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Abstract: We investigate primordial gravitational waves produced in the early universe
within the Running Vacuum Model, which ensures a smooth transition from a primeval
inflationary epoch to a radiation-dominant era, ultimately following the standard Hot
Big Bang trajectory. In contrast to traditional methods, we approach the gravitational
wave equation by reformulating it as an inhomogeneous equation and addressing it as a
back-reaction problem. The effective potential, known as the Grishchuk potential, which
drives cosmic expansion, is crucial in damping the amplitude of gravitational waves. Our
findings indicate that this potential is contingent upon the maximum value of the reduced
Hubble parameter, Hmax, which is sensitive to the time at which there is a transition from
vacuum energy dominance to radiation dominance. By varying Hmax, we explore its
influence on the scale factor and effective potential, revealing its connection to the spectrum
of gravitational wave amplitudes that can be constrained by observational data.

Keywords: early universe; gravitational waves; running vacuum models

1. Introduction

The stochastic background of the primordial gravitational wave (GW) was predicted
in inflationary cosmology [1-4]. These stochastic GWs are a source of CMB anisotropies
and polarizations [5]. In particular, the “B-mode” pattern in the polarization of the Cosmic
Microwave Background (CMB) would be due to these stochastic GWs [6]. Detecting these
characteristic modes will show the existence of primordial GWs whose spectra can provide
more information about the early universe before the last scattering surface. In general, the
spectrum of GWs depends on several processes in cosmic history. They are sensitive to
inflationary models [1,4], especially during the late stage of the inflationary epoch or the
early stage of the radiation era. After the transition phase, these GWs were red-shifted in
subsequent eras, while their amplitude kept decaying, modifying the amplitude of the GW
spectrum. The free streaming of neutrinos that took place during the radiation-dominant
era, as analyzed by Weinberg [7] along with other relevant research [8-10], is a well-known
process for altering the spectrum of primordial GWs. In addition, the late-time acceleration
of the universe can also adjust the spectrum [11].

In the early universe, it is essential for primordial inflation to conclude with a transition
to the radiation-dominant phase in the standard Big Bang model [12]. This transition opens
up a variety of possibilities, as numerous post-inflation models exist, including a large-
scale reheating period [13-15]. A compelling issue then arises: how can we effectively
differentiate between these models by theoretical arguments and observational data?

A promising approach is to analyze the amplitude spectrum of primordial GWs. Each
unique scenario of early cosmic history imprints distinct signatures on this spectrum,
providing crucial insights. Regardless of the specific route a model may assume, all of them
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illustrate the transformation of spacetime from a de Sitter phase to a radiation-dominant
state. By examining the gravitational wave equation, which incorporates a scale factor
and its derivative, one can unfold the post-inflationary expansion toward the radiation-
dominant epoch followed by the typical hot Big Bang trajectory.

We are particularly concerned with how the transition from the exponential expansion
in de Sitter space to the power-law expansion at the radiation-dominant stage may have
significant implications. Whether this transition occurs smoothly or abruptly can lead to
distinctly different contributions to the higher-order derivatives of scale factors, ultimately
shaping the nuances of the gravitational wave spectrum. Among viable scenarios, the
Running Vacuum Model (RVM) [16-22], which introduces an evolving vacuum energy
density and is expressed as a function of the Hubble parameter H, provides a seamless
bridge from inflation to the radiation-dominant epoch. Such a dynamical vacuum, on the
other hand, might explain possible fluctuations in the cosmological constant A, which is
an important issue as explored by the recent cosmological data [23]. The renormalization
group equation in Quantum Field Theory underpins the extensively developed RVM,
indicating that vacuum energy will change as a power series of H [22]. The evolution of
spacetime within the RVM framework suggests that particle creation plays a pivotal role in
altering the equation of state. We can interpret this phenomenon as a back-reaction process,
where the accumulation of perturbations influences the fabric of de Sitter space, gradually
transforming it into a radiation-dominant universe.

