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ABSTRACT

- We consider one-loop corrections A, to inverse gauge couplings g; % in su-
persymmetric vacua of the heterotic string. The form of these corrections plays
an important role in scenarios for dynamical supersymmetry breaking in string
theory. Specifically, we calculate the exact functional dependence of A,(U) on
any untwisted modulus field U of an orbifold vacuum; it has the universal form
AU, U) = Aq - log(|n(U)|* - ImU) + const., where A, are easily computable ra-
tional constants. The dependence is nontrivial (A, # 0) only if some sectors of
the orbifold Hilbert space have precisely N = 2 spacetime supersymmetry. The
expression for A, has an expected invariance under modular transformations of U,
since these are symmetries of the orbifold vacuum state. However, A, is not the
real part of a holomorphic function, in seeming contradiction with the existence of
a supersymmetric effective Lagrangian. The apparent paradox is an infrared prob-
lem, and can occur not just in string theory but in renormalizable supersymmetric
field theories as well. We show how the paradox is resolved in the field theory case

and argue that the same resolution applies also to the string theory case.



1. Introduction

Heterotic string theorym is currently the best candidate for a fundamental
theory of all particle interactions. The first step in deducing phenomenology from
string theory is to derive an effective four-dimensional quantum field theory for
particles that are light compared to the string scale. This theory describes particle

interactions at energies just below the string scale, but once it has been obtained

from string theory, ordinary field-theoretical techniques can be used to deduce

an effective theory valid at much lower (e.g. electroweak) energies. At present,
there is a huge number of candidate vacua of string theory, each leading to a
somewhat different effective field theory; this sad state of affairs necessitates a

general treatment of such theories.

Consider an effective (Euclidean) Lagrangian for a general local field theory in
four dimensions. Bosonic terms with at most two space-time derivatives can be

surnmarized in the following formula:

Lo = 21,:“2 + ( 4g21( ¢))ab FI':VFb“V—F%F:VFb”V-F%GU(Qﬁ) D*¢' D¢’ +V(9).

(1.1)
Here V' is the scalar potential, G;;(¢) is the metric on a Riemannian manifold
spanned by the scalar fields ¢*, and the matrices ga"bz(qﬁ) and Og(¢@) are gener-
alized scalar-field-dependent inverse gauge couplings and gauge vacuum angles,
respectively. If the effective four-dimensional field theory is N = 1 supersymmet-
ric, then all fermionic terms in its Lagrangian are completely determined by the
bosonic terms (1.1), and the bosonic terms themselves have to obey certain con-
straints. In particular, the manifold spanned by the scalar fields must be Kahler,

with an appropriate metric and complex coordinates ®* and @,* and the complex

* In this article we call scalar fields chiral or anti-chiral according to the space-time chirality
of their fermionic superpartners; in our notations we distinguish them by using ®* for the
former and ®* for the latter. Lower-case ¢ are used to denote any scalar field in the effective
four-dimensional theory — chiral, anti-chiral or mixed.



functions

ful(g) & (ﬁ)ab _ i@gig‘ﬁ) (1.2)

must be holomorphic functions of the coordinates ® In a genericd = 4,N =1

supergravity there is only one other restriction on the matrix-valued function f,;(®)
—— it hao to he gatice cavariant Tha latter reagiiirtement imnlies that if we limit gur
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attention to the dependence of f,; on scalar fields that are neutral with respect
-to the gauge symmetry, we can write fop = 8,3 - fa, with equal f, for all gauge

bosons a that belong to the same simple gauge group.

In this article we focus on N =1 and N = 2 supersymmetric string vacua and
investigate the dependence of f, on the moduli fields — massless gauge-neutral
scalar fields whose effective potential is classically and perturbatively flat. (They
are called moduli fields because of their relation to the continuous parameters,
or moduli, of a family of classical string vacua.) At the tree level of the string
theory f, depend only on the four-dimensional dilaton/axion field S, through the

. [3—6]
universal formula

FarS(®) = kabap - S, (1.3)

where k, is the level of the appropriate Kac-Moody algebra. However, radiative
corrections to eq. (1.3) — the result of integrating out massive, charged string states
— do depend on the moduli scalars. Moduli-dependence of the one-loop corrections

Lloop o first investigated in ref. [7,8]; however, that study employed a Peccei-
Quinn symmetry for the moduli, which is spoiled by world-sheet instantons. In

this article we determine the exact functional dependence of fa 1o for a large class

of orbifold compactifications of the heterotic string.

There are two basic reasons for studying the moduli-dependence of the one-loop
corrections to f,. First, asymptotically-free gauge couplings provide a mechanism
for an effective quantum field theory that is weakly interacting at the string scale

to become strongly interacting at some hierarchically lower energy scale, typically



of the order Mising - exp (ﬁﬁ’:—ig‘n), where C is an O(1) constant. A moduli-
dependent one-loop correction to the gauge coupling constant has an O(1) effect
on all physical quantities associated with this scale. In particular, if an effective
potential is generated non-perturbatively, it is automatically moduli-dependent
and thus lifts the degeneracy of string vacua corresponding to different vacuum

expectation values (VEVs) of the moduli fields.

The other reason for studying field dependence of the f;3(®) is that non-
~zero derivatives 0 f,;/ ' lead to various non-renormalizable interactions involv-
ing gauge bosons and their superpartners. Of particular importance are the non-

. . . . . . . . 9
derivative interactions involving gauginos but no other fermions™

Fra o0 0
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Ly = GI(®,T) %Z 0 fab USRI 7¢- (3_W+ W@K)}
- ¢ (1.4)

(here K(®,®) is the Kihler potential and W (®) is the superpotential of the scalar
fields). When the chiral symmetry of the gauginos is spontaneously broken, the in-
teractions (1.4) result in an effective potential for the gaugino condensates </\“)\b>;
combined with the non-perturbative effects that cause formation of the condensates
in the first place, this effective potential may lead to spontaneous breakdown of su-
persymmetry.["m’”] However, in order to verify that this mechanism indeed results
in supersymmetry breaking rather than in runaway VEVs of moduli scalars, one
must know how the moduli enter the non-perturbative effective potential (compris-
ing (1.4) as well as other termsm)); obviously, knowledge of the moduli-dependence

of f, is indispensable in such an analysis.

Precisely because of its universality, formula (1.3) is too crude an approxima-
tion to use in a study of dynamical supersymmetry breakdown triggered by gaugino
condensation, especially when there is no supersymmetry breaking at the tree level

of the effective field theory. In the latter case, the only known way to stabilize the



dilaton/axion VEV at a reliable weak-coupling value (Re S) > 1 is to have two
or more independent gaugino condensates occurring at roughly the same scale!™""
In such a scenario the stable value of (S) so obtained is extremely sensitive to the
differences between the f,’s of the gauge groups involved in the gaugino conden-
sation. Moduli-dependence of these differences (which arises at the same one-loop
level as the differences themselves) thus leads to moduli-dependence of all quantum

effects in the effective four-dimensional theory. The question of whether and how

supersymmetry is broken in this scenario, once the dilaton VEV is fixed, may also

depend on the functional form of f,}'l‘)"p((b)_m""“"]

At the one-loop level, the renormalized gauge couplings of the effective field

theory can be written as

1672 1672 M?
o = ku o + ba-log —SUT L A, (1.5)
ga () 9GuT "

where p K MGuT =~ Mgiring is the renormalization scale, ga%T = Re S+ 0O(1) (cf.
eq. (1.3)), and b, are related to the one loop B-functions via 8, = b, - g2 /1672.
Finally, A, are the specific one-loop threshold corrections for each g%, which we
would also like to identify as 1672 - Re f2'°°P. Ref. [16] gives a general formula for
A, in terms of the spectrum of all massive states of the string theory. Orbifolds
provide an example of string vacua for which the entire massive spectrum is known
exactly; moreover, all the masses can be written as analytic functions of the moduli
that preserve the orbifold nature of the vacuum (i.e., the moduli arising from
the untwisted sector of the orbifold). Therefore, for orbifolds we can derive exact
formule for f,}’looP as explicit functions of the untwisted moduli, and this is exactly

what we shall do in the next section of this article.

Specifically, we will show that the one-loop threshold corrections A, depend

non-trivially on the untwisted moduli of an N = 1 supersymmetric orbifold if and

% The A-functions for some N = 1 supersymmetric string vacua were first calculated in
ref. [17], and for N = 2 vacua in ref. [18]; the latter reference also carried out some of the
analysis used in appendix A of this article.



only if the orbifold group contains a subgroup that by itself would produce an
orbifold with exactly N = 2 space-time supersymmetry. Moreover, the functional
form of this dependence can also be obtained from studying such N = 2 orbifolds,
which are examples of six-dimensional, N = 1 supersymmetric vacua that have
been toroidally compactified to four dimensions. We then consider the entire class
of such vacua and compute A, as functions of the moduli of the torus. To relieve

the tedium, some of the calculations are presented in appendices A and B.

The main result of section 2 is that for any untwisted modulus U upon which

A, do depend non-trivially, the functional form of this dependence is given by
AU T) = A,-log <|77(U)|4 . ImU) + U-independent terms, (1.6)

where A, are rational constants, computable from the massless spectrum alone!
Formula (1.6) has the expected invariance under modular (PSL(2,Z)) transfor-
mations of the complex U field, which are symmetries of the string vacuum under
consideration.™ On the other hand, the effective g;2(U,U) obtained from (1.6)
cannot be written as the real part of a holomorphic function f,(U).

At first glance, this lack of a holomorphic effective f;

1OOP(U ) appears to in-
dicate some bizarre stringy effect that breaks the space-time supersymmetry at
the one-loop level. However, we find that the same problem can occur in ordinary
four-dimensional supersymmetric quantum field theories. To our knowledge this
phenomenon has not been treated in the literature, and so we devote section 3 to
a discussion of the renormalized f,}'hmp and their dependence on the scalar fields.
Our main point is that in a gauge theory with massless charged fermions, the renor-
malized gauge coupling is divergent in the infrared limit while the renormalized @
angle is simply not well-defined. On the other hand, the infrared contributions to

non-renormalizable effective interactions between two gauge bosons and a neutral

{ Actually, in order to compute A, for an N = 1 supersymmetric orbifold we need to know
the massless spectra of related N = 2 orbifolds and not of the N = 1 orbifold itself. See
section 2.3 for details.



scalar field ¢' are finite (at least at the one-loop level); the coeficients of these
interactions can be interpreted as ‘effective derivatives’ of the gauge couplings g2
and O, angles with respect to ¢!, which we collectively denote by {3f,/9¢'}. How-
ever, there is no guarantee that these effective derivatives are integrable, that is,
can be written as derivatives of some renormalized functions f,(#) with respect
to ¢'. We find that the effective derivatives of the real parts of f;’looP are in fact

integrable, and even satisfy the naive relations

897 %(p%; (4))

3(¢") .

{ORe fa/0¢'}(p*; (4)) =

where g,(p?) are the running gauge couplings, but the imaginary parts of f;‘lmp

are not integrable. Supersymmetry, if present, requires that
{0f2/09") = {0./0%} = 0 (18)

for any chiral scalar ®* or anti-chiral ®; however, eqgs. (1.8) and (1.7) can be sat-

isfied without the renormalized g;2(({¢)) being the real parts of some holomorphic
functions of VEVs of the chiral fields ®.

