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Abstract: We investigate primordial gravitational waves produced in the early universe

within the Running Vacuum Model, which ensures a smooth transition from a primeval

inflationary epoch to a radiation-dominant era, ultimately following the standard Hot

Big Bang trajectory. In contrast to traditional methods, we approach the gravitational

wave equation by reformulating it as an inhomogeneous equation and addressing it as a

back-reaction problem. The effective potential, known as the Grishchuk potential, which

drives cosmic expansion, is crucial in damping the amplitude of gravitational waves. Our

findings indicate that this potential is contingent upon the maximum value of the reduced

Hubble parameter, Hmax, which is sensitive to the time at which there is a transition from

vacuum energy dominance to radiation dominance. By varying Hmax, we explore its

influence on the scale factor and effective potential, revealing its connection to the spectrum

of gravitational wave amplitudes that can be constrained by observational data.

Keywords: early universe; gravitational waves; running vacuum models

1. Introduction

The stochastic background of the primordial gravitational wave (GW) was predicted

in inflationary cosmology [1–4]. These stochastic GWs are a source of CMB anisotropies

and polarizations [5]. In particular, the “B-mode” pattern in the polarization of the Cosmic

Microwave Background (CMB) would be due to these stochastic GWs [6]. Detecting these

characteristic modes will show the existence of primordial GWs whose spectra can provide

more information about the early universe before the last scattering surface. In general, the

spectrum of GWs depends on several processes in cosmic history. They are sensitive to

inflationary models [1,4], especially during the late stage of the inflationary epoch or the

early stage of the radiation era. After the transition phase, these GWs were red-shifted in

subsequent eras, while their amplitude kept decaying, modifying the amplitude of the GW

spectrum. The free streaming of neutrinos that took place during the radiation-dominant

era, as analyzed by Weinberg [7] along with other relevant research [8–10], is a well-known

process for altering the spectrum of primordial GWs. In addition, the late-time acceleration

of the universe can also adjust the spectrum [11].

In the early universe, it is essential for primordial inflation to conclude with a transition

to the radiation-dominant phase in the standard Big Bang model [12]. This transition opens

up a variety of possibilities, as numerous post-inflation models exist, including a large-

scale reheating period [13–15]. A compelling issue then arises: how can we effectively

differentiate between these models by theoretical arguments and observational data?

A promising approach is to analyze the amplitude spectrum of primordial GWs. Each

unique scenario of early cosmic history imprints distinct signatures on this spectrum,

providing crucial insights. Regardless of the specific route a model may assume, all of them
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illustrate the transformation of spacetime from a de Sitter phase to a radiation-dominant

state. By examining the gravitational wave equation, which incorporates a scale factor

and its derivative, one can unfold the post-inflationary expansion toward the radiation-

dominant epoch followed by the typical hot Big Bang trajectory.

We are particularly concerned with how the transition from the exponential expansion

in de Sitter space to the power-law expansion at the radiation-dominant stage may have

significant implications. Whether this transition occurs smoothly or abruptly can lead to

distinctly different contributions to the higher-order derivatives of scale factors, ultimately

shaping the nuances of the gravitational wave spectrum. Among viable scenarios, the

Running Vacuum Model (RVM) [16–22], which introduces an evolving vacuum energy

density and is expressed as a function of the Hubble parameter H, provides a seamless

bridge from inflation to the radiation-dominant epoch. Such a dynamical vacuum, on the

other hand, might explain possible fluctuations in the cosmological constant Λ, which is

an important issue as explored by the recent cosmological data [23]. The renormalization

group equation in Quantum Field Theory underpins the extensively developed RVM,

indicating that vacuum energy will change as a power series of H [22]. The evolution of

spacetime within the RVM framework suggests that particle creation plays a pivotal role in

altering the equation of state. We can interpret this phenomenon as a back-reaction process,

where the accumulation of perturbations influences the fabric of de Sitter space, gradually

transforming it into a radiation-dominant universe.

In this paper, we aim to investigate the gravitational waves generated during the infla-

tionary period and how they evolve through a smooth transition phase. Our objective is to

examine the modifications to the gravitational wave spectrum. We will consider the effects

of back-reaction, reformulating the gravitational wave equation into an inhomogeneous

equation, which we will solve using the retarded Green’s function. In addition, we plan

to identify key parameters that can be adjusted to model the transition time scale and to

observe the resulting changes in the spectrum. Specifically, we are interested in how the

spectrum is modified when de Sitter spacetime transitions to radiation-dominant spacetime,

whether this change occurs slowly or quickly.

