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ABSTRACT In this article, we propose a new strategy to exploit Grover’s algorithm for unstructured search
problems. We first show that running Grover’s routine with a reduced number of iterations but allowing
several trials presents a complexity advantage while keeping the same success probability. Then, by a
theoretical analysis of the performance, we provide a generic procedure to parameterize the number of
iterations k within one shot of Grover’s algorithm and the maximum number of trials T , given a targeted
success p and the size of the database N. At the end, we highlight that this new approach permits to reduce
the computational time by at least 10% for p ≥ 0.999 independently of the size of the database.

INDEX TERMS Complexity, grover’s algorithm, hybrid quantum computing, unstructured search.

I. INTRODUCTION
Grover’s algorithm stands as a cornerstone in quantum com-
puting for solving unstructured search problems. Introduced
by Grover [1], it has garnered widespread attention for its
potential applications across various problem domains. The
initial formulation of the algorithm proposes an iterative
method that allows to find amarked element x0 in an unsorted
database with a certain success probability p. At each itera-
tion, the algorithm calls a quantum oracle [1]. An appropriate
parameterization of Grover’s algorithm allows to reach a suc-
cess probability close to 1 with O(

√
N ) oracle calls, where

N is the size of the database. Thus, Grover’s routine provides
a quadratic speedup over classical methods [2], [3].

The contribution of [4] extended the scope of Grover’s
algorithm to the search for a minimum, the so-called Grover
adaptive search. Consequently, the algorithm provides an
alternative quantum approach to existing algorithms, such
as the Quantum Approximate Optimization Algorithm and
the variational quantum eigensolver [5], [6], to address to
problems like quadratic unconstrained binary optimization
and constrained polynomial binary optimization [7]. More
generally, this opens up a wide range of possibilities for us-
ing Grover’s algorithm to solve combinatorial optimization
problems in various technological and industrial fields.

For instance, Grover’s algorithm has already been ap-
plied to the graph coloring problem [8], [9] and AES key
search [10]. Several studies have also adapted the algorithm
to various signal processing tasks. Among the existing works
on this topic, one can mention [11], which adapts Grover’s
search to image pattern matching, and [12], which uses the
algorithm in the context of wireless communications to com-
pute a maximum-likelihood detector.
Even though Grover’s algorithm provides a quadratic

speedup, it remains a relevant issue to optimize its compu-
tational cost. Indeed, the claimed quadratic speedup does not
account for the cost of an oracle call during inside a single
iteration [13]. However, the resources required for each itera-
tion, such as the quantum gates that implement the so-called
Grover’s oracle, can rapidly increase depending on the cri-
terion of the search problem [14]. Existing works [15], [16]
propose directions for optimizing the circuit implementation
of the algorithm, but it may also be promising to optimize the
number of oracle calls of Grover’s algorithm. For example,
Cherckesova et al. [17] proposed modifying the initializa-
tion of Grover’s procedure to save several iterations. Nev-
ertheless, there are still various strategies to explore in order
to further reduce the number of Grover’s iterations without
compromising its reliability.
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FIGURE 1. Grover scheme with for 2 qubits. The last qubit is an ancilla
qubit needed for marking the solutions.

This work aims to optimize the number of iterations of
Grover’s algorithm by using a hybrid approach. Inspired by
the BBHT approach [2] that launches Grover’s algorithm
several times, we propose to introduce one additional degree
of freedom to the usual number of iterations of the algo-
rithm, called the number of trials. This parameter permits
to run Grover several times if needed, allowing to reduce
the number of iterations within one Grover’s trial. In this
work, we analyze the performances of such algorithm. The
rest of this article is organized as follows. First, we review
the description of Grover’s algorithm in Section II before
describing our proposal in Section III. We discuss how to
properly parameterize our hybrid algorithm in Section V and
we analyze its performance in Section VI. Finally, Section
VII concludes this article.

II. GROVER’S ALGORITHM
A. DESCRIPTION OF GROVER’S ROUTINE
Assume that we have a database with N = 2n unsorted el-
ements labeled by a bit-string x ∈ {0, 1}n, and a Boolean
function f : {0, 1}n → {0, 1} that marks the elements x0
contained in a subset S of {0, 1}n, such that

f (x) =
{
1, if x = x0
0, otherwise.

(1)

Grover’s algorithm [1], [2] aims to find one of these marked
elements. It consists in a series of gates applied on a quan-
tum register composed of n qubits, in order to amplify the
amplitude of the targeted elements. This way, the probability
to measure one of the marked states is close to 1 at the end
of the computation. The algorithm relies on the fact that one
is able build a unitary operator Uf , often called oracle, such
that

Uf x =
{−|x〉, if f (x) = 1
|x〉, if f (x) = 0.

(2)

Of course,Uf depends on the criteria used to define the subset
S . In this work, we assume that the oracle is well defined and
we consider the behavior of the algorithm independently of
Uf .

Let us denote |�〉 ∈ H⊗n the state of the register. Grover’s
routine consists in the procedure described in Algorithm 1.
The instructions within the while block constitute one
Grover’s iteration, depicted on the quantum circuit of Fig. 1.

Algorithm 1: Grover’s Algorithm.