Most of the content of section 3 is field theoretical. We discuss the general the-
ory behind eqgs. (1.7) and (1.8) and the possibility of non-holomorphic dependence
of the effective gauge couplings on the chiral scalars. We also give a simple exam-
ple of a renormalizable gauge theory in which the ‘effective derivatives’ {00,/9¢'}
are not integrable and the dependence of g, 2 on the chiral scalars is not holo-
morphic. However, in the last subsection of section 3 we go back to string theory
and calculate {0 f,/8¢'}11°°P for supersymmetric orbifolds directly from the string
S-matrix elements. The results of this calculation explicitly verify that egs. (1.7)
and (1.8) hold true in the orbifold case, and therefore that the non-integrability of
{00,/8¢'} is the right explanation of the non-holomorphicity of eq. (1.6).

Finally, in section 4 we summarize our results and compare them to previous
calculations of loop corrections to the gauge couplings in four-dimensional super-

symmetric vacua of the heterotic string.



2. Threshold Corrections for Orbifolds and N = 2 String Vacua
2.1. THRESHOLD CORRECTIONS FOR ORBIFOLDS

After all these preliminaries we are now ready to calculate the one-string-loop
threshold corrections A, for the orbifold vacua. Our starting point is the general
formula of ref. [16]: for any four-dimensional, tachyon-free vacua of the heterotic

string,

d’r _
A, =F/? (Ba(7,7) — ba) (2.1)

where

_ - 31452 dZy(s,T s _u_g_3
Bu(r,) = in) ™ 30 (e ST (@2 (yeFgt-tgh)
even s
(2.2)
and
b= lim Bo = —Rtrv(@}) + bure(@)) + Hus(@) (29

Here 7 = 11 + i1 is the modulus of the world-sheet torus, and is integrated over

2mr and

the usual fundamental domain I' = {r, > 0, || < 3, |7| > 1}; ¢ = e
(1) = ¢ [[2,(1-¢"); Q. measures the charge under some generator in the a't
factor of the gauge group; indices s; and s2 each take values 0 & 1 corresponding
to the Neveu-Schwarz and Ramond boundary conditions on the world sheet and
the restriction ‘even s’ excludes the Ramond-Ramond case (s1,s2) = (1,1). The
derivation of egs. (2.1) — (2.3) used the fact that every four-dimensional string
vacuum is composed of two pieces: free world-sheet bosons X# and fermions W,
which constitute the spacetime degrees of freedom (pz = 0,1, 2, 3), and some internal
superconformal field theory (SCFT) of central charge (c,¢) = (22,9). The trace in
eq. (2.2) is taken over this internal SCFT, whereas the factors |7|~* and Zy denote

the light-cone gauge partition functions of X# and U¥ respectively. Zy, which is



equivalently the partition function of one complex free fermion, is given by

¥93(7) for s =(0,0),
1 94(7) for s = (0,1),
Zy(s,7) = T3 9u(5) fors(L0) (2.4)

0 for s = (1,1).

L , Doy By y
Actually, formula (2.1) only has physical import for the difference o 7:';11 be
tween threshold corrections for two different gauge group factors, because an un-
calculated constant (denoted by Y in ref. [16]) appears in the relation between the
bare string coupling constant and ggur as defined in eq. (1.5). This caveat will

play a role below.

The trace over the internal sector in eq. (2.2) is model-dependent and in general
cannot be simplified further. However, great simplification is possible for orbifold
vacua, which can be described by starting from a ten-dimensional vacuum of the
heterotic string in which six out of ten space-time dimensions form a flat torus T,
and then dividing the world-sheet conformal theory describing such a vacuum by
a discrete symmetry group G. In érder to preserve an N = 1 supersymmetry in
space-time, G should be a subgroup of SU(3). Also, G should be an isometry of
the TS; given the action of G, this is a constraint on the shape of the torus, i.e.,
on the constant background metric and antisymmetric tensor fields on the T®; the
parameters describing the shape of the T® that are not fixed by this constraint
constitute the untwisted moduli of the orbifold. The trace in eq. (2.2) decomposes
into sectors with boundary conditions (g, k) along the two cycles of the world-sheet

torus, according to

H_u _fg_3 1 _u_pg_3
Trsl (Qz . (_)S2Fq 1’2qH 8). et —C—;— z Tr(g’sl) (QZ . h . (_)SQFqH 12qH 8) .
1nt ' l oheG
gh=hg

(2.5)
Each (g, k) sector preserves a certain amount of four-dimensional supersymmetry,

either N =4, N =2 or N = 1. The only N = 4 supersymmetric sector is the

10



completely untwisted sector (¢ = A = 1), which also represents compactification
on the torus T®. This sector gives a vanishing contribution to both the beta
functions”™ and the A,™ (The latter result holds because the spin-structure-
dependent part of the trace in eq. (2.5) for ¢ = h =1 is just the partition function
Z3(s,7) of six real (three complex) untwisted world-sheet fermions; hence the
contribution to B, is proportional to

Y () A7) e e(e,7) = Ea 3 () Zh(s,R) = 0, (26)

T dr

even s even 8

where the last equation uses the identity 93 — 9 — ¥4 = 0 which is also responsible

for the vanishing of the partition function.)

Since ¢ and h commute, we can choose complex coordinates on the torus T®
that diagonalize the action of g and h. We refer to these three complex directions as
‘complex planes’. Each (g, k) sector is also characterized by the number of complex
planes that are not rotated by the action of g and h on T®: All 3 planes are fixed
for the NV = 4 sector, 1 is fixed in the N = 2 sectors, and none is fixed in the N = 1
sectors. (No g € SU(3) can fix exactly 2 of the 3 planes.) As argued in ref. [16],
the sectors that rotate all planes are not sensitive to the geometry of the torus.
Indeed, the charges Q, of string states do not depend on the moduli,” while the
values of H and H depend on the untwisted moduli only for states with non-trivial
six-momenta and/or winding numbers. In a sector where g rotates all three planes,
the (twisted) states have neither six-momenta nor winding numbers. In a sector
where g rotates only two planes, states do have momenta and winding numbers
associated with the third plane, but if that third plane is rotated by h, then all
states with non-trivial momenta and/or winding numbers are projected out of the
trace. Only the sectors in which a plane is fixed by ¢ and & simultaneously are

sensitive to untwisted moduli. Thus while both b, and A, receive contributions

% This is true not only for the untwisted moduli of an orbifold, but for all moduli of any
heterotic string vacuum with exactly N = 1 spacetime supersymmetry.[m

11



from N = 1 and N = 2 sectors, only the N = 2 sectors provide for moduli-
dependence of the threshold corrections. In particular, for orbifolds with no N = 2
sectors, such as those with G = Z3 or Z7, A, are completely independent of the

untwisted moduli.

Let us focus on an N = 2 supersymmetric (g, k) sector, or more precisely an
orbit of such sectors under the action of the modular group PSL(2,Z) on 7. All

(g, h) in such an orbit act on the three complex planes in the following way:
9= diag(agva;a 1)a h = diag(aha a;w 1)7 (27)

where the phases ay, aj are not simultaneously equal to 1. (As an example consider
the Z4 orbifold, where 6 = (z,7,—1) generates the Z4. It contains an N=2 orbit
consisting of (g,h) = (1,6%),(6%,1),(62,6%).) We now require for simplicity that
T% = T* @ T?, where T? refers to the third complex plane in eq. (2.7); also, if any
translations (shifts) of T accompany ¢ and A, they must not affect T2} Otherwise
we allow for arbitrary action of G, on the Fg x Eg or Spin(32)/Z, current algebra
and even on the torus T*. Under these conditions the contribution of the N = 2
supersymmetric (g, k) orbit is equivalent to that of a toroidal compactification (on
T?) of a vacuum with N = 1 supersymmetry in six dimensions. Therefore we now

consider one-loop gauge-coupling corrections for such vacua.

- 2.2. THRESHOLD CORRECTIONS FOR TOROIDAL COMPACTIFICATIONS OF SIX-
DIMENSIONAL THEORIES

In this subsection we study one-string-loop contributions to g;? for all four-
dimensional N = 2 supersymmetric vacua that are toroidal compactifications of
six-dimensional N = 1 supersymmetric vacua. The previous discussion motivates
our interest in these vacua; however, we stress that the results in this subsection

apply to arbitrary six-dimensional vacua, not just orbifolds. In ref. [18] it was shown

1 It is possible to relax these conditions, but parts of the analysis and the end result then
become significantly more complicated.

12



that the B-function for such N = 2 supersymmetric theories can be extracted from
an index calculation. However, the same analysis can also be used to determine the
threshold effects. For completeness and consistency with our notation we repeat
the necessary steps in appendix A, where we find that B,, defined in eq. (2.2), is
given by

Ba(”', '7') = ZAtorus(ﬂ i) : Ca(T) . (28)

Here the factor

Ztorus('r, 7:) = Z qpi/qu%/Z (2'9)
(pL,pr)ET 22

is contributed by the zero modes of the two toroidal dimensions X7, while the factor
Cqo(7), which accounts for all other string degrees of freedom, is a holomorphic
function of 7. T’y is an even self-dual (2,2)-dimensional Lorentzian lattice to be

described below.

“Now consider the behavior of By(7,7) under modular transformations of the
world sheet. In ref. [16] 72 - Bo(7,7) was derived from a regulated two-point cor-
relation function on the world sheet. The correlation function of the Kac-Moody
currents involved — (J4({) - Jo(0)) — is modular invariant, but the regulator that
removes the double pole of this correlation function at z — 0 is not. Conse-
quently, 72 - Bg is not quite modular invariant; modular anomalies of this kind
have been discussed extensively in refs. [22], [23] and [18], though perhaps with a
slightly different emphasis. On the other hand, the regulator term is proportional
to kg and is otherwise independent of the choice of a gauge group factor a; there-
fore, the differences k—?l—Bal - k—sz—Baz are proportional to unregulated and hence
modular-invariant correlation functions (k;;! Ja, (¢) Ja, (0) — k,! Ja,(¢) Ja, (0) ) and

are modular invariant themselves.

