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Abstract
Optimised alignment is important in optical systems, particularly in high-
precision instrumentation such as gravitational wave detectors, in order to
maximise the sensitivity. During operations, high performing optical wave-
front sensing and feedback systems are used to maintain optical cavity per-
formance. However, the need for an automated initial alignment process arises
after maintenance or large environmental disturbances such as earthquakes,
as it can be challenging to manually achieve optimised as well as consistent
optical alignments. In this study, a machine learning control system is presen-
ted to determine the optimal input beam alignment of an optical cavity based
on a digital camera stream of the transmitted cavity mode. We use convolu-
tional neural networks to classify the cavity mode from its image, with 100%
prediction accuracy for the desired mode. A genetic algorithm is applied to
find experimental parameters that maximise the transmitted power of a chosen
cavity mode. The system demonstrates consistent alignment outcomes that the
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median intensity over multiple trials exceeds 95% by the sixth generation of
the algorithm. These results show that machine learning techniques can be
implemented to automate the alignment process that is compatible for a broad
range of optical resonator platforms.

Keywords: optical alignment, convolutional neural networks,
genetic algorithm, reinforcement learning, gravitational wave detectors

1. Introduction

Many modern physics experiments use lasers in precision metrology [1–4], interactions with
matter at the atomic scale [5], and revelation of fundamental cosmic information [6–8]. In
an optical system, the cavity is a common element that is used to enhance the interaction
between the optical fields and objects. Optical cavities achieve resonant fields through con-
structive interference and are widely used in optical control and sensing technologies [9, 10].
Gravitational-wave detectors, for example LIGO, Virgo and KAGRA [2, 11, 12], utilise optical
cavities to increase the light interactions with the test masses for increased sensitivity. This
makes it possible to detect the extremely weak ripples in space-time called gravitational waves
that arise from energetic astrophysical events like collisions of compact objects, supernovae,
perturbations in the early Universe, etc [13].

Optical cavities have various sizes and geometries, but all require the reflective components
to be aligned in a designated configuration such that the light constructively interferes to cre-
ate a resonant optical mode [14]. The most frequently used modes are fundamental Gaussian
modes, while some optical experiments focus on alignment to specific higher-order modes
[15, 16]. The alignments of the input beam and cavity optics are important to achieve max-
imal optical circulating powers as well as to mitigate optical instabilities caused by the reson-
ance of higher-order optical modes in the cavity. Hence, techniques to optimise and maintain
optical alignment are essential for the operation of precision instrumentation like gravitational
wave detectors [17–19]. For example, during operation, gravitational wave detectors use angu-
lar control systems for automated optical alignments, like the differential wavefront sensing
with quadrant photo-diodes [20–22] (GEO600) or the Anderson technique that introduces fre-
quency side-bands [14, 23] (Virgo) to maximise the power in the arm cavity. However, these
techniques often necessitate an initial optical alignment for the cavity to maintain resonance to
acquire a control signal, a process that can be particularly challenging in large optical cavities
with suspendedmirrors.Whenmany such suspendedmirrors, like in gravitational wave detect-
ors, get severely misaligned due to earthquakes or unintended maintenance events, the cavity
resonance conditions will be lost. This often means that the detector needs to start its initial
alignment procedure to re-align the mirrors such that they obtain optical resonance conditions,
which can be time-consuming and temporarily take these detectors offline.

