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We considered the radiati v e transition of an electron due to its spin-flip in a constant back- 
ground field of the quasielectric type, which models the Lorentz-noninvariant vacuum. The 
power and probability of radiation and the degree of its linear polarization are calculated. 
It is shown that this radiati v e transition leads to the complete polarization of the initially 

unpolarized electron beam. The investiga ted ef fects increase with increasing electron energy. 
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1. Introduction 

The Standard Model (SM) received full experimental confirmation after the discovery of the
Higgs boson at the Large Hadron Collider in 2012 [ 1 ]. Howe v er, this theory cannot be consid-
ered as a final theory of fundamental interactions of elementary particles because it does not
provide solutions to a number of fundamental problems (see, e.g. Ref. [ 2 ]), which include, inter
alia, the enormous hierarchy of particle masses, baryon asymmetry, dark matter, and dark en-
ergy in the Uni v erse. In or der to addr ess them, various generalizations of the SM ar e curr ently
being acti v ely de v eloped [ 3 ]. It is supposed, in particular, tha t the ef fects of quantum gravita-
tion, which are not described by the SM, become especially significant at ultrahigh energies of 
the order of the Planck energy ( ∼10 

19 GeV ). In the region of comparati v ely lo w ener gies these
effects lead to the Lorentz invariance violation (LIV), which can be described in the frame wor k
of the so-called Standard Model Extension (SME) [ 4–6 ], which is one variant of the effecti v e
field theory [ 7 ]. The LIV effects are described in the SME frame wor k by adding to the La-
grangian of the SM various combinations of standard fields with free tensor indices, which
are convolved with corresponding constant tensors. These tensors are interpreted as constant
background fields describing a Lorentz-noninvariant structure of the vacuum. 

Some effects in the presence of the background axial-vector field were investigated in a num-
ber of works: birefringence of light [ 5 , 8 ]; production of an electr on–positr on pair by a photon
and emission of a photon by an electron and a positron [ 9 , 10 ]; synchrotron radiation of an
electron taking into account its anomalous magnetic moment [ 11 ]; radiation of a hydrogen-
like atom [ 12 ]; generation of a vacuum current [ 13 ]. 

In our works we considered the following radiati v e effects in a background tensor field of the
quasimagnetic type: the one-loop mass and v erte x (at zero momentum transfer) operators of 
the electron [ 14 ] and emission of a photon by an electron [ 15–17 ]. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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In the present paper, we study the photon emission of an electron moving in a constant tensor
background field of the quasielectric type using the Lagrangian of the form [ 15–17 ]: 1 

L = L QED 

+ L T 

, (1) 

where L QED 

is the standard Lagrangian of quantum electrodynamics, and 

L T 

= −1 

2 

ψ̄ σμνH μνψ (2) 

is the Lagrangian of the interaction of the electr on-positr on field ψ with the constant tensor
background field H 

μν = −H 

νμ. 
For the case of a quasielectric background field, we have 

H 

μνH μν < 0 , H 

μν ˜ H μν = 0 , 

where the dual tensor ˜ H μν = ε μναβH 

αβ/ 2 (note that for the quasimagnetic field H 

μνH μν > 0 ). 
Then there exists a special reference frame in which only the following components are dif-

ferent from zero (at the corresponding orientation of the coordinate axes): 

H 03 = −H 30 = 

˜ H 12 = −˜ H 21 = b, (3) 

so that the tensor background field in the considered case is equivalent to a 3-vector (we assume
b > 0 ) 

b = be z , b = 

(−H 

μνH μν/ 2 

)1 / 2 
. (4) 

2. Wave functions of an electron in the quasielectric background field 

Using Eqs. ( 1 –3 ), we obtain the Dirac equation for the wave function of an electron of mass m
in the Hamiltonian form: 

i 
∂ψ 

∂t 
= 

̂ H ψ, 

̂ H = α ·̂ p + mγ 0 + ibγ 3 , 

(5) 

where ̂  p = −i∇. 
The solution of Eq. ( 5 ) has the form 

ψ p ζ (t, r ) = 

1 √ 

V 

u ( p , ζ ) exp ( −i E t + i p · r ) , 

u ( p , ζ ) = A 

⎛ ⎜ ⎜ ⎜ ⎝ 

Be −iφ

iζB 

iζe −iφ

1 

⎞ ⎟ ⎟ ⎟ ⎠ 

. 