Finally, consider the modular properties of C4(7). Since 7 - Ziorus(T, 7) is man-
ifestly modular invariant, it follows from eq. (2.8) that the differences kj,'Cq, (1) —

kz!Ca,(7) are modular invariant too. On the other hand, these differences are

13



holomorphic functions of 7 and are no more singular than ¢° as ¢ — 0 (i.e.,
T — 100) — there is no ¢! term because the SL(2,C)-invariant vacuum has
@a = 0. Under these circumstances, the theory of modular forms requires these

a2

. [24] . ba b
functions to be constants,” which by eq. (2.3) must be equal to EIT - =

a1

(note
A

a2
a.

that Ztoms(r = 100) = 1). As we already mentioned, only the differences 'lAcLll —
a 2

are computed by eq. (2.1) in any case, so for the case of a six-dimensional super-

symmetric string vacuum compactified on T? that equation reduces to

d’r /. _
A, = ba./_T;_ (Zuorus(7,7) = 1) . (2.10)
r

An immediate corollary of formula (2.10) is that A, does not depend on any
of the moduli of the (¢,¢) = (20,6) SCFT, but only on the moduli of T2. This is
consistent with the N = 2 supersymmetry in four space-time dimensions, which
allows gauge couplings to depend on the scalars that belong to vector multiplets but
not on the scalars belonging to hypermultiplets”” Moduli of the ¢ = 6 SCFT give
rise to massless scalar supermultiplets in six spacetime dimensions, which under
further compactification on T? yield massless hypermultiplets of the N = 2, D = 4
supersymmetry. On the other hand, the moduli of T? belong to vector multiplets
of the N = 2 supersymmetry; their vector partners are generated by the two

world-sheet currents X7,

The dependence of Ztoms and hence of A, on the geometry of the two-torus is
implicit in the definition of I'; 2. Given a constant background metric Gy (with

inverse G1 J) and a constant antisymmetric tensor Bry on T2, the lattice vectors

(pr,pr) are given by™”
Pi,R = 4nl + %G”m] — GIJB]KTLK, m],nI € Z, (2.11)

and p%’R = pi’RG”pi,R. (We have set o/ = %) Following ref. [19], we group the

four real degrees of freedom in Gy = Gj1 and Byj = bey s into two complex fields

14



=

T and U,

T=Ti+iT=2(b+iVdetG), U=Up+ilh= (&w:\/&ﬁ) /G
(2.12)
Note that T is a (1,1) form for the orbifold T¢/G, while U is a (1,2) form. In
terms of T' and U,

D TU) = Y emrmntemnt) (2.13)

- my2,nl2€Z

X exp (_TL;I}Z . |TUn2 + Thn! — Umq + m2|2) .

At this point we can write an explicit formula for the one-loop threshold cor-
rections A, by simply substituting eq. (2.13) into eq. (2.10) and calculating the

integral. The integral is performed in appendix B; the result is

8rel—71E

- AJT,T,UTU) = —b,-log | ———
( ) 8| 375

Tz In(T)[* - Uz In(U)|* (2.14)
(vg is the Euler-Mascheroni constémt). Note that besides its obvious symmetry
with respect to an exchange of the two complex moduli of the torus, eq. (2.14) is
also invariant under (separate) PSL(2,Z) modular transformations of T' and of U
The latter invariance manifests itself via the modular properties of the 5 function
and makes eq. (2.14) consistent with the identification of the moduli space of the

toroidal compactification as"”

(SUL,D/UW)  (SUED/U)
PSL(2,Z) PSL(2,2)

(2.15)

Another noteworthy feature of the formula (2.14) for toroidal compactifications

of supersymmetric six-dimensional string vacua is that it gives the same ratio

* Both symmetries are shared by the partition function (2.13); in fact, TzZtorus(T, T,U) is
invariant under separate PSL(2, Z) modular transformations of T', of U and of 7 and under

any permutations of 7, T"and U frel

15



Ag(T,U)/[bg for all gauge couplings a in the four-dimensional theory. Therefore,
we can completely absorb the specific threshold corrections A, in the formula (1.5)
into a redefinition of Mgyt: If we replace the definition™ M(Z}UT = e!l778/6/37cd

with a new definition

. 1 1 1
Mgy = . . , (2.16)
iVl VT n(T)F VO In(U)I*
then formula (1.5) becomes
2 2 M
126” = k- 15” + bg - log —SIL (2.17)
ga(ﬂ) dguT H

without any additional threshold corrections. From the Grand Unification point of
view, this would be the most convenient definition of the GUT scale, even though
the mass (2.16) itself has no physical meaning — there are no massive particles
whose mass is equal or even proportional to Mgyr. In this article, however, we are
interested in the moduli-dependence of the gauge couplings and their differences
at some fixed mass scale g <« Mgyr; for this purpose it is more convenient to
use a moduli-independent definition of Mgyt and have explicit moduli-dependent

threshold corrections such as (2.14).

2.3. BACK TO N =1 ORBIFOLDS.

Having completed our excursion into N = 2 string vacua, we now return to
the main subject of this article, the study of the N = 1 orbifolds. We have already
mentioned that for orbifold groups G such as Z3 or Z7 that contain no non-trivial
twists with unit eigenvalues, the threshold corrections A, do not depend on the
untwisted moduli of the orbifold T®/G. Now consider an orbifold group such as
Z4 in which some twists ¢ € G (g # 1) have unit eigenvalues, but all such twists
leave unrotated the same complex plane in six dimensions. Then all twists with
unit eigenvalues form a subgroup G' of G — the little group of the unrotated plane

— and the complete set of the N > 2 supersymmetric sectors of the orbifold T¢/G
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form an N = 2 orbifold T®/G'. Combining the results of subsections 2.1 and 2.2,

we immediately find that in this case

GI
Ay = HA; + ¢
I (2.18)
a

:_?Twmmemﬂ+m@wwm@]+%

where the b, - g3/1672 are the B-functions of the N = 2 supersymmetric theory
_corresponding to the T®/G’ orbifold, T and U are the moduli of the two-torus
T? fixed by G', and the moduli-independent term ¢, comprises the contributions
of the N = 1 sectors as well as the constant part of eq. (2.14). Note that U is
not always a modulus of the N = 1 orbifold T®/G — the requirement that the
six-torus T® should be symmetric with respect to the full orbifold group G (and
not just G’ C G) may fix the shape of T? and thus the value of U. On the other
hand, if the orbifold T%/G has untwisted moduli other than 7' and U, their VEVs

do not affect the one-loop threshold corrections to the gauge couplings.

Formula (2.18) looks almost identical to the N = 2 formula (2.14); however,
we would like to highlight the following difference: The coefficients b, |G'| /|G| in
eq. (2.18) are related to the B-functions of the N = 2 theory T®/G’ but generally
have very little to do with the fS-functions of the N = 1 theory T®/G itself. To
be precise, if one writes the 3-functions of an N = 1 orbifold as sums over all the
(9,h) € G x G sectors, then the contributions of the N = 2 sectors to b, amount
to exactly &) |G'|/|G|; however, while the N = 1 sectors do not contribute to
the moduli-dependence of the threshold corrections, they do contribute to the 3-
functions. Hence b, # b}, |G'| /|G| and there is no reason for the b, and &, to be
proportional to each other) Therefore, for an N = 1 orbifold the ratios A, /ba
generally differ for different gauge couplings and no redefinition of Mgyt would
reduce eq. (1.5) to the form (2.17).

* And in fact for all specific N = 1 orbifold models we have considered b, are not proportional
to b, . For example, for the symmetric Z4 orbifold whose gauge group is Eg x Es x SU(2) x
U(1) one has (bs, b, bz, b1) = (—90, 78, 54, 342) while (b}, bf;, b, b)) = (—60, 84, 84,252) (here
the U(1) charges are normalized according to k = 3).
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In general, different ¢ € G with a unit eigenvalue may leave unrotated different
complex planes of the six-torus; for example, the Z2 x Z2 orbifold has three N =
2 twists, (+1,—-1,—1), (=1,+1,—1) and (—1,—1,+1), each leaving a different
complex plane invariant. The complete set of N = 2 twists form a union (J; G?
of the little groups of all the unrotated planes, and the subgroups G' C G are
disjoint — G' N G’ = 1 for i # j — because no non-trivial twist ¢ € G C SU(3)
can fix two planes at once. Therefore, the complete set of N = 2 supersymmetric
sectors (g, k) of the orbifold T%/G is a disjoint union of sets of all twisted sectors
of N = 2 orbifolds T%/G?, which leads us to the formula

A, = —Z%G"I [1og (|n(:r,-)|4 ImT,-) + log (|77(U.-)|4 IrnU,-)] + e (2.19)

as a generalization of eq. (2.18). Here b, - g3/1672 are the B-functions of the
N = 2 orbifold TS/G?, and T; and U; are the moduli of the two-torus fixed
by G*'. As in the previous case of a single little group G/, U* may or may not
be -moduli of the N = 1 orbifold T%/G. However, for an abelian point group
G, all T; that appear in eq. (2.19) always survive as untwisted moduli of T®/G;
specifically, they are among the diagonal untwisted (1,1) moduli (in the basis that
diagonalizes all ¢ € G). On the other hand, some of the diagonal untwisted (1,1)
moduli may fail to appear in eq. (2.19) if no non-trivial g € G fixes the appro-
priate complex plane. The untwisted moduli of abelian orbifolds that do appear
in eq. (2.19) are summarized in table 1. Note that each of those moduli spans
a separate (SU(1,1)/U(1)) /PSL(2,Z) component™ of the orbifold’s untwisted
moduli space, which explains why eq. (2.19) is invariant with respect to separate
PSL(2,Z) modular transformations of every modulus that appears in it. The
gauge groups and constants b} appearing in eq. (2.19) will of course depend on

how the twists act on the Fg x Eg (or SO(32)) current algebra.

For non-abelian N = 1 supersymmetric orbifolds the relation between the
untwisted moduli and the parameters T; and U; that appear in eq. (2.19) can

get rather complicated. On the one hand, there are fewer independent untwisted
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TABLE 1. Abelian N = 1 orbifolds and their untwisted moduli.

Orbifold Generators # of untwisted moduli moduli
At pt? in (2.18)
Z3 (621'1'/3,627”'/3’62%1'/3) 9 0 none
2y (3,1,—1) 5 1 Ty, Us
Zs (3, €23, 1) 3 1 Ty,T3,Us
Z% (e7ri/3, e7ri/3, e47ri/3) 5 0 T3
Z7 (621ri/7,e41ri/7,681ri/7) 3 0 Hone
Zs (em'/4’ e37ri/4, _1) 3 1 Ty, Us
Z’8 (67ri/4,657ri/4,i) 3 0 T,
Z12 (em'/G, 651ri/6’ _1) 3 ) Ty.Us
Z/12 (ewi/6’677ri/6,627ri/3) 3 0 T,
(-1,-1,1)
Zy X Z 3 T T T
- : (la_l,_l) 3 1,01, T2, Uz, T3, Us
(iv —i, 1)
74 xZ 1 T
i 2 (1,_1,—1) 3 Tl’Tza 3)U3
(em'/S,e—m'/3’ 1)
Z Z
6 x 2 (1,—1,—1) 3 1 TlaTQaT3,U3
mif3  mif3 647ri/3)
Z’ Z (6 b 9
6 % %2 (1,-1,-1) 3 0 N, 13,Ts
(627ri/3’e4m'/3, 1)
Z3 % Z3 (1, 627ri/3’647ri/3) 3 0 T1,T2,T3
(ewi/3,651ri/3, 1)
Z6 X Z3 (1, 627ri/3’ e47"i/3) 3 0 Tl> T2$ T3
i1
Z4 X Zsg & " .) 3 0 11,1y, T3
(1727 _Z)
(e”i/s,e5ﬂ/3, 1)
Ze x Zg (1, emi/3, 5mif3) 3 0 Ty, T3, T3
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moduli than in the abelian case; for example, T®/A(3 - 3%) has only one untwisted
modulus 7 — the breathing mode (the group A(3-3?) is the semidirect product of
Z3 and Z2). On the other hand, complex planes that are fixed by non-commuting
elements of the orbifold group need not be orthogonal to each other. Hence there
can be more than three terms in eq. (2.19), and the parameters T; and U; that
appear in those terms can be different linear combinations of the untwisted moduli.
Moreover, usually for at least some of the little groups G* the six-torus T® cannot
be decomposed into a direct sum T* @ T? with the T? component lying in the
unrotated plane. In this case formula (2.14) does not apply to the N = 2 orbifold
T®/G? and eq. (2.19) loses its validity altogether. It should not be too hard to
derive a more general formula that applies to orbifolds of non-decomposable six-

tori, but we do not wish to do so here.