Input:k ∈ N∗
1: Initialize the register |�〉 to the uniform

superposition: |s〉 = 1√
N

∑
x∈{0,1}n |x〉

2: for i = 1 to k do
3: Apply the oracleUf

4: Apply the diffusion operator D = 2|s〉〈s| − IN
5: end for
6: Perform a measure of the register
Output:|x〉

At the beginning, all the states of the computational basis
are equiprobable. Applying the oracleUf marks the elements
of S . Then, the diffusion operator amplifies the marked el-
ements, while attenuating the amplitude of the other ones.
Assume that t elements are solutions, i.e., |S| = t. After k
iterations, it is shown in [2] that the state of the register reads

|�〉 = (
DUf

)k |s〉 = 1√
t
sin ((2k + 1)θG)

∑
x0∈S

|x0〉

+ 1√
N − t

cos ((2k + 1)θG)
∑
x/∈S

|x〉

(3)

where the angle θG is defined by

sin2(θG) = t

N
. (4)

B. SUCCESS PROBABILITY WITHIN ONE SHOT
A measure of |�〉 after k iterations makes the state collapse
to one of the marked elements with the probability

PBG(k) = sin2((2k + 1)θG) (5)

which corresponds to the success probability of Grover’s
algorithm after k iterations. The optimal number of iterations
one should perform to reach the highest success probability
with one shot of Grover’s algorithm is chosen so that (5) is
maximized. It is usually denoted Lopt and given by [2]

Lopt =
⌊

π

4

√
N

t

⌋
. (6)

The algorithm costs O(
√
N ) iterations, hence one often

mentions a quadratic speedup. The case t > 1wheremultiple
elements are marked raises the issue of the choice of Lopt
when S is not well known as discussed in [2] and [18]. In this
work, we choose to focus on the case t = 1. Indeed, notice
that all the observable quantities depend on the ratio N/t.
Hence one can recover the multisolution case by rescaling
N → N/t when t is known.

C. INDEPENDENT REPETITIONS
One might consider another strategy to parameterize
Grover’s algorithm in order to ensure a success rather than
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FIGURE 2. Proposed searching scheme for reducing the number of iterations.

settling for a finite success probability. This can be achieved
by allowing multiple executions of the previous procedure,
but the parameterization of the algorithm must be slightly
adjusted. Indeed, once the number of iterations of Grover’s
algorithm is fixed to a certain k, each repetition of the routine
corresponds to a Bernoulli trial with a success probability
PBG(k).

Assuming unbounded computational resources, the num-
ber of shots required to achieve one success follows a geo-
metric distributionwith parameter p = PBG(k). The expected
number of shots to achieve a success is given by

〈nshot〉 =
∞∑
j=1

j (1 − PBG(k))
j−1 PBG(k) = 1

PBG(k)
(7)

which yields a mean running time, expressed in terms of ora-
cle calls, as k/PBG(k). Then, if one denotes k0 the minimizer
of this running time, i.e.,

k0 = arg min
k∈R+

{
k

PBG(k)

}
(8)

the optimal number of iteration within one Grover’s routine
appears to be instead

L(∞)
opt = �k0�. (9)

However, this analysis assumes that Grover’s algorithm
can be repeated indefinitely, which is not the case in prac-
tice due to limited computational time on quantum proces-
sors [19]. It is why one usually accommodates with success
probabilities of quantum algorithms strictly under 100% [20]
even with several repetitions.
Nevertheless, running Grover’s routine with a maximal

number of shots may be useful, as its success probability can

be tuned by adjusting the number of iterations within each
trial. This work aims to explore the potential benefits of such
parameterization.

III. MIXED GROVER (MG) PROPOSAL
In this section, we propose investigating a novel strategy
to run Grover’s algorithm. As mentioned previously, a per-
fect success probability of 100% is unattainable in practice.
Instead, we aim to find a process that consumes as few
iterations as possible while achieving a targeted success.

A. PROPOSED ALGORITHM
Let us denote BG the basic Grover’s algorithm for further
convenience. The latter corresponds to the natural approach
where the algorithm is run only once with the optimum
number of iterations k = Lopt given by (6) [1]. Reducing the
parameter k speeds up the computation but at the cost of
performance degradation.
Nonetheless, we propose a new strategy illustrated on

Fig. 2. It consists in running Grover’s algorithm with k itera-
tions where k < Lopt deliberately. The output |x〉 provided by
Grover is tested with a classical algorithm, which evaluates
if the output effectively verifies f (x) = 1. If it is validated,
the computation stops and thus saves unnecessary iterations.
Otherwise, a new trial is launched. However, contrarily to
Section II-C, we limit the maximum number of shots to a cer-
tain number T to bound the algorithm resource consumption.
For further concision, we simply call T the number of trials
but it corresponds in fact to an upper bound on the number
of shots of Grover’s routine. The algorithm is then parame-
terized with a certain pair of integers (k,T ). We present the
procedure in Algorithm 2.

VOLUME 6, 2025 3101113



Engineeringuantum
Transactions onIEEE

Piron et al.: MIXED GROVER: A HYBRID VERSION

Algorithm 2: MG Algorithm.

Input:T ∈ N∗, k ∈ N∗
1: trialNumber ⇐ T
2: while trialNumber > 0 do
3: Perform Grover’s algorithm (Algorithm 1) with k

iterations
4: Test classically if the output |x〉 verifies f (x) = 1
5: if Success then
6: trialNumber ⇐ 0
7: else
8: trialNumber ⇐ trialNumber - 1
9: end if
10: end while
Output:|x〉

This algorithm is denoted by MG as both classical and
quantum computations are used. It must be noted that, to
provide an output for the classical algorithm, the quantum
part makes a measurement that suppresses the states super-
position. Hence, at each new trial, one cannot exploit the
previous trials, and the Grover algorithm has to start from
scratch.
With this hybrid stratagem, we are looking for configura-

tions that would cost less computational time to reach a given
success probability.

B. DEFINITION OF THE METRICS
In order to determine whether this mixed approach presents
an advantage compared to BG, one needs to define
appropriate metrics to reflect the obtained performance. As
we would like to quantify the reliability and the computa-
tional cost of our approach, we have to consider two associ-
ated criteria in this work. The first one is the success proba-
bility, and the second one is the mean number of iterations.
Let us begin with the success probability. It is obtained by

considering the success rates of all Grover’s shots up to T th
one.
Proposition 1 (Success Probability of MG): The success

probability PMG of the MG algorithm is given by

PMG(k,T ) = 1 − (1 − PBG(k))
T . (10)

Proof: At each shot of k iterations, Grover’s routine re-
turns a solution with the probability PBG(k) as defined in (5).
Hence the probability to retrieve the solution after exactly
j BG shots is (PBG(k)) × (1 − PBG(k)) j−1. The formula of
(10) is obtained by summing these probabilities up to the
number of trials T .