(6) 

Here V is the normalization volume; 

A = 

1 

2 

(
1 − m 

E 

)1 / 2 
, B = 

q 

E − m 

, 

q = p ⊥ 

− ζ (b − ip z ) ;
(7) 

the spin quantum number ζ = ±1 , the electron energy 

E = 

√ 

m 

2 + | q | 2 = 

√ 

m 

2 + p 

2 
z + (p ⊥ 

− ζb) 2 (8) 
1 We use a system of units where � = c = 1 , α = e 2 / 4 π � 1 / 137 , a pseudo-Euclidean metric with the 
signature (+ − −−) ; and the Dirac matrices γ 5 = iγ 0 γ 1 γ 2 γ 3 , σμν = i[ γ μ, γ ν ] / 2 , α = γ 0 γ . 

2/8 
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depends on ζ , and the longitudinal p z and transverse p ⊥ 

= 

√ 

p 

2 
x + p 

2 
y components of the mo-

mentum p ; and the angle φ in the expression for the wave function ( 6 ) defines the direction of 
the transverse momentum according to p ⊥ 

= (p x , p y , 0) = p ⊥ 

( cos φ, sin φ, 0) . 
The wave function ( 6 ) is an eigenstate of the Hamiltonian 

̂ H ( 5 ), the momentum operator ̂  p ,
and the spin operator [ 18 ] ̂ 
 = γ 5 γ μ ˜ H μν p 

ν, (9) 

where p 

ν = (E , p ) . Taking into account Eqs. ( 3 ) and ( 4 ), we r epr esent the operator ( 9 ) as fol-
lows: ̂ 
 = b · ε = b εz = b γ 5 (γ 1 p y − γ 2 p x ) . (10) 

Here the 3-vector of electric polarization is introduced [ 19 ]: 

ε = γ 0 (p × �) , � = γ 5 α. (11) 

The eigenvalues of the operator ( 10 ) are related to the spin number ζ by the relation ̂ 
ψ p ζ = ζbp ⊥ 

ψ p ζ . 

3. Radiation power 
Using the general formulas of radiation theory [ 18 ], we find the angular distribution of the radi-
a tion power a t the radia ti v e transition of an electron 

| i 〉 = 

| p , ζ 〉 → 

| f 〉 = 

∣∣p 

′ , ζ ′ 〉 with emission
of a photon with 4-momentum k 

μ = (ω, k ) and polarization vector e λ: 

dP 

(λ) 

d�
= 

α

2 π

ω 

2 

1 − n · v 

∣∣e ∗λ · 〈 α〉 ∣∣2 
. (12) 

Her e the fr equency ω of the photon emitted in the direction n = k /ω ( | n 

| = 1 ) is determined
by the conservation of energy and momentum: 

ω = 

2 bv ⊥ 

1 − n · v 
δζ ′ , 1 δζ , −1 , (13) 

and, consequently, the radiation is due to the spin-flip of the electron: ζ = −1 → ζ ′ = 1 . 
Equation ( 13 ) is the leading term of the expansion in the parameter b/m , the smallness of 

which is provided by the present upper limit on the tensor background field strength [ 6 ]: 

b � 10 

−18 eV . (14) 

In this a pproximation, w hich we will restrict below, v = p /ε is the velocity of a free electron
with energy ε = E (b = 0) = 

√ 

m 

2 + p 

2 (see Eq. ( 8 )). 
The matrix elements in Eq. ( 12 ) 

〈 α〉 = u 

+ 

(
p 

′ , ζ ′ ) αu ( p , ζ ) . (15) 

Taking into account Eqs. ( 6 –8 ) and ( 13 ), we obtain the matrix elements ( 15 ) and 

〈 α0 〉 ( α0 = I 
is the unit matrix) in the first order of expansion in the background field b: ( 