We conclude our analysis of the one-loop threshold corrections A, in super-
symmetric orbifolds with a comment that the right hand side of eq. (2.19) is not
the_real part of any holomorphic function f;’looP(T,', U;) of the untwisted moduli
fields. This non-holomorphic behavior is completely unexpected from the point
of view based on tree-level supergravity theories in four dimensions. However,
beyond the tree level supersymmetry does not require holomorphic fo(®) in gauge
theories with massless charged fermions, and in the next section we shall provide
both a field-theoretical explanation of this phenomenon and a string-theoretical

proof that this explanation extends to the orbifold case.

* Strictly speaking, functions fu3(®) are completely holomorphic only in N = 1 theories.
In N = 2 supergravity theories such as toroidal compactifications of supersymmetric six-
dimensional theories mixing of the graviphoton with other vector fields adds non-holomorphic
terms to fg. However, for an unbroken gauge group a, the dependence of f;, on complex
fields neutral with respect to a — in particular, on the moduli — is holomorphic.
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3. Non-Holomorphic Field-Dependence of Effective Gauge Couplings
3.1. GENERAL THEORY.

In classical N = 1 locally supersymmetric theories in four dimensions, the
complex functions (1.2) must be holomorphic functions f;;(®) of the chiral scalar
fields ®*. Naively, this theorem should apply to renormalized quantum field theo-
ries as well, including effective field theories describing light particles in the super-
string’s spectrum; however, our result (2.19) is inconsistent with any holomorphic
f,}‘looP(Ti, U i). In this section we re-examine the assumptions of the theorem and
explain why it fails for quantum gauge theories with massless charged fields. This
failure has nothing to do with string theory; instead, it arises from infrared diver-

gences that are purely field-theoretical in nature.

The argument for holomorphic f;3(®) is usually made in terms of superfields.
Supersymmetric gauge invariance requires the action for the gauge superfields to

be a chiral superspace integral
/ d*e d20 E(z,0) - f4(®) W (z,0) W(z,0) + h.c, (3.1)

where W§ is the gauge covariant superfield that includes Fj, and E is the super-
space analog of the vierbein’s determinant. Viewed as a (composite) superfield,
fap(®) must be chiral and therefore must be a holomorphic function of the chi-
ral superfields ®*. Note that from the superfield point of view eq. (1.2) is not a
definition of f;; but a result of expanding the action (3.1) in terms of ordinary
gauge and scalar fields (and their superpartners) and then identifying the gauge

couplings and © angles in the expanded action.

It is not however necessary to use superfields to prove that f;;(®) should be
holomorphic in the classical case, and we would like to briefly review an argument
that uses only the ordinary fields! For simplicity, we concentrate on the gauge-

singlet f, and their dependence on neutral scalars such as moduli; extending this

1 One reason for using ordinary fields rather than superfields is that our string calculations
are all performed in terms of ordinary fields.
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argument to the general case is fairly straightforward. Consider a three-point
Green’s function involving a massless gauge boson A}, a gaugino A% and a neutral
fermion 9'. Supersymmetry relates this Green’s function to that involving two
gauge bosons and ®* — the scalar superpartner of ¥*; in terms of Weyl fermions
this relation can be written as

A(A2, AL @Y = (673" — 0¥5")2 - A(AL, NP 4t). (3.2)
B Y u Y

i
2\/51’27

(We assume that gauginos are normalized to the same metric as gauge bosons
and %' to the same metric as ®; such normalization is always possible in a
four-dimensional supersymmetric theory, even off-shell.) The tree-level Green’s
functions can be read directly from the effective Lagrangian; in particular, given

eq. (1.1) for the bosonic terms with up to two space-time derivatives, we have

Atree A% Ab i -6 vk py . .aga—z

( o 1/)¢) ab (p1p2 g nm p2) a¢1
%0,
ot

(3.3)
— s ppe - S5+ 00,
where p;2 are the momenta of the two gauge bosons and the O(p*) term is
contributed by the higher-derivative terms not included in (1.1). Inserting the

most general gauge invariant and Lorentz invariant form of the Green’s function

A(A%, A 1) into eq. (3.2) and comparing with (3.3) leads to

ofr  9g7? i 90,

967 = 907 T 8aZ e (34)

The last equation, or rather its complex conjugate, means that f, is a holomorphic

function of the complex scalar fields ®°.

In the absence of infrared divergences, an almost identical argument can be
applied to quantum field theories, at least perturbatively. The role of the effective
Lagrangian is now played by the generating function I' — the sum of all 1PI
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Feynman diagrams (for effective theories we should also include the diagrams that
are 1PI with respect to the light fields, but not with respect to the heavy fields that
are integrated out). This generating function is not polynomial in fields and their
space-time derivatives, but it can be expanded into a convergent power series.
Let us collect the bosonic terms in that series that involve at most two space-
time derivatives (and which are not related by gauge invariance to terms with
more derivatives); this should give us an expression just like eq. (1.1), simply
because the latter is the generic expression.I Hence, in the low momentum limit
the Green’s function involving two gauge bosons and one neutral scalar has to
look just like eq. (3.3), with some effective ¢S (¢) and OS%(¢) replacing their tree-
level counterparts. From this point on, we proceed exactly as in the classical case:
formula (3.2) applies whenever there is unbroken supersymmetry, eq. (3.4) follows,

and £ has to be a holomorphic function of the complex scalar fields ®°.

The loophole in this argument is that expanding 1PI Feynman diagrams into a
power series in the particles’ momenta — a procedure necessary for interpreting I'
as a local effective Lagrangian — yields a series whose radius of convergence is given
by the mass of the lightest particle with non-derivative interactions. For quantum
gauge theories with massless charged particles this radius is zero, so there is no
local effective Lagrangian at all. In such theories the zero-momentum effective 1/g2
cannot be defined because of infrared divergences; the running effective couplings
1/g2(p?) — defined at some off-shell momentum p? # 0 — are commonly used
instead. If we could similarly define running effective ©,(p?) and relate the field
dependence of the running 1/¢2(p?; ¢) and ©4(p?; ¢) to the off-shell two-vector-one-
scalar Green’s functions with a formula similar to eq. (3.3), then we would have
holomorphic running f,(p*; ®) just as we had holomorphic zero-momentum fa(®)
before. (Strictly speaking, we would need off-shell supersymmetry to maintain

eq. (3.2) off shell; however, this is not a problem in four dimensions.) We will see,

} Actually, the truly generic formula allows for a scalar field dependent gravitational constant,
i.e., the first term in eq. (1.1) should really be R/2x%(¢). However, this generalization has
no effect on the issue at hand (the arguments of ref. {27] do not apply here).
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however, that defining a running field-dependent ©4(p?; ¢) is often impossible and
this is precisely what in a supersymmetric theory allows a running 1/ g2(p?; $) not

to be the real part of a holomorphic function of ®’s.

Consider a field-dependent effective coupling such as ©f(¢). It is actually

an infinite series of coupling constants @Zﬂi...l that appear as coefficients of the

coefficients depends on the expectation values of the scalar fields, but at zero

-momentum the ¢ ({4)) are related to each other via

9 eff eff _ 1 0 eff ele
a<¢1) ®a (<¢>) ’ ®a,ij((¢>) - 2__8 <¢i>®a,] <¢)) ) lc. (35)

which means that ©,; ; is simply the derivative nl!a"@a/aqﬁ" -9t If a lo-

05 ((¢) =

cal effective Lagrangian does not exist, then the set of zero-momentum effective
couplings @Zﬁl((@) should be replaced by a set of running effective couplings
{04...1}(p?%; (#)) (henceforth, curly brackets {} will denote running couplings). Be-
cause the classical analogues of these running couplings are derivatives, we often

call them ‘effective derivatives’ or ‘renormalized derivatives’

1{0"0,/0¢ - 8¢'}(p*,(#)) = {Oui.i}(P?;(4)). (3.6)

Our terminology and notations notwithstanding, running couplings (3.6) do not
have to be derivatives of some running field-dependent {©,(4)}(p?) — if the run-
ning couplings do not obey egs. (3.5), the field-dependent {04(¢)}(p?) cannot be
consistently defined. Naturally, the same considerations apply to any other running

field-dependent coupling such as {g;2(¢)}(p?), ete.

A priori, there is no reason why relations (3.5) should continue to hold at non-
zero momenta (they hold at zero momenta because there is no difference between a
zero-momentum external leg in a 1PI Feynman diagram and a vacuum insertion).
What actually happens depends on the particular theory and the particular running
field-dependent coupling under consideration. Specifically, we need answers to the

following three questions:
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e Are the running gauge couplings {g;?}(p? (#)) and the running couplings
{0g72/0¢'} (p?; (#)) consistent with eqs. (1.7)?

e Are the running © angles {©,}(p?% (¢)) and the running axionic couplings
{0,,i}(p% (#)) consistent with a similar relation? Actually, since the effective
O angles cannot be obtained via Feynman diagrams (the effective {Qq} is
the coefficient of the tr,(FF) operator in the effective Lagrangian, but that

operator is a total space-time derivative), this question amounts to checking

- the integrability conditions

0 ? 0

—_— . 2. v ‘ 2.
a1y (Quid (5 9)) = 5 (e} (p75(9) (3.7)

for the axionic couplings.

e What are the consequences of unbroken supersymmetry for the running
{972}(p% (¢)) and related couplings and how do these consequences depend

- on the answers to the first two questions?

The last question, at least, can be answered generically. Eq. (3.2) is a direct
consequence of unbroken supersymmetry and thus should hold at any order of
perturbation theory or even non-perturbatively. The general form of the three-
boson Green’s function A(AZ,A,%, ¢') is constrained by the gauge invariance and
Lorentz invariance to be just like eq. (3.3), except that the tree-level dg;%/0¢* and
00,/9¢ are replaced by some momentum-dependent form factors. Let us identify
those form factors as the running couplings {g;?}(pz) and {O,,i}(p?); this amounts
to a choice of the renormalization scheme. Eq. (3.2) further constrains the form of
the bosonic Green’s function A(A, At ®%); in terms of the form-factors {g;’?}(pQ)
and {0, ;}(p?) this constraint is

{092%/0%'} + £5{004/09'} = 0 (3.8)

(cf. eq. (3.4) for the classical case). In terms of {fs;}, eq. (3.8) and its complex

conjugate become egs. (1.8), as promised in the introduction.
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Further consequences of unbroken supersymmetry for the running gauge cou-
plings depend on the answers to our first two questions. Indeed, if egs. (1.7) hold
true (we believe this is generally the case), then eq. (3.8) and its complex conjugate

give us the following formule for the running axionic couplings {Og}:

{00,/09'} = +87r2i%<g% . {00,/0%) = —8r% %{z"(‘%}. (3.9)

These formulz are consistent with the integrability eqgs. (3.7) if and only if

0 0

(@) o (1)

{9.°1(% (@) ,(®)) = 0, (3.10)

that is, if and only if the dependence of the running {g;2}(p?) on the scalar ex-
pectation values can be described by the real part of a holomorphic function of
(®'). (£5{O4} will then be its imaginary part via eq. (3.9).) Thus we arrive at
the following dichotomy for a supersymmetric theory: either there is a running
{fa(®)}(p?) that is a holomorphic function of the complex scalar fields and the
running {g;2}(p?) is its real part, or there is no well defined running {©.(¢)}(p?)
(i.e., eq. (3.7) does not hold) and the dependence of the running {g;%(¢)}(p*)
on the scalar fields can be described by any real analytic function of ® and %
Clearly, it is the second alternative that is realized in the orbifold case. As we will
see in the next subsection, the same phenomenon also occurs in renormalizable

supersymmetric field theories.