2. Methodology

We revisit the generation of primordial gravitational waves within the framework of

the running vacuum model, as studied in [19], but with a novel approach. The RVM posits

that vacuum energy is dynamical and can be expressed in relation to the Hubble parameter

that governs cosmic expansion. At an early epoch, this dynamical vacuum energy coexists

with radiation, facilitating a smooth transition from the primordial inflationary phase to the

radiation-dominant era of the universe, which is rooted in the standard Hot Big Bang theory.

We interpret this evolution as a consequence of the increasing radiation component, which

transforms the initial de Sitter spacetime into a radiation-dominated state. To explore this

further, we reformulate the gravitational wave equation of motion as an inhomogeneous

equation. The left-hand side of this equation encapsulates the inflationary expansion of the

cosmic background, while the terms on the right-hand side are responsible for accounting

for the effects of backreaction. We then go on to calculate the gravitational wave spectrum

and analyze its dynamical behavior within the continuously expanding background.

2.1. The Background Model

The primeval evolution of the Universe can be described using a spatially flat

Friedmann–Lemaître–Robertson–Walker (FLRW) metric, characterized by a scale factor

a(t), as

ds2 = dt2 − a2(t)dxidxj, (1)
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where the cosmic background expands in conjunction with the Hubble parameter H = ȧ/a.

Einstein’s equations in this FLRW metric render

8πGρ + Λ(t) = 3H2

8πGp + Λ(t) = −2Ḣ − 3H2

In this framework, the dynamics of the decaying vacuum are determined by Λ(H) [20,21].

In general, the vacuum energy density depends upon both H and its time derivative. To

simplify matters, we adopt the functional form for Λ(H) as proposed in [19] to define

the vacuum energy density, which embodies a more straightforward version of RVM,

incorporating only a vacuum energy density that relies on H:

8πGρvac(H) = Λ(H) = Λb + 3
H3

HI
, (2)

where Λb represents the bare cosmological constant and HI is the initial Hubble parameter

that defines the early de Sitter phase. If we express the equation of state of the Universe as

p = wρ, the Hubble parameter must satisfy the equation of motion,

2
H′

a
+ 3(1 + w)H2

[

1 − H

HI

]

− (1 + w)Λb = 0, (3)

where primes indicate derivatives with respect to the conformal time η such that dt = a(η)dη.

It is important to mention that under the circumstances, the Hubble parameter can be

identified as H = ȧ/a = a′/a2. Assuming the vacuum decays predominantly into ultra-

relativistic particles with w = 1/3, radiation naturally emerges and coexists with the

dynamical vacuum at times when the bare term can be neglected, i.e., Λb ≪ H3/HI . This

leads us to a non-linear equation for the scale factor:

a′′ − 2

HI

(

a′

a

)3

= 0. (4)

Integrating the equation above yields

a(η) =
1

2C1

[

η + C2 +

√

(η + C2)
2 +

4C1

HI

]

, (5)

where C1 and C2 are determined by the continuity of a(η) and a′(η). Note that the scale

factor would reduce to the form characteristic of de Sitter spacetime in the distant past

when η → −∞, and a(η) ∝ η during the radiation-dominant phase. Consequently, the

comparison of these two trends will enable us to pinpoint the moment when radiation

energy becomes significant, thereby allowing us to estimate the duration of the post-

inflationary reheating stages.

The reduced Hubble parameter during the post-inflationary transition, denoted as

HT, is an important measure for characterizing cosmic expansion that takes place before

the onset of the radiation-dominant epoch. It can be easily determined using Equation (5)

such that

HT(η) =
a′

a
=

1
√

(η + C2)
2 + 4C1

HI

. (6)
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This function reaches its maximum value at ηmax = −C2, leading to

HT(−C2) = HT(ηmax) ≡ Hmax =

√

HI

4C1
. (7)

Under the circumstances, the Hubble function can then be expressed in terms of ηmax and

Hmax as follows:

HT(η) =
1

√

(η − ηmax)
2 + 1

H2
max

. (8)

2.2. Cosmological Tensor Perturbations

In the conformally flat FLRW geometry, gravitational waves can be induced by a small

tensor perturbation hij defined in

ds2 = a2(η)
[

dη2 −
(

δij + hij

)

dxidxj
]