〈 α1 〉 
〈 α2 〉 

) 

= 

1 

2 εp 

2 
⊥ 

[
−iωε + (p ⊥ 

− ip z ) 
(

iωp ⊥ 

ε − m 

− k z 

)]( 

p y 

−p x 

) 

, 

( 

〈 α3 〉 
〈 α0 〉 

) 

= 

k x p y − k y p x 

2 εp 

2 
⊥ 

⎛ ⎝ 

p ⊥ 

− ip z 

im + 

p z (p ⊥ 

− ip z ) 
ε − m 

⎞ ⎠ . 

(16) 

Note that the matrix elements ( 16 ) satisfy the relation 

ω 

〈 α0 〉 − k · 〈 α〉 = 0 , (17) 
3/8 
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which follows from the conservation of the electromagnetic current [ 20 ]. 
Summation in Eq. ( 12 ) by polarizations according to the known formula [ 18 ] ∑ 

λ

e ∗i 
λ e k λ = δik − n 

i n 

k (18) 

yields in view of Eq. ( 17 ) 

dP 

d�
= 

α

2 π

ω 

2 

1 − n · v 

(| 〈 α〉 | 2 − | 〈 α0 〉 | 2 
)
. (19) 

Taking into account Eqs. ( 13 ) and ( 16 ), as well as the axial symmetry of the background field
( 4 ), which allows us to set p = (p x , 0 , p z ) , we r epr esent Eq. ( 19 ) in the form 

dP 

d�
= P 0 

(1 − v 2 ) v 2 x 

(1 − n x v x − n z v z ) 5 

[ 

(1 − n z v z ) 2 − n 

2 
x v 

2 
x − (1 − v 2 ) n 

2 
y 

] 

, (20) 

where 

P 0 = 

2 α

π

b 

4 

m 

2 
. (21) 

In the spherical coordinate system with the polar axis Oz , we have in Eq. ( 20 ) 

d� = sin θdθdϕ, 

n x = sin θ cos ϕ, n y = sin θ sin ϕ, n z = cos θ. 
(22) 

To calculate the total radiation power, it is convenient to express the angles in Eq. ( 22 ) through
the angles (marked by the index 0) in a r efer ence frame moving with the velocity v z along the Oz -
axis (as in synchr otr on radiation theory [ 19 ]), using an appropriate boost that does not change
the original configuration of the background field ( 4 ): ( 

n x 

n y 

) 

= 

√ 

1 − v 2 z 

1 + v z n 0 z 

( 

n 0 x 

n 0 y 

) 

, n z = 

n 0 z + v z 
1 + v z n 0 z 

, 

v x = v 0 x 
√ 

1 − v 2 z , d� = 

1 − v 2 z 

(1 + v z n 0 z ) 2 
d�0 . 

(23) 

Using Eq. ( 23 ), we r epr esent Eq. ( 20 ) as 

dP 

d�0 
= P 0 (1 + v z n 0 z ) 

v 2 0 (1 − v 2 0 ) 
(1 − v 0 n 0 x ) 5 

[ 

1 − v 2 0 n 

2 
0 x − (1 − v 2 0 ) n 

2 
0 y 

] 

. (24) 

Here v 0 ≡ v 0 x is invariant with respect to boosts along the Oz -axis: 

v 0 = 

v ⊥ √ 

1 − v 2 z 

, v ⊥ 

= 

√ 

v 2 − v 2 z . (25) 

The integration of the angular distribution ( 24 ) is simplified if we choose Ox as the polar axis.
Then n 0 x = cos α, n 0 y = sin α cos β, n 0 z = sin α sin β, which allows us to perform independent
integration over the angles α and β, and as a result we obtain the total radiation power 

P = 

8 π

3 

P 0 
v 2 0 (1 + 3 v 2 0 ) 

