
Passarino-Veltman functions

For computing the amplitudes at NLO, the set of programs FeynRules [142], FeynArts [143]
and FormCalc [144, 145] has been used. These programs take as input a Lagrangian and
a wanted scattering process, and give as output its matrix element. FeynRules could also
give a so-called UFO file [181], which is useful to use as input for Monte Carlo (MC)
simulation programs.

The multi-loop computation requires to integrate over all the possible 4-momenta
(including off-shellness) of the particles inside the loop. For 1-loop computation, there
is only one 4-momentum which has to be integrated. This integration can lead both to
ultraviolet (UV, limit k →∞) and infrared (IR, limit k → 0) singularities.

To deal with the UV divergences, FormCalc uses the dimensional regularization and
expresses the total amplitudes in terms of the so–called Passarino-Veltman functions.
FormCalc defines them in the following way:

A
(r)
0 (m) =

µ4−D

iπ2

∫
dD k

(2π)D−4

1

(k2 −m2 + iε)r
, r ≥ 1 (C.1a)

B0(p2;m1,m2) =
(2πµ)4−D

iπ2

∫
dD k

[k2 −m2
1][(k + p)2 −m2

2]
(C.1b)

C0(p2
1, p

2
2, p

2
3;m1,m2,m3) =

=
1

iπ2

∫
d4 k

[k2 −m2
1][(k + p1)2 −m2

2][(k + p1 + p2)2 −m2
3]

(C.1c)

D0[p2
1, p

2
2, p

2
3, p

2
4; (p2 + p3)2, (p1 + p2)2;m1,m2,m3,m4] =

=
1

iπ2

∫
d4 k

[k2 −m2
1][(k + p1)2 −m2

2][(k + p1 + p2)2 −m2
3][(k + p1 + p2 + p3)2 −m2

4]
(C.1d)

Usually, refs. [182, 183] are credited in this context, since Passarino and Veltman intro-
duced this notation. However, Veltman used a slightly different convention in several
places, like in the definition of the 4-momenta. This introduces multiplicative constants
in the defition of the Passarino-Veltman functions. There is even a notation change be-
tween refs. [182] and [183]. So, the notation actually used by FormCalc is that given by
ref. [184], which refers to [185] for the details of the dimensional regularization.
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Re k0

Im k0 ∞

x

x

Figure C.1: Position of the poles appearing in the integrand of Passarino-Veltman func-
tions, and integration contour choosen to perform the Wick rotation.

The basic idea is to substitute the 4-dimensional integration by an integration over
D = 4− 2ε dimensions. The UV divergences will appear as poles on ε → 0, but we will
be able to reabsorb them in the counter-terms. By definition of dimensional regulariza-
tion [185], integrals that do not depend on any scale will vanish,

∫
dD k · (k2)α = 0. (C.2)

In contrast, this integral does not exist in the Riemann sense, diverging with the volume
∀D ∈ Z, α ∈ R. The integrations rely on a so–called Wick rotation, which transforms the
integral over Minkowski space to another one over Euclidean space. The trick is making
an analytical extension to the complex plane of the temporal component, k0 = ik0

E, and

maintaining the spatial componentes, ~k = ~kE.

So, we are dealing with a real D − 1 dimensional vector ~k in space coordinates, and
a complex 1-dimensional vector k0 in time. The Minkowski metric works as expected,
k2 = (k0)2 − ‖~k‖2, whose equivalent is k2

E = (k0
E)2 + ‖k‖2 in Euler space. As shown in

fig. C.1, because of Cauchy’s Theorem, the Wick rotation requires that no pole is present
inside the integration region shown in fig. C.1, and that the contribution of the arcs
vanishes in the limit |k0| → ∞.

Let us first think about the poles. All interactions in EFT are polynomial at tree
level, so the poles can only be due to the denominators of propagating particles. If we
take the Feynman prescription for these denominators

Dn =

(
k +

n−1∑
i=1

pi

)2

−m2
n + iε, ε→ 0+ (C.3)
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with k, pi being 4-momenta, then,

ReDn =

(
Re k0 +

n−1∑
i=1

p0
i

)2

−
(
Im k0

)2 −

(
~k +

n−1∑
i=1

~pi

)2

−m2
n (C.4)

ImDn = 2 Im k0

(
Re k0 +

n−1∑
i=1

p0
i

)
+ ε, ε→ 0+. (C.5)

The zero condition for Dn, which will lead to a pole on the Passarino-Veltman integrand
coming from (1/Dn), is ReDn = ImDn = 0. Because they correspond to external
(physical, not virtual) particles, they must by on the mass shell, p0

i ≥ 0∀i, so that
Im k0 · Re k0 ≤ 0. ReDn = 0 means that(

Re k0 +
n−1∑
i=1

p0
i

)2

=
(
Im k0

)2
+

(
~k +

n−1∑
i=1

~pi

)2

+m2
n, (C.6)

and there will be two solutions, one with Re k0 > 0 and another one with Re k0 < 0.
So, if simultaneously ImDn = 0, we extract the value of Im k0 which, as just shown, will
have opposite sign to Re k0, thus recovering a couple of zeroes (poles of the integrand)
marked in fig. C.1. They always appear in pairs, in the second and fourth quadrant.

