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We considered the radiative transition of an electron due to its spin-flip in a constant back-
ground field of the quasielectric type, which models the Lorentz-noninvariant vacuum. The
power and probability of radiation and the degree of its linear polarization are calculated.
It is shown that this radiative transition leads to the complete polarization of the initially
unpolarized electron beam. The investigated effects increase with increasing electron energy.
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1. Introduction

The Standard Model (SM) received full experimental confirmation after the discovery of the
Higgs boson at the Large Hadron Collider in 2012 [1]. However, this theory cannot be consid-
ered as a final theory of fundamental interactions of elementary particles because it does not
provide solutions to a number of fundamental problems (see, e.g. Ref. [2]), which include, inter
alia, the enormous hierarchy of particle masses, baryon asymmetry, dark matter, and dark en-
ergy in the Universe. In order to address them, various generalizations of the SM are currently
being actively developed [3]. It is supposed, in particular, that the effects of quantum gravita-
tion, which are not described by the SM, become especially significant at ultrahigh energies of
the order of the Planck energy (~10'° GeV). In the region of comparatively low energies these
effects lead to the Lorentz invariance violation (LIV), which can be described in the framework
of the so-called Standard Model Extension (SME) [4-6], which is one variant of the effective
field theory [7]. The LIV effects are described in the SME framework by adding to the La-
grangian of the SM various combinations of standard fields with free tensor indices, which
are convolved with corresponding constant tensors. These tensors are interpreted as constant
background fields describing a Lorentz-noninvariant structure of the vacuum.

Some effects in the presence of the background axial-vector field were investigated in a num-
ber of works: birefringence of light [5,8]; production of an electron—positron pair by a photon
and emission of a photon by an electron and a positron [9,10]; synchrotron radiation of an
electron taking into account its anomalous magnetic moment [11]; radiation of a hydrogen-
like atom [12]; generation of a vacuum current [13].

In our works we considered the following radiative effects in a background tensor field of the
quasimagnetic type: the one-loop mass and vertex (at zero momentum transfer) operators of
the electron [14] and emission of a photon by an electron [15-17].
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In the present paper, we study the photon emission of an electron moving in a constant tensor
background field of the quasielectric type using the Lagrangian of the form [15-17]:!

L = Lqep + LT, (1)
where Lqgp 1s the standard Lagrangian of quantum electrodynamics, and
1 -
Ly =—5Yo" Huy @

is the Lagrangian of the interaction of the electron-positron field ¢ with the constant tensor
background field H*Y = — H"*.
For the case of a quasielectric background field, we have
lele < 0’ HMVFIILV — O,

where the dual tensor H, w = EuvapH /2 (note that for the quasimagnetic field H "WH,, > 0).

Then there exists a special reference frame in which only the following components are dif-
ferent from zero (at the corresponding orientation of the coordinate axes):

Hoyy = —H3 = Hiy = —Hy = b, 3)

so that the tensor background field in the considered case is equivalent to a 3-vector (we assume

b>0)
b= be., b= (—H"H,,/2)". 4)

2.  Wave functions of an electron in the quasielectric background field

Using Eqgs. (1-3), we obtain the Dirac equation for the wave function of an electron of mass m
in the Hamiltonian form:

oY

— = ﬁw,
at (3)
H=oa p+my’+iby>,
where p = —iV.
The solution of Eq. (5) has the form
1
t,r) = —u(p, ¢)exp(—iEt +ip-r),
—i¢
.
=A .
u(p, ) iceio
1
Here V' is the normalization volume;
1 12
A:-(l—T) . B=—1_
2 E E—m (7)

q=pL—¢(b—ip);
the spin quantum number ¢ = %1, the electron energy

15:\/mz+|61|2=\/mz+p§+(1u—4“b)2 (8)

"We use a system of units where h = ¢ = 1, @ = ¢*/4m ~ 1/137, a pseudo-Euclidean metric with the
signature (+ — — —); and the Dirac matrices > = iy yly?y3, o’ = i[y*, y°1/2, & = y°y.
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depends on ¢, and the longitudinal p. and transverse p; =  /pZ + pﬁ components of the mo-
mentum p; and the angle ¢ in the expression for the wave function (6) defines the direction of
the transverse momentum according to p; = (px, py, 0) = p1(cos ¢, sing, 0).