In this paper, we aim to investigate the gravitational waves generated during the infla-
tionary period and how they evolve through a smooth transition phase. Our objective is to
examine the modifications to the gravitational wave spectrum. We will consider the effects
of back-reaction, reformulating the gravitational wave equation into an inhomogeneous
equation, which we will solve using the retarded Green’s function. In addition, we plan
to identify key parameters that can be adjusted to model the transition time scale and to
observe the resulting changes in the spectrum. Specifically, we are interested in how the
spectrum is modified when de Sitter spacetime transitions to radiation-dominant spacetime,
whether this change occurs slowly or quickly.

2. Methodology

We revisit the generation of primordial gravitational waves within the framework of
the running vacuum model, as studied in [19], but with a novel approach. The RVM posits
that vacuum energy is dynamical and can be expressed in relation to the Hubble parameter
that governs cosmic expansion. At an early epoch, this dynamical vacuum energy coexists
with radiation, facilitating a smooth transition from the primordial inflationary phase to the
radiation-dominant era of the universe, which is rooted in the standard Hot Big Bang theory.
We interpret this evolution as a consequence of the increasing radiation component, which
transforms the initial de Sitter spacetime into a radiation-dominated state. To explore this
further, we reformulate the gravitational wave equation of motion as an inhomogeneous
equation. The left-hand side of this equation encapsulates the inflationary expansion of the
cosmic background, while the terms on the right-hand side are responsible for accounting
for the effects of backreaction. We then go on to calculate the gravitational wave spectrum
and analyze its dynamical behavior within the continuously expanding background.

2.1. The Background Model

The primeval evolution of the Universe can be described using a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, characterized by a scale factor
a(t), as

ds* = di?> — a®(t)dx'dxd, (1)
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where the cosmic background expands in conjunction with the Hubble parameter H = a/a.
Einstein’s equations in this FLRW metric render

87Gp + A(t) = 3H>
8nGp+ A(t) = —2H—3H?

In this framework, the dynamics of the decaying vacuum are determined by A(H) [20,21].
In general, the vacuum energy density depends upon both H and its time derivative. To
simplify matters, we adopt the functional form for A(H) as proposed in [19] to define
the vacuum energy density, which embodies a more straightforward version of RVM,
incorporating only a vacuum energy density that relies on H:
H3
8mGpvac(H) = A(H) = Ay + 3E, (2)
where Ay, represents the bare cosmological constant and Hj is the initial Hubble parameter
that defines the early de Sitter phase. If we express the equation of state of the Universe as
p = wp, the Hubble parameter must satisfy the equation of motion,

2E+3(1+w)H2 {1— H] — (14+w)Ay =0, 3)
a H;

where primes indicate derivatives with respect to the conformal time # such that dt = a(y)dn.
It is important to mention that under the circumstances, the Hubble parameter can be
identified as H = a/a = a’/a?. Assuming the vacuum decays predominantly into ultra-
relativistic particles with w = 1/3, radiation naturally emerges and coexists with the
dynamical vacuum at times when the bare term can be neglected, i.e., A, < H>/H;. This
leads us to a non-linear equation for the scale factor:

2 /a\?
!
_ ==z =0. 4
a Hl(a) 0 @

Integrating the equation above yields

ic,

77+C2+\/(17+C2)2+HI (5)

1
a(n) = 20,

where C; and C, are determined by the continuity of a(77) and a’(77). Note that the scale
factor would reduce to the form characteristic of de Sitter spacetime in the distant past
when 1 — —o0, and a(77) « 5 during the radiation-dominant phase. Consequently, the
comparison of these two trends will enable us to pinpoint the moment when radiation
energy becomes significant, thereby allowing us to estimate the duration of the post-
inflationary reheating stages.