The second condition is that the contribution of the arcs shown in fig. C.1 vanishes
in the limit |k0| → ∞. Because of the fact that we keep the spatial component ~k finite,
the divergence would come from the limit

lim
|k0|→∞

∫
γ

d k0 1

(k0)2n
, (C.7)

where n is the number of denominators Dn. But this does vanish for n ≥ 1. Take
z = k0eiθ, with θ ∈ [0, π/2],∫

γ

d z · 1

z2
=

∫ π/2

0

d(k0eiθ)
1

(k0eiθ)2n =

∫ π/2

0

dθ
iei(1−2n)θ

(k0)2n−1

k0→∞−−−−→
n≥1

0. (C.8)

Thus, we have proven the two conditions which are necessary for the Wick rotation.
Namely, absence of pole contributions in the domain through which the axes are rotated,
and convergence to zero of the arch integrals. Now, once in Euclidean space, and using
the spherical symmetry of the problem, the integration can be decomposed as∫

dDkEf(‖kE‖2) =

∫
d kE · kD−1

E

∫
dΩDf(k2

E) =

∫
dΩD

∫
d(k2

E) · 1

2
(k2
E)(D−4)/2f(k2

E),

(C.9)
where we have used the integral over the surface of the full D-dimensional sphere,∫

dΩD =
2πD/2

Γ(D/2)
, (C.10)

whose proof can be found in appendix D.1. Γ(x) is the Euler’s Gamma function, whose
properties can be found, for instance, on Ref. [186].

Furthermore, to maintain consistency while changing the dimension of the integral
over the 4-momentum, the integral in eq. C.9 will be multiplied by a constant µ4−D,
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where µ has dimensions of momentum k. The divergent Passarino-Veltman functions A0

and B0 (eqs. C.1a and C.1b) already include this constant. Anyway, this will lead to the
appearance of an energy scale µ on the final result.

Once all the substitutions completed with the help of the efficient symbolic compu-
tations software FORM [183], FormCalc express all the matrix elements as function of
the scalar Passarino-Veltman functions defined in the four eqs. C.1. Note that, although
C0 and D0 in eqs. C.1c and C.1d have very tricky analytical expressions, they are finite.
So, no regularization is needed for them. Because A

(1)
0 (m) and B0(p, 0, 0) functions in

eqs. C.1a and C.1b are the ones appearing in our computations, we will show here how
to compute them. Let us start with A

(1)
0 (m). By definition,

A
(1)
0 (m) =

µ4−D

iπ2

∫
dD k

(2π)D−4

1

k2 −m2 + iε
. (C.11)

Doing the Wick rotation, we substitute k0 → ik0
E, ~k → ~kE. So,

k2 = (k0)2 − ‖~k‖2 = −(k0
E)2 − ‖~kE‖2 = −k2

E, (C.12)

and
dD k = dk0 · dD−1~k = i dk0

E · dD−1~kE. (C.13)

Thus, taking also into account that ε→ 0+, Eq. C.11 transforms to

A
(1)
0 (m) =

µ4−D

iπ2

∫
i dD kE
(2π)D−4

1

−k2
E −m2

= − µ4−D

(2π)D−4π2

2πD/2

Γ(D/2)

∫ ∞
0

d kE
kD−1
E

k2
E +m2

(C.14)
Making the change of variables ke = mx, dke = mdx,

A
(1)
0 (m) = −(2πµ)4−D

Γ(D/2)
2π(D−4)/2m ·mD−1

m2

∫ ∞
0

dx
xD−1

x2 + 1

= −2π(D−4)/2mD−2 (2πµ)4−D

Γ(D/2)

∫ ∞
0

dx
xD−1

x2 + 1
(C.15)

Now, provided that D ∈ (0, 2),∫ ∞
0

dx
xD−1

x2 + 1
=
π

2
csc

Dπ

2
=

1

2
Γ

(
1− D

2

)
Γ

(
D

2

)
, (C.16)

thus we find the result

A
(1)
0 (m) = −m2

(
m2

4πµ

)(D−4)/2

Γ

(
1− D

2

)
. (C.17)

Now, let us substitute D = 4− 2ε. Take into account that the integral is convergent for
D ∈ (0, 2), which means ε ∈ (1, 2).

A
(1)
0 (m) = −m2

(
4πµ2

m2

)ε
Γ (ε− 1) (C.18)

It can be seen that this is not well defined for ε < 1. However, let us see what happens
when we force a Laurent expansion near ε = 0,

Γ(ε− 1) = − 1

ε
− 1 + γ +O(ε) (C.19)

Aε = eε logA = 1 + ε logA+O(ε2), (C.20)
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where 1/ε stands for the divergent behaviour near D = 4 and γ ≈ 0.5772 . . . is the
so–called Euler’s constant. So,

A
(1)
0 (m) = m2

(
1

ε
+ 1− γ + log

4πµ2

m2

)
= m2

(
∆− log

m2

µ2
+ 1

)
, (C.21)

where ∆ = (1/ε)− γ + log 4π is the ∆ variable used by FormCalc [144].