, (9)

where
∣

∣hij

∣

∣ ≪ 1, and is transverse-traceless satisfying the gauge conditions: h0µ = 0,

hi
i = 0, and ∇jhij = 0 [10,19]. Accordingly, the wave equation for GWs in this framework

is expressed as ∂µ

(√−g∂µhij(η, x)
)

= 0. The general solution to this equation can be

expanded in Fourier space as usual and is given by

hij(η, x) =
∫

d3n

(2π)3 ∑
γ=+,×

ϵ
γ
ij(n)

[

h
γ
n(η)e

in·x + h.c.
]

, (10)

where the mode function h
γ
n(η) adheres to the symmetry condition h

γ∗
−k(η) = h

γ
k (η). Here,

n denotes the comoving wave vector and ϵ
γ
ij(n) represents the transverse-traceless polar-

ization tensor. The relationship between the comoving wave number n associated with the

wave length λ and the scale factor a(η) is expressed as

n = |n| = 2πa(η)

λ
= ka(η). (11)

By substituting the general solution (10) into the GW equation – omitting the polarization

index γ for simplicity – one obtains the following mode equation:

h′′n(η) + 2H(η)h′n(η) + n2hn(η) = 0. (12)

By introducing the substitution µn(η) = a(η)hn(η), the mode equation can be recast into a

more manageable form,

µ′′
n +

(

n2 − a′′

a

)

µn = 0. (13)

It is noteworthy that the term a′′/a can be interpreted as an effective potential, which

exhibits a bell-shaped barrier for any smooth-transitioned scale factor a(η). This term

becomes negligible when n2 is sufficiently large relative to the height of the barrier, indi-

cating that the mode is situated well outside the potential region. Under such conditions,

µn behaves as a simple harmonic oscillator with a stationary amplitude, resulting in the

decay of hn(η) as the universe expands. Conversely, when the condition n2 is smaller

than the height of the potential barrier, the amplitudes of the low-frequency modes remain

approximately constant during periods of effective potential domination [2,24]. It is only

after these modes exit the potential region that their amplitudes begin to decrease due
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to the expansion of space. If we analyze the dynamics more closely during the transient

period between the inflationary phase and the radiation-dominant era, the behavior of the

scale factor becomes significantly more intricate. Consequently, the resulting solutions to

the GW equation yield corrections to the gravitational wave power spectrum [10,19].

2.3. Gravitational Waves Solutions in Transition

The significance of the gravitational potential barrier prompts us to rewrite (13) as

µ′′
n +

(

n2 − VT(η)
)

µn = 0, (14)

where the effective potential during the transition between the inflation phase and the

radiation-dominant era is defined as

VT(η) =
a′′

a
= H2

T +H′
T = H2

T[1 −HT(η − ηmax)]. (15)

The expression for VT(η) is derived from H′
T = −H3

T(η − ηmax) as seen in Equation (8).

Moreover, by setting τ = η − ηmax the reduced Hubble parameter during the transition

period (8) can be further simplified as

HT(η) =
1

√

τ2 + 1
H2

max

≈ 1

τ

(

1 − 1

2τ2H2
max

)

, (16)

where the approximation utilizes the binomial expansion, valid under the assumption that
∣

∣τ2H2
max

∣

∣ ≫ 1 in the context of the early universe. Subsequently, we can approximate the

effective potential as

VT(η) ≈
1

τ2

(

1 − 1

2τ2H2
max

)2 1

2τ2H2
max

, (17)

This modification allows us to reformulate Equation (14) into the following expression:

µ′′
n +

[

n2 − 1

τ2

(

1 − 1

2τ2H2
max

)2 1

2τ2H2
max

]

µn = 0, (18)

which encapsulates the dynamics of the system under the stated approximations and

provides a foundation for further analysis. By changing the variable to µn = τ1/2S,

Equation (18) transforms into

S′′ + τ−1S′ +

{

n2 − 1

τ2

[

(

1 − 1

2τ2H2
max

)2 1

2τ2H2
max

+
1

4

]}

S = 0. (19)

In practice, one can recast this equation as an inhomogeneous equation such that

τ2S′′ + τS′ +
(

n2τ2 − 9

4

)

S =

[

(

1 − 1

2τ2H2
max

)2 1

2τ2H2
max

− 2

]