The reduced Hubble parameter during the post-inflationary transition, denoted as
‘Hrt, is an important measure for characterizing cosmic expansion that takes place before
the onset of the radiation-dominant epoch. It can be easily determined using Equation (5)
such that

Hr(n) = — = (6)
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This function reaches its maximum value at #max = —C», leading to
_ Hi
Hr(—C2) = Hr(fmax) = Hmax = i (7)

Under the circumstances, the Hubble function can then be expressed in terms of #max and
Hmax as follows:

1
Hr(n) = . 8)
\/(’7 - 77maX>2 + @

2.2. Cosmological Tensor Perturbations

In the conformally flat FLRW geometry, gravitational waves can be induced by a small
tensor perturbation h;; defined in

ds* = a(n) [d;yz — (6 + hi]-)dx"dxj] i 9)

where ‘hlﬂ < 1, and is transverse-traceless satisfying the gauge conditions: ho, = 0,
hi =0, and V/ hi]- = 0[10,19]. Accordingly, the wave equation for GWs in this framework
is expressed as 9y, (\/Tgap‘hij(iy, x)) = 0. The general solution to this equation can be
expanded in Fourier space as usual and is given by

3 .
0 = [ 205 8 e [mmen+ hel, (10)

(27)° 155

where the mode function /), (17) adheres to the symmetry condition hﬁ((q) = hZ(U). Here,
n denotes the comoving wave vector and eg(n) represents the transverse-traceless polar-
ization tensor. The relationship between the comoving wave number n associated with the

wave length A and the scale factor a(7) is expressed as

n=Inj = 2200 _ oy, (11)

By substituting the general solution (10) into the GW equation — omitting the polarization
index 7y for simplicity — one obtains the following mode equation:

My (17) + 2H () hy, (17) + nhi (37) = 0. (12)

By introducing the substitution y, () = a(17)h, (1), the mode equation can be recast into a
more manageable form,

I , a’
Uy + n—; pun = 0. (13)

It is noteworthy that the term a”/a can be interpreted as an effective potential, which
exhibits a bell-shaped barrier for any smooth-transitioned scale factor a(7). This term
becomes negligible when 12 is sufficiently large relative to the height of the barrier, indi-
cating that the mode is situated well outside the potential region. Under such conditions,
un behaves as a simple harmonic oscillator with a stationary amplitude, resulting in the

2 is smaller

decay of I, (1) as the universe expands. Conversely, when the condition n
than the height of the potential barrier, the amplitudes of the low-frequency modes remain
approximately constant during periods of effective potential domination [2,24]. It is only

after these modes exit the potential region that their amplitudes begin to decrease due
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to the expansion of space. If we analyze the dynamics more closely during the transient
period between the inflationary phase and the radiation-dominant era, the behavior of the
scale factor becomes significantly more intricate. Consequently, the resulting solutions to
the GW equation yield corrections to the gravitational wave power spectrum [10,19].

2.3. Gravitational Waves Solutions in Transition

The significance of the gravitational potential barrier prompts us to rewrite (13) as

i + (n2 - VT(’?)).”n =0, (14)

where the effective potential during the transition between the inflation phase and the
radiation-dominant era is defined as

V() = - = Hi+Hr = Hi[L = Hr (] = max)]- (15)

The expression for V(1) is derived from H; = —H3 (17 — 7max) as seen in Equation (8).
Moreover, by setting T = # — #/max the reduced Hubble parameter during the transition
period (8) can be further simplified as

1 1 1
" :%<1), (16)
(n) /72 + Hzl T 27T2H2 0

where the approximation utilizes the binomial expansion, valid under the assumption that
’TZHIZnaX| > 1 in the context of the early universe. Subsequently, we can approximate the
effective potential as

v~ (- b ) (17)
=2 212H2 . ) 2T2H2..

This modification allows us to reformulate Equation (14) into the following expression:

o +

1 1 2 9

2

- — (1= =0, 18
(1 o) 2T2H%mx]”” (1

which encapsulates the dynamics of the system under the stated approximations and
provides a foundation for further analysis. By changing the variable to u, = t!/28,
Equation (18) transforms into

"+ 1718 + 2o (1o 1 g +1 S=0 (19)
(= 202HZ . ) 2T%HE. 4 '

In practice, one can recast this equation as an inhomogeneous equation such that

9 1 2
U l 2.2 7 _ _
5"+ 18+ (n T 4)5 = [(1 72 r2nax> FTHE 2] S. (20)