For the function B0(p2; 0, 0), which appears in the NLO computation, we take the
definition C.1b (particularized to m1 = m2 = 0),

B0(p2; 0, 0) =
(2πµ)4−D

iπ2

∫
dD k

[k2 + iε][(k + p)2 + iε]
. (C.22)

In order to apply eq. C.9, we need an integrand which only depends on k2
E after the

Wick rotation. Note that, in the end, the only operation that we have defined over D-
dimensional vectors (with D non-integer, D ∈ R \ Z) is the integration over the surface
of the D-dimensional sphere (appendix D.1). Here, we do not have a definition of D-
dimensional vectors which allows us to explicitly sum them. Thus, we cannot sum k + p
and integrate over k on D ∈ R \ Z dimensions. Even worse, whatever D-dimensional
means, p is a 4-dimensional vector whose components are fixed by external kinematics.
To deal with this problem let us assume that, although we are not able to explicitly
define such an operation as k+p, it is well defined and verify the corresponding algebraic
properties. We introduce the Feynman parametrization [184], which for the product
1/(D1D2) is

1

D1D2

=

∫ 1

0

dx

[(1− x)D1 + xD2]2
. (C.23)

Hence, B0(p2; 0, 0) defined in eq. C.22 is turned into

B0(p2; 0, 0) =
(2πµ)4−D

iπ2

∫ 1

0

dx

∫
dDk

[(1− x)k2 + (k + p)2x+ iε]2
=

=
(2πµ)4−D

iπ2

∫ 1

0

dx

∫
dDk

[k2 + 2x(kp) + x(p)2 + iε]2
(C.24)

Now, let us perform the change of variables k → k − xp, so that

k2 + 2x(kp) + x(p)2 k→k−xp−−−−−→ (k − xp)2 + 2xp(k − xp) + p2x = k2 + x(1− x)p2 (C.25)

When substituting in eq. C.24,

B0(p2; 0, 0) =
(2πµ)4−D

iπ2

∫ 1

0

dx

∫
dDk

[k2 + x(1− x)p2 + iε]2
, (C.26)

where linear combinations of D-dimensional vectors (like k+p in eq. C.22) do not appear.
Next, perform the Wick rotation and change to generalized spherical coordinates in D-
dimensions,

B0(p2; 0, 0) =
(2πµ)4−D

π2

2πD/2

Γ(D/2)

∫ 1

0

dx

∫
dke · kD−1

e

[−k2 + x(1− x)p2 + iε]2
. (C.27)
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Let us sustitute D = 4−2ε, and note that we are keeping ε 6= ε. Now, provided 0 < D < 4
and ε > 0 being small enough (ε < x(1− x)p2),

B0(p2; 0, 0) = (4πµ2)εΓ(ε)

∫ 1

0

dx [−x(1− x)p2 − iε]−ε, (C.28)

where the integrand is extended to the complex plane by

[−x(1− x)p2 − iε]−ε = exp
[
−ε log

(
−x(1− x)p2 − iε

)]
. (C.29)

This is defined because the logarithm is a complex function with a cut on the left axis.
For the sake of simplicity, since 0 ≤ x(1− x) ≤ 1 ∀x ∈ [0, 1], we redefine ε so that

−x(1− x)p2 − iε→ x(1− x)(−p2 − iε) (C.30)

without changing the Riemann sheet where F (x) = x−ε = e−ε log x is evaluated. Thus,
eq. C.28 turns into

B0(p2; 0, 0) = (4πµ2)ε(−p2 − iε)−εΓ(ε)

∫ 1

0

dx [x(1− x)]−ε

=

(
−p2 − iε

4πµ2

)−ε
Γ(ε) · [Γ(1− ε)]2

Γ(2− 2ε)
(C.31)

And carrying out a power expansion around ε = 0,

B0(p2; 0, 0) = ∆ + 2− log
−p2 − iε

µ2
+O(ε), (C.32)

with ∆ being (1/ε)− γ + log 4π, as it was the case of A0.



Appendix D

Several proofs and explanations

D.1 Integral over the surface of a D-dimensional sphere

The integral over the surface of the D-dimensional sphere is∫
dΩD =

2πD/2

Γ(D/2)
, (D.1)

where Γ(x) is the Euler Gamma function, whose properties can be found in ref. [186].
Eq. D.1 can be extended to D to the real (and positive) axis, D ∈ R+. Let us prove this.
Using the identity ∫ ∞

−∞
dx e−x

2

=
√
π, (D.2)

following ref. [40], and provided that D ∈ N (D ≥ 1),

πD/2 =

[∫ ∞
−∞

dx e−x
2

]D
=

∫
dD~x · e−‖~x‖2 =

∫
dΩD

∫ ∞
0

dx xD−1e−x
2

=

(∫
dΩD

)
· Γ(D/2)

2
, (D.3)

thus recovering eq. D.1 only for natural values of D. However, the function 2πD/2/Γ(D/2)
is defined also in D 6∈ N, because it is a composition of analytic functions in the complex
plane1. Thus, the analytic extension of eq. D.1 to the complex plane is trivial.