Machine learning algorithms offer a range of tools that can play a useful role in exper-
imental research. Manual optimisations of experiments, like the alignment of optical cavit-
ies, often rely on human skill which may not offer the required accuracy and consistency
for reaching the best solution [21, 24, 25]. In contrast, machine-based methods minimize the
need for manual intervention, thereby saving time and reducing the potential for human error.
Automation refines the alignment process, decreasing the frequency of necessary adjustments
and ensuring more consistent and reliable outcomes. For example, aligning an optical cavity
requires identification of the cavity mode, as well as strategies to find best parameters. For such
tasks, machine learning algorithms, e.g. deep neural networks and reinforcement learning, can
provide suitable solutions and automate experimental processes partly or in full [26–33]. Deep
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neural networks are a class of machine learning models that can be particularly useful in the
identification of resonant modes in a cavity. These models allow learning complex features
through optimization of their parameters by training on large quantities of data [34, 35]. A
specific class of neural networks called convolutional neural networks (CNNs) is especially
useful for learning features from 2D data, like images [35–37]. The use of convolution allows
CNNs to utilise the translation symmetry of features in images for efficient learning [35, 36,
38]. As the optical alignment presents a classic search problem, another helpful technique is
reinforcement learning algorithm based on given reward functions [39]. The reward function is
a numerical metric used to evaluate how well each candidate solution meets the optimization
goal. Recently, reinforcement learning techniques have been successfully demonstrated for
problems from alignment of a simple Mach-Zehnder interferometer [28] to complex sensing
and control of a kilometer-scale gravitational wave detector [40]. A genetic algorithm (GA)
is an optimisation strategy based on the principle of ‘survival of the fittest’ - a subset of top-
performing solutions (parents) from a set of candidate solutions of a generation are used to
create the next generation of solutions (offspring) until a termination condition is satisfied
[41–43]. GAs with reinforcement learning have proven to have high accuracy and success in
various control and optimisation applications [44–47].

In this paper, we present a machine-learning-based control scheme that combines a CNN
with a GA to find the optimal alignment of a generic optical cavity. A stream of images captur-
ing the optical mode at the cavity transmission is analysed by the CNN to construct a reward
function which, in turn, is used by the GA to find the best alignment. This study demonstrates
that such a scheme produces optimal and consistent alignments. Importantly, this scheme
shows great simplicity in readout requirement—a single camera monitor, which is more ver-
satile than traditional methods that need implementation of a photo-diode and camera. This
technique can be applied to various systems of precision metrology that require initial optical
cavity alignment, including the suspended optical cavities in gravitational-wave detectors. This
proposed method enhances the alignment process by being effective even with less accurate
initial setups. This is especially valuable for complex systems where achieving precise initial
alignment is challenging. Designed to function effectively regardless of the starting alignment
condition—whether well-aligned or completely misaligned—this method offers greater flex-
ibility and ease of implementation.

2. Experimental setup

As shown in figure 1, a simple Fabry-Pérot cavity was built by using a planar input mirror
and a concave output mirror which is attached to a piezo actuator (PZT) for cavity length
control. Additional lenses are used to mode-match the laser beam into the cavity. To steer
and control the cavity input beam, there are two magnet-coil actuated fast-steering mirrors
(Newport FSM-300, resolution ⩽ 1µrad rms, accuracy⩽0.262mrad rms) (FSM1 and FSM2)
that provide four degrees of freedom (each mirror having pitch θx and yaw θy) [14]. A high-
speed Gigabit-Ethernet camera (Basler acA720-290gm) is used to monitor and capture the
transmitted optical cavity mode in real-time. The PZT, FSMs, and camera are connected to a
computer system for control.

3. Machine learning algorithms

Themachine learning algorithm in this study consists of two parts: a CNN, which identifies the
cavity resonant mode by analysing the images collected at the cavity transmission; and a GA,
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Figure 1. Experimental Setup. A simple Fabry-Pérot optical cavity is formed by a planar
front mirror with a reflectivity of 97% and a concave end mirror with a reflectivity of
99%. Two lenses are used to mode match the waist of the incident Gaussian beam into
that of the cavity. The laser wavelength is 1064 nm. The alignment of incident light is
controlled by two fast-steering mirrors (FSM1 and FSM2).

Figure 2. CNNarchitecture. Each layer contains a collection of featuremaps of the input
images. Based on the connections created between the layers during the training phase,
the CNN will classify the mode images into a 0th-order (fundamental mode, i.e. FM)
through to the 10th-order modes. Since the fundamental mode is chosen for determining
optical alignment, we group the 1st-order through 10th-order modes together and refer
to all higher-order modes as HoMs.

which determines the optimal input alignment based on features of the cavity transmission
live-stream images. The result after running the algorithm is a set of input mirror positions
that optimise the cavity transmission power while the cavity is resonant with the fundamental
mode.