When the terms on the right-hand side of the above equation are omitted, the corresponding

homogeneous equation is indeed the GW equation in de Sitter spacetime. Clearly, the
source terms on the right-hand side of Equation (20) are insignificant in the far past,
T — —oo, rendering the equation homogeneous and describing GW evolution during the
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inflationary stage. Moreover, by setting x = nt and relabeling y(x) = S(nt), the above
equation becomes

210 4wy + 2 9\, _ 1— n? n? -2 (21)
Yy m)ye 2212, ) 22He, |

Here, the Bessel functions Y3,,(x) and J3,,(x) serve as two independent solutions to the
homogeneous equation. Thus, the general solution of Equation (21) can be constructed as

n

x 2 n2
y(x) = b1Y3/2(x) +b2]3/2(x)+LmG(x,u) [<1 - 5. ) SRETE —2] y(u)du. (22)

max

where by and by are constants to be determined by initial conditions, while G(x,u) is a
retarded Green’s function,

1
G(x,u) = W[fa/z(x)Ys/z(“) = Y32(x)J3/2(u)], (23)
with a Wronskian W(y1,y2)(u) = —-2. The integral term involving G(x,u) in

Equation (22) accounts for the contribution from the backreaction source, and the inte-
grand is proportional to u~! such that the integrand will go to zero as u — —co, which is
expected to be negligible during the very early stages of cosmic evolution. Consequently,
the general solution simplifies to the homogeneous solutions in the remote past, a period
characterized by primordial inflation.

2.4. Parametrizing the Expansion History

In order to accurately acquire the spectrum of primordial gravitational waves with the
appropriate amplitudes, it is imperative to meticulously parametrize the expansion history
of the Universe. Given the continuous evolution of spacetime, it is essential to apply specific
junction conditions to the scale factor a and its derivative a’ to facilitate a smooth transition
between distinct cosmic eras. Notably, the value of C; in Equation (5), as determined
by these junction conditions, will significantly influence the details of the evolutionary
process preceding the onset of the radiation-dominant phase. This raises pertinent inquiries
regarding the temporal dynamics of how early and how long spacetime may deviate from
the initial de Sitter state before ultimately settling into the radiation-dominant phase. For
instance, substituting C; = H;/4H2,,, while setting C; = 0 in Equation (5), one derives a
valid scale factor as

272 1
aPR(n)=$ N+t 3n ] for —co <y <1, (24)
max

which describes the pre-radiation (PR) stage that encompasses all phases of cosmic evolu-
tion preceding the equality time #, when the vacuum energy density equals the radiation
energy density.

We parameterize the subsequent expansionary process in accordance with [2,10,19,24].
In the radiation stage, the scale factor is given by

a(n) = ac(n—mne)  for n, <n <ip, (25)
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where 7, denotes the equality time between the radiation and matter eras, and 7, is a
constant determined by the junction condition. In the matter stage, the scale factor is
defined as

a(n) =aw(y —nm)>  for ;2 <y <np, (26)

where a,, and 7, represent constants to be determined, and #y denotes the current confor-
mal time. We subsequently define the ratios

€2 a(T]H) é’r a(?]z) (27)

and utilize the approximations {, ~ 10* and O = 10%* as noted in [2,10,11,24].
To achieve overall normalization, we define 17 — #,, = 1 for the current time . We
can express this relationship as

a a 2 1
H = -—=| = = — = — 28
m=1=(2) =m=7, e
where /}; denotes the Hubble radius for the present universe. From the above equation, we
conclude that a,, = 2/y.

The continuity of the scale factor a(17) and its derivative a’(1) at the points 7, and 7,
necessitates the following conditions:

=i = 57 (29)
1,
m=ne = 5" (30)
1, 10,
Mr —Me = 5@2 l/2§r ! (31)
o= \/(16”261>2— , (32)
= ; .
2 2 Hrznax
These conditions yield the following final relations:
Ae = 4£H€£1/2 (33)
S I o 1S 34)
HIZnax HléHgglgfl

2

faax Which is essential

By inputting the values of {> and {, one can ascertain the values of H
for analyzing the deviations between the inflationary phase and the radiation stage. This

analysis is critical for advancing our understanding of cosmological dynamics.