D.2 Integration of Legendre Polynomials

Eq. 4.29,∫ 2π

0

d ϕ̃

∫ π

0

d θ̃ · sin θ̃ · PJ [cos θ̃] · PJ ′ [cos θ cos θ̃ + (−1)n sin θ sin θ̃ cos ϕ̃] =

=
4π

2J + 1
δJ,J ′PJ [cos θ], (D.4)

1See ref. [186] for more details. Special care should be taken for n = 0,−1,−2, . . . (D =
0,−1/2,−1/3, . . . ), where Γ(n) has single poles. However, this does not affect our computations, since
we always have real and positive values of D.

143



144 APPENDIX D. SEVERAL PROOFS AND EXPLANATIONS

can be easily proven taking into account the Addition Theorem for Spherical Harmonics2,

cos γ ≡ cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2) (D.5)

PJ(cos γ) =
4π

2J + 1

J∑
m=−J

(−1)mY m
J (θ1, ϕ1)Y −mJ (θ2, ϕ2) (D.6)

= PJ(cos θ1)PJ(cos θ2)

+ 2
J∑

m=1

(J −m)!

(J +m)!
Pm
J (cos θ1)Pm

J (cos θ2) cos[m(ϕ1 − ϕ2)] (D.7)

Just take θ1 → θ̃, θ2 → θ, ϕ1 → ϕ̃, ϕ2 → nπ, considering that cos(ϕ̃ − nπ) =
(−1)n cos ϕ̃ ∀n ∈ Z. Now,∫ 2π

0

d ϕ̃ cos[m(ϕ̃− nπ)] =
1

m
sin[m(ϕ̃− nπ)]

∣∣∣∣2π
ϕ̃=0

= 0∀m ∈ Z, (D.8)

so that the integration of eq. 4.29 reduces to

2π

∫ π

0

d · θ̃ · PJ [cos θ̃]PJ ′(cos θ̃)PJ(cos θ) (D.9)

And now, because of the orthonormality of Legendre polynomials [186],∫ 1

−1

d x · PJ(x)PJ ′(x) =
2

2J + 1
δJ,J ′ , (D.10)

we recover trivially eq. 4.29 when integrating over θ̃.

D.3 Integrals for the N/D method

In order to compute the integrals of eqs. 4.129, let us first consider the following ones,

I1(y, y1, y2) =

∫ y2

y1

dx

x(x− y)
=

∫ y2

y1

dx
1

y

[
1

x− y
− 1

x

]
=

1

y
log
(

1− y

x

)∣∣∣∣y2
x=y1

(D.11a)

I2(y, y1, y2) =

∫ y2

y1

dx

x2(x− y)
=

1

y2

[
log
(

1− y

x

)
+
y

x

]∣∣∣∣y2
x=y1

(D.11b)

Ĩ ′1(y, y1, y2) =

∫ y2

y1

dx log x

x(x− y)
= 2 log x log

(
1− x

y

)
+ log2 x+ 2 Li2

(
x

y

)∣∣∣∣y2
x=y1

, (D.11c)

where Li2(η) is the dilogarithm function3, defined as

Li2(x) ≡
∞∑
n=1

xn

n2
, |x| ≤ 1. (D.12)

For |x| > 1, the dilogarithm is defined by an analytic continuation. Anyway, according
to refs. [148, 187], this analytic continuation can be embodied in an integrate form

Li2(x) = −
∫ x

0

log(1− t)
t

dt, (D.13)

2For a proof of this theorem refer, for example, to [186].
3See, for example, refs. [148, 187].
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and its asymptotic form for large values of x, necessary in order to compute the limit
Λ→∞ in eq. D.11c,

Li2(z)
z→∞−−−−−→

Im z→0+

π2

3
− 1

2
log2 z + iπ log z, (D.14)

provided that z = Re(z) + iε, where ε→ 0+. If, on the other had, we had z = Re(z)− iε
(ε→ 0+), then the correct asymptotic form would be

Li2(z)
z→∞−−−−−→

Im z→0−

π2

3
− 1

2
log2 z − iπ log z. (D.15)

Note that this last case (z = Re(z) − iε, ε → 0+) is the one which, indeed, appears in
eq. D.11c. Take into account that y2 →∞, and y ≡ (s+iε)/µ2 (with Im y → 0+) appears
on the denominator, so that Im(y2/y)→ 0−.