S. (20)

When the terms on the right-hand side of the above equation are omitted, the corresponding

homogeneous equation is indeed the GW equation in de Sitter spacetime. Clearly, the

source terms on the right-hand side of Equation (20) are insignificant in the far past,

τ → −∞, rendering the equation homogeneous and describing GW evolution during the
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inflationary stage. Moreover, by setting x = nτ and relabeling y(x) = S(nτ), the above

equation becomes

x2y′′ + xy′ +
(

x2 − 9

4

)

y =

[

(

1 − n2

2x2H2
max

)2
n2

2x2H2
max

− 2

]

y. (21)

Here, the Bessel functions Y3/2(x) and J3/2(x) serve as two independent solutions to the

homogeneous equation. Thus, the general solution of Equation (21) can be constructed as

y(x) = b1Y3/2(x) + b2 J3/2(x) +
∫ x

−∞
G(x, u)

[

(

1 − n2

2u2H2
max

)2
n2

2u2H2
max

− 2

]

y(u)du. (22)

where b1 and b2 are constants to be determined by initial conditions, while G(x, u) is a

retarded Green’s function,

G(x, u) =
1

u2W(y1, y2)(u)
[J3/2(x)Y3/2(u)− Y3/2(x)J3/2(u)], (23)

with a Wronskian W(y1, y2)(u) = − 2
πu . The integral term involving G(x, u) in

Equation (22) accounts for the contribution from the backreaction source, and the inte-

grand is proportional to u−1 such that the integrand will go to zero as u → −∞, which is

expected to be negligible during the very early stages of cosmic evolution. Consequently,

the general solution simplifies to the homogeneous solutions in the remote past, a period

characterized by primordial inflation.

2.4. Parametrizing the Expansion History

In order to accurately acquire the spectrum of primordial gravitational waves with the

appropriate amplitudes, it is imperative to meticulously parametrize the expansion history

of the Universe. Given the continuous evolution of spacetime, it is essential to apply specific

junction conditions to the scale factor a and its derivative a′ to facilitate a smooth transition

between distinct cosmic eras. Notably, the value of C1 in Equation (5), as determined

by these junction conditions, will significantly influence the details of the evolutionary

process preceding the onset of the radiation-dominant phase. This raises pertinent inquiries

regarding the temporal dynamics of how early and how long spacetime may deviate from

the initial de Sitter state before ultimately settling into the radiation-dominant phase. For

instance, substituting C1 = HI/4H2
max while setting C2 = 0 in Equation (5), one derives a

valid scale factor as

aPR(η) =
2H2

max

HI

[

η +

√

η2 +
1

H2
max

]

for − ∞ ≤ η ≤ ηr, (24)

which describes the pre-radiation (PR) stage that encompasses all phases of cosmic evolu-

tion preceding the equality time ηr when the vacuum energy density equals the radiation

energy density.

We parameterize the subsequent expansionary process in accordance with [2,10,19,24].

In the radiation stage, the scale factor is given by

a(η) = ae(η − ηe) for ηr ≤ η ≤ η2, (25)
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where η2 denotes the equality time between the radiation and matter eras, and ηe is a

constant determined by the junction condition. In the matter stage, the scale factor is

defined as

a(η) = am(η − ηm)
2 for η2 ≤ η ≤ ηH , (26)

where am and ηm represent constants to be determined, and ηH denotes the current confor-

mal time. We subsequently define the ratios

ζ2 ≡ a(ηH)

a(η2)
, ζr ≡

a(η2)

a(ηr)
(27)

and utilize the approximations ζ2 ≈ 104 and ζr ≈ 1024 as noted in [2,10,11,24].

To achieve overall normalization, we define ηH − ηm = 1 for the current time ηH . We

can express this relationship as

H(ηH) =
ȧ

a
=

(

a′

a2

)

ηH

=
2

am
=

1

ℓH
, (28)

where ℓH denotes the Hubble radius for the present universe. From the above equation, we

conclude that am = 2ℓH .