The complexity of MG’s algorithm is evaluated with the
expected number of shots multiplied by the number of iter-
ations within one Grover’s routine. Thus, it corresponds to
the mean number of oracle calls used by MG. We define the
metric Ei as the expected number of iterations in order to
evaluate the complexity of MG.

Proposition 2 (Expected Number of Iterations): The ex-
pected number of iterations performed by MG is given by

Ei(k,T ) = k

PBG(k)
PMG(k,T ). (11)

Proof: The expected number of Grover shots within MG
have the two following contributions:

1) expected number of shots to get a success with at most
T − 1 trials, which corresponds to the sum of (7) trun-
cated to the first T − 1 terms;

2) worst case where the T trials are consumed, which
occurs with the probability (1 − PBG(k))T−1.

Thus, the expected number of shots effectively used within
MG is given by the sum

T−1∑
j=1

j (1 − PBG(k))
j−1 PBG(k) + T (1 − PBG(k))

T−1

= 1 − (1 − PBG(k))T

PBG(k)
. (12)

Using the expression of PMG and multiplying by k (the num-
ber of iterations within one Grover shot) gives the expression
of (11).
As a sanity check, we can inspect the behavior of our met-

rics in the T → ∞ limit. Given a certain number of Grover’s
iterations k, one has 0 < PBG(k) < 1. Thus, it straightfor-
ward to see that⎧⎨

⎩
PMG(k,T ) −→

T→∞
1

Ei(k,T ) −→
T→∞

k
PBG(k)

.
(13)

One recovers the mean number of repetitions of BG with k
iterations to get a success with certainty, which is consistent.
We can consider that the MG proposal includes in fact this
asymptotic case, as it is approached with large values of T .

Let us now return to the case of interest in this work,
namely, a finite T , to account for bounded computational
resources.

C. PARAMETERIZATION OF THE ALGORITHM
The initialization of theMG algorithm requires a wise choice
of the parameters k and T . Indeed, one has to find a compro-
mise between the reliability P and the complexity E. This
problem can be seen from two different angles as follows.

1) One can maximize the success rate of the algorithm
given a complexity constraint, which corresponds to
the problem P1

Solve arg max
(k,T )∈(N∗)2

{PMG(k,T ) s.t Ei(k,T ) ≤ E }. (P1)

2) Otherwise, onemight minimize the complexity under a
reliability constraint. It amounts in solving the problem

3101113 VOLUME 6, 2025
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P2

Solve arg min
(k,T )∈(N∗)2

{Ei(k,T ) s.t PMG(k,T ) ≥ p}. (P2)

Depending on the user’s requirements, one might consider
P1 or P2. The first one permits to obtain the best perfor-
mances with a constrained allowed conplexity, while the
second one tends to reduced the complexity for a targeted
reliability.

IV. FIRST EVIDENCE OF MG’S ADVANTAGE
In this section, we show that MG presents an interest over
current implementations of Grover’s algorithm. We first dis-
cuss it in the light of the P1 formulation, and we mention the
P2 parameterization as well.

A. CURRENT METHODS FOR DEALING WITH
COMPLEXITY CONSTRAINTS
As discussed previously, the Grover’s algorithm could be
used according to one of those two current methods as
follows.

1) One can only use one shot of Grover’s algorithm (BG).
In this case, we can set the number of iterations to k =
Lopt to maximize the success rate.

2) One can use unlimited number of repetitions of
Grover’s algorithm (Infinite Grover: IG). In this case,
we can set the number of iterations within one shot
to k = L(∞)

opt to minimize the mean running time and
repeat the algorithm until success.

However, these methods must be adapted if one wants to
reduce the total number of oracle calls to a certain value
E. In the one shot case (i.e., the traditional use of Grover’s
algorithm), the number of iterations k must be lowered until
k ≤ E which will degrade the success probability PBG(k).
On the other hand in the second scenario, one can still run
Grover’s routine several times with L(∞)

opt iterations within
each trial, but then limit the number of shots to not exceed
E oracle calls. In both cases, the success probability of the
searching procedure falls strictly under 100%. We can define
the success rate of the current methods limited to E oracle
calls as the highest value between the two following ones.

1) The success probability of a single Grover’s routine
using E oracle calls.

2) The success probability after repeating Grover’s rou-
tine parameterized with L(∞)

opt iterations using up to E
oracle calls on average.

Alternatively, the parameterization of MG will provide
new configurations that are not considered by current meth-
ods. This could lead to different suggestions for the number
of iterations k within a single Grover’s routine and the max-
imal number of repetitions T of BG, potentially achieving
better compromises.

B. INTEREST OF MG
We have seen previously that the running time of Grover’s
algorithm to find a marked element with certainty is given

by L(∞)
opt /PBG

(
L(∞)
opt

)
. If the maximum allowed oracle calls E

exceeds this value, one can simply repeat Grover’s algorithm
with L(∞)

opt (IG) without seeking alternative strategies. Then,
let us assume that one has a limited number of oracle calls
E ≤ L(∞)

opt /PBG
(
L(∞)
opt

)
.

For concreteness, consider n = 10 (giving a database size
of N = 2n = 1024) where

{
L(∞)
opt = 18

L(∞)
opt /PBG

(
L(∞)
opt

)
≈ 21.48.