2.5. Gravitational Wave Spectrum

The spectrum is delineated through the variance of the field amplitude, represented as

dn

(Ol (1,00 (1, %)10) = [ W2 (n, ), ©5)

where hi(n,77) denotes a dimensionless quantity, commonly referred to as the root-mean-
square (rms) amplitude. Utilizing Equation (10), we are enabled to derive the spectrum

() = 202 ()] (36)
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This formulation elucidates the relationship between the spectrum and the corresponding
amplitudes, facilitating a comprehensive understanding of the underlying physics.

In the pre-radiation stage, characterized by the interval where —c0 < 57 < 7, the
mode function 1, (1) exhibits a direct relationship with the function y(x) as articulated in
Equation (22) as

1 1

() = Zogbn () = Mﬂ”zy(@- (37)

With a normalization constant A (to be determined by the initial spectral amplitude), and
Equations (22) and (37), the expression for h, during the PR stage is derived as

Ap 1 x 2 2 2
. nz{blYg(x)+b2]g(x)+/_ooG(x,u)l<1— ZuZZi%nax) 2u2171112nax —21y(u)du}. (38)

Here, the coefficients should be taken as

[ T
by = 1\/:, by = —\/:, (39)

such that limy,_e0 1y (77) o e~ and the adiabatic vacuum [10,19,25] in de Sitter spacetime
can be established.

One can obtain the GW solutions from the mode Equation (12) in various epochs
with the corresponding scale factor [10,11,25]. In the radiation-dominated stage, the mode
function is expressed as

ha(17) =y~ 2[c1]12(ny) + c2Yq j2(ny)], (40)

where y =  — #.. The constants c; and ¢ are determined by the continuity conditions
of both &, (17) and its first derivative &}, (17) at the point 7,. On the other hand, during the
matter-dominated stage, the mode function can be represented as

ha(n) = z73/2[d1]32(nz) + d2 Y32 (nz)], (41)

where z = 7 — 1. The coefficients d; and d are similarly established through continuity
at 7. With these coefficients determined, it is straightforward to obtain the mode function
at the present time h, (1757), and the corresponding spectrum from Equation (36) becomes

) = 22 )| )

As it is well established, the initial spectrum of relic gravitational waves at the horizon
crossing time 77, exhibits a nearly scale-invariant characteristic, articulated as

n \2TB
hi(n, ) = A () . (43)
ny
In this context, B = —2 pertains to de Sitter expansion [2,24]. The constant A can be

determined through the CMB anisotropy AT /T =~ 0.37 x 107 at the quadrupole moment
I ~ 2, correlating with the scale of the Hubble radius ¢y. The ratio of tensor to scalar
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perturbations is described by r = 0.22 [11]. Consequently, the value of the spectral
amplitude for the present time (np, 1757) becomes

h(ng,ny) = (ATT) Vr=037x107° x 0.221/2, (44)

which specifies the constant A by means of the initial spectral amplitude Equation (43).
Consequently, A, proportional to A, can be determined using Equation (36) together with
Equation (38) [10,11].

It is more convenient to use the frequency v instead of the wave number n observa-
tionally. The GW spectral energy density parameter is defined as [10,24]

7'[2 n 2
Qq(n,1p) = 3h2(n,17H)(nH> ,

where h(n, ) denotes the spectral amplitude in Equation (42). Since the frequency is
n

iven =5
givenasv = 5r s

, the above equation can be recast as

m? v \?
Q(vmm) = w0 (1)

where vy represents the frequency scale corresponding to the current size of the universe.