The continuity of the scale factor a(η) and its derivative a′(η) at the points η2 and ηr

necessitates the following conditions:

η2 − ηm = ζ−1/2
2 (29)

η2 − ηe =
1

2
ζ−1/2

2 (30)

ηr − ηe =
1

2
ζ−1/2

2 ζ−1
r (31)

ηr =

√

(

1

2
ζ−1/2

2 ζ−1
r

)2

− 1

H2
max

. (32)

These conditions yield the following final relations:

ae = 4ℓHζ−1/2
2 (33)

1

H2
max

=
ηr +

1
2 ζ−1/2

2 ζ−1
r

HIℓHζ−1
2 ζ−1

r

. (34)

By inputting the values of ζ2 and ζr, one can ascertain the values of H2
max, which is essential

for analyzing the deviations between the inflationary phase and the radiation stage. This

analysis is critical for advancing our understanding of cosmological dynamics.

2.5. Gravitational Wave Spectrum

The spectrum is delineated through the variance of the field amplitude, represented as

⟨0|hij(η, x)hij(η, x)|0⟩ ≡
∫ ∞

0
h2(n, η)

dn

n
, (35)

where h(n, η) denotes a dimensionless quantity, commonly referred to as the root-mean-

square (rms) amplitude. Utilizing Equation (10), we are enabled to derive the spectrum

h(n, η) =
2

π
n3/2|hn(η)|. (36)
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This formulation elucidates the relationship between the spectrum and the corresponding

amplitudes, facilitating a comprehensive understanding of the underlying physics.

In the pre-radiation stage, characterized by the interval where −∞ ≤ η ≤ ηr, the

mode function hn(η) exhibits a direct relationship with the function y(x) as articulated in

Equation (22) as

hn(η) =
1

a(η)
µn(η) =

1

a(η)
η1/2y(x). (37)

With a normalization constant A0 (to be determined by the initial spectral amplitude), and

Equations (22) and (37), the expression for hn during the PR stage is derived as

hn(η) =
A0

a(η)
η

1
2

{

b1Y3
2
(x) + b2 J 3

2
(x) +

∫ x

−∞
G(x, u)

[

(

1 − n2

2u2H2
max

)2
n2

2u2H2
max

− 2

]

y(u)du

}

. (38)

Here, the coefficients should be taken as

b1 = i

√

π

2
, b2 = −

√

π

2
, (39)

such that limn→∞ hn(η) ∝ e−inη , and the adiabatic vacuum [10,19,25] in de Sitter spacetime

can be established.

One can obtain the GW solutions from the mode Equation (12) in various epochs

with the corresponding scale factor [10,11,25]. In the radiation-dominated stage, the mode

function is expressed as

hn(η) = y−1/2[c1 J1/2(ny) + c2Y1/2(ny)], (40)

where y = η − ηe. The constants c1 and c2 are determined by the continuity conditions

of both hn(η) and its first derivative h′n(η) at the point ηr. On the other hand, during the

matter-dominated stage, the mode function can be represented as

hn(η) = z−3/2[d1 J3/2(nz) + d2Y3/2(nz)], (41)

where z = η − ηm. The coefficients d1 and d2 are similarly established through continuity

at η2. With these coefficients determined, it is straightforward to obtain the mode function

at the present time hn(ηH), and the corresponding spectrum from Equation (36) becomes

h(n, ηH) =
2

π
n3/2|hn(ηH)|. (42)

As it is well established, the initial spectrum of relic gravitational waves at the horizon

crossing time η∗ exhibits a nearly scale-invariant characteristic, articulated as

hi(n, η∗) = A

(

n

nH

)2+β

. (43)

In this context, β = −2 pertains to de Sitter expansion [2,24]. The constant A can be

determined through the CMB anisotropy ∆T/T ≃ 0.37 × 10−5 at the quadrupole moment

l ∼ 2, correlating with the scale of the Hubble radius ℓH . The ratio of tensor to scalar
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perturbations is described by r = 0.22 [11]. Consequently, the value of the spectral

amplitude for the present time h(nH , ηH) becomes

h(nH , ηH) =

(

∆T

T

)

·
√

r = 0.37 × 10−5 × 0.221/2, (44)

which specifies the constant A by means of the initial spectral amplitude Equation (43).

Consequently, A0, proportional to A, can be determined using Equation (36) together with

Equation (38) [10,11].

It is more convenient to use the frequency ν instead of the wave number n observa-

tionally. The GW spectral energy density parameter is defined as [10,24]

Ωg(n, ηH) =
π2

3
h2(n, ηH)

(

n

nH

)2

,

where h(n, ηH) denotes the spectral amplitude in Equation (42). Since the frequency is

given as ν = n
2πa(ηH)

, the above equation can be recast as

Ωg(ν, ηH) =
π2

3
h2(ν, ηH)

(

ν

νH

)2

,

where νH represents the frequency scale corresponding to the current size of the universe.