We first focus on MG’s advantage for maximizing the suc-
cess rate under a complexity constraint, as adressed by the P1
problem. We depicted on Fig. 3 the success rate against the
complexity cost of the MG algorithm for several parameter-
izations (k,T ). A given color corresponds to a fixed number
of iterations k within one Grover’s shot, and each additional
point represents the obtained performances by allowing one
additional trial. On the other hand, the current methods corre-
sponds to either running BGwithE iterations once; or repeat-
ing BG with L(∞)

opt iterations within each shot. The configura-
tions corresponding to current methods are represented with
crosses on the plot, while the MG configurations correspond
to dots.
Each plot depicted on Fig. 3 corresponds to a specific

value of the maximal number of oracle calls E. Configura-
tions that exceed this limit are not shown. Consequently, the
best parameterization in each plot is the one that maximizes
the success probability. The results presented in Fig. 3(b)
suggest that, for the corresponding values of E, the optimal
configuration is actually a current method of implementing
Grover’s algorithm. However, the conclusion appears to be
different in Fig. 3(a) and (c). Indeed, these results show, on
the contrary, that certain MG configurations outperform the
current methods.
We can then claim that MG presents an advantage over

standard implementations of Grover’s algorithm for maxi-
mizing the success rate given a maximal number of oracle
calls, for certain values of the upper bound E. In the example
shown above, the region of interest forMG is relatively small,
but is expected to expand as the database size increases. This
suggests that MG could become increasingly beneficial in
practical scenarios where larger search spaces are involved.
In addition, one can also assess the MG’s advantage of

reducing the complexity under a success rate constraint, as
adressed by the P2 problem. One can observe on Fig. 3(b)
that, for a similar success probability, MG needs less oracle
calls than the current methods. Indeed, MG reaches a success
probability of 85% with 20.55 mean number of oracle calls,
while BG achieve approximately the same success rate (even
slightly smaller) but with 21 oracle calls.
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FIGURE 3. Parametric plot of (Ei (k, T ), PMG(k, T )) for several pairs (k, T ) (n = 10, N = 210). For multiple values of E , MG configurations provide better
success rates than current methods (a), (c). There are also some values of E where the best configuration aligns with a current method (b). (a) E = 21.35.
(b) E = 21.25. (c) E = 20.6.

Thus, MG also presents an advantage over standard imple-
mentations of Grover’s algorithm for minimizing the number
of oracle calls given a targeted success rate. Actually, one
may note that P1 and P2 are dual. Indeed, a compromise has
to be made between complexity and reliability, so reducing
the number of oracle calls for a targeted success rate as in
P2 will permit to increase the success rate for a constrained
complexity as in P1.
In this article, we chose to focus on the potential benefits

of the alternative parameterization approach P2 for MG.

V. THEORETICAL ANALYSIS
In this section, we would like to go further in the reduction
of oracle calls for Grover’s searching problems. To do so,
we propose to focus on the P2 formulation of the parame-
terization of MG. Given a reliability constraint, we aim to
minimize the number of oracle calls.
We define the optimal pair (k∗,T ∗) for MG as the one that

permits to minimize the complexity while satisfying such
constraint

(k∗,T ∗) = arg min
(k,T )∈(N∗)2

{Ei(k,T ) s.t. PMG(k,T ) ≥ p} .

(14)

In order to find the exact solution with perfect accuracy, one
could perform an exhaustive search on k and T , which would
cost a lot of time. In this section, we elaborate a generic
procedure to get a pair of integers (kMG,TMG) which ap-
proximates the solution. To do so, we will study first the
continuous version of this problem and construct our formula
from its solution.

A. DEFINITION OF THE SET OF PARAMETERS
According to (14), the optimal pair is in the set

Ip =
{
(k,T ) ∈ (

N∗)2 | PMG(k,T ) ≥ p
}

. (15)

One can be more precise by giving additional restrictions.
Indeed, it can be shown that for T ≥ 1

Ei(k,T ) ≥ k. (16)

Thus,MG cannot provide any complexity advantage over BG
if it is configured with a number of iterations greater than
Lopt. Hence, we bound the parameter k with Lopt, so that the
set of parameters is reduced to Ip

⋂
([1,Lopt] × N∗)

I(N×N )
p = {

(k,T ) ∈ {1, . . . ,Lopt} × N∗ | PMG(k,T ) ≥ p
}
.

(17)

We provide a representation of this set in the plane (k,T )
on Fig. 4(a). Solving this optimization problem in a discrete
space is challenging. We first propose addressing a relaxed
version of the problem defined over a continuous space, and
then identifying the discrete solution.

B. CONTINUOUS CASE AND CRITICAL PROBABILITY
We first deal with the problem of (14) by considering the
continuous case, i.e., by relaxing the constraint on the param-
eters to (k,T ) ∈ [1,Lopt] × [1,+∞). Let us denote I(R×R)

p
the natural extension of the set defined in (17)

I(R×R)
p = {(k,T ) ∈ [1,Lopt] × [1,+∞) | PMG(k,T ) ≥ p}.

(18)

This continuous extension is represented on Fig. 4(b). Our
initial problem now reads

min
(k,T )∈I(R×R)

p

Ei(k,T ) (19)

and it can be solved using the following theorem.
Theorem 1: The minimization problem (19) admits a

unique solution (k(1), T(1)) for any p ∈ (0, 1) located on the
boundary I(1)p = I(R×R)

p
⋂{(k,T ) , PMG(k,T ) = p} shown

3101113 VOLUME 6, 2025
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FIGURE 4. Visualization of the different sets I(N×N)
p , I(R×R)

p and I(1)
p for n = 10 (where Lopt = 25) and p = 0.95. (a) Set I(N×N)

p . (b) Set I(R×R)
p . (c) Set I(1)

p .

on Fig. 4(c). The optimal pair is given by

(k(1), T(1)) =
⎧⎨
⎩

(
k0,

log(1−p)
log(1−pc )