(1 − v 2 0 ) 
2 

= 

16 

3 

αb 

4 

m 

2 
t 2 (1 + 4 t 2 ) , (26) 

where 

t = γ v ⊥ 

= 

p ⊥ 

m 

(27) 

with the Lorentz factor γ = ε/m = 1 / 

√ 

1 − v 2 . 
For the unpolarized electron it is necessary to introduce an additional factor 1 / 2 in the right-

hand side of Eq. ( 26 ). Note that the power ( 26 ) is Lorentz invariant (see, e.g. Ref. [ 18 ]), which
explains its dependence only on v 0 . 
4/8 
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4. Polarization of the radiation 

To describe the polariza tion of radia tion, we introduce, as in the theory of synchr otr on radia-
tion, the σ - and π -components of the linear polarization (see Ref. [ 18 ]): 

e σ = 

e z × n 

| e z × n 

| = 

−n y e x + n x e y √ 

1 − n 

2 
z 

, e π = n × e σ = 

e z − n z n √ 

1 − n 

2 
z 

. (28) 

From Eqs. ( 12 ), ( 16 ), ( 23 ), and ( 28 ), we find angular distributions of radiation powers of 
linear polarization components: ( 

d P 

(σ ) /d �0 

d P 

(π ) /d �0 

) 

= P 0 (1 + v z n 0 z ) 
v 2 0 (1 − v 2 0 ) 

(1 − v 0 n 0 x ) 5 
1 

1 − n 

2 
0 z 

( 

n 

2 
0 x 

[
1 − v 2 0 (1 − n 

2 
0 z ) 

]
n 

2 
0 y 

[
v 2 0 + (1 − v 2 0 ) n 

2 
0 z ) 

]) 

. (29) 

Their sum gi v es Eq. ( 24 ), as it should be. 
By integrating the distributions ( 29 ) over the angles, we obtain the total radiation powers of 

the polarization components ( 

P 

(σ ) 

P 

(π ) 

) 

= 

π

3 

P 0 
v 2 0 

(1 − v 2 0 ) 
2 

( 

(6 + 23 v 2 0 − v 4 0 ) 
(2 + v 2 0 + v 4 0 ) 

) 

, (30) 

the sum of which coincides with Eq. ( 26 ). 
It follows from Eq. ( 30 ) that the radiation is linearly polarized (the σ -component predomi-

nates), and the degree of polarization is 

P 

(σ ) − P 

(π ) 

P 

= 

2 + 15 t 2 + 12 t 4 

4(1 + t 2 )(1 + 4 t 2 ) 
. (31) 

It increases monotonically with velocity, from 1 / 2 at t → 0(v 0 → 0) to 3 / 4 at t → ∞ (v 0 → 1) .

5. Pr obability of radiativ e transition 

The angular probability distribution of radiation is obtained by m ultipl ying the right-hand side
of Eq. ( 24 ) by 1 /ω and taking into account Eqs. ( 13 ), ( 21 ), ( 23 ), and ( 25 ): 

d w 

d�0 
= 

αb 

3 

πm 

2 

√ 

1 − v 2 z 
v 0 (1 − v 2 0 ) 

(1 − v 0 n 0 x ) 4 

[ 

1 − v 2 0 n 

2 
0 x − (1 − v 2 0 ) n 

2 
0 y 

] 

. (32) 

Integration of the distribution ( 32 ) over the angles gi v es the total probability of radiation (decay
rate) 

w = 

√ 

1 − v 2 z w 

(0) = w 0 v ⊥ 

(1 + 3 t 2 ) , 

w 

(0) = w 0 
v 0 (1 + 2 v 2 0 ) 

1 − v 2 0 

, w 0 = 

8 

3 

αb 

3 

m 

2 
. 

(33) 

Here, the characteristic dependence on the longitudinal velocity v z expresses the law of proba-
bility transformation at boost according to special relativity. 