The wave function (6) is an eigenstate of the Hamiltonian H (5), the momentum operator p,
and the spin operator [18]

~

M =y>y"Hup', ©)
where p¥ = (E, p). Taking into account Egs. (3) and (4), we represent the operator (9) as fol-
lows:

M=b-e=be.=by’(y'p, — v’px). (10)
Here the 3-vector of electric polarization is introduced [19]:
e=y'(px3%), Z=ya (11)

The eigenvalues of the operator (10) are related to the spin number ¢ by the relation
MYrpe = bp Ve

3. Radiation power
Using the general formulas of radiation theory [18], we find the angular distribution of the radi-
ation power at the radiative transition of an electron |i) = |p, ¢) — |f) = ]p’, ;’) with emission
of a photon with 4-momentum k* = (w, k) and polarization vector ey
(2) 2

d;ﬂ = e (@) (12)
Here the frequency w of the photon emitted in the direction n = k/w (|n| = 1) is determined
by the conservation of energy and momentum:

2bVJ_
= 8 18+ 1, 13
@ = Ty 00 (13)
and, consequently, the radiation is due to the spin-flip of the electron: { = —1 — ¢’ = 1.

Equation (13) is the leading term of the expansion in the parameter b/m, the smallness of
which is provided by the present upper limit on the tensor background field strength [6]:
b<107 B ev. (14)

In this approximation, which we will restrict below, v = p/¢ is the velocity of a free electron

with energy ¢ = E(b = 0) = \/m? + p? (see Eq. (8)).
The matrix elements in Eq. (12)
(@) =u™ (p', ¢') et (p, ©). (15)
Taking into account Egs. (6-8) and (13), we obtain the matrix elements (15) and («) (g = 1
is the unit matrix) in the first order of expansion in the background field b:

((a1)) _ 12 |:—ia)8+(pJ- _ipz)(iwpl —kz):| ( Py >,
(o) 2ep7 o o

. (16)
(a3) _ kxpy - kypx p1L—1p: .
(<a0>> - 28171 im + pz(pJ_ lpz)
e—m
Note that the matrix elements (16) satisfy the relation
w (o) — k- (o) =0, (17)
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which follows from the conservation of the electromagnetic current [20].
Summation in Eq. (12) by polarizations according to the known formula [18]

Zei’e’i = 8% —nin* (18)

yields in view of Eq. (17)
dP a W ) )
_— = — . 19
5= s (@ 1)) (19)
Taking into account Egs. (13) and (16), as well as the axial symmetry of the background field
(4), which allows us to set p = (py, 0, p.), we represent Eq. (19) in the form

dP (1—v*n? 2,2 2\, 2
aQ PO(I — NV — Nv2)d [(1 nev:)” —movy = (1—v )ny]’ 29
where
2 4
%:_ﬁ%, 1)
T m

In the spherical coordinate system with the polar axis Oz, we have in Eq. (20)

dQ = sinfdbde,
(22)
ny=sinfcosy, n,=sinfsing, n.=cosé.

To calculate the total radiation power, it is convenient to express the angles in Eq. (22) through
the angles (marked by the index 0) in a reference frame moving with the velocity v. along the Oz-
axis (as in synchrotron radiation theory [19]), using an appropriate boost that does not change
the original configuration of the background field (4):

(nx> — \/W (nOX) n — noz + v:

ny 1+ V:noz \ Noy ’ I+ VZ”OZ’ (23)
1 —y?
= Vo /1 — V2, dQ=—-—"—d
fr=to 'z A+ g2 0
Using Eq. (23), we represent Eq. (20) as
dp V(2)(1 - V%) 2.2 24,2
d—sz() = Po(l + Vznoz)m [1 — Vol — (1 — vo)noy] . (24)
Here vy = vy, is invariant with respect to boosts along the Oz-axis:
vy = L vy = /v — 2 (25)

N

The integration of the angular distribution (24) is simplified if we choose Ox as the polar axis.
Then ng, = cosa, ng, = sinw cos B, np- = sina sin B, which allows us to perform independent
integration over the angles @ and 8, and as a result we obtain the total radiation power
va(14+312)  16ab*
P——Pu_——z 1 + 4 26
310 (- 2y 3 (1+4r), (26)
where

t=yv, = % 27)

with the Lorentz factor y = ¢/m = 1/4/1 — v2.

For the unpolarized electron it is necessary to introduce an additional factor 1/2 in the right-
hand side of Eq. (26). Note that the power (26) is Lorentz invariant (see, e.g. Ref. [18]), which
explains its dependence only on vy.
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4. Polarization of the radiation
To describe the polarization of radiation, we introduce, as in the theory of synchrotron radia-
tion, the o- and w-components of the linear polarization (see Ref. [18]):

e; xXn —nyey + nye, e, —n.n

€ = er=nxe = ——.
V1 —n2

(28)

_Iezxnl_ \/l—lflg '
From Egs. (12), (16), (23), and (28), we find angular distributions of radiation powers of
linear polarization components:

dP)/dS (=) 1 n [1—vi(1 —nd)]
— Pl - v.no. Ox 0 o]} )
(dP(”)/dQO Ty =y 2, [+ (1= )] 9)

Their sum gives Eq. (24), as it should be.
By integrating the distributions (29) over the angles, we obtain the total radiation powers of
the polarization components

PO\ x v (64232 — )
=-R—>— L 30
(P“”) 3 0(1 — v})? ( Q+vi+v)) (39)

the sum of which coincides with Eq. (26).
It follows from Eq. (30) that the radiation is linearly polarized (the o-component predomi-
nates), and the degree of polarization is
PO — P 24152+ 121* 31)
P 41 + 2)(1 + 412y
It increases monotonically with velocity, from 1/2 atz — 0(vop — 0)to 3/4 att — oo(vg — 1).