The CNN was built using Keras, a deep learning library in Python [48] to operate on a
NVIDIA P100 GPU that facilitates fast parallelised computations as compared to a CPU.
Figure 2 illustrates the architecture of the CNN in the system. It consists of many hidden
layers, each of which performs different functions to break down the input image into its
features. The CNN has 4 convolutional (conv) and rectified linear unit layers. These layers
convolve the input image with various filters, allowing different image features to be identi-
fied (e.g. bright versus dark pixels). The pooling and dropout layers between the convolutional
layers are implemented, which reduce the amount of data stored in the CNN [36]. After the
last dropout layer, the data is flattened into a one-dimensional matrix and various activation
conditions are assigned to this layer. Each condition corresponds to a 0th-order fundamental
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mode (i.e. FM) through to the 10th-order mode. The 0th-order mode is chosen to determine
optical alignment with the GAs. Thus, we group the 1st-order through to the 10th-order modes
together and refer those higher-order modes as HoMs. In order for the CNN to effectively clas-
sify unlabelled images of the modes present in our optical cavity, it was first trained on labelled
images of Hermite-Gauss cavity modes simulated using FINESSE , an interferometry simula-
tion package in Python. The simulated mode images, generated in FINESSE, undergo various
augmentations, including rotations, size adjustments, and contrast modifications, with the pro-
cessing handled by Keras. Over 60 000 images of Hermite–Gaussian and Laguerre–Gaussian
modes were generated and used to train and validate the CNN, 5000 of which were the funda-
mental mode and the rest were various higher-order modes. To obtain a more comprehensive
assessment of the CNN’s generalization ability beyond the validation data, a test set compris-
ing 1200 images was utilized to evaluate the model’s performance in terms of both accuracy
and loss.

The CNN is combined with a GA, through which the optimal cavity input alignment is
determined. The GA controls the five degrees of freedom of the optical system—the pitch (θx)
and yaw (θy) angles of both the FSMs as well as the cavity length by adjusting the z position
of the cavity PZT. The FSMs cover the entire range from complete misalignment, where no
optical mode exists in the cavity, to optimal alignment. A conceptual diagram of our GA is
shown in figure 3.

First, the algorithm generates a set of initial FSM positions, followed by the digital-to-
analog converter (DAC) driving the mirrors to these positions. In the GA, the random number
generation algorithm assumes a uniform distribution across the range of possible FSM posi-
tions. In the first generation, the distribution range of FSMs spans the full range of ±26mrad.
With each subsequent generation, this range decreases by a factor of 0.6. The cavity length is
scanned, using the cavity PZT, over at least one free spectral range—the frequency spacing
between consecutive resonant modes of the cavity. The scan speed is set to allow the trans-
mitted cavity modes to be captured by the camera and data acquisition system at each PZT
step. The brightest images out of the scan are saved and the cavity modes are then predicted
using the CNN. The optical power P(θ) is calculated from the image pixel values. If the mode
is predicted to be a higher-order mode, a zero reward R(θ) is assigned to the corresponding
mirror positions. If the mode is predicted as a fundamental mode, the reward R(θ) will be
the power of the image captured by the camera, which is a measure of the relative power
of the transmitted cavity mode. A higher fundamental mode image power is assigned with a
higher R(θ), and vice versa. It was ensured that the camera was never saturated by adjusting
the laser input power and a short exposure time (150ms) for each image. After registering
R(θ), the best 10% of these positions (fittest parents) are selected and mixed with 90% new
random positions (the offspring) to form the next generation. In each subsequent generation,
the offspring are produced though uniform crossover, a genetic operator that combines para-
meters from two parents in a stochastic manner. Specifically, each parameter in the offspring
is selected randomly from either parent with equal probability. To enhance the quality of the
offspring, the selection of higher-performing parents with higher R(θ) is prioritized. Uniform
crossover treats each parameter independently, ensuring a diverse mix of information from
parents. Additionally, to prevent the algorithm from becoming trapped in local maxima, ran-
dom mutations are introduced by altering a single parameter in each offspring. The algorithm
loop ends with optimal alignment given when a plateau in image intensity for fundamental
modes is achieved in subsequent generations.
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Figure 3. Conceptual GA graph. (a) Experimental setup: an incident beam is aligned
to an optical cavity by two FSMs; The FSMs are controlled by an ethernet based
ACROMAG XT1541 DAC module which is interfaced via our EPICS [49] control sys-
tem; the DAC controls the pitch (θx) and yaw (θy) angles of the FSMs, and the cavity
length z via a PZT attached. The image stream is captured by a high-speed camera and
(b) passed to the data acquisition system (DAQ) for processing. The value of rewardR(θ)
is determined by both the CNN outcome and the image power P(θ). R(θ) = P(θ) when
the mode is fundamental mode, or R(θ) = 0 when the mode is a higher-order mode. (c)
The valuations of R(θ) are sorted to give and save the top 10% positions (fittest parents)
in next generation (the offspring). (d) Shows a set of the selected parameters. Combined
with the rest 90% being new random ones, the parameters of the next generation are fed
back to experimental setup through DAC. The algorithm is continued in a loop until a
termination condition satisfies.