)
, if p > pc(

1
2

(
1
θG

arcsin(
√
p) − 1

)
, 1

)
, if p ≤ pc

(20)

where k0 ∈ [1,Lopt] minimizes the ratio k/PBG(k). In
particular, one has

tan((2k0 + 1)θG) = 4k0θG (21)

and the critical probability pc is defined by

pc = 16k20θ
2
G

1 + 16k20θ
2
G

. (22)

Proof: See Appendix A
For the sake of clarity, the solution is denoted with the

mathematical font (k(1), T(1)) to remind the reader that it
might be a nonphysical configuration since MG cannot be
parameterized with noninteger inputs. We keep this conven-
tion for the rest of this article. Besides, one may note that(
k(1), T(1)

)
depends on the pair (p, n). However, this depen-

dency will be omitted to simplify the notation.
Let us first comment the obtained solution in the case

p > pc. The parameter k(1) does not actually depend on the
target success probability, which might seem surprising. It is
given by k0, that is the number of oracle calls that minimizes
the ratio k/PBG(k). One recognizes from (7) that this ratio
corresponds to the mean running time of Grover’s algorithm
to find a solution, with k iterations and an unlimited number
of shots. Thus, the construction of the solution of the contin-
uous problem for p > pc can be seen as a two-step process
as follows.

1) Set the number of oracle calls such that the mean run-
ning time of Grover’s algorithm to obtain a success is
optimal.

2) Adapt the number of shots to the desired reliability
p < 100%.

This first approach also underlines that for p below the
critical value pc, MG has no chance to provide any advantage

FIGURE 5. Relative error (EMG
i − E∗

i )/E∗
i between the configuration

(kMG, TMG) = (�k(1)�, �T(1)�) and the true optimal configuration. The black
region corresponds to p < pc .

compared to BG since T(1) = 1. So from now on, we focus
on the region p > pc.
Starting from this result, one could be tempted to convert

the real values into integer ones to configure the algorithm.
It yields the following proposal:

(kMG,TMG)
?= (�k(1)�, �T(1)�) (23)

where the upper integer part �.� is the most suitable because
PMG is monotonically increasing on [1,Lopt] (respectively,
on [1,+∞)) at fixed T (respectively, fixed k). However,
Fig. 5 shows the relative error between the expected number
of iterations one obtains with this configuration and what
one gets with the optimal configuration (k∗,T ∗) found by
an exhaustive search. The black part corresponds to the case
where p < pc, ie. where BG is already the best strategy. We
can observe that there is only a small part of the cases where
(23) leads to the actual optimum (white area). Otherwise, the
relative error can exceed 10%. Thus, we derive in the next
parts a new strategy.

C. PARAMETERS DISCRETIZATION
1) NUMBER OF TRIALS
Starting from the solution for continuous case, we treat an
intermediate problem where we discretize the parameter T
and keep the variable k continuous. For convenience, we
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FIGURE 6. Visualization of I(1)
p and I(2)

p (left) and the objective Ei (k, T )

along them (right) for n = 10 qubits (where Lopt = 25) and p = 0.95. E (1)
i

(resp. E (2)
i ) is the minimum of Ei along I(1)

p (resp. I(2)
p ). In this case, the

minimum E (2)
i is located precisely at k = u[m]. (a) Parametric curves I(1)

p

and I(2)
p . (b) Different shapes of Ei .

introduce the following parametric representation:

{(k,T ) s.t PMG(k,T ) ≥ p} = {(k,T (k, p))} (24)

where we define T (k, p) as

T (k, p) = log (1 − p))

log (1 − PBG(k))
. (25)

Consequently, the set of parameters I(R×N )
p is given by

I(R×N )
p = {(k,T )|1 ≤ k ≤ Lopt

T = �T (k, p)�, �T (k, p)� + 1, . . . }. (26)

The upper integer part �·� comes from the monotony of
PMG at fixed k that we already mentioned.
Inspired by the continuous case, we choose to optimize the

expected number of iterations along the boundary of I(R×N )
p

that we denote I(2)p

I(2)p = {
(k, �T (k, p)�) | 1 ≤ k ≤ Lopt

}
. (27)

This set is a discretization of I(1)p along T . Thus, as can be
seen on Fig. 6(a), it corresponds to a new parametric curve
with a piecewise structure where each branch is associated to
an integer value of T = �T (k, p)�.
The objective is now to find the pair (k(2),T (2)) along I(2)p

thatminimizesEi. This optimization procedure ismore tricky
since Ei has also now a piecewise structure. Indeed, the rep-
resentative curve of Ei along I

(2)
p denoted Ei|I(2)p

has several

branches that deviate from Ei|I(1)p
, as shown on Fig. 6(b).

Nevertheless, we can determine a region where the mini-
mum should be located. To do so, one defines the sequence
(u[ j]) j≥1 by

u[ j] = 1

2

(
1

θG
arccos

(
(1 − p)1/2 j

)
− 1

)
(28)

whose successive terms delimit the regions where �T (k, p)�
is constant, corresponding to the branches of Ei|I(2)p

. We defer

FIGURE 7. Example where the minimum E (2)
i is located inside the branch

of interest, i.e., u[m] < k(2) < u[m − 1] (obtained with n = 33 qubits,
p = 0.998).

the formal justification to Appendix B. Let us denote

m = �T(1)�. (29)

The terms u[m] and u[m− 1] allow to define a region cor-
responding to the branch of Ei|I(2)p

we should focus on, as

underlines the following theorem.
Theorem 2: For p > pc, the expected number of iteration

Ei admits a unique minimizer (k(2),T (2)) on I(2)p . It is lo-
cated on the mth branch or eventually on the boundary of the
m− 1th branch⎧⎪⎨

⎪⎩
u[m] ≤ k(2) < u[m− 1] T (2) = m

or

k(2) = u[m− 1] T (2) = m− 1.