If the limits y2 →∞ are computed in eqs. D.11, then those expressions turn into

I1(y, y1,∞) = −1

y
log

(
1− y

y1

)
(D.16a)

I2(y, y1,∞) = − 1

y2

[
y

y1

+ log

(
1− y

y1

)]
(D.16b)

I ′1(y, y1,∞) = −1

y

[
1

2
log2(−y) + Li2

y1

y
− 1

2
log2(y1) + log y1 log

(
1− y1

y

)
+
π2

6

]
,

(D.16c)

Now, let us effect the change of variables y = (s + iε)/µ2, x = s′/µ2, y1 = m2/µ2,
y2 = Λ2/µ2. The integrals of eqs. D.11 and their solutions when Λ2 → ∞ and ε → 0+

(eqs. D.16) turn into

1

µ2
I1(y, y1, y2) =

1

µ2

∫ y2

y1

dx

x(x− y)
=

∫ Λ2

m2

ds′

s′(s′ − s− iε)
Λ2→∞−−−−→
y2→∞

−1

s
log
(

1− s

m2

)
(D.17a)

1

µ4
I2(y, y1, y2) =

1

µ2

∫ y2

y1

dx

x2(x− y)
=

1

µ4

∫ Λ2

µ2

ds′

(s′)2(s′ − s− iε)
Λ2→∞−−−−→
y2→∞

− 1

s2

[ s
m2

+ log
(

1− s

m2

)]
(D.17b)

1

µ2
I ′1(y, y1, y2) =

1

µ2

∫ y2

y1

dx log x

x(x− y)
=

∫ Λ2

m2

ds′ log s′

µ2

s′(s′ − s− iε))
Λ2→∞−−−−→
y2→∞

−1

s

[
1

2
log2

(
−s
µ2

)
+ Li2

m2

s
− 1

2
log2

(
m2

µ2

)
+ log

m2

µ2
log

(
1− m2

s

)
+
π2

6

]
.

(D.17c)

These expressions allow us to recover eqs. 4.129, as expected.
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D.4 Comparison of our elastic ωω partial waves with

a Higgsless ECL model

Before the discovery of the Higgs boson at the LHC, several authors ([4, 6, 7]) motivated a
strongly interacting regime for the dynamics of the EWSBS to solve some of the problems
for which the Higgs boson was postulated. In particular, we will quote ref. [150] since,
although they worked in the Higgsless ECL model, they have computed the real part
of the NLO partial waves (including the tensor-isotensor channel IJ = 22), and their
results can be used to check our elastic WBGBs partial waves of eqs. 3.136 to 3.140,
taking a = b = 0 in our expressions.

Furthermore, ref. [150] (and its extension [175]) are particularly encouraging since
they are interested in the implementation of strongly interacting theories into their own
MonteCarlo program, WHIZARD [188, 189].

However, while we take the non-linear electroweak chiral Lagrangian with an arbitrary
function for the couplings of the Higgs-like particle with the EWSBS4,

L2 =
v2

4

(
1 + 2a

h

v
+ b

(
h

v

)2

+ . . .

)
Tr[(DµU)†DµU ] + . . . , (D.18)

ref. [150] takes the Higgsless regime a = b = 0,

L2 =
v2

4
Tr[(DµU)†DµU ]. (D.19)

Note that the work of ref. [150] has been extended (see ref. [175] for example), but
apparently a non-linear chiral Lagrangian of the form of eq. 2.31, has not been considered.
In particular, ref. [150] introduces the Higgs-like particle through their eq. 1,

H→ 1

2
(v + h)Σ (D.20)

where Σ is the non-linear Goldstone-boson representation. Apparently, they are not
considering a more general coupling with the Higgs-like boson, with a factor like (a, b)
(see this work, eq. 2.6; and some other works like ref. [158]), the cW (see ref. [31]), the
FU(h) (see ref. [29] and their their eq. 5),...

Anyway, we are interested in eqs. 4.13 and 4.14 from ref. [150]. They should be
compatible with the real part of our ωω → ωω partial waves (eqs. 3.136 to 3.140, see
also the definition of eq. 3.132). Provided that we define a = b = 0, in our equations,
and consider that the definition of partial wave of ref. [150] (see their eqs. 4.11 and 4.12)
should be multiplied by 1/(32π) to match the definition of partial wave which we use
(K = 2 in eqs. 3.123 and 3.124). This is an independent check of our NLO and partial
waves computation.

Note that, when the real part of our amplitudes is taken, because we are working over
the RC (physical zone, s′ = s + iε, s > 0, ε → 0+), we have Re log(s/µ2) = log(s/µ2),
Re log(−s/µ2) = log(s/µ2). Thus, once we define a = b = 0, in our equations (eqs. 3.136

4See our eq. 2.4 and the phenomenological Lagrangian of eq. 2.31.
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to 3.140), and we multiply them by 32π, we find that

A
(0)
00 = 32πK00s|a=b=0 =

3s

v2
(D.21a)

A
(0)
11 =

s

3v2
(D.21b)

A
(0)
20 = − s

v2
(D.21c)

A
(0)
02 = A

(0)
22 = 0, (D.21d)

thus being compatible with eq. 4.13 from ref. [150]. Now, let us compute the real part of
our NLO results, (with a = b = 0, a4 = α4, a5 = α5)