4. Results

The CNN model in our study has a high accuracy for distinguishing real-time images of the
fundamental mode and higher order modes. Two common metrics are used to evaluate the
neural network in terms of its accuracy and reliability—the accuracy and loss of the model
during training and validation phases, and the classification accuracy in the utilisation phase.
The CNN model uses 80–20 split: the training dataset is 80% of the total data, with 20%
allocated to validation. Figure 4(a) shows the accuracy and loss of the CNN model during
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Figure 4. Convolutional neural network results. (a) CNN learning curves depicting
accuracy and loss ofmodel during training, validation and test respectively. (b) Accuracy
matrix of the CNN prediction of the cavity modes (FM or HoMs). The vertical axis rep-
resents the predicted label by CNN, while the horizontal axis is the true label of the
image.

the training and validation phase over 20 epochs. The CNN increases towards an accuracy of
100% by the fifth epoch, and decreases towards a loss of 0% by the tenth epoch. This indicates
that the CNN learns quickly, and the model is well-fitted to the input data.

Figure 4(b) shows the classification accuracy matrix for the CNN during the utilisation
phase. About 200 images of the experimental cavity transmission were provided to the CNN,
50 of which were of the fundamental mode and the rest higher order modes. The diagonals of
the accuracy matrix are 1.0, which indicates that 100% of the predicted classifications are the
same as the true ones. This guarantees that our alignment algorithm can converge to the best
alignment for the correct mode (fundamental mode in this case).

The GA consistently determines the best beam alignment, which is also demonstrated to be
reliable over multiple trials. In this study, the input beam is defined to be well-aligned when the
transmitted power of the fundamental mode is maximised, meaning that the transmitted power
of higher order modes is minimised. The transmitted power of the fundamental mode is quanti-
fied by the normalised intensity of the images captured by the camera to that of the input light.
Starting from random mirror positions of both FSMs, the algorithm ran over 10 generations
and determined the normalised intensity of the fundamental mode present in the image. With
a population size of one hundred, the algorithm was always able to find fundamental modes
in the first generation. By the sixth generation of the algorithm, the average intensity of the
fundamental mode reaches a plateau at 90%–95% relative intensity, as shown in figure 5. Also
shown in figure 5(a) are the 25th, 50th (median), and 75th percentiles of intensity to highlight
both the spread and central tendency. From the sixth generation onwards, the median intens-
ity exceeds 95%, with the 25th percentile reaching or surpassing 90%. The primary goal of
optical alignment is to minimize optical losses, which is shown in figure 5(b). The algorithm
reduces optical loss by a factor of 2 in more than half of the trials and achieves a reduction
by one order of magnitude in 2 out of 10 trials, demonstrating a substantial enhancement in
alignment quality.

As a comparison, the input beam is manually aligned to the the cavity using the fast-steering
mirrors and the camera. It takes approximately∼15min for an experienced experimentalist to
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Figure 5. Normalised image intensity (a) and optical loss (b) to the input light intensity
at best alignment per generation from generation 1 to 10. The image intensity is norm-
alised to the input light intensity. The blue lines are average intensities of 10 trails. The
error bars are given by the fundamental mode intensities over 10 trial runs. The dashed
and dotted lines show 25th, 50th (median), and 75th percentiles of intensity to highlight
both the spread and central tendency. The population for each generation is 100.

achieve a relative intensity of∼90%manually (indicated by the red dot in figure 5). In half the
time, the algorithm achieves or exceeds the alignment intensity achieved bymanual methods. It
is worthmentioning that algorithm evaluation prioritizes the number of generations needed and
the parameter volume per generation. Thesemetrics provide amore comprehensive assessment
of the algorithm’s efficiency and performance, compared to merely considering physical time.