3.2. ONE LooP RESULTS FOR QUANTUM FIELD THEORIES.

In this subsection we demonstrate that egs. (3.7) often fail beyond the tree level
while eqgs. (1.7) continue to hold, at least to the one loop order. For simplicity,
we only discuss renormalizable gauge theories and also disregard the possibility
of partial gauge symmetry breakdown (e.g., SU(5) — SU(3) x SU(2) x U(1) at
MguT), although our results hold true in the general case as well. On the other
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hand, we allow the theories to be non-supersymmetric. Renormalizability requires
firee = const and also prohibits derivative couplings of scalars to each other (as in
a o-model) or to fermions. Thus there are only three kinds of one-loop Feynman

diagrams contributing to the effective {9f./0¢'}:

(3.11)

where the internal propagators belong to charged fermions and the o vertex is due

to Yukawa couplings %Ymm’@bmz/)”qb" + c.c., and

(3.12)

where the internal propagators belong to charged scalars and the o vertex is due
to (superrenormalizable) three-scalar couplings rTimni¢™¢"¢' (here the external
scalar field ¢* is neutral while the internal scalars ¢™ and ¢" are charged). In terms
of the field-dependent mass matrices Mpn () for the charged fermions and M2, (4)
for the charged scalar fields, we have Yiuni = OMpn/08* and Tppn; = OM?2,,. /04,

so after computing the momentum integrals in diagrams (3.11) and (3.12), we
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arrive at the following results:

' oM oMt
(897206 Y7°P (0% () = 52k Tr [Qz ((%,- MY+ M B ) MM’HILO(pz)}
s OM? 1
(3.13)
and
i11-loop/ 2. _ =i 2 (OM 0y _ aM*) . }
{00a/9¢"} 7 (p5(9) = 3 Tr [Qa<a¢iM M55 ) M+ 0
(3.14)

Here Q, is a generator of the gauge group a, the traces are taken over Weyl
fermions and complex scalars, and the precise form of the O(p?) expressions in
the denominators is rather complicated but is irrelevant to our arguments. In
case of a supersymmetric gauge theory, M? = MM (gauginos can be excluded
from our considerations here since they are massless and thus do not contribute to
eqgs. (3.13) and (3.14)) and the matrix elements of M are holomorphic functions of
®*, so formulee (3.13) and (3.14) become

- ; oM 1
2 -2 ty1-loop __ _ . ty11l-loop _ =1 2 : i
8r“{dg; */0P"} = —1{00,/09"} 5 LT [Qa 557 M A0 +O(p2)] ,
— - oM? 1
2 -2 71 1-loop — a4 Y 1-loop — =1 2 M =
8r*{0g, “/0®*} +:{004/00} 5 Tt [Qa T MM’f—i—O(p?)] :
(3.15)

in full agreement with egs. (1.8). (In the supersymmetric case {fsi} and {fss}
can also be computed using superfield Feynman rules,m] and the result of this

calculation is identical to egs. (3.15).)

We now show that regardless of whether the theory in question is supersym-
metric or not, the couplings (3.13) are integrable at any p? and furthermore are

consistent with eq. (1.7). Indeed, to the one loop order the running effective gauge
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coupling is el

1 11C O(p?)
211-loop s, 2y 2 p
MM+ 0(p?) 1 M2+ 0(p?)
2 2
~ Spn Tr (Qa log iz ) = 182 Tr <Qa log — ) ,

-where A is the ultraviolet cutoff and C is the second Casimir of the adjoint rep-
resentation of the gauge group. Straightforward differentiation of this expression
results in a formula for B{g(:z}/é?(qbi) that looks identical to eq. (3.13), except for
a possibly different specific form of the various O(p?) terms. However, the spe-
cific form of the O(p?) terms in eq. (3.16) depends on a particular choice of the
renormalization scheme for the running gauge couplings. Similarly, in eq. (3.13) the
exact definition of p?, in terms of the momenta pim of the three particles involved,
ameunts to a choice of a renormalization scheme for the running { ga_,zz} couplings.
Therefore, given an appropriate choice of the renormalization schemes for the run-
ning couplings — both {g72}(p?) and {097%/0¢'}(p*) — eq. (1.7) should hold
exactly and for all renormalization scales p?. In all other renormalization schemes
eq. (1.7) holds whenever the particular values of the O(p?) terms are not impor-
tant, that is, whenever the mass? of any charged particle is either much bigger than
p? or much less than p?. In particular, eq. (1.7) always holds in the infrared limit
when p? < mass® of the lightest massive charged fermion or scalar. (Note that
in the infrared limit {g;2}(p? — 0) diverge logarithmically, but their derivatives
with respect to scalar fields ¢* remain finite. Correspondingly, {ga_,?}(p2 = 0) do

not suffer from infrared divergences.)

Now consider the running axionic couplings {04;}(p?; (#)). (Like {g;?}(pz),
these couplings are infrared-convergent even at p?> = 0.) At first glance eq. (3.14)
looks just like the first line of eq. (3.13) except for the relative sign between the

two terms in parentheses, but that minus sign is precisely what renders the axionic
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couplings non-integrable. Indeed, explicit differentiation of eq. (3.14) results in

9{04,:} P (p?; (¢))

57 — (i 7) (3.17)
. o) oMt 1 oM o
= (M*M+O(p2) Qe 55 WMMTT O aqsf) - ),

and for non-zero p? the expression on the right hand side generally has no reason
to vanish. In the zero momentum limit, the first factor in parentheses vanishes
provided the matrix MM is invertible. In this case {©,}(p? = 0) are integrable

and result in
{ea(¢)}1_100p(172 =0) = Tr (Qﬁ Imlog M(¢)) + const (3.18)

— the basic formula in the study of axions. (In the case of QCD eq. (3.18) becomes
O = Arg det(Mguark) + const.) Notice however that generally eq. (3.17) leads to
integrable axionic couplings only for p? < mass? of the lightest charged fermion. If
some of the fermions are exactly massless (e.g., when the gauge symmetry is chiral),
then the matrix MTM is not invertible and the O(p?)/(M*t M +O(p?) factor retains
some O(1) matrix elements even in the zero momentum limit, and one should not
expect {Oq,i}(p?) to be integrable at any p?, however small. Eq. (3.18) also yields ll
defined © angles whenever some charged fermions are massless. This phenomenon
is well known'™ although it is usually explained in terms of the anomalous chiral
symmetry of the fermions that shifts the ©® angle by an arbitrary amount and can
even remove it altogether. Note that the non-integrability of {©4;} has nothing
to do with supersymmetry since the phenomenon occurs in both supersymmetric

and non-supersymmetric gauge theories.

At this point we would like to present a simple example of a gauge theory
in which the axionic couplings are in fact non-integrable. Consider an Es gauge

theory with two 27 families of chiral fermions and one 27 antifamily. Let the

30



fermion mass matrix be

0 0 &!
M@® =10 0 &|®Ibr, (3.19)
ol @2 0

where ®12 are two complex Es-singlet scalar fields. The first two rows or columns
of this M correspond to the 27 fields and the third row/column corresponds to the
27’s — apart from its specific ® dependence, M is the most general mass matrix
that is allowed by the gauge symmetry. In this model, there is always a massive
27 + 27 multiplet of fermions and a massless 27 multiplet, but the particular
linear combination of the two 27 families that remains massless depends on the

expectation values <<I)1’2>. Applying formula (3.14) to this model yields

90 a@i 1-loop 2; 3, i) = -3 <@> s
 {00/09 () (@) @+ +067) 54
{00/0%7 )P (p% (9), (B)) = +3i o

(@) + (@) + 0(?)°
although these axionic couplings have well-defined limits at zero momentum, they
do not obey the integrability equations (3.7) even in that limit.

Finally, consider the effective gauge coupling in a supersymmetrized version of

the same model. Given the spectrum of the theory and the fermionic masses (3.19),

we have
L 1w oeh 6 (0P [+ op
g2(p%(®),(2)) g 1677 87AT T 1672 B A2 ;

(3.21)
this 1/¢* is not the real part of any holomorphic function of ®! and ®2. As we
explained in the first half of this section, this non-holomorphicity is directly related

to non-integrability of the axionic couplings (3.20); indeed, it is easy to see that

egs. (3.9) do hold for the model at hand.
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The specific gauge group and the fermionic mass matrix we used in this example
were rather arbitrary. It is easy to see that the same behavior occurs whenever
some charged fermions are massive and some are massless, but which particular
fermionic fields remain massless depends on the scalar expectation values. One can
argue that this is exactly what happens in string vacua with moduli, where one has
an infinite number of massive charged fermions, a finite number of massless charged
fermions, and the vertices for these massless fermions are moduli-dependent. Thus
‘we expect the string theory to lead to effective couplings that obey eqs. (1.7) and
(1.8), but not eq. (3.7); consequently, g21°%P need not be given by the real parts of
some holomorphic functions of the complex moduli scalars. In the next subsection

we will see that this is exactly what happens in the orbifold case.

3.3. ONE-LooP REsSULTS FOR ORBIFOLDS.

In the previous subsection we showed that in field theory the running gauge
couplings {g;?}(p?) and the three-field couplings {g;f}(p2) are related to each
oth:-:r via egs. (1.7) (at least to the one-loop order) while no such relation generally
holds for the {©,;} couplings. Consequently, unbroken supersymmetry does not
require the effective {g;2(¢)}(p?) to be the real parts of holomorphic functions of
the complex scalar fields. In this subsection we demonstrate that exactly the same
behavior occurs in string theory, at least in the orbifold case; this is the origin
of non-holomorphicity found in eq. (2.19). Specifically, we are going to compute
{g;?}l‘b"" and {Og ;}11°°P for supersymmetric orbifolds and verify that eqs. (1.7)
and (1.8) are obeyed (with the gauge couplings given by eq. (2.19)), but that the
integrability conditions (3.7) for {©,,;}!'°°P are not satisfied.