ReA
(1)
00 =

[
8

3
(7a4(µ) + 11a5(µ))− 25

144π2
log

s

µ2
+

101

288π2

]
s2

v4
(D.22a)

ReA
(1)
11 =

[
4

3
(a4(µ)− 2a5(µ)) +

1

432π2

]
s2

v4
(D.22b)

ReA
(1)
20 =

[
16

3
(2a4(µ) + a5(µ))− 5

72π2
log

s

µ2
+

91

576π2

]
s2

v4
(D.22c)

ReA
(1)
02 =

[
8

15
(2a4(µ) + a5(µ))− 1

144π2
log

s

µ2
+

1

90π2

]
s2

v4
(D.22d)

ReA
(1)
22 =

[
4

15
(a4(µ) + 2a5(µ))− 1

360π2
log

s

µ2
+

71

28800π2

]
s2

v4
. (D.22e)

Our computations (eqs. D.22) coincide with ref. [150]. The LO, NLO logarithm terms
and the coefficients of the NLO parameters α4(µ) and α5(µ) (our a4 and a5) are the same.
The non-logarithm term which is ∝ s2/v4 appears to be incompatible, but note that this
is due to a different renormalization of the α4(µ) and α5(µ) parameters. Our running
equations for ar4(µ) and ar5(µ) (eqs. 3.42a and 3.42b), taking a = b = 0, are compatible
with those for α4(µ) and α5(µ) (eq. 4.6 from ref. [150]). But we have taken different
values for a4(µ0) and a5(µ0). Thus, in order to have full agreement, it is necessary to
introduce

a4(µ)− α4(µ) = a4(µ0)− α4(µ0) =
13

1152π2
(D.23a)

a5(µ)− α5(µ) = a5(µ0)− α5(µ0) =
5

1152π2
. (D.23b)

This is an additional check to our expressions (eqs. D.22). Note that, when comparing
with the results from other works, it is necessary to take into account possible differences
in the definition of a4(µ0) and a5(µ0), as in eq. D.23.

D.5 Concerns about the aplicability conditions of the

ET

Many references from the 90’s studied the limits of applicability of the equivalence theo-
rem [124, 190–196], arriving to the conclusion that it is valid also for the particular case
of the chiral Lagrangian. This allows us to use the ET in this dissertation.
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As an instance of a suggested counterexample of the ET, ref. [197] claimed that, for
certain kind of technicolor models, the ET would be violated. Such a violation would
come from a global anomaly through the triangle fermion loop. That is, from the vertex
Z0
L − γ − γ∗, γ∗ being a virtual photon. As clarified in ref. [198], the key point is that

the π0 → γγ amplitude violates the ET only in the zero momentum limit due to its low
energy nature, but not in the high energy limit case (E �MW ). This is a very important
concern, since any computation of low-energy events like the decay of a SM-like Higgs
boson cannot be computed with techniques that involve the usage of the ET. Only hard
scattering events, like scattering of gauge bosons can. Hence, ref. [198] restated the
validity of the ET for the particular case of chiral Lagrangians at sufficient energy.



Appendix E

Feynman diagrams for the Effective
Lagrangian

All the necessary vertices have been computed both by hand and by using the program
FeynRules [142], as explained in page 31. The FeynRules convention is followed, thus our
vertices correspond to iM, where M is the scattering amplitude.

E.1 ωω scattering, isospin basis, LO coefficients

Vertex Feynman diagram

h

wa, p1

wb, p2

−2ia
v

(p1p2)δa,b

h

h wa, p3

wb, p4

−2ib
v2

(p3p4)δa,b

wb, p2

wa, p1 wc, p3

wd, p4

− i

v2

{
[p1p3 + p1p4 + p2p3 + p2p4]δa,bδc,d

+[p1p2 + p1p4 + p3p2 + p3p4]δa,cδb,d

+[p1p2 + p1p3 + p4p2 + p4p3]δa,dδb,c
}

149
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Vertex Feynman diagram

wb, p2

wa, p1 wc, p3

wd, p4

h

−2ia

v3

{
[p1p3 + p1p4 + p2p3 + p2p4]δa,bδc,d

+[p1p2 + p1p4 + p3p2 + p3p4]δa,cδb,d

+[p1p2 + p1p3 + p4p2 + p4p3]δa,dδb,c
}

h

wb, p2

wa, p1 wc, p3

wd, p4

h

−2ib

v4

[
(p1p3 + p1p4 + p2p3 + p2p4)δa,bδc,d

+(p1p2 + p1p4 + p3p2 + p3p4)δa,cδb,d

+(p1p2 + p1p3 + p4p2 + p4p3)δa,dδb,c
]

These vertices correspond to the effective Lagrangian of eq. 2.31. The vertices where the
NLO counterterms a4, a5, d, e and g appear will be given in the next subsection.