(30)

In the case u[m] < k(2) < u[m− 1], the latter verifies

tan((2k(2) + 1)θG) = 4k(2)θG

− 4k(2)θG
mPBG(k(2))(1 − PBG(k(2)))m−1

PMG(k(2),m)
. (31)

Proof: See Appendix C.
The pair (k(2),T (2)) provides an optimal MG configura-

tion in [1,Lopt] × N∗. In the case depicted on Fig. 6, the
pair is located exactly on the boundary of the mth branch,
ie. k(2) = u[m− 1]. However, the example depicted in Fig. 7
shows that there also exist cases where u[m] < k(2) < u[m−
1].
The next and last step is to discretize the number of

Grover’s iterations k within one trial.

2) NUMBER OF ITERATIONS WITHIN ONE GROVER SHOT
The final operation to perform is to take the upper integer
part of k(2). Hence, we propose the configuration

(kMG,TMG) = (�k(2)�,T (2)). (32)

However, there is a mathematical subtlety. The discretization
k(2) −→ �k(2)� increases the expected number of iterations.
Because of the piecewise structure ofEi along I

(2)
p , we cannot

be sure that an integer part obtained from a local minimum on
another branch would not be better. We expect that to happen
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Algorithm 3:MG Configuration.

Input:n ∈ N∗, p > 0
1: Find the solution k0 in [1,Lopt] of the equation:

tan((2k + 1)θG) = 4kθG

2: Compute the critical probability:

pc = 16k20θ
2
G

1 + 16k20θ
2
G

3: if p ≤ pc then use BG

4: kMG =
⌈
1
2 (

1
θG

arcsin(
√
p) − 1)

⌉
5: TMG = 1
6: else
7: m ⇐

⌈
log(1−p)
log(1−pc )

⌉
8: kin f ⇐ u[m]
9: kmid ⇐ +∞
10: ksup ⇐ u[m− 1]
11: Check the eventual solutions in [kin f , ksup) of:

tan((2k + 1)θG) = 4kθG

−4kθG
mPBG(k)(1 − PBG(k))m−1

PMG(k,m)

12: if a solution exists then
13: kmid ⇐ found solution
14: end if
15:

(k(2),T (2)) ⇐ argmin{Ei(kin f ,m),Ei(kmid,m),
Ei(ksup,m− 1)}

16: kMG = �k(2)�
17: TMG = T (2)

18: end if
Output:(kMG,TMG)

only at low number of qubits where the width of the branches
of Ei|I(2)p

remains small.

D. PROPOSAL: SUMMARY AND RELIABILITY
To sum up, we give in Algorithm 3 the steps to build the final
MG configuration as defined in (32).
Let us now analyze the deviation between the real integer

optimum for MG and our proposal. We compare again the
performance of the true integer optimum (k∗,T ∗) and this
proposal ones. Fig. 8 shows the relative error between the
expected number of iterations in the configuration of (32)
and the integer optimum E∗

i for a number of qubits n com-
prised in {5, . . . , 35}. The white zone corresponds to perfect
0’s. Except for a small difference at low n (but quantum
algorithms are more intended for higher database size), (32)
permits to find the true integer optimum, leading to a much
better reliability than the one obtained on Fig. 5. Thus, our
approach to parameterize MG is appropriate, and exact for
n ≥ 7.

FIGURE 8. Relative error (EMG
i − E∗

i )/E∗
i between the configuration

(kMG, TMG) = (�k(2)�, T (2) ) and the optimal configuration. The black
region corresponds to p < pc .

FIGURE 9. Convergence of �k(2)� toward �k0� as the targeted success p
increases with n = 10 qubits. We also indicate the number of iterations
Lopt of BG. There is no data for p < pc .

E. BEHAVIOR FOR HIGH TARGET SUCCESS PROBABILITY
A higher resolution of Fig. 5 would show that there exists a
tiny white region for a targeted success p close to 1 where
the configuration (�k(1)�, �T(1)�) corresponds in fact to the
optimal pair for MG. It comes from the following theorem.
Theorem 3: As p → 1, one has the following convergence

property:

k(2) −→
p→1

k0. (33)

Proof: See Appendix D.
Consequently, one could expect that �k(2)� might be re-

placed by �k0� for p very close to 1. Again some subtleties
need to be mentioned. If k0 is exactly an integer and k(2)

converges to this limit by upper values, one would get

�k(2)� −→
p→1

k0 + 1. (34)

However, it causes an error of one iteration in the worst
case on kMG, which is negligible for n large enough. Thus,
we claim that one can take the configuration

(kMG,TMG) =
(
�k(0)�, �T (k0, p)�

)
(35)

for p high enough, which is exactly the first configuration
(�k(1)�, �T(1)�) we encountered after solving the continuous
case. It is easier to obtain since we have direct expressions
to compute it in (20). We reported on Fig. 9 the behavior
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FIGURE 10. Expected number of iterations needed by MG and BG to reach a given success probability p at fixed number of users. We indicate pc with
the black dashed line. (a) n = 10 (Lopt = 25). (b) n = 15 (Lopt = 142). (c) n = 20 (Lopt = 804).

of �k(2)� against p for n = 10 qubits to emphasize that the
convergence is slow.We can see that replacing �k(2)� by �k0�
is justified for p > 0.99 in this example. Thus, we still advise
to use the configuration of (32) if p is not very close to 1.

The vertical solid black line delimits the region where p
is too close to 1 to be reached by BG. Indeed, the truncation
with the upper integer part might result in

PBG(Lopt) � 1. (36)

In this example, where n = 10 qubits and Lopt = 25, the
effective success probability of BG is PBG(Lopt) = 0.9995.
It is why Lopt is no longer indicated above 1 − p ≤ 10−4 on
Fig. 9. On the other hand, MG has no such limitation since
one can take T as large as necessary to reach a certain success
probability (see Proposition 1).