Our starting point is the CP-even three-particle scattering amplitude
ASens (45, 43, 4') (3.22)
= 6 (0505 — 9"p1 - p2) - ({9721719°F + (26TLa + 6TL) 0P (g2} o)

= Z (—)ste /d2T Z(1,s) /dzCl/dzfz <V12§(4‘1)V123(C2)V¢ﬂ(0)> (,8),

even s
rel
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where V} and Vd? are the zero-picture™™ vertex operators for the gauge and scalar
bosons, respectively, and Z(7,s) = Try, ((—)32qH_qu‘1/2> are the partition func-
tions for the even spin structures of the heterotic string. The odd (Ramond-
Ramond) spin structure produces the CP-odd amplitude Azg(iing; we will return to
it later for computing the {0©/0¢} couplings. A8 is a scattering amplitude and
not a 1PI Green’s function, therefore eq. (3.22) includes one-loop corrections 81,
and 61II; to the external legs of the amplitude. Fortunately, the tree-level couplings
{921

do not have to actually compute one-string-loop corrections 811, and éII; (which

}¥¢€ vanish for all massless scalars ®* except the dilaton (cf. eq. (1.3)), so we

is just as well since they diverge on shell). It is possible however that string loop
corrections to scalar propagators cause mixing of the dilaton with other massless
scalars; to avoid this potential problem, we henceforth limit our attention to the
differences between Fl,;{ fa,i} for different gauge couplings a; this is similar to com-
puting only the differences between the threshold corrections %Aa in ref. [16] and

in section 2 of this article.

Another peculiarity of the string-theoretical formula (3.22) is that it is valid
only for on-shell momenta p? = p? - p2 = 0" and thus yields only {g;?}(p2 =0).
One could with more effort compute {f,;}5""8(p? # 0) from a four-particle am-
plitude such as A(Az,Ag,cﬁi,graviton) instead of (3.22), but in this article we
simply restrict our verification of egs. (1.7) and (1.8) to the p? = 0 limit. Since
the infrared-divergent term in eq. (1.5) is moduli-independent, we expect that
{ga_,?}sm“g(p2 = 0) will be infrared-convergent, like the field-theoretical expres-
sion (3.13).

The actual evaluation of {dg;%/0¢'}11°°P closely parallels the calculation of
the threshold corrections in ref. [16] and their moduli-dependence in section 2 of

this article. We begin with the vertex operators for the untwisted modulus ¢* and

* We interpret these mass-shell conditions as constraints on complex Euclidean momenta
P1,2,3; real Minkowski momenta that satisfy these constraints and also p; +po+p3 = 0 would
be collinear, and that would cause amplitude (3.22) to vanish kinematically for transverse
gauge bosons.
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for the gauge bosons, which are

00 = _ vii(#) oo A5x7 + i(n. I\ (7 ip-X(¢,0)
V(6,0 = 5 0xIQ)- (0X7 + i W) (O HCO,
Vas(€,0) = 3¢ JalQ) - (0X* +i(p- B) W) ({) - e XG0,

where
vi(¢') = Bii (G1j + B1j) (3.24)

is a (c-number) matrix corresponding to a particular untwisted modulus ¢* and
Ja are the Kac-Moody currents responsible for the gauge symmetry. Given these

vertices and proceeding exactly as in ref. [16], we reduce formula (3.22) to

g %) = w—) d*r 17 7,7) + kg - (a-independent term), 3.25
@ 3273 e
r
where
_ _ $1+89 dZy(s,T
B = It Y (e PHET) (3.26)

even s

Trs, <:8XI ax’.. Qz . (—)52Fq _%‘YH__)M

— formulee very similar to eqs. (2.1) and (2.2), except for a missing 1/7, factor in
eq. (3.25) (it is canceled by the extra integral [ d?¢ = 72) and for the extra operator
:0XT9X: in the trace in eq. (3.26). The latter operator is normal ordered, so only

the zero modes of the free bosons X7 and X7 contribute to its expectation value.

Next we proceed as in section 2.1 and rewrite the traces in eq. (3.26) as sums

over the orbifold twist sectors:
Try, (:aXf 8X7:. Q2. (—)eFgH-tigh- %)_t (3.27)

4 g 3

= TG0 X Tty (9XT0X75- Q1 b ()= gH=Hqh})
9,h€G
gh=hg

Z Trg,s) <Q2 (=) y Hﬁ%q_ﬁ—%)int . <:8XI 5XJ:> (g,h).

9,h€G
gh=hg
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The second equation here holds because in each separate (g, k) sector there is no
correlation between the free bosons X1/ and other world-sheet degrees of freedom.
The only sectors (g, h) in which these two bosons have zero modes (and thus the
only sectors whose contributions to eq. (3.27) do not necessarily vanish) are the
sectors in which X! and X coordinates of the six-torus are invariant with respect
to both g and h. All such sectors are N = 2 supersymmetric and together they form
an N = 2 orbifold T®/G’, where G' is the little group of X7 and X”/. Obviously,
not all pairs (X!, X7) lead to non-trivial little groups G' (and the trivial case
G' = 1 is just the N = 4 supersymmetric untwisted sector that yields B/ = 0
as well as B, = 0). It is easy to see that the untwisted moduli made from the
(X1, X7) pairs that do lead to non-trivial G are precisely the moduli that appear
in eq. (2.19) — the same set of moduli listed in table 1 for abelian orbifolds.

At this point the problem of computing the {ga_zz} couplings for N = 1 orbifolds
has been reduced to the N = 2 supersymmetric case in which ¢' is one of the moduli
of the unrotated two-torus, and we can now repeat the arguments of section 2.2

and appendix A almost verbatim. This gives us the following formula (for the

N =2 case)

{9.. i} = b UU / 7 Z1(r,7) 4 ko - (a-independent term),  (3.28)
r

where

~ _ 2 1 2
ZVE = > R plpg (3.29)
(pL,pr)ET2,2

is the factor in B contributed by the zero modes of X! and X 7. (As in the steps
leading to eq. (2.10), modular invariance forces the internal trace to be a constant
factor by in eq. (3.28).) For the N = 1 supersymmetric orbifolds the factor b, in
eq. (3.28) becomes b, |G'|/|G| for the appropriate G', and in eq. (3.29) I'y 3 is the

invariant lattice of G' rather than G. -
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Let us now go back to egs. (2.9) and (2.11) and consider Ziorus a8 a function
of the four moduli of the fixed torus T2. It is a straightforward exercise to show

that

aZtorus (T, Ta U, U)
9¢

9

= QWTZZ”(T,T,U,U)-8¢

(Gry + Bry) = 2rm 2V cwrs(4),
(3.30)

where ¢ is any linear combination of T, U, T and U. Therefore, combining

egs. (3.28) and (3.30) together, we can write”

8ga—2 1-loop B _bi 42T aZtorus ! A, (3:31)
¢t - 8n ) 2rm B¢ 1672 O¢ '
r

(modulo a-independent terms), and this is precisely the formula (1.7) for super-

symmetric orbifolds.

‘In order to confirm that egs. (1.8) apply to supersymmetric orbifolds, we must
calculate {©g;}}°°P from the CP-odd part of the one-loop scattering amplitude
involving two gauge bosons and one neutral scalar. This amplitude arises from the
odd (Ramond-Ramond) spin structure on the world sheet torus and is therefore
computed according to somewhat different rules” than the even amplitude (3.22).

After eliminating the ghost degrees of freedom, we have

16ap
87?2
!

= /d%zﬁR(T)/d?@/dzcz ?{di (TF(E)VXg(Cl)VXg(Cz)V¢Tl(0)> :

RR

Acaa(A%, AL, 6") = PRIV Dy pog - {004 D' 1P (3.32)

el

where TF is the fermionic stress tensor operator and qu"1 is the scalar vertex in

* The second equation here is the derivative of eq. (2.10). Since the integral (2.10) does
not converge uniformly, interchanging the order of differentiation and integration requires
insertion of a regulator like that used in appendix B.
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the (—-1)—picture.[31] For an orbifold and its untwisted modulus ¢ we have

Tr(() = gw 9"(()-0X"(0) + Grr¥™({)-9X"((),

Vi, Q) = W;—ff) LaX1(¢) - WI(() - P XEO),

(3.33)

where Gk [, is the metric for the six compact dimensions X% and v 7(¢) is defined
in eq. (3.24). The primes in eq. (3.32) refer to removal of the fermionic zero modes
from the Ramond-Ramond partition function (which would otherwise vanish) into
the product of vertex operators, which therefore has to supply a W# or W! operator
for every world sheet fermion that has a zero mode. In particular, the four ¥#
fermions always have zero modes in the Ramond-Ramond sector; the appropriate
operators are contained in the gauge boson vertices (3.23) and together yield the

€7 p1,p2s factor in the amplitude (3.32).

_For an orbifold the different (g, #) sectors have different numbers of fermionic
zero modes: In an N = 1 supersymmetric sector only the four ¥# have zero modes,
in an N = 2 sector two of the six U/ fermions have them too, and in the N =4
sector all six U/ have them. Consequently, the untwisted sector does not contribute
to the amplitude (3.32) since only two ! operators can be supplied by the vertices
V¢—1 and Ty while six are needed to soak up the zero modes. On the other hand,
in an N = 1 supersymmetric sector the fermionic zero modes pose no problem,
but the lack of zero modes for the bosonic operators X7 (coming from the vertex
V¢_1) and dXT (coming from the Ty vertex) proves to be just as lethal. Indeed,
these two operators can only be contracted with each other, but in the absence of
zero modes the correlator <8X I.ox L> vanishes. Finally, the N = 2 sectors of a
supersymmetric orbifold can contribute to the amplitude (3.32), but only if both
indices of the v7;(¢) matrix lie in the unrotated complex plane. Therefore, the
problem again reduces to the case of an N = 2 supersymmetric orbifold and only
the moduli of the unrotated two-torus need to be considered. (Of course, were the

situation any different, this would be an immediate violation of eq. (1.8).)

37



The actual calculation of the couplings {4 ;} for a toroidal compactification of

a six-dimensional supersymmetric theory is fairly straightforward. The correlator
in eq. (3.32) becomes a product of several independent expectation values
M w I3yl K I\

((pr - W) (2 - D)UY - (Ja(G2) Jo(G2) vrs (OXT DX ) - Grer (WK W7, (3:34)
and only the second factor here depends on the location of the vertices on the world
sheet. Since we are only looking for the differences between é{@a,i} for different
gauge couplings a, we can replace (J,J;) with its zero-mode part —4m26,; <Qg>
just as we did earlier in this article. After that, we simply evaluate all the factors

in eq. (3.34) and the Ramond-Ramond partition function Zg; the result is

vi(¢) e’ KGkp

Vvdet G

- [ d*r xCu(7) Z!1(7,7) + kq - (a-independent term),
r

{04,i} =

(3.35)
where Cy(7) is defined in eq. (A.9) at the end of Appendix A. In the previous
section we showed that C, is a constant equal to by, so the integral in eq. (3.35)
is identical to that in eq. (3.28). The matrix factor v”(gbi) e’KGk1/Vdet G in
eq. (3.35) differs from vy (¢') that appears in eq. (3.28), but egs. (2.12) give us

the following relations for the moduli T and U and their complex conjugates:

vr7(4) - 7K Gy B +ivrr(¢) if ¢ is T or U, (3.36)
Vdet G " —ivrz(8) ifdisT or U. '
Therefore, eq. (3.35) becomes
872i{dg;%/0 if ¢is T or U,
{004/08) ={ " 105 "/0¢} 1 pisLorU (3.37)
—8721{0g;%/0¢} if ¢pisT or U,

which are precisely the egs. (1.8) for the theory at hand.