3. Result and Discussion

Our investigation into the power spectrum of primordial gravitational waves aligns
with established methodologies found in the literature. We concentrate on the dynamics
occurring during the transition from the inflationary epoch to the radiation-dominated
era, employing the Running Vacuum Model with a specific formulation of vacuum energy
characterized in terms of the Hubble parameter (See (2)). However, we reformulated the
GW mode equation within the context of RVM into an inhomogeneous Equation (21),
thereby addressing it as a back-reaction problem. This analytical perspective enables us to
discern the corresponding behavior of the GW power spectrum in relation to spacetime
evolution, which is evidenced by the deviations observed in the pre-radiation scale factor
from the inflationary trajectory. The scale factor (24) during the pre-radiation stage, in the

limit of the far past (7 — —o0), where |7| = —5 and 7% > H 2, is
2H2 o { ( 1 ﬂ 1

a o flmax (1 )| = - 45

PR(”) HI 17 17 ZH%\aXT]Z H[T] ( )

which precisely represents the scale factor of inflation in conformal time.

From Equation (45), it becomes evident that the parameter Hmax fundamentally alters
the shape of the scale factor, thereby providing critical insights into the temporal transition
when de Sitter spacetime underwent significant alteration and exited the inflationary
phase. The determination of Hmax is rooted in the cosmic history spanning from the
radiation-dominated era to the present epoch (See (34)). Furthermore, this parameter plays
a pivotal role in modifying the transient period preceding the radiation stage (See (45)).
Consequently, variations in Hmax correspond to distinct cosmic histories. By slightly
manipulating this parameter, one may elucidate the intricate relationship between cosmic
history and the gravitational wave spectrum, particularly during the transient period,
which bears a resemblance to the reheating phase in generic cosmological models.

Figure 1 elucidates the point at which spacetime begins to diverge from de Sitter
spacetime, as delineated by Equation (45), utilizing two distinct values of Hy2,: 5 x 10752
and 4 x 107°2. The curves depicted herein correspond to instances wherein apg (77) starts
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to deviate from a;(y7) at approximately 7 = —2 x 10724 and y = —1.8 x 10724, which
correlate to e-folding numbers N = 26.02 and N = 25.91, respectively. Here, we use
n = —H lexp(—Ht) = —H 'eN by the definition of e-folding number [26] and select
H = 10% s~ 1. It is imperative to note that the temporal values presented are estimations.
This investigation aims to discern the implications of early and significant deviations from
inflation on the spectrum of gravitational waves. Furthermore, the figure illustrates that
apr(7) transitions smoothly to the radiation stage, in contrast to the abrupt transition
characteristic of inflation. Analysis of Figures 1 and 2 reveals that earlier deviations in the
inflationary scale factor yield a diminished maximum value of effective potential, thereby
culminating in reduced high-frequency gravitational wave production, as depicted in
Figure 3. This phenomenon can be interpreted as an earlier onset of particle creation, which
induces a more gradual alteration of spacetime, resulting in a reduced rate of change of the
scale factor. Consequently, this leads to a lesser maximum value of effective potential, which
is integral in distinguishing extended wavelength modes as presented in Equation (13).
Our findings indicate that the power spectrum increasingly resembles a sudden transi-
tion from an inflationary phase to a radiation-dominated era, particularly as the transient
period within the Running Vacuum Model (RVM) is shortened. This observation, illustrated
in Figures 1-4 suggests that while the RVM serves as a framework for understanding this
transient period, analogous alterations in spacetime dynamics may emerge from various
physical processes, such as reheating. Should this transient interval indeed correlate with
reheating, our analysis reveals that a reduced duration of reheating is associated with
enhanced amplitude damping at lower frequencies (10° to 107 Hz), as evidenced by the
slope variations depicted in Figure 3. In this regard, one can determine the reheating

temperature T, using the formula Ty, = (%HrehMpl e [27,28]. When the vacuum
energy density equals the radiation energy density, the Hubble parameter in our model is
Hyep &~ 4.94 x 10'° GeV. By selecting g, = 228 for GUT/SUSY plasma, we find a reheating
temperature Ty, ~ 3.47 X 10 GeV.