VI. PERFORMANCE ANALYSIS
In this section, we compare the performance of our proposed
MG algorithm with the BG ones.

A. GAIN OF ITERATIONS AT FIXED NUMBER OF USERS
Fig. 10 presents the expected number of iterations Ei ob-
tained with our configuration (kMG,TMG) for a given p and
compared to the performance of BG. As expected, the re-
quired number of iterations increases with the target success
probability for both MG and BG. We can distinguish the
following three parts in the plots.

1) When p < pc, BG andMGcurves are necessarily iden-
tical as we have shown that MG cannot bring improve-
ment in this area.

2) There remains an uncertain region for p ≥ pc where
MG may or may not offer an advantage over BG. Our
initial theoretical approach showed that the continuous
version of the optimization procedure admits a solution
with T(1) > 1 but it does not guarantee an integer pair
(kMG,TMG) with TMG ≥ 2.

3) Finally as p increases, MG outperforms BG.

It seems that as n increases, it might be possible to define
properly a boundary where MG becomes more interesting
with certainty. However, the transition is not well defined in
every case, as it can be seen with n = 10 and n = 15 qubits.
Nonetheless, MG requires always fewer (or the same)

number of iterations than BG for the same target success
probability.

B. VARYING THE NUMBER OF USERS
We can go further and visualize in the plane (p, n) the relative
error

EBG
i − EMG

i

EBG
i

(37)

in order to evaluate the gain of our algorithm as the number
of qubits increases. EMG

i corresponds to the expected num-
ber of iterations in the configuration of (32) and EBG

i is the
minimum number of iterations within Grover’s algorithm to
reach the success probability p

EBG
i (p, n) =

⌈
1

2

(
1

θG
arcsin(

√
p) − 1

)⌉
. (38)

One recovers Lopt by taking the limit EBG
i (p → 1, n).1

As mentioned before, the effective success probability of
BG is not exactly 1 because of the truncation to an integer
value to build Lopt. We take into account this effect by con-
sidering that EBG

i is not defined if a further check reveals that
PBG(EBG

i (p, n)) < p.
The results on Fig. 11(a)—where the black zone still corre-

spond to p < pc—suggest that our approach allows to reduce
significantly the number iterations when p increases. Thus,
we also show on Fig. 11(b) a zoom on the region where p
is close to 1. The gray zone on the latter corresponds to the
region where EBG

i is not defined. This plot reveals that the ra-
tio between the complexity of BG and MG seems to become
independent of n as the number of qubits increases. This

1Because of the upper integer part �·�, it might be Lopt + 1 but it is not
significant as n increases.
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FIGURE 11. Relative error (EBG
i − EMG

i )/EBG
i between MG in our

configuration and BG. (a) Full plane (p, n). (b) Zoom on p → 1.

emerging pattern allows us to state that our algorithm permits
to reduce the complexity of Grover’s search for n ≥ 15 by 2%
for p ≥ 0.95, 6% for p ≥ 0.99 and 10% for p ≥ 0.999.

VII. CONCLUSION
In this work, we proposed to use Grover’s algorithm in an
hybrid format, which consists in performing the usual routine
several times but with a reduced number of iterations.
Our main contribution is the theoretical derivation of

the initial configuration for MG (kMG,TMG) = (�k(2)�,T (2))
corresponding, respectively, to the number of iterations
within one trial and the maximum number of trials. Given
a target success probability p, we showed that our method
ensures to find the marked element at most with the same
complexity than Grover’s algorithm. Indeed, for low p, our
configuration corresponds exactly to the latter, i.e., TMG = 1.
But, as p increases, MG definitely presents an advantage in
terms of complexity. For instance, it allows to reduce by 10%
the mean number of iterations for p ≥ 0.999. Besides, it also
permits to reach any success probability, contrarily to Grover.
One may note that this hybrid algorithm can be used in-

stead of Grover’s algorithm in any more complex algorithm
relying on the latter.
It might be interesting to conduct further investigations on

MG in a noisy environment. Indeed, it is easy to implement
the model of the total depolarizing channel [21] in our equa-
tions by modifying the expression of PBG. Then, an interest-
ing improvement of this work could consist in analyzing how
(kMG,TMG) would be modified against a noise parameter.
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APPENDIX A
PROOF OF THEOREM 1
Let us prove the two points separately.

1) The equation PMG(k,T ) = p admits a unique solution
at fixed k. It is obtained simply by invertingPMG, which

gives

T (k, p) = log(1 − p)

log(1 − PBG(k))
. (39)

Recall also that for a given a pair (k,T ) in I(R×R)
p ,

one necessarily has T ≥ 1. Hence, the set I(1)p =
I(R×R)
p

⋂{(k,T ) , PMG(k,T ) = p} reads
I(1)p = {(k,T (k, p)) , 1 ≤ k ≤ Lopt , T (k, p) ≥ 1}.

(40)

2) Let us take (k,T ) in I(R×R)
p . Then, PMG(k,T ) ≥ p.

Hence from (11) we have

Ei(k,T ) = k

PBG(k)
PMG(k,T ) ≥ k

PBG(k)
· p (41)

which means Ei(k,T ) ≥ Ei(k,T (k, p)). Consequently,
a minimizer of Ei over I

(R×R)
p is necessarily located on

I(1)p and takes the form (k,T ) = (k,T (k, p)).
Furthermore, T (k, p) ≥ 1 if and only if PBG(k) ≤

p. On the other hand, one has Ei(k,T (k, p)) = f (k) ·
p where we use the short-hand notation f (k) =
k/PBG(k). Consequently, k must minimize f under the
constraint PBG(k) ≤ p.
f admits a unique minimizer k0 in [1,Lopt]. It can be

found by solving ∂k f = 0, which gives exactly (21).
Thus, we introduce the critical probability

pc = PBG(k0) = 16k20θ
2
G

1 + 16k20θ
2
G

(42)

which permits to distinguish the following two cases.
� Case p > pc: Then, PBG(k0) < p, which implies
that k = k0. Reciprocally, the pair (k0,T (k0, p)) is
contained in I(1)p and minimizes Ei on I

(R×R)
p . It

ensures that

(k(1), T(1)) =
(

k0,
log(1 − p)

log(1 − pc)

)
. (43)

� Case p ≤ pc: k0 is too large to satisfy PBG(k0) ≤
p, but f is decreasing toward its minimum
on [1, k0]. Necessarily, k takes the largest al-
lowed value corresponding to PBG(k) = p, in
which case T (k, p) = 1. Reciprocally, this pair is
indeed the solution which yields

(k(1), T(1)) =
(
1

2

(
1

θG
arcsin(

√
p) − 1

)
, 1

)
.