E.2 ωω scattering, isospin basis, NLO coefficients

Vertex Feynman diagram

h, p2

h, p1 h, p3

h, p4

8ig
v4

[(p1p2)(p3p4) + (p1p3)(p2p4) + (p1p4)(p2p3)]

h, p2

h, p1 wa, p3

wb, p4

4ie

v4
[(p1p4)(p2p3) + (p1p3)(p2p4)]δa,b

+
8id

v4
[(p1p2)(p3p4)]δa,b

wb, p2

wa, p1 wc, p3

wd, p4

16ia4

v4

{
[(p1p3)(p2p4) + (p1p4)(p2p3)]δa,bδc,d

+[(p1p2)(p3p4) + (p1p4)(p2p3)]δa,cδb,d

+[(p1p2)(p3p4) + (p1p3)(p2p4)]δa,dδb,c
}

+
32ia5

v4

{
[(p1p2)(p3p4)]δa,bδc,d

+[(p1p3)(p2p4)]δa,cδb,d + [(p1p4)(p2p3)]δa,dδb,c
}

The shown vertices correspond to the effective Lagrangian of eq. 2.31. We include only
the vertices where the NLO counterterms a4, a5, d, e and g appear.
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E.3 γγ scattering, charge basis, LO

Vertex Exponential Spherical

Aµ, p1

w+, p2

w−, p3

ie(p2µ − p3µ) ie(p2µ − p3µ)

h, p1

w+, p2

w−, p3

−2ia
v

(p2p3) −2ia
v

(p2p3)

h, p1

z, p2

z, p3

−2ia
v
p2p3 −2ia

v
p2p3

Aν , p2

Aµ, p1 w+, p3

w−, p4

2ie2gµν 2ie2gµν

h, p2

Aµ, p1 w+, p3

w−, p4

2iae
v

(p3µ − p4µ) 2iae
v

(p3µ − p4µ)

h, p2

h, p1 w+, p3

w−, p4

−2ib
v2
p3p4 −2ib

v2
p3p4
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Vertex Exponential Spherical

w−, p3

w+, p1 w+, p2

w−, p4

− i
3v2

[2(p1p2 + p3p4) + (p1 + p2)2] − i
v2

[2(p1p2 + p3p4)− (p1 + p2)2]

z, p3

z, p2 w+, p1

w−, p4

i
3v2

[2(p1p4 + p2p3) + (p1 + p4)2] i
v2

(p1 + p4)2

z, p2

z, p1 z, p3

z, p4

0 − 2i
v2

[p1p4 + p2p3 − (p1 + p4)2]

h, p2

h, p1 z, p3

z, p4

−2ib
v2
p3p4 −2ib

v2
p3p4

w−, p5

w+, p4 Aµ, p1

Aν , p2

h, p3

4iae2

v
gµν

4iae2

v
gµν

w−, p5

w+, p4 Aµ, p1

h, p2

h, p3

2ibe
v2

(p4µ − p5µ) 2ibe
v2

(p4µ − p5µ)
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Vertex Exponential Spherical

w−, p5

w+, p2 Aµ, p1

z, p3

z, p4

2ie
3v2

(p5µ − p2µ) 0

w−, p5

w+, p2 Aµ, p1

w+, p3

w−, p4

4ie
3v2

(p5µ + p4µ − p3µ − p2µ) 0

h, p3

Aν , p2

Aµ, p1

h, p4

w+, p5

w−, p6
4ibe2

v2
gµν

4ibe2

v2
gµν

These vertices correspond to the effective Lagrangian of eqs. 2.33 (for the exponential
parametrization) and 2.34 (for the spherical parametrization). The vertices where the
NLO counterterms a1, a2, a3 and cγ appear will be given in the next subsection. Note
that, on the contrary, the NLO counterterms which do not contain any photons (d, e and
g) do appear in this table. Some diagrams are very similar to those listed on appendix E.1,
but note the change of basis (from isospin to charge one). We also omit the diagramas
which are not necessary for γγ scattering.

E.4 γγ scattering, charge basis, NLO

Vertex Exponential Spherical

Aµ, p1

w+, p2

w−, p3

−4ie(a3−a2)
v2

[
(p1p3)p2µ − (p1p2)p3µ

]
Same than Expon.

Aν , p2

Aµ, p1 w+, p3

w−, p4

8ie2a1

v2

[
(p1p2)gµν − p2µp1 ν

]
+

4ie2(a3 − a2)

v2

[
(p1 + p2)2gµν

− (p1µ + p2µ)p1 ν

− p2µ(p1 ν + p2 ν)
]

Same than Expon.
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Vertex Exponential Spherical

Aν , p2

Aµ, p1

h, p3
2icγ
v

[
(p1p2)gµν − p2µp1 ν

]
Same than Expon.

These vertices correspond to the effective Lagrangian of eqs. 2.33 (for the exponential
parametrization) and 2.34 (for the spherical parametrization). We include only the ver-
tices where the NLO counterterms a1, a2, a3 and cγ appear.