6 L] L]
de Sitter
SF___ _¢ -52
Hmax? =4x10
_— -52
4 Hmax? =5x10

a(n)/107°
w

n/1072

Figure 1. The scale factor for de Sitter space is examined alongside the scale factor in the pre-radiation
stage based on RVM with two different values of Hmax. This figure illustrates the pre-radiation scale
factor approach, specifically confined to both the inflationary and radiation-dominant eras. Notably,
variations in the value of H2,, result in distinct deviations. The representation indicates that the
blue line exhibits an earlier deviation compared to the red line, emphasizing the impact of parameter
selection on model behavior.
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L] L] L] L] L] L] L] L] L]
6 de Sitter+rad -
J— _1_4 102
Hmax? = ¢
5F ; -
—_ -52
pr—" =5x10
4k -
%
= 3 -
S
=
2k -
1k -
ok
1 1 1 1 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6

n/1072

Figure 2. The figure demonstrates how the maximum value of the effective gravitational potential
a" /a depends on Hrznax

de Sitter+rad+mat |

4
—_ -52
p——" =4x10

10

1 ’
— e=5x107%

Log h(v,nx)
0
o
T

-35p

1
-20 -15 -10 -5 0 5

Log v[Hz]
Figure 3. The figure illustrates the current root-mean-square amplitude of gravitational waves as a
function of physical frequency. The green lines represent the GW undergoing a sudden transition from
the inflationary phase to a radiation-dominated era, which considers only the homogeneous solution
in Equation (22). In contrast, both sets of red lines and blue lines describe the GW experiencing a
smooth transition from inflation to a radiation-dominant epoch, which includes the back-reaction
effect characterized in Equation (22).

Moreover, both our analysis and Ref. [19] show that the GW spectrum has notable
variations in the frequency range between 10° and 108 Hz, particularly from 10° to 107 Hz.
In contrast, currently ongoing observational projects find that the ground-based Laser
Interferometer Gravitational-wave Observatory (LIGO) is sensitive to GWs between 10 and
10* Hz [29], while the space-based Laser Interferometer Space Antenna (LISA) focuses
on lower frequencies ranging from 10~ to 1 Hz [30]. Investigating the effects of the
early universe on the GW spectrum is quite challenging, yet it remains an intriguing area
for exploration.
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12 T T
de Sitter+rad+mat
— 41072
_13k Hmax? |
1 -52
— =5x10

Hmax?

Log Qg(V,rlH)

6 6.5 7
Log v[HZz]

Figure 4. The spectral energy density parameter for GWs in the high-frequency regime dampens in a
consistent manner similar to amplitude damping.

4. Conclusions

The spectrum of gravitational waves manifests variations commensurate with the
alterations in spacetime across diverse epochs of cosmic history. These spacetime alterations
serve as reflections of the universe’s evolving constituents or fluctuations in the equation
of state. In this context, it is essential to note that Robertson-Walker spacetimes exhibit
conformal flatness, thereby designating the scale factor as the singular parameter that
encapsulates spacetime evolution.

Instead of developing discrete reheating models and subsequently deriving their
associated gravitational wave spectra, this analysis employs the Running Vacuum Model as
a continuous transient model. We investigate the gravitational wave spectrum by varying
Hmax, which depends on the initial Hubble parameter H; and the equality time 7#,, see
Equation (34). We also study the timescale of deviation in the scale factor corresponding
to each Hmax. These variables yield invaluable insights into the transient timescale, the
duration of the radiation-dominated era, and the reheating temperature.

To elucidate the physics underlying the graceful exit through gravitational waves,
we reformulate the gravitational wave equation within the RVM framework into an in-
homogeneous equation. The homogeneous solution aligns with that of de Sitter space,
whereas the particular solution is expressed as the integral of a kernel that incorporates
the scale factor and the retarded Green function. This particular solution represents the
cumulative back-reaction to gravitational waves in de Sitter space, contingent upon the
processes governing the transition from inflation to the radiation-dominated era.

While the RVM is utilized to characterize the transient period, analogous spacetime
alterations may emerge from alternative physical processes, including reheating. Our
investigation emphasizes the correlation between spacetime evolution during this transient
phase and its distinctive signature within the gravitational wave spectrum. Notably, our
findings indicate that a protracted transient process results in greater amplitude damping
at lower frequencies, contrasting with the scenario of an abrupt transition from inflation to
the radiation-dominated era.
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