As with the field theory case we discussed earlier in this section, non-holo-

morphicity of the one-loop corrections to the gauge couplings of a supersymmetric
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orbifold is related to the non-integrability of the axionic couplings {O,;}. In-
deed, using egs. (3.9), whose applicability to orbifolds we have just confirmed, and
eq. (2.14) for the moduli-dependence of the threshold corrections, we find that for

example
'ba, . o2l —'ba
9 o0, /arytleer = X he 0 rge aTyer - T (g 94y
ol } o] 2“ ol ' ) s 2‘ ) ’

The fact that supersymmetric orbifolds and renormalizable gauge theories both
exhibit non-integrability of {O, ;} accompanied by non-holomorphicity of the gauge
couplings strongly suggests that this behavior is rather common. We believe that
the non-orbifold vacua of the heterotic string that give rise to massless charged
— fermions should also behave in the same manner, but a direct confirmation of this

conjecture will require further research.

We conclude this section with a remark that the string scattering amplitudes
(3.22) and (3.32) can also be used to compute {fup;} for twisted scalars ¢ in the
orbifold’s spectrum as well as for different kinds of string vacua. In those cases the
full analytic structure of f,; cannot be deduced, but even the knowledge of its first
derivative would be of interest since it is precisely {fq:} which enter eq. (1.4).
In this article we have nothing more to say about non-orbifold vacua, but for the
orbifolds it is very easy to show that {f;;} = 0 for all twisted scalars #'. Indeed,
- the discrete symmetry of an orbifold forbids any scattering process involving one

twisted particle plus any number of particles arising from the untwisted sector;
this selection rule is independent of the number of string loops. In particular, since
the massless gauge bosons always belong to the untwisted sector, for any scalar
¢' arising from any twisted sector of an orbifold, A(AZ,A,I’,, ¢') and hence {favsi}
must vanish. Of course, this argument does not apply to blown-up orbifolds (points
in the full moduli space where twisted moduli have acquired vacuum expectation

values).
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4. Conclusion

The main result of this article is formula (2.19), expressing the moduli-depend-
ence of threshold corrections A, for N = 1 supersymmetric orbifold vacua of the
heterotic string. We conclude this article by comparing our result with other

7,8,27,33, PSR i i
1820224 of the same quantities in related four-dimensional N =1 su-

calculations
persymmetric vacua.” Reference [7] considered the four-dimensional effective field
theory obtained by truncating the ten-dimensional effective theory, and found that
a moduli-dependent one-loop contribution to f, arose from the ten-dimensional
Green-Schwarz anomaly cancelling term. The truncation procedure used (previ-
ously outlined in ref. [3]) corresponds roughly to the untwisted sector of an orbifold
compactification. However, in an actual four-dimensional string vacuum, such as
an orbifold, truncation is not legitimate at the loop-level because it omits the con-

tributions of an infinite number of states which can propagate in the loops (both

twisted states and winding states in the orbifold case).

“Another approach to determine the moduli-dependence of f,(T;) was to use the
classical Peccei-Quinn symmetries 2% of the moduli T; for a Calabi-Yau manifold
or an orbifold, which have the form ReT; — ReT; + const, together with the

requirement that f,(7;) be holomorphic. The resulting f, found was linear'™

Tloop(Ty) = =t Al T, or A, = Al ImT;, (4.1)

but the constants A% could not be determined from the symmetry considerations.
Later it was realized that the Peccei-Quinn symmetries are spoiled by world-sheet
instantons,lae] although the instanton effects are exponentially suppressed in the
large radius limit, InT — oo, where T' denotes the breathing mode of the in-
ternal manifold (the overall radius).]L Thus it comes as no surprise that our re-

sult (2.19) for an orbifold vacuum reduces to formula (4.1) in the large-radius

* While this paper was typed, we received several preprints P that appear to overlap with
refs. [27,34].

t In the approximation considered in refs. [7,8], T was the only modulus present in the
massless spectrum. '
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limit. Indeed, the leading term in log(|n(T})|* ImT;) in the Im7T; — oo limit is
—(x/3) ImT;, so this term in eq. (2.19) yields eq. (4.1) and fixes the constants to be
Al = (n/3)b:|G'|/|G| for the orbifold case. The next-to-leading term, log(Im T5),
violates the holomorphicity assumption for f,, although it is consistent with the
Peccei-Quinn symmetries. The moduli-independent contributions are obviously
consistent with both properties. Finally, the terms generated by Taylor expanding
the [[oe;(1 — ¢") factor in n(T') are consistent with holomorphicity but violate the
Peccei-Quinn symmetries; these exponentially-suppressed terms represent world-

sheet instanton contributions.

Reference [33] considered the large-radius limit of the threshold corrections in
more detail, and showed that in some cases — e.g. the hidden Ejg left intact in
some Calabi-Yau compactifications — the constant of proportionality A, for fo(7')
in eq. (4.1) could be related to the 8 function coefficient b,(,Nzl). It was recognized
that this relation did not have to hold in more complicated compactifications, for
example if Wilson lines broke the hidden Eg, or for orbifolds — in the latter case

the lack of any such relation is confirmed by the large-radius limit of formula (2.19).

Finally, references [27] and [34] combined the form of a potential gluino con-
densate with duality invariance in order to constrain the possible form of f, for
orbifolds, using earlier results of ref. [37]. Under the assumption of a large-radius

behavior similar to eq. (4.1) it was found that
Ay = =" log (In(T)*ImT), (4.2)

which bears a striking resemblance to eq. (2.19). However, the result (4.2) has two
serious problems: (1) The overall breathing mode 1" appears instead of the T; that
correspond to individual complex planes. (2) The § function coefficient appearing

)

as a prefactor, b,(lN=l , 1s that computed from the N = 1 supersymmetric massless
spectrum, and not the bfl computed from the auxiliary N = 2 theories defined
above. In particular, both papers are in contradiction with the Zg and Z7 orbifold

examples, for which A, should not depend on any of the untwisted moduli. Both
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papers employ as part of their analysis an effective supergravity Lagrangian de-
scribing gaugino condensation; it is possible that the problem arises at this stage.x
Both papers attempt to explain the origin of the non-holomorphicity of the f,(T,T)
deduced from (4.2). In ref. [27] the superconformal compensator field for super-
gravity plays a role in the explanation. However, the explanation cannot account
for the more complicated non-holomorphic behavior of eq. (2.19); furthermore, we
have shown that similar behavior occurs in theories not coupled to gravity. Refer-
ence [37] proposes a redefinition of Mgyt similar to eq. (2.16) in order to explain
away the apparent non-holomorphicity of eq. (4.2). We have already explained in
section 2.3 that such a redefinition is not possible for N = 1 orbifolds, but even if it
were possible, it would not help: Supersymmetry is concerned with holomorphicity
of the whole f,, and the log My term in eq. (1.5) must be considered along with
the threshold corrections A, when Mgyt is moduli-dependent.

What can be said about higher-loop threshold corrections? In reference [8]
the_Peccei-Quinn symmetry for the dilaton/axion field S, plus the dilaton’s role
as the string loop expansion parameter, were combined with a holomorphicity
requirement on f, in order to argué that all higher-loop corrections to f, vanish.
A similar conjecture was made in ref. [18] based on the relationship of f, with
the anomaly cancelling term. Serious doubt is cast on these arguments by the
nonholomorphicity of f, found in this paper, even at the one-loop level. Also,
because of the chiral anomaly, the Peccei-Quinn symmetry for S is equivalent
to an R symmetrym and one must be rather careful about the exact form of the

symmetry beyond one-loop; this is related to the “multiplet of anomalies” discussed

in refs. [38].

This paper also explained why the threshold corrections A, do not have to be
the real parts of holomorphic functions of the moduli, in contrast to naive expecta-
tions based on supersymmetry. The explanation is important for understanding the

fermionic terms in the effective supergravity Lagrangian with bosonic terms (1.1).

} Some subtleties in the effective supergravity approach will be discussed in ref. [12].
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The functions f; appear in several places in the Lagrangianle but the form in

which they appear is either fz; or Re fo; — the only place Im f,; appears undif-
ferentiated is where it multiplies the total derivative F’ l‘f,,ﬁ’ buv in (1.1). We showed
in section 3 how the effective derivatives {g;f,} and {Ogi} could be well-defined
at the quantum level, even if the angles ©, = —87% Im f, were ill-defined. There-
fore, despite the nonholomorphicity of f;; and the ambiguity in its imaginary part,
loop corrections to the fermionic terms in the effective supergravity Lagrangian
_containing f, are completely unambiguous, and using eqs. (1.7) and (1.8) they can

all be expressed in terms of A, and its derivatives.

As mentioned in the introduction, the moduli-dependence of f, can become
particularly important if the running coupling g,(p?) becomes strong, both because
it has an O(1) effect on the mass scale generated by dimensional transmutation,
and because it appears in the supergravity Lagrangian along with gaugino bilinear
operators that can condense at that mass scale. As a result, a potential may develop
that fixes the moduli to specific values™"'? Thus the A, we have computed in this
paper could help generate through nonperturbative effects a mass for the moduli
(which remain massless in perturbafion theory), and they could also help fix those
parameters of the low-energy theory (Yukawa couplings, etc.) that depend on the

moduli expectation values.

Acknowledgements: We would like to thank W. Lerche, J. Polchinski and especially
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APPENDIX A

In this appendix we simplify Bq(7,7) of eq. (2.2) for toroidal compactifica-
tions of six-dimensional N=1 supersymmetric theories. This calculation essentially

repeats the analysis performed in ref. {18].

Any compactification on T? of a supersymmetric six-dimensional heterotic
string vacuum has an internal SCFT that splits into two noninteracting pieces,
with (¢,¢) = (2,3) and (¢, ¢) = (20,6).[39] The ¢ = 3 piece is represented by two
coordinates X* for T2, plus their right-moving fermionic partners ¥* whose spin
structure is summed over together with that for ¥#. For a given spin structure,

the partition function for this ¢ = 3 piece is therefore

Z\Il(57 7_-) : |n|_42torus(7, 7_') y (Al)
where
Troms(7,7) =Y qPL 2R/ (A.2)&(2.9)

(pr,pr)€ET 2,2

gives the contribution of the X* zero modes.

Unlike the ¢ = 3 SCFT, the ¢ = 6 SCFT is not completely determined; however,
it has an N = 4 superconformal symmetry which contains in particular an SU(2)
Kac-Moody algebra at level 1. The spin structure sum couples only[w] to the
free boson H that provides a Frenkel-Kac construction of that algebra” This
information will allow us to rewrite the sum over even spin structures in eq. (2.2)
in terms of the odd spin structure, i.e. as an index in the Ramond sector. Identities
relating sums over even spin structures to the odd spin structure have been studied

18)

extensively in the literaturef”' so we will be very brief in the following.