5. Probability of radiative transition
The angular probability distribution of radiation is obtained by multiplying the right-hand side
of Eq. (24) by 1/w and taking into account Egs. (13), (21), (23), and (25):

S - 2 07 2.2 2N 2
dQy  mwm? 1 2(1 = vongx)* [1 vonpe — (1 vo)noy]. (32)

Integration of the distribution (32) over the angles gives the total probability of radiation (decay

rate)
w= MW(O) =wov, (1 + 312),

o _ . vo(l+ 2\%) B 8 ab?
w=wy—————, Wo=5;"—5-
3 m?
Here, the characteristic dependence on the longitudinal velocity v. expresses the law of proba-
bility transformation at boost according to special relativity.
Consider the average radiative energy loss of an electron, i.e. the average photon energy:

(33)

2
1 —v;

P
() = —. (34)
w
From Eq. (34), taking into account Egs. (26) and (33), we find
1 + 472
= 2byt 35
(w) YA (35)
and the maximum photon energy (see Eq. (13))
Wmax = 2byt(1 +v). (36)
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According to Eq. (34), on average after a time interval
R=1/w (37)

the electron undergoes a spin-flip transition, emitting a photon and entering a radiation-sterile
state (see Eqs. (8) and (13)). Therefore, the initially unpolarized electron beam becomes fully
polarized, with g being the characteristic polarization time. Using Egs. (33) and (37), we find
the radiative polarization length

v

wov (1 4+ 3¢2) (38)

LRI VIR =

6. Discussion
Let us compare the results obtained for the background quasielectric field (type E) with the
corresponding results for the quasimagnetic field (type M) [15-17].

In the region of small velocities they are very different: for type E the power and probability
of radiation go to zero at v — 0 (see Egs. (26) and (33)), whereas for type M even a resting
electron emits a photon. This difference is explained by the fact that in the case of type M the
contribution of the magnetic moment of the electron dominates [14], whereas for type E the ra-
diation is due to the interaction of the induced electric moment (at v > 0) with the quasielectric
field (see Egs. (10) and (11)).

At v=v, — 1 (the high-energy region, y > 1), the results for types E and M practically
coincide. This is explained by the fact that at the boost to the electron’s rest frame both config-
urations of the background field become practically indistinguishable from the configuration
of the so-called crossed field (cf. Refs. [20,21]). In this frame, the quasielectric by and quasimag-
netic hy fields are orthogonal to each other and are equal in magnitude, as it follows from the
explicit form of the corresponding transformations (see, e.g. Ref. [22]):

by = yb, hy = —yvxb forv-b=0,
and
hy =yh, bp=yvxh forv-h=0,

respectively.

As can be seen from from Egs. (26), (33), (35), and (38), the effects of Lorentz violation
become most significant for a high-energy electron when it moves transversely with respect to
the direction of the background field.

However, our the results are valid provided that the electron recoil is small when emitting a
photon, i.c.

(@)

x=" < 1. (39)
Hence, taking into account Egs. (35) and (27), in case v, — 1 we obtain the constraint
b
r~ 22«1 (40)
m
In the same case for the radiative polarization length (38) we obtain (in usual units)
Ae (M3
Lp=(2) v 41
r=2=(5) (41)

where X, is the Compton wavelength of the electron.
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For numerical estimations, we set 5 =5 x 1078 eV (see Eq. (14)) and ¢ = 10'® GeV (the
Grand Unification scale [2,3]). Then from Eqgs. (39-41) we obtain

x~2x 1074 (0) =2x 102 GeV, Lgx~2x10* cm.

For comparison, the maximum recorded energy of particles in cosmic rays ~10'! GeV [23],
and the distance from the Sun to the center of the Galaxy ~2.5 x 10??> cm [1].

7. Conclusion

Within the framework of the SME, the emission of a photon by an electron moving in a con-
stant quasielectric background field, which models the Lorentz-noninvariant vacuum, is inves-
tigated. This process, due to the flip of the electron spin during the transition to a radiation-
stable state, leads to a complete polarization of the initially unpolarized electron beam along
the direction of the background field. It is shown that the radiation has a significant linear po-
larization, the degree of which reaches 75% for high-energy electrons. It is established that the
considered radiation effects can become significant in astrophysical conditions for ultrahigh-
energy electrons.
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