Consider the average radiati v e energy loss of an electron, i.e. the average photon energy: 

〈 ω〉 = 

P 

w 

. (34) 

From Eq. ( 34 ), taking into account Eqs. ( 26 ) and ( 33 ), we find 

〈 ω〉 = 2 bγ t 
1 + 4 t 2 

1 + 3 t 2 
, (35) 

and the maximum photon energy (see Eq. ( 13 )) 

ω max = 2 bγ t(1 + v ) . (36) 
5/8 
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According to Eq. ( 34 ), on average after a time interval 

τR 

= 1 /w (37) 

the electron undergoes a spin-flip transition, emitting a photon and entering a radiation-sterile
state (see Eqs. ( 8 ) and ( 13 )). Ther efor e, the initially unpolarized electron beam becomes fully
polarized, with τR 

being the characteristic polarization time. Using Eqs. ( 33 ) and ( 37 ), we find
the radiati v e polarization length 

L R 

= vτR 

= 

v 
w 0 v ⊥ 

(1 + 3 t 2 ) 
. (38) 

6. Discussion 

Let us compare the results obtained for the background quasielectric field (type E) with the
corr esponding r esults for the quasimagnetic field (type M) [ 15–17 ]. 

In the region of small velocities they are very different: for type E the power and probability
of radiation go to zero at v → 0 (see Eqs. ( 26 ) and ( 33 )), whereas for type M e v en a resting
electron emits a photon. This difference is explained by the fact that in the case of type M the
contribution of the magnetic moment of the electron dominates [ 14 ], whereas for type E the ra-
diation is due to the interaction of the induced electric moment (at v > 0 ) with the quasielectric
field (see Eqs. ( 10 ) and ( 11 )). 

At v = v ⊥ 

→ 1 (the high-energy region, γ � 1 ), the results for types E and M practically
coincide. This is explained by the fact that at the boost to the electron’s rest frame both config-
urations of the background field become practically indistinguishable from the configuration 

of the so-called crossed field (cf. Refs. [ 20 , 21 ]). In this frame, the quasielectric b 0 and quasimag-
netic h 0 fields are orthogonal to each other and are equal in magnitude, as it follows from the
explicit form of the corresponding transformations (see, e.g. Ref. [ 22 ]): 

b 0 = γ b , h 0 = −γ v × b for v · b = 0 , 

and 

h 0 = γ h , b 0 = γ v × h for v · h = 0 , 

respecti v ely. 
As can be seen from from Eqs. ( 26 ), ( 33 ), ( 35 ), and ( 38 ), the effects of Lorentz violation

become most significant for a high-energy electron when it moves transversely with respect to
the direction of the background field. 

Howe v er, our the results are valid provided that the electron recoil is small when emitting a
photon, i.e. 

χ = 

〈 ω〉 
ε 

� 1 . (39) 

Hence, taking into account Eqs. ( 35 ) and ( 27 ), in case v ⊥ 

→ 1 we obtain the constraint 

χ � 

γ b 

m 

� 1 . (40) 

In the same case for the radiati v e polarization length ( 38 ) we obtain (in usual units) 

L R 

� 

λ̄e 

8 α

(m 

b 

)3 
γ −2 , (41) 

where λ̄e is the Compton wavelength of the electron. 
6/8 
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For numerical estimations, we set b = 5 × 10 

−18 eV (see Eq. ( 14 )) and ε = 10 

16 GeV (the
Grand Unification scale [ 2 , 3 ]). Then from Eqs. ( 39 –41 ) we obtain 

χ � 2 × 10 

−4 , 〈 ω〉 = 2 × 10 

12 GeV , L R 

� 2 × 10 

21 cm . 

For comparison, the maximum recorded energy of particles in cosmic rays � 10 

11 GeV [ 23 ],
and the distance from the Sun to the center of the Galaxy � 2 . 5 × 10 

22 cm [ 1 ]. 

7. Conclusion 

Within the frame wor k of the SME, the emission of a photon by an electron moving in a con-
stant quasielectric background field, which models the Lorentz-noninv ariant v acuum, is inves-
tigated. This process, due to the flip of the electron spin during the transition to a radiation-
stable state, leads to a complete polarization of the initially unpolarized electron beam along
the direction of the background field. It is shown that the radiation has a significant linear po-
larization, the degree of which reaches 75% for high-energy electrons. It is established that the
considered radiation effects can become significant in astrophysical conditions for ultrahigh-
energy electrons. 
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