E.5 tt̄ in the final state, isospin basis

Vertex Feynman diagram Vertex Feynman diagram

t̄, p2

t, p1

ω3, p3
Mt

v
γ5

t̄, p2

t, p1

h, p3 −i c1Mt

v

b̄, p2

t, p1

ω1, p3
Mt

v
PR

b̄, p2

t, p1

ω2, p3
iMt

v
PR

t̄, p2

b, p1

ω1, p3 −Mt

v
PL

t̄, p2

b, p1

ω2, p3
iMt

v
PL

t̄, p2

t, p1

h, p3

h, p4

−2iMtc2
v2

t̄, p2

t, p1

ωa, p3

ωb, p4

iMt

v2
δa,b
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Vertex Feynman diagram Vertex Feynman diagram

t̄, p2

t, p1

ω3, p3

h, p4

Mtc1
v2
γ5

b̄, p2

t, p1

ω1, p3

h, p4

Mtc1
v2
PR

b̄, p2

t, p1

ω2, p3

h, p4

iMtc1
v2

PR

t̄, p2

b, p1

ω1, p3

h, p4

−Mtc1
v2
PL

t̄, p2

b, p1

ω2, p3

h, p4

iMtc1
v2

PL

t̄, p2

t, p1

h, p4

h, p5

ω3, p3

2Mtc2
v3

γ5

t̄, p2

t, p1 h, p5

ωa, p3

ωb, p4
iMtc1
v3

δa,b

b̄, p2

t, p1

ω1, p3

h, p4

h, p5

2Mtc2
v3

PR

b̄, p2

t, p1

ω2, p3

h, p4

h, p5

2iMtc2
v3

PR

t̄, p2

b, p1

ω1, p3

h, p4

h, p5

−2Mtc2
v3

PL

t̄, p2

b, p1

ω2, p3

h, p4

h, p5

2iMtc2
v3

PL
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Vertex Feynman diagram Vertex Feynman diagram

h, p3

t̄, p2

t, p1

h, p4

ωa, p5

ωb, p6

2iMtc2
v4

δa,b



Appendix F

One-loop Feynman diagrams

This Appendix contains all the NLO Feynman diagrams which enter in the computations.
All the tadpoles have been omitted, since we are neglecting all the masses of particles
inside the loops and lacking a scale, they vanish because of eq. C.2. These diagrams have
been drawn with FeynArts [143] and generated with FeynRules [142], FeynArts [143] and
FormCalc [144, 145], as explained in page 31.

F.1 ωω

These computations are based on the spherical parameterization and the isospin basis is
used. See eq. 2.31 for the Lagrangian and appendices E.1 and E.2 for the Feynman rules.

F.1.1 ωω → ωω
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Diagrams used to obtain the amplitude of eq. 3.32.

F.1.2 ωω → hh
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Diagrams used to obtain the amplitude of eq. 3.37.

F.1.3 hh→ hh
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Diagrams used to obtain the amplitude of eq. 3.41.

F.2 γγ scattering

Both the spherical and exponential parameterization are used here. See eqs. 2.33 and 2.34;
and appendices E.3 and E.4 for the Feynman rules. Note the usage of the charge basis
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for the description of the ω WBGBs. By definition, the w particle (antiparticle) that
appears in the next figures is defined as ω+ (ω−).

F.2.1 γγ → w+w−
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Diagrams used to obtain the amplitude of eq. 3.57 (Lorentz structure in eq. 3.51).

F.2.2 γγ → zz
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Diagrams used to obtain the amplitude of eq. 3.55 (Lorentz struct. in eq. 3.51).
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Diagrams used to obtain the amplitude of eq. 3.87.

F.3 Scattering involving tt̄ states

The exponential parameterization is used here. See eqs. 2.45 and 2.46 for the considered
Lagrangian; and appendix E.5 for the Feynman rules. Note that we are using the isospin
basis, although due to the appearance of terms which break the isospin symmetry we have
to consider separately the ω1, ω2 and ω3 bosons. At the end, all the possible scattering
processes ωiωi → tt̄, where i = 1, 2, 3, have the same diagrams and matrix element. That
is, the isospin symmetry is restored. So, we only paint the diagramas associated with the
process ω1ω1 → tt̄.
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Diagrams used to obtain the amplitude of eq. 3.97.

F.3.2 hh→ tt̄

h

h

t

t
Ω1

Ω1

Ω1

1

h

h

t

t
Ω2

Ω2

Ω2

2

h

h

t

t
Ω3

Ω3

Ω3

3

h

h

t

t

h

Ω1

Ω1

Ω1

4

h

h

t

t

h

Ω2

Ω2

Ω2

5

h

h

t

t

h

Ω3

Ω3

Ω3

6

h

h

t

t

Ω1

Ω1

7

h

h

t

t

Ω2

Ω2

8

h

h

t

t

Ω3

Ω3

9

h

h

t

t

h

Ω1

Ω1

10

h

h

t

t

h

Ω2

Ω2

11

h

h

t

t

h

Ω3

Ω3

12

Diagrams used to obtain the amplitude of eq. 3.108.
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