3. Result and Discussion

Our investigation into the power spectrum of primordial gravitational waves aligns

with established methodologies found in the literature. We concentrate on the dynamics

occurring during the transition from the inflationary epoch to the radiation-dominated

era, employing the Running Vacuum Model with a specific formulation of vacuum energy

characterized in terms of the Hubble parameter (See (2)). However, we reformulated the

GW mode equation within the context of RVM into an inhomogeneous Equation (21),

thereby addressing it as a back-reaction problem. This analytical perspective enables us to

discern the corresponding behavior of the GW power spectrum in relation to spacetime

evolution, which is evidenced by the deviations observed in the pre-radiation scale factor

from the inflationary trajectory. The scale factor (24) during the pre-radiation stage, in the

limit of the far past (η → −∞), where |η| = −η and η2 ≫ H−2
max, is

aPR(η) ≈
2H2

max

HI

[

η − η

(

1 +
1

2H2
maxη2

)]

= − 1

HIη
, (45)

which precisely represents the scale factor of inflation in conformal time.

From Equation (45), it becomes evident that the parameter Hmax fundamentally alters

the shape of the scale factor, thereby providing critical insights into the temporal transition

when de Sitter spacetime underwent significant alteration and exited the inflationary

phase. The determination of Hmax is rooted in the cosmic history spanning from the

radiation-dominated era to the present epoch (See (34)). Furthermore, this parameter plays

a pivotal role in modifying the transient period preceding the radiation stage (See (45)).

Consequently, variations in Hmax correspond to distinct cosmic histories. By slightly

manipulating this parameter, one may elucidate the intricate relationship between cosmic

history and the gravitational wave spectrum, particularly during the transient period,

which bears a resemblance to the reheating phase in generic cosmological models.

Figure 1 elucidates the point at which spacetime begins to diverge from de Sitter

spacetime, as delineated by Equation (45), utilizing two distinct values of H−2
max: 5 × 10−52

and 4 × 10−52. The curves depicted herein correspond to instances wherein aPR(η) starts
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to deviate from aI(η) at approximately η = −2 × 10−24 and η = −1.8 × 10−24, which

correlate to e-folding numbers N = 26.02 and N = 25.91, respectively. Here, we use

η = −H−1 exp(−Ht) = −H−1eN by the definition of e-folding number [26] and select

H = 1035 s−1. It is imperative to note that the temporal values presented are estimations.

This investigation aims to discern the implications of early and significant deviations from

inflation on the spectrum of gravitational waves. Furthermore, the figure illustrates that

aPR(η) transitions smoothly to the radiation stage, in contrast to the abrupt transition

characteristic of inflation. Analysis of Figures 1 and 2 reveals that earlier deviations in the

inflationary scale factor yield a diminished maximum value of effective potential, thereby

culminating in reduced high-frequency gravitational wave production, as depicted in

Figure 3. This phenomenon can be interpreted as an earlier onset of particle creation, which

induces a more gradual alteration of spacetime, resulting in a reduced rate of change of the

scale factor. Consequently, this leads to a lesser maximum value of effective potential, which

is integral in distinguishing extended wavelength modes as presented in Equation (13).

Our findings indicate that the power spectrum increasingly resembles a sudden transi-

tion from an inflationary phase to a radiation-dominated era, particularly as the transient

period within the Running Vacuum Model (RVM) is shortened. This observation, illustrated

in Figures 1–4 suggests that while the RVM serves as a framework for understanding this

transient period, analogous alterations in spacetime dynamics may emerge from various

physical processes, such as reheating. Should this transient interval indeed correlate with

reheating, our analysis reveals that a reduced duration of reheating is associated with

enhanced amplitude damping at lower frequencies (106 to 107 Hz), as evidenced by the

slope variations depicted in Figure 3. In this regard, one can determine the reheating

temperature Treh using the formula Treh =
( √

90
π
√

g∗ HrehMPl

)1/2
[27,28]. When the vacuum

energy density equals the radiation energy density, the Hubble parameter in our model is

Hreh ≈ 4.94 × 1010 GeV. By selecting g∗ = 228 for GUT/SUSY plasma, we find a reheating

temperature Treh ≈ 3.47 × 1014 GeV.