% The same right-moving structure holds for any N = 2 supersymmetric four-dimensional
vacuum "”'; however, the zero-modes and left-moving parts of the two X* (if they exist) will
generally couple to the ¢ = 6 system.
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First consider the spin-structure-dependent piece of the partition function. It

is proportional to

Y ()2 Z(s,7) - Zsyy (s, ), (A.3)

even 8

where both factors can be written in terms of the characters yo and y; for the two

SU(2) level 1 representations, with isospin 0 and % respectively:

1, 2 2 B

my,my€Z
1, 2 2
] Z‘%(O,l) — 77—2 Z (__)m1+mzq—§(m1+m2) — 55%—2%, (A4)
mi1,mz€Z
4_ 2 _ -2 A +mer )y _ oo
Z31,00 = 77 > ¢ 2 277 = 2Xox1,
- mi1,m2€Z

and

- lr2 S$2T —
Zsu@y(0s2,m) = (=)™ 771 Y g2 = ()7,
- ez (A.5)

l -r 2 82T -
Zsu@y(Lysz,r) = (=) -7t Y gm0 = (g,
_ neZ

(The four-real-fermion partition functions Z2 can be expressed in terms of the
- SU(2) characters because SO(4) = SU(2) @ SU(2).) Here r = 0,1 accounts for
the two different types of spectral flow orbits™*” that can appear in the N =4

superconformal theory. The vanishing of the partition function is due to
(6 +xD) xr = 08 = xD) - (=) — 2xox1) - x1-r = 0 forr=0,1. (A.6)

To calculate By(7, ) we must replace Z2 (s, 7) in eq. (A.3) with

o d ~ d _
Zy(s,T)- d;pr(S,T) = 1. E;Z\%(S,T)-

The spin-structure-dependent piece is now proportional to the complex conjugate
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of

(Xoxo + x1x1) - xr — (Xoxo — Xax1) - (=) xr — (XoX1+ X1X0) - X1-+ (A.7)
= (x1xo — xox1) - (—)"'x1—r  forr=0,1,

where a dot denotes d/dr. The identity x1x0—Xxox1 = %7&'2'774 gives a factor of 7% in
B, that cancels the 774 from the right-moving oscillator excitations of the bosons
X* and X, X. The remaining factor of (=) x1—, allows us to interpret the ¢ = 6
‘part of the result as a trace in the Ramond sector of the superconformal theory,

with the operator (=) = (=) inserted. That is,
Ba(T7 7_') = Ztorus(T, ?) : Ca(Ta 7_') s (A8)
where

Calr,7) = (@)™ Ter {3(—)" - Q2 78" (A.9)

-1
4}(c,e)=(20,6) )
Massive fermions are not chiral; this is just as true in six space-time dimen-
sions as in four. Since the operator (—)fi» determines the chirality of a space-time
fermion, only massless fermions contribute to the trace in eq. (A.9). Since all mass-
less fermions have ki, = 1/4, their contribution does not depend on §. Therefore,
Cq does not depend on T and is a holomorphic function of 7. To make this argument
rigorous, consider the zero mode Gy of one of the four world-sheet supersymmetry
generators G4 (z) for the ¢ = 6, N = 4 SCFT. For every state |R) in the Ramond
sector of the Hilbert space of that SCFT, either Go |R) = 0, or the states G |R)
and |R) have opposite values of (—)fi=. Hence, only the states annihilated by the
Gy contribute to the trace in eq. (A.9). But G2 = ﬁ(zo’ﬁ) - %, so all states that
contribute to the trace in eq. (A.9) yield contributions that do not depend on 7

and C,(7) is a holomorphic function.”

* If only physical states contributed to C,, it would be a constant rather than a power series
in ¢q. Terms with positive powers of ¢ are contributed by non-physical states with h = 0
and h = positive integer.
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APPENDIX B

This appendix contains the calculation of the integral (2.10). We start by
Poisson resumming the sum on m1 2 in eq. (2.13). We then reinterpret the resulting

sum on four integers n''? and I (the latter replace my 2) as a sum over all integral

2
(1,0)A <T> ) .
1
(B.1)
Now consider two matrices A and A’ related to each other by a unimodular factor

— A=AV, withV = (Z 3) € SL(2,Z). The contributions of these two matrices

to the sum (B.1) are related by the modular transformation ' = ‘;—:f% The

two-by-two matrices; this sum can be written as

. : -1
72 Ziorus(1, T, U) = Z ¢=2mTdet(A) | T excr ( TarUz
- AeMat(2x2,Z) a2

integral we are seeking is the integral of 7 Ztoms — 79 with the modular invariant
measure d?7 /72, so instead of integrating the contribution of the matrix A’ over
the fundamental domain I" we can integrate the contribution of A over VI' — the
image of ' under the PSL(2,Z) modular transform associated with V € SL(2,Z).
Our strategy is therefore to partition the set of all matrices A into orbits of the
group SL(2,Z), pick a representative element Ag in each orbit and integrate its

contribution over the union of VT for all V € SL(2,Z) that yield distinct A = AoV
The group SL(2,Z) has three types of orbits in the space GL(2,Z):
1) The zero orbit, consisting of a single matrix A = 0.

2) Non-degenerate orbits, consisting of matrices with non-zero determinants; for
these orbits, V' # V" implies AgV' # AgV". Consequently, we integrate the con-
tribution of a representative matrix Ag over the union of VT for all V € SL(2,Z);
this union is 2 X {7 € C : 7 > 0} — the double cover of the upper half plane. We

choose the representative non-degenerate matrices Ag to have form

Lo
Ao = (o J),withk>j20,p7é0; (B.2)
P

there 1s a unique matrix of this form in every non-degenerate orbit.
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3) Degenerate orbits, consisting of (non-zero) matrices with zero determinants. All

matrices of this kind can be written in the form

A = (]> x (¢, d). (B.3)
P

This decomposition becomes unique up to an overall sign of j, p, ¢ and d if we
require ¢ and d to be mutually prime. All matrices in the same degenerate orbit
have the same values of j and p (modulo overall sign); on the other hand, (c, d)
runs over all pairs of mutually prime integers. We choose representative matrices to
have (¢,d) = (0,1); with this representation, AgV’' = AV" & V' = (107;') Vs
7/ = 7" + m for some integer m. Consequently, we will integrate the contribution
of a representative degenerate matrix not over the double cover of the upper half
plane, but over the half-band {7 € C : 75 > 0,|r;] < 1}; to account for double-
covering we sum over all (j,p) # (0,0) even though (j,p) and (—j, —p) label the
same orbit of SL(2,Z).

Before we proceed with the orbit by orbit integration of the series (B.1), we
should verify that it is safe to interchange the order of summation and integration.
The convergence of the series is not uniform with 7 € T, but the only matrices
whose contributions to (B.1) do not decrease exponentially in the 79 — oo limit are
those of the form (8 :)) Therefore, the remainder of the series converges uniformly
and can be integrated term by term or in any convenient combination, but the
contributions of the matrices with zeros in the first column have to be summed
together before the integration. Note that with the single exception of A = 0,

these are precisely the matrices we choose to represent the degenerate orbits.

The contribution of the zero orbit to the integral (2.10) can be easily evaluated

to yield:

d?
n :/—,}T2 = I, (B.4)
5 3
I‘ N
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The contributions of the non-degenerate orbits total

+00 +ood
I, = 2 Z Toe~ 2™ T kp /dn —12?- exp (—-%TTJZ—? kT 43 +pU|2) . (B.5)
0<j<k T2
P£0 —00 [t

After evaluating a gaussian integral over 71, the sum on j becomes trivial and
the two terms labelled by (k,p) and (k, —p) become equal up to a 72-independent

factor e~*"12kP_ Therefore,

: 00
—2mikpT— ; |TeUz —pU,)?
) I, = Z 2(6 2mikpT—4nkpT> +62mka> x /de i3 e ta(kra—pUz)° [Uzms
2
0

k,p>0
—_ ) _ Z 9 (e—zwika+ ezm'ka) xl
: o k,p>0 p
= —QZlog(l—q;’}) —2210g(1——q§),
k>0 k>0

- (B.6)
where gy = €2™7T and the integral is evaluated via the variable substitution m =

%%—(y + 1/2 + y?2)?. Together with the contribution of the zero orbit we have

L+1I = —4Relog<q}/24n(1-q:’;)) = —4Relogn(T).  (B.7)
k=1

Now consider the degenerate orbits which together yield

T / .
L = /dn /:;- 1Y exp (~ 2 1+ Upl?) — m-0(reT)| ,  (BS)
-1/2 0 2 3P

where O(r € T') is defined to be one when 7 € I' and zero otherwise; the last
term accounts for the subtraction Ziorus — 1 in the integral (2.10) and is effectively
integrated over the fundamental domain I' rather than the whole half-band. As

we mentioned above, we should compute the infinite sum over (j,p) # (0,0) before
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computing the integral (or at least the integral over 7 € T' that corresponds to
matrices (8 :7) themselves rather than other members of their orbits). However, we
can interchange the order of summation and integration if we first multiply every
term in the integrand of (B.8) by a regulating factor that makes the sum uniformly
convergent with respect to some finite measure. Using the regulator (1 — e~ /),

which we will eventually remove by taking N — oo, we obtain

U ! 1 1 1 —eN/m
L= lm |[2Y (- a—— | - /dzT_E_
Nooo | T 2 l7 + Upl 7+ Upl® + 472 J o
(B.9)
The latter integral can be evaluated by substituting 7 = N/z, multiplying the

integrand by z¢ and taking the limit ¢ — +0; the result is log N + vg + 1 +
log(2/3+/3), where v is the Euler-Mascheroni constant.

To evaluate the sum over (7,p) # (0,0), we sum on j first and make use of the

formula

= 1 ¥ i1

= — (') — cot —1 —.
j;oo GIBE+ 0 50 [cot (B + iC) — cotn(B —:C)] o T
After some regrouping of terms, we arrive at
Us ! 1 1
— . — = (B.10)
W% <|J+UJD!2 |]+Up|2+1,‘{—¥§>
2 qf 2 2 2
=3 +y ~—5 4> s 4y | =-
3 P po 4 )
p>0p1“qU Z:OPI—QU pz>% p \/p2+(N/7rT2U2)

where gy = €2™U and the first term on the right hand side comes from summing

over j # 0 for p = 0; notice that all three series on the right hand side are
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1]

convergent. We find it convenient to resum the first two series using

Yot = D T = Yl q),

p>0

As to the last series, in the large N limit it becomes

2 2
g (5 N (N/WTZUQ))

oS (L0 Pt L T (2 2
~2Z(p log — )—i—l/dp(p \/pz—{-(N/ﬂ'TgUg)) + O(1/V'N)

p>0

— 2 1 .
N—oo TE + °8 471’T2U2

Substituting the last two formulee into (B.10), then (B.9), we obtain

Iy = ~4Relogn(U) — log(Tol) + (75— 1 log ). (B.11)

Combining this result with eq. (B.7), we finally achieve the goal of this ap-
pendix: The explicit expression for the threshold correction as a function of toroidal

moduli is

8rel—7E

3V3

AT, T,U,U) = —b,-log o (T U2 [n(U)*] . (B.12)&(2.14)
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