To further qualify alignments given by the algorithm, the fluctuation of the loss in optical
power due to the presence of higher order modes is estimated over the 10 trial runs. The fluc-
tuation of the loss in optical power, δP/P (as per figure 5), can be estimated by the couplings
due to possible misalignments of an input beam with respect to the cavity fundamental modes
in [14]. Table I in [14] gives coupling coefficients due to misalignment in transverse position
and angular tilt as δµ/w0 and δθµ/θ0 respectively, where µ= x or y. w0 is the cavity waist
and θ0 = λ/(πw0) is the cavity beam divergence with the wavelength λ as 1064 nm. Thus,
the fluctuation of the loss in optical power is given by δP/P= 1− (δx/w0)

2 − (δy/w0)
2 −

(δθx/θ0)
2 − (δθy/θ0)

2. Here, w0 is 123µm and θ0 is 2.75mrad. δx (δθx) and δy (δθy) are the
standard deviations of the beam displacements (angle tilts) in the horizontal and vertical direc-
tions. The displacements (angle tilts) are calculated from propagation of the mirror tilt angles
by using ABCD matrix [50], a mathematical form for performing ray tracing calculations.
Over the 10 trial runs, δP/P is calculated as 94%, meaning that there is a 6% loss of optical
power from the fundamental mode (4.4% and 1.6% for optical losses caused by displacement
and angular degrees of freedom respectively). This loss occurs due to fluctuations of the input
beam alignment over multiple trials as well as imperfections of the mode matching between
the cavity and input beam.
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5. Discussion

The speed of the current experiment is largely limited by the 10ms response time of the DAC.
Over the whole algorithm, where ∼1000 mirror positions are trialled, 5min (out of ∼15min
total) can be attributed to the DAC response time. The speed of this process can be increased
by using a DAC system with a faster response time. We also employed a cost-effective GPU
to demonstrate its affordability, and upgrading the GPU could also improve time efficiency.

Our demonstration system was selected for its compatibility with a wide range of optical
systems, underscoring its broad applicability and versatility. The method serves as a strong
foundation for developing a more systematic and comprehensive alignment solution that could
be applied to a wider range of optical systems. Once initial optical alignment is achieved,
angular alignment feedback and control systems can be engaged to optimise and maintain the
optical cavity resonance condition. Future work will explore a more complex classification of
higher-ordermodes, where individualmodes could be analyzed and categorized independently.
This finer approach may provide further improvements in performance. In future applications,
the GA can be integrated with a learnable policy that would allow the algorithm to model the
specific environment of the experimental setup. The statistical learning based on such a model
would enable the algorithm to reach the perfect alignment much faster in the subsequent runs.
Extending the scope of the algorithm to high finesse cavities, where fundamental mode may
not be found within the initial generations, is another crucial direction. In such cases, the
identification of higher-order modes in the transmitted beam and their utilisation in the graded
reward function may be useful. The recent developments in efficient reinforcement learning is
another path that can be explored for a faster agent based learning [51].

This alignment algorithm can be applied to suspended optical cavities in future work, which
provides more challenges with increased number of alignment degrees of freedom and will be
more susceptible to external factors such as vibrations. To enhance the robustness and gen-
eralizability of the proposed method, incorporating simulations of environmental noise and
evaluating performance on larger systems would be beneficial. Reliable and optimised initial
alignment of suspended optical cavities is essential for the operations of laser interferomet-
ric gravitational-wave detectors, further emphasising the need for automated alignment tech-
niques that provide consistent but optimal results.

6. Conclusion

In this experiment, we demonstrate the use of machine learning algorithms to optimise the
alignment of an optical cavity. A highly accurate CNN is utilised to classify the cavity reson-
ant mode combined with a GA that controls the steering mirrors to optimise the input beam
alignment into a fixed optical cavity. It is demonstrated that the control algorithm produces
highly consistent outcomes that maximise the fundamental mode power within the cavity.
Over multiple trials, the median intensity exceeds 95%, with the 25th percentile reaching or
surpassing 90% from the sixth generation onwards. Overall, we show that machine learn-
ing techniques—particularly deep learning—can be utilised to automatically align an optical
cavity system, producing optimal and consistent results. These results are important for high-
precision optical instrumentation such as gravitational wave interferometers: machine learning
can speed up the initial cavity alignment process, as well as consistently produce optical align-
ments to maximise the circulating power of an optical cavity.
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