de Sitter

1

Hmax
2 =4×10-52

1

Hmax
2 =5×10-52

6420-2-4
0

1

2

3

4

5

6

/10-26

a
(
)/
1
0
-
9

Figure 1. The scale factor for de Sitter space is examined alongside the scale factor in the pre-radiation

stage based on RVM with two different values of Hmax. This figure illustrates the pre-radiation scale

factor approach, specifically confined to both the inflationary and radiation-dominant eras. Notably,

variations in the value of H2
max result in distinct deviations. The representation indicates that the

blue line exhibits an earlier deviation compared to the red line, emphasizing the impact of parameter

selection on model behavior.
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de Sitter+rad

1

Hmax
2 =4×10-52

1

Hmax
2 =5×10-52

6420-2-4-6-8-10

0

1

2

3

4

5

6

/10-26

V
(
)/
1
0
5
1

Figure 2. The figure demonstrates how the maximum value of the effective gravitational potential

a′′/a depends on H2
max

de Sitter+rad+mat

1

Hmax2
=4×10-52

1

Hmax2
=5×10-52

6 6.5 7
-34

-33
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-20 -15 -10 -5 0 5

-35

-30

-25

-20

-15

-10

-5

Log v[Hz]

L
o
g
h
(v
,
H
)

Figure 3. The figure illustrates the current root-mean-square amplitude of gravitational waves as a

function of physical frequency. The green lines represent the GW undergoing a sudden transition from

the inflationary phase to a radiation-dominated era, which considers only the homogeneous solution

in Equation (22). In contrast, both sets of red lines and blue lines describe the GW experiencing a

smooth transition from inflation to a radiation-dominant epoch, which includes the back-reaction

effect characterized in Equation (22).

Moreover, both our analysis and Ref. [19] show that the GW spectrum has notable

variations in the frequency range between 105 and 108 Hz, particularly from 106 to 107 Hz.

In contrast, currently ongoing observational projects find that the ground-based Laser

Interferometer Gravitational-wave Observatory (LIGO) is sensitive to GWs between 10 and

104 Hz [29], while the space-based Laser Interferometer Space Antenna (LISA) focuses

on lower frequencies ranging from 10−4 to 1 Hz [30]. Investigating the effects of the

early universe on the GW spectrum is quite challenging, yet it remains an intriguing area

for exploration.
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de Sitter+rad+mat

1

Hmax2
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1
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Figure 4. The spectral energy density parameter for GWs in the high-frequency regime dampens in a

consistent manner similar to amplitude damping.

4. Conclusions

The spectrum of gravitational waves manifests variations commensurate with the

alterations in spacetime across diverse epochs of cosmic history. These spacetime alterations

serve as reflections of the universe’s evolving constituents or fluctuations in the equation

of state. In this context, it is essential to note that Robertson–Walker spacetimes exhibit

conformal flatness, thereby designating the scale factor as the singular parameter that

encapsulates spacetime evolution.

Instead of developing discrete reheating models and subsequently deriving their

associated gravitational wave spectra, this analysis employs the Running Vacuum Model as

a continuous transient model. We investigate the gravitational wave spectrum by varying

Hmax, which depends on the initial Hubble parameter HI and the equality time ηr, see

Equation (34). We also study the timescale of deviation in the scale factor corresponding

to each Hmax. These variables yield invaluable insights into the transient timescale, the

duration of the radiation-dominated era, and the reheating temperature.

To elucidate the physics underlying the graceful exit through gravitational waves,

we reformulate the gravitational wave equation within the RVM framework into an in-

homogeneous equation. The homogeneous solution aligns with that of de Sitter space,

whereas the particular solution is expressed as the integral of a kernel that incorporates

the scale factor and the retarded Green function. This particular solution represents the

cumulative back-reaction to gravitational waves in de Sitter space, contingent upon the

processes governing the transition from inflation to the radiation-dominated era.

While the RVM is utilized to characterize the transient period, analogous spacetime

alterations may emerge from alternative physical processes, including reheating. Our

investigation emphasizes the correlation between spacetime evolution during this transient

phase and its distinctive signature within the gravitational wave spectrum. Notably, our

findings indicate that a protracted transient process results in greater amplitude damping

at lower frequencies, contrasting with the scenario of an abrupt transition from inflation to

the radiation-dominated era.
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