(44)

APPENDIX B
TECHNICALITIES ON THE DISCRETIZATION OF THE
NUMBER OF TRIALS
In the main text, we defined the sequence

u[ j] = 1

2

(
1

θG
arccos

(
(1 − p)1/2 j

)
− 1

)
(45)
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for j ≥ 1, which is obtained by inverting the equation
T (u[ j], p) = j. It obeys the two following properties.

1) (u[ j]) j≥1 decreases toward a limit l < 0.
2) For j ≥ 2, one has

k ∈ [u[ j], u[ j − 1]) ⇐⇒ �T (k, p)� = j.

Let us prove each point separately.

1) For j ≥ 1, (1 − p)1/2 j ∈ (0, 1), thus the function
j −→ u[ j] is decreasing on R∗+. Furthermore, using
that (1 − p)1/2 j converges to 1, it is easy to get

u[ j] −→
j∞

−1

2
. (46)

2) By definition of u[ j], one has T (u[ j], p) = j. Since
T (k, p) is a strictly decreasing function of k on
[1,Lopt], it ensures that

�T (k, p)� = j ∀k ∈ [u[ j], u[ j − 1]). (47)

The first point allows to safely define the integer m we use
in the main text as

m = min
j∈N∗{u[ j] ≤ k0} (48)

which allow to label the branch of I(2)p on which the pair
(k(2),T (2)) is located. In addition, the second point ensures
that for k ∈ [u[m], u[m− 1]), the associated (k,T ) in I(2)p
verifies T = �T (k, p)� = m.

APPENDIX C
PROOF OF THEOREM 2
Since Ei is a growing function of T , one has for k ∈ [1,Lopt]

Ei(k, �T (k, p)�) ≥ Ei(k,T (k, p)) (49)

which is a formal way to say that the curve Ei|I(1)p
is always

below the curve of Ei|I(2)p
.

We are in the case p > pc; hence the expected number
of iterations along I(1)p given by Ei(k,T (k, p)) = f (k) · p is
decreasing for k ∈ [1, k0] and increasing for k ∈ [k0,Lopt].
Furthermore{

u[m] ∈ [1, k0] and T (u[m], p) = m

u[m− 1] ∈ [k0,Lopt] and T (u[m− 1], p) = m− 1

(50)

which yields{
Ei(k,T (k, p)) > Ei(u[m],m) for k < u[m]

Ei(k,T (k, p)) > Ei(u[m− 1],m− 1) for k > u[m− 1].

(51)

Using (49), one can deduce that{
Ei(k, �T (k, p)�) > Ei(u[m],m) for k < u[m]

Ei(k, �T (k, p))� > Ei(u[m− 1],m− 1) for k > u[m− 1].

(52)

Finally, (u[m],m) and (u[m− 1],m− 1) are also contained
in I(2)p . Notice that

1) Ei is continuous on the portion of I(2)p where u[m] ≤
k < u[m− 1];

2) lim
k→u[m−1]

Ei(k, �T (k, p)�) ≥ Ei(u[m− 1],m− 1).

Thus, Ei admits a minimizer (k(2),T (2)) either with
u[m] ≤ k < u[m− 1] or precisely at (u[m− 1],m− 1). It
corresponds as expected to⎧⎪⎨

⎪⎩
u[m] ≤ k(2) < u[m− 1] T (2) = m

or

k(2) = u[m− 1] T (2) = m− 1.

(53)

In practice, we compute k(2)(p) by checking whether the
derivative ∂k(Ei|I(2)p

) 2 cancels on the branch of interest, and

we compare the eventual solutions with the two boundary
points (u[m],m) and (u[m− 1],m− 1). Such points, if they
exist, are solutions in [u[m], u[m− 1]) of the equation

tan((2k + 1)θG) = 4kθG − 4kθG
mPBG(k)(1 − PBG(k))m−1

PMG(k,m)
.

(54)

Notice that one recognizes (21) with a corrective term on the
right-hand side. At the end one keeps the pair (k,T ) with the
lowest Ei.

APPENDIX D
PROOF OF THEOREM 3
By definition of k(2), one has

u[m] ≤ k(2) ≤ u[m− 1]. (55)

Since m = �T (k0, p)�, one can write m = T (k0, p) + y(p)
with y(p) ∈ [0, 1]. Consequently

(1 − p)
1
m = exp

(
log(1 − p)

log(1 − pc)

log(1 − p) + y(p)

)
−→
p→1

1 − pc

(56)

since y(p) is bounded. It yields

u[m] −→
p→1

1

2

(
1

θG
arccos

(√
1 − pc

)
− 1

)
(57)

and using the continuityPBG(k) = 1 − cos2((2k + 1)θG) one
gets

PBG(u[m]) −→
p→1

pc = PBG(k0). (58)

Necessarily, u[m] converges to k0 as p → 1 and the same
conclusion holds for u[m− 1]. Equation 55 allows to
conclude

k(2) −→
p→1

k0. (59)

2We use the notation ∂k since we work on the branch where T is fixed to
�T (k, p)� = m
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